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1 Introduction
Human pose estimation, a fundamental problem in computer vision, has seen remarkable advancements in recent
years, primarily driven by deep learning techniques. As these models have grown in complexity and accuracy,
they have also become increasingly computationally expensive, presenting challenges for real-world applications,
especially on resource-constrained devices. This paper addresses the crucial need for optimizing deep learning
models in pose estimation, focusing on the balance between model performance and computational efficiency.

The field of pose estimation has evolved from early approaches using pictorial structure models to sophisticated
deep learning architectures. Convolutional Neural Networks (CNNs) have been at the forefront of this revolution,
with landmark models such as DeepPose [12], Stacked Hourglass Networks [8], and High-Resolution Networks
(HRNet) [11] pushing the boundaries of accuracy. However, these advancements often come at the cost of increased
model size and computational complexity. More recently, Transformer-based architectures have emerged as a
promising direction in pose estimation. Models like TransPose [16] have demonstrated competitive performance
while using fewer parameters compared to traditional CNN-based approaches. TransPose combines the strengths
of CNNs for feature extraction with the global context modeling capabilities of Transformers, offering a new
paradigm in efficient pose estimation. Despite these innovations, there remains a significant challenge in deploying
state-of-the-art pose estimation models in real-world scenarios, particularly on edge devices or in applications
requiring real-time performance. The self-attention mechanism in Transformers, while powerful, introduces
its own computational bottlenecks, especially for larger input sizes. This research focuses on optimizing the
TransPose-R model, a variant of the TransPose architecture, with the primary goal of reducing model size while
maintaining acceptable performance. The Network Slimming technique is used for pruning convolutional layers
of the model.
By applying this optimization technique, we aim to create a more efficient pose estimation model that can

be deployed in resource-constrained environments without significantly compromising accuracy. Our work
contributes to the ongoing effort in the field to develop models that are not only accurate but also computationally
efficient and suitable for real-time applications. The rest of this paper is organized as follows: Section 2 provides an
overview of related work in pose estimation andmodel optimization techniques. Section 3 details our methodology,
including the modifications made to the TransPose-R architecture and the application of pruning techniques.
Section 4 presents our experimental results, followed by an analysis in Section 5. Finally, we conclude our findings
and discuss future directions in Section 6.
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The code associated with this work can be found at https://github.com/abhishek1ahuja/TransPose.

2 Related Work

2.1 Human Pose Estimation
Human pose estimation, a fundamental problem in computer vision, involves detecting and localizing human
body parts or joints in images or videos. This field has seen significant advancements in recent years, primarily
due to the advent of deep learning techniques.

Early approaches to pose estimation relied on pictorial structure models and deformable part models. However,
the introduction of deep learning methods, particularly Convolutional Neural Networks (CNNs), has dramatically
improved the accuracy and robustness of pose estimation systems.

One of the pioneering works in deep learning-based pose estimation was DeepPose[12]. This method directly
regressed joint coordinates using a cascade of CNNs. However, subsequent research showed that heatmap-
based approaches, which predict a probability distribution for each joint, generally outperform direct regression
methods.
A significant milestone in the field was the introduction of the Stacked Hourglass Network[8]. This architec-

ture, characterized by repeated bottom-up and top-down processing with skip connections, allowed for better
integration of features across scales. The Stacked Hourglass Network and its variants have been widely adopted
and serve as the backbone for many state-of-the-art pose estimation models.

Another influential approach is the Convolutional Pose Machines (CPM) [14]. CPM uses a sequential prediction
framework to iteratively refine pose estimates, demonstrating the importance of large receptive fields in capturing
long-range dependencies between body parts.

More recent advancements include theHigh-ResolutionNetwork (HRNet) [11], whichmaintains high-resolution
representations throughout the network, leading to more precise keypoint localization. HRNet has achieved
state-of-the-art performance on various pose estimation benchmarks.
Lightweight architectures like MobileNetV2 [10] and ShuffleNet [17] have been adapted for pose estimation

tasks. For instance, [15] proposed Simple Baselines for Human Pose Estimation and Tracking, which achieved
competitive results with a relatively simple and efficient architecture based on ResNet [2].

