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Abstract

Recently, the concept of prompting has been introduced as a mechanism to provide con-
textual cues to the model, thereby directing its focus towards the downstream task solely
through interaction with an input. The concept has evolved into prompt-tuning, a pro-
cess in which human intervention is eliminated, and the model autonomously adjusts the
prompt parameters in pursuit of optimizing its final performance. Furthermore, the ad-
vent of prompt transfer has notably advanced performance in prompt-tuning. However,
existing prompt transfer methodologies are primarily based on soft prompts, which lack
interpretability and exhibit limited transferability due to their reliance on the model’s ar-
chitecture. This study introduces Gradient Guided Discrete Prompt Search (GGDPS),
which combines the interpretability and ease of transferability of hard prompts with the
expressiveness of soft prompts. GGDPS uses gradients from soft prompts to guide the
model in selecting optimal hard tokens, allowing for autonomous prompt generation with-
out human intervention. The resulting hard prompts are easily transferable between models
and require no architectural modifications. We evaluate the feasibility and applicability of
GGDPS, finding that the resulting hard prompts can match or even surpass baseline results
on certain datasets. Additionally, we evaluate the transferability of the generated prompts,
revealing their success is depended on the pre-trained knowledge of the model. To address
this challenge, we introduce Collaborative GGDPS, which enhances generalizability and
robustness by creating shared prompts across various models.

Keywords: hard prompts, soft prompts, gradient-guided search, prompt transfer, inter-
pretability



Chapter 1

Introduction

The emergence of Large Language Models (LLMs) has revolutionized the field of artificial
intelligence, advancing the limits of the state-of-the-art results and attaining increased
levels of efficiency amidst various domains [53]. Despite its widespread application, con-
ventional fine-tuning through gradient updates remains computationally expensive and
time-consuming as it requires updating all the model parameters. As the number of pa-
rameters in pre-trained LLM continues to increase, so does the corresponding demand for
computational resources. For instance, fully fine-tuning the Falcon model with 180 billion
parameters [1] would require a minimum allocation of 5120GB of computational resources
[61]. To address the computational burden of full-model tuning, researchers shifted their
attention towards identifying parameter-efficient techniques capable of updating solely a
subset of parameters, while keeping the rest untouched [17, 61].

The emergence of GPT-3 showcased the capability of LLMs to execute various NLP
tasks without any gradient updates, relying solely on textual interactions with the model,
forming a new concept of prompting [4]. This includes supplying instructions and examples
for the desired task as input to the model. The prompt provided with an additional
instruction can alternatively be referred to as a hard or discrete prompt, as it comprises
natural language tokens and exists within the discrete space. The model then generates
an output based on these instructions and examples, without necessitating any additional
training or modifications to the pre-trained model. Despite their training solely on language
modeling objectives, these models demonstrate notable proficiency in novel tasks for which
they have not received explicit training. Nonetheless, simple prompting has its drawbacks.
The process of writing an instruction that could maximize the model performance is prone
to errors and proven to be time-consuming even for experts [24]. Also, the difference
has been observed between human and machine comprehension, thereby leaving room for
erroneous interpretations of the intended purpose of a given prompt [58].

Hence, the concept of prompting has progressed into prompt-tuning, involving the ad-
dition of a small number of parameters to specific parts of the model, with the objective
of identifying the most optimal prompt capable of eliciting the desired final output from
the model [24, 27, 32]. These continuous vectors, integrated into the input at the model’s
embedding layer, are referred to as soft or continuous prompts. They offer enhanced
flexibility and adaptability during the fine-tuning process, as they are the only components
subjected to gradient updates. Taking gradient steps within the continuous space provides
a larger search space, thereby increasing the likelihood of identifying a more optimal set of
vectors that can effectively elicit the desired output. In terms of performance, it demon-
strated more favorable results when compared with full fine-tuning across the majority of
tasks within the GLUE[57] and SuperGLUE[56] benchmarks. Moreover, they consistently
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outperform hard prompts according to evaluation metrics such as accuracy and precision.
Nevertheless, some challenges remain, as the aforementioned benchmarks merely scratch
the surface of all possible tasks.

Prompt-tuning encounters challenges in achieving competitive performance relative to
full-model tuning or alternative parameter-efficient methodologies, particularly in scenarios
characterized by limited data or the utilization of relatively small models. Transfer learn-
ing remains a dominant and preferred approach to deal with those issues, demonstrating
substantial improvements, thereby facilitating a shift from full-model tuning towards a
more parameter-efficient methodology. The introduction of prompt transfer particularly
marked a breakthrough in terms of performance for prompt-tuning. It succeeded in miti-
gating certain vulnerabilities associated with prompt-tuning, such as sensitivity to prompt
initialization [12, 18], high variability in a few-shot setting[12, 54], slow convergence[69],
and the ability to generalize across multiple tasks[2].

1.1 Problem statement

Prompt transfer remains a critical area of research due to its focus on reducing the costs
associated with model tuning. Given the continual growth of LLMs, transferable prompts
can eliminate the need for retraining and the development of new algorithms tailored to
each newly introduced model. However, most prompt transfer currently occurs within
models of similar characteristics (e.g. from T5-base to T5-XL). Therefore, expanding to
cross-model transfer would be significantly impactful. It enhances scalability by enabling
new models to leverage the knowledge and capabilities of existing prompts, thereby facili-
tating quicker deployment and adaptation. This is particularly crucial, as different models
may be employed for the same task, with the choice of model dependent on the constraints
imposed by the deployment environment. Ideally, prompts would be trained on smaller
models but utilized on larger ones, leveraging their greater expressive power and superior
performance.

Currently, there are numerous obstacles to achieving cross-model prompt transfer. Hard
prompts do not match the performance of full-model tuning. Additionally, identifying the
optimal instructions to maximize performance remains labor-intensive. On the other hand,
while soft prompts yield better results, their transferability is restricted to the embedding
space. Since they are appended to the embedded input, their dimension is dependent on
the embedding size of the model, which can vary significantly. For instance, soft prompts
trained on a model with a smaller embedding space cannot be transferred to a model with
a larger embedding space. Moreover, soft prompts lack interpretability. A work by Bailey
et al. [3] demonstrated that interpreting soft prompts through simplistic mappings to
natural language prompts can lead to significant misrepresentation, as the resultant natural
language prompts fail to encapsulate the effectiveness of the original soft prompts. This
issue can facilitate malicious manipulation, resulting in undesirable behaviors LLMs[64, 71].
Hence, understanding the information encoded within soft tokens is crucial, as it would
aid in identifying malicious soft prompts.

1.2 Objective

In this study, our goal is to merge the interpretability and transferability of a hard prompt
with the expressiveness of a soft prompt. We propose Gradient Guided Discrete Prompt
Search (GGDPS), which leverages the gradient from a soft prompt to guide the model in
selecting hard tokens that optimize final performance. By utilizing the gradient from a
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soft prompt, GGDPS enables the model to autonomously determine the most suitable set
of hard tokens for the task at hand, eliminating the need for human prompt engineering.
The resulting hard prompt can be easily transferred to homogeneous or heterogeneous
models, as it does not necessitate any modifications to the model’s architecture and can
be seamlessly concatenated with the input data during preprocessing.

1.3 Research Questions

To validate our algorithm, we formulate specific research questions designed to test the
feasibility and applicability of the proposed GGDPS algorithm. In addition to testing the
algorithm itself, we assess the resulting hard prompts and evaluate their transferability.
Furthermore, we introduce an extension to the GGDPS algorithm, termed Collaborative
GGDPS, which aims to create a shared prompt across various models, enhancing its gen-
eralizability and robustness. Research questions are formulated as follows:

• How can the tokens of soft prompts be mapped or translated into natural language
tokens?

• How can a model autonomously produce a hard prompt tailored to a specific task,
without requiring human intervention?

• What impact does transferring a hard prompt from one model to another have on
performance?

• What are the effects of collaborative shared hard prompt generation between two
models on achieving optimal performance for both?

3



Chapter 2

Literature review & Background

This chapter offers additional insights into the field of this research, aiming to equip the
reader with essential background information. It introduces relevant concepts such as
prompting, and the distinctions between hard prompts and soft prompts. In addition to
providing foundational knowledge, this chapter also reviews related work, thereby situating
the current study within the broader research context.

2.1 Background

The pioneering work by Redford et al.[40], has illustrated that large language models
can execute downstream tasks in a zero-shot scenario via in-context learning, using the
text input of a pre-trained language model as a form of task specification. The model
is conditioned on the instruction formed in natural language, called hard or discrete
prompt, and is given a few examples of the input-output pairs, then the model is expected
to behave accordingly. Although demonstrating decent performance, the results remained
inferior compared to conventional fine-tuning procedures. A work by Brown et al.[4] has
noted that the performance gap between in-context learning and fine-tuning could be
reduced with scale. This suggests that the performance difference between full-model
tuning and prompt tuning diminishes as the model size increases. Their research introduced
GPT-3 with 175 billion parameters, showcasing robust performance across various tasks,
nearly matching the performance of state-of-the-art fine-tuned models. Nevertheless, it
still struggles under one-shot or few-shot setting. It only realizes its full potential under
gradient-based training on a handful of labeled examples[44].

The most straightforward approach to enhancing the performance of prompting in-
volves modifying the prompt template based on human intuition regarding what would be
logically coherent and could optimize the ultimate outcome. For example, Brown et al.[4]
have manually created prefix prompts to support wide variety of NLP tasks. Schick and
Schutze[43] proposed to reformulate tasks into a cloze-style questions and use the verbal-
izer to leverage the knowledge contained in the pre-trained model for assigning soft labels
to the large corpora, facilitating a supervised training.

Even though there was a line of work relying on searching for optimal prompt in the
discreet space, it was shown that this approach necessitates a heavy dependence on prior
knowledge and may pose challenges even for experts [19]. Furthermore, language mod-
els may encounter difficulties in comprehending prompts the same way as humans do[58].
With the aim to improve upon the issues, soft or continuous prompts were introduced,
characterized by their trainable embeddings that could condense the knowledge in fewer
parameters in comparison to the full model fine-tuning.
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Lester et al.[24] introduced the idea of soft prompts, that optimizes model performance
on specific tasks by adjusting a small set of prompt embeddings instead of modifying the
entire model. This method significantly reduces computational costs and the number of
tunable parameters, making it more efficient and scalable compared to traditional fine-
tuning.

2.2 Related work

This section reviews previous academic research relevant to the current study. Given
that the focus of this work is on conducting hard prompt search using gradients from
prompt-tuning, this section is divided into two parts, each dedicated to one of these topics.
Subsection 2.2.1 reviews studies that have previously attempted automated hard prompt
search, with a focus on the most commonly used approaches. Meanwhile, Subsection 2.2.2
introduces various existing prompt-tuning methods that could be utilized to conduct hard
prompt search within the continuous space.

2.2.1 Automated hard prompt search

Automated hard prompt search represents a crucial area within prompting paradigm. Hard
prompts, composed of discrete tokens, offer interpretability and ease of transferability
across different models. However, they pose a significant challenge in terms of automated
generation. Several studies have endeavored to automate the process of hard prompt search
through various methodologies. In this study, we categorize the process into two distinct
methodologies: gradient-based search and prompt generation.

