

University of Twente
Bachelor Creative Technology

Supervisor Faizan Ahmed

Critical Observer Bram Ton
2024

2024

SHAX-PC
Adapting XAI methodology SHAP for point cloud data

Marc F. Harinck University of Twente Point Cloud XAI

1

Abstract This research created a custom SHAP

framework designed to explain a PointNet model’s

prediction. By calculating the marginal contribution

of an individual point with respect to a coalition

towards the model’s prediction. Individual points’

SHAP value shows the level of contribution that

point has towards the classification of a PointNet

Model in the Model Net 10 dataset. This research

successfully implements the custom SHAP

framework and showcases which points contribute

to the classification of a chair.

1. ACKNOWLEDGEMENT

I want to thank my supervisor Dr. Faizan Ahmed for

lending me his trust, time and expertise during this

study. Faizan has guided me through this thesis and

allowed me to make this significant discovery and

introducing me to the world of data and XAI, a career

path I see myself taking in the future. A sense of pride

was felt during my presentation when Faizan said

"Until last week I wasn’t sure it was possible, now we

know it is. You did a good job".

I also want to thank Ronald Oosting for lending his

experiences, time and ears as I was able to use rubber

duck debugging of my work and results and ensuring

me to critique my own work and staying skeptical.

2. INTRODUCTION

It may seem counterintuitive to trust a prediction of a

machine learning model. These models are commonly

perceived as a ''black box'' system [1], as the absence

of decision-making explanations leads to a lack in

interpretability. Explainable AI (XAI) aims to clarify

the ''black box'' nature of machine learning models [2]

by incorporating transparency and interpretability into

the models. Explainable AI (XAI) refers to the capacity

of an artificial intelligence (AI) system or model to

offer clear and comprehensible justifications for its

choices [3]. The use of XAI for point cloud models is

advantageous due to their inherent complexity and

interpretability challenges [4]. Therefore, future studies

in XAI in this sector are highly recommended. An

example of social significance is the need for enhanced

transparency in autonomous driving. This safety-

critical application [5] needs comprehensive testing

and validation to instil trust.

This research specifically addresses explainable

artificial intelligence (XAI) techniques applied to point

cloud data structures. The XAI model employed is

Shapley Additive Explanations (SHAP), which has

been modified to accommodate the data structure of a

point cloud and the associated PointNet model. Which

classifies point clouds into categories based on the

given set of points. This study introduces a custom

Explainable Artificial Intelligence (XAI) framework

designed to explain the predictions made by the

PointNet model. This study primarily investigates the

following questions:

How to create a custom XAI framework which adapts

SHAP values to a PointNet model and point cloud data?

The first section discusses background research

addressing the concepts used in this research. The

second section addresses the methodology, which

explains the steps taken to achieve the result. The

following section analyzes the results obtained form the

methodology. The second to last and last sections are

the discussion and conclusion respectively. In these

sections the adequacy of the study and the results are

discussed followed by concluding remarks.

3. BACKGROUND RESEARCH

3.1. Related work

This section provides an overview of the relevant

research and is mostly based on two comprehensive

literature studies. The section serves as a concise

overview of the key subjects in XAI, providing reviews

instead of comprehensive coverage of all elements.

Adapting XAI methodology SHAP for point cloud data structures

Creative Technology, University of Twente

Marc F. Harinck, Bram Ton, and Faizan Ahmed

Marc F. Harinck University of Twente Point Cloud XAI

2

Alejandro et. al. [6] examines the principles of several

XAI models, such as Local Interpretable Model-

Agnostic Explanations (LIME), Deep Learning

Importance FeaTures (DeepLIFT), and SHAP. A wide

range of models can use LIME and SHAP as versatile

techniques. Tabular data types are frequently used for

these models. Conversely, DeepLIFT specifically

caters to natural language processing models, and

computer vision models requiring text and images data.

LIME works by picking a small part of the model and a

small part of the data and estimating them locally. By

changing the data sample, it finds out how each

characteristic affects the model subset, which leads to

specific explanations for individual events instead of

the whole model.

The DeepLIFT algorithm dissects a neural network's

output prediction for a given input by propagating the

influence of each neuron in the network backward to

each feature of the input [1]. By comparing the

activation levels of each neuron for the expected and

actual predictions, this method determines the

individual contribution of each feature to a prediction.

