
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FOODGRAVITY: UNDERSTAND 
FOOD FLOWS USING CLASSIC 
GRAVITY MODEL AND 
EXPLAINABLE ARTIFICIAL 
INTELLIGENCE TECHNIQUES 

  

BELISE DUSABE 

July, 2024 

SUPERVISORS: 

Dr. Dou Yue 
Dr. Claudia Paris 
 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
  

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FOODGRAVITY: UNDERSTAND 
FOOD FLOWS USING CLASSIC 
GRAVITY MODEL AND 
EXPLAINABLE ARTIFICIAL 
INTELLIGENCE TECHNIQUES 

  

BELISE DUSABE 

Enschede, The Netherlands, JULY, 2024 

Thesis submitted to the Faculty of Geo-Information Science and Earth 

Observation of the University of Twente in partial fulfilment of the 

requirements for the degree of Master of Science in Geo-information 

Science and Earth Observation. 

Specialization: Geoinformatics 
 

 

SUPERVISORS: 

Dr. Dou Yue 

Dr. Claudia Paris 
 

 

THESIS ASSESSMENT BOARD: 

Dr. Ir.T.A. Groen 

Dr. Ziga Malek 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and 

Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the 

author, and do not necessarily represent those of the Faculty. 

 



i 

ABSTRACT 

Mapping food flows from production areas to consumption areas is essential and often challenging, 
especially at local scales (Moschitz & Frick, 2021). Knowing how food moves over space and time 
is crucial for policy-making to maintain food and nutrition security across scales. Nevertheless, 
there is a tendency to prioritize flows between countries at the global level i.e., Food and Agriculture 
Organization trade data (FAO, 2023a) whereas the internal food flows within a country are often 
neglected. This oversight can lead to less efficient spatial planning and agricultural interventions, 
particularly in less-developed areas where food and nutrition security remains a critical challenge. 
 
However, the food flow is a complex issue resulted from socio-ecological characteristics of both 
origin and destination areas, as well as the linkages in between. To untangle this complexity, this 
research combined concepts of classic gravity model with machine learning techniques, relying on 
Explainable Artificial Intelligence techniques (xAI) to enhance the transparency of the predictive 
models. The Irish potato was chosen as the focus crop to study its flow distribution among 30 
districts of Rwanda. Objectives included compiling a comprehensive database of socio-economic 
and environmental factors along with district pair food flows, and leveraging machine learning 
methods to predict whether a particular district pair presents Irish potato food flows or not. 
Specifically, Random Forest (RF) and Support Vector Machine (SVM) were trained  to predict Irish 

potato food flows, while the Local Interpretable Model-agnostic Explanations (LIME) xAI 
technique was used to further investigate particular district pair instance prediction and its most 
influencing features.  
 
Both RF and SVM models demonstrated high overall accuracy (both above 90%) in  predicting 
district level Irish potato flow. However, it is important to note that the dataset presented 
imbalanced classes where district pairs that contained Irish potato flows were about 7% of the total 
data samples, while the remaining dataset comprised the absence of Irish potato flow.  F1 score, 
which is the harmonic mean of precision and recall, was used to evaluate the class prediction 
accuracy of the models. On the both RF and SVM models, F1 score of class 0 (absence of flow) 
was 0.96 whereas on class 1 (Presence of flow) was 0.61 for RF and 059 for SVM. These F1 scores 
shows that both models were accurate at predicting the absence of Irish potato flows (class 0) than 
the presence of flow (class1), reflecting an imbalance in the dataset where instances of Irish potato 
flows were less frequent. Using Local Interpretable Model-agnostic Explanations (LIME) xAI 
technique it was observed that environmental factors notably at the origin district were the most 
flow influencers compared to socio-economic features.  
The study recommends the integration of market level flow data, the scope and temporal expansion 
for a more granular analysis.  
 
 
 
Keywords: Food security; Food flows; Machine Learning; gravity model; Explainable Artificial 
Intelligence techniques(xAI); Local interpretable Model-agnostic Explanations(LIME) 
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1. INTRODUCTION 

1.1. Background  

 

Ensuring accessibility to enough, safe, healthy and nutritious food is a challenge that requires a 
holistic approach (Bala, 2023). Food security is defined by the United Nations as the availability, 
accessibility, and consumption of sufficient, healthy, and nutritious food (Sage, 2019). Achieving 
food security requires addressing four pillars: availability, access, usage, and stability.  
(Capone et al., 2014). Urbanization is closely related to food security and nutrition, as cities grow 
and populations concentrate in urban areas; ensuring that food reaches these densely populated 
regions efficiently and sustainably becomes a challenging problem (Zou et al., 2023). The UN 
projections indicate that by 2030, over 4.9 billion people accounting for sixty percent of the world’s 
population, will be living in urban areas.  This rapid growth in urban populations intensifies  the 
need for food, highlighting the importance of developing resilient food distribution systems 
capable of meeting the heightened demand.  
 
The production of food is undoubtedly vital; it serves as a bedrock on which food security is built 
(Swaminathan & Bhavani, 2013). Producing more food would directly address the need to feed the 
growing population as it would ensure that the escalating demands of people are met. However, 
growing sufficient and safe food to meet the global demand is only one part of the solution.  Equally 
important are efficient and resilient food distribution systems (James & Friel, 2015). These systems 
allows for the flow of food from high-producing regions to serve the low-producing areas, thereby 
balancing the availability of food resources. This flow also facilitates the movement of essential 
nutrients, ensuring that people from different areas have access to a varied and balance diet. 
 
Food flow describes the movement of agricultural products from their origin of production to their 
final consumption location, covering the movement from urban and rural areas as well as across 
different regions (D. Zhou et al., 2012). This process involves a wide range of activities including 
food  production, processing,  distribution and retailing (Condratchi, 2014). These are 
interconnected steps that allow the delivery of food to consumers across different places, 
transcending the national or regional borders. Even though this process has enhanced connectivity, 
efficiency and accessibility , it has also introduced vulnerabilities, as any disruption at any point in 
the process can result in widespread consequences across the entire system (Puma et al., 2015). 
 
Disruptions like pandemics, wars, or even natural disasters can considerably disturb the flow of 
food (Mishra et al., 2021). The covid-19 pandemic served as an example and revealed the 
vulnerabilities of global food systems, resulting to disruptions in supply chains and food availability 
affecting more long distance supply chains and causing losses to farmers and traders(Benton, 2020). 
For instance, global food trade dropped by roughly 3.5 percent in 2020, with some regions 
observing more severe disruptions (Engemann & Jafari, 2022). The pandemic lockdowns and 
restrictions resulted in labour shortages in major sectors like agriculture, transportation, and retail. 
Delivering perishable food items also became challenging, escalating food shortages. According to 
the World Food Programme (WFP), the number of people that experienced heightened food 
insecurity rose by 82 percent, from 149 million in 2019 to 270 million in 2020 (FSIN, n.d.). 
Moreover, the pandemic highlighted the reliance of urban areas on complex global supply systems 
which are vulnerable to shocks.  Farmers had difficulty accessing markets and supplies, while 
consumers encountered scarcity and higher prices for basic food items, with global food prices 
reaching a three-year high in 2020 (Engemann & Jafari, 2022). 
 
A variety of factors can  govern the food flow patterns, which are environmental and socio-
economic. Where and how food cultivated is determined by environmental factors like climate, 
water availability, soil fertility and agricultural practices and so forth (Bricas et al., 2019). For 
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instance, regions with favourable weather patterns and fertile lands often become major agricultural 
hubs, producing excess food that can serve regions that rely on food imports as local production 
cannot meet demand. Additionally, social economic factors like population density, income levels, 
education, cultural traditions all influence the type and quantities of food consumed in a certain 
area as well as imports and exports (Mor & Sethia, 2014). In this context understanding why and 
how food moves through space and factors driving the flow is essential in achieving food security 
and availability. This also helps make progress as well as advance achievements of Sustainable 
Development Goal 2, which aims to end hunger, improve nutrition, and promote sustainable 
agriculture. 
 