Gradient-based search. A work by Wallace et al.[55] performed a gradient-based
search over tokens to find short trigger sequences that could extract a desired knowledge
from the pre-trained LM. The search proceeds iteratively, advancing through the tokens
within the prompt in a sequential manner. However, their study focuses on identifying
adversarial triggers that elicit negative sentiment from the model, whereas our study aims
to find a prompt that maximizes a task performance. A later work by Hambardzumyan
et al.[13] was inspired by adversarial reprogramming, that make injections into the input
to make the model behave differently from what it was trained for. WARP focuses on
searching for ideal prompt in continuous space with respect to the input instances, updating
the prompt and verbalizer token embeddings. However, their hard prompt is composed of
nearby tokens vectors to the identified embeddings. In contrast, our method updates the
gradient with respect to the hard tokens identified by the model.

Prompt generation. Shin et al. [48] introduced an automated approach for prompt
generation, termed AutoPrompt. This method synthesizes prompts by combining original
task inputs with a collection of learnt trigger tokens according to a template. Essentially,
AutoPrompt functions as a search algorithm within the discrete space of words, directed by
the training data of the downstream application. Compared to AutoPrompt, our approach
searches for prompts in the continuous space, allowing for greater expressiveness. Further-
more, their study was conducted only on BERT models [6]. A later work by Zhang et
al. [66] utilized generative model BART[25] to dynamically produce prompts based on the
provided input sequence. The original pre-trained LM remains frozen, while PromptGen,
comprising an encoder and autoregressive decoder, is subject to training. In contrast, our
approach does not require an additional module for prompt generation, thereby reducing
the number of trainable parameters during training.
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2.2.2 Prompt-tuning

Even though the prompt-tuning method, developed by Lester et al. [24], obtained com-
petitive results to fine-tuning when trained on a single dataset and had access to a large
enough model, its performance diminishes in multi-task scenarios. Vue et al. [54] show-
cased that prompt embeddings acquired for various NLP tasks exhibit significant spatial
separation within the embedding space, suggesting the absence of a singular prompt ca-
pable of performing equally well across all tasks. This finding suggests the necessity for
methodologies that can take into account both the specific task and input at hand to
generate more tailored prompts.

Instance-dependent prompt-tuning. Work by Wu et al.[60] introduced a method-
ology for generating instance-dependent prompts for language understanding tasks em-
ploying a lightweight bottleneck architecture. A caveat of their methodology is that their
method necessitates two sequential forward passes: firstly, to obtain an input representa-
tion from the pre-trained language model, and secondly, to transmit this representation
to prompt generation, followed by a conventional classification task pipeline. Jin et al.[20]
introduced a more streamlined methodology for instance-aware prompts. They posited
that each trainable prompt token exerts distinct influence across various instances, thus
they sought to ascertain these contributions by computing the relevance score between an
instance and each prompt token.

Meanwhile, a work by Liu et al.[31] sought to address an additional limitation of sim-
ple prompt-tuning: slow convergence rate. They conjectured that the poor performance
of prompt tuning stems from the extensive propagation path of task-specific information,
resulting in significant loss of task-relevant data during propagation within the frozen
model, thereby impacting performance. This hypothesis inspired the development of late
prompt-tuning, which only inserts the prompt within the intermediate layer of the model
as opposed to the input layer. Additionally, the approach harnesses all preceding layers
as valuable knowledge, which is utilized for the generation of instance-aware prompts. Al-
though the approach demonstrated improved convergence rate, the resultant enhancement
in performance was not substantial, often being surpassed by full-model tuning. More-
over, the process of selecting the appropriate layer may entail prolonged execution times
to ascertain its effect on final accuracy.

Prompt transfer. A work by Vu et al.[54] leverage existing tasks as source tasks,
demonstrating the benefits of prompt transfer even in scenarios where dissimilarities exist
between the source and target tasks. Similar study was introduced by Asai et al.[2] called
ATTEMPT, which is method that employs multiple source prompts for downstream tasks.
This approach eliminates the trial-and-error search for the best source task and leverages
insights from various related source tasks. They employed a basic attention mechanism
aimed at directing attention towards useful information with the respect to the provided
input, making the approach instance-dependent. However, their studies primarily focuses
on transferring soft prompts within a task, whereas our research investigates the transfer
of hard prompts across different models.

2.3 Preliminaries on Soft Prompts

2.3.1 Definition

Initially, prompting was based on the concept of prepending extra information for the
model to condition on during the generation of the final output. A classification task could
be formalized as Pθ(Y |X), where X and Y are a sequence of tokens, representing input
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Figure 2.1: The projection from the continuous space onto the discrete space
results in a clustering effect. Each cluster contains an infinite number of points
that are mapped to the same discrete token [22].

and class label respectively, and θ as a set of weights in the chosen model. Prompting
is added into the formulation by prepending a series of tokens P , to the input X, such
that the model maximizes the likelihood of the correct label Y , while keeping the model
parameters θ fixed, resulting in Pθ(Y |[P ;X]).

In prompt-tuning, instead of a prompt P being parameterized by model parameters θ,
it is assigned its own dedicated parameters θP , that are being updated independently. A
tunable prompt P ∈ Rn×e is seen as a set of embedded tokens {p1, p2, ..., pn}, where n is a
number of tokens and e is the dimension of the embedding space. It is then concatenated to
the embedded input, X ∈ Rl×e with l being an length of an input sequence, forming a single
matrix [P ;X] ∈ R(n+l)×e. Therefore, the formulation described above for the classification
task is restated as Pθ,θP (Y |[P ;X]) and can be trained to maximize the likelihood of Y via
backpropogation, by applying gradient updates solely to θP , while the model parameters
θ remain frozen.

2.3.2 Mechanics of Prompts

Expressiveness

The success of soft prompting is often attributed to the greater capacity of continuous em-
beddings compared to discrete tokens. Continuous embeddings can represent a wider and
more nuanced range of information compared to the finite set of discrete tokens. Because
soft prompts function within the same embedding space as the model’s internal representa-
tions, they can more seamlessly integrate with the model’s pre-trained knowledge, offering
greater expressiveness compared to hard prompts. Khashabi et al.[22] have shown that a
single discrete prompt can correspond to only one continuous prompt through its embed-
ding, while the reverse does not hold. This indicates that numerous continuous prompts
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could potentially map to a given discrete prompt, which can be observed on Figure 2.1.
Thus, during the tuning process, the model learns the most suitable representation of
the discrete prompt within the continuous space, aligning effectively with the pre-trained
knowledge.

Attention Allocation

Soft prompting directs the model towards desired output with minimal parameter updates
in contrast to full model tuning. This is achieved by biasing the model with additional
information that redirects attention away from less relevant aspects of the input bringing
more valuable parts of it to the surface. For a more formal definition, it is necessary to
revisit the attention mechanism within the transformer architecture. Each attention block
consists of H heads, which is parameterized by query, key and value matrices W h

Q,W
h
K ,W h

V .
The attention matrix Ah ∈ Rp×p for head h can be formalized as follows:

Ah
i,j =

exp
(
(W h

Qxi)
T (W h

Kxj)
)

Σn
r=1 exp

(
(W h

Qxi)
T (W h

Kxr)
) , (2.1)

where Ah
i,j represents the attention that position i gives to the position j and n is a length

of the current input.
To examine the impact of a prompt on attention, let us introduce a prompt p of length

one onto position 0 of the input.

Ah
i,0 =

exp
(
(W h

Qxi)
T (W h

Kp)
)

exp
(
(W h

Qxi)
T (W h

Kp)
)
+Σn

r=1 exp
(
(W h

Qxi)
T (W h

Kxr)
) , (2.2)

Ah
i,j =

exp
(
(W h

Qxi)
T (W h

Kxj)
)

exp
(
(W h

Qxi)
T (W h

Kp)
)
+Σn

r=1 exp
(
(W h

Qxi)
T (W h

Kxr)
) , for j > 0. (2.3)

As it can be observed the original formulation of the attention solely changed in the de-
nominator by adding a term exp

(
(W h

Qxi)
T (W h

Kp)
)
. Therefore, the attention position i

gives to the positions j > 0 simply scaled down by the attention it now gives to the prefix.
Essentially, if a token receives substantial attention from other tokens in a specific con-
text, no prepended prompt can alter this. Hence, soft-tuning cannot modify the relative
attention patterns within the content, it can only attenuate their magnitude.

Knowledge Elicitation

Since soft-tuning cannot alter attention patterns, its capacity for task learning is con-
strained by the pre-trained knowledge of the model. Petrov et al.[39] demonstrated that
if the task to be learned is not related to the model’s pre-trained knowledge, soft-tuning
fails to achieve satisfactory performance, while full-model tuning is successful, ultimately
modifying the attention patterns. This is supported by an experiment conducted by Hao
et al.[15], which demonstrated that full-model fine-tuning preserves the attention distribu-
tion in the lower layers consistent with those of the original model, while adjusting it in
the higher layers to adapt the model to specific tasks. However, soft prompts do not seem
to significantly modify the attention distribution throughout any layers. This statement

8



0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Layer index

JS
D

iv
er

ge
ne

Prompt-tuning
Fine-tuning

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Layer index

JS
D

iv
er

ge
ne

Prompt-tuning
Fine-tuning

Figure 2.2: JS divergence of attention scores of every layer between the original
T5 model and the modified model: prompt-tuning and full model tuning. Right
figure presents results on MRPC dataset, whilst left on RTE dataset.

could be confirmed using Jensen-Shannon divergence as a metric to measure the difference
between two distributions. The JS divergence is defined as follows:

DJS =
1

2
DKL(P ||R) +

1

2
DKL(Q||R), (2.4)

where P and Q are two different probability distributions and R is the average between
them, with DKL representing a Kullback-Leibler divergence.

Results of the measurements could be observed on Figure 2.2, that illustrates the
distance between the probability distributions of the modified model, whether through
prompt-tuning or full-model tuning, and the original pre-trained model. It can be observed
that the probability distribution of the model utilizing soft-tuning closely resembles that of
the original model, whereas the model with all parameters fine-tuned exhibits a noticeably
different distribution. Hence, prefix-tuning cannot effectively adapt a model to a new
unseen task unless the model possesses related pre-trained knowledge.
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Chapter 3

Methodology

This chapter elaborates on the approach to addressing the defined research questions.
The first section outlines the methodology, which centers on discretizing soft prompts by
leveraging cosine similarity between the embeddings of soft and hard tokens. The second
section introduces the algorithm designed to identify a set of hard tokens using gradients
obtained through the tuning of soft prompts. The subsequent section provides insights
into the setup that enables testing the transferability of the derived hard prompts between
different models. Finally, the chapter concludes by defining a configuration that facilitates
the discovery of a shared discrete prompt applicable across multiple models.

3.1 Discretization of soft prompts

This section details the approach for identifying a natural language equivalent to soft
prompts. It begins by discussing the rationale behind the discretization of soft prompts,
highlighting their existing limitations, and concludes with the methodology employed in
the experimentation process.

