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Abstract—This thesis addresses the challenge of comparing security definitions for
searchable symmetric encryption (SSE) which is when a party outsources the storage
of his data to another party in an encrypted manner whilst still being able to search
over it. It focuses on cross-user leakage, where the actions of one user leak inform-
ation about the actions of or the data available to another user. We systematically
review and clarify the implementations from four influential papers, introducing uni-
fied symbols and terminology to standardise protocols and security definitions. Key
contributions include the development of a unified framework, the reformulation
of security definitions, a new simulation-based security definition for the multi-key
setting, and the proof that semantic security is equivalent to indistinguishability in
the multi-key setting. The result of our work is a comprehensive unification of the
SSE framework in the context of cross-user leakage, providing a clearer and more
consistent foundation for future research.
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1 Introduction

1.1 Searchable encryption and cross-user leakage

Searchable encryption (SE) is a technique that allows a server to search over encrypted documents
without decrypting them. It allows a corpus owner to upload a set of encrypted documents called
a corpus to the server and to grant a set of authorised users access to it. Authorised users can then
issue encrypted search queries over these documents by sending the search query to the server. The
server can only view the encrypted documents but should still be able to retrieve only the documents
that contain the searched keyword. The server should be able to do this searching and retrieving with
minimum information leakage. Ideally, the server would learn nothing about either the user’s queries
or the documents. Although this can be achieved used homomorphic encryption and oblivious maps,
in practice some leakage is allowed for better performance and the different implementations have
varying security-efficiency trade-offs.

Figure 1: General idea of searchable encryption

There are multiple approaches to implementing SE but a popular one is searchable symmetric
encryption (SSE), which uses symmetric key encryption. Symmetric key encryption has a significant
performance advantage over asymmetric key encryption, and as such SSE is more popular than SE
using asymmetric encryption. This work focuses on the security provided by recent works on SSE
that focus on cross-user leakage. Cross-user leakage is when the actions of one user leak information
about actions of and documents shared with a different user, and as such it only occurs in settings
when there are multiple users to share documents with and who can issue search queries.

1.2 Limitations to Curtmola et al.

The de facto security standard for SE is given by Curtmola et al. [6]. Ideally, the server would
learn nothing about either the user’s queries or the documents and although this can be achieved
using homomorphic encryption and oblivious maps, in practice some leakage is allowed for better
performance. As such, Curtmola et al. come up with security definitions for two different adversarial
models, defining the standard “minimal leakage” in the process. There are several limitations to their
paper. Three significant limitations that are addressed in this work are:
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1. The corpus is static as opposed to dynamic. This means that no documents can be added to
or removed from the corpus after initial deployment. It also means that documents cannot be
updated.

2. Users are granted access to the entire corpus; there is no sharing on a per-document basis.

3. Both adversarial models by Curtmola et al. are non-colluding adversarial models; there are no
users that collude with the adversarial server. If the server tries to obtain as much information
about the encrypted documents and queries as possible, then colluding users giving the ad-
versarial server their decryption keys provides the server with a huge advantage. In particular,
colluding users raise the new security concern of cross-user leakage: if one user colludes with
or is corrupted by an adversarial server, what information is leaked about the queries of other
users? Can this new information be used to learn more about the documents that the colluding
user does not have (been granted) access to? It is crucial to examine this as such cross-user
leakage could for example be detrimental in the context of patient data stored in the cloud.

It are these limitations that the works discussed in this paper address. The works by [13], [20],
[33], and [4] all consider sharing on a per-document basis and all of them assume colluding ad-
versarial models. The work by Chamani et al. also addresses the first limitation and considers a dy-
namic corpus. The primary concern of the papers however is to address the security concern caused by
colluding users. The papers vary in the achieved efficiency, functionality and leakage, but comparison
between the different works is difficult for multiple reasons.

Figure 2: Difference between MKSE and MUSE
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1.3 A difficult comparison

1.3.1 Different security settings: MKSE and MUSE

One factor complicating comparison between Hamlin et al. and the other works is that Hamlin et
al. assume a multi-key setting instead of a multi-user setting like the other papers. The multi-key
setting differs from the multi-user setting in only one way, namely the number of corpus owners.
MKSE assumes a polynomial number of corpus owners and the multi-user setting assumes only one
corpus owner. However, the multi-key setting assumed by Hamlin et al. also addresses the latter two
limitations to Curtmola et al., namely the binary sharing of the corpus (by which we mean that it is
shared completely or not at all) and the non-colluding adversarial model. It turns out that these two
limitations give rise to a much more complex setting in the multi-key setting than in the multi-user
setting. This is because colluding corpus owners are much stronger than colluding users and because
different attacks and leakage become possible.

1.3.1.1 The setting: a different number of corpus owners

The work by Hamlin et al. concerns itself with multi-key searchable encryption (MKSE) whereas the
other works concern themselves with multi-user searchable encryption (MUSE). The multi-key setting
was first defined by [21] as a SE scheme where each user can provide a single (i.e. one) search
token to the server to search over a set of documents encrypted with different keys. In simpler words,
despite each document being encrypted with its own unique key, the search token is constructed in
a way that is independent to this. I.e. the search token is independent of the number of shared
documents/unique keys; the search token is of constant size/length.

Hamlin et al. assume in this multi-key setting that each document belongs to a different corpus
owner. Note that this means that each of the corpus owners has a corpus of size ‘1 document’. Of
course, corpus owners do not share keys with each other and thus the keys used are assumed to be
unique. In this paper we will use Hamlin et al.’s assumption regarding MKSE, because if a real-life
corpus owner owns multiple documents, he can be modeled by a set of MKSE-corpus owners. Thus,
without loss of generality the only difference between the multi-key setting and the multi-user setting
is the number of corpus owners. We have illustrated this in figure 2, where the adversary and colluding
parties are in red. Note that any number of the respective parties can collude.

In MUSE there is one corpus owner that uploads his corpus to a server and grants users the ability
to search over documents, and download and decrypt them. In MKSE there are multiple corpus
owners that upload their corpus to a server and grant users the ability to search over documents,
and download and decrypt them. As stated, initial works such as [6] were binary in the sharing of
the corpus: either the entire corpus was shared with a user or none of it was shared. All the works
we cover however allow documents to be shared on a per-document basis. Note that in MKSE each
corpus consists of only one document and sharing is automatically on a per-document basis.

1.3.1.2 Resulting complexity

Colluding corpus owners: As stated: the primary concern of the different papers is to address the
security concern caused by colluding users. It is clear that in MKSE a corpus owner has more informa-
tion than a user: corpus owners have access to the plaintexts (i.e. the unencrypted keywords) and the
encryption keys. Therefore, a server colluding with corpus owners is a more powerful adversary than
a server colluding with users. In all implementations of MUSE covered however the corpus owner
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Figure 3: Adversary and colluding parties(red) in MKSE and MUSE

is assumed to be honest. This is simply because there is only one corpus owner and thus a mali-
cious/colluding corpus owner would leak everything: there would be no privacy/security at all. Thus,
the adversarial model used in MKSE where corpus owners collude with the server is a very strong one,
and it is much stronger than the adversary in MUSE indeed.

Dictionary attacks and inherent leakage: It is thus that MKSE is the only setting that assumes
colluding corpus owners. Significantly, assuming colluding corpus owners instead of colluding users
allow for a new attack: a corpus owner can share a dictionary with a user. A dictionary is a document
or a set of documents that allow the adversary to learn the queried keyword if the keyword is in the
dictionary. For example, if a document contains only one keyword then upon a search hit it is certain
that the query was for the only keyword. Note that the server must be able to determine search hits
in SE. As stated, the corpus owner has access to the plaintexts and he is thus able to learn the queried
keyword. As such, by sharing documents consisting of one keyword only and by covering all pos-
sible keywords with a document, the corpus owner can always learn the queried keyword. Therefore,
corpus owners colluding with the adversary provide a big risk.

To remedy this risk “users can perform sanity checks on the documents shared with them to test
how much leakage the server will get on their queries, and refuse to accept shared documents if they
lead to too much leakage. Understanding when access pattern leakage is acceptable and when the
leakage is not acceptable, is a fascinating and important direction for future study” [13]. The idea here
is that queries always leak information. For example, one user has been granted access (by the same
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corpus owner) to document 1 containing the keywords (apple, butter), to document 2 containing
(butter, syrup), and document 3 (syrup, pear), then if document 1 and 2 are returned, the queried
keyword was butter, if 2 and 3 were returned then it was syrup, and if 1 or 3 was returned then it
was apple or pear respectively. This is an example of how queries inherently leak information even
when the document contains multiple keywords. A way to think about this leakage is in terms of Venn
diagrams. To illustrate our example we have made a Venn diagram illustration in figure 4. It should
be noted though that the sanity check, when to reject or accept a document, was outside the scope of
[13] and is thus also outside of the scope of this paper (cf. the related work section 9). Note that the
entire issue of dictionary attacks via the sharing of documents does not exist in the MUSE where the
corpus owner is honest. Our discussion of MKSE clearly points to MKSE being a more complex setting
than MUSE.

Figure 4: Queries inherently leak information

1.3.1.3 Challenges in comparing security in MKSE and MUSE

In essence, MKSE is the generalisation of MUSE and because of this it is more difficult to model and to
prove theorems in as seen above. We stress that in addition to this generalisation described above, the
multi-key setting as discussed by Hamlin et al. addresses the latter two of the limitations to Curtmola
et al. [6] as described in section 1.2. The question then is: if the assumed setting by Hamlin et al. is
much more complex, to what degree can it be compared to the security provided by Curtmola et al.
[6]?

Specifically, Curtmola et al. have two different security definitions per adversarial model. The
security definitions are a simulation-based definition called “semantic security” and a definition based
on the comparing of encryptions called “indistinguishability”. The two adversarial models are a “non-
adaptive” (NA) or a “selective” adversary who issues all queries to be executed (or simulated) at the
same time, and an “adaptive” adversary who issues a set of queries to be executed (or simulated)
with each query being determined after the execution of the previous one.1 Curtmola et al. proved
for MUSE that semantic security is equivalent to indistinguishability in the presence of a non-adaptive
adversary. However, in the case of an adaptive adversary semantic security implies indistinguishability
and is assumed to be a stronger requirement. Note that this proof is under the limitations as described
in section 1.2.

Hamlin et al.’s assume a non-adaptive adversary. Their security requirement is one of indistin-
guishability and “a natural question that arises in this context is whether indistinguishability-based

1 These concepts are expounded in section 6
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security ... implies simulation-based security” [13]. It should be noted that there is no formal defin-
ition for simulation-based security in this context either and as such another natural question to ask
is what simulation-based security is in MKSE. All in all the question can broadly be formulated as the
following: What security is exactly provided by Hamlin et al. [13]? As described in section 1.3.1, the
multi-key setting is more complex than the multi-user setting, legitimising the question.

1.3.2 Different language used

Another reason why comparing the different works is difficult is because the language used can differ
significantly from work to work. The work by Curtmola et al. [6] was defined with respect to MUSE.
Hamlin et al.’s MKSE brings its own security definitions and lexicon – i.e. terminology and symbols
– with it. There is some overlap between the lexica but the two also share terms which differ in
meaning. For example, a “data owner” in Hamlin et al. owns exactly 1 document which is called a
set whereas a “data owner” in Wang et al. [33] owns exactly 1 dataset which is a set of documents.
As such, using the term “encrypted set” can also have different meanings if we are not careful. An
encrypted set refers in [13] to an encrypted set of keywords, but an encrypted set in [6] would or
could logically speaking refer to an encrypted set of documents.

Despite the lexica of [20], [33], and [4] being more similar to each other, there is no consensus
on certain aspects such as if a document contains metadata or even a list of authorisation tokens
allowing a user to query on the document in question. Other examples of aspects without agreement
are protocol names, names for security players (manager, data owner, corpus owner), and part of the
symbols. Besides this, some terminology contributes to the confusion: We have previously mentioned
the processed set, but as another example: what is the difference between metadata and auxiliary
data?

1.4 Our contribution

Our aim is to facilitate comparison between the different papers by introducing a unified framework
for SE with a focus on multiple users. It is necessary to have a consistent and coherent narrative and
to get rid of all ambiguity by addressing all terms, symbols, algorithms and protocols that are not
used consistently across the papers. The terms and symbols are an essential part of the protocols, and
the protocols are an essential part of the security games. It is of absolute importance to remove any
ambiguity from all of these components before we can unify the security definitions.

Thus, we will start the introduction of our unified framework by unifying the symbols and termin-
ology. We do this in section 4, using tables to link our unified symbols back to the different papers and
demonstrating our coverage of them. After this, we expand the framework by including the algorithms
and protocols, and definitions for static and dynamic SSE in section 5. Similar to the previous section,
we conclude section 5 by showing that our unified protocols and definitions can be applied to the
different papers.

Having finished the basics of the framework we will then unify the security definitions. First we will
examine the different security definitions as introduced by the papers in section 6. We will then unify
these definitions in the sections that follow. In section 7 we will provide a simulation-based security
definition for the multi-key setting that is equivalent to the indistinguishability based definition by
Hamlin et al. [13]. Both definitions assume a non-adaptive adversary. This simulation-based security
definition is novel and requires the reformulation of the security definition by [13]. We are going to
do all this in section 7 in the following way:

10



1. We will redefine the auxiliary notions as introduced by Curtmola et al. [6], which were defined
with respect to the multi-user setting whereas the security definition by Hamlin et al. [13]
is with respect to the multi-key setting. The auxiliary notions that we define will address the
following limitations to Curtmola et al.: documents are not shared on a per-document basis,
and the adversary is assumed non-colluding.

2. We will reformulate the security game by Hamlin et al. into a indistinguishability-based defini-
tion similar to Curtmola et al. (but then for the multi-key setting as described by [13]).

3. We will introduce a novel simulation-based definition for the setting as described by Hamlin et
al.

4. We will prove equivalence between our novel simulation-based definition and our
indistinguishability-based definition.

Having done so we have addressed an open question in the field of MKSE: is semantic security in MKSE
stronger than indistinguishability or are they equivalent assuming a non-adaptive adversary? Now
that we have addressed part of the unclarity in the field, we will move on to address the remaining
unclarity: we are going to finish the unification framework by unifying the remaining MUSE-security
definitions in section 8.

At the end of section 7 our framework is complete and consists of the following aspects of SE with
a focus on multiple users:

1. A unified lexicon covering the terms and symbols.

2. Unified algorithms/protocols.

3. A unified definition of SSE including a definition for static SSE and dynamic SSE (DSSE), and
fixed-size and resizable DSSE.

4. A unified security definition.

The conclusion of our unified framework is followed by information on related work in section 9.

1.4.1 Covering contextual implementations

It is the aim of this paper to facilitate the security comparison of the 4 papers concerning cross-user
leakage mentioned in the introduction, addressing each of the difficulties that obscure a comparison
between them. The first step towards this facilitation is to introduce the implementations as put forth
by the different papers using our unified framework. In this first step we explain the different design
choices by the different authors and we address any unclarity concerning the implementations in the
process. By providing the implementations we provide a contextual understanding of SE and the
current state of research into SE with cross-user leakage. The contextual understanding will make it
easier to follow our unification and as such its crucial to the introduction of our unified framework.

2 Background information

2.1 Index-based SSE

A common technique to boost performance is using a server-stored index to increase search perform-
ance. An index is a data structure that links keywords to document pointers whilst supporting efficient
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keyword searching. Given a keyword, the index returns the pointers to the documents containing it.
If the index does not contain the given keyword, no further information should be leaked about its
contents. To achieve this, the search operation for a keyword can only be performed by users that
possess a (valid) “trapdoor” for the given keyword. Valid trapdoors can only be created using a secret
key. Without knowledge of the trapdoors, the index leaks no information about its contents.

Half of the recent works are indexless and half of them are (secure) index-based SSE. The indexless
approaches are by Hamlin et al. [13] and Patel et al. [20] and do indeed suffer significantly in
performance compared to the works with an index by Wang et al. [33] and Chamani et al. [4].
Despite their lower performance, both papers are included in our work for analysis and unification
due to its influence on other papers – especially the paper by Hamlin et al. who is consistently
mentioned for having an exceptionally strong security definition.

2.2 SSE: Documents and local/auxiliary information

2.2.1 Documents

General document definition: SE is all about the storage of documents on a server by a corpus
owner, granting access/search rights to a set of users. The question “what is a document” turns out
to be a nontrivial question and is thus a good starting point for our discussion. In the days of [6]
SE-documents consisted of an identifier, a list of associated keywords that could be searched over,
and some content. If a search query resulted in a document hit, then the document identifier would
be returned to the user. The user could then request (a subset of) the contents corresponding to the
document identifiers returned as the search result. Since this is shared across almost all implementa-
tions, modern approaches2 assume that this is how it is done without making mention of this. In this
paper we will use the same assumption. Thus, throughout our work a document generally consists of
a document identifier and a set of associated keywords: d = (id(d),W (d)). We would like to point
out that when modern approaches mention the “contents” of a document they subsequently mean
the set of keywords W (d) (and not the actual content of a document)! Now, we would like to point
out that Hamlin et al. had a slightly different approach, not returning the document identifiers but
returning the document content directly instead. Throughout this work we assume however that their
implementation too returns document identifiers.

Patel et al., metadata: Now, a document generally consists of a document identifier and a set of
associated keywords because a document by Patel et al. [20] contains some additional information.
They assume that a document also contains some metadata which is returned along with the document
identifier to help a user decide if he wants to retrieve the document’s actual content (not referring
to the keywords in this case). The metadata can for example be an upload date or title snippet. For
[20] a document is thus of the form d = (id(d),W (d),metad)). We stress that the metadata does not
change the document content retrieval mechanism; that this mechanism is still assumed; and that the
content of a document in modern approaches and in particular by Patel et al. thus still refers to the
set of associated keywords W (d).

2.2.2 Local and auxiliary information

To store the documents on a server the papers often make use of local information ι and/or auxiliary
information aux. The local information and auxiliary information are similar to each other but subtly

2 I.e. the papers after Hamlin et al. [13] that we discuss: Patel et al. [20], Wang et al. [33], and Chamani et al. [4].
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different. Local information is everything that is stored locally by the corpus owner (then it is the
corpus owner’s local information which we denote by ι) or user (then it is the user’s local information
which we denote by ιu). Local information includes the auxiliary information. Auxiliary information
is everything that is implementation specific. A problem with this terminology is that when a paper
describes the auxiliary information, it is specific to that paper. When the PRF-based implementation by
[13] is given, the auxiliary information is empty since it is the only scheme that is considered. Is the
implementation however compared against those given by [33], none of which use a share key, then
the share key in [13] is auxiliary information all of a sudden. As such, we are always careful to explain
what the auxiliary information is, often referring back to section 3.5. Because of the uncertainty in
auxiliary information, we will never use it in our definitions. It does however find use when we link
our algorithm/protocol definitions back to the different implementations. There we have written out
all commonalities and used aux to denote the differences.

2.3 Cryptography: PRF, DDH, oblivious maps

Several of the papers make use of a pseudo-random function (PRF). We will always denote PRFs by F .
In cryptography, PRF are keyed function whose output is indistinguishable from that of a truly random
function for any probabilistic polynomial time (PTT) adversary. This assumes that the adversary does
not know the secret key. PRFs are deterministic and rely on the secret key to seem random. We will
now formally define a pseudo-random function using a “negligible function” negl : N → R. Formally,
a negligible function negl(λ) is such that for any positive polynomial poly(.) and sufficiently large λ it
holds that |negl(λ)| < 1/poly(λ).

Definition 1 (Pseudo-random function). A function F : {0, 1}k×{0, 1}l → {0, 1}n is a pseudo-random
if it is computable in polynomial time in k and if for all polynomial-size A∣∣∣p(AfK(.) = 1 : K ← {0, 1}k

)
− p

(
Ag(.) = 1 : g ← Func[n,m]

)∣∣∣ ≤ negl(k)

where the probabilities are taken over the choice of K and g. If f is bijective then it is a pseudo-random
permutation.

When covering the implementation by [20] we note that the security of their PRF relies on the De-
cisional Diffie-Hellman (DDH) assumption. DDH is an assumption concerning computational hardness
and the security provided by Patel et al. is dependent on this assumption.

Definition 2 (Decisional Diffie-Hellman assumption). Given a group generator g or order n then given
a, b, c ∈ Zn the tuples (ga, gb, gab) and (ga, gb, gc) are computationally indistinguishable.

In other words, if an adversary with limited resources is given ga and gb and gc, he cannot tell if
gc = gab. Note that we can estimate what an adversary can reasonably have as “limited resources” by
looking at the current technology, and based upon this we can scale n accordingly.

The implementations by [33] and [4] make use of oblivious maps (OMAPs). An OMAP is a data-
structure of keys and values that completely hides the access pattern, meaning that data retrieval
happens without revealing which data is being accessed. This ensures that the access pattern does not
leak information about the nature of the data being retrieved. Oblivious maps are used to enhance
privacy and security in various applications, specifically by [33] and [4] to store keyword counters in.
We refer to [32] for a formal definition.
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2.4 Notation

Throughout this work we will use the following notation conventions:

• If a subscript is shared across symbols then we often use a subscripted tuple instead. E.g.,
(a, (b, c)i) = (a, bi, ci).

• We can replace subscripted instance symbols with subscripted set symbol to denote the set. E.g.,
KU = {Ku : u ∈ U}. The instance and set symbols are part of the unification of the symbolism
section 4.2.

• We use [n] = {1, . . . , n}.