Recent work has also explored the use of Transformers in pose estimation. Tokenpose [6] and PRTR [5] have
shown promising results by leveraging the global context modeling capabilities of Transformer architectures [13].
A significant recent development in the field is the introduction of Transformer-based architectures for pose

estimation. The TransPose model [16], represents a paradigm shift in this direction. TransPose combines the
strengths of CNNs for feature extraction with the global context modeling capabilities of Transformers. The
TransPose architecture consists of three main components:

1. A CNN backbone for low-level feature extraction
2. A Transformer encoder to capture long-range spatial interactions
3. A prediction head to generate keypoint heatmaps

TransPose has demonstrated competitive performance compared to state-of-the-art CNN-based models while
using fewer parameters and achieving faster inference speeds. The model’s ability to explicitly capture global
dependencies through self-attention mechanisms has proven particularly effective for pose estimation tasks.

However, despite its efficiency gains compared to some larger CNN models, TransPose still presents opportu-
nities for further optimization. The self-attention mechanism in Transformers has a quadratic computational
complexity with respect to the input size, which can be a bottleneck for real-time applications or deployment on
edge devices.
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The field continues to evolve, with current research focusing on multi-person pose estimation, 3D pose
estimation, and pose estimation in challenging scenarios such as occlusions and unusual poses. Furthermore,
there is an increasing emphasis on developing models that are not only accurate but also computationally efficient
and suitable for real-time applications.

Despite these advancements, there remains a crucial trade-off between model performance and computational
efficiency. As pose estimation models become more accurate, they often grow in size and complexity, making
them challenging to deploy in real-world applications with limited computational resources. This highlights the
need for optimization techniques that can maintain high accuracy while reducing model size and computational
requirements.
Recent research has focused on various optimization techniques to address this challenge. These include

network pruning, knowledge distillation, and efficient attention mechanisms. For instance, DynamicViT [9]
introduced a method to dynamically prune redundant tokens in Vision Transformers, which could potentially be
adapted for pose estimation models like TransPose.
In this context, optimizing Transformer-based models like TransPose represents a promising direction for

future research, potentially leading to more efficient and deployable pose estimation systems while maintaining
high accuracy.

Variants TransPose-R and TransPose-H have performed at par with SimpleBaseline and HRNet, while having
85% and 72% reduction in model size compared to these models. This paper aims to further the efficiency of
TransPose-R.

2.2 Network Pruning
As deep learning models grow in size and complexity, there’s an increasing need for methods to reduce their
computational requirements without significantly compromising performance. Pruning techniques have emerged
as effective approaches to achieve this goal. We focus on the Network Slimming technique for convolutional
layers.

2.2.1 Network Slimming. Pruning techniques for convolutional neural networks (CNNs) have been extensively
studied due to the widespread use of CNNs in various computer vision tasks. Early approaches to CNN pruning
focused on removing individual weights or neurons based on certain criteria.
[1] introduced a method of iterative pruning and fine-tuning, where weights below a certain threshold are

pruned, followed by retraining to recover accuracy. This approach, while effective, often results in unstructured
sparsity, which is challenging to accelerate on common hardware.
To address this, structured pruning methods were developed. [4] proposed pruning entire filters in CNNs,

demonstrating that some filters are redundant and can be removed with minimal impact on performance. This
approach leads to direct reductions in computational costs and model size.

Channel pruning is another structured pruning technique that has gained popularity. [3] introduced a method
to prune channels by minimizing the reconstruction error of feature maps. This approach maintains the original
network structure while reducing its width.
Network Slimming [7] represents a significant advancement in structured pruning techniques. This method

introduces scaling factors in batch normalization layers and imposes L1 regularization on these factors during
training. The scaling factors then serve as indicators of the importance of corresponding channels. Channels
with small scaling factors are pruned, resulting in a slimmer network.