Prior research, particularly on urban food flow, has mainly concentrated on the movement of food 
within a city or between a city and its surrounding rural areas, often on a national or international 
level (Schreiber et al., 2021). These studies tend to utilize broader data sets that are readily available, 
which may overlook the finer details of local food flows. This challenge was addressed in a research 
by (Mkondiwa & Apland, 2022) where they developed a spatially detailed mathematical programming 
model to fine-tune district food flows in Malawi. The researchers pointed out that data on food 
flows between districts is often not collected, presenting a major obstacle in understanding and 
analyzing food flows within the region. A study examining actual food distribution in China 
specifically within the confines of Tianjin's administrative boundaries, fails to fully capture the 
complexities of food flows among the city's districts, as noted by (D. Zhou et al., 2012). Conversely, 
research by Yang et al. (2021) highlights the difficulties in accurately simulating actual rice flows, 
citing factors like individual taste preferences and policy regulations that are hard to quantify in 
simulation models. They propose employing market samples as a more practical approach to 
represent authentic rice flows. Lastly, Karg et al., (2023) provide an extensive dataset on food flows 
in four west African cities, covering multiple season and transportation modes but fails to cover 
intra-city distribution patterns. This reflects a tendency  to prioritize food flow research between 
countries or big cities at the global level whereas internal flows within a country are often neglected 
potentially due to the challenges in collecting and analyzing data at a more localized level. 
 

1.2. Problem Statement 

 
Mapping food flows from production areas to consumption areas is essential and often challenging, 
especially at local scales (Moschitz & Frick, 2021). Knowing how food moves over space and time is 
crucial for policy-making to maintain food and nutrition security across scales. Nevertheless, there 
is a tendency to prioritize flows between countries at the global level i.e., Food and Agriculture 
Organization trade data (FAO, 2023a) whereas the internal food flows within a country is often 
neglected. This oversight can lead to less efficient spatial planning and agricultural interventions, 
particularly in less-developed areas where food and nutrition security remains a critical challenge. 
There is an urgent necessity to better understand how food is moving from production to 
consumption sites. Through food distribution systems lens this linkage can be comprehended by 
focusing on midstream system segments such as district markets. These markets aggregate small 
volumes of food from various locations and supply the large urban population, influenced by 
various environmental and socio economic factors.  Few studies report on how food is moved 
within a country, and often relies on downscaled national or regional data. Since collecting ground 
truth data is expensive and time consuming, using open access geospatial data, and socio-economic 
factors coupled with machine learning methods presents potential in giving  detailed insights into 
the most governing factors affecting food flows at the local level. 
Machine learning models are often criticized for being black boxes, often lacking transparency in 
their internal mechanisms and decision-making process (Carrillo et al., 2021). Explainable Artificial 
Intelligence techniques (xAI) help address this issue by shedding light on why models make certain 
decisions. In food flow context, xAI transparency can help explain global and local importance of 
flow driving factors helping in the representation how people interact with the environment in 
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terms of food production, transportation, and consumption, thus enhancing our understanding of 
food flows and informing policy-making in the face of increasing natural and social shocks. 
 
This research seeks to integrate machine learning methods coupled with the gravity model to 
predict district level food flows, using driving factors like environmental and socio-economic. xAI 
techniques will also be used to explain predictions made by the models. The aim is to better 
understand key factors influencing food flows between districts within a country. The expected 
results have the potential to revolutionize the study of food flows, ultimately assisting  policymakers 
and researchers in fostering resilient agrifood systems, contributing significantly to sustainable food 
security. 

1.3. Objectives, research questions and hypotheses  

1.1.1. Main Objective 

This research seeks to predict district level food flows by constructing machine-learning models 
with spatial-explicit social-economic and environmental features, based on ground-truth data 
collected at markets and districts across Rwanda. Using the gravity model as the modeling 
framework, these models are enhanced with Explainable Artificial Intelligence techniques(xAI) to 
effectively identify and explain the most influencing factors driving food flows. 

1.1.2. Specific Objectives 

1. To identify and integrate potential socio economic and environmental features that may 
influence food flows using multiple data sources.  

2. To predict district-level food flows using identified socio-economic and environmental features 
by leveraging machine learning models. 

3. To identify the most influencing features of food flows and explain the model's predictive 
decisions using Explainable Artificial intelligence techniques (xAI) for greater transparency. 

1.1.3. Research questions and hypothesis 

 

Questions1: What is the spatial pattern of the district-level food flow? Which socio-economic and 

environmental features can be used to describe the production, transportation, and consumption 

that shape and influence district level food flows? 

Hypothesis: Related features collectively shape and determine food flow patterns. 

Question 2: Which socio-economic and environmental features that can be used to accurately 

predict district level food flows using machine learning models?  

Hypothesis:  Food flow influencing features have different weights of contribution in district level 

food flow predictions. 

Question 3: What are the most influencing features to the food flow, and how can explainable AI 

(xAI) techniques be used to enhance transparency in the Machine Learning model's predictive 

decisions? 

Hypothesis: Environmental features that determine food production and movement are most 

influential factors in food flows.  
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2. METHODOLOGY 

2.1. Study Area  and Dataset  

This research focuses on Rwanda, a small landlocked country located in East Africa with a 
population exceeding 13 million, a land area of approximately 26,338 square kilometres. Rwanda is 
geographically located between latitude of  1° 2' 50.82", - 2° 50' 21.3792" and longitude of 28° 51' 
42.1488", 30° 53' 45.456". It is composed of 30 districts and 5 provinces and  mostly characterized 
by hilly and mountainous landscapes. Agriculture has a vital role in the nation's economy, 
accounting for 31% of its overall GDP. This industry engages more than 70% of the workforce 
and is typically marked by limited productivity. Within this sector, nearly 90% of the families 
involved engage in traditional subsistence farming methods. (Republic of Rwanda, 2018). 
 
Roughly 51% of the country’s land area is designated for agriculture, with about three-quarters of 
this land dedicated to cultivating diverse crops including food crops, cash crops, and forages. The 
Eastern Province boasts the largest area of agricultural land, spanning 439,000 hectares, whereas 
the Northern Province has the smallest at approximately 212,000 hectares (Giertz et al., 2015). Due 
to the hilly nature of Rwanda's landscape (see Figure 1), 70% of its land is located on hillsides 
Conversely, just 30% of agricultural areas are found on flat land. This topography poses challenges, 
as the hilly regions are vulnerable to drought, soil erosion, and landslides, while the marshlands are 
at risk of flooding during periods of intense rain. (The World Bank Group, 2021). Rwanda is also 
among the most densely populated countries in the world, with 535 people per square kilometer, 
the country  has a population growth rate of approximately 2.3% as of the 2022 recent census 
(National Institute of Statistics of Rwanda (NISR), 2023). This increases the necessity  for food 
security and adds weight on the country’s agricultural sector requiring efficient food flows and 
sustainable agricultural practices. Figure 1 illustrates the considered study area, false color 
representation of the Digital Elevation Terrain Model (DTM). 
 

 
Figure 1 : Considered study area, false colour representation of the Digital Elevation Terrain Model (DTM) 
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2.1.1. Dataset 

 

❖ Field market data  

To carry out this research a comprehensive dataset that includes ground truth data was essential. 
The ground truth primary data was acquired through a research collaboration with International 
Institute of Tropical Agriculture (IITA) whose vision is to facilitate agricultural solutions to 
overcome hunger and poverty in the tropics. This dataset was part of an ongoing one year data 
collection (April 2023-April 2024). The dataset encompasses vendors market survey and market 
characterization data. This dataset contains a wide range of variables pertinent to the study. to 
highlight a few details, various vendors in different markets across the country were interviewed 
about the crops that they usually sell, their location was recorded as well as the production source 
district. Used transportation means of sold food items was also recorded , market days and the 
food source channel. Market characteristics were recorded as part of the survey. Figure 2 shows 
the locations of the surveyed markets across the country.   

