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Summary

Frequency Gain Control (FGC), an equivalent of Sensitivity Time Circuit (STC) in
Frequency-Modulated-Continuous-Wave (FMCW) radars, stands for applying a highpass
filter (HPF) with the slope matching the negative slope of the path loss to the beat signal,
given direct relation of its frequency to the target range. This technique primarily takes
care of two issues: ground clutter and saturation of the receiver. In harmonic FMCW
radars, the ground clutter is resolved by separating the receiver from the transmitter by
frequency. Nevertheless, the problem of saturation remains. Apart from preventing the
saturation of the receiver, FGC can reduce the dynamic range of the analog-to-digital con-
verter (ADC), allowing for lower resolution of the ADC. In radars, due to the path loss, the
magnitude of the received signal coming from further distances can be smaller than the
quantization step of the ADC at the receiver’s side. To be able to detect the target at such
distances, the resolution must be high. The primary goal of this research was to reduce
the dynamic range of the ADC with the help of FGC, to allow for a cheaper ADC with
lower resolution. This paper provides the methodology and the results of the computer
simulations in Matlab that show how FGC affects the power of the received signal for a
harmonic FMCW radar. Also, a comparison to a conventional FMCW radar is made. This
research shows that applying FGC to ease the ADC resolution requirement successfully
restricts the power of the received signal to a level that does not exceed the ADC’s dy-
namic range. This paper argues that, for linear radars, a second-order HPF should be
used. And for harmonic systems, third-order characteristics apply for low-power applica-
tions, whereas for high-power applications, a second-order filter with the calibration of the
cut-off frequency is a better choice.
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Chapter 1

Introduction

Frequency-modulated continuous-wave radar is a short-range radar that uses contin-
uous waves, whose frequency is modulated in the transmitter [1]. FMCW radar systems
use the concept of intermediate frequencies, and the distance to the target is obtained us-
ing the frequency response of the intermediate-frequency signal. This signal is obtained
by mixing the transmitted signal with the received signal in the receiver chain [1].
There is a specific type of FMCW radar, a so-called harmonic FMCW radar. The main
feature of this design is that the EM wave is transmitted at the fundamental frequency in
the forward link (FL) and at its second harmonic in the backward link (BL).
For instance, [2] presents two low-cost and mobile prototypes of such radar systems that
operate in the S-band and in the X-band. The application of this radar is to track insects
in the short range. The conversion to a second harmonic here is done with a small tag
placed on the insects.
Frequency Gain Control (FGC) is an important technique used in such radar systems to
tackle various issues related to the principles of operation. In most applications, FGC is
used to mitigate the effect of ground clutter. Due to free space propagation losses (FSPL),
the reflections from nearby objects, especially the ground, are much stronger than the re-
flections from the designated target located much further. As a result of this factor, the
receiver can get saturated by a very strong reflected signal. With the use of FGC, signals
related to closer distances are attenuated. The frequency of the intermediate-frequency
(IF) signal is directly proportional to the distance to the target [1]. By attenuating the
frequencies related to closer distances, the effect of ground clutter can be minimized. Nu-
merous researches have looked into this subject. A study by [3] presented a solution that
prevents the saturation of the receiver due to ground clutter. Also, they went even further
and applied this technique to the detection of buried objects. In a nutshell, the main idea is
that the received signals are attenuated with respect to the path loss, which is proportional
to d−4 for power, with d being the distance to the target. Since d is directly proportional to
the frequency of the IF signal fb, a highpass filter with a certain slope can be used. For
f−4
b , a 40 dB/decade transition band of the filter is used in this research. Another research
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by [4] also comes up with an FGC approach for FMCW radars. In their Ku-band receiver,
they used a high pass filter characteristic with the transition band inversely proportional
to f−4

