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1    INTRODUCTION 
In the early stages of computing, co-founder, and former CEO of 

Intel Gordon Moore predicted that the number of transistors on a 

microchip would double every two years [90], thereby hinting 

toward an exponential increase in computing power every 

couple of years. To date, Moore’s law has had a relative high 

degree of accuracy, however, it could be challenged by the laws 

of physics in the near future [102], as Heisenberg’s uncertainty 

principle will interfere with the increased miniaturization of 

computing components [12], therefore contradicting Moore’s 

law. As there are many assumptions that classical computers 

will reach their limit [15], quantum computing has garnered 

more attention in recent years. The need for computing 

architectures, especially quantum computers, that cater towards 

this necessity of constant improvements in computational power 

is persistently being emphasized by studies showing that there is 

an increased amount of attention and funding going towards 

projects in this industry [112, 107]. Actors in the financial 

industry such as JP Morgan Chase & Co, and Morgan Stanley 

are investing in quantum computing as they can see, and justify 

the great potential it can have on their operations [69, 86] 

 

Quantum computing exploits the use of quantum mechanics, 

giving it the ability to compute complex mathematical problems 

faster than traditional computers in theory [116]. A company 

equipped with a quantum computer would gain a substantial 

competitive advantage over rivals, which is a key reason why 

some companies invest heavily in quantum computing [20].  

 

In this research, the relationship between quantum computing 

and portfolio optimization will be explored. Additionally, the 

manner in which quantum computing and portfolio optimization 

are currently described in the literature will be examined by a 

systematic literature review. Subsequently, comprehensive 

research findings in corporate white papers are reviewed and 

related to the findings from the systematic literature review.  

 

Currently, there is lack of literature that shows a congruent 

structure and relation between the development and 

implementation of quantum computing for portfolio 

optimization in academic and corporate settings, therefore this 

research is performed. As a result, the main research question is 

characterized as follows; “how can quantum computing 

effectively be applied to address the challenges of portfolio 

optimization considering existing theories, practical use cases, 

and corporate whitepapers in the financial industry”. 

 

This study contributes to the field of literature by synthesizing a 

comprehensive review and analysis of the existing literature on 

quantum computing, specifically in the context of portfolio 

optimization. Additionally, a document analysis based on up-to-

date corporate whitepapers is performed. By synthesizing these 

insights from academic and corporate sources, this research 

offers a clear overview of the current knowledge on the subject 

of portfolio optimization and quantum computing, 

 

2    LITERATURE REVIEW 
The following literature review gives insight into the 

components of quantum computing that are valuable towards 

this research, along with the current theoretical framework 

regarding quantum portfolio optimization.  

 

2.1 Quantum computing theory 
Classical computing works through bits in a binary format, these 

bits can have two possible values, of which are either ‘0’ or ‘1’ 

[109]. These bits are the smallest notation in which data is stored 

on a computer and are often represented by a certain value such 

as ‘true/false’ or ‘yes/no’ [108]. In classical computing, a bit can 

only be in one of the two states at a time [108]. Quantum 

computing works through ‘qubits’, which are bits that exist in a 

superposition of both ‘0’ and ‘1’ until they are observed [109, 

110]. Following will be the most important subjects discussed.  

 

Superposition and qubits 

Quantum computing is represented by qubits, which are bits that 

can be present in different states at the same time, this state is 

called superposition [85, 86]. However, the moment this state is 

measured, it will shift towards a definite, observable state of 

either ‘0’ or ‘1’. A visual representation of how superposition 

works, and how qubits can be represented may help to give 

insight, figure 1 illustrates a simplified version of this. 

 

Figure 1, representation of qubit positions in a Bloch sphere 

when observed [70] 

Figure 1 is a representation of qubit positions on a Bloch sphere. 

Following the green arrow, the two possible positions of an 

observed qubit are characterized by the state of ‘1’ or ‘0’. For 

actual superposition, it must be envisioned that the green arrow 

is pointing in a direction that is not aligned with either ‘1’ or ‘0’.  

 



Quantum entanglement 

Quantum entanglement is a key subject enabling the exploration 

of multiple solutions simultaneously. Quantum entanglement is 

when two or more qubits are placed in entangled states [109, 

110], meaning that despite the qubits being physically separated, 

they will still influence the outcome of measurements performed 

on each other [109, 110]. When measuring these entangled 

qubits, there will always be a correlation between the outcomes 

that they give [23], such a correlation can be depicted by an 

entangled pair of qubits. Qubit entanglement among other 

factors enables the exploitation of quantum operations to 

increase the probability of desired outcomes and decreasing 

undesired ones [109]. Figure 2 shows a representation of how 

entanglement can be interpreted in a simpler format.  