 

Figure 2: Spatial distribution of collected market data across the study area 

In the acquired dataset, only food item source district is recorded not the specific production 
location. Additionally, the acquired data showed that 60% of vendors reported wholesalers/ 
aggregators as their food source channels which doesn’t directly link food flow to the source 
production area.  Since only districts are recorded as producing locations, ensuring that the 
collected information is robust and reliable  a qualitative market  data survey which includes a 
survey of open-ended questions and interviews to confirm observations of the overall market 
survey was conducted in February to March 2024. One specific crop was selected by considering 
the local agriculture season at that period and Irish potatoes were of interest to this study.  
Irish potatoes are a significant part of Rwanda's agricultural output and are a staple food in the 
Rwandan diet. Falling under the government six priority crops within the crop intensification 
program (CIP). Rwanda ranks as the 6th largest potato producer in Africa, which is of interest 
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considering the country’s relative land size (FAO, 2023). Potatoes grow well in several parts of 
country mainly above elevations of 1800 m. Four districts in the north-west (Rubavu, Musanze, 
Nyabihu and Burera) are responsible for most of the production. Currently, Rwanda has over 
70,000 potato farmers grouped in 30 cooperatives that produce over 19, 000 tones monthly during 
the harvesting season. 

To link production to consumption, the potato flow channel was investigated during the qualitative 
data survey. Different market vendors were surveyed as well as wholesalers/aggregators. Reported 
source district from the initial dataset was confirmed by the surveyed wholesalers/aggregators. 
Figure 3 depicts the field observed potatoes flow channel from production areas  to the last retailer 
and consumer. Raw images illustrating the process are also attached in the appendix. 

 

Figure 3: Potato flow channel 

Potatoes are harvested from the field and are directly packed into big sacks of about 100kg. They 

are then transported by bicycles to the nearby collection centre house. These potato collection 

centres are established by the government and serve as important points where farmers can deliver 

their harvests for aggregation and distribution to larger markets. From these collection centres, 

wholesalers/aggregators can come  to collect the  harvests for distribution across the country. This 

flow depicts how potatoes get to the final consumer from the farm field.  

❖ Environmental data 

A 2022 land use/land cover (LULC) map was accessed from ESA Sentinel-2 imagery of 10m 
resolution. This data is generated with the impact Observatory’s deep learning AI land classification 
model and is produced by Impact Observatory, Microsoft, and Esri. The map was downloaded 
through the following link: Esri | Sentinel-2 Land Cover Explorer (arcgis.com). Seven landcover 
classes were selected based  on characteristics of the study. Bareground, Built Are, Rangeland, crop, 
water, trees and flooded vegetation were of importance.  
 
Topographical features used in this study such as elevation was freely available and accessed. A 
10m resolution Digital Terrain Model (DTM) prepared by Rwanda's National Land Authority 
(NLA) was downloaded through the United Nations Development Programme's GeoHub. 
Minimum and Maximum elevation per district was extracted to be used in the analysis. Land use 
patterns data like agricultural land area and crop type yield data were available at the district level 
from the recent seasonal agricultural  survey 2023 and can be accessed through The National 
Institute of Statistics of Rwanda via the link:  
https://www.statistics.gov.rw/publication/2022 
 
Climate data and weather data like annual temperatures and precipitation, were used in this study. 
A dataset was downloaded from “World Clim”, with a spatial resolution of 30seconds (~1km2). 
Yearly mean temperature and precipitation was calculated on 12 GeoTiff files of representing a 
whole year. https://www.worldclim.org/data/worldclim21.html 

https://livingatlas.arcgis.com/landcoverexplorer/#mapCenter=29.101%2C-1.086%2C9&mode=step&timeExtent=2017%2C2021&year=2022
https://www.statistics.gov.rw/publication/2022
https://www.worldclim.org/data/worldclim21.html
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Open Street Map (OSM) data was used to extract points of interest (POIs) relevant to our study 
area using the "QuickOSM" QGIS plugin. The POIs, which include restaurants, distinctive 
buildings, churches, and touristic attractions were selected because they serve as proxies for 
physical landmarks  that provide insights into the characteristics of each district. Using QuickOSM,  
a specific query was formulated to target these categories, relevant POI data was downloaded. A 
spatial join with district boundary shapefile was done to ensure accurate assignment of POIs. This 
process allowed for a clear representation of the distribution and density of POIs within each 
district. 
 

❖ Socio-Economic Data 
 
Population demographics like population density, district population count and gender distribution 
percentage was used in this study. This data was extracted from the recent 2022  Population and 
Housing Census provide by the national institute of statistics of Rwanda and was accessed through 
the link: https://www.statistics.gov.rw/publication/main_indicators_2022. These demographic 
factors were selected because they provide critical insights into social structure and resource needs 
of each district which directly influence food flows. Population density offers a measure of how 
crowded or sparse a district is, affecting demand for food and the efficiency of food distribution 
systems. The district population count helps in understanding the overall size and scale of each 
district. Gender distribution percentages was also selected due to the impact it may have on food 
consumption patterns and nutritional needs.  
 
Infrastructures like roads, acquired from the Ministry of Infrastructure (MININFRA). For Roads, 
only “road surface length” attribute which specified whether a road is paved or not paved was 
chosen. This was because this attribute provided more information than the road category attribute 
which included details like primary, secondary and tertiary road. Road data was downloaded 
through the following link : https://datacatalog.worldbank.org/search/dataset/0040262/Rwanda-
Roads. District school and health centres count was used and  was used to approximate the level 
of education and availability of health services in a district. Market infrastructure was also acquired 
from the vendor survey data. 
 
Economic indicators like the Gross Domestic Product, can be found through recent GDP national 
accounts report of the first, second, third and fourth quarter of  2023. The report is published by 
the national institute of statistics of Rwanda and can be accessed through this link: 
https://www.statistics.gov.rw/publication/2016.  The GDP per district was extracted to be used 
in this study. Table 1, below summarizes the acquired and used data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.statistics.gov.rw/publication/main_indicators_2022
https://datacatalog.worldbank.org/search/dataset/0040262/Rwanda-Roads
https://datacatalog.worldbank.org/search/dataset/0040262/Rwanda-Roads
https://www.statistics.gov.rw/publication/2016
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Table 1: Data Description 

Data  Data description Data owner 

DTM, 10 m resolution Maximum elevation Rwanda National Land Authority (NLA) 

DTM, 10 m resolution Minimum elevation Rwanda National Land Authority (NLA) 

LULC, 10m resolution Bareground Sentinel-2 Land Use/Landcover_Esri 

LULC, 10m resolution Built Area Sentinel-2 Land Use/Landcover_Esri 

LULC, 10m resolution Rangeland Sentinel-2 Land Use/Landcover_Esri 

LULC, 10m resolution Crop Sentinel-2 Land Use/Landcover_Esri 

LULC, 10m resolution Trees Sentinel-2 Land Use/Landcover_Esri 

LULC, 10m resolution Water, Sentinel-2 Land Use/Landcover_Esri 

LULC, 10m resolution Flooded vegetation Sentinel-2 Land Use/Landcover_Esri 

Agri-survey (2023) 
Potato Yield quantity 

National Institute of Statistics of 
Rwanda(NISR) 

Agri-survey (2023) 
Agricultural land area 

National Institute of Statistics of 
Rwanda(NISR) 

Climate data, 30seconds 
(~1km2).  