3.1.1 Motivation

Given the notably successful results of prompt-tuning and its relatively low number of
tunable parameters, its adaptation to a wide range of machine-learning problems becomes
evident. However, their adaptation is not as rapid as might be expected, due to challenges
related to their interpretability and explainability[3]. As discussed in the Section 2.3, soft
prompts are essentially sequences of numbers that prompt the model to generate a desired
output. However, these sequences are not comprehensible to the user, and the impact of
altering even a single digit within them is unclear. Specifically, this presents a potential
vulnerability for adversarial attacks on LLMs that are challenging to detect and miti-
gate [64, 71]. The model can be maliciously manipulated to exhibit undesirable behaviors
through the strategic use of soft prompts, which are difficult for humans to identify. There-
fore, it is desirable to understand the information encoded within the soft tokens, as this
would also facilitate the identification of malicious soft prompts. Additionally, since soft
prompts are model-specific, with their vector dimensions tied to the model’s embedding
space, they cannot be easily transferred between different models. The aforementioned
drawbacks could be addressed by discretizing the soft prompt. Hard prompts consist of
natural language tokens and can be easily appended to the input text to be used across
different models.
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3.1.2 Approach

The most straightforward approach to interpreting soft prompts involves identifying their
nearest neighbors among the embeddings of discrete tokens. This is achieved by utilizing
the model’s embedding layer to construct a repository of embeddings for all natural tokens
in the model’s vocabulary, followed by computing the cosine similarity between the soft
tokens and the embeddings in this repository. Upon identifying the nearest discrete alter-
native, which yields a discretized soft prompt, we employ this discrete prompt to assess the
model’s performance. Specifically, each discrete prompt was appended to the input text,
treated as a hard prompt, and then inputted into the model for evaluation. This approach
evaluates whether embeddings of natural language tokens can effectively serve as discrete
alternatives to soft prompts.

Despite soft prompts being non-interpretable in their raw form to humans, they hold
substantial significance for the model. To explore this significance, we analyze their rep-
resentation in the last layer of the encoder. This comes from the idea that words, similar
in meaning, tend to have similar representations within the encoder of a language model
[16, 42]. This phenomenon arises because language models are trained to encode semantic
and syntactic similarities among words in their embedding spaces. As a result, words with
similar meanings often exhibit closer proximity in their vector representations within the
encoder. We compute the cosine similarity between the vectors in the encoder output
corresponding to the soft tokens and those corresponding to the input. Subsequently, we
analyze the resulting discrete prompt from both semantic and syntactic perspectives before
incorporating it into the model for further performance evaluation.

3.2 Autonomous hard prompt generation

This section seeks to address the second research question, which focuses on enabling a
model to autonomously identify a set of discrete prompts, by introducing an algorithm for
Gradient-Guided Discrete Prompt Search (GGDPS). Initially, we elucidate the rationale
underpinning the development of this algorithm, followed by a detailed introduction to its
structure and functionality.

3.2.1 Rationale behind GGDPS

The previous chapter highlighted characteristics of soft prompts, revealing that they cannot
be directly mapped to natural tokens through the embedding space without losing their
intrinsic information that is meaningful to the model. However, the primary advantage of
soft prompts lies in their ability of being tuned by the model, which means that a model
autonomously selects a set of vectors from continuous space that directs its attention to
the more significant parts of the input, perfecting the performance. Therefore, rather than
directly converting soft prompts into discrete alternatives, we aim to investigate whether
the model can autonomously select a set of discrete tokens that optimize its performance
to the same extent as soft prompts.

The approach involves allowing the model to identify a set of optimal vectors within
the continuous space, leveraging its expressive and flexible search space for optimization
algorithms. The main difference from conventional prompt-tuning lies in mapping these
vectors to discrete tokens via the model’s linear head, rather than directly concatenat-
ing them with the input embeddings. Khashabi et al.[22] have identified that numerous
continuous prompts can correspond to the same discrete prompt. Consequently, the con-
tinuous space can be conceptualized as being divided into n clusters, where n represents
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the size of the vocabulary. Thus, instead of looking for a soft prompt, the model searches
for a set of vectors that enable the linear head to generate a set of tokens, which then are
concatenated into a prompt. A found discrete prompt is supposed to be the most optimal
one, maximizing the final performance of the model.

3.2.2 GGDPS

Algorithm 1 Gradient-Guided Discrete Prompt Search
Input: Model Mθ, vocabulary embedding E|V |, linear head LH , optimisation step T
learning rate γ, dataset D
Sampled from real embeddings:
PS = [ei...en]∼E|V |

for 1,..., T do
Retrieve current mini batch (X,Y ) ⊆ D
Projection to discrete embedding:
PD = argmax(LH(PS))
Calculate gradient w.r.t. the discrete embedding:
g = ∇PD

Ltask(Mθ([PD;Xi]), Yi)
Apply the gradient to the continuous embedding:
PS = PS − γg

end for
Final projection to discrete embedding:
PD = argmax(LH(PS))
return PD

Above, we present our proposed method in the algorithmic form to enhance clarity
and facilitate implementation. The process requires a frozen model Mθ, a sequence of
learnable embeddings PS = [ei...en], ei ∈ Rd, where n is the length of the prompt and d is
the dimension of the prompt tokens in the embedding space. Initially, the set of learnable
embeddings is initialized from the top n tokens from the vocabulary embedding E|V |×d,
where |V | is a length of the vocabulary. Then, during the training process, each of the
learnable embeddings are projected to the discrete space via linear head of the pre-trained
model LH : Rn×d → Rn×|V |. The mapping is followed by the application of the argmax
function, which identifies the token from the vocabulary with the highest value for each
of the projected vectors. Finally, obtained tokens are concatenated with the input tokens,
which are subsequently passed to the model for further processing.

The loss function Ltask is designed to evaluate the performance of PD, derived through
the discretization of continuous embeddings, on the task data. The primary objective is to
minimize erroneous outcomes. The gradient obtained from the loss function is applied to
the continuous embeddings to direct the search within the continuous space. The process
is repeated for each of the optimization step T . A final projection is obtained once the
training process concludes and the continuous embeddings have reached their optimal state.
The resultant discrete prompt can subsequently be decoded into natural language using a
tokenizer and seamlessly applied to any task-related input without requiring modifications
to the input, prompt, or model.
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3.2.3 Strengths of the GGDPS

The algorithm leverages optimization through continuous space, preserving expressiveness
while handling discrete values. Additionally, it employs the linear head of the pre-trained
model, removing the need for further parameter tuning for search purposes. Therefore, the
number of parameters that need to be learned depends on both the prompt length and
the dimensionality of the embedding space. The resulting discrete prompt is presented
in natural language, thereby enhancing its explainability and mitigating potential subtle
adversarial attacks on language models using soft prompts [64, 71]. The findings suggest
that embedding space attacks bypass model alignments and provoke harmful behaviors
more efficiently than discrete attacks [45]. The rationale is rooted in the expressive prop-
erties of the continuous space, where alterations in the vector can activate any token from
the vocabulary. The modification made to soft prompts can go undetected to the human
eye, given the enigmatic nature of the underlying meanings embedded within soft prompt
values. However, discrete prompt found by the algorithm can be applied seamlessly with
any task-related data in natural language form, requiring no modifications to the model.

3.3 Cross-Model Prompt Transfer

This section addresses the third research question, which focuses on the concept of trans-
ferring prompts, identified by the GGDPS algorithm, between two different models. We
begin by presenting the motivation for the necessity of this research objective, followed by
the methodology that facilitates the achievement of this goal.

3.3.1 Motivation

Prompt transfer remains a notable area of research, driven by the goal of optimizing the
prompt-tuning process, which is quite sensitive to initialization and the size of the training
dataset [21, 26, 50, 70]. Generally, the vast majority of studies focus primarily on trans-
ferring prompts between tasks. Consequently, prompt transfer between different models
remains an underexplored area of research. Emphasizing the development of prompts that
can be transferred between homogeneous and heterogeneous models is advantageous in
scenarios with certain constraints. Developing prompts for each model from scratch can
be resource-intensive. Transferable prompts can reduce the need for extensive training and
tuning, saving computational resources and time [2, 54]. Furthermore, in real-world appli-
cations, different models may be preferred for different tasks due to their specific strengths
[51, 62]. Transferable prompts allow for greater flexibility in deploying the best-suited
model for each task without re-engineering them extensively. This is particularly useful
in practical scenarios where different models may be deployed based on specific require-
ments. For instance, a larger model could be employed to formulate a transferable prompt
due to its greater capacity to learn intricate patterns and details from data. However,
the smaller model equipped with the formulated prompt could be utilized for inference,
given that sending requests to a model with fewer parameters is more cost-effective and
energy-efficient [49].

3.3.2 Approach

A significant challenge with soft prompts lies in their dependence on the intrinsic charac-
teristics of the chosen model, such as the embedding size. Thus, the embedding sizes of
the models must be aligned for the soft prompt to be transferable. Otherwise, the soft
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Figure 3.1: Approach to evaluate cross-model prompt transfer between two mod-
els

prompt must be modified to fit the other model, potentially compromising the integrity
of the knowledge it encapsulates. In contrast, the transfer of hard prompts offers greater
flexibility for cross-model transfer, as they can simply be appended to the input. Hence, we
concentrate on investigating the transfer of hard prompts that are autonomously discovered
by the model.

Figure 3.1 presents an approach for the evaluation of cross-model prompt transfer,
which can be described as follows: train two models to identify their optimal set of hard
prompts, then concatenate the hard prompt trained on the first model with the input for the
second model, and similarly, concatenate the hard prompt trained on the second model
with the input for the first model. Meanwhile, we focus our research on heterogeneous
models to assess the significance of their differences in finding an optimal hard prompt.
This approach is justified by real-world environment, where various models with significant
internal differences are employed depending on the objective. We evaluate the results
on both models using accuracy and F1-score. Furthermore, we evaluate the agreement
level between the predictions of the two models on the same dataset, using different hard
prompts: one trained on the original model and the other trained on the second model.
The agreement level is calculated as the ratio of matching predictions to the total length of
the test set. This metric aids in evaluating the consistency, robustness, and generalization
of the identified prompts.

3.4 Collaborative Prompt Generation

This section addresses the last research question, which investigates the generation of
hard prompts using multiple models. The idea is that the generated hard prompt should
achieve satisfactory performance on all models involved in its creation. The section offers
the rationale behind collaborative prompt generation and outlines the framework designed
to achieve a shared hard prompt.

3.4.1 Motivation

Training heterogeneous models presents unique challenges due to their inherent diversity
in architecture, parameterization, and learning dynamics. Unlike homogeneous models,
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that share similar structural characteristics and training procedures, heterogeneous models
vary significantly in their internal configurations and operational principles. This diversity
complicates the training process as it requires adapting methodologies and strategies to ac-
commodate different model behaviors and capabilities [30]. Moreover, integrating diverse
models often involves overcoming compatibility issues and ensuring effective communica-
tion between components with distinct operational paradigms [28].

Hence, developing a shared prompt that works across various heterogeneous model can
be beneficial for the real-world applications. First and foremost, such a prompt is more ro-
bust and consistent, since it encapsulates knowledge between various models[2, 68]. Due to
the capacity of different models to capture distinct nuances within the same dataset, they
collectively provide sufficient information to draw broader conclusions that extend beyond
task-specific details. Moreover, with a hard prompt that functions effectively across mul-
tiple heterogeneous models, prompt transfer can expand beyond task-specific applications
to encompass cross-model compatibility and versatility. This attribute is advantageous
particularly in scenarios involving computationally intensive models or environments with
constrained resources.