Grounded in the principles of cooperative game theory,

SHAP clarifies the extent to which a feature

contributes to a prediction based on cooperative game

theory principles. This is a mechanism for providing

explanations at a local level. Section 3 elaborates on

the expansion of SHAP.

All three XAI models operate on a per-instance basis,

focusing on individual data points rather than the entire

dataset as a whole. SHAP and LIME apply to any type

of model, whereas DeepLIFT is specifically designed

for deep neural networks.

In a separate study, Clement et. al. [7] have extended

Aljandro's et. Al. findings by exploring a broader range

of explainable artificial intelligence (XAI)

methodologies. The paper examines the concepts of

Anchors & LORE and Permutation Feature Importance

(PFI).

Anchors is an explainable artificial intelligence (XAI)

technique that works with IF-THEN statements that are

based on numerical ranges in the feature space and

don't depend on the model. A greedy beam search

algorithm achieves this. LORE is a model-agnostic tool

that uses a genetic algorithm to generate synthetic

neighbourhood data sets. It then trains a decision tree

classifier and derives decision rules from it.

Permutation Feature Importance (PFI) is a technique

that is independent of the model used and identifies

predictive features by altering feature values and

quantifying the effect on the model's prediction. When

a feature's modification significantly impacts the

model's performance, it is considered essential.

Both XAI approaches enhance the ability to provide

localized explanations for predictions and increase the

interpretability of any model, regardless of its prior

knowledge or assumptions.

3.2. Point cloud

A point cloud is a collection of individual data points

which are coordinates in a three-dimensional Euclidean

space [8] and stored as a unordered list. A Light

Detection and Ranging (LiDAR) scanner can capture

and analyze an item or environment to obtain a point

cloud. It generates a three-dimensional coordinate map

by producing pulses of infrared light and calculating

the time it takes for the light to bounce back [9]. One

major benefit of utilizing point clouds is the inclusion

of depth information. Advanced computer vision

systems can incorporate this information by integrating

data from several cameras [10]. This added complexity

is mitigated when using a single LiDAR scanner that

collects depth information. Decreasing the complexity

and processing required.

A point in a point cloud is obtained by sampling from a

finite three-dimensional Euclidean space ℝ3. A point

is represented by a tuple 𝑃𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) ∈ ℝ3, where

𝑥𝑖, 𝑦𝑖 , 𝑎𝑛𝑑 𝑧𝑖 are the values of the point’s coordinate a

Marc F. Harinck University of Twente Point Cloud XAI

3

point and point cloud can be plotted in a three-

dimensional Cartesian coordinate systems for

visualizations. Furthermore, a point can possess other

information, such as a label or colour value and lacks

any volume.

3.3. Machine learning with point clouds

This section provides an analysis of the application of

machine learning to point clouds, the specific model

utilized in this study, and the conceptual framework of

the model.

Comprehending point cloud data without machine

learning necessitates the expertise of skilled engineers

and the time-consuming process of manually capturing

and labelling data [9]. Machine learning has automated

the processing stage that involves point clouds. This

study primarily focuses on the PointNet model [4]

because of its ability to handle unordered data, such as

point clouds, without the need for a predefined

structure like voxels.

The PointNet model utilizes a Convolutional Neural

Network that emulates the cognitive processes of the

human brain. A Convolutional Neural Network (CNN)

specifically uses several interconnected layers to

process visual input like photos or videos.

Neural network-based image processing employs

filters at each layer to evaluate and extract distinctive

characteristics from pictures. A filter traverses the

picture, performing element-wise multiplication

between its values and the image's corresponding pixel

values at every position. This results in the creation of

a feature map. Subsequently, an activation function is

employed to inject non-linearity into the network.

Facilitating its ability to acquire more intricate

patterns. To enhance computational efficiency and

decrease the size of the feature map, pooling layers,

such as max pooling, are employed to aggregate the

values. The feature maps obtained are transformed into

a single-dimensional vector by flattening them. This

vector is then passed through fully connected layers

that carry out the final classification. The output layer

employs the softmax activation function to transform

class scores into probabilities, hence yielding the

ultimate classification outcome [4].

