
ENERGY EFFICIENT
CONTROL OF DATA CENTER
HVAC SYSTEMS USING
REINFORCEMENT LEARNING

External Supervisor

Internal Supervisor

LENNART VAN DE
GUCHTE

PEPIJN
SIX DIJKSTRA

PROF. DR. IR.
BOJANA ROSIC

AUGUST 29, 2024

Author

Engineering Technology - Chair of Applied
Mechanics and Data Analysis

Master’s Thesis

This page intentionally left blank.

Summary

Dear reader,

This thesis investigates the use of Reinforcement Learning (RL) to create a controller that can
reduce the energy usage of the Heating, Ventilation and Air-Conditioning (HVAC) system in a
Data Center (DC), while still meeting critical temperature constraints. The introduction high-
lights the importance of reducing energy in DC HVAC systems while exploring the current
literature on the topic.

Following the introduction comes the problem statement, where a simple HVAC system us-
ing a chiller plant is defined, of which a simulation model is created in EnergyPlus. This thesis
will design its controller on this plant. Also, the goal of the controller of minimizing HVAC
power while handling critical temperature constraints in a server room is formalized in an op-
timization problem.

Then, the methodology chapter first describes the design of a baseline controller to compare
with the RL-based controller. Finally, it proposes an RL framework with a tuneable reward
function and consequently, algorithm and reward hyperparameter tuning experiments are set
up. These experiments are used to tune the RL-based controller. All frameworks and experi-
ments are implemented in Python.

The numerical results chapter presents the results of the baseline and tuning experiments out-
lined in the method. From this, 3 tuned RL-based controllers are then selected and compared
to the baseline. These 3 controllers are either good at handling constraints, reducing HVAC
power and one with a combination of both. From this comparison, it follows that the RL-based
controllers can outperform the baseline, but how these agents learn is still unpredictable, as
they are sensitive to their initialization.

In the conclusion, the key findings of this thesis are summarized, and the limitations of the
simulation model and proposed controller are discussed. Next to that, directions for further
research are proposed.

Enjoy reading the thesis!

Kind regards,

Pepijn Six Dijkstra

i

Contents

List of Abbreviations v

List of Figures vi

List of Tables ix

1 Introduction and literature research 1
1.1 Control of DC HVAC systems . 2
1.2 HVAC optimization techniques . 2

1.2.1 Two-stage optimization . 3
1.2.2 Model Predictive Control . 3
1.2.3 Reinforcement Learning . 4

1.3 Data center modelling . 5
1.3.1 Thermodynamics based models . 6
1.3.2 Computational Fluid Dynamics . 6
1.3.3 Data-based models . 7
1.3.4 Combinations of methods . 7

1.4 Research goal . 7

2 Problem statement 9
2.1 HVAC systems in Data Centers . 9

2.1.1 Cooling layout in a server room . 10
2.1.2 Chiller plant . 11

2.2 HVAC system design . 12
2.2.1 Energy balance and power . 14
2.2.2 Actuation variables . 16

2.3 HVAC system simulation model . 17
2.3.1 EnergyPlus HVAC layout . 17
2.3.2 EnergyPlus simulation algorithms . 19
2.3.3 Timestep sensitivity analysis . 21

2.4 The HVAC controller optimization goal . 21
2.5 Summary . 23

3 Methodology 24
3.1 Baseline study . 25

3.1.1 Baseline controller . 25
3.1.2 Baseline experiments . 27

3.2 Reinforcement Learning framework . 28
3.2.1 Reinforcement Learning working principle 28

ii

Contents

3.2.2 The Markov Decision Process . 29
3.2.3 Reinforcement Learning algorithm selection 36

3.3 Weather and IT load data and data partitioning . 40
3.3.1 Weather data . 40
3.3.2 ITE load data . 41

3.4 Reinforcement Learning tuning experiments . 42
3.4.1 Hyperparameter tuning . 42
3.4.2 Reward tuning . 44

3.5 Summary . 46

4 Numerical results 47
4.1 Timestep sensitivity study results . 47

4.1.1 Data filtering . 47
4.1.2 Effects on the simulation . 48
4.1.3 Discussion & conclusion on the timestep sensitivity 50

4.2 Python implementation . 50
4.3 Baseline study results . 51

4.3.1 Chilled water setpoint selection . 52
4.3.2 Yearly performance . 53
4.3.3 Component-level results . 54
4.3.4 Discussion & conclusion on the baseline controller 57

4.4 Initial Reinforcement Learning experiment results 57
4.5 Hyperparameter tuning results . 59

4.5.1 Initial hyperparameter search . 59
4.5.2 Extensive hyperparameter search . 61
4.5.3 Discussion & conclusion on hyperparameter tuning 65

4.6 Reward tuning results . 66
4.6.1 General results . 67
4.6.2 Trade-off between HVAC power and constraint violations 68
4.6.3 Discussion & conclusion on reward tuning 71

4.7 Learning robustness results . 71
4.8 Analysis of tuned controllers and comparison to baseline 74

4.8.1 Training phase . 74
4.8.2 Validation & test performance . 76
4.8.3 Analysis of the RL based controllers . 78
4.8.4 Discussion & conclusion on the RL performance 82

4.9 Summary . 84

5 Conclusion 85
5.1 Limitations . 86
5.2 Future research . 86

A Chiller plant 94
A.1 Aisle containment strategies . 94
A.2 HVAC components . 95

B IT Load derivation 98

C Hyperparameter samplers 100

iii

Contents

D Tuned controller behaviour 103
D.1 EOA . 103
D.2 BA . 105
D.3 COA . 107

E Statistical analysis controllers 109

iv

List of Abbreviations

AHU Air Handling Unit 5
AL Air Loop 12, 14–16, 18, 25, 30, 36, 57, 78–81
API Application Programming Interface 50, 51

BA Balanced Agent iv, viii, ix, 71, 73, 74, 78, 79,
81, 82, 105, 106

BES Building Energy System 2, 6
BMS Building Management System 2

CC Cooling Coil viii, 10, 11, 14, 15, 18, 25, 81, 95,
96

CFD Computational Fluid Dynamics ii, 5–7, 17
ChL Chilled Water Loop 12, 14–16, 18, 25, 26, 36,

55, 57, 81
COA Constraint-Optimized Agent iv, viii, ix, 71,

73, 74, 76, 78–81, 107, 108
CoL Condenser Water Loop 13, 15–18, 25, 27
COP Coefficient of Performance 15, 19, 96
CRAH Computer Room Air Handler 6, 10, 12, 14, 18,

25, 31, 32, 67, 86, 94–96
CT Cooling Tower viii, 12, 16, 18, 27, 86, 97

DC Data Center i, ii, 1–5, 7–12, 14, 17–19, 21, 23,
24, 28, 36–38, 41, 52, 83, 85–87, 94, 95, 97

DRL Deep Reinforcement Learning 5

EIR Energy Input Ratio 18
EOA Energy-Optimized Agent iv, viii, ix, 71, 73,

74, 76, 78, 81, 83, 103, 104

GAE Generalized Advantage Estimator 38, 40, 63

HVAC Heating, Ventilation and Air-Conditioning i–
iii, vii, viii, 1–25, 27–32, 34, 36, 37, 40, 41, 44,
46–49, 51–58, 64, 67–69, 71, 74–76, 78–80, 83,
85–87, 94–97

v

List of Abbreviations

IDF Input Data File 51
IEA International Energy Agency 1
IP Intellectual Property 41
IQR Inter Quartile Range 49, 50
ITE IT Equipment iii, vii, 1–3, 9, 10, 14, 17, 20, 21,

25, 41, 48, 54, 56, 80

MDP Markov Decision Process iii, x, 28, 29, 35, 36,
46

ML Machine Learning 4, 42, 59, 73
MLP Multi-Layer Perceptron 39
MPC Model Predictive Control ii, vii, 3, 4, 7

NN Neural Network 7, 37, 39

PG Policy Gradient 37, 38
POD Proper Orthogonal Decomposition 3
PPO Proximal Policy Optimization x, 36–40, 43,

46, 58, 59, 63, 64, 68, 70, 72, 73

ReLU Rectified Linear Unit 33, 34
RL Reinforcement Learning i–iii, vii, 3–6, 8, 9, 12,

17, 18, 22–25, 28–47, 49–53, 57, 58, 66–68, 71–
74, 78, 79, 82–87, 103

RNN Recurrent Neural Network 5

SOO Sequence of Operations 2
SRL Safe Reinforcement Learning 5, 87

TARP Thermal Analysis Research Program 19, 20
TPE Tree-structured Parzen Estimator 43, 45, 46,

59

vi

List of Figures

1.1 The Model Predictive Control framework . 4
1.2 The RL framework . 4

2.1 A schematic overview of a chiller plant [50]. 10
2.2 A schematic representation of the airflow in a server room [44] 11
2.3 A server room with a hot and cold aisle layout. 11
2.4 Schematic representation of hot aisle containment [56]. 12
2.5 A schematic representation of the HVAC system used in this thesis 13

3.1 Schematic representation of the air loop (Zoomed in from Figure 2.5). 26
3.2 Schematic representation of the chilled water loop (Zoomed in from Figure 2.5). . 26
3.3 Schematic representation of the condenser water loop (Zoomed in from Figure 2.5). 27
3.4 The RL framework, applied to the current system. 29
3.5 Reward for the HVAC power . 32
3.6 The room temperature setpoint reward, where σ is a tunable parameter 33
3.7 The three candidates for the temperature constraint penalty function 34
3.8 The candidates for the penalty on ∆a . 35
3.9 Timeline of the training, validation, and testing data. 40
3.10 The IT Load profile as used in [44]. 41
3.11 Example of a Pareto front in 2 dimensions. 45

4.1 The ITE load and HVAC power over the course of a year. 48
4.2 . 48
4.3 Timestep study results for the execution time and PHVAC. 49
4.4 The timestep study results for the temperature and mass flow. 50
4.5 The RL framework for the Python implementation. 51
4.6 The energy consumption of the baseline controller for various values of TChL1

SP . . 53
4.7 Overview of the total HVAC Power. 54
4.8 Contour plot relating the IT load and outdoor temperature to the HVAC power

in the baseline study. 55
4.9 The filtered HVAC power per component against the ITE load. 56
4.10 Contour plots showing how the power of each HVAC component related to the

disturbance variables . 56
4.11 The behaviour of the system during a week where the maximum airflow is reached. 57
4.12 High-frequency oscillations of the action variables, leading to peaks in HVAC

power . 58

vii

List of Figures

4.13 A parallel coordinate plot of the initial hyperparameter search. The axis on the
left contains the total reward of an episode. The lines are then connected to the
hyperparameters for that run. The best episodes are highlighted here, as can be
seen in the blue selection on the left axis. 60

4.14 The history and hyperparameter importance of the tuning experiments. 61
4.15 Parallel coordinate plot of the extensive hyperparameter study, with the 4 worst

performing agents filtered out. 62
4.16 Contour plots, relating λGAE, ϵ and cH to the cumulative reward. 63
4.17 Contour plots, relating several combinations of variables to the cumulative reward. 64
4.18 The overall reward tuning results. 68
4.19 The effect of λTAL2

constr
on the trade-off between PHVAC and TAL2

constr violations. 69
4.20 The effect of the constraint penalty function on the trade-off between PHVAC and

TAL2
constr violations. 70

4.21 The penalty functions. 70
4.22 Results of the robustness tests . 72
4.23 The performance of the agents during training, compared to the baseline con-

troller in the training years. 75
4.24 The constraint violations during the first year of training of the COA 76
4.25 Boxplots of the performance metric for the different agents on the validation set,

which have been trained on 10 different seeds. 77
4.26 Boxplots of the performance metric for the different agents on the test set, which

have been trained on 10 different seeds. 77
4.27 Contour plots of the HVAC power against the disturbance variables, 79
4.28 The mean HVAC component power in the test set for each agent. 79
4.29 The behaviour of the COA for the different seeds. 80
4.30 The COA control strategy compared to the baseline in the week of the 8th of

November. 81
4.31 The BA control strategy compared to the baseline in the week of the 8th of Novem-

ber. 82
4.32 The EOA control strategy compared to the baseline in the week of the 8th of

November. 83

A.1 Schematic representation of cold aisle containment [56] (Although the cold air
is coming from the roof in this representation, it often comes through the perfo-
rated floor tiles in reality). 95

A.2 Schematic representation of hot aisle containment [56]. 95
A.3 A chilled water CC [76] . 96
A.4 Schematic overview of a refrigeration cycle. 97
A.5 Schematic working of a CT [79] . 97

B.1 The IT load over the course of a year . 99
B.2 The IT load over the course of several days . 99

C.1 Example of different samplers. The distributions on the top and right of the
grids show the effect of changing this hyper parameter on the total performance
of the model. In this case, one hyperparameter influences the performance of the
model largely, while the other only has a small influence. 101

D.1 The behaviour of the EOA over the course of a year, compared to the baseline. . . 103

viii

List of Figures

D.2 The behaviour of the EOA over the course of a single week. 104
D.3 The behaviour of the BA over the course of a year, compared to the baseline. . . . 105
D.4 The behaviour of the BA over the course of a single week. 106
D.5 The behaviour of the COA over the course of a year, compared to the baseline. . 107
D.6 The behaviour of the COA over the course of a single week. 108

ix

List of Tables

2.1 Overview of the EnergyPlus model types in the simulation model 18
2.2 Original and transformed temperature limits. 19
2.3 The algorithms used for the EnergyPlus model. 20

3.1 Summary of the reward hyperparameters. 35
3.2 Summary of the MDP properties . 36
3.3 Summary of the PPO hyperparameters . 40

4.1 Specifications for the hardware used in this study. 52
4.2 Settings of the conventional controller in the baseline experiments. 52
4.3 Performance metrics of the baseline. 53
4.4 The settings of the reward used for hyperparameter tuning (a description of

these parameters is given in Table 3.1) . 59
4.5 The initial ranges of the hyperparameters used in this study. 60
4.6 The updated ranges of the hyperparameters used in this study. 61
4.7 Top 5 trials of the hyperparameter search. 62
4.8 Top 5 trials for the network architecture study . 65
4.9 Network architectures and learning rate of the agents with very bad results . . . 66
4.10 Best hyperparameters . 66
4.11 The ranges of the reward parameters . 67
4.12 The parameters of the 3 agents that are further investigated. 71

E.1 Shapiro-Wilk test results for normality across different agents and metrics. 109
E.2 Summary of the Mann-Withney U-test of the controllers on the test year 110

x

Chapter 1

Introduction and literature research

Data Centers (DCs) are vital in our current digital world. From scrolling on social media to
hosting large amounts of business data, almost everything that happens online is stored and
processed in DCs [1]. With an ever-increasing number of global internet users, the demand for
DC services has grown with 340% between 2015 and 2022 [2] and it is expected to continue
growing in the coming years. The International Energy Agency (IEA) expects the energy de-
mand of DCs to grow from 460 TWh in 2022 to 650 up to 1, 050 TWh in 2026 [3].

While these DCs are thus essential for an increasingly digital world, they are also a type of
building that is well known for being exceptionally energy-consuming. DCs are responsible
for about 2% of worldwide energy consumption [3] and 1% of the global CO2 emissions re-
lated to energy use [2]. To put this into perspective: all of the CO2 emissions related to energy
in the United Kingdom accounted for just 0.84% of the global emissions in 2022 [4]. Since DCs
use so much energy, making improvements in their energy efficiency can have a large impact
on global energy emissions.

In DCs, most of the power is consumed by the servers or IT Equipment (ITE), and the cool-
ing of this equipment by the Heating, Ventilation and Air-Conditioning (HVAC) system. This
means that large energy improvements in DCs can be achieved by improving the energy ef-
ficiency of either the ITE or the HVAC system. This thesis focuses on the optimization of the
HVAC system. The power used by the HVAC system is largely dependent on its settings. These
include desired temperatures, mass flows, and pressures. In a study by Ni and Bai, which com-
pared over 100 DCs, it is seen that the HVAC system is running at sub-optimal settings in most
DCs [5]. A lot of research shows that the HVAC systems of both general buildings [6, 7, 8, 9, 10,
11] and of DCs specifically [12, 13, 14, 15] can be optimized by using traditional optimization
techniques. Since, on average, ∼ 38% of the total energy usage in DCs is related to the HVAC
system [5], reducing the energy use of this system has a large impact on the total energy use of
a DC.

An additional challenge for the reduction of this energy usage is that DCs are mission-critical,
meaning that it is essential that they always keep operating. If they fail when, for example, a
server overheats, this has severe consequences for the companies that use these servers. There-
fore, this mission-criticality should always be considered when reducing the energy usage of a
DC’s HVAC system.

This thesis proposes a controller to minimize the energy usage of the HVAC system of a DC

1

1.2 HVAC optimization techniques

while ensuring safe operation of the DC. This introduction introduces a gap in the research by
first reviewing the current situation of the control of DC HVAC systems in section 1.1. Then,
existing research into different techniques used to create optimized controllers for HVAC sys-
tems are discussed in section 1.2. This is followed by a review of modelling techniques of
HVAC systems in DCs in section 1.3. Finally, the goal of this research and an outline of the
thesis is presented in section 1.4.

1.1 Control of DC HVAC systems

A DC is essentially a large hall that contains servers. These servers produce heat, which is
cooled by the HVAC system. In a DC, the HVAC system is managed by the Building Manage-
ment System (BMS). The BMS controls the entire Building Energy System (BES), which consists
of all energy-using components in a building. The cooling system, the main focus of this thesis,
is an important subsystem of the BES. Each part of the BES influences the others, and the BMS
ensures their proper control and integration [16, 17]. The BMS often works on multiple levels,
which can be divided into component levels and system levels. At the component level, the
components, such as pumps or fans, are controlled to ensure that for example desired mass
flows, temperatures or pressures are obtained. In the system level controllers, it is determined
which desired parameter values are suitable for optimal or safe operation of the system and
whether equipment should be switched on or off [17, 18]. An example of this higher-level con-
trol system is the control of the chillers, which cool down water that cools server rooms. The
higher level control system determines how many chillers should be turned on and it provides
a setpoint for the leaving chilled water temperature.

Currently, the control at the component levels is typically executed by PID controllers (or con-
trollers based on PID) [19]. As the lower level components have few variables to control and
typically respond reasonably fast, these simple controllers are sufficient to control the compo-
nents in close to optimal conditions [19].

As previously mentioned, the system level controller has to provide desired values for tem-
perature, pressure, and other variables (which are called setpoints) and has to decide whether
to switch equipment on or off. A PID controller is not suited for this application and thus, rule-
based controllers are typically used at this level [20, 21, 22]. Rule-based controllers (or in other
words a Sequence of Operations (SOO)) are heuristic controllers based on previous knowledge
and first principle physics [20]. However, a HVAC system is a very complex system. There are
a lot of different setpoints in such a system and thus many different combinations of setpoints
are possible. Moreover, the optimal operating condition of the HVAC in a DC can shift due
to changing outdoor temperatures, radiation or a varying ITE load. Finally, the system itself
is subject to change due to deteriorating equipment conditions or varying ITE occupation [18].
Combining all these makes it very complex to create a SOO which operates at (close to) optimal
efficiency in all possible conditions [20, 23, 24, 25].

1.2 HVAC optimization techniques

As the current control of HVAC systems is often not optimal, a lot of research is performed to
improve the energy efficiency of its controllers. In this section, the state-of-the-art optimization
techniques used to create optimal controllers for DCs are discussed. The main approaches are:

2

1.2 HVAC optimization techniques

a two-stage optimization approach, where first a model is created of which subsequently a set
of optimized control rules is derived; Model Predictive Control (MPC) which uses a model of
the system to predict the optimal control inputs of the system; or RL which learns to control an
unknown system by interacting with it repeatedly.

1.2.1 Two-stage optimization

In most current applications for the optimization of the higher-level controllers, a model of a
HVAC system is developed first and then this model is optimized. In [6, 7, 8, 9, 10, 11] differ-
ent versions of this approach are used to optimize the chiller plant of a building. All of them
use thermodynamics-based models to model the chiller system. The optimization techniques,
however, vary between papers. For example, in [7], a hierarchical optimal controller is applied,
consisting of component-level controllers and a supervisory higher-level controller. While in
[6], a genetic algorithm has been used to find the optimal operating point of a chilled water
system. In [15], this approach is used for the optimization of a DC. In this paper, the airflow is
modeled using a Proper Orthogonal Decomposition (POD) which is then in turn optimized.

However, as stated in [26], this two-stage approach of first creating a model and then opti-
mizing the model has some important drawbacks. One drawback is that the models created
are specific to the system. Therefore, optimizing a different system necessitates creating a new
model. Given the time-consuming nature of model creation, this limitation presents a signifi-
cant challenge. Another drawback is the complexity of the HVAC system in DCs, which makes
it very difficult to create an accurate model [27]. Consequently, a controller that has been op-
timized on a model does not necessarily operate optimally on a real system. This is especially
the case when the model parameters shift due to for example deteriorating equipment, varying
ITE load, or even global warming when looking at larger timescales.

1.2.2 Model Predictive Control

In recent years, MPC [28, 29, 30] has emerged as a popular optimization technique for the con-
trol of DC HVAC [12, 13, 31]. The MPC framework, shown in Figure 1.1, involves a prediction
model and an optimizer working together to determine and implement actions that minimize
a specific loss function, such as reducing HVAC power usage. Feedback from the environment
is used to continuously update and refine the actions taken. In [31], MPC combined with RL is
implemented on the HVAC of a DC and shows improvements over the PID controllers. In [12],
an adaptive MPC is proposed for a cooling unit in a DC and in [13], an MPC is proposed that
both manages the cooling system and the ITE workload of a data center. All three papers show
promise of 10% of power savings when compared to traditional methods.

The application of MPC for DCs is reviewed in [32]. As discussed in the paper, there is a range
of modelling techniques that can be applied in the MPC framework. The modelling methods
can be divided into 2 categories: physics-based and data-based models. As discussed before,
it is very hard to model complex processes using physics-based models. However, they do
have good interpretability. On the other hand, the data-based models can handle complex pro-
cesses. Their disadvantages are the problem of overfitting on existing data and that they can
not guarantee accurate predictions for situations that do not occur in the data the models are
based on.

3

1.2 HVAC optimization techniques

Figure 1.1: The Model Predictive Control framework

1.2.3 Reinforcement Learning

RL is a Machine Learning (ML) technique that learns to control a system by interacting with
it repeatedly. Because of this interaction, RL is capable of learning optimal control policies for
complex systems without requiring a predefined model [33, 34, 35]. The way RL works is by
sending control actions to a system, or environment, and it receives a so-called reward and
information on how the system is affected back. Through many interactions, the RL algorithm
can learn how to maximize this reward. Figure 1.2 displays this framework. RL seems a good

Figure 1.2: The RL framework

fit to control HVAC systems because of the nature of RL, which does not require a model, and
can learn to control complex systems. This is a good fit with the complex, hard-to-model na-
ture of HVAC systems. Moreover, the power consumption of a DC serves as a natural reward
function within the RL framework.

The use of RL in DC HVAC systems has been reviewed in [18, 23, 32]. These reviews conclude
that RL is a promising technique to optimize the control in DCs HVAC systems. However,
they do address several challenges in RL. Firstly, [18] concludes that nearly all RL-based op-
timization is still performed on models, instead of actual DCs. Secondly, RL has low sample
efficiency, which means that the algorithms are computationally inefficient [23] and may take a
long time to converge on slow, real-life DCs [32]. [32] also concludes that RL algorithms often
struggle with maintaining temperature constraints, which is particularly critical in DCs due to
their mission-critical nature, making any violation of these constraints highly catastrophic.

4

1.3 Data center modelling

In recent literature, the findings of these review papers are supported. Initially, research demon-
strated the feasibility of using RL to optimize HVAC systems through simplified models. Stud-
ies such as [27] and [24] showcased energy efficiency improvements using Deep Reinforcement
Learning (DRL) agents to control air and chilled water flow in thermodynamics-based build-
ing models. Similarly, [26] achieved up to 15% energy savings by optimizing the controllers of
HVAC systems using RL based on data traces from actual data centers.

After this initial research proved that the concept of using RL for the optimization of HVAC
controllers in both normal buildings and DCs, a lot of research has been performed to improve
the performance of the RL agents. These improvements are on the level of energy efficiency,
reliability, increasing the sample efficiency, and closing the gap between simulation and reality.

The following literature presents advancements in using RL to improve the energy efficiency
of DC HVAC controllers. In [36], an offline, model-based DRL agent for the HVAC system in
buildings is proposed, which can train on interactions a model it learned from the environ-
ment, while fine-tuning itself using interactions with the environment. This greatly increases
the sample efficiency. In [37], principles of Safe Reinforcement Learning (SRL) are combined
with batch learning, to both decrease the number of constraint violations and increase the sam-
ple efficiency of a DRL agent for the HVAC system in a commercial building. [38] uses a Recur-
rent Neural Network (RNN) to learn patterns in the behaviour of an Air Handling Unit (AHU)
and as such improve the efficiency of the original controller by up to 30%. Although all of this
research proposes novel methods, they are all evaluated on either thermodynamic models or
data traces. In [20], Google DeepMind applies an RL algorithm to a real building, achieving 9-
13% energy savings in real-world tests. The agent does this by learning to use cooler condenser
water for more efficient chiller plant operation and learning to compensate for temperature
sensor miscalibrations.

In the specific case of DCs, [25] pre-trains its RL agents on thermodynamics-based models,
and then tests them on more realistic Computational Fluid Dynamics (CFD) based models,
demonstrating that pre-trained agents can adapt to a more realistic DC environment relatively
fast. This is a step in bridging the simulation-to-reality gap. [39], applies a physics-guided RL
agent, where exploration is bound by a physical model. Finally, in [40], a RL agent is used to
manage both the server allocation and HVAC system.

It should be noted that all research on DCs has been applied to models, where either only
the mass flow or a single setpoint temperature is adjusted. Next to that, these models all con-
trol just a small number of variables, such as only the room temperature setpoint in [25] or only
mass-flows in [40].

1.3 Data center modelling

As DCs have a mission-critical infrastructure, models of the HVAC system are required for re-
search of new types of controllers. The previous section already briefly mentioned a number of
them, and this section further discusses three state-of-the-art DC HVAC modeling techniques:
thermodynamics-based models, CFD models, and data-based models.

5

1.3 Data center modelling

1.3.1 Thermodynamics based models

The first simulation method to be discussed are the thermodynamics-based models. As the
name suggests, thermodynamics-based models use the principles of thermodynamics as the
mathematical base of a simulation. These models can approximate the energy usage of a system
over longer time periods. They are also able to model all the components in a HVAC system.
Another advantage is their low computational complexity since they allow for relatively large
timesteps (1-60 minutes) and are based on first-order physics [41, 42]. Since thermodynamics-
based models are based on physical relations, they can accurately model a wide range of set-
tings of the HVAC system. The largest drawback of these models is that they are based on
first-order physics, and are thus not able to accurately simulate details, such as the airflow in-
side a data center room.

A widely used approach for simulating BES with this type of model is using the EnergyPlus [42]
software. EnergyPlus offers a modular approach for the simulation of buildings. Both building
geometry (like the size of rooms or the insulation of walls and windows) and a complete HVAC
system can be modeled in EnergyPlus. This leads to great flexibility in the type of building that
can be modeled using this software. However, EnergyPlus suffers from the drawbacks associ-
ated with thermodynamics models. In the case of a data center, one of the largest drawbacks
is that EnergyPlus models a room as a thermal zone and does not allow for temperature dif-
ferences inside a room [42, 43]. When recalling Figure 2.2, it is clear that this causes a problem
in a data center room, where large temperature differences occur. In [44], a solution for this
problem is proposed. A data center room is simulated using both EnergyPlus and CFD, which
offers a lot more accurate modelling of the airflow in a room. Then the EnergyPlus model was
calibrated such that the temperatures entering and leaving the Computer Room Air Handler
(CRAH) match the CFD simulation. Another drawback of EnergyPlus is that it was originally
meant for the simulation of buildings over the course of a year. To solve this problem, custom
solutions have been proposed to make it suitable for RL, such as a testbed to connect the En-
ergyPlus simulation to python, making it possible to adjust actions every time-step [45] and a
python implementation of the EnergyPlus code [46].