• When an algorithm/protocol is keyed, we often subscript the key. E.g. SetupK(.). Similarly, a
keyed PRF F is often written as FK . If F does not have a subscripted key, then the first input-
parameter is the key for F . Note that throughout this document F ’s input parameters never
contain more than one key and thus there is no confusion possible.

• When an algorithm/protocol is defined for an instance, we can replace the instance symbols in
the in-/output to denote sequential invoking of the algorithm/protocol. E.g., KU ← UserKeyGen(1λ)
is the same as (Ku1

← UserKeyGen(1λ)), (. . . ,Kun
← UserKeyGen(1λ)) if |U | = n.3

• When defining protocols we can use [.] to denote that the in-/output is optional, meaning it
depends on the implementation.

• We denote a corpus by D per convention. In MKSE there are however multiple corpus owners –
denoted by o· – and thus we might need to clarify whose corpus we mean: Do· . Note that Do· can
be interpreted to mean “all documents that o· has access to”. In a similar fashion we can denote
all documents that have been shared with user u by Du. Strictly-speaking there is a subtle: the
corpus owner owns the corpus whereas a user has been granted access to the document. We
think however that these notations will not cause confusion due to their similarity.

• To restrict a set of documents D to the set of documents that contain keyword w we write D(w).

• An adversary has to make a guess in security games indicated by a bit b. In the case of a real-
ideal experiment we assume without loss of generality that 0 refers to the real world and 1 refers
to the ideal world.

• We use 1λ to denote a string of ones of length λ.

Most works explicitly require or assume that keywords in a document or keyword list are distinct.
Throughout this work we will assume that all keywords in a set are distinct except for queries in a
security game. If the queries in the security game are required to be distinct – such as for [13] – then
we will mention this explicitly.

3 We will later see that UserKeyGen is a probabilistic algorithm, meaning that Kui ̸= Kuj for i ̸= j.
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3 Security implementations across the papers

In this section, we provide a high-level overview of the schemes proposed by various papers. Un-
derstanding these implementations is crucial not only for discussing the security guarantees but also
for comprehending the chosen lexicon.4 We review the papers [13], [20], [33], and [4] in order,
which is in order of (first) publication date. Given that [13] is the only paper on MKSE while the sub-
sequent papers address MUSE, this section is simultaneously organized by security setting. Through-
out this section we will use AccList(d) to denote the set of users that have access to document d,
and Access(u) to denote the set of documents that u has access to. Access is the list of accesslists
Access = {Access(u) : u ∈ U}.

All implementations have the following commonalities: there is at least one corpus owner. He
encrypts his corpus and uploads it to the server. He shares documents with some users, granting them
access and search rights. These users are able to send search queries to the sever, which retrieves
the corresponding document (identifier) without decrypting either the queries or documents. We will
now explain how the different papers implement this.

3.1 Hamlin et al. (2018)

As explained in section 1.3.1, Hamlin et al. [13] consider themselves with the multi-key setting. In
this setting there are multiple corpus owners with corpora of size “1 document”, each uploading his
corpus to the server and sharing it with a set of users. The adversary by [13] is assumed to be the
server colluding with corrupt corpus owners. The malicious corpus owners can explicitly share docu-
ments and in particular dictionaries with honest users, requiring users to perform sanity checks.

Corpus uploading: A corpus owners encrypts his document d using a document key Kd and up-
loads it to the server. This process is not restricted to the initial setup of the database but can be
repeated for subsequent uploads.

Document sharing: To share a document d, the corpus owner sends the associated document key
Kd to user u via a secure channel. The user downloads the document from the server and decrypts
it using Kd. Hamlin et al. assume that a keyed pseudo-random function F is known to the server,
corpus owner, and users. For each keyword w in d, the user uses his user key Ku to calculate the
pseudo-random key kw = FKu(w). Another layer of encryption is used to prevent information leak-
age. Specifically, user u generates a random value rd for the document, ensuring a unique identifier
for each document. The user then computes the token for each keyword in d as tw = Fkw(rd). All
tokens are inserted into a perfect hash table Pd to facilitate efficient searching [9]. The share key σu,d

consists of the random value and the hash table: σu,d = (r, P )d, which is then sent to the server. This
process effectively relinquishes document ownership from the sharer since the recipient constructed
own copy. Please note that the perfect hash table is constructed over a document’s keywords and not
over the documents themselves. The set of documents accessible to a user is not indexed.

Searching: To search for a keyword w, user u calculates kw = FKu
(w) and sends it to the server.

The server performs the search on a per-document basis, doing the following for each share key: it

4 Meaning both terminology and symbolism.
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reads rd, transforms the user’s query kw into tw = Fkw(rd), and checks the perfect hash table Pd for a
hit on tw. Finally, the server returns the identifiers of the documents where a hit occurred.

Since the user uses an unencrypted keyword w to generate kw, tw will also be based on an unen-
crypted keyword. Hamlin et al. state however that “the share key is (syntactically) ’tied’ to the set
for which it was generated (Share depends not only on the document and user keys, but also on the
encrypted document”. The described process of share key and keyword generation makes however
clear that the document key is never used. To tie the share key to the document for which it was
generated, Hamlin et al. use the random value r. The value r is tied to the document and in that
sense also to the document key, if the document key is unique.

3.1.1 Performance

• Query size is constant O(1). Regardless of how many corpora a user has access to, the query
remains the same. Constant query size is optimal.

• Storage size is linear per document in the number of share queries: O
(∑

d∈D |W (d)| · |AccList(d)|
)
,

as each document is effectively replicated upon sharing.

• Search time is linear in the number of documents user u has access to: O(|Du|), since no index
exists.

Further details on the performance of Hamlin et al.’s construction can be found in Table 1 of [33],
where it is compared against xu-m [20] and the constructions by Wang et al. [33].

3.1.2 Final Notes

Hamlin et al. assume that each corpus owner owns exactly one document. Note that this does not
impose any restriction since a real-world adversary can effectively be modeled by a set of (theoretical)
corpus owners.

Hamlin et al. have provided two schemes in their work. The second scheme uses public-coin
differing-input obfuscation (cf. [14]) but is considered impractical. It has a search time polynomial
in the number of documents. This scheme is however of theoretical interest since Hamlin et al. first
theorised that the storage overhead (linear per document in the number of share queries) is inherent
to achieving their stronger MKSE definition, but this second construction requires per-document server
storage that is approximately the document size plus the number of share queries. They suggest this
as evidence that a more efficient construction could potentially achieve their strong MKSE-security
definition while maintaining optimal server storage overhead.

Hamlin et al. propose an indexless approach that uses a perfect hash table for searching. This hash
table is associated with a shared key, which helps to speed up the search process within that shared
key. However, this approach does not solve the problem of needing to search through each shared key
individually as an index over the corpus does.

As explained in section 2, upon a search hit the PRF-implementation by Hamlin et al. returns the
document d and not the document identifier idd as is the current convention. This raises the question
if Hamlin et al.’s use of the (document’s) keyword set S could be considered a document in the current
convention. The idea is this: if the modern convention is that a hit in the keywords W (d) leads to the
returning of idd – which in turn allows the user to request the document content – and if Hamlin et
al. only require S to return the document content, are S and (idd,W (d)) equal to each other? If the
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modern convention is to interpret (idd,W (d)) as a document, is S too then a document? The answer
to this is that S is equivalent to the list of keywords. A document would be of the form (idd, Sd).
We mention this because there is thus no dedicated symbol for an encrypted corpus/document in
[13], and the symbol for an (document’s) encrypted keyword set TS does not perfectly suit any of the
categories in the unification tables either (cf. section 4.2/tables 4-7).

It should be noted that Wang et al. consider Hamlin et al.’s PRF-implementation a trivial solution
since each document is reuploaded under the user’s own key. Hamlin et al. note however that the
trivial solution is to have each user generate a new key for each set of documents that he wishes to
share/are shared with him. They note that their solution does not require the user to maintain many
keys. The share keys are uploaded to the server. Another advantage that their solution has over the
trivial solution is that their user’s queries are of constant size whereas the trivial solution has them
grow linearly in the number of documents shared with the user.

3.2 Patel et al. (2018)

Patel et al. [20] provide three MUSE schemes: “x-uz, that has zero x-user leakage but is very inef-
ficient”, “xu-L, that is very efficient but highly insecure with very large x-user leakage”, and “xu-m,
that is as efficient as x-uL and more efficient than x-uz. At the same time, x-um is considerably more
secure than x-uL” [20].5 Therefore, our discussion will focus on the xu-m implementation. Patel et al.
consider an honest-but-curious adversarial server that colludes with a coalition of corrupt users.

Corpus setup: Patel et al. achieve secure document encryption using the decisional Diffie-Hellman
assumption with a cyclic group with generator g. The corpus owner stores a document d on the server
by calculating gw·d for every keyword w ∈ d and pairs it with encrypted metadata EncKd

(metad) to
form the tuple (gw·d,EncKd

(metad)). He forms these tuples for every document in his corpus before
sending these in random order to the server. The server places them in an array xSet. The document’s
metadata is extra information on the document such as it’s creation time or it’s title. It is only used
by [20]. In Patel et al.’s scheme, uploading and encrypting documents is limited to an initial setup
phase, after which no additional documents can be added to the database. This is because after the
initial setup the output space of the PRF has been determined and adding additional documents will
(likely) lead to conflicts.

Document sharing: To share d with user u, the corpus owner calculates a share key σu,d = d · u−1

and sends it to the server for storage in uSet. (Cf. section 4.2 on why uSet is used instead of Σ).

Searching: To search for a keyword w, user u sends the search query q = (gu·w, pointer(σu,d)),
consisting of a user-specific keyword query and for every shared document one pointer to the share
key, to the server. Patel et al. do not elaborate upon why the user needs to store the pointers instead
of the server storing user-pointer relations but this probably is since now the user-pointer relations
leak gradually as the user queries instead of all of these relations being leaked from the start. The
user now needs to store these pointers pointer(σ) locally. Upon receiving such pointers, the server
retrieves the share keys and applies them to gu·w to produce {(gu·w)σu,d} = {gw·d|w ∈ d}. The server
returns {(gw,d,EncKd

(metad))|w ∈ d}. Notice that σu,d only exists if d has been shared with u.

5 In older versions these were called zx-u, lx-u and mx-u respectively.
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PRF-adaptation: The description above provides the general idea. However, since the dictionary
that keywords are taken from is potentially small, the actual construction involves the use of PRF F to
make the possible input space much larger. This way, an attacker cannot bruteforce the input space.
For encryption two user keys are used per user Ku = {K1

u,K
2
u}, and three document keys are used

per document Kd = {K1
d ,K

2
d ,K

3
d}.

• Document encryption (gw,d,EncKd
(metad)) becomes (gF (K1

d,d)·F (K2
d,w),EncK3

d
(metad)).

• Share key d · u−1 becomes F (K1
d , d) · F−1(K2

u, d) with pointer F (K1
u, d).

• Search query (gu·w, {pointer(σu,d)}) becomes {(gF (K2
u,d)·F (K2

d,w), F (K1
u, d))|d is shared with u}

where F (K1
u, d) is a pointer to σu,d.

Note that this way the PRF prevents dictionary attacks.

3.2.1 Performance

• Query size is linear in the number of documents shared with the user O|Du| due to the inclusion
of a list of share key pointers in the query.

• Storage size is linear in the number of share queries O
(∑

d∈D |AccList(d)|
)

as document shar-
ing requires a share key per user for each document.

• Search time is linear in the length of the array. The array contains all encrypted entries and its
length is linear in total number of share queries O|

∑
u∈U Du|

More details about the performance of xu-m [20] can be found in Table 1, [33], where it is compared
against the construction of Hamlin et al. [13] and the constructions by Wang et al. [33].

3.2.2 Final notes

Patel et al. make use of an accesslist Access(u) that is stored on the server to indicate which documents
a user has access to. The accesslist is updated as needed by the corpus owner. We do not discuss
implementation however since there is no mechanism that enforces the server to adhere to this list.
Consequently, the server may continue to search over and return documents to a user despite access
revocation. Nonetheless, Patel et al. assume an honest-but-curious-server and in this setting this
mechanism does provide some security. Even then, as observed by Wang et al., in a static corpus6 a
user is able to download a document as soon as it is shared with him. Now, Patel et al. do actually have
an Unshare protocol, but it is not covered by any security guarantee (i.e. it is not part of their security
definition). Because of these reasons we have decided to exclude the discussion of the authorisation
tokens.

Lastly, it should be noted that in newer versions of their paper, Patel et al. include a section
detailing possible modifications to their original implementation that allow for distinguishing between
users with search rights and those with both search and edit rights. Additionally, they provide a section
on further reducing the leakage of x-um.

6 I.e. in a corpus in which documents are not added, removed or changed after the initial setup.
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3.3 Wang et al. (2021)

Wang et al. [33] provide three MUSE schemes that “are the first ones in this setting that achieve
search time linear in the number of documents that contain the searched keyword while eliminating
cross-user leakage” [33]. Their schemes offer different security/performance trade-offs and all use
a hash map as an index. Wang et al. introduce a new property called share forward privacy. The
idea behind share forward privacy is that the server should not be able to tell whether the document
being shared contains keywords that have been searched before. The security property share forward
privacy is discussed in detail in the section on security definitions 6.3.1. The three schemes provided
by Wang et al. are:

1. NFNU (No Forward privacy and No User storage): The “basic” scheme that does not offer
share forward privacy but also does not require additional storage.

2. FU (Forward private and requires User storage): Achieves share forward-privacy at the cost
of increased user storage (one counter per unique keyword in the dataset).

3. FNU (Forward private and Not requiring User storage): Achieves share forward-private
scheme at the cost of server-stored oblivious maps.

Wang et al. assume that PRF F is known to the corpus owner and the users. This PRF is used in all
schemes to construct a hash map as an index, i.e. to pseudorandomly encrypt the keywords. None
of the schemes provided by Wang et al. allow the corpus owner to upload documents after the initial
setup for the same reason as Patel et al.: a fixed PRF output space. The adversarial model assumed by
Wang et al. is an active adversarial server that corrupts a subset of users.

3.3.1 NFNU

Corpus setup: In NFNU the corpus owner sets up the online database by encrypting his corpus and
uploading it to the server. For each user u, the corpus owner generates a user key Ku, sends it to u
for storage in his auxiliary data auxu, and stores it in his auxiliary data aux.7 Furthermore, for each u
the owner initialises a list of keyword counters Cntu of size |W | and stores it in Cnt. An empty index
I is sent to the server, whereas Cnt is stored locally by the corpus owner.

Document sharing: To share a document d, the corpus owner increases for each keyword w ∈ d
the user’s keyword counter Cntu[w] by 1 or initialises it to 1 if Cntu[w] did not yet exist. The
corpus owner generates the address of the index entry by using the user’s key Ku to calculate the
address addr = FKu(w,Cntu[w]||0). The value val that is stored at the index address is val =
id(d) ⊕ FKu

(w,Cntu[w]||1) and is an encryption of the document identifier. This way, a list of tuples
(addr, val) is generated and they are sent to the server to update I.

Searching: To search for a keyword w, user u sends the address FKu(w, i||0)
∣∣∣
i=1

to the server. The

server returns the encrypted value retrieved from I and u sends FKu(w, i||0)
∣∣∣
i=2

to the server. This

repeats until the value found by the server is null, indicating that it has not been set before. This

7 Throughout this document we assume that whenever something is stored in private memory, it is done in a way that the
owner of the private memory can recover the information in a meaningful way. For example, the corpus owner can store
(u,Ku) in private memory or make a list of user keys UserKeys and insert Ku at UserKeys[u].
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prompts the server to send the “stop” message to the client. The client keeps generating addresses
until it receives the stop message from the server.

Performance of NFNU
• Query size is linear in the number of keyword occurrences. Since the expected values of a

dictionary are expressed in percentages, query size is linear in the number of documents shared
with a user: O|Du|.

• Storage size (of the index) is linear in the size of the keywords |W | and the number users |U |
since per user one address is needed per keyword in a documentO

(∑
d∈D |W (d)|·|AccList(d)|

)
.

• Search time is linear in the number of documents shared with u that contain the searched
keyword: O|Du(w)|. This is optimal.

3.3.2 FU

User-stored keyword counters: In FU the user’s keyword counters Cntu that were stored locally by
only the corpus owner in NFNU (3.3.1), are now also sent to the respective user for local storage in
his auxiliary data on the corpus auxu. Therefore, to share a document in FU, the owner now also
sends the updated counter to the user.

Searching: To search for a keyword w in FU, user u can now look up Cntu[w] and generate the

query by computing all the relevant addresses {FKu
(w, i||0)

∣∣∣1 ≤ i ≤ Cntu[w]}. Since the keyword
counter is known to the user, he does not need to send an address to the server and await if the server
returns null, for all the computed addresses are initialised. When a document is shared with u the
corpus owner sends the updated keyword counters directly to u. Note that this assumes that the user
is constantly online.

Performance of FU
• Query size is linear in the number of documents a user has access to O|Du|.

• Storage size is linear in the number of keywords per document and in the number of share
queries: O

(∑
d∈D |W (d)| · |AccList(d)|

)
. User storage size is linear in the number of keywords

that require a counter O(|W |). User storage size is not linear in the size of the dictionary from
which the keywords are drawn since the corpus is assumed to be static.

• Search time is linear in the number of documents that contain the searched keyword: O|Du(w)|.
This is optimal.

3.3.3 FNU

Server-stored keyword counters: In FNU the user’s keyword counters are stored in an OMAP OMAPu

on the server. When setting up the online database, the corpus owner now additionally initialises an
OMAPu of size |W | for each user u and sends the key of the OMAP to u for local storage in u’s auxili-
ary data auxu. Throughout this work though we will assume that the user key is the key used for the
OMAP, just like is done by [4], even though this assumption is not made by [33]. Since the keyword
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counters are now stored server-side, to share a document in FNU the owner updates OMAPu with
the updated keyword counters.

Searching: To search for a keyword w in FNU, user u retrieves Cntu[w] from OMAPu[w] and gen-
erates the query by computing the addresses as in FU (3.3.2).

Performance of FNU

• Query size is linear in the number of documents a user has access to O|Du|.

• Storage size is linear in the number of keywords per document and in the number of share
queries O

(∑
d∈D |W (d)| · |AccList(d)|

)
since |W | ≤ |W (d)| · |AccList(d)|.

• Search time is linear in the number of documents that contain the searched keyword O|Du(w)|.
This is optimal.

3.3.4 Final notes

More details about the performance of NFNU, FNU and FU can be found in Table 1 of [33], where they
are compared against xu-m [20] and the construction8 by Hamlin et al. The different schemes are
designed for different use cases. NFNU is used in settings where users have limited permanent storage
or use multiple machines for accessing the database, and where forward privacy is a good trade-off.
FU is employed when forward privacy is important and users use only one device for accessing the
database, as using multiple devices could compromise forward privacy [33]. FNU bridges the two
schemes by providing forward security to multiple devices, but at the cost of performance [33]. Thus,
the schemes are adapted to different use cases.

Wang et al. make mention of an accesslist. This list is only required during the execution of the
Search protocol where it is part of the Server’s input, but it is unused as is evidenced by their protocol
description (“Algorithm 3 Search” [33]). The usage of Access seems to be only of theoretical interest
for the leakage analysis and as such we have omitted it in our description.

Finally, it should be noted that the the storage requirement for the keyword counters – regardless
of storage location and method – is linear in the number of users |U | and the number of keywords:

O
(
|W | · |U |

)
. Either every time a new unique keyword is encountered the counter should be re-

encrypted to prevent the adversary of learning the value of the newly added keyword counter (it is
added since the keyword is encountered for the first time and thus it is initialised to 1) or the keyword
counters should be initialised to the size of the dictionary, which can be large. If English is chosen
as the dictionary of choice then more than 500, 000 entries can be required (Oxford online dictionary
[24]) or even more than 1, 500, 000, 000 entries (Cambridge online dictionary [23]).

3.4 Chamani et al. (2023)

Chamani et al. [4] provide two MUSE schemes that are the first to achieve update handling in the
presence of corrupted parties [4]. These schemes, O-µSE and Q-µSE, are similar and both eliminate
cross-user leakage (even though the definitions of Chamani et al. allow for cross-user leakage [4]).
Both schemes start with the replication of the single-user scheme MITRA [10], under the assumption

8 I.e. the PRF-based construction that we discussed.
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that direct communication between the corpus owner and users is not always possible and thus cannot
be relied upon. Since both schemes use MITRA-replication and only differ in the way they handle
updates, Chamani et al. consider them to be one scheme, µSE, with two implementations. Chamani
et al. consider an active adversarial server that corrupts a subset of users.

Now, the schemes have different efficiency trade-offs but offer the same security [4]. The two
schemes are:

1. O-µSE: Uses server-stored OMAP-keyword counters to address the communication assumption.

2. Q-µSE: Stores the counters user-side and uses server-stored update queues to address the com-
munication assumption.

Both schemes can be extended to include verifiability of search results but this is not within the scope
of our work. Confer appendix A, section 11.1) for a brief coverage.

As stated, both O-µSE and Q-µSE use the replication of an efficient and secure single-user scheme
MITRA. This scheme is dynamic, meaning that documents can be uploaded and updated after the
initial setup. We formally discuss dynamic SSE schemes in section 5.2. Since MITRA is a single-user
scheme the documents cannot be unshared, but in Chamani et al.’s multi-user scheme documents
can be unshared. They replicate MITRA once for each user u and implement an additional unshare
protocol. Chamani et al. assume that PRF F is known to the corpus owner and to the users. This
PRF is used in all schemes to construct a hash map as an index, i.e. to pseudorandomly encrypt the
keywords.