Max & Min 
temperature WorldClim 

Climate data, 30seconds 
(~1km2).  Average precipitation WorldClim 

Open Street Map Points of interest OSM 

Administrative boundary District pair distance Global Administrative Areas (GADM) 

Administrative boundary District boundaries Global Administrative Areas (GADM) 

Population demographics 
(2022) Population count 

National Institute of Statistics of 
Rwanda(NISR) 

Population demographics 
(2022) Population density 

National Institute of Statistics of 
Rwanda(NISR) 

Gross domestic product 
(2023) District GDP 

National Institute of Statistics of 
Rwanda(NISR) 

Public infrastructure Roads Ministry of Infrastructure (MININFRA) 

Public infrastructure District school count Ministry of Infrastructure (MININFRA) 

Public infrastructure 
District heath centres 
count Ministry of Infrastructure (MININFRA) 

Market characteristics (2023) Market type 
International Institute of Tropical Agriculture 
(IITA) 

Market characteristics (2023) Market infrastructure 
International Institute of Tropical Agriculture 
(IITA) 

 

2.2. Methodological Flow Chart 

To predict district level food flows, various steps were undertaken, figure 4 shows the flow chart 
of undertaken steps. The major steps include data preprocessing that lead to a database compilation 
of all flow data. District level food flows were classified and the accuracy assessed using different 
models. The Local interpretable Model-agnostic Explanations (LIME) xAI technique was also 
applied to gain insights on the model’s output. The chart also illustrates the study’s objective 
achievement along the way.  
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Figure 4: Methodological flow chart 

2.1.2. Data pre-processing 

District flow data was extracted from the acquired market data by filtering potatoes as food items 
of interest. Inconsistencies were removed and district flow pairs of origin and destination were 
made. All feature data were brought to the district level to match the flow data extracted from the 
vendor survey. Percentage aggregation and feature categorization was done to achieve feature 
representation. Additionally a correlation matrix was used to check and eliminate highly correlated 
features before the data analysis. In the correlation matrix, it was observed that the District GDP 
and the population count were highly correlated. The Female and male percentage at the district 
level was used to represent the population count. Figure 5 depicts a correlation matrix of the used 
features. Additionally, district centroids were used to calculate the inter district distance. This choice 
was motivated by the need to simply and standardize the travel distance.  
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Figure 5: Features correlation matrix (click here for an extended view) 

To understand the pattern at district level, histograms were also utilized to compare different 
features. Significant differences in GDP across districts were observed with Gasabo and Kicukiro 
exhibiting higher economic activities. Agricultural land percentage also varies notably with Gakenke 
and Nyagatare districts heavily relying  on agriculture. While Kicukiro is more urbanized, Gakenke 
and Muhanga have more infrastructure like heath centres and schools.  Districts like Musanze  and 
Nyabihu have higher elevations, Nyamagabe and Nyamasheke receives more precipitation. 
Landuse patterns show a balance between urban development and agricultural focus , with some 
districts having more built-up areas and others more cropland. Figure 6 below illustrates different 
features comparison across 30 districts of Rwanda. 

https://drive.google.com/file/d/1Cj-dQZIoyAtC0hf1_QoCRECBoFV8MOC-/view?usp=drive_link
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Figure 6: Feature histograms across districts (Click here for an extended view) 

  

https://drive.google.com/file/d/1MOCmYVr2PrV4ApBtoZ6pkBNRS970whAd/view?usp=drive_link
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2.3. Feature Database compilation 

To predict district level food flows, compiling a detailed feature database is essential. Three 
important datasets were of great use to achieve this goal. These datasets are existing district level 
potato flows extracted from the vendor survey, district centroid distances and the previously 
mentioned district feature properties. To create potato flow origin and destination pairs, the gravity 
model framework was utilized. The gravity model is commonly used to assess and predict economic 
factors, particularly in bilateral trade flows. The model operates on the principal that trade flow 
magnitude is influenced by supply factors at source and demand factors at destination, as well as 
dynamics propelling these trade flows (Kabir et al., 2017). 
 

Let us define the origin and destination district of  food flows as 𝐷𝑖 and 𝐷𝑗 , respectively, with 𝑖, 𝑗 ∈

[1, 𝑁], having 𝑁 district present in the considered study area. To estimate the flow of potatoes 

moving from 𝐷𝑖  to 𝐷𝑗 , we extract a set of features which aim to model origin and destination 

district properties.  Let 𝑥𝑖 and 𝑥𝑗 be the set of compiled features associated with district 𝐷𝑖 and 𝐷𝑗 , 

respectively. To estimate the flow from 𝐷𝑖 and 𝐷𝑗  , we exploit both origin and destination feature 

vectors. In addition, we include a feature typically used in gravity models, the geographic 

distance, 𝑑𝑖,𝑗  between two districts 𝐷𝑖  and 𝐷𝑗 , computed as distance between district centroids.  

Accordingly, the feature vector used to estimate the flow between 𝐷𝑖 and 𝐷𝑗  is [𝑥𝑖, 𝑥𝑗,𝑑𝑖,𝑗]. For 

each origin district 𝐷𝑖 we computed a feature vector[𝑥𝑖 , 𝑥𝑗,𝑑𝑖,𝑗] for each district 𝐷𝑗  that  could be 

a potential destination. i.e. 𝑗𝜖[1, 𝑀] having 𝑀 ≤ 𝑁. 
 

2.4. Machine Learning Models 

To provide a comprehensive  analysis of district-level food flows in Rwanda, this study is conducted 

using two machine learning models to predict district level food flows i.e., RF and SVM. This is 

due to the complementary strengths in handling diverse data characteristics and their proven 

efficacy in classification tasks (Saini & Ghosh, 2018). By integrating both models, this study aim to 

leverage their unique advantage to enhance the accuracy and reliability of the flow predictions. This 

also allows to address potential bias and limitations inherent in any single model, providing a more 

robust framework for the study. 

I. Random Forest (RF) classification 

In this study , a RF machine learning classification model is used to predict district level potato 
flows, outputting binary results (0 and 1) where 1 indicate presence of a flow and 0 its absence. RF  
is a powerful ensemble learning method that operates by constructing multiple decision trees during 
the training step and outputting the mode of classes or the mean prediction of individual trees 
(Kulkarni & Sinha, 2014). 
 
To train the RF model, 870 out of 900 sample points were used. These points were selected after 
removing pairs where the distance is zero as those represented internal district flows. About 7% of 
870 samples points comprised potato flows meaning 93% of all samples represented pairs where 
there is no potato flow. As this dataset was imbalanced, strategically splitting training samples to 
avoid feeding bias to our training model was essential. Stratified K-Folds was used to split the data 
samples as this method deemed best to handle imbalanced classes (López et al., 2014). Stratified 
K-folds data splitting technique combines two methods. Dividing a dataset into K equally sized 
subsets (folds) and ensuring that the distribution of classes is preserved across all training and 
validation sets (Anguita et al., 2012). Figure 8 depicts the operation of k-folds as well as the random 
forest model. The model is trained and validated 5K times each time using a different fold as the 
validation set and the remaining k-1 fold as the training set. 
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Figure 7 : K-fold splitting illustration 

II. Support Vector Machine (SVM) classification 

SVM is a powerful supervised machine learning model frequently used for classification tasks. The 

algorithm works by finding the optimal hyperplane that best separates data points of difference 

classes. The hyperplane is selected to maximize the margin which is the distance between the 

hyperplane and the closest data point from each class, also known as support vectors (Mohan et 

al., 2020). The margin maximization helps to improve the model’s generalization capabilities on 

test data. In this study,  SVM was used to predict potato flows due to its effectiveness in handling 

complex data  where the relationship between features is not straight forward, which is the case for 

our dataset. To train the SVM model, 870 sample points were used. About 7% of 870 samples 

represents sample points that have flows. As this is a small portion considering the whole dataset, 

Stratified K-Folds was again used  as a data splitting technique to handle the class imbalance in our 

dataset. In this study, a grid search systematic way was used to explore a range of hyperparameter 

values to find the best combination that can be used for the SVM Model. 

Figure 9 below is a visual representation of how the SVM model works, by representing the simple 

case of linear kernel function. One class is represented by the blue square dots, another class by 

red circular dots. The back line is the decision boundary learnt by the SVM which is placed in a 

way that maximizes the margin between two classes.  