 
Figure 2, entangled qubits [19] 

Quantum decoherence 

For quantum computing systems to work properly, they should 

be isolated from any outside interference [86]. If any outside 

factor interferes with the qubits, then the state of the qubit can 

collapse [86]. Examples of such interferences can be small 

changes in temperature, stray electric or magnetic fields [109].  

 

In general, the measurement of qubits is probabilistic [96], 

meaning that multiple measurements have to be done over time 

to achieve a more desired output [96], where this is generally the 

highest average of the results given from the outputs (e.g. results 

with the highest chance of occurrence). Furthermore, to achieve 

these results the state of the quantum system is often 

manipulated in such a way that the desired result has the highest 

likelihood of occurring [96, 95], this is further mentioned in 2.3 

 

2.2 Insights into portfolio optimization 
Portfolio optimization constitutes the act of maximizing gains 

while minimizing risk [79]. A financial portfolio is characterized 

by a collection of investments in assets such as stocks, bonds, 

commodities, cash, and ETFs [117]. The objective of the 

investor is different when observing the initial objectives [57], 

where the amount of risk an investor should take is related 

towards the degree of potential gains, this trade-off should be 

favorable to undertake an investment. One of the cornerstones of 

portfolio optimization is ‘modern-portfolio theory’ (MPT) [84], 

developed by Harry Markowitz [84], with the aim of creating an 

efficient portfolio that maximizes gains and minimizes risk [84]. 

The ideal trade-off between risk and reward can be visualized on 

a graph called the ‘efficient frontier’, see figure 3. Many factors 

can influence expected risk and return, these influences often 

appear in the form of added variables or constraints in the 

calculation of most efficient portfolios (e.g. budget constraints, 

investor preferences, regulatory requirements, liquidity needs). 

Both in classic and quantum computing methods, these variables 

and constraints are each integrated in models/algorithms adapted 

for the computing methods, this is further explained in 2.3. The 

capital market line (CML) represents portfolios that optimize the 

risk and return relationship, defined by the ‘Sharpe ratio’ and 

risk-free rate [46]. The Sharpe-ratio is a measure of risk adjusted 

return, mostly used as a performance measure for optimization 

models [61, 46]. The formula for the Sharpe-ratio is as follows: 

 

    Sharpe-ratio = (Rm – Rf) / σp                   (2) 

Where Rm is the expected return of a portfolio based on the 

market, Rf is the risk-free rate, and σp is the standard deviation 

of returns of the portfolio [8].  

 
Figure 3, Efficient frontier example [15] 

Approaches toward portfolios are mainly determined by pre-

defined objectives [1], these objectives are reflected in the asset 

mix and risk and reward trade-off over a predetermined amount 

of time [1]. Dependent on these objectives, the efficient frontier 

changes accordingly. Portfolio optimization can be approached 

in multiple ways, classical approaches, and intelligent 

approaches [51]. Classical approaches are based on traditional 

financial theories such as MPT, or Capital Asset Pricing Model 

(CAPM). ‘Intelligent approaches’ are characterized by their 

machine learning capabilities and ability to learn from historical 

data [51]. These intelligent approaches mainly include Bayesian, 

support vector machine, neural network, reinforcement learning, 

and evolutionary-based approaches [51]. For quantum 

computing, most often it is observed that classical and intelligent 

functions are altered in a way to fit certain quantum algorithms.  

 

2.3 Quantum Portfolio Optimization Methods 
The main goals of applying quantum mechanics towards the use 

of optimization problems is the greater speed and accuracy it can 

provide [57]. Portfolio optimization’s main function should be 

to construct a portfolio of assets that maximizes returns and 

minimizes risk [79]. The next part only gives insight into the 

broader quantum methods to lay the foundation of what is to be 

specified in part 4 ‘findings’. 



Quantum hardware for finance 

Solving quantum computational problems is facilitated through 

the use of quantum hardware [5, 57], where this hardware 

enables the solving of quantum problems not feasible on 

‘classical’ hardware [5]. Quantum hardware mainly consists of 

two recognized types: gate-based quantum computers, and 

quantum annealers [5]. Quantum simulators can also be seen as 

a way to model the behavior of quantum systems [57], which is 

the simulation of quantum hardware on a classical computer 

[57], mostly used to theorize future quantum hardware 

possibilities in problem solving methods [57]. Current quantum 

hardware is also called ‘noisy intermediate-scale quantum’ 

(NISQ) devices, this characterizes the fact that current quantum 

hardware is still underpowered and prone to errors [57].  

 

Quantum annealers are mostly used for optimization problems 

[5], which work through leveraging quantum mechanics 

principles to solve certain problems [40, 75]. The annealing 

process involves qubits in a superposition, which are influenced 

via biases (e.g. magnetic forces) and couplers to achieve 

different probabilities of finding a certain state of the qubit(s), 

either in the ‘0’ or ‘1’state [40, 75]. Couplers serve the purpose 

of creating interaction, or entanglement, between qubits so that 

desired outcomes are achievable [40. 75]. In short, quantum 

annealers gradually change the form of a particle from its initial 

state to fit a desired functional form [96], this desired form in a 

quantum annealer is either a minimum or maximum state and 

therefore also the solution to the problem statement (think of 

min/max size/cost/distance or risk from a set of solutions.)  