b . For harmonic radars, ground clutter is resolved by separating reception from the
transmission by frequency. Therefore, FGC is not needed for this purpose.
Nevertheless, the usage of FGC is not limited to clutter, and other challenges can be
considered in this context. For example, to maximize the range of operation, one has to
use a high-resolution ADC. A high-resolution ADC will help to span the whole dynamic
range of the signal, from the strongest signal to the weakest based on the distance to the
target. With low resolution, the lowest possible signal can be lower than the quantization
step and therefore will become undetectable. FGC can help to reduce the dynamic range
of the received signal by attenuating closer ranges. Then, a lower-resolution ADC can be
used.
The catch is that at low incident power levels, such a tag exhibits non-linear behavior,
and, for larger distances, the path loss is now proportional to d−6 [2], [5]. This poses
some challenges in using FGC in harmonic FMCW radars because different HPF config-
urations need to be considered.
This paper will give an overview of linear and harmonic FMCW radars and dive into what
affects the dynamic range of the ADC in these systems. Then, this paper will discuss how
FGC can help to reduce the required dynamic range for both linear and harmonic radars.
Also, the type of filters for harmonic radars will be specified. Matlab computer simulations
will be used to verify the effectiveness of FGC in this application, as well as they will help
to compare the performance of this technique between linear and harmonic cases.
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Chapter 2

FMCW radars

2.1 FMCW linear radar

Figure 2.1: A block diagram of the linear FMCW radar.

The working principle of any FMCW radar lies in emitting a frequency-modulated
waveform. The carrier wave is modulated by a chirp, which is, simply put, a linear growth
of frequency against time. The chirp can be described with two variables: the frequency
sweep B or the bandwidth of the chirp, and the chirp duration Tc [6]. An illustration can
be seen in figure 2.2.
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Figure 2.2: An illustration of the chirp and the echoes of this chirp (top picture). The
resulting beat frequency after downconversion (bottom picture). [6]

For these parameters, the transmitted signal s(t) with the power PTx, and the carrier
frequency fca can be represented with the following equation:

s(t) =
√
2PTxcos(2πfcat+

B

Tc

t2 − 0.5Bt) (2.1)

The received signal with power PRx can be written in the following way:

r(t) =
√

2PRxcos(2πfcat+
B

Tc

(t− Tp)t− 0.5Bt) (2.2)

This signal has lost its power due to propagation loss and has a propagation delay Tp.
Therefore, its frequency differs from the transmitted signal. At the receiver, the signal
is fed into a frequency mixer along with the signal at the transmitter. The mixer in this
application is designed to subtract the frequencies of both signals. The output of the
mixer, the IF signal, therefore, has its own frequency, called the beat or IF frequency. The
IF signal is given in equation 2.3:

y(t) =
√

2Pycos(
B

Tc

Tpt) (2.3)

The beat frequency is then equal to:

fb =
B

Tc

Tp =
B

Tc

2d

c
(2.4)
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As can be seen, the frequency of this signal is proportional to the target range d. c is
the speed of light. Thus, the distance to the target can be approximated by obtaining
the frequency of the IF signal. Practically, this can be achieved using the Fast-Fourier
transform (FFT) due to its low computational complexity [4]. To use FFT, the signal has to
be first digitized, so an ADC has to be used.

The power of the signal varies with range, so to obtain the relation between the trans-
mitted power and the received power, one has to use Friis’ equation for the wavelength λ,
which implies a one-way transmission between the transmitter and the receiver:

PRx = PTxGTxGRx(
λ

4πd
)2 (2.5)

In any radar applications, the transmitter emits an electromagnetic (EM) waveform and
the receiver listens to the reflections from the supposed target. The target, in this case,
can be seen as a reflector. The power reflected by the target can be expressed as:

Preflected = PTxGTx
σ

4πd2
(2.6)

Where σ is the radar cross-section (RCS) with the units of area.
To get the expression of the power at the receiver, one has to additionally account for

the gain of the receiver’s antenna and the path loss related to the way back, assuming
that the receiver is located at the same spot as the transmitter.

PRx = PTxGTx
σ

4πr2
(
λ

4πd
)2GRx = PTxGTxGRx

λ2

(4π)3d4
(2.7)

2.2 FMCW Harmonic radar

Figure 2.3: A block diagram of the harmonic FMCW radar.
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The main difference of the harmonic radar is that instead of just a target that reflects
the incident EM waves, the system’s utilization requires placing a small harmonic tag on
the target object. In the case of the insect tracking application, such a tag has to be
lightweight and small in size to fit on the insect. For that reason, this tag purely consists
of passive elements [2].