Network Slimming offers several advantages:
1. It automatically identifies and removes redundant channels during training.

2. It results in a compact model with reduced computational cost.
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3. The pruned model can be easily fine-tuned to recover accuracy.

This technique has proven effective for various CNN architectures and has been widely adopted in the field of
model compression.

3 Methodology
This research focuses on optimizing the TransPose-R model for human pose estimation, with the primary goal of
reducing model size while maintaining acceptable performance. The optimization process involves applying the
Network Slimming technique for convolutional layers in the backbone of the model.

3.1 ResearchQuestions
With the motivations elucidated above we establish the following research questions:

What are the effects of applying Network Slimming to transformer-based pose estimation models, specifically
TransPose-R, on model compression and accuracy?

3.2 Model Architecture
The base model for this study is TransPose-R, a variant of the TransPose architecture that combines convolutional
neural networks (CNNs) and transformer layers for efficient pose estimation. The model consists of a ResNet
CNN backbone for feature extraction, followed by transformer layers for capturing global dependencies, and a
prediction head for generating keypoint heatmaps.
The backbone of the TransPose-R model uses selected initial layers from ResNet-50 [2].

3.3 Network Slimming for Convolutional Layers
3.3.1 Channel Selection Layers. To facilitate the pruning process, a key modification was made to the original
TransPose-R architecture - adding channel selection layers. A channel selection layer was added after the first
convolution-batch normalization (Conv-BN) pair in each bottleneck block of the CNN backbone. As in [7], channel
selection layers are used to "soft-prune" the first convolutional layer of a bottleneck layer, in order to preserve the
structural integrity of the network, since residual connections will not be valid if the first layer of a subsequent
block is not the same shape as the inputs to the block.
After the initial experiments, it was realized that Channel selection layers were not applied correctly and

thus in further experiments Channel selection layers were not used anymore. This has enabled overcoming the
"soft-pruning" and led to greater reduction in model parameters from the pruning action.

3.3.2 Pruning conditions. The last layer of each bottleneck block is exempt from pruning to maintain structural
consistency, as the number of output channels in this layer must match the number of input channels in the
subsequent layer. Only the BN values from the bottleneck layers are considered in this scoring process, excluding
those from downsample layers and other parts of the model.

Pruning Threshold: A rule was implemented to dynamically adjust the pruning criteria. When the number of
channels in a layer becomes too low after pruning, that layer is excluded from further pruning rounds to prevent
losing all channels in any layer. This can be seen from Table 1, where some layers reach a low channel number in
early rounds, and then then the channel numbers remain fixed. In all experiments, a threshold of 10 channels
was set. When number of channels are below this, then a layer is no longer considered for pruning.

, Vol. 1, No. 1, Article . Publication date: August 2024.



Optimising Deep Learning Models for Pose Estimation • 5

(a) Backbone Architecture
(b) A single bottleneck layer, *inner
downsample layer is optional

Fig. 1. Architecture of Transpose backbone

Table 1. Number of channels in convolution layers over multiple rounds of pruning. This corresponds to Experiment 1

Round layer 1 layer 2 layer 3 4 5 6 7 8 9 10 11 12 13 14 ignore layers

Original 64 64 64 64 64 64 128 128 128 128 128 128 128 128 -
1 33 31 39 52 50 62 117 119 38 95 93 113 90 123 -
2 32 22 31 35 36 59 105 98 17 55 61 89 57 94 -
3 13 16 12 29 19 59 81 88 1 51 22 87 26 89 -
4 12 13 5 21 9 56 49 76 1 39 8 66 8 82 9
5 1 12 5 17 9 50 30 54 1 30 8 44 8 72 3,5,9,11,13
6 1 9 5 11 9 44 17 38 1 23 8 31 8 58 1,3,5,9,11,13
7 1 9 5 7 9 35 11 32 1 20 8 17 8 44 1,2,3,4,5,9,11,13
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Fig. 2. Number of channels over multiple rounds of pruning. Each line in this chart shows the number of channels in the
convolutional layers eligible for pruning at a certain round of the iterative pruning process. The blue line shows the number
of channels in the original model backbone. Each line below it represents the number of channels at a further round of
pruning. This figure corresponds to Experiment 1.

