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Abstract This research created a custom SHAP 

framework designed to explain a PointNet model’s 

prediction. By calculating the marginal contribution 

of an individual point with respect to a coalition 

towards the model’s prediction. Individual points’ 

SHAP value shows the level of contribution that 

point has towards the classification of a PointNet 

Model in the Model Net 10 dataset. This research 

successfully implements the custom SHAP 

framework and showcases which points contribute 

to the classification of a chair.  
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2. INTRODUCTION 

It may seem counterintuitive to trust a prediction of a 

machine learning model. These models are commonly 

perceived as a ''black box'' system [1], as the absence 

of decision-making explanations leads to a lack in 

interpretability. Explainable AI (XAI) aims to clarify 

the ''black box'' nature of machine learning models [2] 

by incorporating transparency and interpretability into 

the models. Explainable AI (XAI) refers to the capacity 

of an artificial intelligence (AI) system or model to 

offer clear and comprehensible justifications for its 

choices [3]. The use of XAI for point cloud models is 

advantageous due to their inherent complexity and 

interpretability challenges [4]. Therefore, future studies 

in XAI in this sector are highly recommended. An 

example of social significance is the need for enhanced 

transparency in autonomous driving. This safety-

critical application [5] needs comprehensive testing 

and validation to instil trust.  

This research specifically addresses explainable 

artificial intelligence (XAI) techniques applied to point 

cloud data structures. The XAI model employed is 

Shapley Additive Explanations (SHAP), which has 

been modified to accommodate the data structure of a 

point cloud and the associated PointNet model. Which 

classifies point clouds into categories based on the 

given set of points. This study introduces a custom 

Explainable Artificial Intelligence (XAI) framework 

designed to explain the predictions made by the 

PointNet model. This study primarily investigates the 

following questions: 

How to create a custom XAI framework which adapts 

SHAP values to a PointNet model and point cloud data?  

 

The first section discusses background research 

addressing the concepts used in this research. The 

second section addresses the methodology, which 

explains the steps taken to achieve the result. The 

following section analyzes the results obtained form the 

methodology. The second to last and last sections are 

the discussion and conclusion respectively. In these 

sections the adequacy of the study and the results are 

discussed followed by concluding remarks.  

3. BACKGROUND RESEARCH  

3.1. Related work 

This section provides an overview of the relevant 

research and is mostly based on two comprehensive 

literature studies. The section serves as a concise 

overview of the key subjects in XAI, providing reviews 

instead of comprehensive coverage of all elements. 
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Alejandro et. al. [6] examines the principles of several 

XAI models, such as Local Interpretable Model-

Agnostic Explanations (LIME), Deep Learning 

Importance FeaTures (DeepLIFT), and SHAP. A wide 

range of models can use LIME and SHAP as versatile 

techniques. Tabular data types are frequently used for 

these models. Conversely, DeepLIFT specifically 

caters to natural language processing models, and 

computer vision models requiring text and images data. 

 

LIME works by picking a small part of the model and a 

small part of the data and estimating them locally. By 

changing the data sample, it finds out how each 

characteristic affects the model subset, which leads to 

specific explanations for individual events instead of 

the whole model. 

 

The DeepLIFT algorithm dissects a neural network's 

output prediction for a given input by propagating the 

influence of each neuron in the network backward to 

each feature of the input [1]. By comparing the 

activation levels of each neuron for the expected and 

actual predictions, this method determines the 

individual contribution of each feature to a prediction. 

  

Grounded in the principles of cooperative game theory, 

SHAP clarifies the extent to which a feature 

contributes to a prediction based on cooperative game 

theory principles. This is a mechanism for providing 

explanations at a local level. Section 3 elaborates on 

the expansion of SHAP. 

 

All three XAI models operate on a per-instance basis, 

focusing on individual data points rather than the entire 

dataset as a whole. SHAP and LIME apply to any type 

of model, whereas DeepLIFT is specifically designed 

for deep neural networks. 