The prior goal of the tag is to convert the incident EM wave at the fundamental fre-
quency to its second harmonic and send back the converted wave to the receiver.

The photo of the tag can be seen in figure 2.4. Shortly put, it is a wire-based dipole
antenna with an inductive loop and a low-voltage diode connected in parallel to the loop
[7].

Figure 2.4: A photo of the harmonic tag, that is simulated in this research.

The main metric of the tag’s performance evaluation is the conversion efficiency de-
fined by:

ηH =
Pout,2f0

Pin,f0

(2.8)

Pin,f0(Pin) is the input power to the tag at the fundamental frequency, and Pout,2f0(Pout) is
the output power at the second harmonic.

At low incident power levels, the conversion factor ηH exhibits non-linear behaviour
and becomes approximately quadratic [5]:

Pout,2f0 = ηHP
2
in,f0

(2.9)

So, [5] presents a two-region tag model. The linear region is described by the large-
signal model of the tag, and the quadratic region by the small-signal model.

The plot of the output power against the input power for the harmonic tag can be seen
in figure 2.5.

9



Figure 2.5: Pout vs. Pin of the harmonic tag. Here, two regions are presented: with
linear dependency (large-signal model) and quadratic dependency (small-
signal model), excluding the transition between them .

The main deviation from the path loss equation of the conventional radar is due to
a different target model. Now, the waveform is not reflected by the target, but received
by the tag’s antenna, converted to second harmonic, and then re-radiated by the same
antenna [7]. This requires to change the representation of the RCS of such a target.
Below a table of notations is presented for this section [2].

PTx Transmitted power at the fundamental frequency
PHRX Received power at second harmonic
GTx Gain of the transmitting antenna
GFRX Gain of the tag’s antenna at the fundamental frequency
GHTX Gain of the tag’s antenna at the second harmonic
GRx Gain of the receiving antenna
λF Fundamental wavelength
ηH Conversion efficiency of the tag

Table 2.1: Notations for this section [2]

The relation of PRx to PTx is given by [2] :

PRx = PTxGFTX(
λF

4πr
)2GFRXηHGHTX(

0.5λF

4πd
)2 =

1

4
GFTXGHRX

λ2
F

(4π)3d4
σH (2.10)
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[7] introduces a so-called cross-section of the harmonic tag:

σH = GFRXGHTX
λ2
F

4π
(2.11)

Equation 2.9 presents some complications to the equation2.7. At some ranges, the
equation will obtain the following form [2]:

PHRX =
1

4
P 2
FTXG

2
FTXGFRX

λ4
F

(4π)5d6
σH (2.12)

The received power curve will be proportional to d−4 for shorter ranges and to d−6 for
longer ranges. The former corresponds to the large-signal model, and the latter corre-
sponds to the small-signal model of the tag [5]. Therefore, for convenience, these two
regions on the received power curve will be referred to as the large-signal region and the
small-signal region.
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Chapter 3

Frequency Gain Control

3.1 Input dynamic range

The dynamic range of the ADC (DR) is the relation of minimum and maximum power
that the receiver can process. The maximum power can defined by the signal power at
the smallest distance of the radar’s operation range, which depends on the application of
this radar. The minimum power that can be processed is determined by the hardware of
the receiver. The dynamic range of the ADC can be expressed in the following form:

DR =
Vmax

Vmin

=

√
PRx,max

PRx,min

(3.1)

In this equation, PRx,max and PRx,min stand for the maximum and the minimum received
power respectively, that the radar can process. Vmax and Vmin for the corresponding mag-
nitudes of the IF signal.

The power of the IF signal for the gain of the receiver’s front-end Gfe, which includes
the hardware pass-losses, gains of LNA, HPF, mixer, and LPF (Fig. 2.3). is given as [8]::

Py = GfePRx (3.2)

In the radar itself, the filter has to be implemented in the baseband. And the dynamic
range of the ADC, is the dynamic range of the IF signal. However, that brings another
parameter to the analysis - Gfe For simplicity, all the simulations will be performed on
the received signal instead of the IF signal. Since the power of the IF signal is directly
proportional to the power of the received signal (Eq. 3.2), such an assumption will hold.