3.4. SHAP

The Shapley Additive eXplanations (SHAP)

methodology assists in understanding machine learning

models. Cooperative game theory's Shapley values

serve as the foundation for the concept. The Shapley

values, as described by Molnar [11], is “the weighted

average of a player’s marginal contributions to all

possible coalitions.” This section draws on Christoph

Molnar's book "Interpreting Machine Learning Models

With SHAP" [11] for its theories on SHAP and

Shapley values.

The Shapley value is a method of allocating rewards in

a coalition game where numerous players contribute to

an outcome, but not all players participate equally. The

Shapley values propose a method of distributing the

payoff in a coalition game based on the participants

weighted average marginal contributions.

Φ𝑗(N, 𝑣) =

∑
|𝑆|! (𝑁 − |𝑆| − 1)!

𝑁!
(𝑣(S ∪ {𝑗}) − 𝑣(𝑆))

𝑆⊆N\{j}

(1)

𝑗 = 𝑃𝑙𝑎𝑦𝑒𝑟 𝑖𝑛𝑑𝑒𝑥

𝑁 = Set of players with (n) 𝑝𝑙𝑎𝑦𝑒𝑟𝑠

𝑆 = 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑛𝑦 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟𝑠

Equation (1) gives the weighted marginal

contribution of a single player for all coalition games.

The equation contains three components.

1) The two terms 𝑣(S ∪ {𝑗}) and 𝑣(𝑆) represent

value functions of a collation including point j and the

value of the coalition excluding point j. Subtracting

them: 𝑣(S ∪ {𝑗}) − 𝑣(𝑆) gives the marginal

contribution of player j towards a coalition S.

2) The weight term
|𝑆|!(𝑁−|𝑆|−1)!

𝑁!
 determines the

weight of the marginal contribution as it accounts for

different coalition sizes.

3) The summation term ∑ ,𝑆⊆N\{j} sums over all

coalitions not containing the player of interest.

Marc F. Harinck University of Twente Point Cloud XAI

4

The marginal contribution provides a method for

determining the distribution of a reward based on the

individual contributions of players in a cooperative

game. The difference between Shapley values and

SHAP values is the inclusion of a machine learning

model for the SHAP framework, translating the

concepts of game theory to machine learning

prediction concepts.

Equation (2) is the marginal contribution of the

PointNet model and shows the contribution of point j

towards coalition S. The terms 𝑓 (𝑥𝑆∪j
(𝑖)

∪ 𝑋𝐶\𝑗) and

𝑓 (𝑥𝑆
(𝑖)

∪ 𝑋𝐶) represent the value functions of the

marginal contribution of point j towards coalition S and

the marginal contribution of coalition S without point j

respectively. 𝑥S∪j
(𝑖)

 and 𝑥𝑠
(𝑖)

 is the known feature (point)

value to the model and 𝑋𝐶 𝑎𝑛𝑑 𝑋𝑐\𝑗 are unknown

feature (point) values which are randomly distributed

according to distribution ℙ. .

 Terms ∫ 𝑑ℙ𝑋𝑐\𝑗
 𝑎𝑛𝑑 ∫ 𝑑ℙ𝑋𝑐

 are the integral taken

over the probability distribution ℙ. for unknown

features values 𝑋𝐶. Integrating over the distribution of a

random variable is known as marginalization [11].

Calculating the interval for each value of a feature

(point) is not possible for two primary reasons outlined

by Molnar [11]. Firstly, the overall number of features

in a model is excessively large since the number of

coalitions grows exponentially with the number of

features, namely 2𝑝.

The second major problem is that the feature

distributions are unknown, namely the distributions of

𝑃(𝑋𝑐\𝑗) and 𝑃(𝑋𝑐). The book [11] advocates for the

use of the Monte-Carlo approach to estimate the SHAP

value.