 

Gate-based quantum computers have many different physical 

realizations [96], however, they all work according to the same 

fundamental principles. A gate-based quantum computer can be 

depicted as: “quantum computers that operate using qubits in a 

superposition state, manipulated by quantum gates to perform 

specific computations for a desired classical result, where error 

correction techniques ensure greater reliability of results” [96, 

5, 57]. Gates in classical computers are switches that at discrete 

time intervals generate a pulse of electricity corresponding with 

either ‘0’ or ‘1’ [96]. Quantum gates are an extension on this 

principle, where they are physical devices made out of some 

material that manipulate the quantum state of qubits [96].  

 

On these quantum hardware, certain mathematical and 

computational models are applied, each differing in their 

objective function and problem formulation. Models such as 

QUBO or the Ising model (for a quantum annealer) are often 

taken as the base and adapted upon to fit certain algorithms to 

optimize a variety of problems [96, 95], where problems for 

gate-based quantum computing are often reformulated to fit 

certain developed types of quantum gates, and differing numbers 

of qubits to best fit an objective function [96].  

 

 

Quantum algorithms 

Quantum algorithms are specialized algorithms that run on 

quantum computers [41]. Quantum algorithms form the basis of 

quantum computing applications, where algorithms are adapted 

and tailored to find solution for specific problems, from 

optimization to machine learning and Monte Carlo [57]. 

Considering quantum algorithms, there are countless to name, 

each having their specific application towards certain problems. 

When analyzing the literature available, many reports either 

took inspiration from foundational algorithms/models and 

adapted upon them to fit specific problems or found ways to 

optimize existing quantum algorithms/models. Most commonly, 

foundational algorithms such as QUBO, the Ising Model, 

Grover’s algorithm, Shor’s algorithm, or Harrows-Hassidim-

Lloyd (HHL) algorithm, to name a few, are taken and made to 

fit certain methodologies and problems (e.g. optimization for 

portfolio risk or Monte Carlo for derivative pricing) [5, 57].   

 

Machine learning 

Quantum machine learning is a certain methodology that makes 

use of quantum algorithms to enhance traditional machine 

learning techniques to be used for things such as classification, 

clustering, regression, quantum neural networks, reinforced 

learning, generative models, dimensionality reduction, and other 

novel uses [57, 101]. As for portfolio optimization/finance, 

quantum machine learning has its potential use in big datasets 

for anomaly/fraud detection, asset pricing, financial forecasting, 

credit scoring, stock selection, and metrics that capture a 

market’s forecast of likely movement [57, 101] 

 

Stochastic modeling (Monte Carlo) 

Stochastic modeling tries to find the probability of various 

outcomes under different conditions using random variables [57, 

72]. A key characteristic that makes stochastic modeling 

separate is that it inherently incorporates uncertainty into the 

analysis (which is often characterized by the term ‘fuzzy’ in 

literature) [72]. In the realm of quantum stochastic modeling for 

finance, quantum algorithms are often related towards a Monte 

Carlo type integration (MCI) [57, 5], where sampling from a 

probability distribution is traditionally utilized to approximate 

solutions for a desired problem statement [5]. Problem 

statements in stochastic modeling are found in the form of 

estimations of probabilities or expectations (e.g. estimation of 

risk measures, pricing of derivatives, or expected payoff of a 

financial derivative at a future time) [5, 41, 57]. In quantum 

Monte Carlo Integration (QMC), a quantum speedup is most 

often achieved through the use of the Quantum Amplitude 

Estimation algorithm (QAE) [57], an algorithm that aims to 

estimate the probability of a specific outcome in a quantum 

system. Compared to classical MCI, where samples are 

considered as classical queries [57], and thus the key to giving a 

desired result, QMC using QAE requires significantly less 

queries to achieve a result, thereby embodying a quantum 

speedup in theory [57]. Even though, the use of QAE for QMC 



is most often considered, other algorithms for QMC exist. 

Examples of quantum algorithms used for Monte Carlo in 

finance are HHL, qPCA, QPA, and QPE [5].  

 

Quantum Optimization 

Optimization is the most prevalent methodology in quantum 

computing for finance. Actual problem statements can be 

distinguished between two different general groups [57]. NP-

hard problems are seen as problems that are currently not 

solvable efficiently [57, 1], and therefore present a great 

challenge for both classical and quantum hardware, where 

quantum hardware is able to tackle NP-hard problems more 

efficiently than classical algorithms, it still cannot solve it most 

efficiently [57, 1]. Besides that, there are problems that are not 

NP-hard, which can be solved efficiently and have a great body 

of literature encompassing how to solve them efficiently [57]. 