The resolution of the ADC for a given dynamic range DR in dB scale is given as:

Amax

Amin

≤ 2N (3.3)

20log10(2
N) = 20log10(DR) (3.4)
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N =
DRdB

6.02
(3.5)

The required DR for the ADC will increase for higher power budgets if one wants to
increase the total range of operation. Since DR is defined by the ratio of PRx,max and
PRx,min, larger transmit power PTx, and larger gains of the transmitting and receiving
antennas, GTx and GTx, put larger requirements on the ADC’s DR.

3.2 Reduction of the dynamic range with FGC

The idea of FGC is the following: DR can be reduced by constraining the maximum
power of the received signal. Equation 2.4 shows the relation of the target’s range d with
the beat frequency fb of the IF signal. These two parameters are linearly proportional,
which enables one to draw the link between PRx and fb:

PRx ∝ f−4
b (3.6)

Thus, one can find the frequency at which PRx drops to the certain value that we want to
constrain the signal to. The power level PDR, to which the IF signal has to be constrained,
can be found as:

PDR,dBm = Pmin,dBm +DRdB (3.7)

This equation is given in logarithmic scale and emerges from the equation 3.1. Figure 3.1
illustrates the curve of PRx with respect to fb and additionally shows the power restriction
PDR required for a certain DR of the ADC.

The intersection of PDR and PRx will take place at a certain fb. Then, for the lower
frequencies, the received power will exceed the maximum allowed power level. Therefore,
the lower frequencies will be attenuated by an HPF to fit within the constraint. That fb, at
which the intersection occurs, will be the cut-off frequency fcut−off of the HPF.
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Figure 3.1: The illustration of how the cut-off frequency for the HPF is obtained.

The primary objective is to not let PRx exceed PDR, but the signal in that frequency
range should not be attenuated too much. Ideally, it is preferred to keep the signal power
exactly on the restriction level PDR before the cut-off frequency. This is easily achievable
for the linear radar, whereas for the harmonic radar, the solution is more non-trivial due to
the non-linearity of the tag.

3.2.1 Linear radar

In linear radars, the power loss rate is always equal to - 40dB/decade corresponding
to the path loss proportional to d−4 [3] (see eq. 2.7). To compensate, the slope of the HPF
should be exactly the opposite of that of the propagation loss. This approach is illustrated
in figure 3.2.
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Figure 3.2: Illustration of how the power of the signal is restricted by an HPF for linear
radars. The slope of the filter, opposite to the slope of the path loss for the
received power ensures that the power level before fcut−off is the same.

3.2.2 Harmonic radar

For the non-linear case, a 60dB/decade slope will be required if the incident power of
the tag is low because the path loss slope of PRx in the frequency domain in the small-
signal region is:

PRx,dBm = 10log10(αf
−6
b ) + 30 = −60log10(αfb) + 30 (3.8)

Given that α is a constant. The transition band of a third-order filter can be used to
get this slope. However, the 60dB/decade slope works only for certain distances, since
the non-linear behavior of the tag is apparent at low incident power levels, and is linear
otherwise [5]. For the HPF, a 60dB/decade or a 40dB/decade can be used solely, but
sacrificing overall efficiency. In the former case, the shortest ranges will be attenuated
more than they should, and in the latter, the shorter ranges will not be attenuated enough,
and the received power will overshoot. In this case, calibration of the cut-off frequency
will be required.

The calibration procedure involves finding the new cut-off frequency for the HPF that
would simply align the 40dB/decade slope of PRx with the maximum allowed power level
PDR. Such frequency would be higher than the previously obtained frequency for the
solution based on a third-order filter characteristic. The process of the cut-off frequency’s
calibration is given in figure 3.3
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Figure 3.3: This figure illustrates how the cut-off frequency is calibrated to use a second-
order filter. The large-signal region is extended, and its intersection with PDR

shows the new cut-off frequency. In this case, the large-signal region will
perfectly align with the max. allowed level after filtering.

As can be seen, the large region is extended until it reaches PDR at the new fre-
quency. An HPF with this frequency set as the cut-off frequency will perfectly align the
40dB/decade region of the PRx curve with PDR, and the signal power will not overshoot.