1.3.2 Computational Fluid Dynamics

The second simulation method that is used for HVAC modelling is CFD. It is the branch of
fluid mechanics that solves the behaviour of fluids by numerical analysis. CFD predicts this
behaviour by solving a set of underlying equations. In most tools, these underlying equations
are the Navier-Stokes equations [47]. CFD methods allow for very accurate simulation of the
air flows in a data center. Comparable to the thermodynamics-based models, these methods
can accurately model a wide range of situations in a room, since they are based on physics.
However, CFD methods do require a fine grid and small timesteps [48], which gives these
methods a high computational complexity. Due to this complexity, it is seen that in studies,
these methods have not yet been used for the training of agents, although there are studies that
test their agent for a few simulation days on a CFD model [25]. Another drawback is that it is
very hard to model a HVAC system and room simultaneously using CFD, due to the complex
heat transfer mechanisms between these 2 systems. Therefore, simultaneous simulation of
these 2 systems is not found in the literature.

6

1.4 Research goal

1.3.3 Data-based models

The third model type used for modelling DC HVAC systems are the data-based models. These
data-based or data-driven methods uses data which is collected from use with a typical higher-
level HVAC controller. Using this data, relationships are found using techniques like regression
or Neural Network (NN) [41]. Among the data-driven models are: fuzzy logic models, statis-
tical models, state-space models, stochastic models, and many more. These models have the
large advantage that they are based on the real data of an HVAC system and thus have little to
no assumptions on the behaviour of the model. This means that they can predict the states of a
HVAC system more accurately than most physics-based methods under the circumstances the
models are trained on [41]. However, the large disadvantage is that they are not based on any
underlying physics, and thus are not able to approximate the behaviour of a HVAC system un-
der circumstances that differ from the circumstances the model was trained on. For example,
in the case of a DC, the setpoints are rarely adjusted in reality. When a model is trained on real
data, it can accurately predict the behaviour of the HVAC system in this small operating range.
If the setpoints are then changed during the training of a new type of optimal controller, the
model has to extrapolate from the generated data, but there is no way of quantifying whether
this is what would happen to the system in reality.

1.3.4 Combinations of methods

These are the three types of models typically used for developing HVACs controllers, often in
combination. For instance, CFD models were used to calibrate thermodynamic models in [44].
Grey box methods, which blend data-driven and physics-based approaches, are another exam-
ple. In these methods, a physics-based model forms the underlying structure, with unknown
parameters estimated from real-world data. This combination offers high accuracy and can
predict behavior in scenarios different from the measured data.

1.4 Research goal

In the previous sections, it was seen that the HVAC system in DCs uses lots of energy. These
systems are currently often controlled by rule-based controllers and the research covered sug-
gests that improvements in energy efficiency can be made by optimizing these controllers for
energy efficiency [5].

Section 1.2 covers research on different techniques that are used for the optimization of these
controllers. Two-stage optimization techniques have the drawback that they require a model
of the system on which the energy-optimized controller then is designed. The HVAC system
of DCs proves to be very difficult to model, and these models do not adapt to changes in the
system over time. Therefore, the two-stage solution often does not lead to optimal controllers.
Next to that, the creation of a model is specific for individual DCs, and thus this approach is
not scalable to a large number of DCs.

Another often-researched approach is MPC. Although MPC still requires a model of the DC, its
model is adaptable to changes in the system. Thus it does show improvements in the energy
efficiency of the controller when compared to the two-stage approach. However, the creation
of a model for MPC is still labour intensive and has a chance of having a mismatch with the
actual system [49].

7

1.4 Research goal

The one-stage approach of RL mitigates these problems, as it does not require the creation of
a model. Therefore, this technology shows a lot of potential, as the lack of a model reduces
the risk of bias and increases the possibility to scale to more DCs without the labour associ-
ated with model creation. Thus, this thesis focuses on using RL to develop an energy-efficient
HVAC control system for DCs.

From the research on RL follows that there are still several challenges that should be addressed
before RL agents could be implemented as the controller of DC HVAC systems. These chal-
lenges include improving the sample efficiency of the agent or improving the handling of con-
straints in the system. Next to that, most research focuses on only a single type of control
variable, such as only mass flows or temperature set points. Finally, the models used to train
RL agents are often heavily simplified when compared to the real HVAC systems [25, 36, 45].
As not all problems related to RL in DCs can be addressed in a single thesis, the focus will be on
a subset of these issues. Given that DC environments are mission-critical, and the reliable op-
eration of these systems is extremely important, this thesis primarily concentrates on handling
the constraints within a DC’s HVAC system. Additionally, the control variables will include
both mass flow and temperature setpoints, as it is believed that the true strength of RL lies in
optimizing the interaction between these variables to achieve the best performance.

In the existing research, often only the final reward function is presented, without further in-
vestigation into the effects of modifying this reward function. This thesis creates a controller
that minimizes the HVAC power of a DC using RL and then identifies the effects of changes in
the reward function on both the power usage and the ability of the controller to handle tem-
perature constraints.

This thesis addresses this issue by first defining a HVAC system on which the controller is
designed. This is done in chapter 2, which first gives the required background on HVAC sys-
tems in DC, then defines the exact HVAC system which is used in the remainder of the thesis.
Finally, an optimization problem is formulated, including all constraints of the system.

The RL agents are trained and tested on a simulation model of the HVAC system. The per-
formance of the controller is compared to a conventional controller which serves as a baseline
for a fair analysis of the performance of the RL controller. How this is done is described in
chapter 3. First, the creation of the simulation model is described in section 2.3. Then, the
working of the baseline controller is discussed in section 3.1. Following that, section 3.2 gives
a short background on RL, followed by the implementation of RL on the HVAC system. This
includes the formulation of the HVAC system in a suitable framework for RL, the selection of
an algorithm, and the creation of a reward function. Finally, section 3.4 describes how the RL
agent’s hyperparameters are tuned and how different reward settings are investigated.

Following all this, chapter 4 gives the results of the experiments outlined in chapter 3, and
subsequently compares the performance and control strategies of the tuned and trained RL-
based controllers to that of the baseline controller.

Finally, a conclusion and discussion on the results of this thesis are presented in chapter 5.

8

Chapter 2

Problem statement

This thesis will design and implement an RL-based controller for a DC’s HVAC system, to op-
timize the energy efficiency of this system while maintaining the safe operation of the system.
The reasoning behind this is that the HVAC systems in DCs use large amounts of energy and
RL shows promise to improve upon the energy efficiency of conventional controllers. This
chapter defines the system on which this controller will be implemented and defines a formal
goal of the controller.

First, section 2.1 gives required background knowledge of HVAC systems in a DC. Then, sec-
tion 2.2 provides the exact design of the system. This includes the layout of the system; a
description of the energy balance in the system and the power used by the individual HVAC
components and finally a description of the variables that can control the system and variables
that disturb the system. Consequently, in section 2.3, a simulation model of this system is set
up. This will be used to train and assess the performance of the controllers used in this study.
Finally, a minimization problem is formalized for this system, which serves as the performance
objective of the RL based controller.

2.1 HVAC systems in Data Centers

A DC consists of large rooms filled with servers. The HVAC system of a DC ensures the right
operating conditions for this ITE, such as desired temperatures, air mass flow rates, and air
humidity.

In this section, the HVAC system in a DC is described. To narrow the scope of the research,
the focus is on one of the most common cooling layouts: a chiller plant. Such a layout is shown
schematically in Figure 2.1. The cooling loads of this picture are caused by the servers of the
DC in a server room. Section 2.1.1 discusses how such a room itself is cooled. Then, in subsec-
tion 2.1.2, it is discussed how the heat is extracted from the room using the rest of the chiller
plant.

Mission-critical system A very important aspect of DCs is that they are mission-critical. In
other words, when the servers in a DC malfunction, this has severe consequences for the com-
panies that host their data on these servers [51]. Since the operation of these servers is mission-
critical, also the HVAC system is mission-critical. If it fails, the servers might overheat and be
damaged [52]. Even violating certain temperature constraints can already damage the servers.

9

2.1 HVAC systems in Data Centers

Figure 2.1: A schematic overview of a chiller plant [50].

Therefore, the HVAC system should always meet these constraints.

This mission-criticality is one of the main goals in the design of the HVAC systems of a DC
and is thus also a fundamental part of the problem statement. Next to the constraints formu-
lated in this chapter, it is important to realise that this section provides a simplified version of
the HVAC systems in DCs and that in reality a lot of additional measures are implemented to
ensure this mission-criticality of the system.

2.1.1 Cooling layout in a server room

To better understand the specific cooling layout employed in a server room, it is important to
first have a better understanding of its central component: the server rack. Server racks contain
ITE, such as servers or networking equipment [53]. The racks are specifically designed to be
easily accessible on all sides, allowing for easy cable management and good airflow. The goal
of the HVAC system is to ensure that none of the equipment inside these racks overheats.

Figure 2.2 displays the air flow in the room. In summary, the server racks in a DC room are
cooled using one or multiple CRAHs. These systems cool down air using a Cooling Coil (CC)
which contains chilled water. Using a fan, cold air is provided below a raised floor, as displayed
in Figure 2.2. Through perforated tiles, the cold air enters the server room, where it is passed
through the server racks to cool the servers. The hot air is then directed back to the CRAH so it
can be cooled again.

Hot and cold aisles The layout of server racks significantly impacts HVAC system efficiency
due to its effect on airflow optimization and IT equipment cooling. The hot and cold aisle lay-

10

2.1 HVAC systems in Data Centers

Figure 2.2: A schematic representation of the airflow in a server room [44]

out, introduced by IBM in 1992 [54], is widely adopted. It alternates rows between cold aisles
supplied with cold air and hot aisles where hot air is expelled. This separation minimizes air
mixing, enhancing cooling efficiency. Adopting this layout can reduce HVAC energy consump-
tion by 20-25% [55]. Figure 2.3 illustrates the clear separation of cold and hot air streams.

Since mixing of air is still possible using this layout, both hot and cold aisle containment strate-
gies have been employed recently. An in-depth comparison of these strategies is given in Ap-
pendix A.1. For this thesis, containment of the hot aisles, as displayed in Figure 2.4 is employed,
as it is the most efficient option of the two.

Figure 2.3: A server room with a hot and cold aisle layout.

2.1.2 Chiller plant

Now that it is known how the servers are cooled inside the room, a closer look can be taken at
the chiller plant, which actually cools the air. As has been shown in Figure 2.1, a chiller plant
consists of 2 water loops. The first one is the chilled water loop, which cools down the air in
the room using a CC and a water chiller. The chiller uses a refrigeration cycle to cool down the
water to a desired temperature. The other loop is the condenser water loop. This loop extracts

11

2.2 HVAC system design

Figure 2.4: Schematic representation of hot aisle containment [56].

energy from the chiller through a heat exchanger and rejects this energy to the outdoor air by a
Cooling Tower (CT), which is a water-to-air heat exchanger. More details about these compo-
nents can be found in Appendix A.2.

It should be noted that, although Figure 2.1 only displays a single chiller, CRAH and cool-
ing tower, there can actually be multiple of each of these components connected to the loops in
a real DC. However, for comprehensibility, this explanation assumes that there is only one of
each component, as in Figure 2.1. To get a more in-depth understanding of what happens in
these loops, each component and its functions are analyzed separately.

2.2 HVAC system design

Using the background knowledge from section 2.1, a simple HVAC system has been defined
which is optimized in the remainder of this thesis. The designed system is a simple chiller
plant containing 1 CRAH, 1 chiller, and 1 cooling tower. This plant is used to cool a single DC
room. While real DCs typically employ more complex HVAC systems, this simplified layout
has been chosen for this thesis to facilitate the isolation of the effects of specific components.
This simplicity allows for a clearer analysis of these individual factors. Next to that, there is
also a practical reason for a simpler system. During initial investigations, it was found that the
implementation of more complex HVAC systems in most simulation software requires a lot of
non-standard HVAC components and customization of the software. Because of the expecta-
tion of clearer analysis and to keep the focus of this thesis on RL instead of the modeling of a
DC, the simple layout is chosen.

The layout of the HVAC system is shown in Figure 2.5. The system consists of the following 3
loops which all have a specific purpose:

• Air Loop (AL): This is the loop that cools the servers. It consists of a CRAH and the
server room. The CRAH cools the hot air that is coming into the CRAH using a cooling
coil. Then, the humidifier ensures that the correct humidity is maintained in the room.
Finally, the CRAH fan blows the cooled and humidified air under the raised floor. In the
server room, the air cools the servers using a cold air containment layout.

• Chilled Water Loop (ChL): This loop has the goal of extracting heat from the air loop and
transporting it to the chiller. The chiller cools the water in the loop to a desired chilled

12

2.2 HVAC system design

Figure 2.5: A schematic representation of the HVAC system used in this thesis

water temperature. Then, the chilled water extracts the heat from the air loop by using
the cooling coil. This water, which has heated up by now, is then pumped back to the
chiller by the chilled water pump.

• Condenser Water Loop (CoL): This loop cools the chilled water by extracting its heat and
then rejects this heat to the environment using a cooling tower. The chiller uses a refrig-
eration cycle to extract the heat from the chilled water and transfer it to the condenser

13

2.2 HVAC system design

water (which is possibly warmer than the chilled water). This water is pumped to the
cooling tower where the heat is rejected to the environment.

The following naming convention of variables within the loop has been used: Tx is the tem-
perature at location x. For example, the temperature leaving the CRAH is defined as TAL1.
Likewise, px represents pressure, ṁx represents mass flow and ϕx represents relative humidity,
all at location x. Additionally, Px is the power of component x, for example, PCT is the power
of the cooling tower.

2.2.1 Energy balance and power

The variables are all related to each other through the energy balance equations in the system, of
which the most important ones are discussed here. The best way to understand these relations
is by starting from the server room and following the flow of the energy throughout the system
to the outside air.

Energy in the ChL The energy balance in the server room is given by:

Q̇ITE = ṁALca
(

TAL2 − TAL1
)

(2.1)

where Q̇ITE is the heat transfer of the ITE, which is assumed to be equal to PITE, meaning that all
energy is converted to heat. ca is the heat transfer coefficient of air. From this equation follows
that the air is warmed up by the ITE. This added heat is then removed from the room by the
CC. Here, the heat transfer is defined as:

Q̇AL, CC = −ηCCQ̇ChL, CC (2.2)

in this equation:

• Q̇AL, CC is the heat transfer rate of the air in the CC, defined as:

Q̇AL, CC = ṁALca
(

TAL3 − TAL2
)

(2.3)

• Q̇ChL, CC is the heat transfer rate of the chilled water in the CC, which is defined as:

Q̇ChL, CC = ṁChLcw
(

TChL2 − TChL1
)

(2.4)

• ηCC is the efficiency of the CC.

After the CC, the air is moved by the fan, which is the only power-consuming HVAC compo-
nent in the AL. The most important relation between the fan and the mass flow is that it is cubic
proportional to the mass flow:

PAL, Fan ∝
(

ṁAL

ρ

)3

(2.5)

Under the assumption that the density does not change much in a DC setting, the fan power is
thus proportional to its mass flow rate. As this concludes the behaviour of the AL, we can now
continue to the energy balance inside the ChL.

14

2.2 HVAC system design

Energy balance in the ChL Firstly, Q̇ChL, CC is related to the AL by Equation (2.1) and its
relation is already given in Equation (2.4). It should be noted that a condition for the working
of the CC is: TChL2 > TAL2 and TChL1 > TAL3. After the CC, the water is pumped towards the
chiller by the ChL pump. The power in this pump is related to the mass flow rate by:

PChL, Pump =
∆pṁChL

ρwηPump (2.6)

where ∆p is the pressure difference before and after the pump, ρw is the density of water and
ηPump is the efficiency of the pump. After this pump, the water is cooled down by the chiller.
This is again given by a heat balance:

Q̇ChL, Chiller = −ηChillerQ̇CoL, Chiller (2.7)

where:

• ηChiller (TChL1, TCoL1]) is the efficiency of the chiller, which is highly dependent on the
temperature of the water entering and leaving it.

• Q̇ChL, Chiller is the heat transfer rate from the chilled water to the chiller. This is defined as:

Q̇ChL, Chiller = ṁChLcw
(

TChl3 − TChL1
)

(2.8)

• Q̇CoL, Chiller is the heat transfer rate between the condenser water and the chiller. It is
defined as:

Q̇CoL, Chiller = ṁCoLcw
(

TCoL1 − TCoL2]
)

(2.9)

Important to note here is that, for the chiller, there is no condition regarding the temperatures,
as it can actively cool the system down by its refrigeration cycle.

The power of a chiller depends on the Coefficient of Performance (COP) and cooling rate:

PChiller =
Q̇ChL, Chiller

COP
(2.10)

As the COP is a function of its inlet and outlet temperatures, and this function is different for
each specific chiller, this power cannot be determined more specifically.

Energy balance in the CoL As the chiller concludes the ChL, the behaviour of the CoL can
now be discussed. How the chiller heats the water in the CoL has already been discussed. Af-
ter the chiller, the pump controls the mass flow in this loop. It works analogously to the ChL
pump. Finally, the cooling tower has an energy balance with the outdoor air.

The cooling tower has a single-speed fan, meaning the fan can only run at one speed or be
turned off. This makes the energy balance slightly different, as only 2 mass flows are possible,
and a cycle ratio is introduced: rCT which indicates the percentage of time the fan is turned on
over a timespan. This leads to the following energy balance:

Q̇CoL, CT = −ηCTQ̇out, CT (2.11)

in this equation:

15

2.2 HVAC system design

• Q̇CoL, CT, is the heat transfer from the water in the CoL to the outdoor air, defined as:

Q̇CoL, CT = ṁCoLcw
(

TCoL1 − TCoL3
)

(2.12)

• ηCT is the efficiency of the cooling tower, which is again highly dependent on the specific
cooling tower and requires modeling to accurately predict.

• Q̇out, CT, is the heat transfer rate from CT to the outside air. Here, the cycle ratio is imple-
mented for the outdoor air mass flow. It is defined as:

Q̇out, CT = ṙCTmCT Fan
max

(
Toutdoor

out − Toutdoor
in

)
(2.13)

Regarding the power, the CT is based on the fan power, and thus is defined as:

PCT = rCTPCT, Fan
max (2.14)

where PCT, Fan
max is the power used by the fan inside of the CT when it is running at full speed.

These equations summarize the energy balance and power used by the system. They show
how the different variables interact with each other, and already give an idea of how the com-
ponents use their power.

2.2.2 Actuation variables

This thesis focuses on the higher-level controllers in the HVAC system, as the component level
controllers often already work close to optimal. The higher-level controller controls the settings
of all the components in the system and is generally rule-based. The higher-level behaviour of
this system is controlled using a number of setpoints, or desired values, which are defined by
the higher-level controller. The lower-level controllers then control the components to meet
these setpoints. The setpoints in the system are:

• TCT
SP , the leaving CT temperature setpoint. This setpoint is defined as:

TCT
SP = Toutdoor − TCoL1 (2.15)

where Toutdoor is the outdoor temperature.

• ṁCoL
SP , the mass flow setpoint of the CoL.

• TChL1
SP , the temperature setpoint of the chilled water which is leaving the chiller.

• ṁChL
SP , the mass flow setpoint of the ChL.

• ṁAL
SP , the mass flow setpoint of the AL.

• ϕAL4
SP , the setpoint of the humidity of the air leaving the humidifier.

2 disturbance variables affect the system and can not be controlled. These variables cause
the system to be of a stochastic nature, as they are influenced by external factors beyond the
system’s control. This leads to random variations in the system. This requires the use of prob-
abilistic methods in system modelling and control. The disturbance variables are:

16

2.3 HVAC system simulation model

• Toutdoor, the outdoor temperature. This affects how easily the water in the CoL can be
cooled.

• PITE, the ITE load. This load determines how much energy the system has to cool.

All other variables are dependent on these 8 variables. This includes actual temperatures, mass
flows, and humidities, as well as the pressure at every point in the system and the power of the
HVAC components.

2.3 HVAC system simulation model

In this section, a simulation model of the HVAC system designed in section 2.2 is created. This
model is used for both the baseline and RL experiments. First, a simulation software is selected.
In this software, the model is implemented. This implementation starts with the definition of
a server room model and expands it with a complete HVAC system. After this, suitable algo-
rithms are selected to calculate the energy and heat balances within the system. Finally, the
setup of a timestep study is proposed, to test the robustness of the simulation model to its
timestep.

There are 3 different types of HVAC simulation that are commonly used: thermodynamics-
based models, CFD based models, or data-based models. For the training and testing of RL
agents, a model must have a good computational complexity. Next to that, the model should
be able to accurately simulate situations that do not happen often when using conventional con-
trollers. Therefore, thermodynamics-based models are chosen, as they have low computational
complexity, are based on physical relations, and DC HVAC models are readily available. On
the other hand, CFD simulations have high computational complexity, and data-based models
are not physics-based, and thus are bad at extrapolating. The software used in this thesis is
EnergyPlus, as it is open-source and has off-the-shelf models for DC rooms.

Drawbacks of EnergyPlus A large drawback of thermodynamics-based simulation is that
most models do not take any system delays into account. This includes delays due to the
length of pipes, or the start-up time of the equipment. This leads to a large limitation in the
simulation of the system when compared to a real system, and has an effect on the controller
for sure since handling system delays is a major challenge in control engineering. However,
this simplification is accepted as solving it would cost a lot of time, and would shift the focus
of this thesis from creating a new controller to creating an accurate HVAC model of the system.

2.3.1 EnergyPlus HVAC layout

In the simulation model, the server room model in EnergyPlus is based on the design from
[44]. This paper features both large and small DC rooms with hot and cold aisle containment.
The study uses CFD to determine temperature offsets for server inlet and outlet temperatures
(TAL1 and TAL2) at several values of PITE and ṁAL, which are then incorporated into Energy-
Plus through a lookup table, with linear interpolation used for other operating conditions. This
effectively handles the large drawback of EnergyPlus, which is that it is not able to model the
movement of the air inside the room. The small DC room is selected, as also a simple HVAC
system is used in this thesis. Hot aisle containment is implemented, as this is the default layout
for modern DCs.

17

2.3 HVAC system simulation model

The original model uses a very simplified HVAC system which calculates the dynamics based
on the outdoor and chiller inlet temperatures. This is not suitable for the RL controller, as it
lacks influence over variables like ṁChL and setpoint temperatures inside the system.

To overcome these drawbacks, the room model from [44] is expanded with a HVAC system
which matches the designed HVAC system. The different loops in Figure 2.5 are rebuilt in
EnergyPlus using the EnergyPlus HVAC components listed in Table 2.1. The CT is of the
SingleSpeed type, which means that its fan can be switched on or off, but its speed can not
be controlled. This component type has been chosen as this is what is often seen in real DCs.
For the pumps and fan, VariableSpeed type components were chosen, to be able to control
the mass flow rates in the loops. The chiller type is ElectricEIR. This is a model of an elec-
tric chiller whose power calculations are based on the Energy Input Ratio (EIR), which is the
ratio between the energy input and cooling output of the chiller. This is a versatile model that
provides accurate simulation results in differing settings [57]. Finally, the CC, humidifier, and
CRAH diffuser models are all the standard choices for these types of components in Energy-
Plus.

For all of these models, except for the chiller model, the standard settings have been used.
These settings determine the behaviour of a component such as its power usage and temper-
ature increase as a non-dimensional output. Then, using reference factors that are autosized
by EnergyPlus, these non-dimensional values are converted to actual values using reference
variables. The autosizing is done to ensure the HVAC components will meet the requirements
of the system.

Table 2.1: Overview of the EnergyPlus model types in the simulation model

HVAC component EnergyPlus component model

Cooling Tower CoolingTower:SingleSpeed
Condenser Water Loop pump Pump:VariableSpeed
Chiller Chiller:ElectricEIR
Chilled Water Loop pump Pump:VariableSpeed
Cooling Coil Coil:Cooling:Water
Humidifier Humidifier:Steam:Electric
Air Loop fan Fan:VariableVolume
CRAH diffuser AirTerminal:SingleDuct:VAV:NoReheat

Chiller model While standard EnergyPlus models are suitable for most components, the
chiller models available in the EnergyPlus database do not meet the temperature requirements
necessary for DC applications. Typical chilled water temperatures in DCs range from 18 to
24◦C, which is significantly higher than the maximum specified chilled water temperature of
12◦C in the EnergyPlus database. Therefore, a chiller model has been modified to meet the
situation in a DC. In EnergyPlus, the chiller model is based on 3 (bi)quadratic functions [57]:

• The cooling capacity
(
Q̇
)

as a function of TCoL1 and TChL1:

Q̇
(

TCoL1, TChL1
)
=a1 + a2TCoL1 + a3

(
TCoL1

)2
+ . . .

a4TChL1 + a5

(
TChL1

)2
+ a6TCoL1TChL1

(2.16)

18

2.3 HVAC system simulation model

where Q̇ is the amount of cooling power that the chiller can extract at a specific tempera-
ture and a1 to a6 are the coefficients of the function.

• The energy input to cooling output ratio (rE,Q) as a function of TCoL1 and TChL1:

rE,Q

(
TCoL1, TChL1

)
=b1 + b2TCoL1 + b3

(
TCoL1

)2
+ . . .

b4TChL1 + b5

(
TChL1

)2
+ b6TCoL1TChL1

(2.17)

where rE,Q is a measure for the energy efficiency of the chiller (this is also the inverse of
the COP) and b1 to b6 are the coefficients of the function.

• The energy input to cooling output ratio (rE,Q) as a function of the part load ratio (rPL):

rE,Q (rPL) = c1 + c2rPL + c3r2
PL (2.18)

where rPL is the ratio between the actual cooling and the maximum available cooling of
the chiller and c1, c2 and c3 are the coefficients of the function.

These functions have been modified to show similar behavior in new ranges, by changing the
coefficients of the curve to fit the desired temperature ranges, while keeping the curve’s shape
the same between the upper and lower temperature limits. Although the chiller model created
from this approach is not based on a real chiller, the approach does lead to a stable model and
is easy to apply. Therefore, this approach has been used to modify the chiller curves.

An overview of the original and the transformed temperature limits for these curves is given in
Table 2.2. The temperature limits of TCoL1 are based on temperatures of this value which were
seen in initial simulations. The temperature limits of TChL1 are based on typical chilled water
temperatures in DCs.

Table 2.2: Original and transformed temperature limits.

Temperature limit Original temperature [◦C] Shifted temperature [◦C]

Lower limit, TCoL1 24 5
Upper limit, TCoL1 35 35
Lower limit, TChL1 5 15
Upper limit, TChL1 10 25

2.3.2 EnergyPlus simulation algorithms

EnergyPlus offers a wide range of simulation settings and heat transfer algorithms. These algo-
rithms are used to calculate the change of variables related to heat transfer in the HVAC system.
They offer a trade-off between simulation speed and accuracy for these variables. Table 2.3 con-
tains an overview of the heat transfer algorithms that have been used in the simulations.

Surface convection algorithm For both the inside and outside surface convection, the TARP
[58] algorithm has been used, which is named after the Thermal Analysis Research Program
(TARP). This is the standard option in EnergyPlus, and also the one which was utilized in the

19

2.3 HVAC system simulation model

data room model [44], therefore it is applied here as well. The TARP algorithm is a very simple,
empirically based calculation of the surface convection:

h =


1.31|∆T| 13 if ∆T = 0.0 or surf is vertical
1.302|∆T| 13 if (∆T > 0.0 and surf is up) or (∆T < 0.0 and surf is down)
1.309|∆T| 13 if (∆T > 0.0 and surf is down) or (∆T < 0.0 and surf is up)

(2.19)

where ∆T is the temperature difference between the surface and air, and sur f is the direction in
which the surface faces. It is thus a very simple algorithm, but it is accurate enough for studies
like this one where great accuracy is not required and computationally inexpensive.