Ultimately, NP-hard problems are not specific to optimization 

problems but can also be formed for other methodologies.  

 

Types of quantum optimization problems can also be grouped in 

broad terms; three main groups can be recognized. 

‘Combinatorial optimization’ is “the act of trying to find the 

combination of values of variables that optimizes an index from 

among many other options”, often using discrete or integer 

optimization for quantum algorithms [57]. Next to that, (non) 

convex optimization problems encompass “the process of 

minimizing a convex objective function subject to convex 

constraints” [87], where the minimum of this function conveys 

the desired result for the problem [87]. Lastly, Large-scale 

optimization problems are characterized by a significant number 

of variables and constraints that currently may prove to be too 

hard to solve for NISQ hardware [57], where it is suggested that 

to compensate for this lack of computing power, a hybrid 

between classical and quantum computing is to be realized [57], 

where the problem is to be subdivided into subproblems that are 

either solved/optimized on a quantum computer and classical 

computer [57], multiple reports exist on this hybrid between 

quantum and classical computing for optimization. 

 

Financial application for quantum optimization algorithms 

mainly includes portfolio optimization, swap netting (financial 

consolidation of payments or obligations to reduce risk and 

create better operational efficiency [55]), predicting financial 

crashes, identifying creditworthiness, optimal arbitrage (buying 

and selling financial assets in different markets for a profit) 

[57]. Most common algorithms for quantum optimization 

problems and quantum portfolio optimization include quantum 

annealing, QAOA, VQE, VarQITE, QTS, QUBO, QIPM, HHL, 

and other novel variations of these algorithms. 

 

The next part explains the results found in the initial literature 

search, with its process being explained in part 3 ‘methodology’, 

consisting of a comprehensive overview of quantum portfolio 

optimization methods from academic literature. 

2.4 Quantum computing in finance review 
As mentioned in part 2.3, quantum computing follows certain 

objective functions, algorithms, in certain methodologies, on 

quantum hardware. To visualize this process, figure 6 (see 

appendix), inspired by Alabereti et al (2022) shows this process. 

In the next part, a total of 57 papers, that were summarized for 

use in table 7, are analyzed and taken as a representative sample 

for current views on Quantum Computing in finance, 

specifically portfolio optimization. 

 

Algorithms used 

To first put into perspective usage of quantum algorithms (Full-

quantum algorithms, heuristics, metaheuristics) for PO 

problems, chart 1 is made. 

 
Chart 1, Frequency of Quantum-algorithms used 

In most of the literature, base algorithms such as VQE, or QTS 

were improved upon via certain proposed methods (e.g. 

parameter optimization, or optimization of the classical part of 

the algorithm, as it is a metaheuristic). Some papers did not use 

any algorithms for problem solving as they were surveys or 

literature reviews. Lastly, ‘models’ signify instances where 

solving a problem involves a conglomerate of methods put 

together into one to solve a particular problem (e.g. the use of 

DDQCL on QCBMs model [6]) 

 

Furthermore, in more than half of the papers, QUBO is used as a 

‘format’ to both formulate certain problems and as a solver, this 

dual purpose can understandably create some confusion, QUBO 

can only be applied to combinatorial problem classes. Next to 

that, QAOAz is the successor of QAOA, which is found in more 

recent papers as it offers greater flexibility and exploration of 

the solution space. Additionally, QTS showed predominant use, 

this was mainly because different works in this literature pool 

sought to improve on other works that used QTS. Lastly, certain 

algorithms are also often used to optimize certain sub-parts of a 

calculation (e.g. the use of VQE for parameter optimization, or 

the use of VQE to generate an optimized asset pool for a PO 

problem). Results showed that the use of this method provided 

better and more efficient results on average. 

 

In multiple papers, quantum algorithms were put to the test 

against classical algorithms, where in the remaining they were 

put to the test against other quantum algorithms. For the sake of 

putting into perspective quantum speedup, a comparison against 
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classical methods is a pre-requisite. As [49] mentions for one of 

the pre-requisites to fully assess quantum speedup, “The 

quantum algorithm should have a plausible case for asymptotic 

quantum speedup”, indicating that a comparison between 

classical and quantum is a need to estimate practicality. 

Classical algorithms that were benchmarked against were 

predominantly; Brute-force, Genetic Algorithms, SMA [24], 

SRO [24], MVO [24], and the non-quantum counterparts of the 

algorithm (e.g. PSO against QPSO [52]). 

 

Use of constraints and different problem sizes 

It is natural to assume that conditions under which the optimal 

portfolio is formulated represent that of a real situation, 

therefore, the use of constraints and different problem sizes in 

the formulation of a PO problem is important, as this seeks to 

fill in the gap between theoretical and practical models. 