Both of these methods will be tested since the transition between the large-signal and
the small-signal region depends on the system’s power characteristics. As was mentioned
before, the non-linearity of the tag can be observed for certain incident power levels. So,
if the transmitted power, or the gain of the transmitting antenna changes, the position of
this transition on the power curve also changes. Therefore, these two approaches are
likely to perform differently in different power conditions.
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Chapter 4

Results

4.1 Simulation setup

As a reference for the fixed hardware, the S-band prototype from [2] will be taken. The
parameters of this system are given in table 4.1. We used a model of a harmonic tag
containing a wire half-wavelength dipole with a Schottky diode model SMS7630-079LF
[9].

Knowing the maximum distance of detection, we can determine the minimum received
power level, which can still be read by the receiver.

Figure 4.1 shows the graph of PRx for this harmonic S-band prototype. The maximum
range of this radar is 40 m [2].

Frequency (fundamental/harmonic), GHz 2.9/5.8
Frequency sweep, MHz 80

Sweep time, ms 1
Transmitted power, PFTX , dBm 34

Tx antenna gain, dBi 13
Rx antenna gain, dBi 14

Maximum detected range, m 40

Table 4.1: System specifications for the S-band prototype [2]

17



Figure 4.1: PRx curve of the S-band prototype. At the maximum distance of 40m, the
minimum power that the receiver can read is pointed.

As can be seen from the graph, the received power at this distance is -146.15 dBm.
So, Pmin is -146.15 dBm. As can be seen from the figure 4.1, the power at the receive
antenna port is equal to -146.15 dBm when the harmonic tag is at a distance of 40 m from
the transmitter. Since the power of the IF signal is directly proportional to the power of
the received signal 2.4, we are going to use this value as our reference for the minimum
received power Pmin.

4.2 Filter Design

There are a lot of tools in Matlab that can be used for filter design. For this application,
a Butterworth HPF was used, the advantage of which is the flat pass band. In Matlab, it is
convenient to use the ’butter(N,fcut−off ,’type’)’ function. N corresponds to the filter order,
fcut−off to the normalized cut-off frequency, and ’type’ the type of the filter, in this case a
highpass (’high’) [10].
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Figure 4.2: The magnitude response of a third-order Butterworth filter with a cut-off fre-
quency of 0.5B, where B is the bandwidth of the chirp. The sampling fre-
quency for this filter is 4B

This is a digital IIR filter, so the analog cut-off frequency has to be converted to the
normalized frequency, with respect to the sampling frequency. The sampling frequency
should be chosen as at least twice the bandwidth of the IF signal, according to the Nyquist
theorem. That ensures that the transfer function of the filter will be used correctly.

The transfer function is needed for efficiency since the signals are not to be sampled
and filtered in the time domain. Such simulations would be very time-consuming. Instead,
the transfer function for this filter will be derived and simply used on the power curves:

PRx,filtered(fb) = |H(j2πfb)|2PRx(fb) (4.1)

To obtain a transfer function of a digital filter in Matlab, ’freqz(b,a,N)’ function should
be used, where b,a are the filter coefficients, and N is the number of digital frequency
samples in the filter given in rad/sample from 0 to π.

4.2.1 Linear radar.

The dynamic range is dependent on several parameters, namely PTx,GTx,GRx,σ. Radar-
cross-section σ is fixed to a value of 20 mm2, corresponding to an RCS of a honey
bee [11]. The motivation for this value comes from the need to compare the harmonic
radar to the linear one. The given harmonic tag is used for tracking insects, so the linear
radar should be put into similar conditions.
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Figure 4.3 shows the relation of DR with respect to the transmitted power given differ-
ent values of the antennae gains: GTx,1 = GRx,1 = 15 dBi, GTx,2 = GRx,2 = 25 dBi. Figure
4.3 shows the required number of bits for the same power level expressed in these pa-
rameters. The maximum received power for the calculation of DR is taken at the distance
of 1m.

a) b)

Figure 4.3: The dynamic range of the IF signal with respect to the transmitted power in the linear

radar (a). The corresponding required resolution for these dynamic ranges(b)

As can be observed, a large value of power and the antennas’ gains put a high re-
quirement on the ADC’s resolution, yet improving the maximum target range.