3.3.3 Importance Scoring. For the layers that are eligible for pruning, the scaling factors (𝛾 ) of the batch nor-
malization layers are used as indicators of channel importance. Based on the importance scores, channels are
selected for pruning.

Before pruning, the network is trained with a modified loss function. An L1-regularization term is added to the
weights in the network corresponding to the scaling factors, which primes the scaling factors for pruning. We
shall refer to this as the ’scaling’ step of the pruning process.
A pruning ratio determines the proportion of channels to be pruned in each round. Pruning ratios of 0.1 and

0.25 were used in different experiments. A pruning ratio of 0.1 would mean that the 10% lowest magnitude
scaling factors would be marked for removal from the network along with their corresponding convolution layer
channels.

3.3.4 Pruning. The model is resized based on the selected channels from the previous step, and the filtered
weights are retained in the pruned model. A new model is created with the updated channel parameters for the
pruned layers, and the corresponding weights are copied to the new model. For all layers of the model which are
not affected by pruning, their weights are retained as is.

3.3.5 Fine-tuning. After each pruning round, the model is fine-tuned to recover accuracy lost due to pruning.
Fine-tuning involves training the pruned model with the prepared dataset. The number of epochs is taken as a
fraction of steps used for training the original TransPose model. In some experiments, the pruned model has been
trained with the 10% subset dataset for finetuning. In later experiments, the full dataset was used to determine
any missed potential from using a smaller subset of data for finetuning.

This process is performed iteratively, with multiple rounds of pruning and fine-tuning to gradually compress
the model while maintaining performance.

, Vol. 1, No. 1, Article . Publication date: August 2024.



Optimising Deep Learning Models for Pose Estimation • 7

3.4 Pruning strategies
Multiple batches of experiments were carried out with two different pruning ratios (0.1 and 0.25) for each round
of pruning. In experiments 3,4,5 and 6, before pruning, the model was trained with an added regularisation term
to the loss function, for adjusting the scaling factors for pruning. In experiment 1 and 2, this step was not done.
These strategies allow for a comparison between more gradual and more aggressive pruning approaches, in

combination with other varying configurations, providing insights into the trade-offs between compression rate
and model performance.

Fig. 3. Evaluation metrics over 6 rounds of pruning and finetuning. This chart shows the learning metrics during pruning
and finetuning. The top chart shows training and validation accuracy, the bottom one shows training and validation loss. For
representation purposes we show only the first 6 of 16 pruning rounds of experiment 2. Each finetuning step is for 12 epochs,
and is punctuated by a pruning step.

3.5 Dataset and Training
The model optimization process uses a subset of the COCO dataset for training and evaluation:

Training Data: The model optimisation process uses either of two datasets for training. A subset comprising
10% of the COCO training images, along with the corresponding pose estimation ground truth annotations
provided by the TransPose project. In some experiments, the full dataset is used for training.
Validation Data: The COCO validation dataset is used to evaluate the model’s performance after each round of
pruning and fine-tuning.
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Table 2. Configurations for different experiments

Exp # Scaling dataset Scaling steps Pruning Ratio Rounds Finetuning Dataset Finetuning steps

1 - - 0.25 7 10% COCO subset 20 epochs
2 - - 0.1 16 10% COCO subset 12 epochs

3 10% COCO subset 3 epochs 0.25 6 10% COCO subset 12 epochs
4 10% COCO subset 3 epochs 0.1 6 10% COCO subset 12 epochs

5 10% COCO subset 10 epochs 0.25 9 COCO full dataset 8 epochs
6 10% COCO subset 10 epochs 0.1 11 COCO full dataset 8 epochs

The earlier experiments were carried out with a subset of the training set, because of time constraints. The
later experiments were finetuned using the full dataset to compare the difference in performance gain and to add
greater validity to the study.