 

Figure 8: Support Vector Machine illustration 
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2.5. Explainable Artificial Intelligence (xAI) Techniques 

Machine learning models are often criticized for being “black box” models where their decision 

process is not transparent or easily understood (Räz, 2022). This lack of clarity raises concerns 

especially where understanding the reasoning behind the model’s prediction is crucial. xAI aims to 

increase machine learning model’s transparency and interpretability, providing insights into the 

model’s specific instance decisions, thus enhancing their reliability and acceptance of results (Islam 

et al., 2022). 

xAI techniques comprise of two types, Model-agnostic and Model-specific. Model-agnostic may 

be utilized on any machine learning model, irrespective of its internal structure while Model specific 

techniques on the other hand are tailored to particular types of model. For instance, feature 

importance for decision tree models (Greenwell & Boehmke, 2020). These mentioned xAI types 

can provide global and local explanations. Global explanations provide insights into the overall 

behaviour of the model where they help in understanding  how the model makes predictions across 

the entire dataset. Local explanations, on the other hand, focus on individual predictions. These 

provide insights into why a model made a specific prediction for a particular instance. This is 

particularly useful for understanding and trusting specific decisions made by the model.  

One of the most commonly used model-agnostic techniques is Local Interpretable Model-agnostic 

Explanations (LIME). LIME technique which is primarily designed to provide local explanations, 

this can be used to explain individual instance predictions by locally approximating a Machine 

learning model, making it versatile and widely applicable (Dieber & Kirrane, 2020). In this study 

understanding and identifying important features that significantly influence food flows is needed 

hence the usage of LIME. LIME can illustrate important features that contributed significantly to 

the model’s flow prediction, providing a clear understanding of which variables are driving specific 

predictions. This not only aids in verifying the model’s decisions but also enhances trust in the 

model's outputs by highlighting the rationale behind each prediction. 

In this research we structured the illustrated LIME instances by first, providing the global LIME 

explanations on both RF and SVM models,  where we summarized the global importance in a table. 

Second, instances where the model predicted  a flow or no flow were demonstrated and lastly 

instances where a flow was intended to happen but did not were also illustrated. This was done to 

identify and capture the different influencing features in all of these instances and also verify the 

models accuracies.  
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3. RESULTS 

This Section illustrates the obtained results; first an overview of the flow predictions is given 

through a flow map, then, the RF and SVM flow classification results are presented. To illustrate 

if and how the models correctly identified the expected potato flows. To provide local explanations, 

on the models predictions, and to identify important features, LIME results are presented on 

particular instances, first where the models correctly identified the flows, then instances where the 

were not correctly identified. Lastly, digging deeper, we illustrate where the model was supposed 

to identify a flow but it failed to, we also highlight contributing features this this false predictions. 

3.1. Flow description  

To describe district level food flow patterns, district pairs were made and a flow map was 
constructed. 900 district pairs were made since our study area Rwanda, comprises 30 districts. Irish 
Potato was the chosen as the focus crop due  to its significant relevance to Rwanda and because it 
was in season  during the data  collection period. 

Figure 7 illustrates the distribution of Irish potato production across various districts of Rwanda, 

highlighting the movement from origin (red dots) to destination (green dots) districts. The map 

also shows that the flow is concentrated in certain regions with a significant movement towards 

central and northern districts. Musanze and Nyabihu serve as major origin points. Internal flows 

also suggest local distribution patterns where districts manage their own internal supply and 

demand. It is important to note that the production quantity is not the flow quantity coming from 

an origin district to a destination district. The production yield quantity represents the overall 

potato district production. Table 2 below illustrates the first four origin and destination districts as 

well as their relevant characteristics that helps in understanding the observed food flow map figure 

7.   

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Table 2: Four Origin and destination districts and their characteristics summary 
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Figure 9: Irish Potato Flow Map illustrating the flow between districts in Rwanda. 

 

Figure 10, also summarizes the district pair distances, this helps understand the spatial connectivity 
and logistical aspects that may happen during potato flows between districts. The longest distance 
between district pairs is 197.71km and is between Nyagatare and Rusizi districts. The smallest 
distance at same district pairs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Distance pair quantiles 
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3.2 Feature importance 
 

Different features contributed globally to the prediction of class 0 and 1 in RF and SVM models. 

However, some were more important than others, Table 3, illustrate RF and SVM global feature 

importance of the first 10 features. It is observed that the yearly mean temperature and 

precipitation, the distance between districts, the population density, and landcover classes area i.e: 

Crops and Rangeland were more important to the model’s predictions. Note that full charts are 

displayed in the appendix.  

  

Table 3: Feature importance of RF and SVM, top 10 first features 

 

 

 

 

3.2. Random Forest Classification 

Results from the RF model provide a comprehensive overview of its classification performance on 

predicting district level food flows in Rwanda. The training samples were initially split into five 

stratified folds to avoid class imbalance bias as illustrated in the methodology. To properly train 

the model, a grid search systematic way was used to explore a range of hyperparameter values to 

find the best combination. The chosen parameters were 100 trees, the maximum trees depth was 

set to none, which lets trees expand until all leaves are pure or contain less than min samples split, 

the samples were bootstrapped as well.  

Table 4 Summarizes the classification output of each fold. Each fold’s accuracy and the overall RF 

model accuracy which is the average accuracy across all five folds is presented. F1score  of class, 0 

(representing the absent of flow) and class 1 (representing the presence of flow) is also produced. 

The overall accuracy achieved by the model is 94% where F1 score of class 0 (absent of flow) is 

0.96 and that of class 1 is 0.61. F1 score is the harmonic mean of the model’s precision and recall 

metrics, it specifically measures the model’s accuracy  in predicting positive class instances. A higher 

F1 score indicates better performance in predicting the specified class. 

 

Table 4: : Random forest classification summary 

Fold Accuracy F1 Score Class 0 F1 Score Class 1 

Fold 1 0.94 0.97 0.64 

Fold 2 0.93 0.96 0.45 

Fold 3 0.93 0.96 0.53 

Fold 4 0.95 0.97 0.73 

Fold 5 0.94 0.97 0.68 

Overall 0.94 0.96 0.61 
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Confusion matrices figures are shown below, Figure 11 , all 5 folds (in blue colour) illustrate class 

1(presence of flow) exhibiting less number of true predicted samples compared to class 0 (absence 

of flow). Overall confusion matrix (in red colour) is also show. 

 

 

3.3. Support vector Machine(SVM) classification 

 

Results from the Support vector Machine (SVM) model also provide a comprehensive overview of 

its classification performance on predicting district level food flows in Rwanda. The training 

samples were also split into five stratified folds to avoid class imbalance bias. The sample dataset 

comprised of 870 district pairs. Only 7% of these samples exhibited potato flows.  

To properly train the model, a grid search was used to explore a range of hyperparameter values to 

find the best combination. The optimal kernel parameters (i.e., the regularization parameter C and 

the spread of the kernel were selected by a 5-fold cross-validation..  

 

Table 4  Summarizes the classification output of each fold. Each fold’s accuracy and the overall 

SVM model accuracy which is the average accuracy across all five folds is presented. F1score  of 

class, 0 (representing the absent of flow) and class 1 (representing the presence of flow) is also 

produced. The overall accuracy achieved by the SVM model is 93% which is 1% less that of RF 

model. F1 score of class 0 (absent of flow) is 0.96 and that of class 1 is 0.59. F1 score is the harmonic 

mean of the model’s precision (the accuracy of positive predictions) and recall (the model's ability to 

identify all actual positive instances) metrics, it specifically measures the model’s accuracy  in predicting 

positive class instances. A higher F1 score indicates better performance in predicting the specified class.  

 

Results from the SVM model also provide a comprehensive overview of its classification 

performance on predicting district level food flows in Rwanda. The training samples were also split 

into five stratified folds to avoid class imbalance bias. The sample dataset comprised of 870 district 

Figure 11 : RF prediction Confusion Matrices (click here for an extended view) 

https://drive.google.com/file/d/1xys-B8u1ZVMenka5pURyPISHp0oiahWr/view?usp=drive_link
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pairs. Only 7% of these samples exhibited potato flows.  Table 2  summarizes the classification 

output of each fold. Each fold’s accuracy and the overall SVM model accuracy which is the average 

accuracy across all five folds is presented. F1score  of class, 0 (representing the absent of flow) and 

class 1 (representing the presence of flow) is also produced. The overall accuracy achieved by the 

SVM model is 93% which is 1% less that of RF model. F1 score of class 0 (absent of flow) is 0.96 

and that of class 1 is 0.59. F1 score is the harmonic mean of the model’s precision (the accuracy of 

positive predictions) and recall (the model's ability to identify all actual positive instances) metrics, 

it specifically measures the model’s accuracy  in predicting positive class instances. A higher F1 

score indicates better performance in predicting the specified class.  