Conduction heat balance algorithm The conduction heat balance algorithm is used to cal-
culate the heat balance of the conduction processes in the system, mainly for the conduction
between surfaces. The algorithm used for this is the conduction finite difference method [58],
which uses a 1D finite difference solution in each construction element (such as a wall). This
can accurately calculate the conduction but is computationally expensive. EnergyPlus does
provide computationally cheaper options, such as transfer functions, but these led to errors in
the model. As the source of these errors could not be identified, the more stable and accurate
finite difference option has been chosen.

Zone air heat balance algorithm EnergyPlus offers 3 types of zone air heat balance algo-
rithms: first order backwards difference; third order backwards difference and an analytical
solution [58]. This thesis employs the third order backwards difference algorithm, as it offers
the best accuracy. This is preferred over the added computational complexity, as the heat bal-
ance in the zone is the place where the ITE is actually cooled.

The zone air heat balance in EnergyPlus is defined as [43]:

ṁALca dTAL2

dt
= ṁALca TAL1

dt
+ PITE (2.20)

Rewriting this for a third order backwards difference gives:

11TAL2(t)− 18TAL2(t− ∆t) + 9TAL2(t− 2∆t)− 2TAL2(t− 3∆t) = 6∆t
dTAL1

dt
+

6∆t
ṁALca PITE

(2.21)
From this follows that the algorithm thus offers a third order accuracy, which is desirable in the
system that has relatively large timesteps.

Table 2.3: The algorithms used for the EnergyPlus model.

Calculation Algorithm

Inside surface convection TARP
Outside surface convection TARP
Heat balance Conduction Finite Difference
Zone air heat balance Third order backward difference

20

2.4 The HVAC controller optimization goal

2.3.3 Timestep sensitivity analysis

The accuracy of the EnergyPlus algorithms depends on the chosen timestep size. When the
timestep becomes smaller, the accuracy of the model increases. However, this comes at the cost
of an increased computation time of the simulation. Therefore, choosing the timestep size of
the simulation depends on a trade-off between accuracy and simulation time. To assist with the
selection of a good timestep, a timestep sensitivity analysis is performed. In this analysis, the
dependence of the simulation accuracy and simulation time on the timestep size is determined.

To perform this timestep analysis, the baseline study (which is discussed in section 3.1) is per-
formed with all possible timesteps in EnergyPlus tstep ∈ tstep, where:

tstep = [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60]T (2.22)

These studies are compared to each other for the following parameters: room air temperature,
the air loop mass flow, the total HVAC power, and the total simulation time. These parameters
have been selected to compare the accuracy of the system on all important aspects.

To fairly compare the sensitivity of the model to the timestep size, the original, stepwise ITE
load profile from the room model (shown in Figure 3.10) [44] is used. This ensures that the
error is not a control error but is actually caused by the timestep size. For more information on
the ITE load profiles used in this study, the reader is referred to section 3.3.

In an ideal timestep sensitivity analysis, the simulation results are compared to the analyti-
cal solution. Since no analytical solution is available, it is assumed that the smallest timestep
provides the most accurate simulation. Therefore, the other simulation results are linearly in-
terpolated and compared to the simulation with the 1 minute timestep.

Using the results of this analysis, a timestep that has a good trade-off between simulation time
and accuracy can be selected. Another factor to be taken into account in this selection is that a
typical data collection interval in DCs is around 10 to 15 minutes.

2.4 The HVAC controller optimization goal

The goal of this thesis is to design a controller that minimizes the total energy the HVAC system
provided in section 2.2 uses over the course of any year. While doing so, it should be ensured
that temperature constraints are met at all times, due to the mission-critical nature in DCs. This
section will formalize this objective of the controller into a constraint minimization problem.

In the previous section, it was seen that this power, PHVAC, depends on the state of the sys-
tem, st, which is the set of all thermodynamic properties of the system at time t. In turn, these
states are a function of the two sets of variables discussed in section 2.2. Firstly, the high-level
controller which determines setpoint variables, x. Secondly, the disturbance variables, d. It
was also seen that the system is stochastic, therefore, only an expectation of the power can be

21

2.4 The HVAC controller optimization goal

minimized. Mathematically, this problem is defined as:

minimize
xt

T

∑
t=0

E
[

PHVAC
t (st (xt, dt))

]
subject to ci,t ≤ 0, ∀i, t

xt ∈ X , ∀t

(2.23)

where:

• PHVAC
t is the total power of the HVAC equipment. It can be expressed as the sum of the

power of the individual HVAC components at time t:

PHVAC
t = PCT

t + PCoL Pump
t + PChiller

t + PChL Pump
t + PHum

t + PAL Fan
t (2.24)

• ci,t are the constraint equations for the performance in the room. This system has 3 con-
straint equations, 2 of which are to ensure that the cold air temperature stays in a certain
bandwidth around its setpoint:

c1,t = −TAL1 + TAL1
SP − bwTAL1

(2.25)

c2,t = TAL1 − TAL1
SP − bwTAL1

(2.26)

where bwTAL1
is the allowable bandwidth of this temperature. Next to that, there is a con-

straint on the violation of a temperature limit of the temperature after the servers TAL2.
This is the most important constraint, as it means the servers overheat if it is violated. It
is defined as:

c3,t = TAL2 − TAL2
constr (2.27)

where TAL2
constr is the maximum allowable temperature.

• The actuation variable vector at time t, xt, is defined as:

xt =
[

TCT
SP,t, ṁCoL

SP,t , TChL1
SP,t , ṁChL

SP,t , ṁAL
SP,t, ϕAL4

SP,t

]T
(2.28)

• The control space X is the vector space containing all actuation variables. It is bounded
by the upper and lower limits of the HVAC equipment.

• The disturbance vector dt is given by:

dt =
[

Toutdoor, PITE
]T

(2.29)

The constraint equations contain a number of parameters of which the value still has to be de-
termined. From discussions within Coolgradient, it follows that TAL1

SP = 24◦C, bwTAL1
= 3◦C

and TAL2
max = 30◦C are typical values for these parameters. Therefore, this will be used in the

remainder of this thesis.

To conclude, the minimization problem of Equation (2.23) is the goal of the controller that will
be proposed to optimize the HVAC system. The goal of this thesis is to implement a RL based
controller which performs better at this minimization problem than a conventional controller.

22

2.5 Summary

2.5 Summary

In summary, this section has introduced a simple chiller plant in a DC. For this system, it has
provided the energy balance in the system and relations between the thermodynamic quan-
tities and power of the HVAC components. Following that, it provided variables that can be
used to control this system and variables that disturb it. Based on this system, a simulation
model of the HVAC system has been constructed. For this, EnergyPlus is used as simulation
software. The model has been constructed using an existing DC room model, expanded with a
HVAC system with a custom chiller model. A timestep sensitivity study has been outlined to
test its sensitivity to changes in the timestep.

Finally, the objective of this thesis has been formalized, which is to design a HVAC controller
that minimizes the power used by the HVAC equipment of a DC, while still ensuring the oper-
ation of the system is safe and constraints are met. The upcoming chapters detail the method-
ology, experiment setup, and results of the design of this controller, providing a thorough anal-
ysis of the RL framework that will be proposed. At the end of the thesis, the performance of
the RL agent will be examined based on the minimization problem stated in Equation (2.23).

23

Chapter 3

Methodology

The use of RL as a controller to improve the energy efficiency of a DC is a promising method.
The key advantages are that RL does not require a detailed model, thus avoiding modelling bias
and reducing the labour involved in modelling each individual DC. Additionally, RL can adapt
to changes in the model and new situations. Therefore, the goal of this thesis is to enhance the
energy efficiency of current controllers for DC HVAC systems by developing an RL-based con-
troller.

Section 2 has formalized this controller optimization problem in Equation (2.23). In addition
to this main goal, the thesis aims to provide insights into the effect of the reward function on
the behaviour of the controller. This section provides the methodology of how such an agent is
designed, tuned, tested, and compared to conventional controllers.

To fairly show the performance improvements of the RL-based controller, a conventional con-
troller is designed and tested. This controller acts as the baseline for the RL controller. Its
design is discussed in section 3.1.

Next, in section 3.2, a framework for the RL framework is proposed. Here the system is de-
scribed as a mathematical decision-making framework, which includes the reward of the en-
vironment. For the reward, a framework is suggested in which weights can be adjusted. A
suitable algorithm for this framework is then selected.

Then, in section 3.3, the data partitioning of the disturbance variables (Toutdoor & PITE) into
training, validation and testing data is discussed. The partitioning of this data ensures that the
RL based controller is robust to disturbances.

Finally, section 3.4, describes several experiments to fine-tune the RL framework. First, a setup
for hyperparameter tuning experiments is provided. These experiments aim to tune the hyper-
parameters of the RL algorithm, ensuring that the trained agents always learn stably. Finally,
reward-tuning experiments are performed. Their goal is to gain insights into how different
reward settings affect the RL controller. Using these insights, an optimally tuned controller is
selected for comparison to the baseline.

24

3.1 Baseline study

3.1 Baseline study

The baseline experiments are performed by simulation of the EnergyPlus model using a con-
ventional controller for the HVAC system. The goal of these experiments is to have results of a
conventional controller to which the trained RL algorithms can be compared. This section first
discusses this conventional controller and its settings in subsection 3.1.1. Then, it describes
how this controller is used in the baseline experiments.

3.1.1 Baseline controller

The conventional controller operates based on fixed temperature setpoints maintained through-
out the year. EnergyPlus calculates the required mass flow rates for each loop to achieve these
temperature setpoints. The conventional control strategy consists of the combination of these
predetermined setpoints and the corresponding mass flow rates.

For the calculation of the mass flow rates, EnergyPlus uses a hierarchical structure that works
from the inside of the HVAC system outwards. First, the mass flow in the AL is calculated
based on the mass flow rate required to cool the server room sufficiently. Next, the mass flow
of the ChL is calculated based on the requirements of the CC to cool the air adequately. Finally,
the mass flow required by the CoL is calculated based on the water in the ChL. To align with
this hierarchy, the conventional controller is discussed following the same structure.

AL control Figure 3.1 shows the schematic representation of the Air Loop. At 3 points in the
Air Loop, setpoints are set to achieve desired behaviour of the system:

• AL1 At this location, a setpoint is used to control the temperature which leaves the CRAH
into the raised floor. This is used to meet the constraints from Equations (2.25) and (2.26)

• AL2 At this location, a setpoint is used to control the maximum air temperature after the
servers. This is used to ensure the constraint from Equation (2.27). The maximum air
temperature setpoint only interferes with the system if the air temperature at that point
is higher than the limit set in the setpoint.

• AL4 Here, right after the humidifier inside the CRAH, a humidity setpoint is applied to
ensure the desired humidity in the system.

These setpoints determine the settings in the AL. The corresponding air mass flow rate, ṁAL, is
calculated based on the method which is used in the EnergyPlus server room model from [44].
The calculation of ṁAL

SP is based on the heat transfer rate of the servers. It is defined as follows:

ṁAL
SP =

Q̇ITE

cair
(
TAL2

SP − TAL1
) (3.1)

where Q̇ITE is the cooling load of the ITE (assumed to be equal to PITE), and cair is the specific
heat of the air. Since there are setpoints for both TAL1 and TAL2, the desired mass flow can be
determined using this formula.

ChL control The ChL is displayed in Figure 3.2. This loop employs just one temperature
setpoint, which is the following:

25

3.1 Baseline study

Figure 3.1: Schematic representation of the air loop (Zoomed in from Figure 2.5).

• ChL1 A setpoint is used for the water temperature that leaves the chiller. This directly
influences the chiller power, as more energy is required to cool the water to a lower tem-
perature. This temperature also affects the temperature of the water entering the cooling
coil, and thus how much the air in the air loop is cooled.

Figure 3.2: Schematic representation of the chilled water loop (Zoomed in from Figure 2.5).

The corresponding mass flow rate in the ChL, ṁChL
SP , is determined by the energy balance in the

cooling coil from Equation (2.1). Rewriting this energy balance gives:

ṁChL
SP =

Q̇AL
CC

ηCCcwater
(
TChL1

SP − TChL2
) (3.2)

26

3.1 Baseline study

where Q̇AL
CC follows from the air loop, and TChL2 is calculated by EnergyPlus [59].

In this loop, also TChL1
SP is controlled. This is done by a thermostat in EnergyPlus internally,

which switches the chiller on or off when the temperature deviates from the setpoint. This is a
large simplification of reality, as it is not possible to switch a chiller on and off this often.

CoL In Figure 3.3, the CoL is shown schematically. Again, this loop employs just a single
setpoint.

• CoL1 A so-called offset temperature setpoint is used for the water that leaves the CT.
This type of setpoint keeps the temperature to a certain predefined offset from another
temperature (Toutdoor in this case). In this way, it differs from the other setpoints that have
been used, as they keep the temperature at a fixed value.

To achieve this setpoint, ṁCoL
SP always runs at maximum power, and rCT is determined accord-

ing to the energy balance from Equation (2.11):

rCT =
Q̇CoL, CT

ṁCT, Fan
max

(
Toutdoor

out − Toutdoor
in

) (3.3)

Figure 3.3: Schematic representation of the condenser water loop (Zoomed in from Figure 2.5).

To summarize, the conventional controller consists of setpoints, for both important tempera-
tures and humidity, to determine the desired state of the HVAC system. The mass flows of the
cooling loops are then calculated to meet both these setpoints and the cooling demand of the
HVAC system. This controller has two simultaneous objectives: on one hand, no constraints
should be violated by the system, on the other hand, the system should be operating in an
energy-efficient manner.

3.1.2 Baseline experiments

As has been mentioned before, the baseline experiments are performed using this conventional
controller and fixed setpoints throughout the year. These settings are based on the constraints
in section 2.4. The weather and IT load data in the experiments are of the test year, 2023. To
tune the baseline controller, simulations with multiple values of its most important parameter,
TChL1

SP , will be performed.

27

3.2 Reinforcement Learning framework

3.2 Reinforcement Learning framework

In this section, the design of a RL framework for the RL-based controller of the HVAC system
is discussed. First, a general background on RL is given in subsection 3.2.1. Then, using this
understanding of the basics of RL, subsection 3.2.2 describes the HVAC system in a Markov
Decision Process (MDP), which is a mathematical decision-making framework that is used in
RL. The MDP is a very important part of the controller design, as it defines the variables the
controller observes (states), the variables it can control (actions), and the function the controller
tries to maximize (the reward). After the framework is defined, a suitable RL algorithm which
will be trained is selected in subsection 3.2.3.

3.2.1 Reinforcement Learning working principle

This section will cover the basic working principle and terminology of RL, and how it applies
to the DC’s HVAC system. RL learns to optimally control complex systems without needing a
predefined model [33, 34, 35]. RL algorithms ("agents") interact with a system ("environment")
by mapping situations ("states") to control actions ("actions") to maximize some reward func-
tion of the environment [33].

Figure 3.4 shows the general framework in which an agent interacts with an environment.
This framework is time-discrete. The goal of this agent is to learn to interact optimally with an
unknown environment. The agent sends a control action to the environment, which then re-
turns the next state and the reward of the next timestep. Through a lot of interactions with the
environment, the agent can learn to predict the next state and reward for a given state-action
pair [33]. For a DC HVAC system, the environment is the HVAC system, the agent is the con-
troller, and the reward is a function with the goal of solving the control minimization problem
of Equation (2.23). The simplest example of a reward function (without meeting constraints) is:

rt = −PHVAC
t (3.4)

where rt is the reward and PHVAC
t is the HVAC power at time t.

The main goal of using RL agents as controllers is to learn a mapping from the thermody-
namic states of the HVAC model to control setpoints that minimize the total HVAC power
while meeting constraints. This mapping is known as the optimal policy, π∗. In other terms,
the policy is the learned control strategy of a RL-based controller. When an agent learns this
policy, the exploration-exploitation trade-off is very important. This is the balance between
exploiting the knowledge that has already been learned by an agent and exploring new states,
which could lead to better policies than the states already known[33, 34].

Some algorithms try to learn this policy directly, while others try to learn a value function
to assess the performance of the policy. These functions give the value of being in a certain
state. The most basic value function is the state-value function, V∗(s), which is defined as the
maximum expected reward when starting from a state s and following the optimal policy π∗.
The state-value function is given by the equation:

V∗(s) := max
a ∑

s′
P(s′|s, a)

[
r(s, a, s′) + γV∗(s′)

]
(3.5)

where P(s′|s, a) is the probability of transitioning to any state s′ from the current state s given
action a. The term r(s, a, s′) represents the reward received after transitioning. Also, a discount

28

3.2 Reinforcement Learning framework

factor, γ, is implemented for the future rewards. This discounts the value of future expected
rewards exponentially. Research shows that discounting future rewards leads to better overall
results [35], as it is less certain that these future rewards will actually be received. This is
especially important in the stochastic HVAC system of this thesis.

Figure 3.4: The RL framework, applied to the current system.

3.2.2 The Markov Decision Process

In RL, MDP’s are used to model the decision-making structure. An MDP is a mathematical
framework where the outcomes are partly random and partly controlled by a decision maker,
which is the HVAC controller in this thesis. The MDP is thus a structure to describe the HVAC
model as an environment for a RL agent.

An MDP is defined as a 5-tuple: (S ,A, Pa, Ra, γ). In this tuple, S is the state space, a vec-
tor space that contains all the possible states in which the HVAC model can be. A is the action
space, the vector space containing all possible combinations of setpoints that can be adjusted
by the agent. Pa (s, s′) = Pr (st+1 = s′ | st = s, at = a) is the probability that, under the current
state and action (st & at) the HVAC system will end up in a certain next state s′. This is done
by a single simulation step of the EnergyPlus model. Ra is the immediate reward in a certain
state and γ is a discount factor for the future rewards. In this section, the implementation of the
first 4 of the components of the tuple is discussed in more detail. γ is a hyperparameter of the
system and is therefore subject to hyperparameter tuning. Therefore, it is not further discussed
in this section.

3.2.2.1 State space

The state space is a set of states for the model which contains all possible states in which an
environment can possibly be. More formally: st ∈ S , ∀t, where st is the state of the model at
time t and S is the state space.

State definition To fully define the state space, the states of the system should be defined.
This consists of the variables that are included in the state, their upper and lower limits, and
whether these variables are continuous or discrete. The state consists of the following groups
of variables:

• Thermodynamic properties of the fluids in the HVAC loops.

29

3.2 Reinforcement Learning framework

• HVAC component power.

• Disturbance variables.

To fully describe the state of the system, while keeping the dimensionality of the state space as
low as possible, as few thermodynamic properties as possible are put in the state. To determine
the properties that should be put in the state, the state postulate is used. According to this, all
thermodynamic properties can be calculated if 2 variables are known. Since EnergyPlus does
not model changes in pressure (which is a major simplification), only 1 variable per point in the
system is required. Because the component models in EnergyPlus are based on temperatures,
as well as the constraints in the optimization problem, it is only logical to use the temperature
at all points (CoL1, Col2, . . . , AL4) as the states of the system. Next to that, the humidity of the
AL is added to the state since it cannot be accurately calculated due to the continuous pres-
sures. The mass flows of all 3 loops are also taken as states.

Next to this, the power of each HVAC component is added to the state space, such that the
agent will always know where power is used (and could be saved). Finally, the disturbance
variables (Equation (2.29)) are added to the state.

The definition of the complete set of states is defined as follows:

s =
[

TCoL1, . . . , TAL4, ϕAL1, . . . , ϕAL4, ṁCoL, ṁChL, ṁAL, PCT, . . . , PAL Fan, PITE, Toutdoor
]T

(3.6)

It should be clear that, since all these states are physical properties, the state space is continu-
ous.

Markov property The Markov property is fulfilled when a future state only depends on the
current state and actions taken, and not on the preceding states. This property is met in the En-
ergyPlus simulations since the component models are simulated using only current informa-
tion. In reality, however, the property might not be fulfilled because of the so-called ’thermal
inertia’ of the system.

3.2.2.2 Action space

The action space is the vector space containing all possible actions done by the agent. Mathe-
matically it is defined as: at ∈ A, ∀t, where at is the action at time t and A is the action space.

In Equation (2.28), the variables in the system that can be directly actuated have been defined
(and it is restated here as Equation (3.7) for the reader’s convenience). These variables can be
used to control the system and can thus possibly be used as action variables. However, some
of these variables have been excluded from the action space.

xt =
[

TCT
SP,t, ṁCoL

SP,t , TChL1
SP,t , ṁChL

SP,t , ṁAL
SP,t, ϕAL4

SP,t

]T
(3.7)

First of all, it was seen in initial experiments that, with the baseline settings, the value of TCT
SP

was barely ever met. Therefore, changing the setpoint does not affect the system that much
since the cooling tower will just try to cool at its maximum capacity for most temperature
setpoints. Also, the cooling tower has a single-speed fan, when a different speed is required
EnergyPlus assumes it is turned on and off multiple times per timestep. In reality, this rapid

30

3.2 Reinforcement Learning framework

switching is bad practice. Therefore, it is chosen to leave this setpoint as in the baseline, since
the added action increases the complexity of training the algorithm, while the added benefits
are assumed to be quite low. Using the same reasoning, ṁCoL

SP,t is also omitted from the action
space.

Next to that, meeting the setpoint of the relative air humidity is just a constraint of the system.
Therefore, it would be nonsensical to start modifying this setpoint. It would be interesting to
adjust the internal control of the humidifier to meet this setpoint more efficiently if it was pos-
sible. However, this is not possible in EnergyPlus.

When removing these variables from Equation (3.7), the action vector can be defined as:

at =
[

TChL1
SP,t , ṁChL

SP,t , ṁAL
SP,t

]T
(3.8)

Similar to the state space, these variables are continuous.

3.2.2.3 State transition dynamics

The transition of the current state to the next state is calculated by performing a single simula-
tion step in the EnergyPlus model. Since the HVAC system is stochastic, the state transitions are
stochastic as well. This is caused by the 2 disturbance variables, Toutdoor & PITE. Because these
variables are stochastic by nature and not influenced by the rest of the system, they introduce
stochasticity to the rest of the system.

3.2.2.4 Reward function framework

The goal of a reward function is to reward the agent during training in such a way that it can
learn a good policy. In the case of this system, a good policy is a policy that minimizes PHVAC

while preventing the violation of constraints in the optimization problem from Equation (2.23).

A tuneable reward function framework is proposed, which allows for the investigation of the
effects of different terms in the function on the controller behaviour. The function consists of 4
parts, a reward for minimizing PHVAC, a reward for meeting TAL1

SP (Equations (2.25) & (2.26)),
a penalty for violating TAL2

max (Equation (2.27)) and a penalty to avoid severe oscillations of the
action variables of the agent. This leads to the following reward framework:

rti = rP

(
PHVAC

ti

)
︸ ︷︷ ︸

HVAC Power reward

+ λTAL1
SP
· rT

(
TAL1

ti

)
︸ ︷︷ ︸
CRAH setpoint reward

+ λTAL2
constr
· pT

(
TAL2

ti

)
︸ ︷︷ ︸

Server outlet
temperature penalty

+ λa · pa (∆ati)︸ ︷︷ ︸
Action fluctuation

penalty

(3.9)

where the terms in this function are defined as follows:

• rti , the total reward at time ti.

• rP, the reward, related to power, which is a function of the HVAC power at time ti.

• λTAL1
SP

, a scaling factor for the reward related to the setpoint temperature of the CRAH.

• rT, a reward for meeting the temperature setpoint for the air leaving the CRAH (point
AL1 in the HVAC system) at time ti.

31

3.2 Reinforcement Learning framework

• λTAL2
constr

, a scaling factor for the penalty on violating the server outlet temperature con-
straint.

• pT, the penalty for violating the server outlet temperature constraint, which is a function
of the air temperature after the servers (point AL2) at time ti.

• λa, a vector containing scaling factors for the penalty on fluctuations in each of the ac-
tions.

• ∆ati , the difference between the action at time ti and ti−1: ati − ati−1

• pa, a vector of penalties on fluctuations of the actions, which is a function of

HVAC power reward The reward on PHVAC should be high when the power usage is low,
and low when the power usage is high. Thus rP = −PHVAC. To make the scaling of the other
parts of the reward function more intuitive, this reward is normalized between 0 and 1, where
the reward is 0 at the maximum HVAC power and 1 when no HVAC power is used. This leads
to the following equation (as shown in Figure 3.5):

rP

(
PHVAC

ti

)
= 1−

PHVAC
ti

PHVAC
max

(3.10)

Figure 3.5: Reward for the HVAC power

CRAH setpoint reward To encourage the agent to meet the CRAH leaving air temperature
setpoint, a Gaussian reward is defined as:

rT = e
− 1

2

(
TAL1−TAL1

SP
σSP

)2

(3.11)

where σSP is a tuneable parameter for the width of the reward peak. Figure 3.6 shows this re-
ward for several values of σSP.

The choice of this Gaussian function as a reward for meeting the setpoint is based on the re-
ward function in [45]. The parameter σSP allows for tuning of the temperature range around
the setpoint which is rewarded. Unlike in [45], no penalty is given for deviating too much
from this temperature. This choice is made since having too high temperatures will already be
penalized for TAL2, which is related to TAL1.

32

3.2 Reinforcement Learning framework

Figure 3.6: The room temperature setpoint reward, where σ is a tunable parameter

Server outlet temperature penalty To meet the server outlet temperature constraint:

TAL2 ≤ TAL2
constr (3.12)

this penalty has been added to Equation (3.9). As mentioned before, the penalty consists of a
function of TAL2. All functions can of course be implemented here, and a few candidates are
displayed in Figure 3.7. As it is no problem for the temperature to be below its constraint, all
of these functions are (close to) 0 when the constraint is met. When the constraint is violated,
these functions all penalize the temperature constraint.

The first candidate (shown in Figure 3.7a) is the Rectified Linear Unit (ReLU), which is defined
as:

pT, ReLU = −max (0, ∆T) , where ∆T = TAL2 − TAL2
constr (3.13)

This is a straightforward penalty function, which makes it easy to tune. However, the fact that it
just linearly penalizes the severity of reward violations might cause problems during the train-
ing of the RL agent. As more severe violations of the constraint prove an increasingly higher
risk to the server [7], another penalty function might be required to train a well-behaving agent.

The next candidate for the penalty function is shown in Figure 3.7b. This is the softplus penalty,
which is basically a smooth approximation of the ReLU function. It is defined as follows:

pT, softplus = −
ln

(
1 + eβ·(∆T)

)
β

(3.14)

In this function, β is a tuneable parameter for the "sharpness" of the curve of the function. This
function already provides a penalty when the temperature is at the setpoint, which may make
the agent learn to stay away from this setpoint temperature after training. This could make
the agent more robust to sudden changes in the environment. However, the softplus function
might also penalize the agent too much during safe operation, which could lead to sub-optimal
behaviour regarding the energy efficiency of the system. Next to that, the addition of β intro-
duces a new parameter to tune, which leads to increased complexity of the system.

33

3.2 Reinforcement Learning framework

The final candidate function is the ReLU squared function, which is displayed in Figure 3.7c.
This function is defined as follows:

pT, ReLU2 = −
[
max

(
0, TAL2 − TAL2

constr

)]2
(3.15)

By squaring the ReLU function, the larger violations of the temperature constraint are penal-
ized increasingly harder. However, a drawback might be that, after a large constraint violation
during exploration, the agent might learn too safe behaviour, again leading to sub-optimal
energy efficiency.

(a) The ReLU temperature
penalty function

(b) The softmax temperature
penalty function

(c) The ReLU squared temper-
ature penalty function

Figure 3.7: The three candidates for the temperature constraint penalty function

Action fluctuation penalty During exploratory experiments, it was seen that the agent some-
times learned that it would be beneficial to lower the chilled water temperature as much as
possible to cool the room quickly, and then on the subsequent timestep, it would turn off all
HVAC equipment. Although, on average, this led to energy savings, this behaviour is not desir-
able in real life, as it can deteriorate the expected lifetime of the HVAC equipment. To mitigate
this problem, a penalty on action fluctuations has been added to Equation (3.9). In Figure 3.8,
3 different candidates for this penalty are plotted. The penalty is calculated and weighted for
each individual action and then added.