 

 

In a separate study, Clement et. al. [7] have extended 

Aljandro's et. Al. findings by exploring a broader range 

of explainable artificial intelligence (XAI) 

methodologies. The paper examines the concepts of 

Anchors & LORE and Permutation Feature Importance 

(PFI). 

Anchors is an explainable artificial intelligence (XAI) 

technique that works with IF-THEN statements that are 

based on numerical ranges in the feature space and 

don't depend on the model. A greedy beam search 

algorithm achieves this. LORE is a model-agnostic tool 

that uses a genetic algorithm to generate synthetic 

neighbourhood data sets. It then trains a decision tree 

classifier and derives decision rules from it. 

 

Permutation Feature Importance (PFI) is a technique 

that is independent of the model used and identifies 

predictive features by altering feature values and 

quantifying the effect on the model's prediction. When 

a feature's modification significantly impacts the 

model's performance, it is considered essential. 

Both XAI approaches enhance the ability to provide 

localized explanations for predictions and increase the 

interpretability of any model, regardless of its prior 

knowledge or assumptions. 

3.2. Point cloud 

A point cloud is a collection of individual data points 

which are coordinates in a three-dimensional Euclidean 

space [8] and stored as a unordered list. A Light 

Detection and Ranging (LiDAR) scanner can capture 

and analyze an item or environment to obtain a point 

cloud. It generates a three-dimensional coordinate map 

by producing pulses of infrared light and calculating 

the time it takes for the light to bounce back [9]. One 

major benefit of utilizing point clouds is the inclusion 

of depth information. Advanced computer vision 

systems can incorporate this information by integrating 

data from several cameras [10]. This added complexity 

is mitigated when using a single LiDAR scanner that 

collects depth information. Decreasing the complexity 

and processing required. 

A point in a point cloud is obtained by sampling from a 

finite three-dimensional Euclidean space ℝ3.  A point 

is represented by a tuple 𝑃𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) ∈  ℝ3, where 

𝑥𝑖, 𝑦𝑖 , 𝑎𝑛𝑑 𝑧𝑖 are the values of the point’s coordinate a 
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point and point cloud can be plotted in a three-

dimensional Cartesian coordinate systems for 

visualizations. Furthermore, a point can possess other 

information, such as a label or colour value and lacks 

any volume. 

3.3. Machine learning with point clouds 

This section provides an analysis of the application of 

machine learning to point clouds, the specific model 

utilized in this study, and the conceptual framework of 

the model. 

Comprehending point cloud data without machine 

learning necessitates the expertise of skilled engineers 

and the time-consuming process of manually capturing 

and labelling data [9]. Machine learning has automated 

the processing stage that involves point clouds. This 

study primarily focuses on the PointNet model [4] 

because of its ability to handle unordered data, such as 

point clouds, without the need for a predefined 

structure like voxels. 

The PointNet model utilizes a Convolutional Neural 

Network that emulates the cognitive processes of the 

human brain. A Convolutional Neural Network (CNN) 

specifically uses several interconnected layers to 

process visual input like photos or videos. 

Neural network-based image processing employs 

filters at each layer to evaluate and extract distinctive 

characteristics from pictures. A filter traverses the 

picture, performing element-wise multiplication 

between its values and the image's corresponding pixel 

values at every position. This  results in the creation of 

a feature map. Subsequently, an activation function is 

employed to inject non-linearity into the network. 

Facilitating its ability to acquire more intricate 

patterns. To enhance computational efficiency and 

decrease the size of the feature map, pooling layers, 

such as max pooling, are employed to aggregate the 

values. The feature maps obtained are transformed into 

a single-dimensional vector by flattening them. This 

vector is then passed through fully connected layers 

that carry out the final classification. The output layer 

employs the softmax activation function to transform 

class scores into probabilities, hence yielding the 

ultimate classification outcome [4]. 