Furthermore, as investor preferences are different, certain 

constraints or changes to the formulation of the PO problem can 

be added. The greater part of the papers in this review 

incorporate the use of different constraints to achieve a higher 

degree of practicality, however, this is often at the cost of added 

complexity to solving the problem, thereby necessitating more 

computational resources.  

 

In the case of the 57 reviewed papers, as problem sizes 

increased, the performance and accuracy of results of quantum 

algorithms increased overall [6, 41, 64, 92]. Some papers 

mentioned a decreasing trend in the ability to solve larger 

problem sizes [81] this may have been due to increased noise, 

error rates, and qubit connectivity of current NISQ devices in 

this paper, thereby also stressing the importance of error and 

noise reduction methods in current NISQ devices. 

 

As for constraints, it was perceived that as more constraints 

were added for better representativeness to real-world situations, 

results tended to be closer to optimal for the objective function 

[92, 74, 82, 88, 104, 111]. However, added constraints were 

proven to be cause for additional computational power needed, 

thereby also increasing solving times slightly [37]. Sometimes 

constraints were neglected by the algorithm to find more 

adequate results [74, 88, 78], this can mainly be traced back to 

soft-constraints being applied instead of hard-constraints., 

meaning that solvers are allowed some tolerance in adhering to 

set constraints, and thereby given more room in the search 

space. Hard constrained optimizers are easier to optimize as 

their landscape is easier to quantify and has more direct 

parameters, therefore creating a straighter road to the solution so 

to say, whilst soft constrained optimizers have a more 

challenging landscape due to their increased flexibility, allowing 

for a broader range of possible solutions [14].  

 

Quantum versus Classical performances 

A couple of preliminary things ought to be mentioned. First of 

all, finding an optimal solution to an objective function does not 

directly imply better performances, as both methods may have 

found the optimal solution. It is only when the problem 

instances grow to a size or format (e.g.in non-convex 

optimization problems [88, 25]), where it is infeasible for 

classical methods to solve, that measures in optimality of 

solutions are relevant. In situations where both methods should 

be able to find the optimal solution, the two most looked at 

measures are that of ‘time-to-solution’ and whether the method 

can actually find that optimal solution. Furthermore, there are 

some instances where the optimal solution is not known. In such 

a situation, benchmarks are performed by comparing results of 

each method against each other, or against a baseline solution 

that is known to be ‘good’.  

 

Lastly, it is very important to mention the difference between 

tests performed on simulated/digital and real quantum hardware, 

where simulated/digital environments allow researchers to test 

algorithms and obtain theoretical performance measures in 

environments without most of the constraints of NISQ hardware 

(e.g. noise, errors, decoherence, qubit limitations, gate 

limitations, qubit connectivity, to name a few), it tries to 

simulate a close to idealized environment for potential 

performances of future realized and fully working quantum 

computers, as current quantum devices cannot perform on that 

level yet. However, simulations are performed on classical 

devices, thereby still being limited in their computational 

abilities. Nevertheless, in the 57 papers, some experiments are 

done on real-quantum hardware, but in general, simulated/digital 

hardware is used for benchmarking. 

 

The following charts will give a good representation of NISQ, 

Classical, and simulated/digital performances against each other 

(where they show percentages of which method showed better 

performances than the one that is compared with), indicating 

which method is better 40/57 available papers are used.  

 

17 papers could not be used for comparisons due to multiple 

reasons; some papers only acknowledged simulated versus 

simulated results. Furthermore, some only mentioned 

performance benchmarking against previous works that were 

further build upon, only benchmarking against the previous 

iteration of the paper. Lastly, several papers either reported 
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similar performances across methods, remained neutral, or were 

unclear about the differences between them. 

 

Looking at the charts, simulated hardware outperforms classical 

methods 96% of the time, where the only outlier mentioned that 

the classical method (Frieze-Kannan-Vempala) outperformed 

the simulated hardware, where the proposed model was not 

well-suited for the quantum method due to its reliance on high-

rank and high-condition number matrices, which led to poorer 

performance compared to classical methods like FKV, showing 

in the numerical results from the test (high error rates, high 

noise, longer time-to-solve). 

 

Furthermore, the current limitations of real NISQ hardware can 

be traced back into the poor performances mentioned in most of 

the papers that utilize them. With only 37% and 20% of used 

papers linking better performances to real quantum devices. In 

the greater part of these instances, the only better performances 

were perceived via the most recent devices on the market, which 

are IonQ’s Trapped-Ion Device ‘Aria-1’ [8], ‘D-Wave 2000Q’ 

[91, 119, 120] and ‘D-Wave Advantage’ [120]. However, 

problem sizes were limited due to the increased noise and error 

rates occurring in NISQ devices. Chart 2 gives a great indication 

in regard to a future outlook on the use of real quantum devices. 