Let’s see how DR is correlated with the maximum target range. The target range will
be obtained for certain power budgets presented in table 4.2.

PTx, dBm GTx = GRx, dBi
25 15
35 15
45 15
25 25
35 25
45 25

Table 4.2: Values of transmitted power and gains of receive an transmit antennas used
in the simulations
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a) b)

Figure 4.4: The received power with respect to the distance to the target for different
transmitted power an antenna gains - 15dBi(a), 25dBi(b). Also, the minimum
power level is readable by the receiver. The intersection of the received power
curve and the minimum level is the max. operational range for a certain power
budget. Linear radar.

PTx, dBm GTx = GRx, dBi DR, dB N, bits max. range, m
25 15 101.479 17 319
35 15 111.479 19 588
45 15 121.479 21 1089
25 25 121.479 21 1089
35 25 131.479 22 1910
45 25 141.479 24 3383

Table 4.3: Parameters, and the corresponding DR, resolution, and the maximum opera-
tion range for the linear system.

For the given desired resolution, we can now derive the constraint on the dynamic
range. Three values for the resolution will be taken: 8,10,12 bits. Using the equation 3.5,
we can compute:

DR8 = 6.02 ∗ 8 = 48.18dB (4.2)
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DR10 = 6.02 ∗ 10 = 60.20dB (4.3)

DR12 = 6.02 ∗ 12 = 72.24dB (4.4)

Figure 4.5 shows the relation of the beat frequency of the IF signal fb to the dynamic
range DR required for it for the linear radar. In the same figure, the DR levels correspond-
ing to the given ADC resolutions are given. The intersections with the DR curves indicate
where the cut-off frequency of HPF should be. Below, in table 4.4, the cut-off frequencies
for HPF given for a certain power budget are provided. As can be seen, the cut-off fre-
quencies grow with the growth of power in the system. A higher resolution, to the contrary,
makes the cut-off frequency smaller, since the constraint on DR is weaker.

a) b)

Figure 4.5: Relations of dynamic ranges versus beat frequency for systems with different
transmitted power and antenna gains 15 dBi (a) and 25 dBi (b). The maxi-
mum power levels for 8,10,12 bits. The intersections of these levels with the
dynamic ranges indicate the cut-off frequencies for HPFs. Linear radar
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Power budget
Resolution, bits

8 10 12

PTx = 25dBm,GTx = GRx = 15dBi 11.20 5.87 2.67
PTx = 35dBm,GTx = GRx = 15dBi 20.27 10.13 5.34
PTx = 45dBm,GTx = GRx = 15dBi 36.27 18.14 9.07
PTx = 25dBm,GTx = GRx = 25dBi 36.27 18.14 9.07
PTx = 35dBm,GTx = GRx = 25dBi 64.00 32.50 16.00
PTx = 45dBm,GTx = GRx = 25dBi 114.67 57.07 28.80

Table 4.4: The cut-off frequencies derived for the linear radar, given for a certain resolu-
tion and power budget.

Now, that the frequencies are known, the designed filter can be applied to the linear
radar. To see how such a filter would affect PRx,linear with respect to the beat frequency,
we can simply generate a vector of PRx,linear for a range of distances, and generate a
frequency vector using equation 2.4. The filter order should be set to 2, and the cut-off
frequency should be taken from table 4.4.

In figure 4.6, the outcome of the filter’s application is shown. The figure shows the
results for the ADC resolution of 10 bits and 3 power budgets: PTx is given as 25,35,45
dBm with the gains of the antennas equal to 15 dBi.

Figure 4.6: The received power for 12-bit resolution of the ADC and the antenna gains of
25 dBi after applying an HPF.
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The following behavior can be outlined: up to the cut-off frequency the power of the
signal remains constant at the level defined by what DR should be.