3.4.2 C-GGDPS

Algorithm 2 Collaborative Gradient-Guided Discrete Prompt Search
Input: List of models [Mθ1 , ...,Mθm ], number of models m, where m ∈ Z+

vocabulary embedding E|V |, linear head LH , optimisation step T , learning rate γ,
dataset D

Sampled from real embeddings:
PS = [ei...en]∼E|V |

for 1,..., T do
Retrieve current mini batch (X,Y ) ⊆ D
Projection to discrete embedding:
PD = argmax(LH(PS))
Initialize the variable for accumulation of losses:
Lavg = 0
Calculate loss for all models:
for 1,..., m do

Lavg+ = Ltask(Mθm([PD;Xi]), Yi)
Calculate gradient w.r.t. the discrete embedding for the average of all losses:
g = ∇PD

1
mLavg

Apply the gradient to the continuous embedding:
PS = PS − γg

end for
Final projection to discrete embedding:
PD = argmax(LH(PS))
return PD

To facilitate understanding and provide transparency, the proposed method is delin-
eated in algorithmic form above. The algorithm requires a list of frozen models [Mθ1 , ...,Mθm ],
where m denotes the number of selected frozen models and must be a positive integer m ∈
Z+. Furthermore, it requires a sequence of learnable embeddings PS = [ei...en], ei ∈ Rd,
where n denotes the prompt length and d indicates the dimensionality of the prompt tokens
within the embedding space.
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As in the previous algorithm, the set of learnable embeddings is initialized from the top
n tokens from the vocabulary embedding E|V |×d, where |V | is a length of the vocabulary.
During the training, each of the learnable embeddings are projected to the discrete space via
linear head of the pre-trained model LH : Rn×d → Rn×|V |. Given that we are working with
heterogeneous models, the sizes of their embedding layers, hence the dimensionality of the
prompt embeddings, and the linear head can differ. The embedding layer for initialization
and the linear head for discretization are chosen from one of the models based on overall
demonstrated performance of the algorithm.

The argmax function follows the application of the linear head LH , identifying the
token from the vocabulary with the highest value for each of the projected vectors. Finally,
the obtained tokens are concatenated with the input tokens, which are subsequently passed
to the model for further processing. Each input, along with concatenated prompts, is
forwarded to every model in the list, and the losses Ltask, which assess the performance of
PD, are aggregated during a single optimization step T . After all models have completed
their computations, the aggregated losses are averaged by dividing the total value by the
number of models in the list.

The gradient derived from the loss function is applied to the continuous embeddings and
utilized to guide the exploration within the continuous space. This iterative process occurs
over multiple optimization steps denoted by T . Upon completing the training process and
achieving optimal states for the continuous embeddings, a final projection is obtained. The
resulting discrete prompt can then be transformed into natural language using a tokenizer
and seamlessly integrated into any task-related input without necessitating adjustments to
the input, prompt, or model structure.
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Chapter 4

Experimental setup

In the following section, we describe the experimental setup designed to address the re-
search questions. This section aims to provide detailed information to facilitate the possible
replication of the results. Therefore, this chapter provides comprehensive information on
the selected datasets, data preprocessing procedures, chosen models, training details, base-
lines, performance evaluation metrics, and hardware specifications.

4.1 Datasets and Pre-processing

In this study, we utilize five datasets from the GLUE[57] and two from the SuperGLUE[56]
benchmarks, which contain the following tasks: natural language inference, paraphrase
detection, question answering, and sentiment analysis. Details of the datasets, including
domain, size, and task, are provided in Table 4.1. The datasets were selected based on their
relevance in the field of prompt-tuning and to facilitate a fair comparison with the chosen
baselines. Additionally, we ensured the inclusion of datasets varying in size, domain, and
task to provide a comprehensive evaluation of the proposed approach.

Dataset Category Task Domain Size
RTE GLUE natural language inference News, Wikipedia 5.7K
MRPC GLUE paraphrase detection News 5.8K
WiC Super GLUE word sense disambiguation Lexical databases 8K
BoolQ Super GLUE boolean QA Wikipedia 9.4K
SST2 GLUE sentiment analysis Movie Reviews 70K
QNLI GLUE natural language inference Wikipedia 116K
QQP GLUE paraphrase detection Quora 795K

Table 4.1: Details of seven datasets used in the experiments for training, testing
and validation.

The datasets were obtained from HuggingFace1 and are pre-split into three categories,
which were used as intended: training, validation, and test. All datasets contain two labels,
making it two-class classification problem. The initial input data is presented in various
formats, that needed to be further pre-processed. To prepare the input data for training
and evaluation by the models, input was formatted according to the template illustrated
in the Table 4.2. Furthermore, concrete examples of the data can be found in Appendix A
in Tables A.1 and A.2.

1https://huggingface.co/docs/datasets/en/index
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Dataset Template Input
RTE sentence 1: s1, sentence 2: s2 x = (s1, s2)
MRPC sentence 1: s1, sentence 2: s2 x = (s1, s2)
WiC sentence 1: s1, sentence 2: s2, word: w x = (s1, s2, w)
BoolQ question: q, passage: s x = (q, s)
SST2 sentence: s x = (s)
QNLI sentence: s, question: q x = (s, q)
QQP question 1: s1, question 2: s2 x = (s1, s2)

Table 4.2: Used templates for each dataset to preprocess the input data before
passing it to the model. The initial form of input is data is provided in column
Input.

4.2 Models

To address the research questions, the study necessitates the involvement of at least two
models: T5 and Llama2. T5 was chosen due to its utilization as a backbone language
model in the chosen baselines. Llama2 was selected due to its prevalent use in the field
of large language models and its open-source nature, which facilitates easier integration.
Additionally, the models employ different architectures: T5 is an encoder-decoder model,
while Llama is a decoder-only model. This difference is advantageous as it aligns with
the research goal of developing a shared prompt that enhances its generalizability and
robustness across diverse models. Further, a comprehensive description of each model are
provided along with implementation specifics that can be found in Table 4.3. It is evident
that Llama is significantly larger, containing 31818 times more parameters than T5. This
decision can be attributed to the interest in analyzing the observed behavioral differences
between two models that possess distinct natures.

T5-base, Text-To-Text Transfer Transformer, is a variant of the T5 model developed
by Google Research [41]. It belongs to the family of transformer models, which have rev-
olutionized natural language processing tasks. T5 Base operates as an encoder-decoder
architecture, where it encodes input text and decodes it into an output sequence, making
it suitable for a wide range of text generation and understanding tasks. The model is
pre-trained on large-scale datasets using a text-to-text approach, treating all NLP tasks as
text-to-text problems, which simplifies training and evaluation. T5 Base is known for its
versatility, achieving strong performance across various benchmarks in natural language
understanding, generation, and translation tasks.

LlamaForSequenceClassification, an advanced variant in the LLaMA (Large Lan-
guage Model Meta-Learning Approach) series, represents a decoder-only architecture de-
signed for large-scale language modeling tasks with Llama2 backbone [52]. Developed by
OpenAI, Llama2 builds on its predecessor’s capabilities, emphasizing efficient integration
and openness in its design. As a decoder-only model, Llama2 focuses on generating se-
quences based on input prompts, making it particularly adept for tasks requiring text
generation and completion. With its open-source availability and tailored architecture,
Llama2 supports a broad range of applications in natural language processing, offering
flexibility and robust performance in various language-based tasks. In the current model,
the classification head is appended as the final layer following the Llama2 backbone.

18



Model nl (el/dl) ff dm kv nh #Param
T5-base 12/12 3072 768 64 12 220K
LlamaForSequenceClassification 0/32 11008 4096 32 32 7B

Table 4.3: Implementation details for chosen models. Number of transformer
blocks: nl. Number of transformer blocks in the encoder and decoder: el and
dl. Dimension of intermediate vector within transformer block: ff. Dimension of
embedding vector: dm. Dimension of key/value projection matrix: kv. Number
of attention heads: nh.

4.3 Baselines

The current section of this chapter outlines the selected baselines for evaluating GGDPS
and C-GGDPS: prompt-tuning (PT), soft prompt transfer (SPOT), and attentional mix-
ture of prompt tuning (ATTEMPT). Additionally, the performance of the proposed ap-
proach is compared to that of the pre-trained model, that does not exhibit any modifica-
tions. Each of the baselines was selected based on their novelty, state-of-the-art results,
and widespread use in the field of parameter-efficient tuning. The decision was made to
compare GGDPS against the performance of soft prompts rather than hard prompts, as
previous automated methods for constructing hard prompts have consistently shown infe-
rior performance compared to soft prompts.The chapter is organized by baseline to provide
a more comprehensive description of each.

4.3.1 PT

Lester et al. [24] developed a methodology that appends the embedded input with a set of
tunable embeddings, known as soft prompts, to the pre-trained model. It aims to leverage
the capabilities of large pre-trained models by fine-tuning only a small set of parameters,
which influence how the input is processed. The implementation of the method closely
followed the training details described in the original paper. The method was implemented
on both models T5 and Llama2. The prompts were initialized with embeddings drawn from
the model’s vocabulary. The rest of the training details are described in the Section 4.4.

4.3.2 SPOT

The concept of SPOT, developed by Vu et al.[54], parallels that of PT, incorporating trans-
fer learning by pre-training soft prompts on a source task that is related to the target task.
The method utilizes a pre-trained source prompt to initialize the target prompt, which is
then fine-tuned on a downstream task. The core idea of SPOT is to exploit knowledge
learned from a source task to improve performance on a target task. The implementation
of the method adhered closely to the training protocols outlined in the original paper. The
approach was applied to both the T5 and Llama2 models. A source prompt was initialized
for each dataset using embeddings drawn from the model’s vocabulary and trained over 5
epochs. To determine the appropriate source task for initializing the target task, a method-
ology outlined in the original paper is adopted, employing cosine similarity between source
embeddings to identify the task most closely related to the target task. Subsequently, the
source prompt is utilized to initialize the target prompt, which undergoes fine-tuning for
5 epochs. The remaining training specifics are detailed in Section 4.4.
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4.3.3 ATTEMPT

ATTEMPT, developed by Asai et al.[2], extends the idea of SPOT by incorporating an
attention mechanism to blend multiple source prompts dynamically. Instead of relying on a
single source prompt for initializing the target prompt, ATTEMPT integrates information
from several source prompts using attention weights. The core innovation in ATTEMPT
lies in the attention module, which learns to weight and combine the information from
different source prompts based on their relevance to each input instance. An attention
module consists of linear layers for down and up projection with a non-linear function in
between:

Hdown = W⊤
down(X̂)

Hup = W⊤
up(NonLinear(X̂))

Hout = LayerNorm(Hup),

where Wdown ∈ Rd×r(r < d), Wup ∈ Rr×d, d is a dimension of an embeddings, r is a
reduced number of dimensions and X̂ is a result from the max-pool operation on the
input. Projection parameters are updated during training. SiLU[7] is used for the non-
linear layer.

The implementation closely followed the training procedures outlined in the original
paper, applying the approach to both the T5 and Llama2 models. ATTEMPT involves
training four source prompts—MNLI, SST-2, QNLI, and QQP—for 5 epochs each. Each
source prompt is initialized by sampling tokens randomly from the top vocabularies. Sub-
sequently, each source prompt is employed to train the attention module alongside a target
prompt initialized with the MNLI source prompt. The number of training epochs varies
depending on the dataset size, with 20 epochs used for small datasets and 5 epochs used
for datasets containing more than 10 thousand training samples. The rest of the training
specifics are described in the Section 4.4.

4.4 Training details

The training procedure for each experiment parallels that of PT[24], SPOT[54], and
ATTEMPT[2], as these baselines share identical training details. For each baseline, the
soft prompt consists of 100 tokens. However, in this study, this number was adjusted to
30 tokens, as GGDPS does not require a long prompt to achieve optimal results. The
prompt token embeddings are initialized using the most frequently occurring words in the
vocabulary. In the experiments, only parameters of the soft prompts are tuned, which
can be computed as follows: 30× dm, where dm is dimension of embedding vector. Total
number of tunable parameters for each model and baseline can be found in Table 5.3.