For a detailed view into the results found in the above 

paragraph, see table 7 and Table 8 in the appendix. 

 

Challenges and limitations 

As the name ‘NISQ’ suggests, current quantum computers 

perceive multiple challenges and limitations. Looking at the 

studied papers, a couple of things can be said on this topic.  

 

Noise and errors in simulated devices 

As the use of simulated devices aims to show the full potential 

of quantum computing, nevertheless, there are still papers 

considering the simulated implementation of noise and error to 

test their mitigation methods on. These studies investigate a 

more ‘realistic’ scenario, where the inherent challenges of NISQ 

hardware are put to test using various error mitigation strategies. 

 

Error, Noise, local minima/maximums, resource requirements. 

One of the main issues addressed was the importance of error 

mitigation techniques, as multiple papers found that the quantum 

algorithms used were prone to errors, which could be due to a 

multitude of reasons (e.g. Hamiltonian simulation error, or 

higher errors perceived due to increased distances between 

qubit connections [16, 22]), they suggested or implemented the 

use of error mitigation techniques to solve this issue [11, 72, 77]. 

Results using error mitigation techniques showed great 

improvements in error rates, and thereby superior solution 

quality and efficiency of the computational processes [29, 51, 

80]. However, error mitigation techniques were proven to be 

cause for additional computational overhead [41, 52]. Real-

quantum hardware was found to be significantly more prone to 

error and noise. 

 

Another difficult hurdle to overcome was the convergence of the 

algorithms to local optima. As most of the used problem types 

(e.g. non-convex and combinatorial problems) are cause for 

there to be many suboptimal solutions, the algorithms were 

prone to finding these suboptimal solutions and become stuck, 

thereby not recognizing the global optimal solution [18, 29, 82, 

111], or for the algorithm to recognize it and move away from it. 

Multiple papers introduced measures that helped the algorithms 

to avoid these local solutions [18, 66, 74, 76, 82, 94]  

 

Considering resource requirements, there was a relation seen 

between the complexity of the problem and the computational 

resources needed. However, it was mentioned that as complexity 

increased for classical methods, their time-to-solve would grow 

exponentially [24], whereas quantum methods showed a linear 

trend in increased complexity time-to-solve [24].  

 

3    METHODOLOGY AND RESEARCH 

DESIGN 

3.1 Research protocol and data gathering 
The methodology part pertains information on exactly how the 

main research question is answered. Considering the current 

structure and layout of the research paper, a systematic literature 

review was chosen. A systematic literature review is 

characterized by its nature to identify, select, and critically 

appraise papers to be able to answer formulated research 

questions [26]. This research is meant to give perspective on the 

current, and of best quality, literature.  

 

One important factor in a systematic literature review is bias, 

more specifically the lack of a bias. As systematic reviews and 

meta-analyses are susceptible to a multitude of biases, this ought 

to be minimized [39]. This research will follow the PRISMA 

2020 flow diagram to ensure that up to date, unbiased, and high-

quality articles are chosen. The PRISMA flow diagram aims to 

enhance the transparency and reproducibility of systematic 

reviews. It assists in finding quality papers by going through a 

process/flow chart that gives a predefined protocol. 

Three databases are used to synthesize the primary and final 

pool of sources after they have gone through the process of 

screening and selection. These databases are the ‘Scopus 

database’ the ‘Web of Science’, and the ‘ArXiv’ database.  

 

There are many papers discussing quantum computing, and 

many papers discussing portfolio optimization, however, the 

link between these two is found by searching for certain 

keywords in the databases of Scopus and Web of Science and 

ArXiv. Before the first search of literature, keywords had to be 

identified, after searching through the results these keywords 



gave, a secondary search for new terms based upon these results 

was issued. Table 1 in the appendix shows the formed keywords. 

 

These keywords on their own will result in too broad of a 

search, therefore combinations of these keywords are searched 

for in a Boolean manner. A Boolean approach uses logical 

operators such as AND, OR, NOT. By using these logical 

operators certain keywords can be put together more effectively.  

Furthermore, truncation symbols may be used to get broader 

results when needed, where truncation symbols ensure that all 

variations of a word can be looked for (e.g. comput* can mean 

“computing”, or “computer”, or “computation” etcetera). The 

combinations used both on Scopus and Web of Science can be 

seen in ‘table 2’ in the appendix, they were not used on Arxiv. 