3.6 Evaluation Metrics
To assess the effectiveness of the pruning techniques and the overall model optimization, the following metrics
are used:
Validation Accuracy: This metric measures the model’s performance on the pose estimation task using the full
COCO validation dataset.
Compression Ratio: The compression ratio for pruned models is calculated by the following formula.

Compression Ratio = 1 − Parameter Count of Pruned Model
Parameter Count of Original Model

(1)

This metric quantifies the extent of model size reduction.
These metrics allow for a multi-faceted evaluation of the trade-offs between model compression and perfor-

mance.
This methodology provides a comprehensive approach to optimizing the TransPose-R model, focusing on

reducing model size while maintaining acceptable performance for the pose estimation task.

4 Experiments
This section presents a series of experiments designed to evaluate the effectiveness of Network Slimming on the
TransPose-R model for human pose estimation. We conducted six distinct experiments, each exploring different
aspects of the pruning process, including pruning ratios, the impact of the scaling step, and the effect of dataset
size on fine-tuning. Our goal was to assess the trade-off between model compression and performance accuracy,
providing insights into the optimal strategies for reducing model size while maintaining acceptable accuracy.
The following subsections detail our experimental setup, the metrics used for evaluation, and a summary of our
results.

4.1 Experimental Setup
We used the TransPose-R-A4 model as our baseline, with an input size of 256×192 pixels. The model was trained
and evaluated on the COCO dataset, using either the full dataset or a subset of 10% of the training images for
faster experimentation cycles, and the full validation dataset for performance evaluation.
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Six pruning strategies were explored as described in 3.4 and Table2. Experiments 1 and 2 were carried out
without the scaling step. Experiment 1 involved 7 rounds of iterative pruning and finetuning, with a pruning ratio
of 0.25. Whereas Experiment 2 involved 16 rounds of iterative pruning and finetuning, with a pruning ratio of 0.1.
The next sets of experiments also have pruning ratios of 0.1 and 0.25, but with added configuration changes.

In Experiments 3 and 4, the scaling step is included before each round of pruning. Thus one round of pruning
involves first training for the scaling factors, then pruning a specified portion of channels, and finally finetuning
the model. Additionally, channel selection layers were not used in the model, in these experiments. This also
increased the per-round reduction in model size for a given pruning ratio. The training steps in the experiments
thus far all involve using the 10% subset of the COCO dataset.

In Experiments 5 and 6, the configurations of Experiment 3 and 4 are repeated, but in this case, the full COCO
dataset is used for finetuning the model, while for scaling steps, the earlier 10% subset is used. This choice was
made as it was observed that the model shows a greater recovery of accuracy when finetuned with the full dataset
than with a subset.

4.2 Performance Metrics
Table 3 summarizes the results of our experiments:

With the baseline TransPose-R-A4 model having a validation acuracy of 0.86 with 5.99M parameters, the
modified models show a reduction in size but accompanied with a drop in performance in all cases. In some
experiments the drop in accuracy is as little as 0.03, while in others the loss in performance is much greater.
It can be realised that the scaling step is crucial to the pruning process, as we see the loss in performance in

experiments 1 and 2 makes the model much less useful, with validation accuracy going as low as 0.49 and 0.59,
and AP values as low as 0.31 and 0.20. In early experiments, this crucial step was erroneously skipped, and thus
the experiments may be considered invalid. However the results are reproduced here to emphasise the effect of
the lack of the scaling step before pruning.
It can also be seen across all experiments that pruning with a smaller pruning ratio leads to a more stable