Various approximation approaches can be used for the

SHAP value function. Simon [12] describes a method

which uses a projected stochastic gradient algorithm to

estimate the SHAP values. The approach for

approximation is chosen to be the Monte-Carlo

approximation based on its ease of implementation and

its alignment with the theoretical framework proposed

by Molnar [11], yet Simon's method will be discussed

in section 6.3. The Monte Carlo approximation

operates by generating a substantial number of random

samples from a given dataset. As the number of

random samples increases, the average gradually

approaches the expected value of the distribution. The

background data utilized for sampling might consist of

the identical data employed for training or validating

the model. The Monte-Carlo approximation method

substitutes an integral calculation with a summation

and replaces the distribution P with data samples. The

equation for this approximation is as follows:

Equation (3) Is the marginal contribution of player j

towards coalition S approximated according to the

Monte-Carlo approximation. The Monte-Carlo

approximation is subject to over and under sampling

which is addressed when discussing the results.

(𝑣(S ∪ 𝑗) − 𝑣(𝑆)) ≈

1

𝑚
∑ [𝑓 (𝑥𝑆∪𝑗

(𝑖)
∪ 𝑋𝐶\𝑗

𝑘) − 𝑓 (𝑥𝑆
(𝑖)

∪ 𝑋𝐶
𝑘)]

𝑚

𝑘=1

(3)

𝑚 = 𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒

s

(𝑣(S ∪ {j}) − 𝑣(𝑆)) =

∫ 𝑓 (𝑥𝑆∪j
(𝑖)

∪ 𝑋𝐶\𝑗) 𝑑ℙ𝑋𝑐\𝑗
− ∫ 𝑓 (𝑥𝑆

(𝑖)
∪ 𝑋𝐶) 𝑑ℙ𝑋𝑐

(2)

Marc F. Harinck University of Twente Point Cloud XAI

5

4. METHODOLOGY

This section describes how to compute the SHAP value

using a custom framework. Figure 1 provides an

overview of the custom framework, which depicts the

study's flow. The discussion starts with the raw data

set, then moves on to the pre-processing stage, the

computation of Shapley values, the transformation of

inputs for the model, the calculation of SHAP values,

and a final transformation for the output plot.

4.1. Data Set

The research utilizes data obtained from the Princeton

ShapeNet ModelNet10 library [13], which consists of a

collection of 10 distinct man-made home objects,

including chairs, desks, and 8 other categories.

Figure 2 depicts a specific item with the item identifier

888, extracted from the library. The model's vertices

comprise 1479 points that make up the chair mesh.

Four pre-processing phases yield the final point cloud:

sampling, normalizing, rotating, and generating noise.

4.2. Pre-processing

The four pre-processing steps taken are sampling,

normalizing, rotating and inducing Gaussian noise.

4.2.1. Sampling

The mesh is uniformly sampled at 512 points across its

surfaces. We assign a weight to each surface

proportional to its size, ensuring that surfaces have

similar point densities. See Figure 3a.

4.2.2. Normalization

The sampled data points are normalized into a unit

sphere [4] to account for variations in scale among

different meshes. This normalization process ensures

consistency across all data instances of various sorts,

and by positioning the cloud in the centre, it facilitates

its rotation in the subsequent stage. See Figure 3b.

4.2.3. Rotating

The cloud is normalized and then randomly rotated

along the Z axis to ensure the rotational invariance of

each point cloud. The goal of this process is to create a

point cloud that is more realistic, akin to what a

LiDAR scanner would produce. See Figure 3c.

4.2.4. Induce noise

A Gaussian noise, characterized by a mean of 0 and a

standard deviation of 0.002 [4], is applied to the point

cloud. This stage mimics a LiDAR scan and is a more

realistic representation of real-world data, as real-world

data is noisy. See Figure 3d.

Figure 1, The pipeline integrates the custom SHAP framework for PointNet with point cloud data. The pipeline's key steps include pre-

processing, creating two lists of S and S with j, transforming these lists to align with the model's expectations, calculating the model's

marginal contribution, converting the SHAP value to colour, and finally plotting the results.

Figure 2, Raw point cloud data instance of

item 888 collected from the ModelNet10

folder of ShapeNet [13].

Marc F. Harinck University of Twente Point Cloud XAI

6

Figure 3 provides a graphic representation of all four

pre-processing phases. Qi et. al. [4], implemented these

procedures in their research to develop a robust model

for categorizing point clouds. This study employs the

same model previously trained by Qi [4]. Therefore, a

data instances is created to fit the SHAP framework

destined for PointNet. The instance undergoes the

same pre-processing procedures as the model's initial

training, helping the model's capacity to predict.