3.4. SHAP 

The Shapley Additive eXplanations (SHAP) 

methodology assists in understanding machine learning 

models. Cooperative game theory's Shapley values 

serve as the foundation for the concept. The Shapley 

values, as described by Molnar [11], is “the weighted 

average of a player’s marginal contributions to all 

possible coalitions.” This section draws on Christoph 

Molnar's book "Interpreting Machine Learning Models 

With SHAP" [11] for its theories on SHAP and 

Shapley values. 

The Shapley value is a method of allocating rewards in 

a coalition game where numerous players contribute to 

an outcome, but not all players participate equally. The 

Shapley values propose a method of distributing the 

payoff in a coalition game based on the participants 

weighted average marginal contributions. 

Φ𝑗(N, 𝑣) = 

∑
|𝑆|! (𝑁 − |𝑆| − 1)!

𝑁!
(𝑣(S ∪ {𝑗}) − 𝑣(𝑆))

𝑆⊆N\{j}
 

(1) 

𝑗 = 𝑃𝑙𝑎𝑦𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 

𝑁 = Set of players with (n) 𝑝𝑙𝑎𝑦𝑒𝑟𝑠 

𝑆 = 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑛𝑦 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟𝑠 

Equation (1) gives the weighted marginal 

contribution of a single player for all coalition games. 

The equation contains three components. 

 

1) The two terms 𝑣(S ∪ {𝑗}) and 𝑣(𝑆) represent 

value functions of a collation including point j and the 

value of the coalition excluding point j.  Subtracting 

them: 𝑣(S ∪ {𝑗}) − 𝑣(𝑆) gives the marginal 

contribution of player j towards a coalition S.  

2) The weight term  
|𝑆|!(𝑁−|𝑆|−1)!

𝑁!
 determines the 

weight of the marginal contribution as it accounts for 

different coalition sizes. 

3)  The summation term ∑ ,𝑆⊆N\{j}  sums over all 

coalitions not containing the player of interest.   
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The marginal contribution provides a method for 

determining the distribution of a reward based on the 

individual contributions of players in a cooperative 

game. The difference between Shapley values and 

SHAP values is the inclusion of a machine learning 

model for the SHAP framework, translating the 

concepts of game theory to machine learning 

prediction concepts. 

Equation (2) is the marginal contribution of the 

PointNet model and shows the contribution of point j 

towards coalition S. The terms 𝑓 (𝑥𝑆∪j
(𝑖)

∪ 𝑋𝐶\𝑗) and 

𝑓 (𝑥𝑆
(𝑖)

∪  𝑋𝐶) represent the value functions of the 

marginal contribution of point j towards coalition S and 

the marginal contribution of coalition S without point j 

respectively. 𝑥S∪j 
(𝑖)

 and  𝑥𝑠
(𝑖)

 is the known feature (point) 

value to the model and 𝑋𝐶  𝑎𝑛𝑑 𝑋𝑐\𝑗   are unknown 

feature (point) values which are randomly distributed 

according to distribution  ℙ. . 

 Terms ∫ 𝑑ℙ𝑋𝑐\𝑗
 𝑎𝑛𝑑 ∫ 𝑑ℙ𝑋𝑐

 are the integral taken 

over the probability distribution  ℙ. for unknown 

features values 𝑋𝐶. Integrating over the distribution of a 

random variable is known as marginalization [11].  

 

Calculating the interval for each value of a feature 

(point) is not possible for two primary reasons outlined 

by Molnar [11]. Firstly, the overall number of features 

in a model is excessively large since the number of 

coalitions grows exponentially with the number of 

features, namely 2𝑝.  

The second major problem is that the feature 

distributions are unknown, namely the distributions of 

𝑃(𝑋𝑐\𝑗) and 𝑃(𝑋𝑐). The book [11] advocates for the 

use of the Monte-Carlo approach to estimate the SHAP 

value.  