The first candidate, shown in Figure 3.8a, is a penalty on the absolute difference between the
current and previous action. This is defined as:

pa, abs = − |∆ati | (3.16)

The application of this penalty is quite straightforward. The only variables to be tuned are the
parameters in λa. However, this reward has a potential drawback in that it penalizes every
action that is not exactly the same as the previous action. However, small changes in actions
should be allowed, and are often even desired. Although the penalty for small deviations in
the action is quite small, it could still cause the agent to learn a policy where the actions are as
constant as possible.

The second candidate function tries to mitigate this problem by squaring the difference be-
tween the current and previous action:

pa, quad = − (∆ati)
2 (3.17)

34

3.2 Reinforcement Learning framework

This way, small deviations between the actions are penalized less, and larger differences are
penalized more than when using Equation (3.16). However, it still does not completely solve
the problem, as there is still a penalty for every change between the current and previous action.

The final candidate is a trapezoid penalty function, as shown in Figure 3.8c. It is defined as
follows:

pa, trap = − |max (0, ∆ati − BWa)| (3.18)

This penalty has a certain bandwidth (BWa) where action changes are not penalized. When
actions are out of this bandwidth, they do get penalized linearly. This way, large deviations in
the action are penalized, but for smaller changes in actions, the reward function is not affected
at all. However, this comes at the cost of an additional parameter to tune.

(a) The absolute action penalty
function

(b) The absolute action penalty
function

(c) The absolute action penalty
function

Figure 3.8: The candidates for the penalty on ∆a

To summarize, the reward consists of a reward for minimizing PHVAC, a reward for meeting
TAL1

SP , a penalty for violation of the TAL2 setpoint, and a penalty for fast action oscillations.
Table 3.1 summarizes the hyperparameters in the reward function. Each parameter is tunable
and can lead to different results in the behaviour of the policy. The tuning of this reward is
discussed in subsection 3.4.2.

Table 3.1: Summary of the reward hyperparameters.

Parameter Description

λTAL1
SP

The weight of the reward for avoiding setpoint deviations.
σSP The standard deviation of the Gaussian setpoint deviation reward.
λTAL2

constr
The weight of the penalty for violating TAL2

constr.
pT The type of penalty function for violating TAL2

constr.
βsoftplus Applies if pT is softplus, the "sharpness" of the curve.
λa,Tchill,SP The vector of weights for the penalty on action fluctuations.
pa The penalty function for action fluctuations.
bwa,trapezoidal Applies if pa is trapezoidal, the width where no penalty is applied.

3.2.2.5 MDP summary

To summarize, the MDP defined in this section consists of the 5-tuple (S ,A, Pa, Ra, γ). Here,
S consists of the temperatures and mass flow rates of all the points in the system, the humidity

35

3.2 Reinforcement Learning framework

in the AL, the disturbance variables PITE and Toutdoor and the power of the HVAC components.
A consists of the mass flow rates of the ChL & AL and the chilled water setpoint temperature.
The state transition model is handled by the EnergyPlus model, which is stochastic due to the
stochastic nature of the disturbance variables. For the reward, a reward function framework
has been designed. The framework can be tuned in tuning experiments to investigate how each
penalty affects the behaviour of the controller. The reward provides a reward at every timestep,
therefore it provides dense feedback. Finally, γ is treated as a hyperparameter. A summary of
the properties of the MDP is given in Table 3.2.

Table 3.2: Summary of the MDP properties

Aspect Description Details/Examples

State Space Continuous, Large s ∈ R33

Action Space Continuous, Small a ∈ R3

Transition Dynamics Stochastic Simulated by EnergyPlus, based on HVAC sys-
tem behavior.

Reward Dense Tuneable framework to balance PHVAC reduc-
tion and constraint handling.

3.2.3 Reinforcement Learning algorithm selection

The selection of a RL algorithm which learns to optimally control the HVAC system is very im-
portant for the performance of the controller. To help with this selection, selection criteria are
set up, based on practical requirements and a classification of the algorithm based on the MDP.
The classification parameters are based on the books [33, 34] and the classification framework
from [60]. Using the requirements and classification, the choice of Proximal Policy Optimiza-
tion (PPO) as a suitable algorithm is motivated. Finally, a detailed explanation of how the PPO
algorithm works is provided.

3.2.3.1 Algorithm selection criteria

For the selection of a RL algorithm, several criteria have been distilled. These criteria follow
from the MDP and are defined with the future implementation of RL on real HVAC systems in
mind. The selected algorithm should match these criteria:

• The algorithm should be able to handle a relatively large, continuous state-space, as the
HVAC system has continuous state parameters.

• The algorithm should be able to handle a continuous action-space, as the HVAC system
also has continuous action variables, which can not be logically discretized.

• The algorithm should also be able to work with stochastic systems.

• The algorithm should be sample efficient, as an agent should be able to converge to an
optimal policy as quickly as possible when it would be applied on a real DC, to reduce
the period in which it is still learning and constraints are violated. Next to that, the

36

3.2 Reinforcement Learning framework

timesteps in reality are quite large, meaning that sample inefficient agents lead to large
energy expenses during a long time.

• A suitable RL algorithm should have stable learning, as unstable learning increases the
risk of creating a controller that is not energy efficient, or worse, even well-tuned agents
will not always able to keep the temperatures in the system low enough after training,
which is disastrous in the mission-critical environment of a DC.

• The algorithm should be model-free, as the goal of this thesis is to create a controller
without the requirement of a predefined model.

• The algorithm should be an actor-critic algorithm. This type of algorithm combines the
strengths of both policy-based and value-based methods: the "actor" learns the policy
directly, while the "critic" estimates the value function. This has the best of both worlds,
as the critic helps to stabilize learning by reducing the high variance typically seen in
policy-based methods [33], while the actor is better at learning continuous action spaces.

3.2.3.2 Algorithm choice

To summarize, the algorithm that is most suitable for the use on the HVAC model should be
able to handle a continuous action-space; should be able to handle stochastic models; be prefer-
ably of the actor-critic nature; should be model-free and has to be able of online learning.

Numerous algorithms that match these requirements have been considered, but the final al-
gorithm choice is the PPO [61] algorithm. This is a state-of-the-art actor-critic algorithm, which
shows good performance when compared to similar algorithms [62]. Next to that, PPO is
known to be quite robust to its hyperparameters, which makes its implementation easy. Finally,
actor-critic algorithms are known to be sample inefficient, however, PPO employs a bounded
update of its policy (which is discussed later in this section) that ensures that the algorithm will
not make large adjustments to its policy, and therefore learns in a relatively stable manner.

3.2.3.3 PPO working principle

For the further implementation and tuning of an RL agent using PPO, on the environment,
the way this algorithm works should be understood. Therefore, this subsection discusses the
working principle and mathematical background of the PPO algorithm.

The goal of the PPO algorithm is to approximate π∗ by training a NN. This NN is updated
using the gradient of the policy, making it a Policy Gradient (PG) method [63]. However, there
are a number of ways in which PPO improves upon normal PG methods. To update the policy
network, PPO minimizes a so-called "surrogate loss function". A look at this surrogate loss
function helps better understand how PPO improves:

Lt(θ) := Êt

[
LCLIP

t (θ)− cVFLVF
t (θ) + cHS

]
(3.19)

where θ are the parameters of the policy (or actor) NN. The right-hand side of this function
consists of 3 terms, each with a separate function. The first term LCLIP

t is the clipped loss func-
tion of a general PG method. The goal of this clipping is to prevent the agent from changing
too much when an update is applied. The second term is a term for promoting the loss function

37

3.2 Reinforcement Learning framework

of the Value function network (or actor-network), LVF
t . This function is tuneable by the hyper-

parameter cVF. The third term is the so-called entropy bonus. This can be tuned by cH and
promotes randomness in the system. This term can be increased to increase the exploration of
the agent.

Clipped loss function As was already seen in subsection 3.2.3, policy-based algorithms which
use PG are prone to unstable learning. This is caused by the fact that, when updating its policy
during learning, often too large steps are made. As this is undesirable in many cases, such as
the mission-critical DC, PPO solved this by limiting the "motivation" for the algorithm to make
large updates. To understand this, first, an understanding of how a general PG algorithm up-
dates its policy is required:

LPG
t := Êt

[
rπ

t (θ)Ât
]

(3.20)

where rπ
t (θ) is the ratio between the probability of this policy being taken under the new, up-

dated policy and the old policy:

rπ
t (θ) =

πθ (at | st)

πθold (at | st)
(3.21)

and Ât is the advantage of taking this action over the current optimal policy:

A∗ (st, at) := Q∗ (st, at)−V∗ (st) (3.22)

Where Q∗ (st, at) is the total discounted reward when action at is taken and the optimal policy
is followed from the subsequent state. So, in summary, PG tries to minimize the ratio between
the current policy and an updated policy, given the advantage of taking the current action
against the expected optimal action. The important thing to notice here is that the advantage
can change sign. So when the advantage is negative, the algorithm will try to minimize the
probability of this action happening, while it will try to maximize it when the advantage is
positive.

As the advantage can not be determined analytically, advantage estimations are used (Â). In
PPO, the Generalized Advantage Estimator (GAE) is used, which is defined as [64]:

ÂGAE(γ, λGAE) :=
∞

∑
l=0

(γλGAE)lδV
t+l (3.23)

where γ is the reward discount factor of the RL framework; λGAE is a parameter which is used
to balance between a bias on the accuracy of V (λGAE = 0) or high variance due to relying on
future terms (λGAE = 1). Finally:

δV
t := rt + γV (st+1)−V (st) (3.24)

where V is the output of the value (or critic) network. This advantage estimator is used for the
surrogate loss function of the actor and critic networks.

The PPO algorithm minimizes the size of the policy updates by clipping the loss function,
where ϵ is a tuneable hyperparameter:

LCLIP
t (θ) := Êt

[
min

(
rπ

t (θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât
)]

(3.25)

This function puts a limit on how much the policy is changed when there is a very large ad-
vantage, or when there is a really bad advantage. This adds to the stability of the agent.

38

3.2 Reinforcement Learning framework

Value function loss The second term in Equation (3.19) is the loss of the value function, which
is also used to update the value network. This is defined as:

LVF
t (θ) :=

(
Vθ (st)− V̂t

)2
(3.26)

where Vθ(st) is the output of the value network, and V̂t is an estimation of the true value func-
tion:

V̂t :=
B

∑
l=0

γlrt+l (3.27)

Using the combination of these loss functions, PPO thus ensures no large policy updates are
made, which eventually leads to faster and more stable convergence [62].

Algorithm structure and sample collection As the PPO algorithm is an on-policy algorithm,
it alternates between interacting with the environment to collect samples and optimizing the
policy and value networks using the collected data. This is shown in Algorithm 1.

The outer for loop performs this iteration between collection and optimization for a certain
amount of times. The data collection is done in the for loop in lines 2− 5. PPO can run in par-
allel environments, which could improve the exploration and decrease the correlation between
samples. For every actor in the N environments, the agent interacts with the environment for
T timesteps. When the data is collected, the policy and value networks are updated according
to line 6, using the loss functions from Equation (3.19) and (3.26).

Algorithm 1 PPO, Actor-Critic Style (algorithm adopted from [61])

1: for iteration = 1, 2, . . . do
2: for actor = 1, 2, . . . , nenvs do
3: Run policy πθold in environment for ntrajectory timesteps
4: Compute advantage estimates Â1, . . . , ÂT
5: end for
6: Optimize surrogate L w.r.t. θ, with nepochs epochs and minibatch size nminibatch ≤

nenvsntrajectory

7: θold ← θ
8: end for

Hyperparameters The equations and algorithm of the previous paragraphs contain a number
of hyperparameters that can and have to be tuned during the implementation of the algorithm.
Table 3.3 contains a summary of those hyper parameters.

The last 2 hyperparameters in the table have not been discussed in detail yet. These are the
network architectures of the actor and critic networks. In the definitions above, πθ and Vθ have
only been defined as function approximators which are parameterized by θ. So any function
approximator can be used for this. To narrow the scope of the thesis, these network archi-
tectures are limited to simple Multi-Layer Perceptron (MLP) NNs unless the implementation
indicates that more sophisticated approximators are required.

39

3.3 Weather and IT load data and data partitioning

Table 3.3: Summary of the PPO hyperparameters

Hyperparameter Description

γ The reward discount factor.
λGAE Parameter to balance variance and bias in the GAE.
ϵ The PPO clipping factor
cVF Coefficient to include value function loss in the policy loss.
cH Coefficient for the entropy bonus.
nenvs Number of parallel environments.
ntrajectory Number of trajectory timesteps collected per iteration.
nepochs Amount of training epochs for the policy and value approximators.
nminibatch The size of the minibatches for training.
α The learning rate of the policy and value networks.
πarch

θ The architecture of the policy network.
Varch

θ The architecture of the value function network.

Train
2018-2021

Validation
2022

Test
2023

Figure 3.9: Timeline of the training, validation, and testing data.

3.3 Weather and IT load data and data partitioning

This section discusses the data that is used for the 2 disturbance variables and elaborates on
how and why the data is partitioned into training, validation, and testing data. These variables
are the reason the HVAC model is stochastic. To ensure the agent is robust to this stochas-
ticity and performs well on unseen data, the data is partitioned into 3 categories, as shown
in Figure 3.9. If it is not robust, the RL-based controller will not be able to effectively control
the system. Firstly, weather and IT load data from 2018− 2021 is used for the training of the
agent. To validate if a trained agent generalized well, or has overfitted on the training data,
its performance is validated using a validation data set with 2022 data. This set is used for the
validation during tuning of the agent. Finally, to test tuned agents on unbiased data, a 2023 test
set is defined.

3.3.1 Weather data

For weather data, EnergyPlus employs weather files, containing information on the weather at
a certain location throughout the year. The only factor of influence in this EnergyPlus model is
the outdoor temperature, as this is the only variable the cooling tower model takes into account,
and the rest of the system is adiabatic to the outside world. However, the complete weather
files are still implemented. For the weather data in this thesis, the weather files of Amsterdam
from 2018− 2023 have been retrieved from Oikolabs [65]. Amsterdam has been chosen as the
Dutch climate is quite moderate, and Coolgradient has Dutch clients.

40

3.3 Weather and IT load data and data partitioning

Figure 3.10: The IT Load profile as used in [44].

3.3.2 ITE load data

In the DC model in [44], a stepwise PITE is used which is continuous for a month before taking
a sudden step to a higher PITE, as shown in Figure 3.10. This approach works well enough to
get an insight into the total energy usage of a data center with varying levels of IT load over
the course of a year. However, in the case of controlling a HVAC system using RL, the IT load
should be more realistic on a smaller timescale.

This more realistic IT load is required for 2 reasons. The first reason is related to the fact that
a controller should be robust enough to handle a varying, stochastic value of PITE. When the
system is trained on this stepwise function, which is (almost) deterministic, it is not robust to
the stochastic nature of real IT load variations. The other problem is related to the overfitting of
the RL algorithms. To summarize, a more realistic IT load is required both for a more realistic
simulation and for creating a more robust agent.

Real data of PITE is hard to find, as it is often part of DC companies Intellectual Property (IP).
Therefore, as no real data could be found, the IT load data has been constructed synthetically.
Yearly data has been created for each separate training, validation, and testing year. The goal
of the yearly data is to represent the stochastic nature of the IT load, without it changing unre-
alistically fast. From conversations with experts from Coolgradient followed that PITE typically
varies throughout the year, and also has a clear variation in the load from day to night. To ad-
here to this behaviour, the synthetic PITE is constructed from a base load that follows a random
walk throughout the year, plus an influence of the time of the day. Noise is added as well. This
leads to the following definition of PITE:

PITE(t) = Pbase(t) + Pday,night(t) + Pnoise(t) (3.28)

The derivation of the terms in this equation can be found in Appendix B.

41

3.4 Reinforcement Learning tuning experiments

3.4 Reinforcement Learning tuning experiments

To fairly compare the behaviour of the RL agent to the baseline, it should be tuned to work
optimally. This tuning is split up into 2 separate tuning experiments, both with a slightly
different goal. The first type of experiment is hyperparameter tuning. In these experiments,
the hyperparameters of the algorithm are tuned to ensure they are in an optimal configuration.
Their method is given in subsection 3.4.1. The other type of tuning experiments are the reward
tuning experiments. In these experiments, the weights and other parameters in the reward
function of Equation (3.9) are tuned. This is done to investigate the effects of changing these
parameters on the control behaviour of the agent. Using the results of these experiments, a
reward that makes a trained RL controller outperform the baseline is chosen. The method of
these experiments is discussed in subsection 3.4.2

Justification for reward and algorithm tuning split It is important to realise that the hy-
perparameters of the RL agent and the reward function itself influence each other. Therefore,
splitting the experiments will not lead strictly to the best-performing agent. However, there
are multiple important reasons why this choice has been made. Firstly and most importantly,
changing the parameters of the reward makes it hard to compare 2 different experiments, as
they will have a different total reward by definition. Secondly, the computational cost of hy-
perparameter tuning experiments increases roughly exponentially with an increasing number
of parameters to tune [66]. Therefore, splitting the experiments into separate experiments re-
duces their computation time. Finally, it is expected that, for different rewards, roughly the
same hyperparameters will lead to the best results, as the environment itself does not change
drastically. For example, if a certain policy network architecture would lead to a good reward
for one reward setting, it is also probably able to learn good behaviour for another reward set-
ting.

It is believed that the splitting of experiments is justified, because of the reasons mentioned
above. However, the split is of course a limitation to the final results. Therefore, one should
see the goal of the experiments not as much as finding the optimal configuration, but more
as finding a good configuration of hyperparameters, which leads to good training, and then
using this configuration to get a better understanding of the influence of the parameters in the
reward function.

3.4.1 Hyperparameter tuning

In these experiments, the hyperparameter tuning of the RL agent is performed. Hyperparame-
ter tuning is a common practice in ML algorithms to improve performance by adjusting param-
eters such as the learning rate and network architecture. However, for RL algorithms, hyperpa-
rameter tuning is less common. This is mainly due to the dynamic nature of RL, compared to
the static datasets typically used in ML. The dynamic environment of RL makes hyperparam-
eter tuning more challenging. Despite these challenges, recent research suggests that hyper-
parameter tuning can significantly enhance the performance of RL algorithms [67]. Therefore,
this research performs hyperparameter tuning for the designed RL framework, to find a close
to optimal configuration of the hyperparameters.

For hyperparameter tuning experiments, there are a number of important choices: which pa-
rameters to tune, on which ranges to tune them, and what kind of sampler to use for the hy-

42

3.4 Reinforcement Learning tuning experiments

perparameter configurations. This section discusses these choices.

Hyperparameter selection The hyperparameters that are tuned are the hyperparameters re-
lated to the PPO algorithms. Initially, the default ranges are searched. The network architecture
of the policy and value function approximators are split into the number of layers and the num-
ber of neurons per layer.

Sampler selection One of the most important choices is deciding which sampler to use. As
hyperparameter optimization trains and tests a RL agent for each different hyperparameter
configuration, it is a very computationally expensive type of optimization. Therefore, it is
very important to have good sample efficiency. This is further complicated by the fact that
the amount of samples increases with an increasing number of parameters that should be opti-
mized.

There exists a broad range of samplers, each with its own advantages and disadvantages, in
Appendix C, a number of the most common samplers and their (dis)advantages are discussed
in more detail.

For these experiments, the Tree-structured Parzen Estimator (TPE) sampler will be employed.
This is a Bayesian sampler, which is known to be sample efficient in large hyperparameter
spaces, as it has the advantages of the good system exploration of pseudo-random samplers,
and being able to adapt to intermediate results. Bayesian samplers work by constructing a sur-
rogate model, often using Gaussian processes. These models predict the performance of the
hyperparameter configurations and give an estimate of the uncertainty of the surrogate model.
By focussing on promising areas, a lot more sampling can be done in these areas. This is very
beneficial for the sample efficiency, and thus the computational complexity. A disadvantage of
Bayesian sampling is that it can focus on suboptimal regions when the initial surrogate model
is very inaccurate. However, as the model updates with each new sample, this is often not a
large problem in reality [68]. The reason for choosing the TPE sampler specifically is because it
is incorporated in Optuna [69], which is the Python library used for the hyperparameter tuning.

Experiment outline The experiments will train the RL agent on the EnergyPlus simulation
environment, cycling through the training data of the disturbances, for 10 episodes for each
hyperparameter configuration. Then, the trained controller will be evaluated on the validation
disturbance data. Each hyperparameter configuration will use the same reward and the total
reward of the validation run will be used to compare the performance of agents.

The experiments start with a small hyperparameter study of 40 samples. The goal of this study
is to validate the hyperparameter ranges. If this study already shows that the RL agent per-
forms a lot better in certain hyperparameter ranges, or the best results are found at the limit of
the range for a certain parameter, the ranges will be adjusted accordingly.

After these initial experiments, a large hyperparameter study starting with 200 samples will
be performed. The results will be analyzed, and if it is required, additional experiments with
either all hyperparameters or a subset of hyperparameters will be performed.

43

3.4 Reinforcement Learning tuning experiments

3.4.2 Reward tuning

The goal of the reward tuning experiments is to investigate the effects of changing the parame-
ters in the reward function on the behaviour of the agent. From this investigation, settings for
the reward function which leads to the best behaviour can be chosen.

The reward tuning experiments are an optimization problem. However, while it seems sim-
ilar, this optimization problem should not be confused with the general optimization problem
from this thesis from Equation (2.23). The goal of that minimization problem is the ultimate
goal of the HVAC system controller, which is to minimize PHVAC while meeting a number of
constraints. So it is a single objective, constrained minimization problem. The subtle difference
is that the reward tuning should find a reward that leads to behaviour that minimizes PHVAC

and minimizes the number of constraint violations. This makes the reward tuning the following
multi-objective, unconstrained minimization problem:

min
α∈A

(
PHVAC(α), fTAL1

SP
(α), fTAL2

constr
(α), fafluct(α)

)
(3.29)

where α is the vector of reward tuning hyperparameters (not to be confused with α, which is
the learning rate of the neural networks). It should be an element of the hyperparameter space
A. PHVAC(α) is the total yearly HVAC power as a function of the hyperparameters, and fx(α)
are functions for measuring the severity of the constraint violations or undesired behaviour
over the course of a year. These 3 different functions are based on the 3 types of penalties in
the reward function. The remainder of this section will focus first on defining these functions.
After that, the sampling from the hyperparameter space will be discussed.

Constraint violation metrics To evaluate the agent’s performance over the course of a year,
specific metrics will be used to measure the severity of the following three types of unwanted
effects in the system:

• The deviation from the setpoint at point AL1.

• The violation of the temperature constraint at point AL2.

• The fluctuation of the action variables.

To provide a measurement of the unwanted effects over the course of a whole year, it is desir-
able to couple the effect to a single number for each of the 3 effects. Therefore, the severity of
these effects is measured by the Euclidean distance, or L2-norm:

∥x∥2 =

√√√√ T

∑
t=1

x2
t (3.30)

where T is the number of timesteps in a year, and xt is a measure of each specific unwanted
effect. This norm is chosen as it gives more weight to larger constraint violations, while still
penalizing small violations. This is in line with the requirements of the system. Next to the
L2-norm, the L∞-norm (the maximum value of xt in a year) is also logged for analysis purposes.

To start, the deviation of TAL1 from TAL1
SP should be minimized both when the temperature is

44

3.4 Reinforcement Learning tuning experiments

higher and lower than the setpoint. Therefore, the L2-norm of the setpoint deviation is defined
as:

fTAL1
SP

(α) =

√√√√ T

∑
t=1

(
TAL1

t − TAL1
SP

)2 (3.31)

For the violation of TAL2
constr, it only should be taken into account how much higher TAL2 is than

the constraint temperature. Therefore, the following definition of the L2-norm is used in this
case:

fTAL2
constr

(α) =

√√√√ T

∑
t=1

(
max

(
0, TAL2

constr − TAL2
t

))2 (3.32)

Finally, for the action fluctuation, the agent must not have large, high-frequency oscillations.
Therefore, the difference between the current and previous action is taken as the constraint
measure:

fafluct(α) =

√√√√ T

∑
t=1

(at − at−1)
2 (3.33)

This finalizes the definition of the minimization problem in the reward tuning experiments.
The next section will focus on the next step in these experiments: the sampler selection.

Sampler selection This study uses the Bayesian TPE sampler as well, as the reward hyper-
parameter space is also high dimensional, and the adjustment to intermediate results is even
more desirable in the multi-objective optimization which is performed in these experiments.

Opposed to the single-objective optimization, where the sampler tries to sample hyperparame-
ters which lead to a better reward, the multi-objective TPE tries to sample hyperparameters on
the so-called Pareto front. This front consists of all non-dominated solutions. A configuration
is non-dominated if it leads to behaviour for which there is no other configuration that outper-
forms the first configuration on all optimization metrics. An example of a Pareto front is given
in Figure 3.11.

Figure 3.11: Example of a Pareto front in 2 dimensions.

45

3.5 Summary

Experiment outline The goal of the reward tuning experiments is to form a Pareto front of
the 4 performance metrics. To achieve this, the agent is trained with different hyperparameter
configurations for 200 trials. These configurations are sampled using the TPE sampler. Each
configuration will again be trained on 10 episodes using the training disturbance data and is
evaluated on the validation disturbance data.

The algorithm hyperparameters that are found in the algorithm hyperparameter tuning ex-
periments are used for all reward configurations. The results of the reward tuning experiments
will be compared to the performance of the baseline controller. Depending on the outcomes,
additional tuning experiments may be performed to further investigate specific phenomena
observed in the results.

3.5 Summary

This chapter details the methodology that will be used to create a RL-based controller for the
HVAC system defined in chapter 2.

First, a baseline controller has been defined, which is based on static temperature setpoints
and bases its mass flow rates on the energy balance.

After that, a framework for the RL agents has been created. The HVAC system has been de-
scribed as an MDP, and a tuneable reward function has been proposed, which has penalties for
violation of constraints. The chosen algorithm is PPO.

To ensure that the trained agents are robust controllers, that are not overfitted to the distur-
bance variables, data of the disturbance variables is partitioned into training, validation, and
testing data. For the outdoor temperature, historical data from Amsterdam is used. For PITE a
load profile is constructed using a random walk, day and night effects, and noise.

Finally, 2 types of hyperparameter tuning experiments are proposed to actually train and tune
the RL-based controller. The first type is algorithm hyperparameter tuning, which uses a
Bayesian sampler to find well-performing hyperparameters of the PPO algorithm. Afterward,
the hyperparameters in the reward function will be tuned. The goal of these experiments is to
gain insights into the effects of tuning reward parameters on the performance of the controller.
These insights can be used to find an optimal reward that balances the performance of a tuned
controller with respect to reducing both PHVAC and constraint violations.

The upcoming chapters first implement the simulation model, baseline controller, and RL
framework into a Python framework. Afterward, the numerical results of the experiments
outlined in this chapter are presented.

46

Chapter 4

Numerical results

In chapter 2, a HVAC system has been defined and a control optimization problem has been
constructed for this system. Following this, chapter 3 converted this system into a simulation
model, designed a conventional baseline controller, and proposed a RL framework which can
be used to improve upon this baseline controller.

In this chapter, the results of the experiments which were outlined in those chapters are pre-
sented and discussed. In section 4.1, the sensitivity of the simulation to changes in the timestep
is determined. With the desired timestep set, control experiments have been conducted. First,
section 4.2 discusses the general Python implementation of the EnergyPlus model for control
purposes. After that, the results of the baseline experiments are discussed in section 4.3. Af-
ter the baseline has been set, initial RL experiments have been performed to get to know the
system, spot any problems at an early stage, and get an initial guess of the best hyperparam-
eters. The results of these experiments are given in section 4.4. With this initial estimation of
the hyperparameters, the tuning experiments could be conducted. The hyperparameter tuning
results are given in section 4.5, while the reward tuning results are shown in section 4.6. The
results of these experiments indicated that the framework could be sensitive to its initialization.
Therefore, a seed sensitivity study is performed in section 4.7. After these experiments have
resulted in several well-tuned RL agents, their performance during training, validation, and
testing is compared to the performance of a baseline agent in section 4.8.