Figure 3, Four pre-processing steps to augment the point cloud. a

uniformly samples the points along the surfaces. b normalized the

cloud int the unit sphere. c randomly rotates the entire cloud around

the z axis. d induces gaussian noise to the point cloud.

4.3. SHAP values for point cloud

The calculation of the SHAP value for point clouds

involves two distinct algorithms. The first involves

iterating over all points in the point cloud and sampling

using the Monte-Carlo method. The second strategy

utilizes the prediction function of the PointNet model

to determine the marginal contribution. Figure 4 and

Figure 5 display the pseudo-code for separate

algorithms, with each step outlined in the subsequent

subsections.

4.3.1. Algorithm 1

Figure 4 uses the "Monte Carlo Estimation of Shapley

Values" algorithm to calculate the SHAP values for

each point in the point cloud data instance. The

function requires two parameters: point_cloud,

which is a tensor array representing a multi-

dimensional array of the point cloud, and

num_samples, which determines the number of

Monte-Carlo samples used for the estimation. The

function samples the data instance with 512 points,

resulting in a value of 512. The function assigns the

variable num_points a value equal to the number of

points in point_cloud. Additionally, the function

initializes the array shapley_values, setting all

elements to zero.

In point_cloud, the outer loop iterates over each

point j. The variable marginal_contributions

is initialized to record the marginal contributions of

point j across various permutations.

To perform Monte Carlo sampling, the inner loop

executes num_samples times for each point j. A

permutation perm of point indices is generated to

mimic different coalitions. The list subset is

initialized to temporarily hold points as they are

included based on the permutation parameter perm.

A separate loop is used to iterate over the permuted

indices perm. If the current index m equals j, the

subset should include point j. The variable

subset_with_j represents the subset that includes

point j, whereas the variable subset_tensor

represents the subset that does not include point j. The

value_function invokes Algorithm 2, which

transforms the subsets for the PointNet model and calls

the predict function.

Marc F. Harinck University of Twente Point Cloud XAI

7

Figure 4, Algorithm 1 which loops through all points in the point

cloud, adds them into two lists and calls the predict function of the

mode. With the predict value return from Algorithm 2 it calculates

the marginal contribution and stores the SHAP value of each point.

This marginal contribution is added to the

marginal_contributions list, and the loop is

terminated to begin the next sample. If the value of j is

not equal to the value of k, the current point is

transformed into a NumPy array and added to the

subset.

After evaluating all samples for point j, compute the

mean of the marginal contributions. The average value

for point j, calculated using SHAP, is placed in the

shapley_values array.

4.3.2. Algorithm 2

In figure 5, algorithm 2 takes subset_with_j and

subset_tensor from Algorithm 1 and uses the

predict function to compute the marginal contribution

of the two lists for each Monte-Carlo sample.

If the variable point_cloud (the two subset lists) is

a 2D array with a shape of (N, 3), it signifies that there

is a single point cloud consisting of N points, each

defined by 3 coordinates. The unsqueeze(0)

method converts the input into a PyTorch tensor and

includes a batch dimension. This operation produces a

tensor with a shape of (1, N, 3).

If the form of point_cloud is already three-

dimensional (B, N, 3), it indicates that there are B

batches of point clouds, each containing N points with

3 coordinates. This tensor is transformed straight into a

PyTorch tensor. If point_cloud contains

dimensions different than the anticipated ones, a value

error is raised to indicate the presence of unexpected

dimensions.

The reason for implementing error handling is for

troubleshooting and because PointNet requires the

input tensor shape to be (B, N, 3) for the model. For

individual data instances, the batch number is

consistently 1. Here, N has a value of 512. The tensor

shape is transposed to align with the input

specifications. PointNet requires the input tensor to

shape like (B, 3, N).

The transpose(1, 2) operation, swaps the final

two dimensions of a tensor. If the original form was (1,

N, 3), this produces a tensor with a shape of (1, 3, N).

Subsequently, using pointnet.eval(), the code

switches the PointNet model to evaluation mode. This

function deactivates specific layers, such as the

dropout layer unique to training and inference

processes.

The torch.no_grad() function avoids the

computation of gradients, which reduces memory

consumption and enhances inference performance. The

model then generates predictions using the received

subset_with_j and subset_tensor tensor

arrays. The results tensor comprises the unprocessed

predictions (logits) generated by the model. The

softmax function transforms the logits into

probabilities along the class dimension.