Contrary to earlier implementations, documents can be uploaded to the database after the initial
setup. Similar to previous implementations making use of a PRF, the output space is determined at
setup; once the output space is determined, it can’t be changed. To still allow the uploading of docu-
ments after the initial setup Chamani et al. scale the output space with the expected maximum corpus
size and the expected final set of users. In essence, despite being “dynamic”, the implementation is
still of fixed size but with built-in (extra) expansion room. We address this artificial construction for
extra corpus space in section 5.3 formally by introducing new terminology to cover this.

3.4.1 MITRA

Corpus setup: In MITRA, the single user scheme, the initial setup involves generating an empty index
I and a keyword counter list Cnt of counters Cnt[w], one for each w ∈W .

Document uploading: The corpus owner can upload a document d after the initial setup by in-
creasing the keyword counter Cnt[w] for each keyword w ∈ d by 1 or setting Cnt[w] to 1 if the
keyword is encountered for the first time. Using F and owner key K he creates for each w ∈ d an
index update of the form (addr, val), where addr = FK(w,Cnt[w]||0) is the address to be updated and
val = FK(w,Cnt[w]||1) ⊕ (id(d)||add) is the (encrypted) updated value. This value is an encrypted
document identifier. The authors note that collision between different addresses can occur, but the
probability of occurrence can be decreased by ensuring a large enough output space for F .

Document updating: To update a document d the corpus owner creates a list of keywords to be
added or deleted WList. To add the keywords he generates address-value tuples similarly to upload-
ing. To delete the keywords from the database the corpus owner sends for every w ∈ WList and
user that has access to the document u ∈ uSet(d) an index update of the form (addr, val), where
addr = FK(w,Cntu[w]||0) is the address to be updated and val = FK(w,Cntu[w]||1) ⊕ (d||delete) is
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the (encrypted) updated value. The keyword counter will not be decreased.

Searching: To search for a keyword w the user looks up counter Cntu[w]. He gives a query contain-

ing addresses {FK(w, i||0)
∣∣∣1 ≤ i ≤ Cntu[w]} to the server which returns the values at the specified

addresses. The client decrypts the returned values by XORing the i-th value with FK(w, i||1).

3.4.2 Adapting MITRA

Multiple users: To adapt MITRA to the multi-user setting users are given their own key, namely a
user key Ku. This user key is used for address generation and encryption when a document is shared
with u. Chamani et al. envision that all users have their addresses/values in the same index and thus
– to avoid collision – the output space of the PRF needs to be expanded accordingly. To enroll a user
into the system, the corpus owner generates a user key Ku, stores it locally, and sends it to the user
for local storage.

Document sharing: To share a document d with u the corpus owner generates the addresses and
values under the user’s key (rather than the owner key) and adds them to the Server: (addr, val) =
(FKu

(w,Cntu[w]||0), FKu
(w,Cntu[w]||1) ⊕ (d||add)). The corpus owner updates the user’s keyword

counters and notifies the appropriate parties. Lastly, he adds u to uSet(d).

Document unsharing: To unshare a document d the corpus owner needs to update all addresses
with a value containing id(d) and remove u from uSet(d). We will now discuss the two methods of
storing the keyword counters.

3.4.3 O-µSE

In O-µSE the keyword counters Cntu are stored serverside in OMAPs. Instead of using the counter list
Cnt initialised at the enrollment of user u, a user-specific OMAP OMAPu of size |W | is initialised for
each user. OMAPu contains Cntu and is encrypted using Ku – the user key that is known only to the
corpus owner and the user – and stored serverside. When a user wants to generate a search query for
keyword w he first retrieves the keyword counter value from OMAPu[w]. He uses the retrieved value to
construct the query as described in 3.4.2. Note that all actions/updates that change a keyword counter
are followed by the corpus owner sending an updated version of OMAPu to the server. Additionally,
an OMAP shuffles blocks after it has been accessed, meaning that search operations also update the
OMAP.

Performance of O-µSE

• Query size is linear in the number of documents a user has access to O|Du|.

• Storage size is determined at setup and the required space is linear in the number of keywords
per document and in the number of share queries O

(∑
d∈D |W (d)| · |AccList(d)|

)
.

• Search time is linear in the number of documents that contain the searched keyword O|Du(w)|.
This is optimal.
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3.4.4 Q-µSE

In Q-µSE the keyword counters Cntu are stored locally at user u. At enrollment of user u a user-
specific update list Queueu of size |W | is initialised by the corpus owner and stored at the server in
Queue. Whenever the corpus owner changes a keyword counter’s value, he stores the new values
of the counter in Queueu[w] and instructs the server to update accordingly. When a user wants to
generate a search query for keyword w, he first fetches the contents of its queue from the server. He
then updates his keyword counters as specified and uses the appropriate keyword counter values (that
have possibly been updated) to construct the query as described in 3.4.2.

The attentive reader might ask why in Q-µSE the keyword counters are stored locally and not at
the server if the user is still required to request the queue update values. This is explained in 11.1:
it is much simpler to add verifiability to Q-µSE than to O-µSE and this is why Q-µSE is an important
implementation.

Performance of Q-µSE
• Query size is linear in the number of documents a user has access to O|Du|.

• Storage size is determined at setup and the required space is linear in the number of keywords
per document and in the number of share queries O

(∑
d∈D |W (d)| · |AccList(d)|

)
. User storage

size is stated to be linear in the number of keywords in the corpus O(|W |). It should be noted
though that as the corpus is assumed to be dynamic, a new keyword w /∈ W, (w ∈ ∆) can be
introduced requiring the entire keyword counter list to be reworked. This can be prevented by
having an entry for every word in the dictionary though this could be expensive (3.3.4).

• Search time is linear in the number of documents that contain the searched keyword O|Du(w)|.
This is optimal.

3.4.5 Final notes

Chamani et al. use an authorisation list uSet stored on the server to indicate which documents a user
can access, similar to Patel et al. They state that it is a set of authorisation tokens though the tokens are
never specified. Furthermore, they introduce it as under the symbol AccList, a list of list consisting of
the user identifiers that have access to a given document. It is used in [4]’s security definitions and –
although not indicated in the Update protocol by them – by the Update protocol. The Update protocol
uses it to only update the entries of users having access to the updated document. Because of this, the
authorisation list is an essential part of the implementation which we have chosen to store serverside
as uSet.

The authorisation set uSet does indeed not provide security, for Chamani et al. have a necessarily-
weakened security guarantee for Unshare: “A first observation regarding unsharing in our security
model where corrupt users may collaborate with the server is that this “strong” goal is unobtainable:
The server can always store the old version of the encrypted dataset ... and keep sharing it with the
user. Hence, a more realistic goal in this setting is to ensure that the user cannot learn any information
about future versions of the unshared document” [4]. Therefore, the only practical use of uSet is to
allow the corpus owner to update the entries for all users who have access to the revised document.

In the description given by Chamani et al. document keys Kd are mentioned for backwards com-
patibility. Chamani et al. do not use document keys and as such we omitted them in our description
above and we do not require the storage thereof (cf. section 3.5).
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Finally, just like Wang et al. the keyword counters are at least the size of O
(
|W | · |U |

)
(3.3.4),

which can be large.

3.5 Auxiliary information and the database

Each of the implementations above expects the corpus owner, user, and Server to store some informa-
tion locally. For the corpus owner and user this is done in the local information ι and ιu respectively;
for the Server this is done in the database DB. As explained before, auxiliary information contains
the attributes that are not shared across all implementations. We specifically remarked how this
makes auxiliary information dependent on the implementations considered. In our case there is al-
ways at least one implementation that differs from the others concerning the storage of an attribute.
Therefore, when comparing the four different implementations we have equality between the local
information and the auxiliary data. Since the papers differ in the storage requirements, we will now
provide an overview of the auxiliary information stored by the corpus owner in table 1, the auxiliary
information auxu stored by the user in table 2, and the information stored by the Server DB in table
3.

Clearly, in MKSE by Hamlin et al. auxu ⊈ aux since Ku ∈ auxu but Ku /∈ aux. Similarly, for Patel
et al. {pointer(σ)} ∈ auxu and pointers(σ) /∈ aux. For the other papers auxu ⊊ aux.

Hamlin Patel Wang Chamani
K ✗ ✓ ✓ ✓
Ku ✗ ✓ ✓ ✓
Kd ✓ ✓ ✗ ✗
Cnt ✗ ✗ ✓ ✓

Table 1: Information stored by the corpus owner in ι/aux

Note that the corpus owner can also be required to store keyword counters for the entire corpus,
which we will denote by Cnto· ∈ Cnt, slightly abusing notation.

Hamlin Patel Wang Chamani
Ku ✓ ✓ ✓ ✓
Kd ✓ ✓ ✗ ✗
pointer(σ) ✗ ✓ ✗ ✗
Cntu ✗ ✗ ✗(NFNU) ✓(FU)

✗(FNU)
✗(O-µSE)
✓(Q-µSE)

Table 2: Information stored by a user in ιu/auxu

9 This is the set of document accesslists AccList(d), cf. section 3.4.5
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Hamlin Patel Wang Chamani
xSet ✓ ✓ ✓ ✓

uSet σu,d = (r, P )d σu,d = F (K1
d , d) ·

F−1(K2
u, d)

✗ ✓9

Cnt ✗ ✗ OMAP (FNU)
✗ (NFNU, FU)

OMAP (O-µSE)
Queue (Q-µSE)

Table 3: Information stored by Server in the database

4 Unification of notation and terminology

4.1 Consistency across symbols

Since Curtmola et al. [6] published the first version of their paper back in 2006, the lexicon has
evolved significantly. Changes have occurred in security definitions, standards, and convention re-
garding symbolism and terminology. These changes stem from author’s preferences, the evolution of
techniques used, and from different settings lending themselves to different terminology. We will now
establish a unifying lexicon to remove any ambiguity from the unified security definition. In the next
section we will use these symbols and unify the protocols.

Our unifying lexicon will include all the symbols that are used throughout the papers, only exclud-
ing the symbols that occur in specific contexts such as proof environments and are never used again.
In these contexts the meaning of the symbol is clear from the immediate context. Our approach fo-
cuses on the symbols central to our discussion. The papers referenced are [6] and the four whose
security definitions we will unify: [13], [20], [33], and [4]. Generally speaking, we chose the sym-
bols on which the majority of papers agreed. For example, the security parameter is denoted as λ by
all papers except [6]. Therefore, λ is the symbol that most clearly represents the security parameter.
There are exceptions to this rule however.

Consistency over convention:Sometimes we break this rule for the sake of consistency over con-
vention: we let the choice of one symbol influence other symbols for uniformity. For instance, we
use w for a keyword per convention, as w is consistent across all papers. However, we then choose
to denote the set of keywords by W and the keywords in a given document d by W (d). The nota-
tion W (d) differs from the generally agreed upon symbol Kw(d) but is more consistent. It is both
self-consistent – meaning that since the keywords are denoted by W then it makes sense to have the
keyword set restricted to a document be denoted by W (d) and vice versa – and this notation aligns
better with similar cases. For example, D(u) is the set of corpora/documents10 restricted to those that
u has access to.

Now, it should be noted that the reference papers sometimes lack an instance symbol for a given
set symbol. For example, both [13] and [20] have a symbol for the set of corrupted users (Dc and C
respectively) but do not have a symbol referencing a specific corrupted user. Instead they write “for
i /∈ Dc” (Hamlin et al.) or “for u ∈ C” (Patel et al.). In such cases, we have added an instance symbol
influenced by the set symbol for consistency. In this example, a corrupted user is denoted by c.

10 This depends on the setting: MKSE or MUSE.
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Normal-styled symbols: Among the papers special-styled symbols exists. Examples of these are the
mathcal-package symbols such as A and C. We have almost exclusively chosen the normal-styled sym-
bols with exception to the adversary and simulator, which are algorithms, and the leakage, which is
convention.

Now follows an overview of the unified symbols (tables 4-7) alongside the corresponding symbols
used by the other papers.

4.2 Unification tables

Term Our sym-
bol

Curtmola
et al.

Hamlin et
al.

Patel et al. Wang et al. Chamani
et al.

Corpus
owner set

O - D - - -

Corpus
owner

o· O i; j; Manager;
Corpus-
Owner
(old)

Owner Owner

User set U G Q U U ; U U
User uni-
verse

- U - U - -

User identi-
fier

u U i; j u u u

Corrupted
user identi-
fier

c - - - - -

Coalition
(of corrup-
ted users)

C - Dc C C C

Set of hon-
est users,
corpus
owners.

UH; OH - - - - -

Instance of
an honest
user, cor-
pus owners

h - - - - -

Adversary A A A - Adv Adv
Simulator S S S S Sim Sim
Distin-
guisher

D D D - - -

Table 4: Players/roles

A discussion on the the symbols d, S, TS and the lack of a corpus symbol by Hamlin et al. can be found
in section 3.1.2.
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Term Our sym-
bol

Curtmola
et al.

Hamlin et
al.

Patel et al. Wang et al. Chamani
et al.

Corpus D D - D D D
Encrypted
corpus

xSet c - xSet DictW xSet;
entry xSet′;
DictW

Document
identifier

d; id(d) id(D); D d d id id

(Perfect)
hash table

P - D′; entry D - - -

Keyword w w w w w w
Keyword
set

W - - - - WList

Corpus,
distinct
keywords

Assumed δ(D) - - W -

Id’s of doc-
uments in
D contain-
ing w

D(w) D(w) - - D(w) DB(w)

Document’s
keywords

W (d) δ(D) S; TS Kw(d) Kw(id) Kw(id)

Dictionary ∆ ∆ U W Λ Λ
Corpus
space

2∆ 2∆ U (sic) - - -

Metadata metad - - metad - -
Auxiliary
informa-
tion

aux - -11 - auxD auxD

Local in-
formation

ι - - - σ σ

Table 5: Document and keyword related symbols

In section 2 we described how we can use set symbols instead of instance symbols to denote sets.
Possible confusion arises then when auxiliary information on the corpus auxD is an instance symbol.
There is no auxd. As seen in table 5, to avoid confusion we use aux (and auxu if it belongs to user u).

11 The auxiliary information used by Hamlin et al. is additional information given to the attacker and not information stored
by the user or corpus owner.
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Term Our sym-
bol

Curtmola
et al.

Hamlin et
al.

Patel et al. Wang et al. Chamani
et al.

Security
parameter

λ k λ λ λ λ

Owner key K; Ko· K;mk;KO - K; K K K

User key Ku ukU ; KU Ku Ku; Ku; K̃u Ku Ku

User’s set
of secret
keys12

UserKeys - - - - UserKeys

Document
key

Kd - K; Kd Kd; Kd; K̃d Kid
13 -

Share key σ - ∆u,d Uu,d - -
Encrypted
index

I I - - DictW xSet;
entry xSet′;
DictW

Trapdoor t t tw qSet;
H(u,w)
(hash func-
tion H)

- -

Authorisation
token set

uSet - - uSet - uSet;
AccList

Leakage L L L L L L
History H H - - - -
Access pat-
tern

α(H) α(H) - - - -

Search Pat-
tern

σ(H) σ(H) - - - -

Graph G - G G - -
Edge set E - E - - -
Negligible
function

negl(λ) negl(λ) negl(λ) negl(λ) υ(λ) υ(λ)

Table 6: Keys and security symbols

An authorisation token can be considered the generalisation of a share key. The authorisation tokens
are actually used by [20] and [4] and indicated with U , hence the choice of uSet in table 6. As such,
we have chosen uSet as the authorisation token set which includes the share keys instead of Σ, which
is used per convention for an SSE scheme as evidenced by table 7.

We would like to draw the reader’s attention to both the history and the set of honest users. Here,
H represents the history whilst the H in OH means honest. Note the different styling.

12 This is the set of all secret keys available to the user, including the user key and document keys.
13 Document keys are not required by Wang et al. but they allow document keys as part of the more general auxiliary

information.
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Term Symbol Curtmola
et al.

Hamlin et
al.

Patel et al. Wang et al. Chamani
et al.

Mode (e.g.
share)

mod - - - - mod; op14

Search
reply

Result X - Result - IdSet

Query his-
tory list

qSet - - qSet Q Q

Query q - q H(u,w);
qctd

q q

User’s ac-
cess list

Accessu - - Access(u) Access(u) Access(u)

Document’s
access list

AccList(d) - - AccList(d) Ulist(id) AccList(id);
Access-
List(id)

(External)
Database

DB - - - EDB DB; EDB

Scheme Σ SSE - Σ Σ

Table 7: Server-related symbols and miscellaneous

4.3 Synonyms

Besides using different symbols for the same concepts, the papers15 sometimes vary in vocabulary as
well. Below is an alphabetically ordered list of common synonyms for our chosen terminology.

• Auxiliary information; auxiliary data.

• Corpus; document collection; dataset; file set.

• Corpus space; universe (cf. below).

• Dictionary; alphabet; universe (cf. below).

• Document; unprocessed set (i.e. a set of unencrypted keywords; cf. section 3.1.2).

• Encrypted document; processed set (i.e. set of encrypted keywords; cf. section 3.1.2).

• Document key; “private key (associated to the SSE instance for document d)” by [20]; sometimes
called data key, which is the preferred nomenclature when one key is used to encrypt multiple
documents, i.e. one chunk of data.

• Encrypted corpus; encrypted index (in specific cases; cf. below).

• Encrypted index; encrypted corpus (in specific cases; cf. below).

• Local information; locally stored information; private memory; private storage.

• Owner key; when only one corpus owner is present, the owner key is a master key.
14 Mode mod is used for the Share protocol and op for the Update protocol.
15 Again, the papers [6], [13], [20], [33], [4].
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• Share key; Patel et al. also call this a search token or an authorisation token.

• Trapdoor; token; in some papers “query” can refer to both the trapdoor and to the query itself.

• User; querier (cf. below).

• User key; query key; user’s “secret key”.

We would like to add to this that a document and document identifier are often both denoted by d
by the papers. Only when a clear distinction needs to be made between a document and its identifier
does the symbol id(d) exist. We use the same convention. As such, a search result can return d instead
of id(d). The papers and we as well only use id(d) explicitly when using d would lead to significantly
different results.

Corpus space: Now, we would like to make a few observations regarding the language used across
the different papers. On such observation is that the term “corpus space” has not previously been
used. We have adopted this term to describe what Curtmola et al. refer to as “the set of all possible
documents with words in ∆” and what Hamlin et al. call “universe” (N.b. that Hamlin et al. use
“universe” both for the set of all possible keywords and the set of all possible documents with words
in this keyword space.)

Encrypted index/corpus: Another observation is that “encrypted index” and “encrypted corpus”
can become synonyms when the documents are encrypted as a set of keyword-document identifier
tuples. Both Wang et al. [33] (section 3.3) and Chamani et al. [4] (section 3.4) uploaded documents
as (addr, val) tuples. These tuples served both as part of an index and as an encrypted document.
Thus the encrypted corpus is simultaneously an encrypted index. As a result, the encrypted index I
and encrypted corpus xSet can be used interchangeably for these two works (but not for [13] and
[20] whose works were indexless). This is why [33] and [4] only consider an encrypted index or
encrypted corpus and not both. This can be seen in table 5 and 6) where the index and encrypted
corpus share the same symbol. In our work we will generally use the symbol for an encrypted corpus
xSet. For example, when uploading the corpus it means only the encrypted corpus for the indexless
implementations but it simultaneously means the index for the implementations with index.

Owner key: The papers that concern themselves with the multi-user setting always have one cor-
pus owner who owns one master key. In the multi-key setting there can be multiple corpus owners.
These corpus owners use their keys in the same fashion as the corpus owners in MUSE, though re-
stricted to their own corpora. As such, we have decided to call these keys owner keys. Since MUSE is
MKSE restricted to one corpus owner we always use the term owner key despite [13] not using such
a key. This is because the owner key is a good generalisation of the master key and it allows amongst
others that the protocols we define can be used in both MKSE and MUSE. We use K for the owner key
or Ko· if the owner of the key needs to be made explicit.

Auxiliary data, metadata, and local information: We remind the reader that auxiliary data and
metadata are not the same. Metadata metad is part of a document and contains extra information on
the document (e.g. creation time, snippet, etc.) while auxiliary data is locally-stored information that
is scheme specific.
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Queriers: The concept of users and queriers are closely related. Queriers are however a subset of
users. Given a set of queries, they are performed by a set of queriers. Every querier is a user, but not
every user is necessarily a querier.

Dictionary: Note that the term “dictionary” as used by Chamani et al. refers to a key-value data
structure. This differs from Curtmola et al., who use the term for the keyword space.

5 Unification of protocols

The changes in the lexicon since Curtmola et al. can also be seen in the protocols used and their re-
spective names. As different implementation methods were chosen and more functionalities were ad-
ded to a scheme, different protocols were needed. Using the unified lexicon (cf. section 4.2/tables 4-7)
we will first unify the definition for a static SSE scheme, then we will unify the definition for a dynamic
SSE scheme. Finally, we will show how our definition can be applied to the different papers.

5.1 Static SSE

5.1.1 Algorithms and protocols

We begin by defining a static SSE scheme. Static SSE means that the corpus is unchangeable: no
documents can be added, removed or updated. Documents can be shared with users on an ad hoc
basis, though in practice it does not matter for security if the documents are shared at Setup or
afterwards (section 6). Hence, even though the access rights are not static, the SSE scheme is still
considered static. We envision the usage of the algorithms and protocols of a static SSE scheme in the
following way:

• OwnerKeyGen is used by a corpus owner to generate his owner key. Each owner has one owner
key that is used by the corpus owner to setup his database and to share documents.

• DocumentKeyGen is used by the corpus owner to generate document keys. Each document
key is used to encrypt one document (and is thus also used when sharing that document).
DocumentKeyGen is expected to be a subalgorithm of the Setup algorithm.