model, with lower losses in performance, while it takes more steps to reach a smaller model size. And with a
larger pruning ratio, each step made in reducing model size is larger, but with a corresponding larger dip in
performance.
Using the full dataset for retraining has also shown significant merit. The loss in validation accuracy for

experiments 3 and 4, which used the 10% subset of COCO for finetuning, have shown twice as much loss in
performance as compared to Experiments 5 and 6.
The usage of channel selection layers in Experiments 1 and 2, can be seen in the level of model compression

they have achieved. Channel selection layers were wrongly applied in Experiments 1 and 2. These are applicable
when a batch normalisation layer corresponding to a convolution layer is present not in the same block of the
model, but in a subsequent block. In such a case, channel selection layers are useful for logically pruning the
last convolutional layer of blocks. Thus Experiment 3 onwards, Channel selection layers were not used, and this
results in greater compression ratio in fewer rounds. Application of channel selection layers requires modification
of the block structure of the model, and this can be considered in future research.
These experiments demonstrate that our Network Slimming approach can effectively reduce the size of the

TransPose-R model while maintaining performance up to a certain level of compression. The conservative
approach proved more successful in balancing compression and accuracy, while the aggressive approach achieved
similar size reduction at the cost of more significant performance degradation.
The model derived using experiment 6 is the most promising model based on performance, as it has lowest

drop in validation accuracy, it achieves 83% accuracy with 17% fewer parameters than the original model. The
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Table 3. Results of 6 experiments with various configurations.

Exp # scaling
step

Full
dataset

Pruning
Ratio

# of
Rounds

AP AR Valid. acc. Params

Original - ✓ - - 0.75 0.78 0.86 5.99M

1 - - 0.25 7 0.31 0.37 0.49 5.05M (↓15.5%)
2 - - 0.1 16 0.20 0.26 0.59 5.09M (↓14.9%)
3 ✓ - 0.25 6 0.51 0.55 0.72 4.82M (↓19.4%)
4 ✓ - 0.1 6 0.61 0.65 0.78 5.22M (↓12.8%)
5 ✓ ✓ 0.25 9 0.63 0.67 0.79 4.75M (↓20.6%)
6 ✓ ✓ 0.1 11 0.68 0.72 0.83 4.97M (↓17.0%)

model from experiment 5 has a compression ratio of 20.6%, and it’s accuracy has dropped to 0.79, 0.07 lower than
the original model.

Fig. 4. Performance relative to Compression ratio for all 6 experiments. Each line corresponds to a single experiment, and
each data point represents one round of pruning and finetuning. The numbers at the right end of each line show the number
of rounds of iterative pruning in the corresponding experiment.

In summary, our experiments demonstrate that Network Slimming can effectively reduce the size of the
TransPose-R model, achieving up to 20.6% parameter reduction. However, this compression comes with varying
degrees of performance degradation, highlighting the delicate balance between model size and accuracy. The
inclusion of the scaling step and the use of the full dataset for fine-tuning proved crucial in maintaining model
performance. Conservative pruning strategies (with a ratio of 0.1) showed more stable performance across
pruning rounds, while aggressive strategies (with a ratio of 0.25) achieved higher compression rates at the cost of
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more significant performance drops. The most promising result came from Experiment 6, which achieved 83%
accuracy with 17% fewer parameters than the original model. These findings provide valuable insights for future
optimization efforts and set the stage for further analysis in the subsequent sections.

5 Analysis
Our experiments with Network Slimming on the TransPose-R model have yielded several important insights into
the optimization of deep learning models for pose estimation. This section provides a detailed analysis of our
findings, focusing on the effectiveness of our approach, the trade-offs involved, and the implications for future
research.