Finally, the code retrieves the highest probability from

the probability tensor and turns it into a Python float

using the .item() method. The function returns the

highest probability as its outcome.

Marc F. Harinck University of Twente Point Cloud XAI

8

Figure 5, Algorithm 2, transforms lists subset_with_j and

subset_tensor and runs it through the predict function of the model,

and returns the max probability used in Algorithm 1.

4.4. Final transform and plotting

Combining algorithms 1 and 2 results in a list named

"shapley_values," which holds the SHAP values

for each point in the point cloud. From the

"shapley_values" list, the minimum and

maximum are found, and using those extremes, a

colormap using Matplotlib maps all values to a colour

representation, resulting in Figure 6.

5. RESULTS

This section showcases the results obtained from the

methodology. The text discusses three distinct

outcomes, with the first being a graphical

representation that illustrates the SHAP value for the

given data instance. The second figure represents the

same data instance, but it uses different samples for the

Monte-Carlo approximation. The final graphic

showcases independent data instances sampled using

the same Monte-Carlo sample.

Figure 6 displays four distinct viewports of the

identical data instance. This instance corresponds to

item 888 and falls under the chair classification. This

point cloud consists of 512 points. Each point is

defined by its x, y, and z coordinates and colour value.

The x, y, and z information represent the point's

coordinates on the graph. The hue of each data point

corresponds to its SHAP value, with a higher value

indicating a greater contribution to the prediction and a

lower value indicating a lesser contribution. The colour

represents the conversion of the numerical SHAP value

into a corresponding colour value. The selected colour

range spans from yellow to red with yellow having

lesser importance towards the prediction and red

having increased importance towards the prediction.

The colour bar to the right of the four subplots displays

the numerical value of the SHAP value and its

corresponding colour. The Monte-Carlo approximation

contains 1024 steps. The points that are of great

significance and interest have an orange-red colour,

and fall within the uppermost region of the SHAP

value spectrum.

Figure 6 displays the SHAP values of 512 data points,

where the largest SHAP value is 0.0086 and the lowest

SHAP value is -0.001. Points with a positive SHAP

value indicate that they provide a positive contribution

to the prediction when compared to the other points in

the instance. Points with a SHAP value equal to zero

have no influence on the model's prediction, and points

with a negative SHAP value have a negative

contribution on the prediction.

Figure 6 has Monte-Carlo sampling of 512 steps. The

accuracy of this sample size increases as more steps are

used to approximate. The approximation converges

towards the true function when the number of steps

approaches infinity. Figure displays how increasing

the number of sampling steps affects the SHAP values.

Figure 6, Four subplots of a single data instance generated from

512 points with x, y, z, and SHAP value. Dark red colored points

have high model prediction contribution and light-yellow colored

points a low model prediction contribution.

Marc F. Harinck University of Twente Point Cloud XAI

9

Figure 7 exhibits five subplots, each with larger

number of steps and smaller step size. The subplots

one through five, arranged from left to right, have step

sizes of
1

512
,

1

1024
,

1

2048
,

1

4096
, 𝑎𝑛𝑑

1

8192
, respectively.

Notably as the number of steps grows and the step size

decreases. The distribution of SHAP values becomes

narrower, resulting in a decrease in the extremity of the

SHAP values for both negative and positive SHAP

values. There is also an increasing relative proportion

of points with higher SHAP values as the number of

steps increases. Another finding is the emergence of

clusters, where all surrounding points within the cluster

are dark red. The final key observation is that each

subplot identifies different points to be important,

rather than having commonality across subplots for

important points.

Once we reach a specific sampling threshold, further

sampling becomes redundant, merely increasing

computational power and complexity without

significantly affecting the conclusion. The choice

between attaining precise results through a greater

number of steps or emphasizing efficiency varies based

on the application. Section 6.1 discusses the adequacy

of Figure 7's results.

Further analysis of the custom SHAP framework is

tested by subjecting it to various point clouds and

asking it to predict and explain why it believes each

point cloud to be a chair. Figure 8 demonstrates this.