4.2.2 Harmonic radar.

With regards to the relation of the dynamic range to the power budget represented
by PTx, GTx, GRx, the harmonic radar follows the same tendency as its linear equivalent.
The only difference is that the slope of the DR curve changes for higher power. This is the
influence of the non-linearity of the harmonic tag’s conversion efficiency at low incident
power levels. For higher power, the slope changes because the behavior of the conversion
tag becomes linear again.

a) b)

Figure 4.7: The dynamic range of the IF signal with respect to transmitted power for different

antenna gains (15,25 dBi) in the harmonic radar (a). The corresponding required

resolution for these dynamic ranges(b)

Overall, harmonic systems require a smaller dynamic range of the ADC, but at the
expense of the operational range. For illustration, the same approach of finding the maxi-
mum operational range as for linear radars should be repeated for harmonic ones.

In figure 4.8, the received power curves are depicted along with the minimum de-
tectable power of the system, but now for harmonic radars. The simulation included the
mathematical model of the harmonic tag written in Matlab [9].

Table 4.5 shows the range for different power budgets, also providing the dynamic
range and the corresponding resolution.
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a) b)

Figure 4.8: The received power with respect to the distance to the target for different
transmitted power an antenna gains - 15dBi(a),25dBi(b). Also, the minimum
power level is readable by the receiver. The intersection of the received power
curve and the minimum level is the max. operational range for a certain power
budget. Harmonic radar.

PTx, dBm GTx = GRx, dBi DR, dB N, bits max. range, m
25 15 87.8 15 26
35 15 99.9 17 49
45 15 109.9 19 112
25 25 109.85 19 76
35 25 119.9 20 163
45 25 129.8 22 365

Table 4.5: Parameters, and the corresponding DR, resolution, and the maximum opera-
tion range for the harmonic system.

In comparison with the linear case, a harmonic radar delivers much lower ranges,
although the resolution requirements are not considerably lower. This outcome confirms
the poor power efficiency of harmonic FMCW radars. Yet, their advantages open room for
applications in heavily cluttered areas.

For harmonic radars, there are 2 ways of defining the cut-off frequencies. One is if
third-order highpass characteristics will be used, and the other one implies that a second-
order filter with a higher cut-off frequency.

The third-order approach is done in the same manner as for the linear radar: the
DR curves with respect to the beat frequency are built along with the DRs for a certain
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resolution (see fig. 4.9), and the intersection indicates the required cut-off frequencies.
These frequencies are shown in table 4.6. The same resolutions were used as for the
linear radar.

a) b)

Figure 4.9: Relations of dynamic ranges versus beat frequency for systems with different
transmitted power and antenna gains 15 dBi (a) and 25 dBi (b). The maxi-
mum power levels for 8,10,12 bits. The intersections of these levels with the
dynamic ranges indicate the cut-off frequencies for HPFs. Harmonic radar

Power budget
Resolution, bits

8 10 12

PTx = 25dBm,GTx = GRx = 15dBi 4.27 3.29 2.02
PTx = 35dBm,GTx = GRx = 15dBi 10.67 7.20 4.34
PTx = 45dBm,GTx = GRx = 15dBi 23.47 15.13 8.47
PTx = 25dBm,GTx = GRx = 25dBi 14.93 10.16 6.67
PTx = 35dBm,GTx = GRx = 25dBi 34.13 22.21 13.86
PTx = 45dBm,GTx = GRx = 25dBi 76.80 47.79 27.18

Table 4.6: Cut-off frequencies for HPF given for certain power budget and for certain
ADC resolution. Given in [kHz]

The second approach requires us to expand the large-signal 40dB/decade region on
the received power curve with respect to the beat frequency to find the intersection with
the power level specifically calculated for the pre-determined dynamic range. The ap-
proach was depicted previously in figure 3.3. The same idea is depicted in figure 4.10,
but now for the simulated power curves. To be able to distinguish between the different
slopes, using a logarithmic frequency axis along with logarithmic power is required.
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Figure 4.10: The process of the calibration of fcut−off . The received power (PTx =

25dBm,GTx = GRx = 25dBi) is plotted with respect to the beat frequency in
the logarithmic scale. The large-signal region is extended until it reaches the
maximum allowed level for 8,10,12 bits. This is how the cut-off frequency is
obtained for the corresponding resolutions.

And table 4.7 shows the new cut-off frequencies for this approach. The data in the
table is not given for the lowest power budget (PTx = 25dBm,GTx = GRx = 15dBi),
because with these initial conditions, the power curve already deviates from a perfect
40dB/decade slope at the starting distance of 1 m.