 

3.2 Searching for relevant studies, initial search 
Following the Prisma 2020 flow chart, certain inclusion and 

exclusion criteria need to be stated. Particular search filters can 

be applied to find more relevant papers. First of all, considering 

the Gartner hype cycle for data security measures, specifically 

on quantum computing, it appeared first on the model in 2011 

with a mainstream adoption expectation of more than ten years 

[62]. For the 2023 Gartner model, the expected plateau will be 

in two to five years [100]. Next to that, around the year 2011 

was when the first commercial quantum processors went 

mainstream and could be tested on [21]. Furthermore, this time 

marks the start of the physical process to quantum supremacy 

[21]. Therefore, research from before the year of 2011 will be 

filtered out during the performed searches and results from the 

time span of 2011-2024 will be used. However, in the end, all 

papers (except one outlier) used in both the searches surprisingly 

proved to be from the period 2018-2024 as substantially more 

papers were uploaded in that period on this topic. Besides, the 

papers before 2018 were ultimately filtered out due to full-text 

analyses showing they all were irrelevant. Furthermore, the 

language in which papers will be searched is ‘English’. The 

tables showing the inclusion and exclusion criteria can be found 

in the appendix. abstract, title, and full-text screening was 

performed after literature was collected, leaving 57 papers to be 

used. Following this rigorous selection process, the PRISMA 

2020 flow diagram is shown in the appendix (figure 4). 

 

Subsequently, these findings are uploaded, summarized and 

classified into different groups in the Endnote X9 software. 

Furthermore, as some papers in the final pool of literature are 

considered white papers, they will be added to the final pool of 

the ‘white paper literature search’, only if they are not cause for 

duplicate papers in that pool. Lastly, some papers were 

ultimately not used as they were either predecessors of other 

works, showed limited use in furthering the scope/quality of the 

thesis, or ultimately proved to be non-relevant to this thesis. 

Ultimately, the most important used papers were synthesized 

into a matrix (Table 7) to create a clear overview. 

3.3 Use of corporate white papers 
White papers are used to ensure the inclusion of practical, up-to-

date, and real-world insights into current industry applications of 

quantum computing for portfolio optimization.  

 

The following steps were taken in the research. First, a layout of 

current companies and start-ups working on quantum computing 

for the finance industry was mapped out. Subsequently, websites 

of these corporations were analyzed, as they contain papers that 

are valuable to gather insights from. After an initial pool is 

collected and uploaded to the Endnote X9 software, they were 

included or excluded based upon the named criteria in part 3.2, 

criteria that does not apply to these papers are not used. 

Additionally, a final search is done on the databases of ArXiv, 

IEEE Xplore, and online libraries to gather additional papers, as 

ArXiv and IEEE Xplore are great options to find white papers 

from companies. Lastly, as some search inquiries from the first 

systematic literature review included some white papers, those 

that are no duplicates will be added to the final pool of the white 

paper research. To fully map out this process, a second PRISMA 

2020 flow diagram was made, however, this one is altered to 

better fit this kind of search, see appendix (figure 5).  

 

To map out companies and startups in the field of quantum 

computing, resources such as ‘The Quantum Insider’, ‘Quantum 

Computing Report’ (QCR), and ‘The Quantum Economic 

Development Consortium’ (QEDC) were used. Furthermore, as 

some financial companies are not directly related towards 

quantum computing, but do take effort in research on the 

subject, additional searches are done on these companies on 

various financial outlets and other sources. After that, the 

companies are screened based on whether they convey any 

valuable information regarding quantum computing and finance, 

those that do not are excluded from the final pool, the remaining 

amount are further researched, see figure 5. 

 

4    White paper findings 
Table 6 and 9 in the appendix give a full overview of papers 

used and their contents in this following part. Next, a total of 25 

white papers are analyzed and taken as a representative sample. 

 

Algorithms used 

To first put into perspective usage of quantum algorithms (Full-

quantum algorithms, heuristics, metaheuristics) for PO 

problems in the 25 whitepapers, chart 5 is made. 

 
Chart 5, Frequency of Quantum-algorithms used 
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As can be deterred from chart 5, Quantum Annealing (QA) is 

the most used method, a stark difference as compared to that of 

the initial literature search. In the use of the whitepapers, 

quantum annealing is mostly specialized under D-Wave’s 

devices (including QBSOLV), as they have pioneered and 

extensively commercialized this approach, thereby signifying 

the companies’ prevalence in this industry. Both D-Wave and 

collaborating companies experiment on D-Wave’s devices in 

multiple whitepapers. Furthermore, a noticeable difference with 

the initial 57 papers, is the near total absence of Quantum Tabu 

Search (QTS), and the Variational Quantum Eigensolver (VQE). 

This may have been due to the VQE’s primary use in gate-based 

quantum computing, of there is significantly less whitepapers on 

due to its specialized applicability, less ‘practical’ use in NISQ 

hardware, and the abundance of whitepapers experimenting on 

Quantum Annealers. As for QTS, it is a more recent algorithm, 

could be overshadowed by more ‘practical’ approaches, and 

may have had an unreasonable representation in the first 

literature search (as was mentioned there). 