• UserKeyGen is used to generate a user’s user key. In MKSE this is done by the user himself. In
MUSE UserKeyGen is expected to be a subalgorithm of the Setup algorithm, meaning that the
keys are generated and distributed by the corpus owner.

• Setup is used by a corpus owner to setup his database and enroll a user set into the system.

• Share is used by a corpus owner to grant an enrolled user access to – i.e. search rights over – a
document. Access granting is done on a per-document basis for one user.

• Search is used by a user to enquire from the server which documents that he has been granted
access to contain the keyword that he specified.

Our envisionment for a static MUSE scheme is illustrated by figure 5, where DocumentKeyGen
and UserKeyGen are subalgorithms of Setup, and where Search is an interactive protocol between
the server and a given user. Note that there are multiple users, each of which interacts with and is

32



Figure 5: General idea of the static MUSE algorithms/protocols

interacted with the other parties as specified. Now, Share is not restricted to single-use but can be
used for each document and user combination separately by the corpus owner. Users are enrolled at
Setup but can only (meaningfully) search when at least one document is shared with them.

Our envisionment for a static MKSE scheme is illustrated by figure 6. We stress that the figures
illustrate protocol usage and as such that in MKSE each corpus owner interacts with the server and
with the users according to the protocols. The general idea behind the protocols differs from the
MUSE scheme in who generates the user key.

5.1.2 Defining static SSE

Broad interpretation of keyword counters: It is tricky to generalise the keyword counter storage
and usage. Often when we talk about keyword counters or the storage thereof we have to list both
Queue and OMAP as possible output. The OMAP and queue are however mutually exclusive and
thus – to shorten the list of parameters – we have chosen to interpret Cnt broadly: Cnt encompasses
both the keyword counters and the methods of storage thereof (Queue and OMAP ). For example, the
Setup algorithm can output to the corpus owner initialised keyword counters Cntu but to the Server
it can output either queues Queueu or oblivious maps OMAPu. Regardless of the implementation, it
is clear that the Server has to deal with keyword counters or the updates thereof. This is properly
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Figure 6: General idea of the static MKSE algorithms/protocols

conveyed by Cntu.

Only the first party provides a keyword counter: Another convention regarding the keyword coun-
ters is to require the keyword counter input only from the first party that inputs it. Take for example
the Search algorithm. It can require the input of the user’s keyword counters Cntu. These counters
can however be stored Serverside in OMAPu requiring only the OMAP as input, or it requires the
user’s locally stored keyword counter Cntu which requires the Server’s Queueu as input as well. We
have decided to require the Cntu input only from the user, since ultimately he is the one who uses the
keyword counters to construct the query.

Output to the invoker: Note that algorithms output only to the invoker of the algorithm, which
generally is the corpus owner. When an algorithm then additionally outputs to a user or to the Server,
it means that everything is outputted to the corpus owner and that he is responsible for sending the
correct information to the respective party.

Semicolon to separate parties: In our definition for static SSE the in- and outputs of different parties
are separated by semicolons (;), The in-/output before the semicolon is from/to the corpus owner and
the users, and the in-/output after the semicolon is from/to the Server.
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Definition 3 (Static Searchable Symmetric Encryption). An Searchable Symmetric Encryption (SSE)
scheme over a dictionary ∆ is a collection of 6 polynomial-time algorithms and protocols Σ = (OwnerKeyGen,
DocumentKeyGen, UserKeyGen, Setup, Share, Search). It contains the key-generation protocols:

K ← OwnerKeyGen(1λ): is a probabilistic key generation algorithm. It takes as input security para-
meter λ, and outputs an owner key K.

Kd ← DocumentKeyGen(1λ, d): is a probabilistic key generation algorithm. It takes as input security
parameter 1λ and document d, and outputs a document key Kd.

Ku ← UserKeyGen(1λ, u): is a probabilistic key generation algorithm. It takes as input security para-
meter 1λ and user identifier u, and outputs the user key Ku.

and furthermore the algorithms/protocols

(KU , [KD], [Cnt];xSet, [uSet]) ← SetupK(D,U, [|W |], [N ]): is a probabilistic algorithm to setup an
initial database and enroll a user set. It takes as input owner key K, initial corpus D, an a user set U
for enrollment. Depending on the implementation it also requires as input the final number of keywords
in the corpus |W |, and/or the total size of the final corpus N . It outputs an encrypted corpus xSet to the
Server; it possibly outputs to the Server an authorisation token set uSet and a list of keyword counters
Cnt; for each user u ∈ U it invokes the UserKeyGen algorithm and it outputs to the corpus owner
the users keys KU ; it possibly outputs to the corpus owner the document keys KD, and the keyword
counters Cnt.(
[pointer(σu,d)], [Kd], [Cnt′u];xSet

′, [uSet′]
)
← ShareK(u, d, [Kd], [Cntu]): is a probabilistic protocol

to share an uploaded document with an enrolled user. It takes as input owner key K, user identifier u
and document d. For some implementations it also takes as input the document key Kd and the user’s
keyword counters Cntu. It outputs to the Server encrypted entries xSet′, and for some implementations
also an update to the authorisation token set uSet′. For some implementations it outputs to the user a
pointer to the share key pointer(σu,d), document key Kd, and an update to u’s keyword counters Cnt′u.

(Result, [Cntu]) ← SearchKu
(w, [(id(d),Kd)d∈Du

], [Cntu];xSet, [uSet]): is a deterministic protocol
to search over the part of the database accessible to the user/querier. It takes as input from the user
his key Ku and keyword w, and from the Server the encrypted documents xSet; it possibly takes as
input from the user the document identifier and key (id(d),Kd) and/or the user’s keyword counters
Cntu; and it possibly takes as input from the Server the authorisation token set uSet. It outputs to the
user the search result Result, which is the document identifiers that u has access to and that contain
the queried keywords: Du(w). It possibly outputs to the Server and/or the user an updated keyword
counter Cntu.

No enroll algorithm: We note that our definition does not use an Enroll algorithm. This is because,
security-wise, all covered papers that implement an Enroll algorithm assume in their security game
that all users are enrolled immediately after the uploading of the corpus. Thus, security-wise there is
only a document-upload-and-user-enrollment phase – which we implement via the Setup algorithm –
followed by a Share phase, followed by a Search phase.

Interactive Search protocol: For SSE schemes we use an interactive Search protocol run by the
user and the Server. In [13] and [20] there are always 2 rounds of communication: the user sends his
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search query to the Server and the Server sends back his reply. In these cases we will split the Search
protocol in two algorithms: Query and Search. Query is run by the user to generate the input for the
Search query q. He then sends q to the server, who executes the Search algorithm and sends back the
response Result. For the exact in and outputs for [13] and [20] we refer back to sections 3.1 and 3.2
respectively.

No Decrypt: The algorithm “Dec[rypt]” is used by Curtmola et al. to decrypt retrieved documents. It
is therefore not part of newer SSE schemes (cf. section ??) since it does not concern itself with security.
Furthermore, “SearchReply” is used by Patel et al. to let the server send its reply to a querying user.
The other papers consider an interactive Search-protocol which includes the Server’s reply. We have
chosen the interactive Search protocol over requiring that the invokement of Search is immediately
followed SearchReply.

5.2 Dynamic SSE

A static SSE scheme can be extended to become dynamic. This means that the corpus is no longer
static and nor are the access rights. In dynamic SSE:

• Documents can be added to the corpus after the initial setup of the database.

• Documents can be updated, i.e. the keywords can be modified.

• Documents can be unshared from users, i.e. their search/access rights can be revoked on a
per-document basis.

We envision the usage of the algorithms and protocols of a DSSE scheme in the following way:

• Upload is used by a corpus owner to add a new document to the database after the initial
upload. It has DocumentKeyGen as a subalgorithm. Note that Upload does not grant any access
rights. This is done by the Share algorithm.

• Update is used by a corpus owner to add keywords to or delete keywords from a document. It
subsequently outputs updated encrypted entries for all users that the document has been shared
with.

• Unshare is used by a corpus owner to revoke a user’s access to a document.

Our envisionment for the extending protocols of a dynamic SSE scheme is illustrated by figure 7.
Note that the protocols Update and Unshare do affect users, but do not provide output to the affected
user(s). For an Unshare operation it is practically speaking desirable to notify a user, but theoretically
speaking not necessary. For an Update operation the users do not even have to be notified.

Definition 4 (Dynamic Searchable Symmetric Encryption). An index-based Dynamic Searchable Sym-
metric Encryption (DSSE) scheme over a dictionary ∆ extends an index-based SSE scheme (def. 3) with
the following polynomial-time protocols (Upload, Update, Unshare) such that

xSet′ ← UploadK(d): is a probabilistic algorithm to add documents to an existing corpus. It takes as
input owner key K or document key Kd and document d. It outputs encrypted entries xSet′.
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(Cnt′;xSet′) ← UpdateK(id,WList,mod,KU , CntU ;uSet): is a probabilistic protocol to change an
uploaded document’s keywords. It takes as input owner key K, document identifier id, a list of keywords
that are added or removed WList, a mode indicator mod ∈ {add, delete}, all affected users their user
keys KU and keyword counters Cnt′, specifically including the corpus owners keyword counters; the
Server provides input uSet. It outputs updated keyword counters Cnt′ to the corpus owner, the Server
and the respective user; it outputs updated encrypted entries xSet′ to the Server.

(xSet′, uSet′) ← UnshareK(d, u, Cntu): is a deterministic protocol to revoke an enrolled user’s access
from an uploaded document. It takes as input owner key K, document d, user identifier u, and u’s
keyword counters Cntu. To the server it outputs updated (i.e. overwritten) encrypted entries xSet′ and
an updated authorisation token set entry uSet′ that now excludes u from access to d.

On the usage of encrypted entries xSet and its relation to encrypted index I, see section 4.3. Now,
we would like to point out that Hamlin et al. do have an Upload algorithm, just like in Patel et al. the
server can however perform a replay attack after a document has been shared. For security purposes
then all Share queries occur effectively before any Search query happens. Effectively, this means that
there first is a Setup phase and only after its completion is can users Search. Hamlin et al.’s imple-
mentation is security-wise then static, but the scheme does allow the uploading of documents after
Share queries have happened, meaning that implementation wise it is partly-dynamic. “Partly-”, be-
cause even though there is an Upload algorithm, there is no Update or Unshare algorithm. This paper

Figure 7: General idea of the static MKSE algorithms/protocols
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covers the security of the different implementations and as such we consider [13]’s implementation
to be static (cf. section 5.4).

5.3 Fixed-size and resizable DSSE

We would like to point out that according to our definition of DSSE it is possible for the implement-
ation to require the corpus owner to indicate the final size of the corpus and (related to this) the
final number of users. The paper by [4] requires this and is the only paper that allows the upload-
ing of document after the initial setup (security-wise). As such, none of the papers have a dynamic
SSE scheme that can grow as the circumstances change. We will now introduce the new notions of
“fixed-size dynamic SSE” and “resizable dynamic SSE”.

Definition 5 (Fixed-Size Dynamic Searchable Symmetric Encryption). A dynamic searchable symmet-
ric encryption scheme that determines the final total size of the corpus with the invoking of the Setup
algorithm is called fixed-size dynamic searchable symmetric encryption (FS-DSSE) scheme.

Definition 6 (Resizable Dynamic Searchable Symmetric Encryption). A dynamic searchable symmetric
encryption scheme whose total size changes as a result of invoking the Share and Unshare protocols and
whose size is not determined during the invoking of the Setup algorithm is called a resizable dynamic
searchable symmetric encryption (RS-DSSE) scheme.

With the definitions above we can now distinguish between different implementations. It is important
to distinguish between FS-DSSE and RS-DSSE for the following reasons:

• If the number of users is higher than initially suspected, the entire database needs to be re-
deployed. This requires a new Setup phase and the Sharing of the documents again.

• If the number of documents is higher than initially suspected or when many keywords are added
to the documents, then the entire database needs to be redeployed as well.

• If the number of users is much lower than expected for at least a significant amount of time,
then the database size could have been lower and the company could have saved on storage
costs.

• If the number of documents is much lower than expected or the adding of documents to the
database takes a significant amount of time, then the database size could have been lower and
the company could have saved on storage costs.

The limitations mentioned above are indeed significant. As Chamani et al. note, that to “efficiently
support updates on the outsourced database (without re-running the “expensive” setup), ... is a
necessary property for most real-world applications.” As such, applications with an ever-growing
number of users or documents would consider “resizable” to be a necessary property. We note that
[4] did not identify the fixed-size DSSE scheme as an open research question into a resizable DSSE
scheme. We therefore consider this to be a novel identification of an open research question.

5.4 Application of our definition

Our protocols do not match one on one with the protocols used in the different papers. Therefore, we
will now give a list-overview relating our definition to the protocols used by the different papers. For
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the exact workings of the different protocols we refer back to section 3.

Empty initialisation: Note that algorithms and protocols can initialise a list, counter, etc. without
giving it a concrete value, and that author often assume this initialisation without making mention of
it anywhere. In our paper the initialisation always happens when it is the output of a given algorithm
and protocol. This can mean that it is initialised without a value. For example, in Chamani et al. no
keyword counter values are given when a user is enrolled into the system during Setup, and thus the
user is given empty but initialised keyword counters in the case of Q-µ or the server is given an OMAP
without values in O-µSE. This process is described in section 3.

A reminder: We remind the reader that auxiliary information auxu is all information stored loc-
ally by the user, aux is all information stored locally by the corpus owner, and DB is all information
stored by the Server. Their contents can be found in tables 1, 2 and 3. These tables are found in
section 3, which also describes the different implementations covered in this paper. Furthermore, we
are going to use the same convention for Cntu as used in section 5 (cf. section 5.1 for an explanation).
This convention is for example apparent and of great use in the Search protocol by [4]. Note that [33]
only have an implementation that stores the keyword counters serverside in OMAPs, thus allowing us
to use the more specific OMAPu.

Document keys in [20]: A specific note on document keys in Patel et al.: if a user inputs docu-
ment key Kd to a protocol we assume that it is the document key Kd = (K1

d ,K
3
d) ∈ auxu and not

Kd = (K1
d ,K

2
d ,K

3
d) ∈ aux (cf. section 3.2).

List-overview of the application of our protocols: We will now link our algorithms/protocols to
those used by Hamlin et al. [13], Patel et al. [20], Wang et al. [33], and Chamani et al. [4].

OwnerKeyGen is used by a corpus owner to generate a owner key that can be used to setup an
initial database with Setup.

– In [13] it is not implemented. Instead, document keys are used to setup the corpus and share
it. Hamlin et al. elaborate a lot on the necessity of tying the document key to the share key
and thus readers who are familiar with [13] might find it hard to adjust to these keys being
called owner keys. Additionally, real-life corpus owners are modeled in the security game by a
set of corpus owners, and therefore the real-life corpus owner currently has one document key
for each document and not one owner key per document. One owner key per corpus would be
contrary to our envisionment of an owner key as laid out in section 4.3.

– In [20] it is part of the protocol “EncryptDoc”. EncryptDoc takes as input security parameter 1λ

and corpus D. It outputs owner key K to the corpus owner, and database DB to the Server.
– In [33] it is part of the protocol “Setup”. Setup takes as input security parameter 1λ, user set
U for enrollment, and corpus D. It outputs auxiliary information aux to the corpus owner; to
u ∈ U it outputs auxu; and it outputs DB to the Server.

– In [4] it is implemented by protocol “Setup”. Setup takes as input security parameter 1λ, final
size of the index N , number of distinct keywords |W |, total number of users |U |, and initial
corpus D. It outputs auxiliary information on the corpus aux to the corpus owner; and it
outputs database DB to the Server.

DocumentKeyGen is used by a corpus owner to generate a document key that can be used to
encrypt an individual document with Upload.
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– In [13] it is implemented by the protocol “DataKeyGen”. DataKeyGen takes in security para-
meter 1λ, and outputs to the corpus owner a document key Kd.

– In [20] it is part of the protocol “EncryptDoc”. EncryptDoc takes as input security parameter 1λ

and corpus D. It outputs owner key K to the corpus owner, and database DB to the Server.
– In [33] it is not implemented.
– In [4] it is not implemented.

UserKeyGen is used to generate a user key that can be used to encrypt in a way that grants access
control.

– In [13] a user is assumed to have his own user key but the keys their distribution is not ex-
plained. Since there are multiple corpus owners, each user could well be expected to generate
his own user key. UserKeyGen is implemented by “QueryKeyGen”. QueryKeyGen takes as input
security parameter 1λ, and outputs to the invoking user the user key Ku.

– In [20] it is used by the corpus owner as part of the protocol “Enroll”. Enroll takes as input
security parameter 1λ and user identifier u. It outputs user key Ku to both the corpus owner
and u.

– In [33] it is part of the protocol “Setup”. Setup takes as input security parameter 1λ, user set
U for enrollment, and corpus D. It outputs auxiliary information aux to the corpus owner; to
u ∈ U it outputs auxu; and it outputs DB to the Server.

– In [4] it is used by the corpus owner as part of the protocol “Enroll”. Enroll takes as input
security parameter 1λ and user identifier u. It outputs user key Ku. The tuple (u,Ku) is stored
by the corpus owner locally, and Ku is stored by u in private memory.

Setup is used by a corpus owner to setup an initial database with initial documents and initial
users. Note that the users do not have access rights at this point.

– In [13] it is implemented by “ProcessSet”, which is used to upload a document. Remember that
each corpus has a size of 1 document. As such, our envisionment of Setup is congruent with
the ProcessSet algorithm by [13]. Contrary to the owner key in our envisionment, ProcessSet
takes as input document key Kd and document d. It outputs an encrypted document xSet′ to
the Server for inclusion in the database.

– In [20] it is part of the protocol “EncryptDoc”. EncryptDoc takes as input security parameter 1λ

and corpus D. It outputs owner key K to the corpus owner, and database DB to the Server.
– In [33] it is part of the protocol “Setup”. Setup takes as input security parameter 1λ, user set
U for enrollment, and corpus D. It outputs auxiliary information aux to the corpus owner; to
u ∈ U it outputs auxu; and it outputs DB to the Server.

– In [4] it is implemented by protocol “Setup”. Setup takes as input security parameter 1λ, final
size of the index N , number of distinct keywords |W |, total number of users |U |, and initial
corpus D. It outputs auxiliary information on the corpus aux to the corpus owner, and it
outputs database DB to the Server. Setup in [4] does not enroll an initial set of users.

Upload is used by a corpus owner to upload a document to an existing database.

– In [13] the corpus is static security-wise and therefore – from a security point of view – it is not
implemented. Cf. section 5.2. For this reason the algorithm “ProcessSet” does not implement
the Upload algorithm.
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– In [20] the corpus is static and it is not implemented.

– In [33] the corpus is static and it is not implemented.

– In [4] it is part of the protocol “Share”. Share takes as input owner key K, user identifier u,
document d, and mode mod ∈ {share, add&share}. Share with mod = add&share outputs an
encrypted document xSet′ for inclusion in xSet to the Server; and it outputs updated keyword
counters Cntu to the Server and to the corpus owner.

Search is initialised by a user once to search through all the document he has access to. The server
returns all relevant document identifiers.

– In [13] it is implemented by the combination of “Query” and “Search”.

* Query is run by a user and takes as input keyword w and user key Ku. It outputs query q to
the user.

* In Hamlin et al. Search is run by the server and takes as input a user-specific share key
σu,d, query q and an encrypted document xSet′. In [13] the search protocol needs to be
repeated over all documents a user has access to Du, but since our Search protocol is invoked
once by the user we assume that the server iterates Hamlin et al.’s Search protocol over all
documents u has access to on its own. It then outputs Result to the querier, which are the
document identifiers of the documents that u has access to and that contain the queried
keyword: Du(w).

– In [20] it is implemented by the combination of “SearchQuery” and “SearchReply”.

* SearchQuery is run by the user and takes as input keyword w, user identifier u, user keys
Ku = (K1

u,K
2
u), and for every document that u has access to the tuple (id(d),K1

d ,K
3
d) con-

sisting of the document identifier and two document keys. It outputs a query set qSet to the
user.

* SearchReply is run by the server and takes as input a query set qSet. It outputs Result to the
querier, which are the document identifiers of the documents that u has access to and that
contain the queried keyword: Du(w).

– In [33] it is implemented by “Search”. Search takes as input the user’s key Ku, his auxiliary data
auxu, and keyword w, and from the Server DB. It then outputs Result to the querier, which
are the document identifiers of the documents that u has access to and that contain the queried
keyword: Du(w). Depending on the implementation it also outputs OMAP ′ to the server, even
though this is not mentioned by [33].

– In [4] it is implemented by “Search”. Search takes as input user key Ku, auxiliary data auxu

and keyword w, and from the server DB. It outputs Cntu to the querier first – who uses it for
address generation – and later it outputs to the user Result, which are the document identifiers
of the documents that u has access to and that contain the queried keyword: Du(w). Finally, it
outputs Cntu to the Server.

Share is used by a corpus owner to share an uploaded document with an enrolled user.

– In [13] it is implemented by “Share”. It is invoked by a corpus owner and takes as input an
owner key K, a recipient u and his key Ku, and an encrypted document xSet′. It outputs share
key σu,d to the server.
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– In [20] it is implemented by “AuthComputing”. AuthComputing takes as input user identifier u,
user key Ku = (K1

u,K
2
u), document d, and owner key K = (K1,K2,K3). It outputs share key

σu,d and pointer pointer(σu,d) to the Server; it outputs to u document key Kd = (K1
d ,K

3
d) and

pointer pointer(σu,d).