The slope depends on the behavior of the harmonic tag, which is different for different
ranges of the incident power. The total output power of the transmitter PTx + GTx (in
dBm) is the parameter that defines where the transition will occur from 40dB/decade to
60dB/decade. For the lowest power budget, this value is 40dBm, which is apparently
enough for the harmonic tag to exhibit non-linear behavior even when located only 1m
from the transmitter.

The starting operational distance can be set lower, and the perfect 40dB/decade slope
will be visible. However, target ranges below 1 m are likely not of interest, especially for
insect tracking.
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Power budget
Resolution, bits

8 10 12

PTx = 35dBm,GTx = GRx = 15dBi 19.01 9.77 5.00
PTx = 45dBm,GTx = GRx = 15dBi 38.90 19.50 9.55
PTx = 25dBm,GTx = GRx = 25dBi 36.30 18.62 9.12
PTx = 35dBm,GTx = GRx = 25dBi 60.20 33.10 15.80
PTx = 45dBm,GTx = GRx = 25dBi 120.23 61.66 30.20

Table 4.7: Calibrated cut-off frequencies for HPF given for certain power budgets and for
certain ADC resolutions. Given in [kHz]

Finally, the filter can be applied to the harmonic radar. Figure 4.11 shows how the
power curve is affected by a third-order filter transfer function. As can be observed, the IF
signal coming from closer d−4 ranges, and, therefore, corresponding to a smaller fb, will
not be attenuated severely for small power budgets. However, for larger power, the cut-off
frequency of the filter is located further, thus the attenuation of the large-signal region
will become much more considerable. This happens because the over-attenuated large-
signal region’s slope can be up to 20dB/decade, and the attenuation grows drastically for
higher cut-off frequencies.

Figure 4.11: PRx vs. fb for the filtered received signal. The filter is third-order. The data is
provided for the resolution of 10 bits, and for three different power budgets.
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Another way is to use a second-order filter. The approach is the following: the large-
signal region in the logarithmic plot (see figure. 4.10 ) is extended and the intersection
with the maximum power level will show what fc is needed.

The result of this approach can be seen in figure 4.12a. It can be observed that
the dynamic range is within the boundaries, and the signal strength for closer ranges is
preserved at the highest possible level. Also, if one looks closely at this figure, it can be
seen that for the transmitter output power (PTx+GTx) of 50 dBm, the large-signal region
already gets very small. For the lowest power budget (PTx = 25dBm,GTx = 15dBi,
GRx = 15dBi), when the output power is even smaller, the large signal region will be out
of sight in the considered bandwidth. As mentioned, a third-order filter can be applied in
this case. On top of that, since the power budget is small, over-attenuation will not be
considerable. The figure 4.12b is similar to 4.11. It shows how the filters affect the power
curves of different power budgets and for one specified resolution. As can be observed, it
looks similar to figure 4.6, which corresponds to applying a second-order HPF to a linear
FMCW radar.
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a)

b)

Figure 4.12: a)PRx vs. fb for the filtered received signal in dB scale. The filter was
second-order and the frequencies were calibrated. Parameters: PTx =

25dBm,GTx = GRx = 25dBi. b) A similar figure to figure 4.11. Given for
3 power budgets and for the ADC resolution of 8 bits.
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Chapter 5

Conclusion

In this research, the main objective was to find how applying highpass filters as FGC
can reduce the required dynamic range of the ADC in FMCW harmonic radars. A com-
parison had to be made with conventional FMCW radars. With a lower dynamic range,
the resolution of the ADC will be lower, and the cost of the ADC will be thus reduced,
which is useful for low-cost applications.

Overall, FGC is a capable technique for the dynamic range reduction. The main chal-
lenge was the varying path loss that was proportional either to the negative fourth or to
the sixth power of distance for incident power levels of the harmonic tag. In comparison
to a conventional FMCW radar, for which a second-order highpass characteristic is al-
ways applied, the filter order for a harmonic radar depends on the transmitted power and
the antenna gains. For higher values of these parameters, a second-order filter with the
calibration of the cut-off frequency is more suitable, and for lower values, a third-order
highpass filter is applicable.
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