4.1 Timestep sensitivity study results

This section provides the results of the timestep sensitivity analysis, as outlined in subsec-
tion 2.3.3. The goal of these experiments is to analyze how much the timestep affects the
outcome of the model and, based on this, select a suitable timestep for the remainder of the
experiments in the thesis.

4.1.1 Data filtering

In Figure 4.1b, the simulation results of PHVAC over the course of a year are shown for 4 dif-
ferent timestep sizes (only a selection of timestep sizes is shown for clarity of the figure). As
can be seen, the value of the power takes a large jump every month, which corresponds to the
stepwise changing PITE used in this study (Figure 4.1a). Generally, such a large step would not
affect the results of a timestep study. However, Figure 4.2a shows large peaks in the difference
between the HVAC power of these 4 timestep sizes compared to the HVAC power using the

47

4.1 Timestep sensitivity study results

(a) Monthly stepwise PITE (also shown in Fig-
ure 3.10, restated here for convenience)

(b) PHVAC over the course of a year, for 4 different
timestep sizes.

Figure 4.1: The ITE load and HVAC power over the course of a year.

(a) The difference for PHVAC, zoomed in on a
change of month.

(b) The filtered difference between PHVAC and the
simulation with the smallest timestep.

Figure 4.2

smallest timestep (more than 5 kW difference). As the peaks get wider for increasing timestep
size, this is probably related to the controller of the system, and not the simulation itself.

To mitigate this problem, the days on which these external conditions change rapidly are sim-
ply filtered out of the data. Figure 4.2b shows the difference between the 4 timestep sizes to
the smallest timestep for PHVAC, where the first and last day of each month have been filtered
out. The large peaks are now no longer present in the data. Since only 2 days per month are
neglected, this is an acceptable loss of data for the rest of this study.

4.1.2 Effects on the simulation

For the effects of the timestep on the accuracy of the simulation, its effect on the execution time
and the mean error over a year of 3 important parameters (the total HVAC power, a temper-

48

4.1 Timestep sensitivity study results

(a) The execution time against tstep. (b) The relative error of PHVAC against tstep.

Figure 4.3: Timestep study results for the execution time and PHVAC.

ature, and a mass flow) has been calculated. Additionally, to indicate the distribution of the
error, the Inter Quartile Range (IQR) (which is the range between the first and 3rd quartile of
all error values in the year) has been plotted as well.

Execution time The effect of the size of tstep on the total execution time of the simulation is
shown in Figure 4.3a. The total execution time of a single year of simulation time increases
rapidly with decreasing timestep size. This has to be kept in mind while selecting a timestep
size. Another important note is that this is solely the EnergyPlus execution time. Training an
RL agent will produce additional overhead for each timestep.

HVAC power The first parameter for which the mean of the filtered error over a year has
been calculated is PHVAC. The results are presented in Figure 4.3b. As can be seen, the mean
error increases with increasing tstep, although it starts to increase less quickly for tstep > 10
minutes. The maximum mean error is at around 2.5%, which is quite an acceptable value since
the simulation of both the baseline and the RL agent are performed with the same timestep.

The IQR range is quite close to the mean error, which indicates that the error is not too widely
distributed. For the smaller timesteps, however, even the 3rd quartile is below the mean er-
ror. This indicates that the mean is affected by some large outliers. However, for these small
timesteps, the error is at or below 1%, which is still deemed acceptable.

Temperature The second variable for which the error has been determined is TChL2. For this
variable, a temperature without a setpoint has been chosen to avoid the controller affecting
the simulation results too much. In Figure 4.4a can be seen that the error is symmetrically
distributed above and below zero for all timesteps. The error is negligibly small for all timestep
sizes.

Mass flow In Figure 4.4b, the mean errors ṁChL, the third variable to be considered, is shown.
Except for the outlier at tstep = 60, the mean error stays relatively small. The distribution of the
error increases slightly with increasing timesteps. However, this is all within 0.5% of the total
mass flow.

49

4.2 Python implementation

(a) The relative error of TChL2 against tstep. (b) The relative error of ṁChL against tstep.

Figure 4.4: The timestep study results for the temperature and mass flow.

The high mean error at tstep = 60 is probably caused by a small number of data points where
there was an outlying, large error, as the IQR is still quite comparable to the rest of the timesteps.
This has not been further investigated, as a timestep of 60 minutes is too large for control effec-
tiveness. This is discussed in more detail at the end of this section.

4.1.3 Discussion & conclusion on the timestep sensitivity

The mean error and the error distribution for all 3 important parameters that have been taken
into account are, with only a few percent, relatively small. Although there are indications that
there are quite large outliers in the error over the course of a year, overall, the simulation does
not seem to be very sensitive to the timestep size.

What is very sensitive to the timestep size, however, is the time the simulation takes. This
is found to increase linearly with the number of timesteps in a year, as was expected. It is also
important to note that these simulation times were just for an EnergyPlus simulation. When
the simulation also has to interact with Gym and models have to be trained in the RL experi-
ments, the simulation times are expected to increase.

Another factor of concern is the comparability to reality. As in reality, often data is collected
every 10 minutes, this would seem a logical timestep to use for the simulations as well. A way
larger timestep would let the controller react too slowly, while a much smaller timestep may let
the controller react way too fast. In Figure 4.3a, it can be seen that the EnergyPlus simulations
take 50 seconds with this timestep. Also, the mean errors and IQR of the error are all accept-
able for this timestep size. Therefore, a timestep of 10 minutes is used in the remainder of the
experiments.

4.2 Python implementation

For the Python implementation, the OpenAI Gym [70] library has been used as an interface be-
tween a controller and the (EnergyPlus) environment. The Gym library has a standard Appli-

50

4.3 Baseline study results

cation Programming Interface (API) for the communication between agents and environments.
Since this is the standard interface that is used in RL, many off-the-shelf RL libraries can be
used with Gym. Gym provides a set of standard environments that can be used for easy de-
velopment and benchmarking of new algorithms. It also provides the ability to create custom
environments, as has been done in this study. Although the Gym API is thus mainly meant
for RL, other controllers, such as the baseline, can also be easily employed on this system, as it
simply provides a feedback loop.

The Gym API has some key methods: __init__(), which initializes the environment and sets
the correct state and action space; step(), which performs one simulation step; reset(), which
resets the environment after a training episode has ended and close(), which closes the envi-
ronment after the simulation.

The custom environment used in this study should be able to receive and send information
from and to EnergyPlus between every simulation step on one end, and communicate with a
controller according to the Gym API on the other end. This is visualized in Figure 4.5, which
expands the environment of Figure 3.4 into the custom Gym environment and the EnergyPlus
model. For the creation of the custom environment, the testbed from [45] has been modified
to simulate the HVAC model of this thesis. This testbed consists of a Gym environment that is
connected to a patched version of EnergyPlus. This allows the Python code to send the action at
to EnergyPlus, perform one timestep of simulation, and then receive the states, st+1, back from
the model. This is then integrated into the Gym API. The modification of this testbed consists of
2 steps: changing the Input Data File (IDF) of the EnergyPlus model to allow the Python code to
send and receive the state and action variables, and the creation of a model-specific class which
handles the creation of the state and action spaces and reward computation in Python. This is
done according to the instructions provided in [45]. Further details of this implementation are
not discussed here to keep the report (a bit more) comprehensive.

Figure 4.5: The RL framework for the Python implementation.

For most simulations in this study, the author’s laptop has been used, while for the tuning
experiments, a VM has been used. Their specifications are summarized in Table 4.1.

4.3 Baseline study results

Using the timestep size which has been determined in section 4.1, the baseline experiments
have been performed according to the method in section 3.1. The settings presented in Ta-
ble 4.2 are used for these experiments. In this section, first, a correct value of TChL1

SP is selected.
Using this configuration, the baseline experiments are performed. First, the yearly results are
analyzed. Afterward, a more in-depth analysis of the component behaviour is performed to
understand how the baseline controller makes the HVAC system behave.

51

4.3 Baseline study results

Table 4.1: Specifications for the hardware used in this study.

Component Laptop Virtual Machine

Device Name ThinkPad P51 Signature Edition -
Processor Intel Core i7-7700HQ, 4 cores, 8 threads, 2.80

GHz base, 3.80 GHz boost
2 vCPUs

RAM 16 GB DDR4 16 GiB
Storage 1 TB SSD OS Disk: 1 TB
Operating System Windows 10 Home 64-bit, Version 22H2, OS

Build 19045.4651
Linux

Location - Sweden Central (Zone 1)

Table 4.2: Settings of the conventional controller in the baseline experiments.

Setpoint Value Justification

TAL1 24◦C This is the typical underfloor temperature setpoint in DCs,
which is right between the upper and lower limits of 21 and
27◦C, as determined in section 2.4.

TAL2
constr 30◦C This setpoint is set to prevent the air leaving the servers

from becoming too hot and exceeding the constraint tem-
perature. This temperature has been determined in sec-
tion 2.4 and is typical for the hot aisle temperature.

ϕAL4 0.5 A relative humidity of 50% is standard in server rooms [52].

TChL1 18, . . . , 23◦C Experiments with varying chilled water temperature set-
points are performed. This is done to compare the effect
of different chilled water temperatures over the course of a
year with each other. The best performing setting is com-
pared to the RL agent.

TCoL1 − Toutdoor 1.5◦C This is the standard value of this setpoint in EnergyPlus. To
minimize the variables that are changed, this is kept at the
standard value.

4.3.1 Chilled water setpoint selection

Simulations using a range of fixed values for TChL1
SP in the baseline controller have been per-

formed, with as goal to select the best-performing value for the setpoint regarding PHVAC.
The controller determined the mass flows based on the equations outlined in subsection 3.1.1.
These simulations have been performed on the test dataset, so the weather data from 2023 and
IT_Load_5.csv.

Figure 4.6 shows the total yearly energy usage of the HVAC model using the baseline con-
troller for various values of the chilled water setpoint. The controller becomes more efficient
when the setpoint temperature increases until it becomes too close to the air temperature and
the efficiency rapidly decreases. The initial decrease is likely caused by a higher efficiency of the

52

4.3 Baseline study results

Figure 4.6: The energy consumption of the baseline controller for various values of TChL1
SP .

Table 4.3: Performance metrics of the baseline.

Physical Quantity Norm Type Variable 2018 2019 2020 2021 2022 2023

HVAC Energy Total PHVAC [MWh] 157 165 164 180 173 162

Temperature
Setpoint Deviation

2-norm TAL1 [◦C] 184 196 263 345 212 201

Temperature
Constraint
Compliance

2-norm TAL2 [◦C] 28.5 27.1 40.1 79.9 38.0 48.4

Action Fluctuation 2-norm TChL1
SP [◦C] 0 0 0 0 0 0

chiller at higher temperatures. When the setpoint increases, however, the mass flow rates also
increase which likely causes the rapid increase of the power required. For a fair comparison to
the RL agent, the baseline controller with TChL1

SP = 22◦C is selected.

4.3.2 Yearly performance

In Table 4.3, the performance of the baseline regarding PHVAC and how well it satisfied the
constraints, based on the metrics from subsection 3.4.2 is shown for all years of which data is
used. This performance will be compared to the performance of the tuned RL agent, where the
goal is of course to score lower on all parameters, and especially the HVAC power and tempera-
ture constraint compliance. In the remainder of this section, only the data of 2023 is considered.

It is interesting to see in this table that the baseline is also not fully capable of complying with
the temperature constraint of TAL2, as the 2-norm is still 44.6◦C over the course of 2023. To un-
derstand better how much the constraints are violated, the infinity-norm for this parameter is
checked, which is: L∞ = 1.66◦C. So the maximum constraint violation is only relatively small.

Relation HVAC power to disturbances To better understand what causes the energy usage
in the system when using the baseline controller, Figure 4.7a shows PHVAC and the disturbance

53

4.3 Baseline study results

(a) The HVAC Power and disturbance variables
over the course of a year.

(b) The HVAC Power and disturbance variables
over the course of a week.

Figure 4.7: Overview of the total HVAC Power.

variables over the course of a year. As can be seen, the HVAC power is low when the ITE load
and outdoor temperature are low, which is as expected. The apparent noise in the system is
mainly caused by the variation in the load between day and night, as can be seen clearly in
Figure 4.7b which shows the simulation results zoomed in to a single week.

From Figure 4.7b, it looks like PHVAC is mainly proportional to PITE while it does not respond
much to Toutdoor. This could be explained by how the baseline determines the mass flow in
the loops in Equation (3.1) and Equation (3.2). The mass flow (and thus pump and fan power)
mainly depends on PITE.

To further investigate the relationship between these variables, a contour plot has been created
in Figure 4.8. This plot shows the relation between these 3 parameters for all timesteps. This
plot shows that the HVAC power indeed mainly increases with increasing PITE, and slightly
with increasing Toutdoor. This is especially visible when the ITE load is already high, as the con-
tour line is under a steeper angle there, indicating the power depends on both variables. An-
other interesting observation is that there is a rapid change in HVAC power at PITE ≈ 40kW,
where the contour lines are close together. Potential causes for this are investigated in the
component-level analysis. Note that this thesis uses the wet bulb temperature as the outdoor
temperature, which is a better measure for heat exchangers. This is generally lower than the
more common dry bulb temperature, therefore the maximum temperature in the year is only
23◦C.

To conclude, the baseline controller performs quite well regarding the constraints. Next to
that, the main influence on the HVAC power is PITE with a smaller influence of Toutdoor.

4.3.3 Component-level results

To further investigate the behaviour of the baseline controller and which components use the
most power, the performance is compared component-wise. Figure 4.9 shows the power of
each individual HVAC component compared to the ITE load. As the data originally was quite
noisy, due to the dynamic behaviour of the system, a moving average is used. Several conclu-

54

4.3 Baseline study results

Figure 4.8: Contour plot relating the IT load and outdoor temperature to the HVAC power in
the baseline study.

sions can be drawn from this plot:

• The chiller and air fan use the highest power. The chiller power increases gradually with
increasing PITE. The air fan power increases quickly, according to the third order relation
between this power and the fan mass flow from Equation (2.5), until it hits a limit at
PITE ≈ 40 kW. This is probably caused by the fan reaching its maximum mass flow.

• Both the cooling tower and cooling tower pump have almost continuous power usage,
except for when the IT load is very low. This indicates that they are running at full power
for most IT loads.

• The power of the humidifier is not even visible in this plot, it is therefore negligible.

Now that the ratios of the power of the different components compared to each other are
known, we can look at how the power used by each of these components relates to both
disturbance variables. Figure 4.10 contains contour plots for each component that show this
relationship. Several conclusions can be drawn from this:

• Only in extreme cases, where either the IT load is very low (small amount of energy
to extract) or where the outdoor temperature is low (large temperature difference), the
Cooling Tower can switch off part of the time. This indicates that there is little energy to
be saved here by using smarter settings of the cooling tower.

• The chiller is dependent on both the disturbance variables, and increases linearly when
these variables increase. This is expected, as the chiller power depends on its required
cooling capacity, which is determined by PITE and its COP, which depends on TCoL1.

• The ChL pump power depends solely on the IT load, which is as expected as it mainly
depends on its mass flow, and in the baseline controller, the mass flow solely depends on
the IT load as long as the temperature setpoints are met.

55

4.3 Baseline study results

Figure 4.9: The filtered HVAC power per component against the ITE load.

Figure 4.10: Contour plots showing how the power of each HVAC component related to the
disturbance variables

• Similarly, the fan power depends only on the IT load. Next to that, it corresponds with
the findings from Figure 4.9 and indicates that the maximum mass flow is reached when
the IT load is this high.

In Figure 4.11, the behaviour of the control variables, disturbance variables, and several impor-
tant temperatures for a week. In Figure 4.11a, it can be seen that just as expected, both mass
flows (the control variables) are adjusted proportional to mainly the ITE power. However, ṁAL

reached its limit when PITE becomes too high. In Figure 4.11b it can be seen that the air loop is
then also not able to maintain its setpoints and meet the constraints. This is thus also the cause

56

4.4 Initial Reinforcement Learning experiment results

(a) The action and disturbance variables. (b) Important temperatures

Figure 4.11: The behaviour of the system during a week where the maximum airflow is
reached.

of the constraint violations by the baseline. The baseline can not adjust enough to this situation
to solve the problem. This could be done by e.g. increasing ṁChL.

4.3.4 Discussion & conclusion on the baseline controller

The analysis of the baseline controller’s performance provides several key insights into the be-
haviour of the HVAC system under the baseline controller.

Firstly, the power consumed by the HVAC system mainly depends on the IT load and only
has a minor dependence on the outside temperature. This is as expected, as the mass flows of
the ChL and AL are directly proportional to this power in the baseline controller. However, the
effect of the outdoor temperature, especially on the chiller, was expected to be slightly higher.

Secondly, the baseline controller can effectively maintain temperature constraints under rel-
atively low IT load, however, when this increases, the controller reaches the limits of the equip-
ment and is not able to adjust to it, leading to exceeding the constraint temperature and devi-
ating from the air setpoint temperature.

One might say that the equipment is just badly scaled and the baseline agent will perform
better if the equipment has a larger range, and this is indeed true. However, this bad scaling
of equipment is something that also happens in reality, and it will be interesting to see how the
RL agents will control the system under these conditions, and if they can find solutions for this
problem. Problems like this are actually one of the reasons "smarter" controllers such as RL
agents could improve the efficiency of the HVAC system.

4.4 Initial Reinforcement Learning experiment results

Now that the baseline controller has been implemented, the RL agents can be trained and
tuned. Before the tuning experiments started, the framework has been implemented in Python
and several initial experiments were performed to get an intuitive understanding and filter out
anything that causes problems for the learning of the agent.

57

4.4 Initial Reinforcement Learning experiment results

Figure 4.12: High-frequency oscillations of the action variables, leading to peaks in HVAC
power

Python implementation There are a lot of different libraries which offer off the shelf RL al-
gorithms that work with Gym, such as e.g., Ray RLLib [71], Stable Baselines 3 [72], KerasRL
[73] or RL Coach [74]. These libraries all offer standard PPO algorithms, so the choice mainly
depended on the ease of use, documentation and ability to modify the code of the library if that
would be necessary.

The library of choice is Stable Baselines 3, as it has algorithm-specific agent classes, which
make it very easy to implement, has good documentation and clearly commented code, and
provides customizable callbacks that can be used for customization such as normalization of
inputs or logging variables.

Initial experiments To keep this thesis comprehensive, only the most important findings of
these experiments are summarized here.

• The actions and states should be normalized between 0 and 1. This is achieved by scaling
the actions and states between the limits provided by the action and state space.

• Using several different hyperparameters and reward settings, it was found that the agents
had always converged after 10 episodes. Therefore, this number of episodes will be used
for the tuning experiments. The convergence of the reward will be monitored during
these experiments, such that the number of episodes can be adjusted if required.

• If the value function network was too large, the agents did not converge. This has been
taken into account by limiting the amount of neurons per layer to 64.

• When the penalty on the action fluctuation was not present, high-frequency oscillations
in the actions (and thus HVAC power) occurred. This is shown in Figure 4.12.

The algorithm hyperparameter tuning and reward hyperparameter tuning experiments have
been set up using these insights.

58

4.5 Hyperparameter tuning results

Table 4.4: The settings of the reward used for hyperparameter tuning (a description of these
parameters is given in Table 3.1)

Reward setting Value

λTAL1
SP

0.1
σSP 3.0
λTAL2

constr
0.8

pT ReLU
λaTSP

0.1
λamchill

0.0
λaTair

0.0
pa Trapezoidal
bwa,trapezoidal 1.0

4.5 Hyperparameter tuning results

The hyperparameters have been tuned according to the method described in section 3.4. This
section first describes the implementation of the sampling in these experiments in Python. Con-
sequently, results of an initial run to test and adjust the hyperparameter ranges are given in
subsection 4.5.1. The results of the actual tuning with a lot more samples are given in sub-
section 4.5.2. All experiments try to minimize PHVAC and constraint violations simultaneously
by minimizing the reward function. The reward settings used for this hyperparameter tuning
were set in initial experiments and are shown in Table 4.4.

Python implementation For the algorithm and reward hyperparameter tuning experiments,
the Optuna [69] library is used. Optuna is the leading library in hyperparameter optimiza-
tion and is known for its efficiency and flexibility. It supports various optimization algorithms,
including the TPE sampler, which is used in this study. Optuna’s framework allows easy in-
tegration with different ML libraries and provides an interface for defining and executing op-
timization trials. Its ability to handle both single-objective and multi-objective optimization
makes it an ideal choice for both the algorithm and reward hyperparameter tuning in these
experiments.

4.5.1 Initial hyperparameter search

Initially, a short hyperparameter search using the default ranges for PPO parameters (given in
Table 4.5) was performed to investigate if these ranges should be modified. The range for the
learning rate, α, has been adjusted to α ∈

[
10−5, 3 · 10−3], as it was found during earlier exper-

iments that the learning of the agent could become unstable for learning rates of α = 10−2.

Figure 4.13 shows a parallel coordinate plot of these initial experiments. The hyperparame-
ter combinations of the best-performing agents have been highlighted in this plot. This plot
indicates the optimal ranges and the hyperparameter ranges are adjusted accordingly. For ex-
ample, all top-performing agents have λGAE in the upper half of its range, so it is now set to
[0.95, 1]. For parameters with preferences at the range borders, the ranges have been extended
in that direction. Table 4.6 gives these updated ranges on which the extensive hyperparameter
search is performed.

59

4.5 Hyperparameter tuning results

Table 4.5: The initial ranges of the hyperparameters used in this study.

Hyperparameter Lower limit Upper limit

γ 0.9 0.999
λGAE 0.9 1
ϵ 0.1 0.4
cH 0 0.01
cVF 0.5 1
α 10−5 3 · 10−3

nlayers, pi 1 2
nneurons, pi 16 64
nlayers, vf 1 2
nneurons, vf 16 64
nepochs 5 30
nsteps 128 2048
nminibatch 32 nsteps

Figure 4.13: A parallel coordinate plot of the initial hyperparameter search. The axis on the left
contains the total reward of an episode. The lines are then connected to the hyperparameters
for that run. The best episodes are highlighted here, as can be seen in the blue selection on the
left axis.

In this initial search, both the actor and critic network structure were assumed to be the same,
with the same number of neurons for each layer. In the extensive search, these parameters
are all tuned separately, as the networks serve different goals and might both have different
optimal architectures.

60

4.5 Hyperparameter tuning results

Table 4.6: The updated ranges of the hyperparameters used in this study.

Hyperparameter Lower limit Upper limit

γ 0.85 0.95
λGAE 0.95 1
ϵ 0.2 0.5
cH 0.002 0.01
cVF 0.4 0.9
α 5 · 10−4 10−2

nlayers, pi 1 3
nneurons, pi 4 64
nlayers, vf 1 3
nneurons, vf 4 64
nepochs 10 25
nsteps 128 1024
nminibatch 16 nsteps

(a) The cumulative reward against the trials in the
study.

(b) The influence of each hyperparameter on the
total reward.

Figure 4.14: The history and hyperparameter importance of the tuning experiments.

4.5.2 Extensive hyperparameter search

Using the updated ranges, a more extensive hyperparameter search of 200 hyperparameter
samples has been performed. Figure 4.14a shows the total reward of the evaluation run of each
of these samples. The figure shows that a number of hyperparameter settings have led to a
very bad reward. This section first investigates what the best hyperparameter combination is.
Afterward, the cause of the very bad performance is investigated.

4.5.2.1 Best parameters

The hyperparameters of the best-performing studies are shown in Table 4.7. A closer analysis
of these results shows that most of the best-performing hyperparameters are similar. For ex-
ample, λGAE ≈ 0.98 for all combinations, and γ is at the lower end of its range. Although most
other parameters are spread out more than this, they are still all in a close range.

61

4.5 Hyperparameter tuning results

Table 4.7: Top 5 trials of the hyperparameter search.

Reward λGAE ϵ cH cVF γ α nbatch nepoch nlay
pi nlay

vf nneur
pi,0 nneur

pi,1 nneur
pi,2 nneur

vf,0 nsteps

30303.87 0.99 0.45 6.5 · 10−2 0.75 0.85 7.9 · 10−4 48 25 3 1 17 6 15 60 512
30218.88 0.97 0.43 5.8 · 10−2 0.77 0.86 8.0 · 10−4 80 23 3 1 7 27 19 29 384
30176.69 0.99 0.34 6.9 · 10−2 0.75 0.86 1.2 · 10−3 80 24 3 1 9 13 41 54 512
30134.26 0.98 0.44 7.8 · 10−2 0.67 0.86 1.0 · 10−3 64 22 3 1 5 9 18 33 384
30134.11 0.99 0.44 6.8 · 10−2 0.75 0.86 7.6 · 10−4 64 24 3 1 10 12 22 59 512

Figure 4.15: Parallel coordinate plot of the extensive hyperparameter study, with the 4 worst
performing agents filtered out.

When looking at the network architectures of these best trials, however, it can be seen that
the number of neurons per layer of the policy network changes drastically. This indicates that
not yet enough trials have been performed to find the optimal network architecture. Therefore,
it is decided to perform an additional hyperparameter search where only the network-related
parameters are adjusted, this study is described in subsubsection 4.5.2.2.

The remainder of this section focuses on further analyzing these combinations of hyperpa-
rameters. It aims to judge the combinations that are found and to identify any risks, such as a
high sensitivity to hyperparameter changes for certain combinations of hyperparameters.

To give a better overview of which hyperparameter combinations lead to good results, a par-
allel coordinate plot is shown Figure 4.15, with the 4 worst performing agents filtered out.
Among the patterns this plot shows are the patterns which were found in Table 4.7, with high
values for λGAE, moderate values for the clip range, low γ, etc. However, also other patterns
lead to good results. On the left side, several other groups of well-performing agents can be
distinguished. The first group consists of agents with high λGAE, low ϵ, and high entropy coef-
ficients cH. Another group includes agents with low λGAE, high ϵ, and moderate cH. However,
there are no well-performing agents with both low λGAE and ϵ.

62

4.5 Hyperparameter tuning results

(a) λGAE against ϵ. (b) λGAE against cH. (c) cH against ϵ.

Figure 4.16: Contour plots, relating λGAE, ϵ and cH to the cumulative reward.

Further analysis of hyperparameter interactions These combinations can be easily observed,
however, there might also be other combinations that can not conveniently be spotted in this
plot. Therefore, further investigation is required. To do so, contour plots relating 2 variables
and the cumulative reward have been created, which are good at showing non-linear rela-
tionships between the variables. As there are many hyperparameters, and they can not all be
analyzed, the remainder of this section highlights the most important relations.

In Figure 4.16, contour plots of the variables for which relations were found in the parallel
coordinate plot are shown and these plots confirm the relations. For example, in Figure 4.16a,
it is seen that there is indeed a small spot of good performance for the combinations of λGAE

and ϵ. However, it can also be seen that there are no data points for low values of both param-
eters. Therefore, no conclusion can be drawn on whether the lack of well-performing agents
with this combination is caused by the sampling of the TPEsampler or because this combina-
tion performs badly. As the expected combinations indeed lead to good results, it is assumed
this goes for other combinations as well.
Next to the fact that these combinations indeed lead to good results, also several bad perform-
ing regions are spotted, seen as the blue spaces, such as a high λGAE and low cH. Interestingly,
for a clipping parameter between 0.25 and 0.30, bad results are found for all values of cH, indi-
cating that these variables are not correlated.

Another conclusion that can be drawn from these plots is that there is quite some variation
in the cumulative reward for hyperparameters that are close together, while the same random
seed has been used for all experiments. This could be caused by the fact that there are of course
more hyperparameters that affect the outcome of a simulation than just the 2 that are displayed.
Another reason could be that the simulations are very sensitive to hyperparameter changes.