Various approximation approaches can be used for the 

SHAP value function. Simon [12] describes a method 

which uses a projected stochastic gradient algorithm to 

estimate the SHAP values. The approach for 

approximation is chosen to be the Monte-Carlo 

approximation based on its ease of implementation and 

its alignment with the theoretical framework proposed 

by Molnar [11], yet Simon's method will be discussed 

in section 6.3. The Monte Carlo approximation 

operates by generating a substantial number of random 

samples from a given dataset. As the number of 

random samples increases, the average gradually 

approaches the expected value of the distribution. The 

background data utilized for sampling might consist of 

the identical data employed for training or validating 

the model. The Monte-Carlo approximation method 

substitutes an integral calculation with a summation 

and replaces the distribution P with data samples. The 

equation for this approximation is as follows: 

Equation (3) Is the marginal contribution of player j 

towards coalition S approximated according to the 

Monte-Carlo approximation. The Monte-Carlo 

approximation is subject to over and under sampling 

which is addressed when discussing the results.  

(𝑣(S ∪ 𝑗) − 𝑣(𝑆))  ≈ 

1

𝑚
∑ [𝑓 (𝑥𝑆∪𝑗

(𝑖)
∪ 𝑋𝐶\𝑗

𝑘 ) − 𝑓 (𝑥𝑆
(𝑖)

∪ 𝑋𝐶
𝑘)]

𝑚

𝑘=1

  

(3) 

𝑚 = 𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 

 

s 

 

(𝑣(S ∪ {j}) − 𝑣(𝑆)) = 

∫ 𝑓 (𝑥𝑆∪j 
(𝑖)

∪  𝑋𝐶\𝑗) 𝑑ℙ𝑋𝑐\𝑗
− ∫ 𝑓 (𝑥𝑆

(𝑖)
∪  𝑋𝐶) 𝑑ℙ𝑋𝑐

 

(2) 
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4. METHODOLOGY  

This section describes how to compute the SHAP value 

using a custom framework. Figure 1 provides an 

overview of the custom framework, which depicts the 

study's flow. The discussion starts with the raw data 

set, then moves on to the pre-processing stage, the 

computation of Shapley values, the transformation of 

inputs for the model, the calculation of SHAP values, 

and a final transformation for the output plot.  

 

4.1. Data Set 

The research utilizes data obtained from the Princeton 

ShapeNet ModelNet10 library [13], which consists of a 

collection of 10 distinct man-made home objects, 

including chairs, desks, and 8 other categories.  

Figure 2 depicts a specific item with the item identifier 

888, extracted from the library. The model's vertices 

comprise 1479 points that make up the chair mesh. 

Four pre-processing phases yield the final point cloud: 

sampling, normalizing, rotating, and generating noise.  

  

4.2. Pre-processing  

The four pre-processing steps taken are sampling, 

normalizing, rotating and inducing Gaussian noise. 

  

4.2.1. Sampling 

The mesh is uniformly sampled at 512 points across its 

surfaces. We assign a weight to each surface 

proportional to its size, ensuring that surfaces have 

similar point densities. See Figure 3a. 

 

4.2.2. Normalization  

The sampled data points are normalized into a unit 

sphere [4]  to account for variations in scale among 

different meshes. This normalization process ensures 

consistency across all data instances of various sorts, 

and by positioning the cloud in the centre, it facilitates 

its rotation in the subsequent stage. See Figure 3b. 

 

4.2.3. Rotating   

The cloud is normalized and then randomly rotated 

along the Z axis to ensure the rotational invariance of 

each point cloud. The goal of this process is to create a 

point cloud that is more realistic, akin to what a 

LiDAR scanner would produce. See Figure 3c. 

 

4.2.4. Induce noise 

A Gaussian noise, characterized by a mean of 0 and a 

standard deviation of 0.002 [4], is applied to the point 

cloud. This stage mimics a LiDAR scan and is a more 

realistic representation of real-world data, as real-world 

data is noisy. See Figure 3d. 

Figure 1, The pipeline integrates the custom SHAP framework for PointNet with point cloud data. The pipeline's key steps include pre-

processing, creating two lists of S and S with j, transforming these lists to align with the model's expectations, calculating the model's 

marginal contribution, converting the SHAP value to colour, and finally plotting the results. 