– In [33] it is implemented by “Share”. Share takes as input document d, user identifier u, the
corpus owner’s auxiliary data aux, and database DB. It outputs encrypted entries xSet′ to the
server, and updated keyword counters Cntu to the appropriate parties.

– In [4] it is part of the protocol “Share”. Share takes as input owner key K, user identifier u,
document d, and mode mod ∈ {share, add&share}. Share with mod = share outputs updated
keyword counters Cntu to the Server and to the corpus owner; and it outputs an update uSet′

to uSet.

Enroll is used by a corpus owner to enroll a new user in the system. The user is granted access to
document through the Share protocol.

– In [13] a user must generate his own user key by invoking the QueryKeyGen protocol (cf. our
UserKeyGen).

– In [20] it is implemented by “Enroll”. Enroll takes as input security parameter 1λ and user
identifier u. It outputs user key Ku to the user and Ku to the corpus owner.

– In [33] it is not implemented.

– In [4] it is implemented by “Enroll”. Enroll takes as input security parameter 1λ and user
identifier u. It outputs Ku to to the corpus owner, and auxiliary information auxu to u.

Update is used by a corpus owner to insert/remove a list of keywords in/from an existing docu-
ment.

– In [13] it is not implemented

– In [20] it is not implemented.

– In [33] it is not implemented.

– In [4] it is implemented by “Update”. Update takes as input owner key K, document identifier
id(d), a list of keywords WList, a mode mod ∈ {add, del}, the set of users that have access to
the document AccList(d) = uSet(d) and for every u ∈ AccList(d) auxiliary information auxu.
It outputs the set of entries that the server needs to update xSet′ to the Server, and it outputs
the users their updated auxiliary data auxU to the respective user and to the corpus owner.

Unshare is used by a corpus owner to remove an enrolled user his access to an uploaded document.

– In [13] it is not implemented.

– In [20] it is not securely implemented

– In [33] it is not implemented.

– In [4] it is implemented by “Unshare”. Unshare takes as input owner key K, user identifier u,
document d, and u’s keyword counters Cntu. It outputs to the Server updated – i.e. overwritten
– encrypted entries xSet′ and an update to the authorisation token set uSet′ that excludes
u from access to d. Note that the keyword counters are not updated (and thus not given as
output).
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6 Current security definitions

Different security definitions: Each of the papers currently uses his own security definition. The
definition by Hamlin et al. is indistinguishability-based and written as a sequence of actions under-
taken by the Adversary followed by actions undertaken by the Challenger; Wang et al. and Chamani
et al. take the same approach as each other and have semantic security, which is a simulation-based
definition where the real world is compared against an simulated world; and Patel et al. have a
definition that compares the server’s view against a simulated view. Patel et al.’s definition does differ
slightly from that of [33] and [4] in that their definition does not involve an adversary with advant-
age but rather involves computational indistinguishability. We provide more information on that in
section 6.2.

Indistinguishability: The intuitive notion behind indistinguishability-based security definitions is that
an adversary provides two inputs of his choice to a challenger who executes the algorithms/protocols
as normal, but that the adversary cannot distinguish between the returned outputs. The reasoning
behind this is that if this is so for any input the adversary gives, then any discernible link between
the input and output is broken. In SSE, the basic idea is that the adversary provides a challenger
with two options for the corpus and a corresponding sets of queries. The challenger randomly selects
one of these options and executes the scheme as instructed: he encrypts the corpus and executes the
queries. The results are then returned to the adversary. The adversary then guesses which of the two
options was executed by the challenger. If the adversary cannot know or make an educated guess on
which option the challenger selected then the adversary has a 1/2 probability of guessing correctly. To
measure the security of the implementation we can thus examine how much better the adversary can
guess correctly than 1/2. What he can do better than 1/2 is called his advantage. We say then that
an implementation is secure if the adversary’s advantage is not “significant”. An indistinguishability
game thus analyses an attacker’s advantage to determine if a scheme is indistinguishably secure. Of
course, an attacker with infinite computational power or unlimited time could always improve his
odds significantly over 1/2 by computing the outputs for all possible inputs. To prevent this, the com-
putational power of an adversary is bounded polynomially in the security parameter (λ).

“Significantly” formalised: The question then remains what is a “significant” advantage? The ad-
versary’s success can always be written as 1/2+ ε(λ) where ε(λ) : N→ [0, 1/2] denotes the advantage
function. Here, a success of 1/2 represents random guessing. If the adversary consistently performs
worse than random guessing, he can simply guess complement to achieve a reliable advantage. The
function ε(λ) is a measure of how much better than random guessing the adversary is capable of.
An advantage of ε(λ) ≤ negl(λ), where the function negl : N → R is a negligible function, en-
suring that ε(λ) becomes insignificant (syn. negligible) as λ grows large. Formally, a negligible
function negl(λ) is such that for any positive polynomial poly(.) and sufficiently large λ it holds that
|negl(λ)| < 1/poly(λ). If there does not exists such a negligible function for a given advantage ε(λ)
then the advantage is considered significant.

Semantic security: The intuitive notion behind semantic security is that an adversary provides input
of his choice to a challenger, who either executes the algorithms/protocols as normal or simulates
their executions. The execution of the protocols are called the “real world” and the simulated proto-
cols are called the “simulated world” or the “ideal world”. The goal is to ensure that the adversary
cannot distinguish between the real world and the ideal world. If an adversary cannot distinguish
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between the real and the ideal world, then the simulator running the ideal world must have access to
all sources of information leakage. Suppose that there is a mechanism that leaks information to the
adversary but that the mechanism is not given to the simulator; the adversary can then use this mech-
anism to gain a significant advantage over the simulator. This contradicts our initial assumption that
the adversary cannot distinguish. Thus, when defining semantic security the leakage of the scheme
needs to be made explicit and be given to the simulator. To show the security of a scheme, the inform-
ation/leakage given to the simulator is kept to a minimum. A modern approach to semantic security
is to define the simulator using a leakage function L. Then, when an implementation is discussed,
there is a section describing the leakage function for the given implementation. As Patel et al. note,
this leakage function is defined as a description of information instead of a quantifiable value. This
makes leakage hard to compare across schemes.

(Non-)adaptive adversary: Now, post-Curtmola there are two types of adversaries: selective/non-
adaptive adversaries and adaptive adversaries. Adaptive adversaries are able to determine a query
after the execution of previous queries and selective adversaries determine all queries before any of
them is executed. In the case of Curtmola et al. where only Search queries existed, it meant that
non-adaptive definitions only provided security to clients that generated their keywords in one batch,
whilst adaptive definitions provided privacy even to clients who generated keywords as a function of
previous search outcomes. For such definitions, it was shown by [6] that for non-adaptive adversaries
semantic security and indistinguishability are equivalent. It was then shown by them that semantic
security implies indistinguishbability when the adversary is adaptive, but equivalence was not shown
nor disproven. It has since been assumed that semantic security is stronger than indistinguishability.
In the following section we will discuss the individual security definitions. In these security definitions
there are besides Search queries also Share queries, and in the case of dynamic SSE also Upload, Up-
date and Unshare queries. All of these queries are generated in one batch by a nonadaptive adversary,
whereas each query generated can depend on the outcome of all previously-generated queries in the
case of an adaptive adversary.

6.1 Hamlin et al.

Hamlin et al. consider the setting where corpus owners store their encrypted documents on a remote
server and can selectively share their documents with each other. The adversary is assumed to be the
Server colluding with a coalition of malicious corpus owners C. Notable design choices by Hamlin et
al. are:

• There is one security definition that covers both document content privacy and search query
privacy. Document content privacy is covered by the adversary providing two choices in corpora
sets and then trying to guess which choice the challenger made. Search query privacy is covered
by providing the adversary with the appropiate queries/trapdoors. Curtmola et al. had already
shown that these two security properties should not be separated since knowing the contents of
the documents leaks information about the contents of the query and vice versa. Despite this,
previous definitions such as [21] potentially still defined the two separately.

• There is no oracle access for the adversary. This is similar to the design choice by [6]. This lack
of access is does not weaken the security guarantee of [6] and neither does it here. Since the
definition of SSE is with respect to document collections as opposed to individual documents,
it is sufficient for their security. The idea is this: instead of accessing the oracle a polynomial
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number of times, the queries to the oracle are instead included in both choices given to the
challenger.

• The security against cross user leakage is tested by giving the adversary access to all information
stored by a coalition of corrupted corpus owners. As explained in section 2, is this a very strong
adversarial model.

• The explicit consideration of data owners that can share documents with honest users. It was
shown by [12] that the proposed definition of [21] – who explicitly prevented the adversary
from sharing documents with honest users – allowed the security of a user to be compromised
when a malicious corpus owner shares documents with him. The problem arose from the share
key not depending on the shared document, which allowed any query under the honest user’s
key to be transformed into a query under the key of the malicious corpus owner. To address
this, [13] make the share keys dependent on the document key of the document shared (cf.
section 3.1). To guarantee security they allow the coalition of corrupt corpus owners to share
documents with users.

• In the security game all documents that are shared, are assumed to be accepted by the recipient.
Thus the security game assumes that documents that would be rejected by a user due to leaking
too much information (as explained in section 2), are not shared.

• Users are required to make distinct Search queries. Thus, if a real-world user makes non-unique
queries then this is leaked to the adversary.

• The definition by [13] is selective and indistinguishability-based and not simulation-based.

• Corpus owners do not have access to the user keys. As such, when a document is shared the user
needs to generate and upload the share key. The contents of the share key are thus unknown to
the (malicious) corpus owner.

Definition 7 (Secure SSE (Hamlin et al.)). A SSE scheme is secure if every PPT Adversary A has only
negl(λ) advantage in the following security game with a challenger C, given dictionary ∆ and security
parameter λ:

1. A sends to C:

(a) A set of users U , a set of corpus owners O, and a subset of of corrupted data owners OC . We
use OH = O\OC for the honest corpus owners.

(b) For every corrupted corpus owner c ∈ OC his document key Kc
d.

(c) For every corpus owner o· ∈ O two sets of keywords W 0
o· and W 1

o· are chosen from the corpus
space 2∆ to test indistinguishability, with the restriction for c ∈ OC that W 0

c = W 1
c and for

h ∈ OH that |W 1
h | = |W 1

h |.
(d) A bipartite share graph G = (U,O,E) with edges defining the access relationships between the

corpus owners (each having one document only) and the users.

(e) For every user u ∈ U two sequences of keywords (w0
1, . . . , w

0
n)u and (w1

1, . . . , w
1
n)u for some

n ∈ N>0. Given u and the corresponding two sequences, if u has been granted access – i.e.
edge (u, o· ) ∈ E – then a search hit in one set results in a search hit in the other set – i.e.
(w0

i ∈W 0
o· ) ⇐⇒ (w1

i ∈W 1
o· ).
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2. C performs the following:

(a) Chooses a random bit b ∈ {0, 1}.
(b) For each user u ∈ U he generates Ku ← UserKeyGen(1λ).

(c) For each o· ∈ O he generates Ko·
d ← DocumentKeyGen(1λ).

(d) For each corpus owner o· ∈ O he uploads the corpus xSeto· ← Setup
Ko·

d

(Do· )

(e) For each encrypted document xSeto· with o· ∈ O he generates a share key σu,o· ← ShareKu(K
o·
d , xSeto· ).

(f) For each user u and keyword w ∈ (wb
1, . . . , w

b
nu

)u he generates a query q ← QueryKu
(w) and

adds it to the initially empty list qSet.

(g) Sends {xSet}O, {σu,o· }(u,o· )∈E , and qSet to A.

3. A outputs guess b′, and its advantage is AdvA(1
λ) = p(b = b′).

Here we have combined [13]’s protocols Share and ProcessSet into one. The share keys are assumed
to be generated by the users themselves, therefore the corpus owner sends his data key Kd to the
querier via a secure channel. Searching is performed by searching through {xSet}O.

6.2 Patel et al.

Patel et al. consider the setting where one corpus owners store his encrypted documents on a remote
server and can selectively share his documents with users. The Adversary is assumed to be an honest-
but-curious Server that corrupts a subset of the users C. Notable design choices by Patel et al. are:

• The absence of unsharing. “The ability to revoke access is crucial” according to [20], but at the
same time they “assume no revocation (unsharing) is made [in their security definition] as a
curious Server may keep all authorisation tokens provided”.

• All share queries occur before any Search query takes place since “a curious server can always
postpone or duplicate the execution of a query” [20].

• Contrary to the other security definitions, they do not use an adversary but rather define secur-
ity in terms of computational indistinguishability. This computational indistinguishability must
hold for “instance”, where the instance is what the adversary offers to the challenger in the se-
curity games by the other authors. Two probability distributions are considered computationally
indistinguishable when there is no efficient algorithm that can distinguish between them. As
such, if we provide the output of the real world (i.e. the “server view sView”) and the ideal worl
to a PPT adversary – where PPT is the efficiency requirement and the adversary is an algorithm
– then he cannot distinguish16 between the two if and only if the probability ensembles are
computationally indistinguishable. Proving this formally is outside the scope of this paper, but
the idea is that instead of requiring computational indistinguishability for any given instance,
we can allow the adversary to determine the instance and then make a guess given the output
of the experiment.

• The queries are defined in their entirety before any of the queries are executed. As a result, the
security guarantee is for a selective adversary, not an adaptive adversary.

16 I.e., with a significant advantage.
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• The cross-user leakage of the implementation by [20] is considerable: If an honest and a corrup-
ted user share a document, the queried keywords belonging to this document can be leaked to
the server [20]. Such leakage is allowed by their security definition as it makes use of a leakage
function L.

Definition 8 (Instance). An instance of SSE is defined as I = (D,Access, (u,w)i∈[n]) consisting of a
corpus D, collection of subsets of document identifiers Access, and n tuples of user and keyword combin-
ations (u,w)i∈[n]. The role of Access is to define the document-access rights. For each id ∈ Accessu a
Share query needs to be executed. Thus Access servers the same purpose as the share graph in [13].

Patel’s et al.’s definition explicitly the corpus and the documents in the corpus as part of an instance.
We have removed this double-sidedness since a corpus consists of documents: D = {id(d),W (d),metad}d∈D,
where the metadata is unique to Patel et al (cf. section 2). For the same reason Patel et al.’s security
definition found below does not explicitly contain the set of documents. We assume a dictionary ∆
and PPT Adversary. As discussed in section 5.1, we cover the Enroll algorithm by the Setup protocol.

Definition 9 (Secure SSE (Patel et al.)). Let the view of Server corrupting users C for instance I be the
output of the following experiment:

sViewU,C(λ, I):

1. K ← OwnerKeyGen(1λ);

2. (KU , xSet)← SetupK(D,U);

3. (uSet, {{Kd}d∈Accessu}u∈U )← ShareK({(Ku, Accessu)}u∈U );

4. For each i ∈ [n]:

qi ← QueryKui
(wi, {(d,K1

d ,K
3
d)}d∈Accessui

);

Resulti ← Search(qi);

5. Output (KC , xSet, uSet, (qi, Resulti)i∈[n]);

A searchable symmetric encryption scheme is secure with respect to leakage L if there exists an efficient
simulator S such that for every coalition C and every instance I

{sV iewU,C(1λ, I)} ≈c {S(1λ,L(I, C))}

Here the sets are taken over C and I, and ≈c means that the two distributions are computationally
indistinguishable.

It should also be noted that Patel et al. consider each user to be enrolled before any of the access
granting and querying has taken place because “a curious server can always postpone or duplicate the
execution of a query” [20]. Since the set of users does not change after initial enrollment, we enroll
all users during setup.
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6.3 Wang et al.

Wang et al. consider the setting where one corpus owners store his encrypted documents on a remote
server and can selectively share his documents with users. The Adversary is assumed to be an honest-
but-curious Server that corrupts a subset of the users C. Notable design choices by Wang et al. are:

• Whereas the previously mentioned definitions assumed all Share queries to happen before any
Search query happens, [33] allow Search queries and Share queries to intermingle. This is
because the schemes introduced by them can be “share forward-private” (cf. section 6.3.1).
If the scheme is share forward-private then the order of the queries matters security-wise. If
the scheme is not share forward-private then we note that the definition requires that the ad-
versary’s advantage must be negligible “for any PPT adversary”. In particular this must hold for
an adversary that does not intermingle Search and Share queries but performs all Share queries
first.

• Whereas the previous definitions were for selective adversaries, here the adversary queries ad-
aptively. This is represented by the adversary choosing the next query to execute after seeing
the result of his previous choice.

6.3.1 Share forward-private

Wang et al. introduce the concept of share forward-privacy. The idea behind share forward-privacy
is that the server cannot relate a Share operation to previous operations at the time it takes place.
In other words, the Server should not be able to tell whether the document being shared contains
keywords that have been searched before. The formal definition below makes use of the following
auxiliary function:

CrpShr
C (d, u)) =

{
W (d) if u ∈ C

|W (d)| otherwise

Definition 10 (Share forward-private). A multi-user searchable symmetric encryption scheme with com-
promised users C is share forward-private if and only if the Share leakage function LShr can be written
as

LShr(K, d, u, ιo· ,u) = L′(id, u, CrpShr
C (d, u)),

where ιo· is the locally stored/private information of the corpus owner and user u.

The definition above prevents the leakage of the owner key K and does not leak any of the private
information ιo· ,u. Concerning the document it only leaks the number of keywords if the user is not
corrupted. If the user is corrupted, it leaks all keywords to the Server.

We will now examine the share forward-privacy of the three implementations by [33] (cf. section
3.3).

• NFNU: is not share forward-private since the user generates query addresses until he is told to
stop by the Server. If user u searches for keyword w with aw results then he queries
(w, 1), . . . , (w, aw +1) assuming an honest (!) server. The next time that a document containing
w is shared with u then the address corresponding to (w, aw + 1) is set and the Server learns a
keyword of the document even if w is never searched for anymore.
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• FU: the counters are stored privately by the user. As such, the user limits his queries to the set
addresses, never accessing unset/uninitialised addresses. Thus FU is share forward-private.

• FNU: the counters are now stored at the server in an oblivious map. The oblivious map hides
the access patterns related to the keyword counters thus achieving the same leakage as FU. FNU
is therefore also share forward-private.

6.3.2 Wang et al.’s definition for security

A query q generated by the Adversary has properties {type, user, document} in case the type is Share,
and properties {type, user, keyword} in case the type is Search. In the following definition the differ-
ences between the real and the ideal security game are coloured in red, i.e. all values that depend on
secret information or the simulation thereof.

Definition 11 (Secure SSE (Wang et al.)). Given security parameter λ, dictionary ∆ and number of
queries n, consider the following security games.

b← RealU,C,Σ
A :

1. (D,U,C)← A(1λ);

2. (ι0 = K)← OwnerKeyGen(1λ);

3. ((ι0 = ι0 ∪ aux), auxC ;DB0 = {xSet,AccessU})← SetupK(D,U);

4. for i ∈ [n]:

qi ← A(1λ, DB0, auxC , τi−1); \\The Adversary chooses the query adaptively

if qi.type is Share then:

(ιi = auxqi.u; ti, DBi)← ShareK(qi.d, qi.u, ιi−1;DBi−1);

if qi.type is Search then:

(ιi = auxqi.u, Dqi.u(qi.w); ti, DBi)← SearchKqi.u
(qi.w, auxqi.u, ιi−1; qi.trace,DBi−1);

5. return b← A(1λ, DB0, auxC , τn);

Here τi = (t0, . . . , ti) with tk being the messages from the user/owner to Server in the k’th query.

b← IdealU,C,Σ
A :

1. (D,U,C)← A(1λ);

2. stS ← SimOwnerKeyGen(1λ);

3. (stS , auxC ;DB0)← SimSetupstS (D,U);

4. for i ∈ [n]:

qi ← A(1λ, DB0, auxC , τi−1); \\The Adversary chooses the query adaptively

if qi.type is Share then:
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(stS ; ti, DBi)← SimSharestS (LShr(qi.d, qi.u);DBi−1);

if qi.type is Search then:

(stS ; ti, DBi)← SimSearchstS (LSrch(qi.w, qi.u);DBi−1);

5. return b← A(1λ, DB0, auxC , τn);

A SSE scheme is secure with respect to leakage function L if and only if for any PPT Adversary A that
issues a polynomial number of search queries q there exists a stateful PPT simulator S such that the
Adversary has only negligible advantage in distinguishing between the real and the ideal security game:

|p(RealU,C,Σ
A (λ, q) = 1)− p(IdealU,C,Σ

A,S,L(λ, q) = 1)| ≤ negl(λ).

Explicit auxC output: Note that the corpus owner’s auxiliary information aux includes the tuples
(u, auxu) for every u ∈ U , where auxu includes Ku and Cntu. If Cntu /∈ auxu then aux =
{(u, auxu, Cntu)}u∈U . Thus the corrupted users’ auxiliary informaton auxC is part of aux and in-
cludes their user keys. Nevertheless, we have explicitly output the algorithms auxC since this inform-
ation is accessible to the Adversary.

Other choices: Furthermore, the document keys have been removed from the definition since these
were only present for backwards compatibility, and the owner key input has explicitly been required
by Share. Lastly, we haved added messages from the user/owner to the server in the real game.

6.4 Chamani et al.

The Adversary by Chamani et al. is assumed to be the Server that corrupts a subset of the users C.
Notable design choices by Chamani et al. are:

• The adversary queries adaptively.

• The security game is made for dynamic SSE scheme (albeit that their implementations is of fixed-
size (cf. section 5.3)). This means they require secure Upload, Update and Unshare protocols.

• They define forward security, backward security, and verifiability. Despite being notable, this is
not within the scope of our work as it does not require unification. Information regarding these
properties can be found in the appendix.