Pre-trained versions of T5 and Llama2 are utilized. T5 is pre-trained on The Colossal
Clean Crawled Corpus[41], which contains billions of words from a diverse range of websites.
Llama2 is pre-trained on publicly available online data sources [52]. Each of the models
used the default set of parameters for training and employed cross entropy loss. They were
trained for 5 epochs using the training split of each dataset. The validation split was used
to evaluate the model at the end of each epoch, and the set of tokens, or a soft prompt,
was saved whenever the model achieved the best performance observed up to that point.

All of the experiments are conducted with a single NVIDIA A40 GPU with 48 GB mem-
ory2. The implementation is done utilizing Python 3.113. The models are implemented

2https://images.nvidia.com/content/Solutions/data-center/a40/nvidia-a40-datasheet.pdf
3https://www.python.org/downloads/release/python-3110/
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using PyTorch4 and package transformers from HuggingFace5. Adam optimizer was used
with the learning rate of 0.3. The batch size was set to 16 for T5 and 8 for Llama2, with
this difference attributable to the memory constraints of the hardware employed in this
study. Due to the same hardware constraints, the batch size for the ensemble model of T5
and Llama2, used to evaluate C-GGDPS, was reduced to 1.

4.5 Performance evaluation

The current section outlines the methodology used to evaluate the research questions. Two
approaches are employed for evaluation: quantitative and qualitative. The quantitative
approach is employed to quantify the outcomes of both baseline methods and the imple-
mentations of proposed methods and hard prompt transfer. However, for a more detailed
interpretation of the results, qualitative evaluation is conducted using additional analytical
tools.

4.5.1 Quantitative evaluation

We assess the performance of GGDPS, C-GGDPS and baselines using the test sets of
the selected datasets. Given that our evaluation focuses on the classification task, we
utilize standard metrics: accuracy and F1-score. To ensure reliability of the results, 10-
cross validation is also applied. Additionally, we assess the agreement between predictions
generated by T5 and Llama. Agreement in predictions aids in evaluating consistency,
providing insights into data complexity and whether the approach is specific to the model
used. The agreement level is determined by calculating the proportion of instances where
both models predict the same outcome, relative to the total number of test instances.

4.5.2 Qualitative evaluation

In the qualitative evaluation, our objective is to assess the extent to which the resulting
hard prompts are perceptible to human interpretation and whether their underlying se-
mantics align closely with the task, dataset, or model’s pre-trained knowledge. For the
evaluation of the resulting prompt from the GGDPS, we visually assess it for its gram-
matical correctness and coherence. To evaluate the cross-model hard prompt transfer, we
employ t-SNE[5] to reduce the dimensionality of hard prompt embeddings for their visu-
alization. By visualizing the hard prompts generated by T5 and Llama, our objective is
to assess whether the models have extracted identical sets of features. Additionally, we
employ confusion matrices to visualize the distribution of attention patterns in the encoder
of T5 and the decoder of Llama, aiming to analyze which semantic information the models
prioritize the most.

4https://pytorch.org/
5https://github.com/huggingface/transformers
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Chapter 5

Experiments

In the following chapter, we present the experiments conducted to address the stated re-
search questions. Each section is dedicated to a specific research question, detailing the
numerical results and discussing the significance of the findings. Section 5.1 presents find-
ings on the discretization of soft prompts through the mapping of soft prompts to the
embeddings of hard tokens extracted from the model’s vocabulary. Section 5.2 offers in-
sights into the performance of the newly developed GGDPS algorithm, which is designed
to enable the model to autonomously discover an optimal hard prompt. Section 5.3 details
the cross-model transferability of the identified prompts, discussing the significant implica-
tions of this transfer. Finally, Section 5.4 discusses the collaborative prompt identification
algorithm, C-GGDPS, and emphasizes the notable findings.

5.1 On soft prompt discretization

This section outlines the findings related to the first research question, which examines the
discretization of soft prompts into natural language. The section begins with a presentation
of the numerical results, emphasizing significant insights, and subsequently provides a
comprehensive discussion on the feasibility of identifying natural language alternatives
to soft prompts by mapping them to the embeddings of hard prompts derived from the
model’s vocabulary.
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Figure 5.1: Cosine similarity between each token in the soft prompt and its nearest
natural token embedding.
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Figure 5.2: Histograms depict the highest cosine similarity values between natural
tokens (blue) and soft prompt tokens (red) with any natural token embedding in
the vocabulary. The vertical line marks a cosine similarity of 0.866, corresponding
to cos(30◦) [3].

5.1.1 Experimental results

Figure 5.1 illustrates the calculated cosine similarity for two soft prompts each trained
on distinct datasets: QQP and SST-2. Each plot represents the relationship between the
tokens of the soft prompt and the embeddings of their nearest neighbors. The y-axis
represents the cosine similarity values, while the x-axis denotes the token length of the
soft prompt. Both soft prompts from the two datasets consist of 100 tokens each. A
key observation is that the soft tokens do not closely resemble any specific words in the
vocabulary, as evidenced by the highest similarity value, which is only 0.4.

Figure 5.2 the highest cosine similarity values between natural tokens (blue) and soft
prompt tokens (red) with any natural token embedding in the vocabulary. The y-axis
indicates the frequency of discrete (left-axis) and soft (right-axis) prompts, while the x-
axis displays the cosine similarity values. The figure reveals that natural language tokens
exhibit higher similarity with one another. In contrast, soft prompt embeddings show lower
similarity to any vocabulary token, indicating that the embedded information significantly
diverges.

Figure 5.3 presents a word cloud depicting the most frequently occurring tokens in the
newly created discrete alternatives of soft prompts trained on four datasets of the GLUE

Figure 5.3: Word Cloud of the most common nearest discrete token to the em-
beddings of the soft tokens.
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Figure 5.4: Cosine similarity between soft prompts and ipnut data in the last layer
of the encoder. Top: data gathered with QQP dataset. Bottom: data gathered with
RTE dataset.

benchmark[57]. The discrete alternatives were generated by identifying the nearest natural
language tokens through cosine similarity between the embeddings of soft prompts and the
embeddings of tokens in the model’s vocabulary. The word cloud reveals that terms such as
hypothesis, query, question, and summarize are prominently featured. This is anticipated,
as these tokens are commonly utilized when formulating instructions for models across a
variety of tasks.

Figure 5.4 demonstrates the results of cosine similarity between soft prompts and ipnut
data in the last layer of the encode for some of the inputs in two datasets: RTE and QQP.
The selection of these datasets was based on their respective performance metrics with
prompt-tuning, with RTE achieving 54% accuracy and QQP achieving 92%. The y-axis
denotes the cosine similarity values, while the x-axis indicates the length of the prompt.
We observe that the representation of soft tokens in the encoder layer closely resembles the
representation of certain segments of the input data, with cosine similarity values reaching
approximately 0.85 for QQP and 0.99 for RTE in some cases. So, this indicates that soft
tokens indeed carry a similar meaning as some words in the dataset.

5.1.2 Discussion

The results indicate that discrete prompts identified through naive mapping to the nearest
natural language tokens, using their embeddings and cosine similarity as a measurement
metric, do not exhibit equivalent success in final performance. This may be attributed
to the differences in properties between soft prompt embeddings and natural token em-
beddings, as well as the nature of the embedded information. For example, the geometric
characteristics of soft prompt embeddings differ markedly from those of natural token em-
beddings. Their magnitude significantly exceeds that of natural token embeddings[3]. This
difference may be attributed to gradient updates, which cause soft tokens to accumulate
larger magnitudes during the training process. Another difference lies in the similarity
distribution: the similarity among natural tokens compared to the similarity among soft
tokens. Figure 5.2 shows that the cosine similarity among soft tokens is quite low compared
to the cosine similarity between natural tokens.

Nonetheless, some tokens from the soft prompts are closer to those that remind of
instructive words rather than to arbitrary tokens. For example, Lester et al.[24] suggested
that nearest natural neighbors are clustered around task-relevant words, as evidenced by
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the word cloud showing frequent tokens such as hypothesis, query, question, and summa-
rize. Despite the intuitive appeal of constructing a hard prompt using these tokens in
anticipation of a desired output, the final performance was deemed insufficient, resulting
in nearly 0% accuracy and notable misclassification errors. Even though some of the soft
tokens nearly resemble discrete tokens commonly used for construction of hard prompts,
they cannot be straightforwardly mapped to their nearest natural neighbors, as this leads
to a significant drop in performance.

In addition to analyzing the straightforward mapping of soft tokens to their closest
natural language equivalents, we also investigated the representation of soft tokens in the
final layer of the encoder, comparing it to the representation of the input text within the
same layer. Despite some soft tokens being perceived similarly by the model as certain
input words, these input words typically lack meaningful semantic content. Upon map-
ping these tokens to their closely perceived natural counterparts, we observed that they
predominantly represent: the end token, coordinating conjunctions, numbers, question
marks, and padding tokens. Nevertheless, those are the tokens where the model places
higher attention during the training [42]. Higher cosine similarity is typically observed
for the aforementioned tokens, whereas lower similarity is generally noted for tokens that
represent meaningful words. Moreover, it was observed that a higher perceived similarity
between soft tokens and input data correlates with better final model performance. For
instance, a soft prompt trained on the RTE dataset exhibits a higher perceived similarity
to padding tokens, resulting in a final output accuracy of approximately 54%. Conversely,
in the case of QQP, there is an average perceived similarity of 0.65 to more semantically
meaningful words, contributing to a final performance of 92%.

Overall, based on the aforementioned observations, soft prompts include tokens that
the model focuses on most during training, such as tokens representing the beginning and
end of a sentence. Moreover, if the model effectively extracts more valuable information
for the task, this information will also be encoded within the soft prompt.

5.2 About GGDPS

This section presents the findings related to the second research question, focusing on
the proposed method for obtaining hard prompt via gradient-guided search. It begins by
presenting numerical findings, emphasizing on notable insights, and subsequently delves
into a thorough discussion on the feasibility and practicality of the proposed approach.

5.2.1 Experimental results

Table 5.1 and Table 5.2 demonstrate obtained results from implementing GGDPS on T5
model and Llama model respectively in comparison to the baselines and performance of
the model without any added instructions to it (noted as original in the table). Average
accuracies along with their variances are depicted based on a 10-fold cross validation. A
value in parentheses next to the dataset name indicates the size of the training set. As it can
be seen, the table is divided according to the dataset size. Specifically, datasets with fewer
than 10,000 training instances are grouped together, whereas larger datasets are presented
separately. A significant observation from the results on T5 is that GGDPS surpasses
the baselines when the training set is extensive, whereas it falls short compared to some
baselines on smaller datasets. On the other hand, GGDPS does not exhibit superiority
over SPOT and ATTEMPT across any datasets. Nonetheless, it consistently outperforms
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vanilla prompt-tuning across all datasets for both models.
Table 5.3 displays the number of parameters required for each baseline and GGDPS to

train a prompt. It is evident that GGDPS requires the fewest parameters among all base-
lines. Although the number of parameters is dependent on the prompt length, GGDPS does
not require a long prompt to achieve satisfactory results. PT, SPOT, and ATTEMPT re-
quired a 100-token prompt to demonstrate the best performance. Additionally, ATTEMPT
necessitates additional parameters for training an attention module, which includes two
projection layers. In contrast, GGDPS achieved comparable or superior results in compar-
ison the baselines with a prompt length of only 30 tokens.