 

Figure 2, Raw point cloud data instance of 

item 888 collected from the ModelNet10 

folder of ShapeNet [13].  
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Figure 3 provides a graphic representation of all four 

pre-processing phases. Qi et. al. [4], implemented these 

procedures in their research to develop a robust model 

for categorizing point clouds. This study employs the 

same model previously trained by Qi [4]. Therefore, a 

data instances is created to fit the SHAP framework 

destined for PointNet. The instance undergoes the 

same pre-processing procedures as the model's initial 

training, helping the model's capacity to predict.  

 

  

 
Figure 3, Four pre-processing steps to augment the point cloud. a 

uniformly samples the points along the surfaces. b normalized the 

cloud int the unit sphere. c randomly rotates the entire cloud around 

the z axis. d induces gaussian noise to the point cloud.  

 

4.3. SHAP values for point cloud 

The calculation of the SHAP value for point clouds 

involves two distinct algorithms. The first involves 

iterating over all points in the point cloud and sampling 

using the Monte-Carlo method. The second strategy 

utilizes the prediction function of the PointNet model 

to determine the marginal contribution. Figure 4 and 

Figure 5 display the pseudo-code for separate 

algorithms, with each step outlined in the subsequent 

subsections.  

 

 

4.3.1. Algorithm 1 

Figure 4 uses the "Monte Carlo Estimation of Shapley 

Values" algorithm to calculate the SHAP values for 

each point in the point cloud data instance. The 

function requires two parameters: point_cloud, 

which is a tensor array representing a multi-

dimensional array of the point cloud, and 

num_samples, which determines the number of 

Monte-Carlo samples used for the estimation. The 

function samples the data instance with 512 points, 

resulting in a value of 512. The function assigns the 

variable num_points a value equal to the number of 

points in point_cloud. Additionally, the function 

initializes the array shapley_values, setting all 

elements to zero. 

In point_cloud, the outer loop iterates over each 

point j. The variable marginal_contributions 

is initialized to record the marginal contributions of 

point j across various permutations. 

 

To perform Monte Carlo sampling, the inner loop 

executes num_samples times for each point j. A 

permutation perm of point indices is generated to 

mimic different coalitions. The list subset is 

initialized to temporarily hold points as they are 

included based on the permutation parameter perm. 

A separate loop is used to iterate over the permuted 

indices perm. If the current index m equals j, the 

subset should include point j. The variable 

subset_with_j represents the subset that includes 

point j, whereas the variable subset_tensor 

represents the subset that does not include point j. The 

value_function invokes Algorithm 2, which 

transforms the subsets for the PointNet model and calls 

the predict function. 
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Figure 4, Algorithm 1 which loops through all points in the point 

cloud, adds them into two lists and calls the predict function of the 

mode. With the predict value return from Algorithm 2 it calculates 

the marginal contribution and stores the SHAP value of each point. 

This marginal contribution is added to the 

marginal_contributions list, and the loop is 

terminated to begin the next sample. If the value of j is 

not equal to the value of k, the current point is 

transformed into a NumPy array and added to the 

subset.  

 

After evaluating all samples for point j, compute the 

mean of the marginal contributions. The average value 

for point j, calculated using SHAP, is placed in the 

shapley_values array.  

 

4.3.2. Algorithm 2  

In figure 5, algorithm 2 takes subset_with_j and 

subset_tensor from Algorithm 1 and uses the 

predict function to compute the marginal contribution 

of the two lists for each Monte-Carlo sample.  

 

If the variable point_cloud (the two subset lists) is 

a 2D array with a shape of (N, 3), it signifies that there 

is a single point cloud consisting of N points, each 

defined by 3 coordinates. The unsqueeze(0) 

method converts the input into a PyTorch tensor and 

includes a batch dimension. This operation produces a 

tensor with a shape of (1, N, 3).  