• Enrollment can still be assumed to happen in the Setup phase since the forward and backward
privacy definitions do not concern themselves with the Enrollment leakage but with Share and
Search leakage.

A query q generated by the Adversary has properties {Share, user, document} if type = Share; prop-
erties {Search, user, keyword} if type = Search; properties {Upload, document} if type = Upload;
properties {Update, document,WList,mode} if type = Update; and properties {Unshare, user, document}
if type = Unshare. In the following definition the differences between the real and the ideal security
game are coloured in red to aid in readability. Note that the differences are all depend on the secret
information or the simulation thereof. As discussed in section 5.1, we cover the Enroll algorithm by
the Setup protocol.
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Definition 12 (Secure DMUSSE (Chamani et al.)). Given security parameter λ, dictionary ∆ and num-
ber of queries n, consider the following security games.

b← RealU,C,Σ
A :

1. (D,U,C)← A(1λ);

2. (ι0 = K)← OwnerKeyGen(1λ);

3. ((ι0 = ι0 ∪ aux), auxC ;DB0 = {xSet, uSet})← SetupK(D,U,N, |W |);

4. for i ∈ [n]:

qi ← A(1λ, DB0, auxC , τi−1); \\The Adversary chooses the query adaptively

if qi.type is Share then:

(ιi = auxqi.u; ti, DBi)← ShareK(qi.d, qi.u, ιi−1;DBi−1);

if qi.type is Search then:

(ιi = auxqi.u, Dqi.u(qi.w); ti, DBi)← SearchKqi.u
(qi.w, auxqi.u, ιi−1;DBi−1);

if qi.type is Upload then:

(ti, DBi)← UploadK(qi.d, ιi−1;DBi−1);

if qi.type is Update then:

(ιi = auxU ; ti, DBi)← UpdateK(qi.d, qi.WList, qi.mode, auxU , ιi−1;DBi−1);

if qi.type is Unshare then:

(ιi = auxqi.u; ti, DBi)← UnshareK(qi.d, qi.u, ιi−1;DBi−1);

5. return b← A(1λ, DB0, auxC , τn);

Here τi = (t0, . . . , ti) with tk being the messages from the user/owner to Server in the k’th query.

b← IdealU,C,Σ
A :

1. (D,U,C)← A(1λ);

2. stS ← SimOwnerKeyGen(1λ);

3. (stS , auxC ;DB0)← SimSetupstS (D,U,N, |W |);

4. for i ∈ [n]:

qi ← A(1λ, DB0, auxC , τi−1);

if qi.type is Share then:

(stS ; ti, DBi)← SimSharestS (LShr(qi.d, qi.u);DBi−1);

if qi.type is Search then:
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(stS ; ti, DBi)← SimSearchstS (LSrch(qi.w, qi.u);DBi−1);

if qi.type is Upload then:

(ti, DBi)← SimUploadstS (LUpl(qi.d);DBi−1);

if qi.type is Update then:

(ιi = auxU ; ti, DBi)← SimUpdatestS (LUpd(qi.d, qi.WList, qi.mode);DBi−1);

if qi.type is Unshare then:

(ιi = auxqi.u; ti, DBi)← SimUnsharestS (LUnsh(qi.d, qi.u);DBi−1);

5. return b← A(1λ, DB0, auxC , τn);

A dynamic multi-user SSE (DMUSSE) scheme is secure with respect to leakage function L if and only if
for any PPT Adversary A that issues a polynomial number of search queries q there exists a stateful PPT
simulator S such that the Adversary has only negligible advantage in distinguishing between the real and
the ideal security game:

|p(RealU,C,Σ
A (λ, q) = 1)− p(IdealU,C,Σ

A,S,L(λ, q) = 1)| ≤ negl(λ).

In our definition we have added the simulator state S as input for SimSetup and to SimEnroll.

7 Defining security (MKSE)

In section 6 the definition by Hamlin et al. is the only one that does not provide semantic security but
indistinguishability. As discussed in section 6, Curtmola et al. have shown that in the multi-user setting
semantic security implies indistinguishability for an adaptive adversary, and that semantic security is
equivalent with indistinguishability for a non-adaptive adversary in the multi-user setting. In section
1 we have explained how the multi-key setting is much more complex than the multi-user setting. We
have also explained how this leads to the natural question if the indistinguishability-based definition
by Hamlin et al. is equivalent with the semantic security definition of Curtmola et al. adapted to the
multi-key setting (assuming a non-adaptive adversary).

As it turns out, this equivalence holds for the MKSE-adapted definitions just like it did in MUSE. In
this section we will introduce the notion of non-adaptive (NA) semantic security for MKSE and prove
its equivalence with NA-indistinguishability.

• First, we will redefine Curtmola et al.’s “auxiliary notions” for MUSE such as the history and
search pattern and transform them in auxiliary notions for MKSE.

• Then, using these definitions, we will define non-adaptive multi-key (MK) indistinguishability
and NA-MK-semantic security. NA-MK-indistinguishability is the formal definition of Hamlin et
al.’s security requirement and NA-MK-semantic security is the introduction of a definition for
semantic security in the non-adaptive multi-key setting.

• Lastly, we will prove the equivalence between the two security definitions. Note that every
multi-user definition in this section was defined by Curtmola et al. [6] – who did not implement
sharing on a per-document basis – and is listed here for reference.
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We will use the same definition for a dictionary as Curtmola et al.:

Definition 13 (Dictionary). Let ∆ = (w1, . . . , wd) be a dictionary of d words in lexicographic order, and
2∆ be the set of all possible documents with words in ∆. We assume d = poly(λ) and that all words
w ∈ ∆ are of length polynomial in λ.

Throughout this section we will assume that that DO is of polynomial length in λ, each Do· consisting
of a polynomial number of keywords poly(λ).

7.1 Redefining multi-user auxiliary notions

Here we will introduce four auxiliary notions used in our MK-definitions.

Multi-key history: In MKSE, the interaction between a set of clients and the server is described
by a set of corpus owners/corpora, a share graph which is a graph indicating access rights, and a
sequence of queries. An instance of such an interaction is a multi-key history. Informally, a history is
everything that is necessary to construct a (current) state of the database and search queries.

Share graph in [13]: A share graph is used to indicate which corpus owners granted which users
access to their corpora; it is a graph indicated access rights. Note that in Hamlin et al. [13] every
Share query is assumed to happen before the first Search query (cf. section 5.2). Because of this, we
assume that the share graph is provided at the beginning of the security games and is fixed. Now,
since the Share graph defines the access relations between users and corpus owners, i.e. the Share
queries, the n-query history17 can be assumed to consist solely of a set of n Search queries qSet ∈ H.
This assumption can be made since the share graph is fixed at the beginning of the game – meaning
that there are no Share queries performed after the setting has been established – and since the share
graph is of polynomial size just like qSet, meaning that there are “no size problems”. Thus, we make
the assumption that for Hamlin et al. the set of all queries qSet consists solely of Search queries,
simplifying the definitions. Search queries are issued by a user u and are for a keyword w. Thus every
query q ∈ qSet can be represented by the tuple (w, u).

We will now provide the definition for Curtmola et al.’s MU-history, discuss why it cannot be used
in our MKSE setting, and then construct a definition for MKSE that addresses these limitations.

Definition 14 (Multi-user history). Let ∆ be a dictionary and D ⊆ 2∆ be a corpus over ∆. A n-query
multi-user history over D is a tuple H = (D, qSet) that includes the corpus D and a tuple of n keywords
qSet = (w1, . . . , wn).

The issues with the definition above are:

1. it is with respect to one corpus (owner).

2. each user is assumed to have access to every document in the corpus.

3. each user’s search query for keyword w is the same and thus the query can adequately be de-
scribed by the keyword w.

17 We have chosen a “n-query” history since it sounds like the noun “enquiry”, which means to ask for information.

53



We will address these issues in our multi-key definition. We will make use of an auxiliary notion: the
share graph. The share graph defines access relation ships between corpus owners and users and will
thus help to address the first two issues.

Definition 15 (Share graph). Let O be a set of corpus owners, U be a set of users, and E be a set of edges
(o· , u) between owners o· ∈ O and users u ∈ U ; then the (bipartite) graph G = (O,U,E) is a share graph
where the edges indicate that u has been granted access to the corpus of o· .

Our share graph contains a set of corpus owners, addressing the first issue, and shares the corpora (of
size “1 document”) on a per document basis, addressing issue 2. We will now define the multi-key
history, addressing all three issues.

Definition 16 (Multi-key history). Let G = (O,U,E) be a share graph, ∆ be a dictionary and DO a
set of corpora. Each corpus owner o· ∈ O has a corpus Do· ⊆ 2∆. An n-query multi-key history over
DO is a tuple H = (G,DO, qSet) that includes a share graph G, corpora DO, and a tuple of n queries
qSet = ((w, u)1, . . . , (w, u)n) where w ∈ ∆ and u ∈ U .

The MK-history clearly differs from the MU-history in that users can have differing access rights. This
is defined by the share graph, which allows each real-world corpus owner to share on a per document
basis (3.1.2). Furthermore, if two queries are for the same keyword – say the first and second query –
but for another user then we now have q1 = (w1, u1) ̸= (w1, u2) = q2. Henceforth there are two types
of histories: multi-key and multi-user. If the context does not make clear which history is meant we
will always use ‘MK-history’ or ‘MU-history’; if the context however is clear then we can simply use
‘history’.

Now, the multi-user search pattern is defined as follows:

Definition 17 (Multi-user search pattern). Let ∆ be a dictionary and D ⊆ 2∆ a corpus over ∆. The
search pattern induced by an n-query multi-user history H = (D, qSet) is a symmetric binary matrix
σ(H) such that for 1 ≤ i, j ≤ n the element in the ith row and jth column is 1 if wi = wj and 0 other-
wise.

The issues with the definition above are that our history:

1. is with respect to multiple corpus owners/corpora instead of one corpus owner/corpus.

2. defines access relations between users and corpora instead of granting all users complete access.

3. distinguishes between queries (wi, uj) and (wk, ul) if i ̸= k or j ̸= l, not only when i ̸= j.

We will now address these issues in our MK-search pattern definition.

Definition 18 (Multi-key search pattern). Let ∆ be a dictionary, O a set of corpus owners, U a set of
users and DO ⊆ 2∆ a set of corpora, each over ∆. The search pattern induced by an n-query multi-key
history H = (G,DO, qSet) is a symmetric binary matrix σ(H) such that for 1 ≤ i, j ≤ n the element in
the ith row and jth column is 1 if (w, u)i = (w, u)j and 0 otherwise.
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Our MK-definition for security will take cross-user leakage into account. When defining security with
cross-user leakage, an adversary must not be able to tell if two users query for the same keyword. If an
adversary is given the search pattern as defined by [6], he is trivially able to do this since the search
pattern indicates equivalence between keywords. To remove this leakage, we have tied the user to his
query.

Now, the MU-access pattern is defined as follows:

Definition 19 (Multi-user access pattern). Let ∆ be a dictionary and D ⊆ 2∆ a corpus over ∆. The ac-
cess pattern induced by a n-query multi-user history H = (D, qSet) is the tuple α(H) = (D(w1), . . . , D(wq)).

The issues with the definition above are that our history:

1. is with respect to multiple corpus owners/corpora instead of one corpus owner/corpus.

2. defines access relations between users and corpora instead of granting all users complete access.
This means that a document containing the queried keyword is only returned if the user has been
granted access to it. This makes the query result not only depend on the documents, but also on
the querying user. Thus, a document Do· is only returned to u upon querying if (u, o· ) ∈ E with
E ∈ G and G ∈ H.

We will now address these issues in our MK-search pattern definition.

Definition 20 (Multi-key access pattern). Let ∆ be a dictionary, O a set of corpus owners and Do· ∈ 2∆

a corpus belonging to corpus owner o· . The multi-key access pattern induced by an n-query multi-key
history H = (G,DO, qSet) is the tuple

α(H) =
({

(Do· (w1)
∣∣(u1, o· ) ∈ E)

∣∣∣ o· ∈ O
}
,{

(Do· (w2)
∣∣(u2, o· ) ∈ E)

∣∣∣ o· ∈ O
}
,

. . . ,{
(Do· (wn)

∣∣(un, o· ) ∈ E)
∣∣∣ o· ∈ O

})

The tuple α(H) consists of n entries. The access pattern entry i induced by query qi are all documents
that u has access to and that contain the queried keyword wi. Usually we use Du to denote the set
of documents that u has access to and use Du(wi) to restrict this set to the documents containing
keyword wi, but to stress how the MK-access pattern is dependent on the share graph we have given
the set as defined by its elements. Note that we will use Du(wi) ∈ α(H) later this section. Note that
the MK-access pattern clearly differs from the MU-access pattern in its user dependency: each user
has its own access rights to different corpora.

We have now seen how the history, access pattern, and search pattern differ in MKSE from MUSE.
The trace is dependent on all of these auxiliary notions and as such will need to be redefined as well.

Definition 21 (Multi-user trace). Let ∆ be a dictionary and D ⊆ 2∆ be a corpus over ∆. The trace in-
duced by a n-query multi-user history H = (D, qSet) is a sequence τ(H) = (|D1|, . . . , |Dn|, α(H), σ(H))
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compromised of the lengths of the documents in D and the access and search patterns induced by H.

The issues with the definition above are inherited from all previous auxiliary functions. The trace
is induced by a n-query MU-history, inheriting all its issues, and is a sequence containing the MU-
access pattern and MU-search pattern, inheriting all their issues. The trace is what is considered
the acceptable minimum leakage by Curtmola et al. [6] and the issues that the MU-trace has can
largely be addressed by replacing the MU-auxiliary notions by their MK-auxiliary counterparts. There
is however one thing that is then not accounted for: the share graph. As seen in section 6.1, the share
graph is determined by the adversary and, as such, is known to the adversary. Therefore our trace
also contains the share graph.

Definition 22 (Multi-key trace). Let ∆ be a dictionary and DO ⊆ 2∆ a collection of m corpora. The
multi-key trace induced by a n-query multi-key history H = (G,DO, qSet) is a sequence

τ(H) = (G, |D1|, . . . , |Dm|, α(H), σ(H))

comprised of the share graph, the lengths of the documents, the MK-access and MK-query patterns induced
by H, and the set of share keys.

Now, the definitions above are somewhat specific to the situation as described by Hamlin et al [13].
There, the length of all corpora is 1 (document) and thus for m corpus owners we end up with m
documents of length |W (di)| for i ∈ [m] .Let the reader be aware that the same notation is used for
the MK-access and MK-query pattern as for the MU-variants.

Finally, Curtmola et al. [6] require throughout their work that the history is non-singular as defined
below:

Definition 23 (Non-singular history (MUSE)). A MU-history H = (D, qSet) is non-singular if (1) there
exists at least one MK-history H ′ = (D′, qSet′) such that τ(H ′) = τ(H); and if (2) such a history can be
found in polynomial-time given τ(H).

The issue with this definition is that it does not consider the share graph. In the MKSE the share
graph influences (as explained above) the search pattern and access pattern; it influences the search
results a user gets. In indistinguishability-based definitions are meant to test the security of the
documents/corpora and the queries. Note that this remains the goal in the multi-key setting. As such,
the share graph needs to be considered but not changed: the share graph is considered constant. In
our work we will assume that the dictionary ∆ and the trace are such that all histories H over ∆ are
non-singular as defined below:

Definition 24 (Non-singular history (MKSE)). A MK-history H = (G,DO, qSet) is non-singular if (1)
there exists at least one MK-history H ′ = (G,D′

O, qSet
′) such that τ(H ′) = τ(H); and if (2) such a

history can be found in polynomial-time given τ(H).

56



We stress that even though the definitions for non-singular MK-history and non-singular MU-history
seem similar, they are very different indeed. Not only are the histories defined significantly different
upon closer examination (see the issues with the MU-history above), also the MK-trace and MU-trace
are very different to each other (see the issues with the MU-trace definition above).

Now, note that in MKSE the share graph is assumed to be constant (cf. section 6.1). This does
not differ from Curtmola et al., where the setting is fixed as well: one corpus owner shares his cor-
pus with a set of users. Note then that in both settings the security setting is fixed and that in both
settings the non-singular-history requirement concerns itself solely with the documents and searched
keywords. This is however where Hamlin et al. note that this assumption for the non-singular MK-
history is a stronger assumption than it is in MUSE. Since the share graph, access pattern and search
pattern are assumed fixed in the trace, the simulator in an ideal world needs to find an assignment
for the corpora (of the honest corpus owners) to the honest corpus owners. This needs to be done in
a way that – given the share graph – the access and search patterns remain fixed as well as the sizes
of the corpora/documents. The challenge here is to find one configuration that works for all of the
given queries satisfying all requirements.

The problem boils down to the following:

1. We have a bipartite graph G = (O ∪ U,E) where O is the set of corpus owners, and U is the
set of users. Both O and U are of polynomial size, as is E ⊆ O × U representing the relations
between corpus owners and users.

2. Each owner should be allocated exactly one corpus, i.e. one document/set of keywords.

3. Given the requirement {(w, u,Du(w)) : (w, u) ∈ σ(H) and Du(w) ∈ α(H)}, we now have to
find an allocation of documents to corpus owners such that this requirement is met as well as
the given sizes of the sets.

The question that now remains is if this can be done in polynomial-time, since the problem is what is
known as a constraint satisfaction problem.

It turns out however that there are special cases of MKSE where the non-singularity assumption is
a lot weaker. For example, in the PRF-construction by Hamlin et al. (section 3.1) the Search algorithm
does not search over the documents but instead over the share keys. The Search algorithm does not
use the document at all and thus no issues of consistency across different queries arise. Searching
over the share keys does not suffer from the same problem since the share keys are unique for each
user/document combination. This is in contrast to the simulation of the documents explained above,
which were not unique for each user and thus had to stay consistent across queriers. In the case of
the PRF-construction the assumptions are equally strong:

• In Curtmola et al. there are a polynomial number of documents. Each document is returned for
a polynomial number of Search queries, independently of the other documents and users. It is
independent of the other users since each user has full access to the corpus and constructs the
same search query.

• In the PRF-construction there a polynomial number of share keys. This is because there are a
polynomial number of documents and a polynomial of users.18 Each of these share keys returns

18 The multiplicative order of the documents and users is still polynomial.
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its associated document independently of the other share keys/documents and only without
considering the other users. It is independent of the other users since share keys only allow its
owner to query on it (this is because they are constructed under the uploader’s user key).

7.2 Indistinguishability and semantic security (MKSE)

The first security definition for MKSE is that of non-adaptive indistinguishability. Our definition is a
formalised version of the security requirement by [13], definition 7. We will briefly explain how the
definitions relate to one another. The first line of our definition covers the adversaries requests to the
challenger (line 1, covering lines 1a-e of definition 7). The challenger then sets up the corpus by first
generating the lacking document keys (l2, cov. l2c), randomly choosing the corpus to set up (l3, cov.
l2a), and finishing its setup (l4, cov. l2d; slightly abusing notation by invoking “Setup” sequentially
for each corpus owner and denoting the total output by xSetb). Then our security game enters a phase
that covers all requirements for corpora to be shared with users. First we generate all the user keys
(l5, cov. l2b), and then share the corpora according to the share graph (l6-6, cov. l2e). We then enter
the query phase (l8-9, cov. l2f) and give the adversary the leakage (l10, cov. l2g). We both conclude
with the adversary making a guess. We note that we have covered the lines 1a-e, 2a-g, and the final
guess by the adversary, indeed being all the lines of the game as proposed by definition 6.1.

Definition 25 (Non-adaptive indistinguishability (MKSE)). Let Σ = (DataKeyGen, UserKeyGen, Setup,
Query, Search, Share) be an MKSE scheme, λ ∈ N>0 the security parameter, A a PPT adversary, and
consider the following probabilistic experiment in the multi-key setting:

IndΣ
A(λ)

1 : (H0, H1, C ⊆ O, {Kd}C , stA)← A(1λ);

2 : {Kd}OH ← DocumentKeyGen(1λ);

3 : KU ← UserKeyGen(1λ);

4 : b
$←− {0, 1};

5 : xSetb ← Setup((Kd, D
b)o·∈O);

6 : uSet = {};
7 : foreach (o· , u) in E :

uSet← uSet ∪ Share((Kd, xSet
b)o· ,Ku, u);

8 : qSet′ = {};
9 : foreach (w, u) in qSet :

qSet′ ← qSet′ ∪ QueryKu
(w);

10 : b′ ← A(stA, (xSetb, qSet′, uSet));

11 : if b′ = b, output 1

otherwise output 0

with the restriction that τ(H0) = τ(H1), and where stA is a string that captures the adversary’s state
and xSetb = {xSetbo· : o· ∈ O} is the set of all encrypted corpora. We say that SSE is secure in the sense
of non-adaptive indistinguishability if for all polynomial-size adversaries A

p
(

IndSSE,A(λ) = 1
)
≤

1

2
+ negl(λ)
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where the probability is taken over the choice of b and the coins of Gen and Enc.

Note that in the non-singularity definition for the MK-history we required that the two histories have
the same share graph. Also, as explained in section 6.1, letting the adversary determine the keys of
the coalition has advantages for the definition of the security game: it makes the proof in section 7.3
simpler and shorter. As such, our definition too allows the adversary to determine the keys of the
coalition.