 

Table 5: SVM Classification Summary 

Fold Accuracy F1 Score 
Class 0 

F1 Score 
Class 1 

Fold 1 0.94 0.96 0.61 

Fold 2 0.92 0.95 0.48 

Fold 3 0.93 0.96 0.56 

Fold 4 0.94 0.96 0.66 

Fold 5 0.93 0.96 0.66 

Overall 0.93 0.96 0.59 

 

Folds Confusion matrices figures are shown below, Figure 13 , all 5 folds (in blue colour) illustrate 

class 1(presence of flow) exhibiting less number of true predicted samples compared to class 0 

(absence of flow). Overall confusion matrix (in red colour) is also show below. 

 

 

 

3.4. Local interpretable Model-agnostic Explanations (LIME) 

 

Figure 12: SVM prediction Confusion Matrices (click here for an extend view) 

https://drive.google.com/file/d/1jRc1ayKNEHPyqO3IpeOFNmIzGgnKMkJP/view?usp=drive_link
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LIME as an xAI technique was used to explain important features locally at specific instances of 

the model’s predictions in this study,  LIME was used to provide both global and local 

interpretation of instances predictions for both RF and the SVM models. For the global 

perspective, Table 3 below summarizes the common most important features identified in both 

models, RF and SVM using the LIME explanations. Yearly mean temperature, Yearly mean 

precipitation , Crop LULC and the population density are among the most influencing features. 

This showed that the environmental characteristics of the different districts played an important 

role in determining the food flows. Also, the population density was a drawing force of the 

predictions. Market characteristics i.e.: market categories (rural, urban, periurban)   were found to 

be the least important features as they did not significantly influence flow predictions. 

 

Table 6: Summary of common most important features on selected instances 

Models Influencing Environmental 

features 

Influencing Socio-

economic features 

Least Influencing 

features 

 RF • Yearly mean temperature 

• Yearly mean precipitation 

• Crop LULC 

• Rangeland LULC 

• Maximum elevation 

• Potato production 

quantity 

• Population density 
 

• Market 

characteristics 

(Market type & 

infrastructure) 

 SVM  • Yearly mean precipitation 

• Crop LULC 

• Yearly mean temperature 

• Distance 

• OSM features 

• Population 

density 

• Market 

characteristics 

(Market type & 

infrastructure) 

 

However, to understand the reasoning behind specific predictions, the local interpretation of 

specific instances was also carried out. This allows the illustration of certain feature influence on 

local predictions, helping to pinpoint and label exactly where the flow was occurring or not. 

 

 
❖ LIME on RF and SVM Model: potato flow predictions 

 

To illustrate further, first, an instance where the model correctly predicted a flow (class1) was 

selected randomly for a closer observation of the prediction’s influencing features. Figure 14 

illustrates a LIME interpretation for an instance having potato flow coming from Burera to 

Bugesera and correctly classified using the RF classifier. The model outputs a prediction probability 

of 0.21 for Class 0, representing absence of flow and  a probability of 0.79 for class 1 representing 

the presence of flow. The figure also illustrate 10 first prediction contributing features where the 

first illustrated ones (represented by the orange colour) contributed positively. Yearly mean 

temperature, the crop landuse landcover  district percentage as well as the minimum elevation at 

the origin district were among the first influencing features to this prediction. 
The magnitude of influencing features is also shown, highlighting the weight of each feature to the 

prediction. 
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Figure 13: LIME explanation for the RF model for an instance having potato food flows and correctly predicted. 
The first 10 important features are also reported. 

 

For the same instance, the SVM predicted the presence of a flow with a probability of 0.71. 

Figure15,  illustrate 10 first contributing features where these contributed positively (represented 

by the orange colour). Yearly mean precipitation, the population density, the crop landuse 

landcover  district percentage as well as the yearly mean temperature at the origin district were 

among the first influencing features to this SVM prediction. Comparing with RF, two features are 

common: the yearly mean temperature and the cropland landuse landcover percentage. This 

illustrated that temperature  and Landuse are an important element in agricultural productivity 

which leads to more food flowing to different districts.  

 

Figure 14: LIME explanation for the SVM model for an instance having potato food flows and correctly 
predicted. The first 10 important features are also reported. 
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❖ LIME on RF and SVM Model: absence of potato flow prediction 

 

 

Figure 16 illustrates a LIME interpretation for a randomly chosen instance which present the 

absence of potato flow. The flow origin and destination districts at this instance are Rusizi and 

Gakenke. Here the RF model outputs a prediction probability of 1.00 and 0.00 for class 0 and 1 

respectively. This indicates that the model was successfully able to predict class 0 with a maximum 

certainty. The figure also shows positive (orange colour) and negative (blue colour) contributing 

features to these predictions. Population density at origin district, yearly mean precipitation and 

rangeland  landuse landcover percentage in a district contributed positively. Features like centroid 

distance, crops landcover, min elevation etc contributed negatively. Their influencing magnitude is 

also shown, highlighting the weight of each feature to the prediction. 

 

Figure 15: LIME explanation for the RF model for instance which present the absence of potato flow. The first 

10 important features are also reported. 

  

 
Figure 17 illustrates a LIME interpretation for the SVM model considering the same instance. Here 

the model outputs a prediction probability of 0.92 and 0.08 for class 0 and 1 respectively. This 

indicates that the model was successfully able to predict class0. The figure also shows 

positive(orange colour) and negative(blue colour) contributing features to these predictions. 

Population density at origin district, the distance between districts and OSM features contributed 

positively while features like yearly mean precipitation, crops landcover, yearly mean temperature 

and so forth contributed negatively. Their influencing magnitude is also shown, highlighting the 

weight of each feature to the prediction. Comparing features that contributed positively for both 

RF and SVM; the population density, Rangeland landuse landcover area were more important to 

the predictions. On the other hand, the district area, the yearly mean temperature and the crops 

landuse landcover had a negative contribution the overall flow classes predictions.  
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Figure 16: LIME explanation for the SVM model for instance which present the absence of potato flow. The first 
10 important features are also reported.  

 

 

I. Instances where a flow was expected but the model didn’t spot it 

Results also showed that there were cases where a flow was expected at some instances but the 
models could not spot it. Figure 18 shows an instance where a flow was expected and RF correctly 
spotted the flow with 0.12 and 0.88 for class 0 and class1 respectively. However, SVM failed to 
identify this flow (see Figure 19). Among the positively contributing features for the RF model 
were yearly mean temperature, the crop landuse landcover, the minimum elevation. For the SVM 
model features like the yearly mean precipitation, the district area, the minimum elevation 
contributed positively while features like the population density contributed negatively to this flow. 

 

Figure 17:  LIME explanation for the RF model, which successfully predicted the food flow for the 110th instance. 



FOOD GRAVITY: UNDERSTAND FOOD FLOWS USING CLASSIC GRAVITY MODEL AND EXPLAINABLE ARTIFICIAL INTELLIGENCE TECHNIQUES 

23 

 

Figure 18: LIME explanation for the SVM model, which was not able to predicted the food flow for the 110th 
instance. 

Another example (Figure 20) of an expected flow is with 120th instance. Here also a flow was 

expected, class 1 successful prediction. RF successfully identified the expected flow with 0.01 and 

0.39 probabilities respectively for class1 and class 0. However, SVM failed to identify the expected 

flow (Figure 21) where it outputted a probability of 0.02 for class1 and 0.98 for class 0. Features 

that contributed positively to the predictions in both cases were the potato produce at origin 

district, the distance between district as well as yearly mean precipitation. 

 

Figure 19:  LIME explanation for the RF model, which successfully predicted the food flow for the 120th instance 

 

Figure 20: LIME explanation for the SVM model, which successfully predicted the food flow for the 120th 
instance 
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4. DISCUSSION 

4.1. Summary:  
 

Understanding food flows is crucial to ensuring food security, especially in rapidly urbanizing areas 

where demand for efficient and resilient food distribution systems are necessary (Ofori et al., 2022). 