Figure 8 exhibits four unique chair representations,

each composed of 512 points. A Monte Carlo sampling

Figure 7, Five subplots representing various Monte-Carlo approximation samplings at varying step sizes. From

left to right, the number of steps increases, and the size of each step decreases. All subplots depict the same data

instance.

Figure 8, Four different data instances of classification chair, all sampled at 512 points and 512 Monte-Carlo

steps

Marc F. Harinck University of Twente Point Cloud XAI

10

technique with 512 samples was used to obtain the

points. The SHAP values provide insights into the

unique characteristics of each chair. In the second

subplot, the points located at the top of the backrest

primarily contribute to the prediction. In the third case,

the legs and armrests significantly influence the

outcome, as they display shades of red. For the same

reasons mentioned above, the legs play a crucial role as

the primary contributing element in the fourth case.

The custom framework has successfully shown why

different point clouds are classified as chairs, each with

its own set of characteristics. Moreover, the framework

elucidates the process of classifying each data instance

as a chair.

6. DISCUSSION

6.1. Different sizes of Monte Carlo

By increasing the number of Monte Carlo samples, the

subplots in Figure 7 became more comprehensible. The

goal of this study is to provide a thorough explanation

of the model's prediction. The initial sample size of

1024 steps is not considered comprehensive. However,

these crucial aspects become more evident as the

sample size increases. The significance of the model's

key principles becomes much more evident. At 512

points, the model took around 2 hours to complete

4096 steps of approximation. 4096 steps can

adequately analyse a point cloud with 512 points,

providing a comprehensive understanding of the

PointNet model and this point cloud. As the number of

points in the point cloud increases, further

investigation may indicate the necessity of a higher

sample rate. Future studies can explore this aspect. The

same principle applies to determining the threshold for

sampling.

6.2. Different chairs

The sampling rate for Figure 8 is 512 steps. These

subplots don't emphasize an adequate explanation, as

they require a larger sample size. However, the figure

does provide insight into cluster formation. Despite the

reduced sample size, the cluster formation and

increasing step numbers in Figure 7 allow us to

approximate the appearance of each instance in Figure

8. Nevertheless, the SHAP framework in these 512

samples clarifies this point cloud's classification.

6.3. The choice between Monte-Carlo and Markov

Chain Monte-Carlo

During the course of this research, The Monte-Carlo

approximation method is employed to estimate the

value function. This approach is employed based on

the premise that the points collected during pre-

processing follow a random normal distribution, which

is necessary for the Monte-Carlo approximation to

function well. A projected stochastic gradient

technique [9] can be used as an alternative approach to

approximate the value function. The Markov Chain

Monte Carlo method relies on a Poisson distribution of

variables. In this study, the specific allocation of points

remains unknown. Monte-Carlo is a more

straightforward and simpler method to implement. One

drawback is that it assumes that the data are

independent. The choice of approximation method has

an impact on the SHAP value itself, but it does not

have any bearing on the validity of this research as it is

unrelated to the objective.

6.4. Point sampling

For object recognition, a minimum of 512 points is

sufficient, both for the model and for a human

interpreter of the data. Reducing the number of

sampling points also improves computational

performance and lowers complexity. If an object has

been segmented or is so large that it requires an

increasing number of points to capture, sampling may

become more difficult. However, this research finds

that categorizing only one individual item at a time

using instances of 512 points is adequate.

6.5. Model choice

The custom SHAP framework was specific to the

PointNet model form Qi et al. [4] model was chosen

based on its straightforwardness, ease of

implementation, and lack of an ordered structure

suitable for raw point cloud points. Alternative models

might also be suitable. Adapting different models to

the framework may require modifying the input

transformation. After making these changes, a variety

of models could potentially utilize this framework.

Marc F. Harinck University of Twente Point Cloud XAI

11

6.6. Bug fixes and other first time research problems.

This study marks the first attempt to utilize SHAP in

three dimensions, having previously restricted its use

to text and images. Applying SHAP in this new way

allows for higher dimensional and complex data to

become interpretable. Tis framework allows for

interpretability on the smallest scale of the data

instance, allowing for the maximum interpretability of

the model, the data, and the prediction. By

understanding individual points contribution, the entire

model is understood. Its real-world scenario would be

for autonomous driving. Autonomous cars use LiDAR

sensors to scan its surroundings and have a model

decide if the car should stop or go. When the model

decides to ignore a stop sign, debugging the model and

data becomes a hassle. Applying this custom

framework in such application allows for massive leap

forwards for the interpretability and trust in

autonomous driving. Truly this development marks a

start of a new combined branch for both point clouds

and XAI.