We note that our representation of definition 3.1 is more clear, and is according to the expectations
that the readers of [6] might have. As such, it is also a good preparation for our proof. As stated before,
it remains to prove that NA-MK-indistinguishability is equivalent to [6]’s semantic security adapted to
MKSE for a non-adaptive adversary. We note that H refers to a MK-history (cf. definition 16) and that
the subscript H appended to corpus owners and users is used to mark them as honest (as discussed
in section 4.1. We also remind the reader that OC ∪ OH = O.) Furthermore, in the case of Hamlin et
al.’s implementation uSet refers to the set of share keys σu,d. As discussed above, the share graph is
determined by the adversary as part of the history.

Definition 26 (Non-adaptive semantic security (MKSE)). Let Σ = (DataKeyGen, UserKeyGen, Setup,
Query, Search, Share) be an MKSE scheme, λ ∈ N>0 the security parameter, A a PPT adversary, S a
simulator, and consider the following probabilistic experiments in the multi-key setting:

(ν, stA)← RealΣA(λ)

1 : (H,C ⊆ O, {Kd}C , stA)← A(1λ);

2 : {Kd}OH ← DocumentKeyGen(1λ);

3 : KU ← UserKeyGen(1λ);

4 : xSet← Setup((Kd, D)o·∈O);

5 : uSet = {};
6 : foreach (o· , u) in E :

uSet← uSet ∪ Share((Kd, xSet)o· ,Ku, u);

7 : qSet′ = {};
foreach (w, u) in {(w, u)} :

8 : qSet′ ← qSet′ ∪ QueryKu
(w);

9 : output ν = (xSet, qSet′, uSet) and stA

(ν, stA)← SimΣ
A,S(λ)

1 : (H,C ⊆ O, {Kd}C , stA)← A(1λ);
2 : ν ← S(τ(H));

3 : output ν = (xSet, qSet′, uSet) and stA

We say that a given scheme Σ is semantically secure in the multi-key setting if for all polynomial-size ad-
versaries A there exists a polynomial-size simulator S such that for all polynomial-size distinguishers
D

p
(
D(ν, stA) = 1 : (ν, stA)← RealΣA(λ)

)
− p

(
D(ν, stA) = 1 : (ν, stA)← SimΣ

A,S(λ)
)
≤ negl(λ),

where the probabilities are over the coins of DocumentKeyGen, UserKeyGen, and Setup.

We would like to point out that our definition significantly differs from the one given by Curtmola et
al. As explained in section 7 our formulation:
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• is with respect to multiple corpus owners instead of one.

• takes access rights into account. Documents are shared with users on a per-document basis
instead of the binary access by Curtmola et al.

• address cross-user leakage.

7.3 Proving equivalence

We will now prove that our MK-NA-indistinguishability definition and our MK-NA-semantic security
definition are equivalent. We assume throughout this section thus that the adversary is non-adaptive
(cf. section 6) and that Σ = (DocumentKeyGen, UserKeyGen, Setup, Search, Share) is a static SSE
scheme. Note that for Hamlin et al. we split the Search protocol in a Query and a Search algorithm
(cf. section 5.1).

Lemma 1.1. MK-non-adaptive indistinguishability implies MK-non-adaptive semantic security.

Proof. We will show using contraposition that if there exist a polynomial-size adversary A such that
there exists a polynomial-size distinguisher D that succeeds in an IndΣ

A(λ) experiment with non-
negligible advantage for all polynomial-size simulators S, then there also exists a polynomial-size
adversary B = (B1,B2) that succeeds in an IndΣ

B(λ) experiment with non-negligible probability.
Let H and stA be the output of A(1λ). Since H is required to be non-singular there exists at least

one history H ′ ̸= H with τ(H ′) = τ(H) that can be found in polynomial-time. Consider a simulator
S∗ that does the following:

• it generates one document key per corpus (owner): KD ← DocumentKeyGen(1λ)

• it generates one user key per user: K∗
U ← UserKeyGen(1λ).

• it finds in polynomial-time H ′ ̸= H such that τ(H ′) = τ(H), given τ(H).

• it builds a sequence of encrypted documents xSet∗, each under a different document key K∗
d ∈

K∗
D

• it builds a sequence of queries qSet∗ from H ′, each under a different user key K∗
u ∈ K∗

U

• it builds a sequence of share keys uSet∗, each under a different document key K∗
d and user key

K∗
u.

• it outputs ν = (xSet∗, qSet∗, uSet∗) and st∗ = stA

Let now D∗ be the polynomial-size distinguisher that was assumed to succeed in the real-ideal exper-
iment. D∗ depends on S∗. Without loss of generality we assume that D∗ outputs 0 when given the
experiment of RealΣA(λ).

Let B1 be the adversary that computes (H, stA) ← A(1λ), uses the trace τ(H) to find H ′, and re-
turns (H,H ′, stA) as its output. Let B2 now be the adversary that is given stA and (xSetb, qSet, uSet),
and sets ν = (xSetb, qSet, uSet) and outputs the bit b obtained by running D∗(ν, stA).

Since A is assumed to be of polynomial size, B is clearly of polynomial size. It thus remains to
analyse B’s success probability. Since b is chosen uniformly at random we have

p
(

IndΣ
B(λ) = 1

)
=

1

2

(
p
(
IndΣ

B(λ) = 1 : b = 0
)
+ p

(
IndΣ

B(λ) = 1 : b = 1
))

(1)
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There are two options: 1) It is clear that if b = 0 then B succeeds if and only if D∗(ν, stA) outputs
0. This is because B outputs the bit b that he is given by D∗. Notice, however, that ν and stA are
generated as in RealΣA(λ) from which it follows that

p
(

IndΣ
B(λ) = 1 : b = 0

)
= p

(
D∗(ν, stA) = 0 : (ν, stA)← RealΣA(λ)

)
(2)

2) It is clear that if b = 1 then B succeeds if and only if D∗(ν, stA) outputs 1. Notice, however, that
in this case stA and ν are constructed as in SimΣ

A,S∗(λ) from which it follows that

p
(

IndΣ
B(λ) = 1 : b = 1

)
= p

(
D∗(ν, stA) = 1 : (ν, stA)← SimΣ

A,S∗(λ)
)

(3)

Abbreviating D∗(ν, stA) to D∗(.), it then follows from equations 1-3 that

p
(

IndΣ
B(λ) = 1

)
=

1

2

(
1− p

(
D∗(.) = 1 : (ν, stA)← RealΣA(λ)

)
+ p

(
D∗(.) = 1 : (ν, stA)← SimΣ

A,S∗(λ)
))

=
1

2
+

1

2

(
p
(
D∗(.) = 1 : (ν, stA)← SimΣ

A,S∗(λ)
)
− p

(
D∗(.) = 1 : (ν, stA)← RealΣA(λ)

))
≥

1

2
+ ε(λ)

where ε(λ) is a non-negligible function in λ and where the inequality follows from that A can distin-
guish between the outputs of RealΣA(λ) and SimΣ

A,S(λ) per our assumption.

.
We will now prove the other way.

Lemma 1.2. MK-non-adaptive semantic security implies MK-non-adaptive indistinguishability.

Proof. We will show using contra-position that if there exists a polynomial-size adversaryA = (A1,A2)

that succeeds in an IndΣ
A(λ) experiment with non-negligible advantage over 1/2, then there also ex-

ists a polynomial-size adversary B and a polynomial-size distinguisher D that can distinguish in an
experiment between the outputs of RealΣA(λ) and SimΣ

A,S(λ).
Let B be the adversary that computes (H0, H1, C ⊆ O, {Kd}C , stA)← A1(1

λ). This tuple consists
of two histories for the indistinguishability game (which requires that they share the same trace), a
choice in which corpus owners are colluding with the adversary C ⊆ O, the document keys they own

{Kd}C , and the state of the adversary. Adversary B will now sample b
$←− {0, 1} in the experiment and

he then outputs the history Hb and state stB = (stA, b). Let D be the distinguisher that is given the
output (ν, stB) of either RealΣA(λ) or SimΣ

A,S(λ). D works as follows:

1. he parses stB into (stA, b) and ν into (xSet, qSet, uSet) respectively.

2. he computes b′ ← A2(stA, xSet, qSet, uSet)

3. he outputs 1 if b′ = b and 0 otherwise.

Clearly if A2 has negligible advantage then b′ = b for about half of the guesses. Thus, to gain an
advantage A2 needs to have an advantage. We will now prove this. Note though that since A1 and A2

are of polynomial size, so are B and D. Thus it indeed only remains to analyse the success probability
of D. There are two options:
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• If the pair (ν, stB) is the the output of RealΣA(λ) then ν = (xSetbO, qSet, uSet) and stB = (stA, b).
This means that D will output 1 if and only if A2(stA, xSet

b, qSet, uSet) succeeds in guessing b.
Notice that A1 and A2’s views while being simulated by B and D respectively are identical to the
views they would have during an IndΣ

A(λ) experiment. Thus

p
(
D(ν, stB) = 1 : (ν, stB)← RealΣA(λ)

)
= p

(
SimΣ

A,S(λ) = 1
)

≥ 1/2 + ε(λ),

where ε(λ) is some non-negligible function in λ. The inequality follows from our assumption that
A can distinguish with non-negligible advantage in the indistinguishbility experiment.

• If the pair (ν, stB) is the the output of SimΣ
A,S(λ) for some arbitrary polynomial-size simulator S,

then ν will be independent of b because τ(H0) = τ(H1) and stA outputted byA1 is also independent
of b. It follows then that A2 will guess b with probability 1/2 (a pure random guess). Thus

p
(
D(ν, stB) = 1 : (ν, stB)← SimΣ

A,S(λ)
)
= 1/2

By combining the equations from the two cases we get that

p
(
D(ν, stB) = 1 : (ν, stB)← RealΣA(λ)

)
− p

(
D(ν, stB) = 1 : (ν, stB)← SimΣ

A,S(λ)
)
≥ ε(λ)

Theorem 1. MK-non-adaptive indistinguishability is equivalent to MK-non-adaptive semantic security.

Proof. The proof follows direcdtly from lemma 1.1 and 1.2

8 Unified security definition

Having defined semantic security for MKSE and proven that [13]’s definition is equivalent to semantic
security, we will now try to unify the different security definitions. Immediately we note however
that in defining semantic security for MKSE we ended up with a more complicated definition than
semantic security in MUSE as defined by [6]. As we have seen, a large part of the issue is that MKSE
has multiple corpus owners rather than the one corpus owner in MUSE. As such, we will not unify
our MKSE definition. Instead, we will give one unified MUSE definition of security. Therefore, the
unification of the four security definitions will not result in one set of real-ideal games that describes
NA-semantic security as a whole. Rather, we will have one definition for NA-MK-semantic security
(definition 26) and two definitions for MU-semantic security, namely an adaptive and non-adaptive
version.
We will now unify the MUSE security definitions. We will do so by first unifying the security games by
[33] and [4], and then we will generalise it further in our definition.

8.1 Unifying semantic security (MUSE)

When looking at the security definitions by Wang et al. [33] and Chamani et al. [4] they seem similar,
though there is some vagueness. The auxiliary information for example is described/introduced by
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[33] as more general information than document keys. It’s usage however seems to suggest that the
auxiliary information is used to capture the scheme specifics such as the OMAP and keyword coun-
ters. The auxiliary data is introduced by [4] as “auxu which is auxiliary data for user u and contains
{Kd}d∈Access(u)”. Remember however that their implementation does not use document keys, so
what does it contain? It is not specified what auxu is or exactly contains. Concerning aux they write
“UserKeys and AccessList are stored locally in σ (which plays the role of aux in DMUSSE definition
and is given to all other procedures)”. This would suggest that σ = aux = {UserKeys,AccessList}
but contrary to this σ = {K, aux,KD} in the real-world security game.

In section section 3.5/tables 1-3 we have explained what the local and auxiliary information are,
what they contain, and what is stored by which party. In that section however there was equality
between local information and auxiliary data since we compared four different papers. Since in the
current unification we are going to look at the unification of the security games by [33] and [4] we
will limit the local information and the auxiliary information now to this papers. Thus we get:

• ι = (K,Cnt, {ιu, auxu}u∈U ).

• aux = ∅.

• ιu = (Ku, auxu).

• auxu = ∅ for NFNU and FNU, and auxu = Cntu for FU [33].

• auxu = ∅ for O-µSE, and auxu = Cntu for Q-µSE [4].

• DB as in section 3.5/tables 1-3.

where ιu is the locally stored information by u. We now have that the auxiliary data is scheme-specific
just like in [33] and we assume that we use the auxiliary data as intended by [4] though we can’t
guarantee this since their usage of auxiliary information remains unclear.

Throughout this section we use the broad interpretation of keyword counters Cnt as specified in
section 5.1. Note that in that section we also explained how keyword counters that were given to
multiple parties were only written down once. In this section we will use the same convention, mean-
ing that aux′

u possibly updates the server.

When updates are made by a protocol to auxiliary data, the database, counters, etc., we will prime it.
As such, when aux′ is outputted it means that an update needs to be applied to aux. Note that when
a users local information or auxiliary information is updated, it is also part of the corpus owner’s in-
formation and he needs to update it as well. Finally, we remember the reader that the Enroll protocol
is covered by Setup (cf. section 5.1). We are now going to unify the security definitions by [33] and
[4] (cf. 6.3 and 6.4 respectively). Using Stp = ∅ for [33] and Stp = {N, |W |} for [4] and we get:

Definition 27 (Adaptive semantic security (MUSE)). Given a leakage function L = {LStp,LSrch,LShr}
for static SSE schemes or leakage function L = {LStp,LSrch,LShr,LUnsh,LUpl,LUpd} for dynamic SSE
schemes, where LStp corresponds to the leakage during Setup and likewise for the rest of the leakages
and functions. A multi-user SSE scheme Σ is adaptively-secure in the presence of corrupted participants
with respect to the leakage function if and only if for any PPT adversary A issuing a polynomial number
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of queries q there exists a stateful PPT simulator S = (SimSetup, SimSearch, SimShare,SimUnshare,
SimUpload, SimUpdate, SimEnroll) such that

p
(

RealU,C,Σ
A (λ, n) = 1

)
− p

(
IdealU,C,Σ

A,S,L(λ, n)
)
≤ negl(λ),

with the real and ideal security games as defined below.

b← RealU,C,Σ
A (λ, n)

1 : (D,U,C, stA)← A(1λ);

2 : K ← OwnerKeyGen(1λ);

3 : KU ← UserKeyGen(1λ);

4 : (Cnt, auxU ;DB)← SetupK(D,KU , Stp);

5 : for j ∈ [n] :

6 : . .qj ← A(1λ, ιC , DB, τj−1, stA);

7 : . .if qj .type is Search then ([Queueqj .u], [OMAPqj .u], Dqj .u(qj .w))← Search(Kqj .u, qj .w, auxqj .u;DB);

8 : . .if qj .type is Share then (aux′
qj .u;DB′)← ShareK(qj .u, qj .d, auxqj .u;DB);

9 : . .if qj .type is Unshare then (aux′
qj .u;DB′)← UnshareK(qj .u, qj .d, auxqj .u;DB); \\ dynamic only

10 : . .if qj .type is Upload then (Cnt′;DB′)← UploadK(qj .d, Cnt); \\ dynamic only

11 : . .if qj .type is Update then

. .. .. .(Cnt′, aux′
U ;DB′)← UpdateK(qj .id, qj .WList, qi.op, Cnt,KU ;DB); \\ dynamic only

12 : return b← A(1λ, DB, ιC , τn, stA)

Here τj = (t0, . . . , tj) with ti being the messages from the user/owner to Server in the i’th query. We
assume without loss of generality that b = 1 is the Real game.

b← IdealU,C,Σ
A,S,L(λ, n)

1 : (D,U,C, stA)← A(1λ);
2 : stS ← SimOwnerKeyGen;

3 : (stS ,KC)← SimUserKeyGen(1λ);

4 : (stS , auxC ;DB)← stS ∪ SimSetupK((c,Kc)c∈C , D, Stp);

5 : for j ∈ [n] :

6 : . .qj ← A(1λ, ιC , DB, τj−1, stA);

7 : . .if qj .type is Search then ([Queueqj .c], [OMAPqj .c], stS ; tj)← SimSearch(stS ,LSrch(qj , qj .u);DB);

8 : . .if qj .type is Share then (aux′
c, stS ;DB′, tj)← SimShare(stS ,LShr(qj , qj .u);DB);

9 : . .if qj .type is Unshare then (aux′
c, stS ;DB′, tj)← SimUnshare(stS ,LUnsh(qj , qj .u);DB); \\ dyn. only

10 : . .if qj .type is Update then (stS ;DB′, tj))← SimUpload(stS ,LUpl(qj)); \\ dynamic only

11 : . .if qj .type is Update then (aux′
C , stS ;DB′, tj))← SimUpdate(stS ,LUpd(qj , qj .u);DB); \\ dyn. only

12 : return b← A(1λ, DB, ιC , τn, stA)

64



Changes to [33] and [4]: Our simulated protocols return aux′
c (or aux′

C for SimUpdate). This dif-
fers from [4], but it is necessary since the algorithms/protocols potentially update a corrupted user’s
auxiliary information. The adversary is assumed to have access to all information available to the
corrupted users and thus the auxiliary information of corrupted users must be part of the output: the
adversary can observe the changes. Note that we have given the adversary access to ιC instead of
auxC , which [33] and [4] do. This is because the adversary is supposed to receive the user keys,
which are stored in ιu and not in auxu. Note though that only auxu ⊊ ιu can get updated and as such
we output auxu instead of ιu in the algorithms/protocols. We have however not only added auxc, we
have also added the adversary’s state stA.

Additional security requirements: We would like to point out that some definitions require the
protocols to happen in a certain order. They can require for example that all Share queries occur
before any Search query occurs. The reason behind this is that if there is no additional security re-
quirement then the adversary can perform a replay attack after all Share queries have taken place.
This possibly leaks additional information. Share queries affecting the Search results is only one ex-
ample of how queries can affect each other. Now, our definition requires that the inequality holds “for
any PPT adversary”. It requires then in particular that it holds for an adversary that queries in a par-
ticular order. It does not matter that such an adversary can first ask Share queries and then ask Search
queries. As such, our security definition is a generalisation; it covers every query order possible.

One example of a security property that influences the order of queries we have already seen and
is share-forward privacy. We discussed it in section 6.3.1. Other examples of such properties are
“forward privacy” and “backward privacy” and fall out of the scope of our paper. Some information
regarding these properties can however be found in the appendix or in the literature overview (cf.
section 9).

One restriction, one change: Our generalised definition for adaptive semantic security in MUSE
is easily restricted to the non-adaptive setting. We only impose that the adversary generates all quer-
ies before any of them are executed. To implement this, we move the adversary’s query generation
outside of the for-loop. We then get:

Definition 28 (Non-adaptive semantic security (MUSE)). Given a leakage function L = {LStp,LSrch,
LShr} for static SSE schemes or leakage function L = {LStp,LSrch,LShr,LUnsh,LUpl,LUpd} for dy-
namic SSE schemes, where LStp corresponds to the leakage during Setup and likewise for the rest of
the leakages and functions. A multi-user SSE scheme Σ is adaptively-secure in the presence of corrupted
participants with respect to the leakage function if and only if for any PPT adversary A issuing a poly-
nomial number of queries q there exists a stateful PPT simulator S = (SimSetup, SimSearch, SimShare,
SimUnshare,SimUpload, SimUpdate) such that

p[RealU,C,Σ
A (λ, n) = 1]− p[IdealU,C,Σ

A,S,L(λ, n)] ≤ negl(λ),

with the real and ideal security games as defined below.
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b← RealU,C,Σ
A (λ, n)

1 : (D,U,C, stA)← A(1λ);

2 : K ← OwnerKeyGen(1λ);

3 : KU ← UserKeyGen(1λ);

4 : ([Cnt], auxU ;DB)← SetupK(KU , D, Stp);

5 : qSet← A(1λ, ιC , DB, τj−1, stA); \\ |qSet| = n

6 : foreach q ∈ qSet :

7 : . .if q.type is Search then ([Queueq.u], [OMAPq.u], Dq.u(q.w))← Search(Kq.u, q.w, auxq.u;DB);

8 : . .if q.type is Share then (aux′
q.u;DB′)← ShareK(q.u, q.d, auxq.u;DB);

9 : . .if q.type is Unshare then (aux′
q.u;DB′)← UnshareK(q.u, q.d, auxq.u;DB); \\ dynamic only

10 : . .if q.type is Upload then (Cnt′;DB′)← UploadK(q.d, Cnt); \\ dynamic only

11 : . .if q.type is Update then (Cnt′, aux′
U ;DB′)← UpdateK(q.id, q.WList, qi.op, Cnt,KU ;DB); \\ dyn. only

12 : return b← A(1λ, DB, ιC , τn, stA)

Here τj = (t0, . . . , tj) with ti being the messages from the user/owner to Server in the i’th query. We
assume without loss of generality that b = 1 is the Real game.

b← IdealU,C,Σ
A,S,L(λ, n)

1 : (D,U,C, stA)← A(1λ);
2 : stS ← SimOwnerKeyGen;

3 : (stS ,KC)← SimUserKeyGen(1λ);

4 : (stS , auxC ;DB)← stS ∪ SimSetupK((c,Kc)c∈C , D, Stp);

5 : qSet← A(1λ, ιC , DB, τj−1, stA); \\ |qSet| = n

6 : foreach q ∈ qSet :

7 : . .if q.type is Search then ([Queueq.c], [OMAPq.c], stS ; tj)← SimSearch(stS ,LSrch(q, q.u);DB);

8 : . .if q.type is Share then (aux′
c, stS ;DB′, tj)← SimShare(stS ,LShr(q, q.u);DB);

9 : . .if q.type is Unshare then (aux′
c, stS ;DB′, tj)← SimUnshare(stS ,LUnsh(q, q.u);DB); \\ dynamic only

10 : . .if q.type is Update then (stS ;DB′, tj))← SimUpload(stS ,LUpl(q)); \\ dynamic only

. .if q.type is Update then (aux′
C , stS ;DB′, tj))← SimUpdate(stS ,LUpd(q, q.u);DB); \\ dynamic only

11 : return b← A(1λ, DB, ιC , τn, stA)

Now, our definition 28 above is indeed a unified definition for non-adaptive semantic security (MUSE).
It can for example immediately by applied to the security definition by Patel et al. [20] (who provide
a static SSE scheme). In order to apply our definition to Patel et al. we:

• do not output any of the optional output.