Relation γ and λGAE Figure 4.17a depicts the relation between γ and λGAE. Interestingly, low
values of γ lead to the best results. Next to that, the best results are found for high values
of λGAE. This is interesting since, typically, the value of the GAE estimator is lower than the
discount factor. It is expected that this behaviour is caused by the fact that EnergyPlus models
the reaction of the components to changes in their setpoints instantly. This allows the agent to
respond very quickly. Therefore, γ can be quite low, because the PPO algorithm does not have
to take the expectation of reward in the distant future into account to optimize the cumulative
reward. The future cumulative reward will be maximized if the policy simply learns to get to
the state with the highest reward in the current timestep.

63

4.5 Hyperparameter tuning results

(a) γ against λGAE. (b) γ against cH (c) nsteps against nminibatch.

Figure 4.17: Contour plots, relating several combinations of variables to the cumulative reward.

Consequently, there is less variance in the future discounted reward, which explains the high
values of λGAE. When recalling the estimation of the advantage using ÂGAE in Equation (3.23),
one can see that both γ and λGAE discount future values. λGAE is mainly used as an addition
to γ to balance the variance of future rewards and bias on the current reward. Since γ already
greatly reduces the variance of future rewards, λGAE is allowed to be quite high, which causes
less bias.

Relation γ and cH In Figure 4.17b, it can be seen that the agent performs badly for a combina-
tion of the low value of γ and low cH. This is likely caused by the fact that a low γ leads to the
current reward being the main influence on the surrogate loss function of the PPO algorithm
(Equation (3.19)). cH, on the other hand, promotes randomness in the policy by adding a bonus
for the randomness of the policy on the surrogate loss function, leading to more exploration. If
it is low, the algorithm is rewarded most for getting the HVAC system in the best-known state,
which is often not the best state to be in.

Relation nsteps and nminibatch Finally, Figure 4.17c shows the relation between the collection
steps and the minibatch size. It can be seen that the best-performing minibatch size is roughly
proportional to the amount of steps, indicating that about 6 minibatches per collection step are
optimal. nsteps mainly determines the convergence speed of the PPO algorithm, as the policy
and value networks update more frequently when nsteps is lower (as seen in 1). However, a
larger value for nsteps can lead to more stable learning, as more data is collected. On the other
hand, the advantage approximation is based on the value following the (not yet) optimal policy.
Too large nsteps might thus lead to slower convergence. From these results follows that around
500 collection steps with 6 minibatches is optimal for final performance. The convergence speed
and learning stability are not taken into account in this hyperparameter study.

4.5.2.2 Network architecture search

As mentioned before, another hyperparameter study with 200 trials was performed where only
the network architecture could be adjusted (so the number of layers and neurons per layer). For
the other hyperparameters, the optimal values from Table 4.7 are used. In Table 4.8, the top 5
performing studies are shown.

Interestingly, these results are entirely different from the architectures found in the previous
study. Firstly, the optimal layers are found to be just 1 layer for each network. This is more in

64

4.5 Hyperparameter tuning results

Table 4.8: Top 5 trials for the network architecture study

Reward nlayers, pi nlayers, vf nneurons, pi
0 nneurons, vf

0

28683 1 1 28 18
28312 1 1 26 8
28272 1 1 28 1
28183 1 1 27 4
28147 1 1 43 10

line with the expectations, as the EnergyPlus component models are relatively simple, and the
loss function of the algorithm mainly depends on the current state due to the low values of γ.
Therefore, not a very abstract relationship is expected, which should be sufficiently describable
by a single network layer. Secondly, it was found that the policy network layer should be rel-
atively wide, but just a bit smaller than the amount of states (which is 33). The value function
network can be smaller than this. This can be explained by the fact that the policy network has
all 3 action variables as an output, while the value function just has one output. The network
architecture of the best-performing agent is used in the remainder of this thesis.

4.5.2.3 Cause of Bad Results

This section investigates the cause of the poor performance of certain agents. Analyzing the
worst-performing agents shows several important relationships. Table 4.9 displays the hyper-
parameters of the 4 worst-performing training runs. All these agents have a high learning rate.
Initial experiments indicated that a high learning rate can lead to poor results, as the networks
update too much based on current, biased changes in the loss function. However, high values
of α did not always result in poor performance, which suggests that the issue is likely caused
by a combination of a high learning rate and other factors.

Further analysis showed that all poorly performing agents have large policy networks, indi-
cating potential overfitting on initial data. Additionally, the number of neurons per layer is
suboptimal. For instance, the last two rows of Table 4.9 show that the number of neurons
ranges from small to large, despite the neural networks having many input parameters (33
states) and few output parameters (3 actions).

To conclude, the bad performance is likely caused by a combination of the agent networks
updating in too large steps due to the high learning rates and large policy networks that have a
bad architecture. This can make the networks overfit on the currently updated timesteps, and
the large networks allow for finding more complex relations than exist in reality. Avoiding this
is key in the implementation of agents.

4.5.3 Discussion & conclusion on hyperparameter tuning

From the hyperparameter search, a number of interesting conclusions can be drawn. Firstly, γ
can be a lot lower than the default range, and the optimal value might even be lower than the
value found. This is likely caused by a combination of the stochasticity of the system, getting
a reward every timestep, and the quick response time of EnergyPlus, which make it unfeasi-
ble to put a large weight on future rewards. Consequently, λGAE can be relatively high, as the

65

4.6 Reward tuning results

Table 4.9: Network architectures and learning rate of the agents with very bad results

Total Reward α nlayers,pi nneur,pi
0 nneur,pi

1 nneur,pi
2 nlayers,vf nneur,vf

0 nneur,vf
1

−3.9 · 103 7.4 · 10−3 3 61 22 30 1 30 -
−2.3 · 105 9.5 · 10−3 3 36 61 20 2 7 41
−1.2 · 106 6.9 · 10−3 2 9 59 - 2 58 19
−1.2 · 106 9.8 · 10−3 3 8 14 43 1 31 -

Table 4.10: Best hyperparameters

λGAE ϵ cH cVF γ α nsteps nbatch nepoch nlayers,pi nneurons,pi
0 nlayers,vf nneurons,vf

0

0.99 0.45 6.5 · 10−2 0.75 0.85 7.9 · 10−4 512 48 25 1 28 1 18

variance due to higher reward is already relatively low. Another important hyperparameter is
the learning rate α. It was found that this parameter can be relatively high (around 8.0 · 104),
allowing for quick updates of the networks, but it should be avoided to have this parameter too
high, as a combination of high learning rates and large neural networks leads to severe over-
fitting. Finally, the additional network architecture search showed that the optimal networks
should have a single layer, where the policy network has slightly more neurons than the value
function network.

Combining this knowledge, the optimal set of hyperparameters is found by taking the best
hyperparameter combination of the network search, which is displayed in Table 4.10.

An observing reader could also have noticed that the maximum reward in the network archi-
tecture search is a lot lower than in the other hyperparameter studies (2.8 · 104 versus 3.0 · 104).
At first, it was expected that this study just did not find results as good as the other study. How-
ever, the first hyperparameter search and the network architecture search were performed on
different virtual machines. The optimal hyperparameters of the first study led to even slightly
worse results than 2.8 · 104 on the second virtual machine. Therefore, it is expected that this is
caused by the machine-specific initialization of the random seed. Some small hyperparameter
studies were performed with a different random seed which still indicated similar combina-
tions of hyperparameters are optimal, so this seed sensitivity is not expected to influence the
results of the hyperparameter study. However, further investigation of this sensitivity is re-
quired as it does affect the learning robustness of the agent. This is done in section 4.7.

4.6 Reward tuning results

The tuned algorithm can now be used for the tuning of the reward function. This section
presents the results of the reward tuning experiments that have been conducted following the
method described in subsection 3.4.2. First, general results of the reward tuning experiments
are provided. Following this, a more in-depth investigation into the influence of the hyper-
parameters on the performance of the RL-based controller is performed. Finally, 3 reward
configurations are selected. These configurations will be used to train 3 controllers which are
then tested on the test data and compared to the baseline controller in the next section.

66

4.6 Reward tuning results

In these experiments, the hyperparameters of Table 4.10 have been used, while the reward
parameters were treated as hyperparameters. The range of these parameters was determined
using initial experiments and are based on agents which gave reasonable results, these ranges
are shown in Table 4.11. Next to that, it was found that high frequent action oscillations only
occurred when there was no action penalty at all. To reduce the amount of hyperparameters,
therefore only one action fluctuation penalty is applied, to Tchill,SP

rti = rP

(
PHVAC

ti

)
︸ ︷︷ ︸

HVAC Power reward

+ λTAL1
SP
· rT

(
TAL1

ti

)
︸ ︷︷ ︸
CRAH setpoint reward

+ λTAL2
constr
· pT

(
TAL2

ti

)
︸ ︷︷ ︸

Server outlet
temperature penalty

+ λa · pa (∆ati)︸ ︷︷ ︸
Action fluctuation

penalty

(4.1)

Table 4.11: The ranges of the reward parameters

Parameter Lower limit Upper limit Options

λTAL1
SP

0 1.5 -
σSP 0 5 -
λTAL2

constr
0 3 -

pT - - ReLU, ReLU2, Softplus
βsoftplus 0 10 -
λa,Tchill,SP 0 0.5 -
pa - - Linear, Quadratic, Trapezoidal
bwa,trapezoidal 0 7 -

The agents are all trained on the training data and then evaluated on the validation data of
2022. In this analysis, the performance of the agents is compared to that of the baseline (also
over 2022, note that the total values are thus slightly different than in section 4.3) on the 4
factors: PHVAC

mean , L2
(
TAL2

constr
)
, L2

(
TAL1

SP
)

and L2 (∆a).

4.6.1 General results

Figure 4.18 shows the results of the reward tuning experiments. On the horizontal axis, the
average HVAC power in the validation run for each trial is displayed, while the y-axes display
the 2-norms of the 3 performance parameters. The dotted lines portray the performance of the
baseline. From these results, several conclusions can already be drawn, while other phenom-
ena require further investigation.

Firstly, in Figure 4.18b, it can be seen that almost all agents work better than the baseline re-
garding the deviation from the cold air setpoint in the room, TAL1

SP . When taking a closer look
at the only trial which resulted in worse performance than the baseline, it was found that λTAL1

SP

was very low in this case (1.1 · 10−2). This means the algorithm only received small rewards for
meeting the setpoint, thus the surrogate loss function was barely affected by deviations from
the setpoint. Consequently, the policy was not updated to meet the setpoint. This indicates
that, above a certain threshold, the RL agent will always be able to outperform the baseline in
this regard.

Secondly, from Figure 4.18c follows that the baseline outperforms all RL agents regarding
the action fluctuation. This is trivial, as the baseline has a constant setpoint, and one of the

67

4.6 Reward tuning results

(a) Comparison of the value of PHVAC
mean to the 2-

norm of the constraint violations.
(b) Comparison of the value of PHVAC

mean to the 2-
norm of the setpoint deviation.

(c) Comparison of the value of PHVAC
mean to the 2-

norm of the action fluctuation.

Figure 4.18: The overall reward tuning results.

strengths of the RL agents is that it can actually adapt its setpoint. The goal of this metric is
to prevent severe, high frequent oscillations in the system. However, this only happens for L2
values above 103. Since all values are well below this, the agents all perform well enough in
this case.

Combining this knowledge and the knowledge that severe action oscillations did occur when no
penalty on the action fluctuation was applied, it can be concluded that the RL agent performs
well regarding TAL1

SP and TChiller SP
fluct as long as there is at least some penalty on this behaviour.

Therefore, these variables do not have to be taken into account for the selection of optimal
reward settings. However, when looking at Figure 4.18a, it can be seen that there is a clear
trade-off between the L2TAL2

constr and the reduction of PHVAC. The following sections focus on de-
ducing which settings cause the agent to either save more energy or adhere to the temperature
constraint better. Using that understanding, a selection of the optimal reward settings is made.

4.6.2 Trade-off between HVAC power and constraint violations

As the PPO algorithm simply updates the networks to maximize the reward it gets, without any
knowledge of the reward itself, the penalty has a large influence on its performance. Therefore,
to find out which parameters influence this trade-off, the parameters related to the constraint
temperature penalty are a logical first choice. These are the weight and type of penalty function
of the constraint penalty. To start, the weight of the penalty is expected to have a large effect on
this system, as the less weight is placed on the constraint violations, the lower the advantage
is of taking actions that prevent constraint violations at the cost of PHVAC. Thus ÂGAE is not

68

4.6 Reward tuning results

(a) All parameters (b) Zoomed in

Figure 4.19: The effect of λTAL2
constr

on the trade-off between PHVAC and TAL2
constr violations.

affected as much by constraint violations as for higher weights. To investigate if this weight
indeed has this effect, Figure 4.19 shows the results of the trials again with PHVAC on the x-
axis and L2

(
TAL2

constr
)

on the y-axis, and the results colored according to the value of λTAL2
constr

. In
Figure 4.19a, it can be seen that, generally, the higher the weight on penalizing constraint vio-
lations, the lower the severity of the violations is. This comes at the expense of higher power
usage. When zooming in at the area where the agents outperform the baseline both on energy
usage and constraint violations (Figure 4.19b), this relation is less clear. As this is the region
which is the most important, further investigation is required.

The other factor affecting the penalty on TAL2
constr, is the type of function that is used to penal-

ize the reward. In Figure 4.20a, again a similar plot of the results is made, this time coloring the
different types of penalty functions. When recalling subsection 3.2.2, it was expected that the
ReLU function would be easiest to tune, while ReLU2 has better energy efficiency and Softplus
has better constraint handling. When looking at the figure, it can be clearly seen that indeed,
Softplus is the best at constraint handling, at the expense of some energy efficiency of the sys-
tem. The ReLU2 is not significantly better at reducing PHVAC, while it is worse at handling
constraints than the ReLU penalty.

In the case of the Softplus penalty, a wide range of mean HVAC power is found. To further
investigate what causes this, Figure 4.20b displays the effect of modifying the β-parameter,
which (when recalling subsection 3.2.2) affects the smoothness of the softplus function. For
higher values of β, the softplus function becomes sharper and resembles the ReLU function
more. From the figure follows that, indeed, high values of β lead to performance similar to that
of the ReLU function, while lower values lead to very good constraint performance, albeit at
the expense of HVAC power. The reason why the Softplus function is so good at handling con-
straints can be best explained by looking at Figure 4.21a. Softplus already provides a penalty
for temperatures below the constraint, so the ÂGAE will give less of an advantage for keeping
TAL2 close to its constraint. This gives the controller a kind of buffer to the actual constraint
temperature. This comes at the expense of requiring more power, as the air in the room has to
be cooled down more, explaining the higher HVAC power in this case. On a side note, a similar
effect might be accomplished by simply shifting a ReLU function to penalize already before the

69

4.6 Reward tuning results

(a) Effect of the type of constraint penalty. (b) The effect of the smoothness of Softplus.

Figure 4.20: The effect of the constraint penalty function on the trade-off between PHVAC and
TAL2

constr violations.

(a) The Softplus penalty (repeated from Figure 3.7b
for convenience). (b) The ReLU and ReLU2 penalties compared.

Figure 4.21: The penalty functions.

constraint temperature. However, this is left open to further research.

The fact that ReLU2 leads to a higher L2-norm for the constraint violations than ReLU can
easily be explained by Figure 4.21b. As can be seen, for smaller constraint violations (between
30 and 31 ◦C), the ReLU2 function gives a smaller penalty on the constraint violations. Thus,
the PPO algorithm gets a smaller penalty on small violations of the constraints. Allowing TAL2

to slightly violate the constraint was expected to reduce PHVAC. However, from Figure 4.20a
follows that this energy saving is negligible compared to the added constraint violation.

70

4.7 Learning robustness results

4.6.3 Discussion & conclusion on reward tuning

The reward tuning search showed that the RL agents can outperform the baseline controller for
the cold air temperature setpoint deviation metric, even with a small reward for this setpoint.
Although the baseline had lower action fluctuations due to its stationary chilled water set-
point, the RL agents avoided severe high-frequency oscillations with a small penalty on action
variation. There is a trade-off between energy use (PHVAC) and constraint handling (TAL2

constr),
influenced by the weight and type of constraint violation penalty. Lower penalty weights lead
to higher violations but reduced energy use, as higher room temperatures decrease cooling
system mass flows. The ReLU function best balances HVAC power saving and constraint vio-
lations, while the Softplus function, with its buffer, performs best at constraint handling.

Reward parameter selection Obviously, there are many trials on the optimal Pareto front. To
best show how the versatility possible with RL agents compared to the baseline, the following
3 agents are selected (their performance and settings are summarized in Table 4.12):

• Constraint-Optimized Agent (COA): an agent which performs similarly for PHVAC and
better for TAL2

constr.

• Balanced Agent (BA): an agent that outperforms the baseline for both parameters.

• Energy-Optimized Agent (EOA): an agent which performs better for PHVAC and similar
for TAL2

constr

Table 4.12: The parameters of the 3 agents that are further investigated.

Parameter COA BA EOA

PHVAC
mean 19656 16808 15863

L2
(
TAL2

constr
)

0.46 4.6 40.4

λTAL1
SP

0.83 0.97 0.43
σSP 4.3 2.1 2.4
λTAL2

constr
1.7 2.1 0.27

pT Softplus Softplus ReLU
βsoftplus 1.25 5.4 -
λa,Tchill,SP 0.24 0.19 0.43
pa Trapezoidal Trapezoidal Linear
bwa,trapezoidal 3.8 1.6 -

4.7 Learning robustness results

In section 4.5, it was found that 2 agents with the same settings, but different seeds for the
random number generator, would lead to a different final reward on the validation data. This
seed is used to ensure all random number generators in the framework give repeatable results.
These random number generators are used for:

• Initialization of the weights and biases of the policy and value networks.

71

4.7 Learning robustness results

(a) The reward during the training runs for 20 dif-
ferent seeds, uncertainty region contains 100% of
collected data.

(b) Boxplot of the distribution of the rewards of the
validation runs.

Figure 4.22: Results of the robustness tests

• Sampling of actions from the policy probability distribution (output of the policy net-
work). This determines the actions the PPO algorithm takes during training.

• Sampling of hyperparameters in tuning experiments (although this is not related to the
training robustness of an agent, it influences overall results).

As just changing the seed affects the outcome, further investigation into how robust the agents
are to changes in this seed is required.

To test this robustness, agents with the reward used for hyperparameter tuning (Table 4.4)
are trained with different seeds. This section presents the results of these tests and discusses
the effect of the outcome on the thesis.

Training level results Figure 4.22a shows the spread of the yearly cumulative reward during
training of 20 simulations with different initialization seeds. As can be seen, the general learn-
ing curve is similar for all simulations. There is, however, quite a large spread. The spread is
around 20% of the total reward towards the end of the simulation and it is even larger in the
first episode.

Figure 4.22b shows the distribution of the validation reward, which is approximated using
kernels. As can be seen, this distribution is also spread widely, with the largest and smallest
reward deviating 9% from the mean validation reward.

Discussion These tests indicate that, while the random seed does not destabilize the agent’s
learning process, the results vary significantly depending solely on the seed. Ideally, the PPO
algorithm should converge to the same, optimal policy, regardless of its initialization.

Obviously, a true optimal policy will seldom be found in reality, due to the dynamic nature of
RL. The PPO algorithm collects samples using the policy and consequently updates this policy
and the value function. Next to that, the surrogate loss function of the policy network depends

72

4.7 Learning robustness results

on the value function, which is in turn approximated using the collected data using the sub-
optimal policy. Therefore, the initially collected samples affect the found policy. However, that
the seed dependence is so large in this research also indicates that the agent does not explore
enough during training and thus stays at its suboptimal solutions. This is a known problem in
ML and in classical ML, regularization techniques are often applied to reduce this sensitivity.
However, these techniques, such as dropout layers, are less suitable for RL algorithms such as
the PPO, as such techniques often increase variance, while that is actually already the problem
in RL due to its dynamic nature.

As the conventional regularization techniques are not suitable for RL algorithms, the easiest
way to reduce seed sensitivity is by changing the hyperparameters or reward function. Based
on the used hyperparameters, and the underlying principles of the PPO algorithm, the follow-
ing possible causes of the sensitivity have been identified:

• Data correlation The data collected by the agent may be too correlated since only one
environment is used instead of multiple parallel environments. In a multi-environment
setup, different actions are sampled and thus the agent updates its policy based on di-
verse experiences, potentially balancing between good and bad initial explorations.

• Too large penalty A high penalty for constraint violations might influence the agent’s
behavior during initial episodes. Severe penalties in early episodes could discourage
the agent from exploring strategies that approach the constraints closely, where optimal
rewards might lie.

• cH too low As the entropy coefficient encourages randomness in the surrogate loss func-
tion of the PPO, it makes the agent explore more. It could be the case that the value found
in the hyperparameter tuning leads to better results with that specific seed, but is too low
for sufficient exploration.

• nsteps size A final explanation would be that the trajectory collection, nsteps, is too small,
which leads to very fast convergence but can make the agent avoid good exploration.

Identifying the cause of this problem requires further investigation, which is out of the scope
of this thesis. However, this problem with the sensitivity does expose a weakness in the hyper-
parameter tuning experiments. The hyperparameter tuning searches for a single experiment
with the highest reward. It was assumed that this would be the best set of hyperparameters.
However, it also promotes searching for hyperparameters that are sensitive to small parameter
changes, such as the seed. If there is a large spread in possible outcomes, there is a large chance
that there is at least one very positive outcome, while the average reward might not be the best
if experiments with more random seeds would be performed.

An ideal solution for this would be to perform multiple simulations using the same hyper-
parameters and different seeds during the optimization. However, this would increase the
computational time of the experiments drastically, and therefore, it is chosen not to do this for
this thesis.

Decreasing this sensitivity is left as an open problem for further research. However, it does
have a large effect on the outcome of the experiments in this thesis. Therefore, the 3 optimized
agents, COA, EOA, and BA are trained using several seeds so that the variability can be taken
into account during further training.

73

4.8 Analysis of tuned controllers and comparison to baseline

4.8 Analysis of tuned controllers and comparison to baseline

In section 4.6, 3 agents were selected from the Pareto front. These agents are either as energy
efficient as the baseline, but better at handling constraints (the COA); more energy efficient than
the baseline, and as good as the baseline at handling constraints (the EOA); or slightly better
at both (the BA). In this section, first, an analysis of how these agents compare to the baseline
during training is given. After this, their performance on the validation data is analyzed. Then,
the agents are tested on the test data. Their results and the learned control strategies of these
agents are analyzed in depth. In all these analyses, the findings about the seed sensitivity in
section 4.7 are taken into account.

4.8.1 Training phase

The 3 agents have been trained for 10 episodes on the training data files (2018-2021). Taking
the seed sensitivity into account, the agents have been trained using 10 different random seeds.
Their performance during training is compared to the performance of the baseline controller
on the 4 performance metrics in Figure 4.23. Below is an analysis of the agents’ performance
for each metric.

HVAC power Regarding PHVAC, the agents behave entirely as expected, as shown in Fig-
ure 4.23a. The COA uses a lot more power during the first year of training but learns to use on
average just as much power as the baseline. This is what it was selected for. The BA uses more
power than the baseline controller in the first year but learns to use less energy every year after
that. Finally, the EOA uses less energy than the baseline controller starting from the first year.

From the spread, it can be seen that the seed again influences the convergence of all agents.
However, especially for the BA and EOA, the RL-based controllers always outperform the base-
line controller regardless of this variance in performance.

TAL2
constr In Figure 4.23b, the performance of the agents regarding the constraint handling dur-

ing training is shown. In the first year of training, all agents are not good at handling the
constraints and are penalized heavily for it. This is in line with the expectations, as the agents
are still in their exploratory phase and have not yet learned how the HVAC system responds
to changes in the control variables.

After the first year, both the COA and BA are around as good at handling these constraints
as the baseline controller, with some agents even outperforming the baseline a lot, depending
on the seed. This performance is not as good as expected, and the validation run will tell if this
is caused by exploratory behaviour during training, or if the selected agent just was an outlier
regarding the constraint handling.

The EOA has a larger spread caused by the seed. Here, only the most advantageous seed
leads to constraint handling comparable to that of the baseline. For this agent, the validation
set will also tell if the behaviour is caused by the exploratory behaviour or not.

Although it is a bit out of the scope of this thesis, which focuses on the performance of trained
agents, it should be noted that the constraint violations at the start of training are severe. Fig-
ure 4.24 show that very high temperatures are reached during the first training year, which can

74

4.8 Analysis of tuned controllers and comparison to baseline

(a) The HVAC power.

(b) The TAL2
constr violations.

(c) The TAL1
SP deviation.

(d) The ∆a-fluctuation.

Figure 4.23: The performance of the agents during training, compared to the baseline controller
in the training years.

75

4.8 Analysis of tuned controllers and comparison to baseline

be a limitation for the application of these types of agents directly in reality. When the con-
trollers are implemented by pretraining on a model and then applying it to reality, this is less
of a problem. However, there is still no guarantee of not violating constraints when adjusting
from the simulation to reality. This is, however, a subject for further research.

Figure 4.24: The constraint violations during the first year of training of the COA

TAL1
SP After the agents deviate from the cold air setpoint more than the baseline controller does

in the first year, as shown in Figure 4.23c, they all learn to meet the setpoint more during all
following years. Interestingly, the EOA deviates more from the setpoint than the other agents.
This can be explained by the fact that λTAL1

SP
is lower in this agent. It is not known if this is one of

the causes of the agent being better at saving energy, or just a side effect of a further relatively
unimportant parameter.

Action fluctuation Finally, Figure 4.23d shows the fluctuation of the chilled water setpoint
temperature. This gradually decreases and does not lead to any severe oscillations.

4.8.2 Validation & test performance

The agents have also been validated using the validation set, again using the 10 different seeds.
In Figure 4.25, boxplots are shown for the performance of the agents on this year.

The tuned and trained agents are then finally tested on the data of the test year. This shows if
the agents can control the HVAC system better than the baseline controller, or if there has been
overfitted on the validation data during the many tuning trials. Again, the agents trained on 10
different seeds are all tested on this set. The results of the controllers on the test data are shown
in Figure 4.26. As can be seen, the performance of the agents is almost the same as the perfor-
mance on the validation data. This indicates that the tuning experiments have indeed resulted
in well-tuned agents and did not overfit on the validation data. The remainder of this subsec-
tion first compares the performance of the controllers on the test data to the performance of the
baseline based on these boxplots. Then, it determines whether or not the differences found are
significant by a statistical analysis.

76

4.8 Analysis of tuned controllers and comparison to baseline

Figure 4.25: Boxplots of the performance metric for the different agents on the validation set,
which have been trained on 10 different seeds.

Figure 4.26: Boxplots of the performance metric for the different agents on the test set, which
have been trained on 10 different seeds.

77

4.8 Analysis of tuned controllers and comparison to baseline

Visual comparison to baseline Regarding the mean HVAC power, all agents seem to behave
as expected. The COA has power usage slightly below that of the baseline, while the BA and
EOA are more energy efficient and comparable to each other. Interestingly, the BA seems to be
less sensitive to the seed, although too few trials are used to conclude from this.

Regarding TAL2
constr, both the COA and BA seem to show improvements compared to the base-

line, and are similar to each other. Their performance is generally slightly worse than expected
from the reward tuning, which is likely caused by a favourable initialization of the networks in
these experiments. The EOA shows behaviour comparable to the baseline controller, and thus
slightly worse than the other controllers, again as expected.

Finally, for the setpoint deviation and action fluctuation, all agents behave comparably to the
training performance and do not seem significantly different from each other. It is interesting
to see that the action fluctuation is much better for the validation set than during training. This
is again likely caused by the exploratory behaviour during the training phase.

Statistical analysis To ensure that the observed differences are indeed significant, and not
just coincidental, a statistical analysis has been performed. The detailed results of this analysis
are presented in Appendix E, while the general procedure is discussed here.