If the form of point_cloud is already three-

dimensional (B, N, 3), it indicates that there are B 

batches of point clouds, each containing N points with 

3 coordinates. This tensor is transformed straight into a 

PyTorch tensor. If point_cloud contains 

dimensions different than the anticipated ones, a value 

error is raised to indicate the presence of unexpected 

dimensions. 

 

The reason for implementing error handling is for 

troubleshooting and because PointNet requires the 

input tensor shape to be (B, N, 3) for the model. For 

individual data instances, the batch number is 

consistently 1. Here, N has a value of 512. The tensor 

shape is transposed to align with the input 

specifications. PointNet requires the input tensor to 

shape like (B, 3, N). 

 

The transpose(1, 2) operation, swaps the final 

two dimensions of a tensor. If the original form was (1, 

N, 3), this produces a tensor with a shape of (1, 3, N). 

 

Subsequently, using pointnet.eval(), the code 

switches the PointNet model to evaluation mode. This 

function deactivates specific layers, such as the 

dropout layer unique to training and inference 

processes. 

 

The torch.no_grad() function avoids the 

computation of gradients, which reduces memory 

consumption and enhances inference performance. The 

model then generates predictions using the received 

subset_with_j and subset_tensor tensor 

arrays. The results tensor comprises the unprocessed 

predictions (logits) generated by the model. The 

softmax function transforms the logits into 

probabilities along the class dimension. 

Finally, the code retrieves the highest probability from 

the probability tensor and turns it into a Python float 

using the .item() method. The function returns the 

highest probability as its outcome. 
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Figure 5, Algorithm 2, transforms lists subset_with_j and 

subset_tensor and runs it through the predict function of the model, 

and returns the max probability used in Algorithm 1.  

4.4. Final transform and plotting  

Combining algorithms 1 and 2 results in a list named 

"shapley_values," which holds the SHAP values 

for each point in the point cloud. From the 

"shapley_values" list, the minimum and 

maximum are found, and using those extremes, a 

colormap using Matplotlib maps all values to a colour 

representation, resulting in Figure 6.  

5. RESULTS 

This section showcases the results obtained from the 

methodology. The text discusses three distinct 

outcomes, with the first being a graphical 

representation that illustrates the SHAP value for the 

given data instance. The second figure represents the 

same data instance, but it uses different samples for the 

Monte-Carlo approximation. The final graphic 

showcases independent data instances sampled using 

the same Monte-Carlo sample. 

Figure 6 displays four distinct viewports of the 

identical data instance. This instance corresponds to 

item 888 and falls under the chair classification. This 

point cloud consists of 512 points. Each point is 

defined by its x, y, and z coordinates and colour value.  

 

The x, y, and z information represent the point's 

coordinates on the graph. The hue of each data point 

corresponds to its SHAP value, with a higher value 

indicating a greater contribution to the prediction and a 

lower value indicating a lesser contribution. The colour 

represents the conversion of the numerical SHAP value 

into a corresponding colour value. The selected colour 

range spans from yellow to red with yellow having 

lesser importance towards the prediction and red 

having increased importance towards the prediction. 

The colour bar to the right of the four subplots displays 

the numerical value of the SHAP value and its 

corresponding colour. The Monte-Carlo approximation 

contains 1024 steps. The points that are of great 

significance and interest have an orange-red colour, 

and fall within the uppermost region of the SHAP 

value spectrum.  

Figure 6 displays the SHAP values of 512 data points, 

where the largest SHAP value is 0.0086 and the lowest 

SHAP value is -0.001. Points with a positive SHAP 

value indicate that they provide a positive contribution 

to the prediction when compared to the other points in 

the instance. Points with a SHAP value equal to zero 

have no influence on the model's prediction, and points 

with a negative SHAP value have a negative 

contribution on the prediction.  

 

Figure 6 has Monte-Carlo sampling of 512 steps. The 

accuracy of this sample size increases as more steps are 

used to approximate. The approximation converges 

towards the true function when the number of steps 

approaches infinity. Figure  displays how increasing 

the number of sampling steps affects the SHAP values. 