Food flows are essential as they help balance supply and demand of food, ensuring surplus of 

production in some areas can meet needs in other areas.  

 

This study specifically focused on predicting food flows using Random Forst and Support vector 

Machine as ML models. Irish potato was chosen as the focus crop and it’s flow distribution among 

30 districts of Rwanda. The research combined concepts of classic gravity model with machine 

learning techniques, relying on Explainable Artificial Intelligence techniques (xAI) to enhance the 

transparency of the predictive models at particular instances of the flow models. Objectives 

included compiling a comprehensive database of socio-economic and environmental factors along 

with district pair food flows and leveraging Machine learning methods to predict whether a 

particular district pair presents Irish potato food flows or not. It is observed that used data samples 

contained imbalanced flow classes where class 1 (representing the presence of flow) was 

underrepresented in the used dataset. Only 7% of the used data samples had a presence of flow.  

This affected the flow predictions on both Random forest and Support Vector machine models. 

Environmental features were the most flow influencers compared to socio-economic features. This 

was more demonstrated at the flow origin districts compared to flow destination districts mostly 

due to the physical characteristics of origin districts.  

 

This research contributes significantly to the food flow studies literature, by addressing a notable 

gap identified in prior research. Previous studies largely  concentrated on urban food flows within 

cities or between cities and their surrounding rural areas, often at National or international level by 

using broader datasets that may overlook finer details of local food flows. For instance (Moschitz 

& Frick, 2020) emphasized on broader city food flows analysis providing detailed information on 

current situation of urban food provisioning. (Mkondiwa et al., 2022) develops a spatially detailed 

model for district food flows in Malawi, highlighting the lack of district-level data. Similarly, (Y. 

Zhou et al., 2021) created an ML model to predict food insecurity in sub-Saharan Africa, while 

highlighting the importance of model transparency and adaptability to policy makers. Additionally 

(Lin et al., 2019), also developed a model that estimates food flows between USA counties, enabling 

detailed supply chain analysis. To the best of our knowledge, this study is one of the first to predict 

district level food flows in sub Saharan region at the district level using machine learning models 

coupled with xAI techniques, contributing to a more nuanced understanding of local food 

distribution. This approach also provides a replicable model for other regions facing similar 

challenges. By advancing the application of machine learning in food flow studies, this research 

supports the achievement of sustainable development Goal 2 which aims at ending hunger, 

improve nutrition and promote sustainable agriculture.   

 

Key findings overview 

 

The Random forest  (RF) and Support Vector Mahine models demonstrated high accuracy in  

predicting district level Irish potato flow. The RF achieved an overall accuracy of 94% while the 

SVM model achieved 93%. Both models were trained  on a comprehensive dataset of district level 

Irish potato flows that  included environmental and socio economic features. However, it is 

important to note that the dataset presented imbalanced classes where district pairs that contained 

Irish potato flows were about 7% of the total data samples. The remaining dataset comprised the 

absence of Irish potato flow.  F1 score, which is the harmonic mean of precision and recall , was 
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used to evaluate the class prediction accuracy of the model. On the Random Forest (RF) model F1 

score of class 0 (absence of flow) was 0.96 whereas on class 1 (Presence of flow) was 0.61. Similarly, 

the SVM model achieve an F1 score of 0.96 on class 0 and 0.59 on class 1. These f1 scores shows 

that both models were accurate at predicting the absence of Irish potato flows (class 0) than the 

presence of flow (class1), reflecting an imbalance in the dataset where instances of Irish potato 

flows were less frequent. LIME, an xAI technique was used to further investigate particular district 

pair instance prediction of potato flows and its most influencing features. It was observed that 

Environmental factors notably at the origin district were the most flow influencers compared to 

socio-economic features.  

4.2. Interpretation of Significant factors 

 

The analysis revealed several key factors influencing Irish potato flows in Rwanda are discussed 

below:  

 

I. Yearly mean temperature & precipitation 

This environmental feature emerged as important in the Irish potato flow predictions on both RF 

and SVM, yearly mean temperature and precipitation were the most significant flow predictors .  

Irish potatoes (Solanum tuberosum) generally grows best in cool, temperate climates. The ideal 

temperature range for growing Irish potatoes during day time is between 15°C and 20°C. Nighttime 

temperatures are 10°C to 15°C.  Temperatures above 30°C can inhibit tuber development , while 

temperatures below 10°C can slow down Irish potatoes growth significantly. Potatoes also require 

a frost-free period of 90 to 120 days to mature properly (Zemba et al., 2013). 

The North-western districts of Rwanda are particularly well suited for Irish potato cultivation due 

to their climatic and geographical factors namely, altitude, temperature, rainfall , soil and seasonal 

variability. These regions are characterized by high altitude ranging from 1800-2500 meters above 

sea level figure 1 representing the study area digital elevation model can illustrate it. These altitude 

provides a cooler climate that is ideal for potato growth, with temperatures falling within the 

optimal range for potato cultivation. These regions also receive adequate rainfall, essential for 

potato cultivation. The soil in these regions are also generally fertile and well drained which is 

beneficial to potatoes. The seasonal variability also allows farmers to plan their planting and 

harvesting cycles to align with the optimal growing conditions ensuring good yields.  

  

II. Maximum elevation 

This factor was also highly influential in the model’s predictions of Irish potato flows. This study 

revealed that elevation, alongside good potato climatic conditions plays an important role in 

predicting Irish potato flows. High elevations areas may also face challenges as cooler temperatures 

and rugged terrain can affect potato yield and transportation efficiency.  These factors influence 

the volume and reliability of potato flows from these regions.  

III. District pair distance  

The geographic distance between districts pairs emerged as an influencing factor as well. It was 

fundamental to the gravity model and also reflecting the transportation hindrance associated with 

moving food over long distances. It was observed that shorter distances facilitated easier and 

effective  movement of potatoes between districts. This is further enhanced by the potato flow 

channel sketch illustrated in figure 3 and images in appendix. Potatoes are carried locally on bicycles 

from the potato field to the markets close by or in between neighbouring districts.  
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IV. Potato Production quantity 

Additionally, produced potatoes per district which was extracted from the yearly  Agri-survey  

datafile was influential as well. This indicated that potatoes produced in a district directly impacts 

the availability of surplus quantity for distribution. Higher yields indicate greater production 

capacity, enabling more significant flows to other districts. This emphasized that areas with higher 

production can serve as major suppliers.  

 

V. Land use patterns 

The proportion of landuse landcover was another influencing factor of the potato flows where 

Rangeland and cropland portion percentages were more impactful. This reflects the district’s 

agricultural focus and capacity. Districts with higher percentages of agricultural land were more 

likely exhibiting potato flows as they are likely to have influential agricultural systems. Some landuse 

classes also lowered the presence chance of potato flows like lower percentage of cropland coverage 

and more water landcover percentage present in a district. 

 

VI. Market characteristics 

Market characteristics factors were at the least influencing features where they were shown as less 

influential to the potato flow between districts. These features included the type and market 

infrastructures i.e.: urban, rural, peri-urban markets or market infrastructure being permanent, 

semi-permanent or open. These features exhibited less influence which illustrated that that potato 

flows could still be observed regardless the presence or absence of these features.  

4.3. Classification results 

The RF & SVM models coupled with LIME, an xAI technique provided comprehensive insights 

into factors influencing food flows. The RF model’s overall accuracy was 94% , The feature 

importance global interpretation also showed that yearly mean temperatures, maximum elevation 

and district pair distance were most influential features to the prediction.  

The SVM model, although slightly less accurate with 93% of overall accuracy, collaborated the 

findings of the  RF model. Both models emphasized the influence of environmental and social 

factors in food flows. 

The successful classification of the presence or absence of potato flows in between district was due 

to a strategic splitting technique by paying attention to the data characteristics. (Nath & Subbiah, 

2018) of highlights the need for a diverse and balanced dataset splitting for effective model’s 

predictions. This allows the model to capture relevant key information which was the case to our 

model. We have to note that the dataset presented an imbalance between classes where 7% of the 

dataset only presented the Irish potato flows. This is reflected by the F1 score  from both models 

(RF, SVM) where  particularly for class 1 (presence of flows) was significantly low compared to 

class 0 (absence of flows) which had enough representing samples. 