First, a Shapiro-Wilk test was conducted to test whether the performance metrics were nor-
mally distributed or not. For this, a 95% confidence interval has been used. Since several met-
rics were not normally distributed, such as PHVAC

mean for the COA, a test suitable for non-normal
data should be employed to compare the performance of the agents. Note that, as the baseline
is seed-independent, it resulted in 10 times the same result. The results of this test are shown
in Table E.1.

Following this, a Mann-Whitney U test has been conducted on each combination of agents
for each metric. Again, a 95% confidence interval was used here. The results of this test are
shown in Table E.2 and confirm all the observations of the previous paragraph.

4.8.3 Analysis of the RL based controllers

In this subsection, an in-depth analysis of how the RL-based controllers can outperform the
baseline controller is performed. First, the distribution of the HVAC power on a yearly basis is
analyzed. Then, the control strategy which is learned by each agent is analyzed.

4.8.3.1 Yearly HVAC power distribution

HVAC power compared to disturbances Figure 4.27 shows contour plots of the HVAC power
against the disturbance variables. As can be seen, the BA agent increases the HVAC power
more gradually when the IT load increases, meaning the system is less often running at full
power. The same pattern is seen for the other agents. This indicates that the energy savings are
mainly made at higher IT loads.

HVAC energy per component To better understand how the agents can spread the energy
usage better, Figure 4.28 shows the average power used by each HVAC component for every
type of controller. Interesting to see is that the agents mainly save energy on the AL fan, at

78

4.8 Analysis of tuned controllers and comparison to baseline

(a) The HVAC power in the baseline (b) The HVAC power in the BA

Figure 4.27: Contour plots of the HVAC power against the disturbance variables,

Figure 4.28: The mean HVAC component power in the test set for each agent.

the expense of some chiller power. When recalling the results of the baseline, the AL fan was
always running at full power for high PITE, apparently, the RL agents have found a way to
avoid this.

4.8.3.2 Learned control strategies

Up to now, we have concluded that the RL agents are better at handling the upper limit of
ṁAL. To better understand how this is achieved, the control strategies learned by each agent
are explained here. This is done by first showing the different strategies an agent learns for
different seeds, followed by an analysis focusing on the single week analyzed in Figure 4.7b of
the baseline controller. For figures containing the complete yearly behaviour of the controllers,
the reader is referred to Appendix D. These are not shown here to reduce the length of the
thesis, and generally no large differences between summer and winter were found.

Control strategies for different seeds As the seed sensitivity leads to a wide range in perfor-
mance, it also leads to a range of different control strategies. This is illustrated in Figure 4.29,
where all action variables of the different COA controllers are displayed. Especially ṁChL and

79

4.8 Analysis of tuned controllers and comparison to baseline

(a) Action variables of the COA trained with 10 dif-
ferent seeds.

(b) Action variables of the COA trained with 10 dif-
ferent seeds, shown for 1 week.

Figure 4.29: The behaviour of the COA for the different seeds.

TChL1
SP The exact cause of this is a subject for other research. For now, the trained controller with

the most average behaviour is selected for further analysis of each agent type.

Constraint-Optimized Agent control strategy Figure 4.30 displays the behaviour of the ac-
tion variables, HVAC power, TAL2 compared to TAL2

constr and the disturbance variables of the COA
compared to the baseline controller. It can be seen that the COA uses a slightly higher ṁChL than
the baseline. Next to that, it modifies TChL1

SP according to the ITE load. When PITE increases, the
controller decreases the chiller setpoint temperature. This combination decreases the required
air loop mass flow, which ensures that the maximum mass flow is not reached. Next to that,
the HVAC power is also lower when ṁAL is lower. It is unknown if this daily modification to
the setpoint is feasible for real chillers, as it is not done in practice, and also no research on
it is performed to the best of our knowledge. However, the changes are quite small, and also
relatively slow, so for now it is assumed to be possible.

When comparing the mass flows to Figure 4.28, it becomes clear what causes the power dif-
ferences. The chilled water mass flow is slightly higher than that of the baseline, increasing
PChiller Pump slightly. The mass flow in the AL is sometimes lower, and sometimes higher than
that of the baseline, which in the end leads to a small energy saving.

Interestingly, TAL2 is always kept below its constraint, ensuring a buffer for unexpected events.
This is caused by the fact that the softplus penalty function is employed for the reward of this
agent, which leads to the controller trying to keep the setpoint temperature slightly lower than
the constraint temperature.

To summarize, the COA uses an adaptive chilled water setpoint, which allows ṁAL to be lower.
This prevents the mass flow from reaching its limit, saves energy, and still prevents constraints

80

4.8 Analysis of tuned controllers and comparison to baseline

Figure 4.30: The COA control strategy compared to the baseline in the week of the 8th of
November.

from being violated.

Balanced Agent control strategy Figure 4.31 shows the control strategy of the BA. Interest-
ingly, this controller has learned a completely different control strategy than the COA. This
controller uses a low, slightly varying value for TChL1

SP . This cold temperature allows for a large
temperature difference in the CC, which means the mass flows of both the ChL and AL can
be lower than for the baseline or COA, while the chiller does not use much more power. This
strategy saves power in the pump and fan and ensures that the maximum air mass flow is not
reached.

In this controller, TAL2 is allowed to be much closer to the constraint temperature than in the
COA.

Energy-Optimized Agent control strategy Finally, the control strategy of the EOA is shown
in Figure 4.32. This strategy is similar to the strategy of the BA, with the large difference being
that TChL1

SP is entirely at the bottom of the allowable range. This is likely caused by the linear

81

4.8 Analysis of tuned controllers and comparison to baseline

Figure 4.31: The BA control strategy compared to the baseline in the week of the 8th of Novem-
ber.

penalty on action fluctuation for this agent. This means that the advantage of changing the
chilled water setpoint compared to the previous timestep is always penalized. The most ef-
ficient continuous setpoint for the RL controller is at the lower end of the action space. This
allows the mass flows to be even lower, thus decreasing power usage by the Air Fan and Chiller
Pump. Next to this, TAL2 is consistently closer to the constraint temperature. This is the most
efficient operating point of the system, however, it does make it less robust to changes in the
disturbances.

4.8.4 Discussion & conclusion on the RL performance

To summarize, the 3 tuned RL agents behave as expected regarding PHVAC during training. Re-
garding the handling of TAL2

constr, the agents show a wide spread, dependent on the initial seed.
Similar sensitivity to the initialization is seen on the validation set. However, all of the agents
do outperform the baseline. The controllers have also been evaluated on the test set and still
outperformed the baseline controller in the manner expected. This indicates that the trained
controllers are robust to the disturbance variables and did not overfit on the training and vali-

82

4.8 Analysis of tuned controllers and comparison to baseline

Figure 4.32: The EOA control strategy compared to the baseline in the week of the 8th of
November.

dation data.

An in-depth analysis of the RL based controllers showed that these controllers mainly save
energy by decreasing the mass flows of the system. Analysis of the control strategy during a
week indicated that two types of strategies are learned by the agents. Either adjusting TChL1

SP
dynamically or making it very low to allow the mass flow rates to reduce. Since the mass flow
rates are proportional to the power used by these components, this reduces energy usage.

Overall, the agents showed a good performance on all data. All 3 controllers were shown
to generalize well to different disturbance variables. The largest drawback of the tuned agents
is their sensitivity to their initialization. Because of this, one can not predict if an agent that is
trained and will employed on a DC HVAC system will greatly improve the constraint handling
of the system, or perform similar or even worse than a baseline controller.

83

4.9 Summary

4.9 Summary

This section has presented the numerical results of the experiments outlined in this thesis.

First, the sensitivity of the EnergyPlus model to its timestep size was investigated in section 4.1.
This study concluded that the model accuracy does not suffer greatly from changes in the
timestep size, but the execution time is influenced by its size. A timestep of 10 minutes has
been selected to be used in the remainder of the thesis.

Following this, simulations using the baseline controller have been performed in section 4.3.
From these experiments, it was found that most power is occupied by the air fan and chiller
and that the baseline reaches the maximum mass flow rate of the fan for high ITE loads. It is
not able to work around this limitation and thus violates constraints in these situations.

After the baseline was set, first several initial experiments with the RL-based controller were
performed in section 4.4. Following this, the algorithm hyperparameter tuning experiments
have been performed in section 4.5. From these experiments, a set of optimally performing hy-
perparameters has been found. Next to that, also hyperparameters which should be avoided
have been found.

Using the tuned algorithm, the reward tuning experiment was conducted in section 4.6. This
experiment found that RL-based controllers can outperform the baseline regarding the devi-
ation of TAl1

SP and almost always perform well on action fluctuations. For the most important
parameters, PHVAC and TAL2

constr, a trade-off should be made. This is mainly influenced by λTSP

and pT. From the tuning experiments, 3 controllers have been selected for further analysis.

In the tuning experiments, indications were found that the RL-based controller was sensitive
to its initial seed. Therefore, a seed sensitivity study was conducted in section 4.7 which un-
derlined these findings.

Finally, the 3 agents were compared on the validation and test data in section 4.8. For this, the
seed sensitivity was also taken into account. It was found that, while the controllers outper-
form the baseline controller, their performance is dependent on the initialization of the agent.
Finally, it was found that the agents learned 2 types of control strategies. On similar to the base-
line controller, but with a fluctuating chilled water temperature. The other strategy learned to
have a low chilled water setpoint temperature, leading to reductions in the mass flows required
by the chilled water and air loops.

The next chapter will present the conclusion of this thesis, reflect on the limitations of the
research, and propose a number of directions for future research.

84

Chapter 5

Conclusion

This chapter presents the conclusion on the results of this thesis and reflects its limitations.
Next to that, a number of future research directions are proposed.

This thesis investigates the application of an RL-based controller to reduce HVAC power in
DCs while being able to handle critical temperature constraints. It explores how differences in
the reward function affect the control strategy of an agent.

This has been approached by defining a simple HVAC system and a formal control optimiza-
tion problem, where PHVAC should be minimized and temperature constraints should be met.
For this system, both a baseline controller and a RL framework for the training of RL-based
controllers have been proposed. Both of these controllers have been evaluated on an Energy-
Plus simulation model.

From the evaluation of the baseline controller followed that the baseline controller generally
performs well, but can not work around situations where the fan mass flow rate reaches the
maximum value of its equipment. This led to high power usage and the violation of tempera-
ture constraints in a number of situations.

The proposed RL framework has been trained and tuned. This is done using data partition-
ing for the disturbance variables, to prevent overfitting. From this followed that RL-based
controllers can outperform the baseline controllers. However, a trade-off between reducing
PHVAC and TAL2

constr violations is required. The reward function influences this trade-off between
efficiency and handling constraints by changing the weight of the penalty on violating tem-
perature constraints and modifying the penalty function itself. A Softplus function motivates
the controller to keep a buffer between the air temperature and its constraint, making it more
robust to disturbances, while a ReLU penalty function removes this buffer, making the agent
more energy efficient by allowing the temperature differences in the system to increase, leading
to less power usage.

From these results, 3 controllers were selected for further analysis and comparison to the base-
line. These comparisons showed that the agents can outperform the baseline, but their final
performance is sensitive to the initialization of the agents and initial exploration. This leads to
varying agent behaviour after training for the same hyperparameters.

To conclude, this thesis shows that RL-based controllers indeed have the potential to improve

85

5.2 Future research

the efficiency of a simple HVAC system of a DC, while being able to handle temperature con-
straints. The agents have shown to be robust to new situations in the disturbance variables,
but are sensitive to their initialization during training. From the reward tuning follows that the
trade-off between reducing HVAC power and preventing the leaving server temperature from
exceeding its constraints is mainly affected by the weight and type of the penalty function for
the constraint violations.

5.1 Limitations

While this research offers a number of valuable insights, it is not without limitations. The main
limitations of the research are discussed in this section.

HVAC system simplicity The first limitation is that the proposed HVAC system has a very
simple layout. It has just a single chiller, CT and CRAH. This was chosen to keep the initial
research simple, and also with the implementation in EnergyPlus in mind. However, real DCs
have more complex HVAC systems, containing more rooms and a larger HVAC network. This
will make controlling such a system increasingly difficult.

Modelling simplifications Another large limitation is the simplifications made in Energy-
Plus. For example, there are no time delays in the system. This means equipment can instantly
be turned on or off, and the maximum capacity of equipment can be accessed instantly. This
enables controllers to just consider the current situation, without looking ahead at upcoming
situations. This is likely the cause of the low values of γ found in the hyperparameter tuning.

Baseline controller The baseline controller is relatively simple. A more sophisticated baseline
controller could have improved its performance, for example by being able to handle maximum
mass flows better.

Constraint violation during training The comparison of the RL-based controllers is per-
formed by comparing their performance after training on testing data for the disturbances.
However, what is not considered is how much these controllers violate temperature constraints
during their training, while temperatures of 30◦C above the constraint were seen. This is ac-
ceptable in this study since it works with a model. However, when employing RL on a real,
physical DC, these violations are unacceptable.

Agent learning robustness The agents proposed here are very sensitive to their initial seed.
This is of course very bad for the implementation of the agents, as their trained performance
can not be accurately predicted when an agent would be implemented.

5.2 Future research

This thesis shows that RL-based controllers have the potential to reduce energy while prevent-
ing constraint violations in a DC’s HVAC system. However, before RL can be applied to the
HVAC system of a real DC, a lot of additional research is required. During this research, 5 ar-
eas have been identified on which additional research is required to achieve this goal. Some of
these directions are directly based on the limitations of this research, while others are directions
that have not been addressed in this thesis.

86

5.2 Future research

Model realism As already has been discussed in the limitations, the EnergyPlus model has
large simplifications. Although it proved to be sufficient for investigating the use of RL in DCs,
it only captures the general trends of the behaviour of the HVAC system. To further investigate
how RL agents behave in DCs, research on more realistic models is required. This includes
both models that are better related to the real physics, thus including e.g., hot spots in a server
room or delays in the system and models that capture the complexity of the system of a DC
better, thus including more thermal zones and more HVAC components.

Safe RL In the limitations, it was seen that temperature constraints are violated severely dur-
ing training. This should be improved before RL-based controllers can be employed in reality.
The field of RL that focuses on minimizing constraint violations during the training of the agent
is SRL. Thus, additional research on using SRL for DC HVAC systems is required.

Agent robustness In this thesis, it was already seen that the RL agents are quite sensitive to
their initial seeds and hyperparameters. Another important topic that has not been discussed
yet is the robustness to changes between the simulation model itself and reality, the so-called
simulation-to-reality gap. Before this type of controller could be applied in reality, more re-
search into its robustness to both HVAC model and RL agent parameter changes is required.

Increasing sample efficiency Although the sample efficiency of the RL agents is already quite
good and allows for fast training on a model, it takes still quite a long time to converge regard-
ing the simulated time. When a RL-based controller would be implemented in reality, it has to
adapt to differences between the model and reality. To improve the speed of this adaptation,
more research into increasing the sample efficiency of RL agents will be required.

Agent explainability The explainability of an agent’s actions has not been a focus of this
thesis. The initial goal was to develop a well-performing RL agent, with the expectation that
explainability would become relevant once the agent’s performance is satisfactory.

Before RL can be deployed in DCs, it is however important to gain the approval of many
stakeholders. Given the mission-critical nature of data centers, it must be absolutely clear that
the agent will not perform any dangerous actions. Understanding the reasoning behind an
agent’s decisions can significantly help in reassuring stakeholders about the agent’s reliability
and safety.

Moreover, researching the explainability of RL agents can uncover valuable insights that lead
to the development of new best practices for conventional controllers. These best practices
could be implemented in data centers a long time before RL agents are sufficiently stable to be
deployed in the real world. For instance, if an agent demonstrates that adjusting setpoint tem-
peratures based on outdoor conditions can save energy, a simple controller could be designed
to follow this behavior. However, a thorough understanding of the agent’s decision-making
process is essential before such implementations can be realized.

87

Bibliography

[1] Stijn Grove et al. European outlook. Tech. rep. Kickstart Europe, Feb. 2024. URL: www .
kickstartconf.eu.

[2] Laura Cozzi, Tim Gould, and Stephanie Bouckaert. World energy outlook 2023. Tech. rep.
International Energy Agency (IEA), 2023. URL: www.iea.org/terms.

[3] Eren Cam et al. Electricity 2024 - analysis and forecast to 2026. Tech. rep. International En-
ergy Agency (IEA), Jan. 2024. URL: www.iea.org.

[4] Emissions Database for Global Atmospheric Research (EDGAR). Country fact-sheet: United
Kingdom. URL: https://edgar.jrc.ec.europa.eu/country_profile/GBR (visited on
02/20/2024).

[5] Jiacheng Ni and Xuelian Bai. “A review of air conditioning energy performance in data
centers”. In: Renewable and Sustainable Energy Reviews 67 (Jan. 2017), pp. 625–640. ISSN:
18790690. DOI: 10.1016/j.rser.2016.09.050.

[6] T T Chow et al. “Global optimization of absorption chiller system by genetic algorithm
and neural network”. In: Energy and Buildings 34 (June 2002), pp. 103–109.

[7] Zhenjun Ma and Shengwei Wang. “An optimal control strategy for complex building
central chilled water systems for practical and real-time applications”. In: Building and
Environment 44 (2009), pp. 1188–1198. DOI: 10.1016/j.buildenv.2008.08.011.

[8] Yung-Chung Chang. “A novel energy conservation method-optimal chiller loading”. In:
Electric Power Systems Research 69 (2004), pp. 221–226. DOI: 10.1016/j.epsr.2003.10.
012.

[9] Lu Lu et al. “HVAC system optimization-in-building section”. In: Energy and Buildings 37
(Dec. 2004), pp. 11–22. DOI: 10.1016/j.enbuild.2003.12.007.

[10] B C Ahn and J W Mitchell. “Optimal control development for chilled water plants using
a quadratic representation”. In: Energy and Buildings 33 (2001), pp. 371–378.

[11] Jian Sun and Agami Reddy. “Optimal control of building HVAC&R systems using com-
plete simulation-based sequential quadratic programming (CSB-SQP)”. In: Building and
Environment 40 (2005), pp. 657–669. DOI: 10 . 1016 / j . buildenv . 2004 . 08 . 011. URL:
www.elsevier.com/locate/buildenv.

[12] Fernando Martínez-García et al. “Adaptive predictive control of a data center cooling
unit”. In: Control Engineering Practice 107 (Feb. 2021). ISSN: 09670661. DOI: 10.1016/j.
conengprac.2020.104674.

[13] Seyed Morteza Mirhoseininejad, Ghada Badawy, and Douglas G. Down. “A data-driven,
multi-setpoint model predictive thermal control system for data centers”. In: Journal of
Network and Systems Management 29.1 (Jan. 2021). ISSN: 15737705. DOI: 10.1007/s10922-
020-09574-5.

88

www.kickstartconf.eu
www.kickstartconf.eu
www.iea.org/terms
www.iea.org
https://edgar.jrc.ec.europa.eu/country_profile/GBR
https://doi.org/10.1016/j.rser.2016.09.050
https://doi.org/10.1016/j.buildenv.2008.08.011
https://doi.org/10.1016/j.epsr.2003.10.012
https://doi.org/10.1016/j.epsr.2003.10.012
https://doi.org/10.1016/j.enbuild.2003.12.007
https://doi.org/10.1016/j.buildenv.2004.08.011
www.elsevier.com/locate/buildenv
https://doi.org/10.1016/j.conengprac.2020.104674
https://doi.org/10.1016/j.conengprac.2020.104674
https://doi.org/10.1007/s10922-020-09574-5
https://doi.org/10.1007/s10922-020-09574-5

Bibliography

[14] Nevena Lazic et al. “Data center cooling using model-predictive control”. In: 32nd Con-
ference on Neural Information Processing Systems. Montreal, 2018.

[15] Kamran Fouladi et al. “Optimization of data center cooling efficiency using reduced or-
der flow modeling within a flow network modeling approach”. In: Applied Thermal En-
gineering 124 (2017), pp. 929–939. DOI: 10.1016/j.applthermaleng.2017.06.057. URL:
http://dx.doi.org/10.1016/j.applthermaleng.2017.06.057.

[16] G.J. Levermore. Building energy management systems. 2nd ed. London: E & FN Spon, May
2000. ISBN: 9780203477342. DOI: 10.4324/9780203477342. URL: www.efnspon.com.

[17] Michael Deru et al. Innovations in sensors and controls for building energy management: re-
search and development opportunities report for emerging technologies. Tech. rep. DOE, BTO &
NREL, Feb. 2020. DOI: http://dx.doi.org/10.2172/1601591.

[18] Liang Yu et al. “A Review of Deep Reinforcement Learning for Smart Building Energy
Management”. In: IEEE Internet of Things Journal 8.15 (Aug. 2021), pp. 12046–12063. ISSN:
23274662. DOI: 10.1109/JIOT.2021.3078462.

[19] Y. G. Wang, Z. G. Shi, and W. J. Cai. “PID autotuner and its application in HVAC sys-
tems”. In: Proceedings of the American Control Conference 3 (2001), pp. 2192–2196. ISSN:
07431619. DOI: 10.1109/ACC.2001.946075.

[20] Jerry Luo et al. Controlling Commercial Cooling Systems Using Reinforcement Learning. Tech.
rep. Dec. 2022. URL: http://arxiv.org/abs/2211.07357.

[21] Timothy I Salsbury. “A survey of control technologies in the building automation indus-
try”. In: IFAC Proceedings Volumes 38.1 (2005), pp. 90–100. DOI: https://doi.org/10.
3182/20050703-6-CZ-1902.01397. URL: https://www.sciencedirect.com/science/
article/pii/S1474667016374092.

[22] Shengwei Wang and Zhenjun Ma. “Supervisory and optimal control of building HVAC
systems: a review”. In: HVAC and R Research 14.1 (Jan. 2008), pp. 3–32. ISSN: 10789669.
DOI: 10.1080/10789669.2008.10390991.

[23] David Weinberg et al. “A Review of Reinforcement Learning for Controlling Building
Energy Systems From a Computer Science Perspective”. In: Sustainable Cities and Society
89 (Feb. 2023), p. 104351. ISSN: 2210-6707. DOI: 10.1016/J.SCS.2022.104351.

[24] Chi Zhang et al. “Building HVAC scheduling using reinforcement learning via neural
network based model approximation”. In: BuildSys 2019 - Proceedings of the 6th ACM In-
ternational Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation.
Association for Computing Machinery, Inc, Nov. 2019, pp. 287–296. ISBN: 9781450370059.
DOI: 10.1145/3360322.3360861.

[25] Albin Heimerson et al. “Adaptive Control of Data Center Cooling using Deep Reinforce-
ment Learning”. In: 2022 IEEE International Conference on Autonomic Computing and Self-
Organizing Systems Companion (ACSOS-C). 2022, pp. 1–6.

[26] Yuanlong Li et al. “Transforming Cooling Optimization for Green Data Center via Deep
Reinforcement Learning”. In: IEEE Transactions on Cybernetics 50.5 (Sept. 2020), pp. 2002–
2013. URL: http://arxiv.org/abs/1709.05077.

[27] Tianshu Wei, Yanzhi Wang, and Qi Zhu. “Deep reinforcement learning for building HVAC
control”. In: Proceedings - Design Automation Conference. Vol. Part 128280. Institute of Elec-
trical and Electronics Engineers Inc., June 2017. ISBN: 9781450349277. DOI: 10 . 1145 /
3061639.3062224.

89

https://doi.org/10.1016/j.applthermaleng.2017.06.057
http://dx.doi.org/10.1016/j.applthermaleng.2017.06.057
https://doi.org/10.4324/9780203477342
www.efnspon.com
https://doi.org/http://dx.doi.org/10.2172/1601591
https://doi.org/10.1109/JIOT.2021.3078462
https://doi.org/10.1109/ACC.2001.946075
http://arxiv.org/abs/2211.07357
https://doi.org/https://doi.org/10.3182/20050703-6-CZ-1902.01397
https://doi.org/https://doi.org/10.3182/20050703-6-CZ-1902.01397
https://www.sciencedirect.com/science/article/pii/S1474667016374092
https://www.sciencedirect.com/science/article/pii/S1474667016374092
https://doi.org/10.1080/10789669.2008.10390991
https://doi.org/10.1016/J.SCS.2022.104351
https://doi.org/10.1145/3360322.3360861
http://arxiv.org/abs/1709.05077
https://doi.org/10.1145/3061639.3062224
https://doi.org/10.1145/3061639.3062224

Bibliography

[28] Basil Kouvaritakis and Mark Cannon. Advanced textbooks in control and signal processing
series editors. Ed. by Michael J Grimble and Michael A. Johnson. Springer, 2016. ISBN:
978-3-319-24851-6. DOI: 10.1007/978-3-319-24853-0. URL: http://www.springer.com/
series/4045.

[29] K S Holkar, K K Wagh, and L M Waghmare. “An overview of model predictive con-
trol”. In: International Journal of Control and Automation International Journal of Control and
Automation 3.4 (2010).

[30] Manfred Morari and Jay H Lee. “Model predictive control: past, present and future”. In:
Computers and Chemical Engineering 23 (1999), pp. 667–682.

[31] Nevena Lazic et al. “Data center cooling using model-predictive control”. In: 32nd Con-
ference on Neural Information Processing Systems. Google. Montreal: NeurIPS, 2018.

[32] Qingxia Zhang et al. “A survey on data center cooling systems: Technology, power con-
sumption modeling and control strategy optimization”. In: Journal of Systems Architecture
119 (Oct. 2021). ISSN: 13837621. DOI: 10.1016/j.sysarc.2021.102253.

[33] Richard S Sutton and Andrew G Barto. Reinforcement Learning An Introduction second edi-
tion. 2nd ed. London: The MIT Press, 2018. ISBN: 978-0-262-19398-6.

[34] Steven L Brunton and J Nathan Kutz. Data-Driven Science and Engineering Machine Learn-
ing, Dynamical Systems, and Control. 2nd ed. Washington: Cambridge University Press,
2021, pp. 504–540.

[35] Youssef Fenjiro and Houda Benbrahim. “Deep reinforcement learning overview of the
state of the art”. In: Journal of Automation, Mobile Robotics and Intelligent Systems 12.3 (Nov.
2018), pp. 20–39. ISSN: 20802145. DOI: 10.14313/JAMRIS{_}3-2018/15.

[36] Christian Blad, Simon Bøgh, and Carsten Skovmose Kallesøe. “Data-driven Offline Rein-
forcement Learning for HVAC-systems”. In: Energy 261 (Dec. 2022). ISSN: 0360-5442. DOI:
10.1016/J.ENERGY.2022.125290.

[37] Hsin Yu Liu et al. “Safe HVAC Control via Batch Reinforcement Learning”. In: Proceedings
- 13th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS 2022. Institute
of Electrical and Electronics Engineers Inc., 2022, pp. 181–192. ISBN: 9781665409674. DOI:
10.1109/ICCPS54341.2022.00023.

[38] Zhengbo Zou, Xinran Yu, and Semiha Ergan. “Towards optimal control of air handling
units using deep reinforcement learning and recurrent neural network”. In: Building and
Environment 168 (Jan. 2020). ISSN: 03601323. DOI: 10.1016/j.buildenv.2019.106535.

[39] Ruihang Wang et al. “Green Data Center Cooling Control via Physics-Guided Safe Re-
inforcement Learning”. In: ACM Transactions on Cyber-Physical Systems (Feb. 2023). ISSN:
2378-962X. DOI: 10.1145/3582577.

[40] Zhiwei Cao et al. “Toward Model-Assisted Safe Reinforcement Learning for Data Center
Cooling Control: A Lyapunov-based Approach”. In: Proceedings of the 2023 14th ACM
International Conference on Future Energy Systems. Association for Computing Machinery,
Inc, June 2023, pp. 333–346. ISBN: 9798400700323. DOI: 10.1145/3575813.3597343.

[41] Abdul Afram and Farrokh Janabi-Sharifi. “Review of modeling methods for HVAC sys-
tems”. In: Applied Thermal Engineering 67.1-2 (2014), pp. 507–519. ISSN: 13594311. DOI:
10.1016/j.applthermaleng.2014.03.055.