Given the challenge of developing a self-contained

explainer, it is reasonable to anticipate certain bugs and

inefficiencies within the framework's code.

Nevertheless, this serves as a promising starting point

and might potentially lead to the development of a new

field of explainers focused on point clouds and point

cloud models in the future.

7. CONCLUSION

This study has effectively developed a tailored

framework for explaining the inner workings of the

machine learning model PointNet. In the context of

point cloud data, SHAP values were utilized to analyse

the weighted average marginal contribution of

individual points in a certain prediction, resulting in the

visualization presented in the results. This study's

PointNet model, which explains various scatterplots,

serves as an excellent candidate to test the SHAP

framework. Custom code is developed by recognizing

the PointNet classification model specifications as well

as the fundamental principles of Shapley values in

order to obtain a custom SHAP XAI model. When

analyzing five different Monte Carlo sampled plots,

increasing the sampling rate revealed that larger

sample sizes result in a clearer result and a better

explanation given a fixed data entry. and at a lesser

resolution, four distinct occurrences of a chair are

analyzed to provide valuable insights into the model's

classification process, revealing the specific spots it

relies on to produce chair classifications. The results

clearly demonstrated the efficient utilization of SHAP

values for point cloud data interpretation.

Ultimately, this study effectively expanded the

application of explainable artificial intelligence (XAI)

to point cloud machine learning models by utilizing a

customized SHAP design. The established framework

and methodology form a strong basis for future efforts

and contribute to the overarching objective of

enhancing the transparency and interoperability of

machine learning models.

8. Bibliography

[

1]

A. Shrikumar, P. Greenside, A.

Shcherbina, and A. Kundaje, ‘Not Just a

Black Box: Learning Important Features

Through Propagating Activation Differences’,

arXiv [cs.LG]. 2017.

[

2]

M. T. Ribeiro, S. Singh, and C.

Guestrin, ‘“Why Should I Trust You?”:

Explaining the Predictions of Any Classifier’,

arXiv [cs.LG]. 2016.

[

3]

X. A. I. Foundation, ‘What is XAI?’

2023.

[

4]

C. R. Qi, H. Su, K. Mo, and L. J.

Guibas, ‘PointNet: Deep Learning on Point

Sets for 3D Classification and Segmentation’,

arXiv [cs.CV]. 2017.

[

5]

X. Chen, H. Ma, J. Wan, B. Li, and T.

Xia, ‘Multi-View 3D Object Detection

Network for Autonomous Driving’, arXiv

[cs.CV]. 2017.

[

6]

A. B. Arrieta et al., ‘Explainable

Artificial Intelligence (XAI): Concepts,

Taxonomies, Opportunities and Challenges

toward Responsible AI’, arXiv [cs.AI]. 2019.

[

7]

T. Clement, N. Kemmerzell, M.

Abdelaal, and M. Amberg, ‘XAIR: A

Systematic Metareview of Explainable AI

(XAI) Aligned to the Software Development

Process’, Machine Learning and Knowledge

Extraction, vol. 5, no. 1, pp. 78–108, 2023.

[W. Lihua and K.-H. Jo, ‘Fully

Marc F. Harinck University of Twente Point Cloud XAI

12

8] Convolutional Neural Networks for 3D

Vehicle Detection Based on Point Clouds’, 07

2019, pp. 592–601.

[

9]

A. Conner-Simons, ‘Deep learning

with point clouds’. 2019.

[

10]

J. Xu et al., ‘Multi-Camera

Collaborative Depth Prediction via Consistent

Structure Estimation’, in Proceedings of the

30th ACM International Conference on

Multimedia, 2022.

[

11]

C. Molnar, Interpreting Machine

Learning Models With SHAP: A Guide With

Python Examples And Theory On Shapley

Values. Independently published, 2023.

[

12]

Z. Wu et al., ‘3D ShapeNets: A Deep

Representation for Volumetric Shapes’, arXiv

[cs.CV]. 2015.