4.4. Local interpretable model-agnoostic explanations (LIME) 

LIME, which was used to give insights in model’s particular predictions,  highlighted local 

importance of contributing features. LIME was utilized in trying to capture the details at particular 

pair instance, this technique successfully revealed influencing features at particular instance 

predictions. 870 model instances are present representing the total training pair samples. To explain 

more, examples were presented in the results section, i.e.: instance number 48, representing a flow 

between Gakenke and Bugesera districts, LIME illustrated that the model outputted probabilities 

of 0.83 for class 1 and 0.17 for class 0. This shows the internal model’s decision at that particular 

case instance which in the end affect the overall model’s prediction. Positive contributing features 
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(highlighted in orange) were the yearly mean temperature, the LULC class of cropland, the district 

area and minimum elevation just to name a few. Here the district area was shown as locally 

influencing while on the  model’s global interpretation, it wasn’t the most influential. This again 

emphasizes the need  for model’s clarity while contributing to the ongoing research or transparent 

and interpretable models. global 

4.5. Limitations 

Class imbalance:  An important challenge during this study and model’s predictions was the class 

imbalance. This is an unequal representation of predicted classes which introduces bias and result 

in poor model’s overall accuracy (Chakravarthy et al., 2019). The models performed well in 

predicting the absence of food flows(class 0) but struggled with predicting the presence of flows 

(class 1). This imbalance likely led to lower f1scores for class 1. Future work could focus on 

techniques to address class imbalance. Mores advanced sampling methods can be used (Dubey et 

al., 2014). 

Temporal Dynamics: this study used a static temporal scale, 2023. This was due to the surveyed 

primary market data that had flow data.  Incorporating  temporal dynamics such as  Potato seasonal 

variability and time series data could improve the model’s ability to predict food flow in a more 

refined manner (Davis & Pineda Munoz, 2016). Also some datasets were not yet available for the 

considered time stamp. i.e.: Yearly Climate data like the precipitation and temperature. The 

availability of the corresponding time stamp data could improve the overall accuracy. 

Data Scale: In this study some features important socio-economic features were not considered to 

the absence of data at the desired district scale. i.e.: age, economic wealth or the education level of 

district population. These could have explained in details the characteristics of the districts at study  

How do you expect this affect the results? 

Flow quantity: Food item flow quantity was missing in the acquired dataset. The district produced 

potato quantity was used in this study. This does not represent the moved flow quantity across 

different districts. Having this dataset helps in the understanding of local food flows and would  

help to characterize better the food flows at study. The availability of this data could have improved 

the overall accuracy and reliability of this study. Further studies can focus on acquiring precise flow 

quantities.  

4.6. Implications  

Insights from this study reveal several implications for policy makers and practitioners aiming to 

enhance food flows and food security in Rwanda:  

 

I. Infrastructure Development : understanding food flows on the district level can help the 

government plan for infrastructure development. Most potato producing regions are found 

in highly elevated areas as shown with the most important features, improving 

transportation infrastructure which could help in food movement , particularly in these 

areas can facilitate more efficient flows. Investment in roads or potato storage facilities can 

significantly reduce transportation costs which can be reflected on the final consumer price.  

 

II. Support for High-Yield Districts: policies that support and enhance productivity in 

observed high-yield districts can help balance potato availability across the country. This 

may include investing in Irish potato seed multiplication. This was also noted  as an input 

from farmers during the  field surveys. This can help relieve constraints imposed by the 

local potato seed costs and availability while focusing on improving productivity.  
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III. Market Development: Well-functioning markets are critical for effective food distribution 

and can help in stabilizing prices and improving access to food (Gouel, 2013). 

Understanding food flows can help strengthen market infrastructure as it would give 

insights on local distribution dynamics. Additionally ensuring the availability of reliable 

market information can enhance the efficiency of distribution systems. This involves 

improved market facilities, supporting local market cooperatives and leveraging digital 

platforms for market information dissemination.  

4.7. Future Study Directions 

Based on findings from this study, the following recommendations are proposed further to enhance 

the understand the implication of this research and impact. 

I. Integration of market level flows: While this study provides valuable insights, it has 

certain limitations. The reliance on specific datasets, such as market district level data flows.  

While the surveyed data was at market level , the dataset only comprised of reported district 

level food flows. Recording the finest, small scale data i.e. market level data flows can 

increase the resolution of details and reveal more factors that influence local food flows.  

II. Scope & temporal expansion: while this study only focused on Irish potato flows, future 

research could expand the scope by including a wider variety of crops which are important 

to the local context. Further exploration of other machine learning models and xAI 

techniques could also enhance the robustness and interpretability of the predictions. 

Additionally, the temporal scale can also be increased comprising a longer year periods.  

5. ETHICAL CONSIDERATIONS  

This research strictly followed ethical standards, in accordance with the university of Twente’s 

Research Ethics Policy. This commitment ensures the protection of participants' privacy, the 

welfare of their communities, and the preservation of the environment. All procedures involving 

human participants adhered to these guidelines, ensuring informed consent, confidentiality, and 

the right to withdraw without any consequences. 

Data collection and handling was conducted with the utmost respect for privacy and mindful of 

the local customs and traditions. Ethical approval was sought from the relevant Institutions before 

commencing the study. The research team initiated contact and clearly conveyed detailed study 

purpose to ensure flexibility. Furthermore, no potential conflicts of interest occurred between 

researchers and involved communities.  

Throughout the research process, the engagement with local communities, seeking their input 

towards food flows was done. The welfare of participants and the integrity of the research data will 

has always been in our foremost priorities. While adhering to these ethical principles, we aimed to 

conduct a responsible and socially accountable study that fosters resilient Agri-food systems and 

food security 
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6. CONCLUSION 

This research delved into understanding food flows at the district level to ensure food security, 

particularly within the context of developing countries like Rwanda. The study was driven by the 

need to understand food flow at a more localized level as this can lead to efficient and robust food 

distribution systems. Objectives included understanding and predicting food flows at district level 

with a specific focus on Irish potato distribution among its 30 districts of Rwanda. To achieve this, 

the study employed two machine learning (ML) models, Random Forest (RF) and Support Vector 

Machine (SVM), coupled with Explainable Artificial Intelligence (xAI) techniques. The integration 

aimed at enhancing the transparency and interpretability of predicted outcomes, providing a robust 

framework for policy-making. 

 

The findings revealed that both the RF and SVM models demonstrated high accuracy in predicting 

Irish potato food flows, achieving overall accuracies of 94% and 93%, respectively. These models 

were trained on a comprehensive dataset encompassing environmental and socio-economic 

features. Despite the challenges posed by the dataset imbalance, several significant factors emerged 

as key influencers of food flows especially environmental features. These included yearly mean 

temperature, maximum elevation, district pair distance, land use patterns. The least influencing 

features were market characteristics. The use of LIME, an xAI technique, clarified the decision-

making processes of the ML models by identifying the contributing features for specific 

predictions. This enhanced the transparency value of the models, making them more useful for 

policy-making and practical applications. 

 

This study supports the achievement of Sustainable Development Goal 2, aiming to end hunger, 

improve nutrition. The integration of Machine learning models and a detailed focus on local 

districts flows contributes to food flow literatures, paving the way for future research and practical 

applications in other regions and contexts. 
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APPENDIX 

Potato Flow Channel explanations 
 
 

 

 

 

 

 

 

 

 

 

 

 

Potato field harvesting 

 
 

 

 

 

 

 

 

 

 

 

 

 

Bike potato transport to the collection center 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

A potato collection center where wholesalers 

collect potatoes 

 
 

 

 

 

 

 

 

 

 

Inside a potato collection center house 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Truck loading for export outside the district 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

Visiting a potato collection center 
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Feature importance of RF 
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Feature importance of SVM 
 

 