• use Stp = ∅.
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• use ι = {K,KU ,KD}.

• require that the output of the Query subalgorithm and the Search result are both part of the
Search-leakage function LSrch.

• do not use any of the dynamic protocols

• use ιu = {Ku, auxu, {Kd}d∈Accessu , }.

• use auxu = {pointer(σu,d) : d ∈ Accessu}.

where Accessu is the set of document identifiers of the documents that u has been granted access to.

9 Literature overview

The idea of SSE was put forth by Song et al. [26] and was a response to practical limitations to
oblivious RAM (ORAM) methods. Their work had some limitations such as that it was proven to be
secure but not proven to be searchable [6], vulnerable to statistical attacks and that it had a search
time linear in the corpus size [26].

Two notable papers were written with a primary focus on addressing these limitations. The first
paper was by Goh et al. [11], who defined IND-CKA secure and IND2-CKA secure, though it was not
specifically designed for SSE and as such it did not prevent trapdoor leakage. Its security requirement
was that no information about the underlying documents can be learned that cannot be learned from
a given trapdoor. Curtmola et al. [6] showed in their paper that their security definitions were
insufficient, as they notice that the security requirement specifically holds “against adversaries that
can convince the client to generate index and trapdoors chosen by the adversary”. This way they
proved that an IND2-CKA SSE scheme with provably secure trapdoors can still leak keywords.

The second paper was by Chang and Mitzenmacher [5], who had a security requirement similar to
the definitions by [11]. Curtmola et al. [6] prove that any SSE scheme and specifically insecure SSE
schemes can trivially satisfy this security requirement. The issue with the definition of [5] was that
for all corpus and keyword sets they required the existence of a simulator satisfying some probability
rather than – as it should have been – requiring that there exists a simulator that satisfies the same
probability but for all corpus and keywords sets. The difference here is in the order of determining
the simulator and the corpus-keywords sets.

In the history of SSE research the paper by Curtmola et al. [6] is a landmark event that divides
the security standard in a clear pre-Curtmola time period and a post-Curtmola time period. Before
Curtmola et al. published the first version of their paper in 2006, the SSE security definitions typic-
ally revolved around an adversary gaining a trapdoor oracle and being unable to distinguish between
two sets of corpus-trapdoors. To address the newly identified weaknesses in [11] and [5], Curtmola
et al. came up with their own security definitions. They defined indistinguishability and semantic
security for SSE schemes. For the existing adversarial framework they proved equivalence between
the two definitions. Additionally, they introduced a new adversarial model. In this new model the
adversary is not required to make his queries known beforehand but is instead allowed to choose
queries based on previously acquired trapdoors and search outcomes. This new adversary is called
an adaptive adversary, whereas the old adversary is called a non-adaptive adversary. In this new
adversarial model adaptive semantic security implies adaptive indistinguishability but not vice versa.
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With this new adversary there is a clear distinction between the pre- and post-Curtmola time. In
conclusion, [6] addrssed previous limitations with their two new security definitions and they even
unified them by showing equivalence in the non-adaptive case. More importantly, they introduced a
new adversarial model which allowed for additional leakage and then came up with new “adaptive”
security definitions to combat this, with adaptive semantic security being new security standard.

Now, Curtmola et al. considered a multi-user setting (MUSE) where the corpus was shared in its
entirety with the recipient. Popa et al. [21] were the first to consider sharing a (sub)set with users
rather than the entire corpus. They came up with a new setting called the multi-key setting (MKSE).
MKSE distinguishes itself from MUSE in the number of encryption keys: in MKSE one query token is
sent to the server which is able to search over multiple document sets – each possibly encrypted with
a different key – whereas in MUSE one query token is sent to the server which is able to search over
all document sets encrypted with the same key. Popa et al.’s [21] MKSE construction was improved by
several works in terms of server storage optimisation, elimination of the required trusted third party,
mitigation of dictionary sharing by a malicious corpus owner, and security improvements ([16], [28]).

The security guarantee [21] had in mind was only allowing a per document hit-or-miss given a
keyword. However, [12] devised an attack that broke the proposed security. The principle allowing
the attack was that the share keys were generated independently of the shared set. As a result, the
aforementioned improvements to [21] were vulnerable to the same attack because they too had set-
independent share keys. Besides this, an additional vulnerability was demonstrated by the attack from
[29]. The principle allowing the attack was that each keyword in the document was encrypted sep-
arately. A query hit thus revealed the matching encrypted keyword. This vulnerability too remained
present in the follow up works.

The work by Hamlin et al. [13] also outline problems in [21]’s their line of work. They explained
the security flaws and addressed them in their definition and implementation. In doing so, they
created a point of reference for other works in terms of security.19 The problems outlined by them
are:

1) the separation of data and query privacy. Although already identified by [6] in MUSE, the
separation was again an issue in MKSE. Leaking contents of documents leaks information about
the contents of the query and vice versa.

2) the share key being independent of the shared set. A malicious user was able to share a dic-
tionary with an honest user and thus convert the recipient’s queries to the sharer’s queries due
to the absence of set dependence in the share key generation. Surprisingly, honest users their
information was leaked if a malicious corpus owner shared a document with them.

3) searching by comparing queries and encrypted keywords. The MKSE definition required com-
paring a given query to individual encrypted keywords. This leakage therefore transcended
users and documents [29].

As is readily seen from the second security problem addressed by them, this reference point for se-
curity includes what is called cross-user leakage (even though it is not named as such yet by them).
They are among the early works considering a server colluding with malicious or corrupted corpus
owners (users in MUSE). It should be noted though that the security requirement by [13] is non-
adaptive indistinguishability for MKSE rather than the standard adaptive semantic security for MUSE
as introduced by [6]. The construction by [13] was recently enhanced to achieve result verifiability

19 See [20], [33], [4].

68



– allowing a user to verify that the server returns the proper search result without having omitted or
erroneously added any document – using a garbled bloom filter by [27].

As discussed in the introduction, determining when access pattern leakage is acceptable is outside
of the scope of Hamlin et al. [13]. This leakage is experimentally assessed however by papers such as
[34], [3], and [7].

Curtmola et al. still allowed some leakage, namely that of the trace. The trace consists of a list
of trapdoor-document matches called the access pattern; a symmetric binary matrix indicating if
keyword i in row i equals keyword j in column j called the search pattern; and the sizes of the
documents. The leakage of the trace still invites some attacks. Islam et al. [15] used co-occurrence
from the access pattern leakage to formulate an attack on the remaining keywords. This attack was
improved by [3] and [22]. It was shown by [17] however that even only leaking the search pattern –
i.e. no access pattern leakage – can leak information to formulate an attack, inferring the keywords.
Oya et al. [19] formulated new attacks that could leverage search and access pattern leakages, or
it could even leverage only the search pattern leakage. It should be noted that attacks and defenses
against them are constantly developed and that despite flaws, [13] notice that SSE can provide mean-
ingful security for certain data sets even if imperfect.

Newer works often come with some additional security guarantees. Notable amongst these is
“backward privacy”. Backward privacy was first introduced by Bost et al. [2] and they defined three
types of backward privacy: weak backward privacy, backward privacy leaking the update pattern,
and backward privacy leaking the insertion pattern (ordered from weakest to strongest). They also
provided several implementations, each with different trade-offs. Notably, they did not consider cross-
user leakage.

Besides the different security properties that can be considered, there are also works that use
an additional party in a multi-server setting to achieve security. They (necessarily) assume non-
colluding servers. Van Rompay et al. [25] are of particular interest as they cover cross-user leakage.
Interestingly, they provide different security requirements for different servers. Other papers using a
multi-server architecture are [31] who use token-adjustment to preserver search functionality among
multi-indexes – which is the support of searching over multiple indexes simultaneously – and use key
sharing to implement identity-based encryption; and [30] who focuses privacy in the face of colluding
users and low complexity for users.

Lastly, while our work addresses some of the challenges in comparing papers by enabling easier
analysis, the study by [8] examines the impact of various leakage-abuse attacks and develops a risk
assessment protocol to facilitate comparison.

10 Discussion & conclusion

Our work focused on unifying the theoretical framework used in SSE that supports multiple users.
Among the primary contributions is a new definition of semantic security in the multi-key setting,
along with a proof of its equivalence to indistinguishability in the presence of a selective adversary
colluding with a set of corrupt users. This generalises the proof by [6] and encompasses the unification
of terminology, symbolism, and security definitions, which is crucial for the advancement of the field.

A significant concern in SSE is cross-user leakage, where sensitive information might be inferred
across different users. Our study specifically addresses this issue by incorporating it into the unified
definitions, including our new definition of semantic security for the multi-key setting, and the sub-
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sequent equivalence proof. The contributions of this thesis provide clarity to the field of SSE in the
following way. Firstly, with our new semantic security (MKSE) we have formulated what semantic
security encompassing cross-user leakage would look like in the multi-key setting. Secondly, we have
addressed the question if semantic security is stronger than indistinguishability in the MKSE – assum-
ing a selective adversary – by proving that the definitions are equivalent. A limitation to our new
definition for semantic security is that the assumption for a non-singular multi-key history can be
strong, meaning that it can require a simulator that is more powerful than polynomial. Thirdly, with
our unification we offer a framework that accommodates diverse applications.Comparing our unifying
framework to previous works by [20], [13], [33], and [4], we find that our framework encompasses
and extends these approaches. Our analysis of their design choices and security formulations reveals
gaps in the existing implementations. Now, our final semantic security definition aligns closely with
that of [4], though we emphasise the need for a resizable dynamic SSE scheme – a limitation we
found in the current research.

One limitation to the current approach to defining security that remains is that comparison between
implementations remains difficult due to the leakage function being a description. Despite our contri-
bution of a unified framework addressing this problem and indeed improving the situation, it did not
address the descriptive issue. There has been other progress in the field, where security properties can
require a leakage function to be rewritable in a certain in order to have that security property (e.g.
share forward-private (section 6.3), and forward private and backward private (appendix)), but this
too did not address the descriptive nature of the leakage function. An alternative way of comparing
schemes is by quantifying the cross-user leakage as described by [20]. It should be noted though that
none of the papers mentioned in our work, with the natural exception of [20] itself, have quantified
the cross-user leakage using this method. Thus the difficulty of comparing schemes remains, albeit
that now our unified framework allows for easier comparison between papers even though it did not
address the issue of the leakage function. As such, this remains an open problem.

Our research focused on papers addressing cross-user leakage. Hamlin et al. addressed how
sharing a document with a user necessarily leaks information about the user’s subsequent queries.
The issue of when the leakage caused by accepting a shared document is acceptable remains an open
option (cf. section 2).

Furthermore, Hamlin et al. assumed a non-adaptive adversary in the multi-key setting and so
did our expansion of the theoretical framework. Future work could explore an adaptive adversary in
the multi-key setting, as it was shown by Curtmola et al. that in the case of an adaptive adversary
semantic security is stronger than indistinguishability. Another option for future research is to extend
the adversarial model by allowing adaptive corruption of users (both in the multi-key and the multi-
user setting) and explore its influence on security.

Other options for future work are differing design choices – such as incorporating a multi-server
approach like [25], who also address cross-user leakage – or additional security properties – such as
verifiability [4]. An interesting property to consider could be that of user anonymity, for example to
limit the personal data gathered by tech companies who host the database. These directions could
extend the current unified framework.

In summary, this thesis advances the field of SSE by providing a unified theoretical framework,
addressing critical security concerns, and identifying possibilities for future research.
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encryption. In Proceedings of the 6th International Workshop on Security in Cloud Computing,
pages 15–25, 2018.

[31] Guofeng Wang, Chuanyi Liu, Yingfei Dong, Peiyi Han, Hezhong Pan, and Binxing Fang. ID-
Crypt: A multi-user searchable symmetric encryption scheme for cloud applications. IEEE
Access, 6:2908–2921, 2018. ISSN 2169-3536. doi: 10.1109/ACCESS.2017.2786026. URL
http://ieeexplore.ieee.org/document/8240885/.

[32] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Hubert Chan, Elaine Shi, Emil Stefanov, and
Yan Huang. Oblivious data structures. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 215–226, 2014.

[33] Yun Wang and Dimitrios Papadopoulos. Multi-user collusion-resistant searchable encryption
with optimal search time. In Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security, pages 252–264. ACM, 2021. ISBN 978-1-4503-8287-8. doi: 10.1145/
3433210.3437535. URL https://dl.acm.org/doi/10.1145/3433210.3437535.

[34] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are belong to
us: the power of {File-Injection} attacks on searchable encryption. In 25th USENIX Security
Symposium (USENIX Security 16), pages 707–720, 2016.

73

http://ieeexplore.ieee.org/document/8240885/
https://dl.acm.org/doi/10.1145/3433210.3437535


11 Appendix

11.1 Verifiability extension to µSE

To transform the Dynamic Multi-User Searchable Encryption (DMUSE) into a verifiable DMUSE (VD-
MUSE) Chamani et al. protect the integrity of the enrypted data using a Merkle tree [1], [18]. To do
so, the encrypted index I is treated as an array and a Merkle tree is computed over it. The root is then
published as the verification digest, allowing users to verify search results.

Besides protecting the corpus, the integrity of the keyword counters also needs to be guaranteed.
In Q-µSE the digest must be updated whenever Queue is updated by the corpus owner in document
addition, updating, or removal operations, as well as share operations.

In the case of O-µSE, which uses OMAPs that are not only updated after keyword updates but also
after search queries, the digest needs to be updated for the same situations as Q-µSE but additionally
it needs to be updated after search queries.

The verifiable variants of the schemes are named VQ-µSE and VO-µSE.
Lastly, in order to use the verification protocol and transform a DSSE scheme into a VDSSE scheme,

additional output and actions are required.

• Setup additionally outputs a verification token V at the beginning.

• Enroll additionally outputs a verification token V for local storage at the enrolled user.

• Search additionally outputs verification proof Π.

• Every time the verification token is updated – be it whether Share, Update or Unshare updated
the amongst others the index, or Search changed an OMAP – all users need to be notified.

11.2 Forward and backward privacy

Whereas the papers before [4] were largely or even fully static, Chamani et al. provide security for
updates. Their notion of forward privacy is – informally – that Upload, Share, Unshare and Update
operations cannot be connected to previous Search operations. E.g., if a new document is uploaded
it should not be possible to tell if this new document contains a keyword that has previously been
searched already except for when an authorised user repeats his query containing this keyword. Using
the helping functions

WLeakage(u, d, t) =

{
W t(d) if u is corrupted

|W t(d)| if u is honest

WListLeakage(u,WList) =

{
WList if u is corrupted

|WList| if u is honest

forward privacy is defined as

Definition 29 (Forward-private). A dynamic multi-user searchable symmetric encryption scheme with a
coalition C of corrupted users is forward-private if and only if the Upload, Share, Unshare, and Update
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leakage functions (LUpl,LShr,LUnsh,LUpd) can be written as:

LUpl(K, d) = L′(id(d))

LShr(K,u, dt, t) = L′(id(d), u,WLeakage(u, d, t))

LUnsh(K,u, d, auxD
u , t) = L′(id(d), u)

LUpd(K, d,WList,mod, auxD
U ,KU , t) = L′(d,WListLeakage(u,WList),mode,AccList(d))

where L′ denotes a stateless function.

The definition above has split [4]’s requirement for LShr in a requirement for LShr and a requirement
for LUpl due to the protocol differences. Thus the input of mode for LShr by [4] is not required.

Let qSet be a list of queries q.

• For Search queries the entry q is given by (t, w, u, Search) where t is the timestamp, w is the
searched keyword and u is the user executing the Search query.

• For Update queries the entry is (t, d,WList,mod, U, Update) where d is the document, WList
is the set of keywords to be added to or deleted from the document, modus mod ∈ {add, del}
indicates addition or deletion, and U is the set of users who are affected by the operation
U = AccList(d).

• For Share queries the entry is (t, d, u, Share).

• For Upload queries the entry is (t, d).

• For Unshare queries the entry is (t, d, u, Unshare).

First we define helping functions.

Time(w, user) = {(t, id(d))
∣∣∣[((t, id(d),W t(d), u, Share) ∈ qSet : w ∈W t(d)

) ∨
((t, id(d),WList, add, U, Update) ∈ qSet : [w ∈WList ∧ user ∈ U ])

] ∧
[
∀t′

[(
(t′, id(d),WList, del, U, Update) ∈ qSet : [w ∈WList ∧ user ∈ U ]

) ∨
(t′, id(d), u, Unshare) ∈ qSet : w ∈W t(d)

]
→ (t′ < t)

]
}

Here brackets have been rematched and stylistic choices such as colour and different bracket types
have been made to improve readability. In words, this is the function that returns all tuples (timestamp,
file-identfier) tuples of keyword w for user user that have been added by either a Share or Update
operation to DB and that have not been deleted or Unshared afterwards.

Update(w, user) = {t
∣∣∣[(t, d,mod, u, Share) ∈ qSet : w ∈W t(d)

] ∨
[
(t, d,WList,mod, U, Update) ∈ qSet : [w ∈WList ∧ user ∈ U ]

]
}
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In words, this function returns the timestamps of sharing and of each addition/deletion operation
related to keyword w for user u. We will now define the final helping function:

SrchLeakge(w, u) =

{
w if u is corrupted

∅ if u is honest

We will now define backward-privacy.

Definition 30 (Backward-private). A dynamic multi-user searchable symmetric encryption scheme with
a coalition C of corrupted users is backward-private if and only if the Search leakage functions LSrch can
be written as:

LSrch(Ku, w, aux
D
u ;xSet, uSet) = L′(u, T ime(w, u), Update(w, u), SrchLeakage(w, u)).

where L′ denotes a stateless function.

Here backward privacy is obtained when the only information that is leaked (if the user is not cor-
rupted) is the files that currently contain w and that u has access to – this is Time(w, u) – and the
timestamps of all previous updates for w affecting u – this is Update(w, u). Of course, the searched
keyword is leaked as well if the user is corrupted – this is SrchLeakage(w, u).

11.3 Verifiability

Chamani et al. provide an extension to their security definition to achieve verifiability of results. They
do so with a Verify protocol:

bool ← VerifyKu
(w, V, IdSet,Π): is a deterministic protocol to verifiy search results. It takes as

input user key Ku, searched keyword w, verification token V , the reply to the search keyword
IdSet, and verification proof Π. It outputs the result bool ∈ {true, false}.

Verify is used by a querier to verify a search result. Verify returns “true” if the verification test passes,
and “false” if the test fails. Failure can be due to changed keywords (incorrect timestamps), omitted
results and falsely included results. With V and Π the user can verify the search result for correctness.
We will now define verifiability. The Adversary is the Server colluding with a coalition C of users.

Definition 31 (Verifiable). An SSE scheme is verifiable if every PPT Adversary A has only negligible
negl(λ) advantage in the following security game with a challenger C, given dictionary ∆ and security
parameter λ:

1. A sends to C a corpus D, a set of users U and a coalition of corrupted users C ⊊ U .

2. C sends toA the information available to the coalition auxD
C and most of Setup’s output: (I, Access, uSet, V ).

3. A sends query set qSet to C, who executes these queries while recording the (current) state of the
database including all scheme variables. C sends back the appropriate responses.

4. A sends to C an honest user h, a search result set IdSet, and proof Π′. C runs V erifyKh
(w, V, IdSet,Π′).

A wins if Verify returns true whilst IdSet ̸= DBh(w).
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In our definition above we do not give the entire output of Setup to the Adversary since Setup also
outputs auxD, the auxiliary information of the corpus owner containing amongst others the master
key K and the keys of all users Ku ∈ auxD

u ∈ auxD. Furthermore, in our definition the Adversary also
has to send a keyword w.

The basic idea behind Verifiable DMUSSE (VDMUSSE) is to use an authenticated data structure
that the user can use to check the search result. Chamani et al. have dedicated a separate section
to extending O-µSE and Q-µSE so that the schemes are verifiable as defined above. This extension is
given in a high-level approach. The following steps are required:

• The encrypted index I is treated as an array. The Setup protocol calculates a Merkle tree over it
and publishes the root as the verification digest V .

• Enroll shares V with the user.

• Users issuing search queries get the corresponding tree proofs from the server and verify each
access of I with respect to this digest.

• The integrity of the keyword counters needs to be protected as well. Updates do the digest are
required whenever the keyword counter mechanism is changed. Chamani et al. claim that in
Q-µSE queue entries are only updated by the owner during Update and Share queries, however
– since the queue is flushed – they are also updated by the user after retrieving the queue entries.
In O-µSE the keyword counters are stored in OMAPs, and OMAP blocks are shuffled after being
in a Search query.

• Upload, Share, Update, and Unshare change I. This requires an update in the verification token
and all users are notified of the updated value V ′.

• A Search query outputs verificiation proof Π to the user.

The verifiable version of Q-µSE is called VQ-µSE and the verifiable version of O-µSE is called VO-
µSE. The verifiable µSE schemes are deployed using a blockchain. The blockchain technology and its
implementation is outside of the scope of this thesis and the reader is referred to [4] for the details.
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