 

Figure 6, Four subplots of a single data instance generated from 

512 points with x, y, z, and SHAP value. Dark red colored points 

have high model prediction contribution and light-yellow colored 

points a low model prediction contribution. 
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Figure 7 exhibits five subplots, each with larger 

number of steps and smaller step size. The subplots 

one through five, arranged from left to right, have step 

sizes of 
1

512
,

1

1024
,

1

2048
,

1

4096
, 𝑎𝑛𝑑

1

8192
, respectively. 

Notably as the number of steps grows and the step size 

decreases. The distribution of SHAP values becomes 

narrower, resulting in a decrease in the extremity of the 

SHAP values for both negative and positive SHAP 

values. There is also an increasing relative proportion 

of points with higher SHAP values as the number of 

steps increases. Another finding is the emergence of 

clusters, where all surrounding points within the cluster 

are dark red. The final key observation is that each 

subplot identifies different points to be important, 

rather than having commonality across subplots for 

important points. 

Once we reach a specific sampling threshold, further 

sampling becomes redundant, merely increasing 

computational power and complexity without 

significantly affecting the conclusion. The choice 

between attaining precise results through a greater 

number of steps or emphasizing efficiency varies based 

on the application.  Section 6.1 discusses the adequacy 

of Figure 7's results. 

 

Further analysis of the custom SHAP framework is 

tested by subjecting it to various point clouds and 

asking it to predict and explain why it believes each 

point cloud to be a chair. Figure 8 demonstrates this. 

Figure 8 exhibits four unique chair representations, 

each composed of 512 points. A Monte Carlo sampling 

Figure 7, Five subplots representing various Monte-Carlo approximation samplings at varying step sizes. From 

left to right, the number of steps increases, and the size of each step decreases. All subplots depict the same data 

instance. 

 

Figure 8, Four different data instances of classification chair, all sampled at 512 points and 512 Monte-Carlo 

steps 
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technique with 512 samples was used to obtain the 

points. The SHAP values provide insights into the 

unique characteristics of each chair. In the second 

subplot, the points located at the top of the backrest 

primarily contribute to the prediction. In the third case, 

the legs and armrests significantly influence the 

outcome, as they display shades of red. For the same 

reasons mentioned above, the legs play a crucial role as 

the primary contributing element in the fourth case. 

The custom framework has successfully shown why 

different point clouds are classified as chairs, each with 

its own set of characteristics. Moreover, the framework 

elucidates the process of classifying each data instance 

as a chair. 

6. DISCUSSION  

6.1. Different sizes of Monte Carlo  

By increasing the number of Monte Carlo samples, the 

subplots in Figure 7 became more comprehensible. The 

goal of this study is to provide a thorough explanation 

of the model's prediction. The initial sample size of 

1024 steps is not considered comprehensive. However, 

these crucial aspects become more evident as the 

sample size increases. The significance of the model's 

key principles becomes much more evident. At 512 

points, the model took around 2 hours to complete 

4096 steps of approximation. 4096 steps can 

adequately analyse a point cloud with 512 points, 

providing a comprehensive understanding of the 

PointNet model and this point cloud. As the number of 

points in the point cloud increases, further 

investigation may indicate the necessity of a higher 

sample rate. Future studies can explore this aspect. The 

same principle applies to determining the threshold for 

sampling.  
 

6.2. Different chairs  

The sampling rate for Figure 8 is 512 steps. These 

subplots don't emphasize an adequate explanation, as 

they require a larger sample size. However, the figure 

does provide insight into cluster formation. Despite the 

reduced sample size, the cluster formation and 

increasing step numbers in Figure 7 allow us to 

approximate the appearance of each instance in Figure 

8. Nevertheless, the SHAP framework in these 512 

samples clarifies this point cloud's classification. 
 