Table 5.4 presents the F1-scores for all baselines and the GGDPS implementation
on the T5 model. The table is organized in the same manner as previously described.
A notable observation is that GGDPS consistently outperforms all baselines on larger
datasets. However, on smaller datasets, it remains inferior to SPOT and ATTEMPT,
while consistently demonstrating better performance than vanilla prompt-tuning.

Table 5.5 and Table 5.6 display the prompts identified by GGDPS that achieved the
highest performance across all datasets for T5 and Llama respectively. As demonstrated
by the algorithm, the final projection yielded tokens rather than natural words. However,
they were subsequently transformed into natural language using tokenizer.

5.2.2 Discussion

The observed results indicate that the proposed GGDPS algorithm has a potential to guide
the model to autonomously identify an optimal hard prompt for a given task. It surpasses
the baselines in both accuracy and F1-score on large datasets for T5 model. However,
it underperforms compared to SPOT and ATTEMPT on datasets with smaller training
sizes. This can be attributed to the fact that both methods use pre-trained soft prompts for
the initialization and fine-tuning of target prompts, whereas GGDPS does not incorporate
any external knowledge. By supplying task-related knowledge in advance, the prompt can
more effectively guide the model towards correct outputs without requiring it to learn
the appropriate patterns from scratch [2, 12, 38, 54]. The initial concept behind SPOT

RTE (2.5K) MRPC(3.7K) WiC (6K) BoolQ (9.4K)
Original 67.39% (±0.35) 85.29% (±0.31) 63.01% (±0.29) 66.42% (±0.23)
PT 54.71% (±0.75) 68.14% (±0.68) 48.92% (±0.51) 61.71% (±0.44)
SPOT 69.83% (±0.38) 79.71% (±0.33) 67.04% (±0.35) 77.22% (±0.22)
ATTEMPT 73.41% (±0.35) 85.73% (±0.29) 66.81% (±0.22) 78.81% (±0.19)

GGDPS 71.22% (±0.30) 86.77% (±0.28) 61.76% (±0.25) 71.68% (±0.21)

SST2 (67K) QNLI (105K) QQP (364K)
Original 85.34% (±0.29) 87.92% (±0.21) 84.12% (±0.23)
PT 90.92% (±0.26) 92.81% (±0.31) 89.74% (±0.51)
SPOT 93.42% (±0.12) 93.04% (±0.09) 90.11% (±0.13)
ATTEMPT 93.23% (±0.11) 90.31% (±0.12) 90.32% (±0.08)
GGDPS 97.51% (±0.12) 93.12% (±0.10) 90.36% (±0.13)

Table 5.1: Obtained results from implementing GGDPS on T5 model. Results
of GGDPS are compared to the results of original model (no added instructions),
vanilla prompt-tuning (PT), soft prompt-transfer (SPOT) and attentional mixture
of prompt tuning (ATTEMPT). The values in parentheses denote the standard
deviation from the mean accuracy, calculated from 10-fold cross-validation.
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RTE (2.5K) MRPC (3.7K) WiC(6K) BoolQ (9.4K)
Original 74.11% (±0.32) 45.32% (±0.41) 65.71% (±0.12) 62.21% (±0.34)
PT 53.23% (±0.42) 68.14% (±0.52) 45.32% (±0.38) 61.71% (±0.45)
SPOT 76.92% (±0.31) 70.23% (±0.34) 67.02% (±0.17) 65.19% (±0.33)
ATTEMPT 78.32% (±0.29) 72.09% (±0.19) 69.63% (±0.29) 68.32% (±0.29)
GGDPS 70.05% (±0.87) 69.61% (±0.49) 60.64% (±0.28) 63.31% (±0.26)

SST2 (67K) QNLI (105K) QQP (364K)
Original 91.05% (±0.21) 88.21% (±0.45) 82.05% (±0.38)
PT 83.23% (±0.42) 89.03% (±0.27) 84.53% (±0.47)
SPOT 92.32% (±0.28) 91.17% (±0.13) 84.98% (±0.09)
ATTEMPT 94.51% (±0.17) 89.13% (±0.21) 85.63% (±0.14)
GGDPS 88.92% (±0.32) 91.01% (±0.15) 83.62% (±0.07)

Table 5.2: Obtained results from implementing GGDPS on Llama model. Results
of GGDPS are compared to the results of original model (no added instructions),
vanilla prompt-tuning (PT), soft prompt-transfer (SPOT) and attentional mixture
of prompt tuning (ATTEMPT). The values in parentheses denote the standard
deviation from the mean accuracy, calculated from 10-fold cross-validation.

Method PT SPOT ATTEMPT GGDPS
Number of parameters on T5 77K 77K 232K 23K
Number of parameters on Llama 409K 409K 1228K 123K

Table 5.3: Number of parameters required for each method to train the prompt.

and ATTEMPT arose from the poor performance of prompt-tuning in few-shot learning
scenarios, primarily due to the sensitivity of the initialization[2, 54]. Nevertheless, the gap
between both methods and GGDPS disappears as the training size increases, allowing the
model to encounter sufficient number of examples to develop a more robust understanding
of the data and facilitate the creation of a more generalized prompt.

However, it was observed that GGDPS does not perform as well on the Llama model
compared to its performance on T5. It remains inferior to SPOT and ATTEMPT and,
in some instances, even performs worse than the original model, that has no instructions

RTE (2.5K) MRPC (3.7K) WiC (6K) BoolQ (9.4K)
Original 69.79% (±0.29) 76.56% (±0.23) 58.45% (±0.33) 57.63% (±0.31)
PT 8.45% (±0.57) 81.39% (±0.42) 23.44% (±0.52) 35.89% (±0.49)
SPOT 57.68% (±0.34) 91.23% (±0.12) 64.21% (±0.32) 68.34% (±0.37)
ATTEMPT 75.67% (±0.20) 92.08% (±0.16) 65.42% (±0.28) 69.86% (±0.29)
GGDPS 73.68% (±0.28) 90.72% (±0.22) 55.32% (±0.38) 60.21% (±0.31)

SST2 (67K) QNLI (105K) QQP (364K)
PT 71.22% (±0.35) 73.75% (±0.42) 76.87% (±0.54)
SPOT 82.33% (±0.24) 83.44% (±0.14) 81.43% (±0.19)
ATTEMPT 89.62% (±0.13) 88.43% (±0.16) 88.12% (±0.09)
GGDPS 94.55% (±0.08) 91.09% (±0.12) 89.21% (±0.08)

Table 5.4: The F1-scores for all baselines and the GGDPS implementation on T5
model are presented. The values in parentheses represent the standard deviation
from the mean F1-score, derived from 10-fold cross-validation.
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Dataset GGDPS Discrete Prompt
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Table 5.5: Found hard prompts by GGDPS on all datasets using T5 model.

added to the data. We can hypothesize that this issue arises due to the larger continuous
space of the Llama model, which has 4096 dimensions, in contrast to the T5 model’s 768
dimensions. Larger models typically have a more complex optimization landscape with
numerous local minima and saddle points[36]. Therefore, Llama may have encountered a
local minimum and become stuck, failing to converge. Another possible reason is that the
pre-trained data of Llama significantly differs from the given tasks, making it difficult for
hard prompts to extract relevant knowledge [52]. In contrast, SPOT and ATTEMPT offer
external knowledge sufficient to adjust the model’s attention patterns for the target task.
GGDPS did not encounter the same problem on T5 model since pre-trained data of T5 is
more similar to target tasks [41].

It is also noted that the GGDPS consistently outperforms vanilla prompt-tuning, which
is particularly evident on smaller datasets. Upon closer examination of vanilla prompt-
tuning, it was observed that the method fails to generalize effectively on smaller datasets,
leading to notable overfitting issues. Based on the F1-score results, it is evident that
prompt-tuning exhibits overfitting tendencies towards the majority class, leading to lower
values. In contrast, GGDPS effectively addresses the overfitting problem observed on
smaller datasets. This phenomenon can be rationalized by the nature of soft prompts as
vectors positioned closely in the continuous space to the word embeddings that the model
places the most attention to. However, these vectors lack inherent semantic meaning,
but serve as indicators to the words that the model deems significant [39]. Hence, the
model assigns high attention weights to these tokens, causing it to rely heavily on them to
make predictions. On the other hand, GGDPS leverages embeddings of natural language
tokens. Even though they may still exhibit proximity to important words, they remain
positioned at a sufficient distance, due to the sparsity of the continuous space. Since they
do not exhibit as high a similarity to important words as soft tokens, the model distributes
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Dataset GGDPS Discrete Prompt
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Table 5.6: Found hard prompts by GGDPS on all datasets using Llama model.

attention more judiciously, avoiding the placement of abnormally high attention values on
discrete prompt.

Another significant observation regarding the algorithm is that it requires fewer pa-
rameters compared to the baselines. It should be stated the number of parameters are
dependent on the length of the prompt and the size of embedding space. However, it
was observed that the optimal performance of hard prompts was achieved with approxi-
mately 30 tokens, whereas soft prompts required at least three times as many tokens [22].
Although GGDPS employs the gradient of the soft prompt to guide the model, the soft
prompt tokens are utilized solely to activate the linear head, which then outputs natural
language tokens designed to maximize performance. Therefore, GGDPS is computation-
ally more efficient while achieving results that are relatively comparable to the baselines.
Moreover, it employs a linear head that is already integrated into the pre-trained model,
thereby eliminating the need for additional training or fine-tuning.

Designing an optimal hard prompt can be a time-consuming process, often requiring
expert knowledge and extensive trial-and-error to maximize performance [24]. A key ad-
vantage of the proposed algorithm is that it eliminates this need by allowing the model
to autonomously determine the most effective prompt. Furthermore, the newly discovered
prompt does not need any modifications to the model’s internal structure, since it can
be seamlessly concatenated with the input during data preprocessing. This also improves
interpretability and eliminates the potential for implicit adversarial attacks. Such attacks
can go unnoticed due to the inherent ambiguity of soft prompts to a human eye. More-
over, the findings indicate that embedding space attacks circumvent model alignments and
trigger harmful behaviors more effectively compared to discrete attacks [45].

Although the discovered prompts exist in discrete space and can be applied without
altering the model’s internal structure, they remain incomprehensible to humans. It might
be expected that the discovered prompts would be easily explainable and readable. How-
ever, they convey little to no meaning in human language. This suggests that the prompts
are highly specific to the model that discovered them and can only be comprehended by
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Model Prompt Dataset
RTE MRPC WiC BoolQ SST-2 QNLI QQP

T5 T5 71.22% 86.77% 61.76% 71.68% 97.51% 93.12% 90.36%
Llama 66.67% 71.07% 56.64% 63.48% 95.89% 90.21% 88.76%
Agr. 83.34% 69.61% 82.02% 78.92% 96.82% 89.32% 93.29%

Llama T5 63.84% 69.61% 55.36% 59.82% 85.42% 87.41% 79.35%
Llama 70.05% 73.04% 60.64% 63.31% 88.92% 91.01% 83.62%
Agr. 87.62% 95.59% 86.39% 89.54% 94.39% 91.11% 89.44%

Table 5.7: Reported accuracy of T5 and Llama models using T5 prompt and
Llama prompt for each of the datasets. Abbreviation Agr stands for agreement
level between model’s predictions.

that particular model. Tables 5.5 and 5.6 reveal that the prompts discovered by the T5
and Llama models for a given dataset do not carry any similarity that could be observed
by a human eye. This indicates that the features extracted from the text by the T5 model
may differ from those extracted by the Llama model. To explore the model-specific nature
of these prompts, we conducted cross-model prompt transfers between Llama and T5 to
assess possible performance differences.