5.1 Effectiveness of Network Slimming
The application of Network Slimming to the TransPose-R model demonstrated its potential for significant model
compression while maintaining performance up to a certain threshold:
1. Parameter Reduction: Across our experiments, we achieved parameter reductions ranging from 12.8% to

20.6%. The most successful compression was observed in Experiment 5, which reduced the model size from 5.99M
to 4.75M parameters (20.6% reduction) while maintaining a validation accuracy of 0.79, compared to the original
0.86.

2. Performance-Compression Trade-off: As expected, increased compression generally led to decreased perfor-
mance. However, the relationship was not linear. For instance, Experiment 6 achieved a 17% parameter reduction
with only a 0.03 drop in validation accuracy, suggesting that a significant portion of the pruned parameters were
indeed redundant.
3. Dataset Impact: Experiments 5 and 6, which used the full COCO dataset for fine-tuning, showed superior

performance retention compared to experiments using only a subset. This underscores the importance of
comprehensive fine-tuning data in recovering performance post-pruning.

5.2 Impact of Pruning Strategies
The comparison between aggressive (0.25 pruning ratio) and conservative (0.1 pruning ratio) approaches revealed:

1. Stability vs. Compression: Conservative pruning (Experiments 2, 4, and 6) generally led to more stable per-
formance across pruning rounds, while aggressive pruning (Experiments 1, 3, and 5) achieved higher compression
rates but with more significant performance drops.
2. Recovery Potential: Interestingly, models subjected to aggressive pruning showed a capacity for partial

recovery in later rounds, particularly when fine-tuned on the full dataset (Experiment 5). This suggests that the
network can adapt to significant structural changes given sufficient training data and time.
3. Optimal Pruning Schedule: The results indicate that a dynamic pruning schedule, possibly starting with

more aggressive pruning and becoming more conservative in later rounds, might yield optimal results.

5.3 Implications for Model Design or Pruning Strategy Design
Our findings have some implications for the design of efficient pose estimation models:

1. Pruning Strategy Optimization: The significant difference in outcomes between conservative and aggressive
pruning strategies highlights the need for careful tuning of pruning hyperparameters. Since we realise that small
pruning ratios are more stable and larger ones lead to faster pruning - we must design a pruning strategy that
shall make use of small as well as larger pruning ratios to achieve better results with fewer rounds of pruning
and thus lesser re-training time.

2. It may also be considered to use full dataset for finetuning, not for each finetuning round but perhaps every
4 rounds, for instance. This can be experimented to check if this is sufficient for performance recovery, and if
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so the finetuning process can be made more efficient, as the finetuning training can be shorter with a smaller
dataset.
3. Architectural Considerations: The varying pruning rates across different layers suggest that some parts of

the network are more critical than others. This insight could inform future architectural designs, potentially
leading to more efficient base models.

4. Balance of Techniques: While Network Slimming proved effective for convolutional layers, the gains can be
limited to the backbone of the model. Thus combining Network Slimming with other pruning techniques that
apply to the transformer component of the model can possibly yield better results.

5.4 Limitations and Future Directions
Our analysis also reveals some limitations and areas for future research:
1. Generalization: These experiments were conducted on a subset of the COCO dataset. Further testing on

full datasets and other pose estimation benchmarks would be necessary to confirm the generalizability of our
findings.
2. Long-term Stability: While we observed some recovery in performance over multiple pruning rounds, the

long-term stability of heavily pruned models remains an open question. Extended training and evaluation on
diverse datasets could provide insights into this aspect.

3. Hardware Considerations: While we focused on reducing parameter count, future work should also consider
the impact on inference speed and memory usage across different hardware platforms.
4. Combination with Transformer Pruning techniques: The next step in our research is to implement and

analyze the effect of combining Network Slimming with one or more pruning techniques that are specialised for
the transformer layers of the model.
In conclusion, our analysis demonstrates that Network Slimming is a promising approach for optimizing the

TransPose-R model, offering a viable path to creating more efficient pose estimation models. However, it also
highlights the complex interplay between model compression and performance, emphasizing the need for careful
balancing and potentially hybrid approaches in future optimizations.