6.3. The choice between Monte-Carlo and Markov 

Chain Monte-Carlo 

During the course of this research, The Monte-Carlo 

approximation method is employed to estimate the 

value function. This approach is employed based on 

the premise that the points collected during pre-

processing follow a random normal distribution, which 

is necessary for the Monte-Carlo approximation to 

function well. A projected stochastic gradient 

technique [9] can be used as an alternative approach to 

approximate the value function. The Markov Chain 

Monte Carlo method relies on a Poisson distribution of 

variables. In this study, the specific allocation of points 

remains unknown. Monte-Carlo is a more 

straightforward and simpler method to implement. One 

drawback is that it assumes that the data are 

independent. The choice of approximation method has 

an impact on the SHAP value itself, but it does not 

have any bearing on the validity of this research as it is 

unrelated to the objective. 

 

6.4. Point sampling  

For object recognition, a minimum of 512 points is 

sufficient, both for the model and for a human 

interpreter of the data. Reducing the number of 

sampling points also improves computational 

performance and lowers complexity. If an object has 

been segmented or is so large that it requires an 

increasing number of points to capture, sampling may 

become more difficult. However, this research finds 

that categorizing only one individual item at a time 

using instances of 512 points is adequate. 

 

6.5. Model choice  

The custom SHAP framework was specific to the 

PointNet model form Qi et al. [4] model was chosen 

based on its straightforwardness, ease of 

implementation, and lack of an ordered structure 

suitable for raw point cloud points. Alternative models 

might also be suitable. Adapting different models to 

the framework may require modifying the input 

transformation. After making these changes, a variety 

of models could potentially utilize this framework. 
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6.6. Bug fixes and other first time research problems.  

This study marks the first attempt to utilize SHAP in 

three dimensions, having previously restricted its use 

to text and images. Applying SHAP in this new way 

allows for higher dimensional and complex data to 

become interpretable. Tis framework allows for 

interpretability on the smallest scale of the data 

instance, allowing for the maximum interpretability of 

the model, the data, and the prediction. By 

understanding individual points contribution, the entire 

model is understood. Its real-world scenario would be 

for autonomous driving. Autonomous cars use LiDAR 

sensors to scan its surroundings and have a model 

decide if the car should stop or go. When the model 

decides to ignore a stop sign, debugging the model and 

data becomes a hassle. Applying this custom 

framework in such application allows for massive leap 

forwards for the interpretability and trust in 

autonomous driving. Truly this development marks a 

start of a new combined branch for both point clouds 

and XAI.  

Given the challenge of developing a self-contained 

explainer, it is reasonable to anticipate certain bugs and 

inefficiencies within the framework's code. 

Nevertheless, this serves as a promising starting point 

and might potentially lead to the development of a new 

field of explainers focused on point clouds and point 

cloud models in the future.  

7. CONCLUSION 

This study has effectively developed a tailored 

framework for explaining the inner workings of the 

machine learning model PointNet. In the context of 

point cloud data, SHAP values were utilized to analyse 

the weighted average marginal contribution of 

individual points in a certain prediction, resulting in the 

visualization presented in the results. This study's 

PointNet model, which explains various scatterplots, 

serves as an excellent candidate to test the SHAP 

framework. Custom code is developed by recognizing 

the PointNet classification model specifications as well 

as the fundamental principles of Shapley values in 

order to obtain a custom SHAP XAI model. When 

analyzing five different Monte Carlo sampled plots, 

increasing the sampling rate revealed that larger 

sample sizes result in a clearer result and a better 

explanation given a fixed data entry. and at a lesser 

resolution, four distinct occurrences of a chair are 

analyzed to provide valuable insights into the model's 

classification process, revealing the specific spots it 

relies on to produce chair classifications. The results 

clearly demonstrated the efficient utilization of SHAP 

values for point cloud data interpretation. 

Ultimately, this study effectively expanded the 

application of explainable artificial intelligence (XAI) 

to point cloud machine learning models by utilizing a 

customized SHAP design. The established framework 

and methodology form a strong basis for future efforts 

and contribute to the overarching objective of 

enhancing the transparency and interoperability of 

machine learning models. 
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