5.3 On cross-model prompt transfer

This section addresses the third research question, which focuses on analyzing the cross-
model transferability of prompts identified by the GGDPS on two models: T5 and Llama.
It starts off by presenting experimental findings that include cross-model prompt transfer
and variations in attention distribution within the encoder of both models. Subsequently,
these results are analyzed comprehensively, followed by a detailed evaluation and discussion
of significant insights.

5.3.1 Experimental results

The prompts extracted from Table 5.5 and Table 5.6 were employed to conduct cross-model
prompt transfer between the T5 and Llama models. The results of the experiment can
be found in Table 5.7. It illustrates the accuracy of the performance on specific dataset
for both models using their native prompts and prompts derived from the other model.
Furthermore, it also includes an agreement ratio between predictions. The accuracies of
T5 and Llama models with their derived prompts are taken from Table 5.1 and Table 5.2
respectively. The notable finding is that cross-model prompt transfer yields unsuccessful
results. Specifically, when a model employs a prompt derived from another model, its
accuracy shows a decline when compared to its performance with native prompt. In terms
of agreement level, we observe an average of approximately 86%, suggesting that mod-
els generally exhibit highly similar predictions in the majority of cases no matter which
prompt is used. The lowest agreement ratio was noted at 69% for the T5 model on the
MRPC dataset, correlating with the largest observed decline in performance from 86.77%
to 71.07%. Overall, there is a positive correlation between performance difference and the
agreement level.

Figure 5.5 illustrates the visualization of embeddings for hard prompts generated by
GGDPS on T5 and Llama models. The embeddings were created using the T5 embedding
layer, and the visualization encompasses each dataset for which the T5 and Llama prompts
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(a) MRPC (b) RTE

(c) BoolQ (d) SST2

Figure 5.5: Embeddings of prompts discovered by T5 and Llama models using
GGDPS, with dimensionality reduced to 2 using T-SNE. Each token embedding is
color-coded according to the model that generated it. The figures are generated for
the datasets where the prompts for both T5 and Llama were identified.

were generated. The dimensionality of the embeddings was reduced using T-SNE[5], and
the data points are color-coded according to the model that generated the respective token.
Each figure shows how the T5 model perceives the hard prompt tokens generated by
GGDPS on T5 and Llama given the same dataset. From the subfigures, clustering is
observed in the MRPC and BoolQ datasets, whereas the data points appear more joined
for SST2 and RTE. The clustering observed in MRPC and BoolQ corresponds with lower
agreement levels as indicated in Table 5.7. This suggests that the prompts discovered by
GGDPS for T5 and Llama on these datasets convey different information relative to each
model.

Figure 5.6 illustrates the distinctions in attention mechanisms between T5 and Llama
models. The confusion matrices were constructed using maximum attention values from
each head from the first and last layers of their respective encoders, based on a single data
point. The values on the axes denote the token positions within the sampled data. Given
the layer, the attention patterns of both models are different. T5 demonstrates a tendency
to concentrate on adjacent words in the initial layer, whereas Llama directs its attention
towards the beginning of the input. In the final layer, Llama exhibits higher attention
towards both the initial part of the input and nearby words, while T5 displays a distinct
attention pattern. It should be mentioned that the selection of these layers is based on
their critical roles within the encoder framework. The first layer immediately follows the
input, initiating the transformation process, while the last layer synthesizes the encoded
information to prepare it for task-specific output generation.
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5.3.2 Discussion

Overall, the results indicate that cross-model prompt transfer is unsuccessful, with a decline
in accuracy observed across all datasets for each model performing the task. The core issue
appears to be the task-specific construction of prompts that are tailored exclusively to the
model that created them. This finding is evident in Figure 2.1, where the T5 and Llama
prompt tokens are clustered based on the model that generated them for the MRPC and
BoolQ datasets. The figure illustrates how T5 embeds prompt tokens generated by both
T5 and Llama. It is evident that T5 embeds tokens from the Llama prompt differently,
indicating that these tokens carry distinct information that is not similar to the T5 prompt
tokens. From Table 5.7, there is a notable decline of 15% and 9% in performance when the
Llama prompt is used with the T5 model for the aforementioned datasets. This indicates
that the information contained in the Llama prompt is not relevant to what T5 requires
for successful inference. Even though similar clustering is not explicitly observed for the

(a) First layer of Llama encoder (b) First layer of T5 encoder

(c) Last layer of Llama encoder (d) Last layer of T5 encoder

Figure 5.6: Attention distribution in the first and last layers of T5 and Llama
encoder models, with the numerical values on the axes indicating token positions
within the input data. The confusion matrices were generated using a single data
point to exemplify the underlying differences in attention mechanisms between the
two models. The figures are based on the performance of the original models without
any instructions added to the input.
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RTE and SST2 datasets, the decline in performance still persists.
Although it is suggested that a prompt discovered by GGDPS is model-specific, the

degree of specificity appears to depend on the task and dataset at hand. For instance, the
performance decline for RTE and SST2 is merely 5% and 2%, while the agreement of pre-
dictions is 83% and 97% respectively. Additionally, by looking at Figure 2.1, T5 and Llama
prompt embeddings seem to lay close to each other, indicating that both models extracted
similar features from the dataset. It can be hypothesized that the variability in feature
extraction by different models may be influenced by the dataset’s complexity, which can
be quantified as the difference between human performance and machine performance as
well as variability in the results on the dataset between various models [8, 9]. For instance,
different models exhibit varying results on the MRPC dataset, where the performance gap
relative to human is 7%, classifying this dataset as one of the more challenging in the
GLUE benchmark [63].

Moreover, the extracted features are influenced by both the pre-trained knowledge and
the architecture of the model [23, 35, 65]. For instance, T5 is an encoder-decoder (ED)
model, while Llama is a decoder-only (DO) model. Numerous studies have shown that
ED models often outperform DO models for certain sequence-to-sequence tasks, with T5
demonstrating superior results compared to Llama [10, 37]. This can be confirmed from
the obtained results in this study where T5 outperforms Llama on all the datasets. From
Figure 5.6, distinct patterns in attention distribution across the initial and final layers
of both models can be observed. This difference in pattern suggests that the attention
mechanism of T5 and Llama differ accordingly. It does not imply superiority of one over
the other; rather, it suggests that each may capture different relevant details of the input
depending on the specific task at hand. Nevertheless, T5 appears to be better suited for
the chosen datasets, particularly given that its pre-trained data is more relevant to these
datasets compared to that of Llama.

Although cross-model transfer did not yield favorable results, the findings still revealed
that two distinct models are capable of extracting different features from the same textual
input. Numerous studies have shown that combining the strengths of multiple models
can lead to improved outcomes [34, 46, 67]. This suggests that leveraging the unique
capabilities of each model could potentially enhance overall performance by capturing a
broader range of relevant features. To investigate this, we combined T5 and Llama to
identify a prompt that could optimize performance for both. A collaborative prompt
is designed to encapsulate the extracted features from both models, thereby enhancing
generalization and robustness.

5.4 About Collaborative GGDPS

This section addresses the last research question, which centers on the collaborative gen-
eration of a shared prompt that optimizes performance for T5 and Llama using GGDPS.
The section begins by presenting the experimental findings, highlighting notable insights,
and concludes with a thorough discussion of the results.

5.4.1 Experimental results

Table 5.8 presents the shared hard prompts that achieved the highest performance on
T5 and Llama, derived using C-GGDPS across all datasets. The accuracies obtained by
applying each shared prompt to T5 and Llama are documented in Table 5.9. Moreover, for
the sake of easier comparison, Table 5.9 additionally presents the accuracies achieved by

33



Dataset C-GGDPS Discrete Prompt
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Table 5.8: The shared hard prompts identified by C-GGDPS using T5 and Llama
across all datasets are presented.

Prompt Prompt Dataset
RTE MRPC WiC BoolQ SST-2 QNLI QQP

Native T5 71.22% 86.77% 61.76% 71.68% 97.51% 93.12% 90.36%
Llama 70.05% 73.04% 60.64% 63.31% 88.92% 91.01% 83.62%
Agr. 97.98% 78.23% 95.63% 87.09% 85.12% 92.63% 88.64%

Shared T5 68.36% 80.21% 60.82% 67.11% 93.47% 90.36% 85.41%
Llama 71.11% 76.92% 61.12% 64.49% 90.02% 92.01% 87.26%
Agr. 96.74% 89.41% 97.26% 92.94% 91.52% 94.52% 92.83%

Table 5.9: Reported accuracies from utilizing GGDPS on T5 and Llama to iden-
tify hard prompts, along with the changes in results following the application of
collaborative alternative C-GGDPS to discover a shared prompt for both models.

each model using its native prompt found by the standard GGDPS method. A significant
observation is that the performance of the T5 model decreased across all datasets when
the shared hard prompt was employed. On the other hand, Llama model demonstrated
moderate improvements compared to its performance with hard prompts identified by the
standard GGDPS. Furthermore, an agreement level between predictions of two models
both before and after the application of C-GGDPS is presented. An agreement level was
instrumental in identifying that the differences in predictions has indeed been minimized.
Before the application of C-GGDPS, the average discrepancy was 87%, whereas it improved
to 93% after application of collaborative algorithm.
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Figure 5.7: Embeddings of prompts discovered by T5 using GGDPS and shared
prompts between T5 and Llama identified by C-GGDPS, with dimensionality re-
duced to 2 using T-SNE. Each token embedding is color-coded according to the
model that generated it.

Figure 5.7 illustrates the visualization of reduced embeddings for both shared hard
prompts and hard prompts identified by GGDPS for the T5 model. This visualization
depicts the similarity between token embeddings as interpreted by the T5 model. The
data points are color-coded based on the method by which the hard prompt token was
generated: GGDPS on T5 or shared prompt using C-GGDPS. The notable insight is that
the data points are more intermixed, showing no clear signs of clustering, as previously
observed in Figure 5.5. This suggests that the tokens from the shared prompt and T5’s
hard prompts are closely positioned in the embedding space, indicating they share similar
informational characteristics.

5.4.2 Discussion

Overall, C-GGDPS is an effective method of narrowing the gap between the performances
of two models, which can be observed on Table 5.9. These results can be attributed to
the creation of a generalized prompt that satisfies the requirements of both models in
the experiment. By utilizing a shared prompt during training, a common loss function
directs the identification of critical tokens that minimize losses for both models. Hence,
the shared prompt incorporates essential features for effective task performance by both
models, enhancing generalizability and reducing variance [14, 33, 38].

Ensuring that different models make the same predictions is crucial, since it enhances
consistency and reliability, indicating that the results are robust and not model-specific [29,
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59]. By comparing an agreement level between models before and after applying C-GGDPS,
we can observe an average improvement of 5.5%. This enhancement improves robustness
of decision-making, mitigates biases, and serves as a form of cross-validation, verifying
the authenticity of observed patterns. Although the average improvement may appear
moderate, it is noteworthy that this enhancement also extends to challenging datasets
such as MRPC, where agreement in prediction increased by 11%. Such challenging datasets
typically exhibit inter-model and cross-model variability, often due to factors such as data
inconsistency or mislabeling [9]. Therefore, employing ensemble methods represents a
viable strategy for addressing such datasets.