6 Conclusion
This study set out to optimize the TransPose-R model for human pose estimation, with the primary goal of
reducing model size while maintaining acceptable performance. Our research focused on the application of
Network Slimming to the convolutional layers of the model, aiming to address the crucial need for efficient,
deployable pose estimation systems in resource-constrained environments.
Our key findings can be summarized as follows:
1. Effectiveness of Network Slimming: We successfully reduced the TransPose-R model size by up to 20.6%

(from 5.99M to 4.75M parameters) while maintaining a validation accuracy of 0.79, compared to the original 0.86.
This demonstrates the potential of Network Slimming for creating more efficient pose estimation models.

2. Trade-off Between Compression and Performance: We observed a clear but non-linear relationship between
model compression and performance. Conservative pruning strategies (0.1 pruning ratio) showed more stable
performance across pruning rounds, while aggressive strategies (0.25 pruning ratio) achieved higher compression
rates at the cost of more significant performance drops.

3. Adaptive Pruning Dynamics: Our experiments revealed varying levels of redundancy across different layers
of the network, with some layers more amenable to pruning than others. This suggests the potential for more
nuanced, layer-specific optimization approaches in future work.
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4. Dataset Impact: Using the full COCO dataset for fine-tuning showed superior performance retention
compared to using only a subset, underscoring the importance of comprehensive training data in recovering
performance post-pruning.

These findings contribute to the broader field of efficient deep learning for computer vision tasks, particularly in
the domain of human pose estimation. They demonstrate that careful application of pruning techniques can lead
to more efficient models without significant performance loss, potentially enabling the deployment of advanced
pose estimation systems on resource-constrained devices.

However, our work also highlights several areas for future research:
1. Generalization and Robustness: Further testing on other datasets and diverse pose estimation tasks is

necessary to confirm the generalizability of our findings and the robustness of the pruned models.
2. Investigation of pruning techniques specifically tailored for transformer layers to complement Network

Slimming.
3. Structural Constraints: Addressing the limitation of not being able to prune layers immediately before a

channel selection layer could lead to more comprehensive pruning strategies and potentially better compression-
performance trade-offs.
4. Hardware-Specific Optimization: Future research should consider hardware-specific optimizations to fully

leverage the reduced model size for improved inference speed across different platforms.
In conclusion, this study represents a significant step towards more efficient pose estimation models. By

demonstrating the effectiveness of Network Slimming on the TransPose-R architecture, we have opened up new
possibilities for deploying advanced pose estimation systems in resource-constrained environments. As the field
continues to evolve, the insights gained from this research will contribute to the development of increasingly
efficient and accurate pose estimation models, bringing us closer to ubiquitous, real-time human pose estimation
across a wide range of devices and applications. However, the challenge of maintaining high performance while
significantly reducing model size remains an open problem, inviting further innovation in model compression
techniques for pose estimation tasks.

1 I acknowledge the use of the AI language model Claude, developed by Anthropic, in the preparation of this
thesis. Claude was used as a writing assistant to help with proofreading, formatting suggestions, and feedback
about writing style. It was also used for interpreting and understanding code related to pruning and also helping
with debugging and simplifying the code for the project. While Claude provided valuable assistance, all final
decisions on content, analysis, and conclusions were made by me.

1Note on AI Assistance
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A Sparsity Ratio
Figure 5 represents the sparsity from Figure 4 but here it considers the sparsity of the backbone alone. This
indicates how much of the backbone weights are removed after the rounds of pruning in the 6 experiments. The
size of the backbone is 1.77M parameters, which is about 30% of the whole model parameters. So as you can see,
in experiment 5, from Figure 4 we understand that the model has 20% fewer parameters, from Figure 5 we see
that the backbone number of parameters have reduced by 70%.

Fig. 5. Performance relative to sparsity for 2 strategies of pruning (sparsity ratio relative to backbone weights only)
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