[42] Drury B. Crawly et al. “EnergyPlus: energy simulation program”. In: ASHRAE Journal
(Apr. 2000), pp. 49–56.

90

https://doi.org/10.1007/978-3-319-24853-0
http://www.springer.com/series/4045
http://www.springer.com/series/4045
https://doi.org/10.1016/j.sysarc.2021.102253
https://doi.org/10.14313/JAMRIS{_}3-2018/15
https://doi.org/10.1016/J.ENERGY.2022.125290
https://doi.org/10.1109/ICCPS54341.2022.00023
https://doi.org/10.1016/j.buildenv.2019.106535
https://doi.org/10.1145/3582577
https://doi.org/10.1145/3575813.3597343
https://doi.org/10.1016/j.applthermaleng.2014.03.055

Bibliography

[43] EnergyPlus™ version 23.2.0 documentation engineering reference. Tech. rep. 2023.

[44] Kaiyu Sun et al. “Prototype energy models for data centers”. In: Energy and Buildings 231
(Jan. 2021). ISSN: 03787788. DOI: 10.1016/j.enbuild.2020.110603.

[45] Liang Li, Kyoko Hasegawa, and Satoshi Tanaka. “Reinforcement Learning Testbed for
Power-Consumption Optimization”. In: Methods and Applications for Modeling and Simu-
lation of Complex Systems. Kyoto, Japan: AsiaSim, Oct. 2018, pp. 45–59. URL: http://www.
springer.com/series/7899.

[46] Avisek Naug et al. “PyDCM: Custom Data Center Models with Reinforcement Learn-
ing for Sustainability”. In: Proceedings of the 10th ACM International Conference on Systems
for Energy-Efficient Buildings, Cities, and Transportation. 23. ACM, Nov. 2023, pp. 232–235.
ISBN: 9798400702303. DOI: 10.1145/3600100.3623732. URL: https://doi.org/10.1145/
3600100.3623732.

[47] ANSYS FLUENT user’s guide. Vol. 13.0. Canonsburg, PA: ANSYS, Inc., Nov. 2010.

[48] Ziynet Boz, Ferruh Erdogdu, and Mustafa Tutar. “Effects of mesh refinement, time step
size and numerical scheme on the computational modeling of temperature evolution dur-
ing natural-convection heating”. In: Journal of Food Engineering 123 (2014), pp. 8–16. ISSN:
02608774. DOI: 10.1016/j.jfoodeng.2013.09.008.

[49] Abhijit S. Badwe et al. “Detection of model-plant mismatch in MPC applications”. In:
Journal of Process Control 19.8 (Sept. 2009), pp. 1305–1313. ISSN: 0959-1524. DOI: 10.1016/
J.JPROCONT.2009.04.007.

[50] Cooltherm UK. Water-Cooled Chillers. URL: https://www.cooltherm.co.uk/products/
chillers/water-cooled-chillers (visited on 04/08/2024).

[51] Yogesh Fulpagare and Atul Bhargav. “Advances in data center thermal management”.
In: Renewable and Sustainable Energy Reviews 43 (2015), pp. 981–996. ISSN: 18790690. DOI:
10.1016/j.rser.2014.11.056.

[52] Equipment thermal guidelines for data processing environments. Tech. rep. Peachtree Corners:
ASHRAE, 2021.

[53] What is a server rack: specifications, usage, history and more. Tech. rep. AnD Cable Products
Inc., 2023.

[54] Robert F. Sullivan. Alternating cold and hot aisles provides more reliable cooling for server farms.
Tech. rep. 2000. URL: www.upsite.com/TUIpages/.

[55] O VanGeet, William Lintner, and Bill Tschudi. Best practices guide for energy-efficient data
center design. Tech. rep. National Renewable Energy Laboratory (NREL), Mar. 2011. URL:
http://www.thegreengrid.org/en/Global/Content/white-papers/ERE..

[56] AmCraft Manufacturing Inc. Hot and Cold Aisles in Your Data Center: What to Know. URL:
https://datacenterenclosure.com/hot-and-cold-aisles-in-your-data-center-
what-to-know/ (visited on 04/25/2024).

[57] “Electric chiller model based on condenser entering temperature”. In: EnergyPlus™ Ver-
sion 23.2.0 Documentation Engineering Reference. U.S. Department of Energy, Sept. 2023.
Chap. 14.3.9, pp. 796–805.

[58] EnergyPlus™ version 23.2.0 documentation input output reference. Tech. rep. U.S. Depart-
ment of Energy, 2023.

[59] “Chilled-water-based air cooling coil”. In: EnergyPlus™ Version 23.2.0 Documentation En-
gineering Reference. 2023, pp. 821–836.

91

https://doi.org/10.1016/j.enbuild.2020.110603
http://www.springer.com/series/7899
http://www.springer.com/series/7899
https://doi.org/10.1145/3600100.3623732
https://doi.org/10.1145/3600100.3623732
https://doi.org/10.1145/3600100.3623732
https://doi.org/10.1016/j.jfoodeng.2013.09.008
https://doi.org/10.1016/J.JPROCONT.2009.04.007
https://doi.org/10.1016/J.JPROCONT.2009.04.007
https://www.cooltherm.co.uk/products/chillers/water-cooled-chillers
https://www.cooltherm.co.uk/products/chillers/water-cooled-chillers
https://doi.org/10.1016/j.rser.2014.11.056
www.upsite.com/TUIpages/
http://www.thegreengrid.org/en/Global/Content/white-papers/ERE.
https://datacenterenclosure.com/hot-and-cold-aisles-in-your-data-center-what-to-know/
https://datacenterenclosure.com/hot-and-cold-aisles-in-your-data-center-what-to-know/

Bibliography

[60] Fadi Almahamid and Katarina Grolinger. “Reinforcement Learning Algorithms: An Overview
and Classification”. In: Canadian Conference on Electrical and Computer Engineering. Vol. 2021-
September. Institute of Electrical and Electronics Engineers Inc., Sept. 2021. ISBN: 9781665448642.
DOI: 10.1109/CCECE53047.2021.9569056.

[61] John Schulman et al. “Proximal policy optimization algorithms”. In: (July 2017). URL:
http://arxiv.org/abs/1707.06347.

[62] Nicolas Heess et al. “Emergence of locomotion behaviours in rich environments”. In:
CoRR (July 2017). URL: http://arxiv.org/abs/1707.02286.

[63] Richard S Sutton et al. “Policy Gradient Methods for Reinforcement Learning with Func-
tion Approximation”. In: Advances in Neural Information Processing Systems. Ed. by S. Solla,
T. Leen, and K. Müller. Vol. 12. MIT Press, 1999. URL: https://proceedings.neurips.
cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

[64] John Schulman et al. “High-dimensional continuous control using generalized advantage
estimation”. In: ICLR. 2016. ISBN: 1506.02438v6. URL: https://sites.google.com/site/
gaepapersupp..

[65] Oikolab. Weather Data Downloader. URL: https://weatherdownloader.oikolab.com/app
(visited on 03/18/2024).

[66] Yasser A. Ali et al. “Hyperparameter Search for Machine Learning Algorithms for Op-
timizing the Computational Complexity”. In: Processes 11.2 (Feb. 2023). ISSN: 22279717.
DOI: 10.3390/pr11020349.

[67] Baohe Zhang et al. “On the importance of hyperparameter optimization for model-based
reinforcement learning”. In: Proceedings of the 24th International Conference on Artificial In-
telligence and Statistics. Ed. by Arindam Banerjee and Kenji Fukumizu. San Diego, Cali-
fornia, USA: PMLR, Apr. 2021, pp. 4015–4023. URL: http://arxiv.org/abs/2102.13651.

[68] James Bergstra et al. “Algorithms for Hyper-Parameter Optimization”. In: Advances in
Neural Information Processing Systems 24 (NIPS 2011). Ed. by J. Shawe-Taylor et al. Grenada,
Dec. 2011. ISBN: 9781618395993.

[69] Takuya Akiba et al. “Optuna: A Next-generation Hyperparameter Optimization Frame-
work”. In: Proceedings of the 25th {ACM} {SIGKDD} International Conference on Knowledge
Discovery and Data Mining. July 2019. URL: http://arxiv.org/abs/1907.10902.

[70] Greg Brockman et al. OpenAI Gym. Tech. rep. OpenAI, 2016.

[71] Eric Liang et al. RLlib: Abstractions for Distributed Reinforcement Learning. Tech. rep. 2018.
URL: http://rllib.io.

[72] Antonin Raffin et al. Stable-Baselines3: Reliable Reinforcement Learning Implementations. Tech.
rep. 2021, pp. 1–8. URL: https://github.com/DLR-RM/stable-baselines3..

[73] Matthias Plappert. keras-rl. https://github.com/keras-rl/keras-rl. 2016.

[74] Itai Caspi et al. Reinforcement Learning Coach. Dec. 2017. DOI: 10.5281/zenodo.1134899.
URL: https://doi.org/10.5281/zenodo.1134899.

[75] John Niemann, Kevin Brown, and Victor Avelar. Hot-aisle vs. cold-aisle containment for data
centers. Tech. rep. APC by Schneider Electric, July 2010.

[76] USA Coil Air. Water cooling and heating coils. Jan. 2024. URL: https://usacoil.com/
water-cooling-and-heating-coils/ (visited on 06/11/2024).

92

https://doi.org/10.1109/CCECE53047.2021.9569056
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.02286
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://sites.google.com/site/gaepapersupp.
https://sites.google.com/site/gaepapersupp.
https://weatherdownloader.oikolab.com/app
https://doi.org/10.3390/pr11020349
http://arxiv.org/abs/2102.13651
http://arxiv.org/abs/1907.10902
http://rllib.io
https://github.com/DLR-RM/stable-baselines3.
https://github.com/keras-rl/keras-rl
https://doi.org/10.5281/zenodo.1134899
https://doi.org/10.5281/zenodo.1134899
https://usacoil.com/water-cooling-and-heating-coils/
https://usacoil.com/water-cooling-and-heating-coils/

Bibliography

[77] NDetated. Everything you need to know about water cooled chillers. URL: https://cntcu.
com/blogs/industrial- chiller/everything- you- need- to- know- about- water-
cooled-chillers (visited on 06/18/2024).

[78] “One, two, and variable speed cooling towers and evaporative fluid coolers”. In: Ener-
gyPlus™ Version 23.2.0 Documentation Engineering Reference. 23.2.0. U.S. Department of
Energy, Sept. 2023. Chap. 16.1.1, pp. 1026–1033.

[79] Inc. Delta Cooling Towers. What is a cooling tower and how does it work? URL: https://
deltacooling.com/resources/faqs/what-is-a-cooling-tower (visited on 06/11/2024).

93

https://cntcu.com/blogs/industrial-chiller/everything-you-need-to-know-about-water-cooled-chillers
https://cntcu.com/blogs/industrial-chiller/everything-you-need-to-know-about-water-cooled-chillers
https://cntcu.com/blogs/industrial-chiller/everything-you-need-to-know-about-water-cooled-chillers
https://deltacooling.com/resources/faqs/what-is-a-cooling-tower
https://deltacooling.com/resources/faqs/what-is-a-cooling-tower

Appendix A

Chiller plant

This appendix contains more background information on a chiller plant.

A.1 Aisle containment strategies

Although the use of hot and cold aisles can already save up to 25% of energy when compared
to a mixed aisle layout, there is still room for improvement in the layout. As the air streams are
not divided by a physical barrier, mixing will still take place. This occurs for example at the
end of the aisles, where the air streams flow out of the aisle and mix, or when hot air rises and
moves over the racks to move to the cold aisle [75].

To prevent the mixing of air, a straightforward solution is to create a physical barrier between
the hot and cold air streams. In most modern DCs, one of two different approaches are im-
plemented, either hot or cold aisle containment [75]. These approaches share the same main
advantage. As there is less mixing of air, the cold air temperature can be safely set to a higher
value without having the risk of hotspots at locations where the cold and hot air mix. Rising
the cold air temperature does not only save energy by requiring less cooling, there are also
other advantages, such as the fact that there are less (de)humidification costs, since there is
less humidity removed from the air at higher temperatures, and the possibility for better sized
HVAC equipment [75].

In the case of cold aisle containment, the cold aisle is closed off from the rest of the room,
as shown in Figure A.1. By containing the cold aisle, the rest of the room is allowed to become
hot without any mixing of the 2 air streams. The fact that the main room is filled with hot air
poses constraints on the maximum hot air temperature, because of the working conditions for
the personnel in the room. This containment can be implemented by simply putting a roof on
top of the cold aisle and closing both ends of the aisle (often with a curtain). Since it is so easy to
implement, cold aisle containment is a popular choice to improve the efficiency of DCs which
do not have any aisle containment strategies in place yet.
As the name suggests, hot aisle containment is exactly the opposite of cold aisle containment.
Here, the hot aisles are closed off from the cold aisles, as shown in Figure A.2. The hot air flows
to a space above the room, where it is sucked in by the CRAH units. These lead the cold air
to the cold aisles, where it cools the server racks. Since the hot aisles are closed off, the tem-
perature is not constraint by the maximum acceptable personnel working conditions anymore.
Therefore, the air is allowed to become warmer, which increases the efficiency of the HVAC
system even more [75]. Because of the space above the ceiling, it is harder to retrofit hot aisle

94

A.2 HVAC components

Figure A.1: Schematic representation of cold aisle containment [56] (Although the cold air is
coming from the roof in this representation, it often comes through the perforated floor tiles in
reality).

containment in existing DCs.

When comparing hot and cold aisle containment, it can be concluded that hot aisle contain-
ment is the most efficient of the 2, and therefore it is preferred in newly built DCs. However,
cold aisle containment still shows large improvements in energy efficiency when compared to
no air containment. Since it is easy to implement in existing DCs, it is the preferred method for
retrofitting.

Figure A.2: Schematic representation of hot aisle containment [56].

A.2 HVAC components

Cooling Coil In the CRAH units in a DC, chilled water CCs are used to cool down the air.
These coils consist of a series of pipes through which the chilled water flows. These pipes have
cooling fins attached through which the air passes. A CC is shown in Figure A.3. The cooling
capacity of these coils mainly depends on the mass flow rate and temperature difference be-
tween the water and the air passing through the coil. Next to that, the cleanliness of the surface
area affects the heat transfer in the coil. For example, when there is moisture on the surface of
the coil, its capacity will be reduced [59].

95

A.2 HVAC components

Figure A.3: A chilled water CC [76]

Air fans The fans in a CRAH control the air flow through a server room. Their speed is
determining the pressure under the raised floor and therefore the air flow rate. There is a non-
linear relationship between the air flow rate and the fan energy usage. Therefore, optimizing
their energy usage can be challenging

Water pumps Similar to the fans, water pumps control the pressure and thus the water mass
flow rate in the loops. There is also a non linear relationship between the mass flow rate and
the power used by a water pump.

Chiller In a HVAC system, the chiller is the device that actively cools water using a refriger-
ation cycle. Therefore, it is a central component of the system and often also one of the most
energy demanding components. The chiller ensures that heat can be extracted from a server
room even when the outdoor temperature is higher than the desired room temperature.

There are a lot of different chillers, which all use a refrigeration cycle internally. A basic refrig-
eration cycle is shown in Figure A.4. This cycle uses a refrigerant with a relatively low boiling
point. In the expansion valve, the pressure of the refrigerant is dropped so much that it starts
to evaporate and cools down a lot. In the evaporator, heat is extracted from the outside world
(in this case the chilled water loop). Then, using a compressor, the refrigerant is compressed
until it becomes liquid again. During this liquefaction, the refrigerant heats up. Because of this
higher temperature, the refrigerant is able to reject heat to an environment which has a higher
temperature than the chilled water loop.

A refrigeration cycle is often categorised by its COP, which is defined as:

COP =
Qin

W
(A.1)

where Qin is the heat energy extracted from the cold part of the system, and W is the work done
by the compressor. COP is thus a measure of the efficiency of a refrigeration cycle. Chillers
typically have a COP between 3.5 and 7 [77].
Different approaches exist for this rejection of heat, and chillers can be divided into 2 groups
based on its method of heat rejection: air or water cooled chillers. Air cooled chillers reject their
heat directly from the refrigerant to the outdoor air. Water cooled chillers use another water
loop to reject their heat to. These other loops use a heat exchanger such as a cooling tower to
reject their heat to the outdoor air.

96

A.2 HVAC components

Figure A.4: Schematic overview of a refrigeration cycle.

The water cooled chillers are more efficient and generally have longer life spans than air cooled
chillers [77]. The air cooled chillers are often cheaper than water cooled chillers, since they do
not require an extra water loop and therefore require less equipment than water cooled chillers.
Since energy efficiency is very important in DCs, most have water cooled chillers installed.

Cooling Tower Figure A.5 shows a schematic representation of a CT. This tower exchanges
heat with the outdoor air by spraying the hot water on a filler material. Because of the in-
creased surface area by the spray, the heat transfer rate is as high as possible. The cooled down
water is then collected and send back to the chiller. In favourable conditions, the water cools
down enough by natural convection, and the CT uses no energy. If natural convection does not
provide enough cooling, the fan at the top of the CT can be turned on. This ensures air flows
through the tower and the water is cooled by forced convection. This does require electricity
of course [78].

Figure A.5: Schematic working of a CT [79]

97

Appendix B

IT Load derivation

This appendix gives an in depth explanation on the ITE load, which is defined as PITE:

PITE(t) = Pbase(t) + Pday,night(t) + Pnoise(t) (B.1)

where the sub components of the load are defined as follows:

Pbase(ti) = Pbase(ti−1) + Pbase(t0) · Xbase, Xbase ∼ N
(
0, σ2

base
)

(B.2)

where ti denotes the ith time step, Pbase(t0) is a pre-defined value and Xbase is sampled from a
normal distribution with mean 0 and standard deviation σ2

base, where σbase again is a parameter
which is pre-defined.

The daily variation of the power is defined as:

Pday,night(t) = Xday,night · Aday,night · sin
(

2π

24
· t
)

(B.3)

where A is the amplitude of this power fluctuation which can be defined by the user. Xday,night ∼
U
(
1− cday,night, 1 + cday,night

)
is resampled every 12 hours to add additional randomness to the

system.

Finally Pnoise(t) is defined as Gaussian noise with a standard deviation σ2
noise.

To summarize, the IT load values over the year can be tweaked by the input factors: Pbase(t0),
σbase, cday,night, Aday,night and σnoise.

When the the noise for each year has been generated, it is normalized between 0 and 1 to
represent a fraction of the total IT load. This normalization is performed as follows:

PITE
normalized(t) =

PITE(t)−min(PITE)

max(PITE)−min(PITE)
(B.4)

The results of the generated IT loads for several years are shown in Figure B.1. It can be seen
clearly here that the average IT load varies over the year, while never making too sudden,
unpredictable jumps. A zoomed in plot spanning several days is shown in Figure B.2. In this
plot, the daily variation and Gaussian noise are clearly visible. Also, it can be seen that the
height of the peaks varies from day to day.

98

Appendix B. IT Load derivation

Figure B.1: The IT load over the course of a year

Figure B.2: The IT load over the course of several days

99

Appendix C

Hyperparameter samplers

This appendix contains a more in depth analysis of the most common hyperparameter sam-
pling types. In Figure C.1, some common sampler types are visualized for sampling in 2D. In
these examples, there is one hyperparameter which has a large influence on the performance of
the model, while the other one has a small influence on the performance. The 4 sampler types
are: grid sampling, random sampling, pseudo-random sampling and Bayesian sampling.

Grid search Figure C.1a shows a structured grid search. For such a grid search, the hyper-
parameters are divided into discrete intervals and all possible combinations in these intervals
are sampled. Although the samples are quite well distributed over the search field, there are
multiple large disadvantages to this type of search. Firstly, the amount of samples required
for a good optimization increases exponentially with the amount of hyperparameters, making
the method inefficient for higher dimensions. Secondly, the structure lacks randomness, as can
be seen, large areas of the hyperparameter space are not explored using this kind of sampling.
This becomes clear when one looks at the location of the sampling in the top distribution. Fi-
nally, a grid search does not adapt to intermediate results. For example, higher values for the
important parameter lead to worse results, but after this becomes clear after some samples, the
grid search will still keep sampling on this region.

Random search Figure C.1b shows a random search. This already mitigates some of the prob-
lems related to a grid search. In this example, one hyperparameter has a lot more effect on the
performance of the agent than the other. However, which parameter this is is not known in
advance. Therefore, the random search effectively distributes its sampling better over the im-
portant parameter than a grid search could, while not affecting the performance by the unim-
portant parameter. There is a larger chance of finding a good performing configuration, as can
be seen in the top distribution. A disadvantage of the random sampling is that there is still no
adaptation to intermediate results. Another disadvantage is that there is the risk of clustering
of samples. In Figure C.1b, this is seen at the left bottom, where there are a lot of samples close
together, while there is just one sample in the top right corner.

Pseudo-random search To solve this problem of a possibly clustered or bad distribution by
random search, pseudo-random samplers can be utilized. This class of samplers uses deter-
ministic algorithms to sample sequences which seem to be random. This can be clearly seen
in Figure C.1c, where a Sobol sampler has been used. When looking at the grid, these samples
seem just as random as the samples from Figure C.1b. However, when looking at the distri-
butions at the top and right, one can see that the samplers are distributed a lot better. Various

100

Appendix C. Hyperparameter samplers

(a) A grid sampler with n = 16. (b) A random sampler with n = 16.

(c) A Sobol sampler with n = 16. (d) A Bayesian sampler with n = 16.

Figure C.1: Example of different samplers. The distributions on the top and right of the grids
show the effect of changing this hyper parameter on the total performance of the model. In
this case, one hyperparameter influences the performance of the model largely, while the other
only has a small influence.

pseudo-random samplers, such as the Sobol sampler, Latin Hypercube, Halton sequences, and
many others, are available for use. These samplers have the advantages of a random search
with often a more structured distribution, which becomes increasingly important for larger
dimensionality of the search space. However, the samplers still do not adapt to intermediate
results.

Bayesian search What all the above samplers have in common is that they do not adapt to in-
termediate results. This leads to a decrease in sample efficiency, since a lot of samples are taken
in unpromising regions of the search space. Especially in high dimensional search spaces, a lot
of samples are required to cover the search space effectively. Bayesian samplers solve this prob-
lem by constructing a surrogate model, often using Gaussian processes. These models predict
the performance of the hyperparameter configurations and give an estimate of the uncertainty

101

Appendix C. Hyperparameter samplers

of the surrogate model. By focussing on promising areas, a lot more sampling can be done in
these areas, as can be seen clearly in Figure C.1d, where most samples are taken in the most
promising region. This is very beneficial for the sample efficiency, and thus the computational
complexity. A disadvantage of Bayesian sampling is that it can focus on suboptimal regions
when the initial surrogate model is very inaccurate. However, as the model updates with each
new sample, this is often not a large problem in reality [68].

102

Appendix D

Tuned controller behaviour

This appendix contains figures with the behaviour of the tuned RL-based controller over the
course of a year.

D.1 EOA

Figure D.1: The behaviour of the EOA over the course of a year, compared to the baseline.

103

D.1 EOA

Figure D.2: The behaviour of the EOA over the course of a single week.

104

D.2 BA

D.2 BA

Figure D.3: The behaviour of the BA over the course of a year, compared to the baseline.

105

D.2 BA

Figure D.4: The behaviour of the BA over the course of a single week.

106

D.3 COA

D.3 COA

Figure D.5: The behaviour of the COA over the course of a year, compared to the baseline.

107

D.3 COA

Figure D.6: The behaviour of the COA over the course of a single week.

108

Appendix E

Statistical analysis controllers

Table E.1: Shapiro-Wilk test results for normality across different agents and metrics.

Agent Metric Statistics p-value Normal distribution

COA Mean HVAC Power 0.822 0.027 False
COA L2 T_constr 0.923 0.385 True
COA L2_T_SP 0.963 0.825 True
COA L2_a 0.923 0.384 True

BA Mean HVAC Power 0.940 0.552 True
BA L2 T_constr 0.871 0.104 True
BA L2_T_SP 0.828 0.032 False
BA L2_a 0.877 0.121 True

EOA Mean HVAC Power 0.856 0.068 True
EOA L2 T_constr 0.717 0.001 False
EOA L2_T_SP 0.633 0.000 False
EOA L2_a 0.948 0.650 True

Baseline Mean HVAC Power 1.000 1.000 True
Baseline L2 T_constr 1.000 1.000 True
Baseline L2_T_SP 1.000 1.000 True
Baseline L2_a 1.000 1.000 True

109

Appendix E. Statistical analysis controllers

Table E.2: Summary of the Mann-Withney U-test of the controllers on the test year

Metric Comparison Mann-Whitney U-
value

p-value Significant difference

PHVAC
mean COA vs. BA 0.940 0.552 No

COA vs. EOA 0.856 0.068 No
COA vs. Baseline 100.000 0.443 No
BA vs. EOA - - No
BA vs. Baseline 0.000 0.000 Yes
EOA vs. Baseline 0.000 0.000 Yes

L2
(
TAL2

constr
)

COA vs. BA 0.871 0.104 No
COA vs. EOA 0.717 0.001 Yes
COA vs. Baseline 0.000 0.000 Yes
BA vs. EOA 0.878 0.121 No
BA vs. Baseline 0.000 0.000 Yes
EOA vs. Baseline 0.000 0.000 No

L2
(
TAL1

SP
)

COA vs. BA 0.828 0.032 Yes
COA vs. EOA 0.633 0.000 Yes
COA vs. Baseline 0.000 0.000 Yes
BA vs. EOA 0.877 0.734 No
BA vs. Baseline 0.000 0.000 Yes
EOA vs. Baseline 0.000 0.017 Yes

L2action COA vs. BA 0.877 0.121 No
COA vs. EOA 0.948 0.650 No
COA vs. Baseline 100.000 0.000 Yes
BA vs. EOA 0.878 0.121 No
BA vs. Baseline 90.000 0.001 Yes
EOA vs. Baseline 90.000 0.001 Yes

110

	List of Abbreviations
	List of Figures
	List of Tables
	Introduction and literature research
	Control of dc hvac systems
	hvac optimization techniques
	Two-stage optimization
	mpc
	rl

	Data center modelling
	Thermodynamics based models
	cfd
	Data-based models
	Combinations of methods

	Research goal

	Problem statement
	hvac systems in dcs
	Cooling layout in a server room
	Chiller plant

	hvac system design
	Energy balance and power
	Actuation variables

	hvac system simulation model
	EnergyPlus hvac layout
	EnergyPlus simulation algorithms
	Timestep sensitivity analysis

	The hvac controller optimization goal
	Summary

	Methodology
	Baseline study
	Baseline controller
	Baseline experiments

	rl framework
	rl working principle
	The mdp
	rl algorithm selection

	Weather and IT load data and data partitioning
	Weather data
	ite load data

	rl tuning experiments
	Hyperparameter tuning
	Reward tuning

	Summary

	Numerical results
	Timestep sensitivity study results
	Data filtering
	Effects on the simulation
	Discussion & conclusion on the timestep sensitivity

	Python implementation
	Baseline study results
	Chilled water setpoint selection
	Yearly performance
	Component-level results
	Discussion & conclusion on the baseline controller

	Initial rl experiment results
	Hyperparameter tuning results
	Initial hyperparameter search
	Extensive hyperparameter search
	Discussion & conclusion on hyperparameter tuning

	Reward tuning results
	General results
	Trade-off between hvac power and constraint violations
	Discussion & conclusion on reward tuning

	Learning robustness results
	Analysis of tuned controllers and comparison to baseline
	Training phase
	Validation & test performance
	Analysis of the rl based controllers
	Discussion & conclusion on the rl performance

	Summary

	Conclusion
	Limitations
	Future research

	Chiller plant
	Aisle containment strategies
	hvac components

	IT Load derivation
	Hyperparameter samplers
	Tuned controller behaviour
	eoa
	ba
	coa

	Statistical analysis controllers