Despite C-GGDPS enhancing prediction consistency across models, it concurrently neg-
atively affected T5’s performance across all datasets. According to Table 5.9, T5 exhibited
an average decrease in accuracy of 4.5%, whereas Llama, on the other hand, showed a
modest improvement of 1.8% across all datasets. We hypothesize that this can be at-
tributed to the differences in the complexity of the continuous space between both models
as well as their pre-trained data. Because of its less complex continuous space, T5 could
more readily identify a global minimum, potentially aiding Llama in navigating past local
minima. Furthermore, the pre-trained data of T5 is more closely aligned with the datasets
used in this study, whereas the pre-trained data of Llama is less related. Consequently,
during training, Llama may have leveraged T5’s pre-trained data to enhance its perfor-
mance. As observed from SPOT and ATTEMPT, utilizing related pre-trained data from
external sources positively influences the final outcome [2, 54]. However, T5 may have
been negatively impacted by Llama, given that Llama initially faced challenges with con-
vergence owing to its high-dimensional continuous space. Since the loss function is shared
between the two models, T5 might have inherited Llama’s convergence difficulties.

Table 5.9 presents the prompts generated by C-GGDPS using T5 and Llama. As shown
in Tables 5.5 and 5.6, these prompts are not easily interpretable by humans. Moreover,
when comparing the prompts obtained through C-GGDPS to those generated by a standard
GGDPS, no clear relationship is visible to the human eye. One might expect that a shared
prompt between T5 and Llama would contain similar tokens to the individual prompts of
T5 and Llama, but this is not very evident. Nevertheless, Figure 5.7 provides a visualization
of the embeddings of tokens from both the shared prompt and the T5 prompt, illustrating
how the T5 model perceives these tokens. If the two prompts are significantly different,
we would anticipate observing distinct clusters: grouped tokens from shared prompt and
grouped tokens from the T5 prompt. However, the visualization does not exhibit any
distinct clusters, and the tokens appear to be quite intermixed, indicating that they convey
similar underlying information. Thus, C-GGDPS excels at incorporating features extracted
by T5 into the shared prompt.

Although the shared prompt appears to contain underlying information similar to the
original T5 and Llama prompts, it may still include features that are more specific to
these two models. To explore this possibility, an experiment could be designed in which
the shared prompt is transferred to a model that was not involved in prompt’s creation.
An experiment would evaluate the feasibility of this approach in generating a generalized
and robust prompt. This approach could be advantageous in resource-constrained settings,
where multiple smaller models are employed to create a shared prompt and a larger model
is used for inference [34].
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Chapter 6

Conclusions and Future Work

This concluding chapter is dedicated to addressing the posed research questions. Further-
more, it aims to identify the limitations of the study to ensure transparency regarding the
design choices. The chapter concludes by suggesting potential future research directions
and discussing the significance of this contribution to the field.

6.1 Conclusions

How can the tokens of soft prompts be mapped or translated into natural lan-
guage tokens?

The most straightforward method for translating soft prompts into natural language
involves identifying the nearest natural tokens through the embedding space and employing
cosine similarity as the metric to measure the distance between neighbours. However, the
results indicate that the properties of soft prompt embeddings and natural token embed-
dings differ significantly upon direct comparison. Soft prompt embeddings exhibit greater
magnitudes and lower cosine similarity with natural language tokens. By analyzing their
representation in the final layer of the encoder, it is clear that the underlying information
of soft tokens is more closely associated with instructive words and dataset-specific tokens
rather than with abstract tokens. Nonetheless, the cosine similarity is insufficiently low
for effective direct mapping, which has adversely impacted the final performance, leading
to a significant decline.

How can a model autonomously produce a hard prompt tailored to a spe-
cific task, without requiring human intervention?

In summary, the developed GGDPS algorithm demonstrated that a model can au-
tonomously generate its own hard prompt for a specific task without human intervention.
However, the proposed algorithm has both advantages and limitations. While GGDPS
surpassed all baseline results on the T5 model, it underperformed on the Llama2 model.
The findings suggest that GGDPS excels in leveraging pre-trained knowledge from the
model to enhance task performance when the model’s pre-trained data is closely related
to the target task. However, when the pre-trained knowledge is significantly different,
there is insufficient relevant information for the model to extract, hindering performance
optimization. This limitation arises because GGDPS does not alter the attention pattern
but rather scales the attention values. Moreover, GGDPS may encounter optimization
challenges when applied to models with a larger continuous space, potentially resulting in
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being trapped in local minima. Therefore, it is advisable to take into account both the
pre-trained knowledge and the complexity of the model prior to employing the algorithm.

What impact does transferring a hard prompt from one model to another
have on performance?

The results show that cross-model transfer of prompts found by GGDPS is ineffective,
as found prompts are highly model-specific. T5 and Llama models extract distinct sets of
textual features due to their architectural differences and pre-trained knowledge, resulting
in performance declines when prompts are transferred between them. The set of extracted
features varies depending on the dataset used. For complex datasets, where there remains
a substantial gap between human and machine performance, the features extracted by
two models are less similar and more model-specific. Therefore, for successful cross-model
transfer, consideration must be given to the complexity of the task, the characteristics of
the dataset, and the similarity between the models involved.

What are the effects of collaborative shared hard prompt generation be-
tween two models on achieving optimal performance for both?

Overall, C-GGDPS proves effective in bridging difference in predictions between two
models providing consistency in results. The primary objective is achieved through the
formulation of a prompt that contains features extracted from multiple models. This fusion
of features aims to produce a prompt that is more universal and diminishes variability. En-
hancing uniformity in predictions across different models enhances reliability and indicates
robust results, less prone to model-specific biases. The assessment of agreement levels pre-
and post-implementation of C-GGDPS illustrates enhancements, particularly evident in
complex datasets. However, there is a risk of negative effects on the model if other models
contributing to the ensemble possess undesirable knowledge or stuck in the local minima,
potentially introducing disruptions that detracts from optimal performance.

6.2 Limitations

Since this study is simply a proof of concept, it is important to note that the evaluation
is done solely on two models across seven datasets, collectively representing five distinct
natural language tasks: natural language inference, paraphrase detection, sentiment anal-
ysis, word sense disambiguation, and boolean question answering. There exist numerous
tasks and datasets that could potentially be employed to offer further insights into the
advantages and limitations of the algorithm. Furthermore, our evaluation primarily fo-
cuses on classification tasks, and our datasets do not encompass tasks that necessitate the
generation of long sequences. This imposes constraints on the study, as each task would
need to be reformulated into a classification format to apply the algorithm. Tasks such
as summarization, for instance, would be impractical to adapt solely into a classification
framework.

Regarding the ensemble model, our exploration of methods for combining the losses
of two models was limited. In this study, we opted to use a simple averaging approach
to guide the algorithm. Another constraint could be the limited vocabulary size of both
models, which is restricted to only 32,000 tokens. Consequently, the generated hard prompt
is composed solely of these tokens. In the training process, we experienced a hardware
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constraint. Due to the resource-intensive nature of loading two pre-trained models in
terms of memory, it required reducing the batch size and precluded exploration of various
options for hyperparameter tuning.

6.3 Future work

The suggestions for future work are built upon existing limitations of this study. Given the
underexplored fusion techniques for combining two models, an interesting avenue would
involve adapting an attention mechanism that governs the contribution of each loss function
to the overall model loss. Alternatively, rather than guiding the algorithm with a unified
loss, integrating features extracted from both models could offer insights into optimizing
feature combination for enhanced performance. The described approach is referred to as
early fusion and is recognized for its advantages in multimodal studies[11].

Another interesting direction would involve investigating the possibility of collabora-
tively creating a shared prompt on a model that was not involved in its creation process.
Such a shared prompt holds promise for better robustness, potentially benefiting both
prompt initialization for target tasks and direct application. Hence, such experiment would
test the feasibility of the approach for creating more generalized and robust prompt.

One intriguing experiment would be to investigate the feasibility of combining more
than two models to jointly create a shared prompt among them. Intuitively, this approach
could lead to the development of a prompt that is comprehensible to humans, given that
all LLMs are originally trained on extensive natural language corpora. This could enhance
the interpretability of the resulted prompt as well as its robustness.

Shi et al. [47] introduced a technique employing Langevin dynamics to enhance the
readability of hard prompts, resulting in improved performance compared to less readable
prompts. Thus, an avenue for exploration could involve integrating aspects of their ap-
proach or devising methods to constrain the model in generating more readable prompts
within the GGDPS algorithm framework, given its efficiency in terms of parameters and
ease of implementation.

Finally, given that the study was conducted using only seven datasets, two models, and
five natural language tasks, it is imperative to expand the scope to thoroughly assess the
method’s applicability and feasibility to the real-world.
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Appendix A

Complementary material

Dataset Label Data Example

SST2 positive sentence: that loves its characters and communicates
something rather beautiful about human nature

negative sentence: hide new secretions from the parental units

QNLI entailment

sentence: When talking about the German language,
the term German dialects is only used for the traditional
regional varieties. question: When is the term ’German
dialects’ used in regard to the German language?

not entailment

sentence: From the 1720s onward, the kingdom
was beset with repeated Meithei raids into Upper
Myanmar and a nagging rebellion in Lan Na. question:
How were the Portuguese expelled from Myanmar?

QQP duplicate question 1: How do I control my horny emotions?
question 2: How do you control your horniness?

not duplicate
question 1: What causes stool color to change to
yellow? question 2: What can cause stool to
come out as little balls?

Table A.1: Provided examples of data from the following datasets: SST2, QNLI,
and QQP. These examples are formatted according to the template used as input
for the models.
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Dataset Label Data Example

RTE entailment

sentence 1: Valero Energy Corp., on Monday, said it
found "extensive" additional damage at its 250,000-
barrel-per-day Port Arthur refinery, sentence 2:
Valero Energy Corp. produces 250,000 barrels per day.

not entailment
sentence 1: No Weapons of Mass Destruction Found
in Iraq Yet, sentence 2: Weapons of Mass Destruction
Found in Iraq.

MRPC equivalent

sentence 1: Amrozi accused his brother , whom he called
"the witness", of deliberately distorting his evidence,
sentence 2: Referring to him as only " the witness ",
Amrozi accused his brother of deliberately distorting
his evidence .

not equivalent

sentence 1: The Nasdaq had a weekly gain of 17.27 , or 1.2
percent , closing at 1,520.15 on Friday, sentence 2: The
tech-laced Nasdaq Composite.IXIC rallied 30.46 points,
or 2.04 percent, to 1,520.15.

WiC true sentence 1: We beat the competition, sentence 2: Agassi
beat Becker in the tennis championship, word: beat

false
sentence 1: There’s a lot of trash on the bed of the river,
sentence 2: I keep a glass of water next to my bed when
I sleep, word: bed

BoolQ true

question: is windows movie maker part of windows
essentials, passage: Windows Movie Maker (formerly
known as Windows Live Movie Maker in Windows 7)
is a discontinued video editing software by Microsoft.
It is a part of Windows Essentials software suite and
offers the ability to create and edit videos as well as to
publish them on OneDrive, Facebook, Vimeo, YouTube,
and Flickr.

false

question: can you use oyster card at epsom station,
passage: Epsom railway station serves the town of
Epsom in Surrey. It is located off Waterloo Road and
is less than two minutes’ walk from the High Street.
It is not in the London Oyster card zone unlike Epsom
Downs or Tattenham Corner stations. The station
building was replaced in 2012/2013 with a new
building with apartments above the station (see
end of article).

Table A.2: Provided examples of data from the following datasets: RTE, MRPC,
WiC, and BoolQ. These examples are formatted according to the template used as
input for the models.
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