 

Use of constraints and different problem sizes 

Looking at the use of constraints, it can be said that the findings 

are mostly in line with those of the first literature search, 

showing that as more constraints were added, performances in 

regard to practical usage increased, or were generally very 

positive [2, 25, 83, 98, 99]. It was perceived that as more 

constraints were added, that computational resources needed 

also increased [25, 27]. In the initial literature review it was 

found that some models did not adhere to set constraints, two 

instances were found where this was the case in the whitepapers, 

this was for a real NISQ device, and D-Wave QBSOLV 

(simulated solver) [2, 43]. The possibility of constraints not 

being adhered to was also questioned and tested in some 

additional whitepapers [59, 99]. Findings that were contrary of 

those in the first literature search were sparse, however, two 

whitepapers managed to find opposing results. In the first, it was 

found that as less constraints were added, that only then 

quantum advantage showed over classical solutions [73]. As 

constraints are often a result of investor preferences, disobeying 

these constraints may have led to ‘better performances’, but not 

in the eyes of the investor. Furthermore, in one paper it was 

found that hard constraints performed better in the same model 

than soft constraints, thereby contradicting the findings in the 

first literature search. The reason for this contradiction may have 

been due to the initial paper in that search not adequately 

incorporating hard constraints (as this often proves to be 

difficult), which in the case of the white paper was done, where a 

method to better incorporate hard constraints was performed. 

 

As for problem sizes, the findings were the same as the initial 

literature review, where performance of the quantum devices, 

mostly theoretically on simulations, showed to increase 

performances overall [98, 83, 73, 114]. Furthermore, 

computational resources needed were also found to increase as 

problem sizes increased [114]. One paper did find contrary 

findings to those in the initial literature research, where this 

paper mentioned that quantum annealing struggled with larger 

problem sizes, as it was difficult to embed larger problem sizes 

into the system [36]. However, the device that the problem size 

was scaled on was the physical D-Wave Advantage, a NISQ 

device. Whereas real NISQ devices still show issues regarding 

larger problem sizes, this result was natural for them to find.  

 

Quantum versus Classical performances 

The importance of the division between tests performed via 

simulated/digital devices and real NISQ devices has to be 

stressed. Where NISQ devices still show varying limitations and 

challenges in their computational abilities (e.g. noise, errors, 

decoherence, qubit limitations, gate limitations, qubit 

connectivity, to name a few), and simulated/digital devices aim 

to produce a more idealized/theorized environment of testing. 

The following charts give a representation of NISQ, Classical 

and simulated/digital performances against each other. 

 

 

5 papers could not be used for comparison as they included 

either simulated versus simulated results, and papers that where 

either unclear on their standpoint, showed similar performances 

between methods, or were indifferent. Looking at the charts, a 

lot of interesting conclusions and comparisons can be made. 

Firstly, the dominance of simulated/digital quantum methods 

compared to classical ones were shown in chart 6, with 

simulated methods clearly being superior to classical ones. 

Experiments performed in the whitepapers showed that 

simulated methods had greater efficiency, time-to-solve, error 

rates, practical implementation, and quality of solutions. It is 

clear that the if the future of quantum computing follows this 

given, theoretical, outlook, it would mean substantial 

advancements in optimization and problem-solving capabilities.  

 

As for the comparison between NISQ devices and simulated 

devices, the same trend followed in the initial literature search is 

perceived in the white papers: simulated/digital devices 

consistently outperformed NISQ devices. This outcome is to be 

expected, as simulated/digital devices can account for some of 

the current limitations of NISQ hardware. 
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A very noticeable difference in the comparison between 

quantum and classical methods was that in 25% of the instances, 

PO problem solving on real NISQ devices outperformed 

classical methods. This case was close to the same for the initial 

literature search, however, there it was mentioned that problem 

sizes were downsized to compensate for the lack of NISQ 

hardware to solve large problem sizes. However, in the case of 

the two papers that outperformed the classical methods, the 

objective problems and data pools were of more practical use. 

These two papers are amongst the most relevant in the 

benchmarking of current NISQ hardware. Nevertheless, they 

still did not show the full potential of quantum computing. 

 

In the first paper, the D-Wave advantage 6.2 system was used 

[97], it has 5610 qubits, however, these cannot be used to their 

full potential due to the limitations in qubit connectivity, 

coherence times, embedding difficulty, and calibration 

difficulties, meaning that only a certain small amount of those 

5610 qubits can be used close to their potential. Nevertheless, 

the quantum method performed on the D-Wave Advantage with 

the Q4FuturePOP algorithm showed better results than industry 

experts at Welzia Management Company were able to achieve 

[97]. The experiment performed involved the use of 53 daily 

values of different assets spanning over a period of 13 years, the 

dataset is split up in 6 different combinations of periods and 

asset counts, with periods ranging from 12 to 28 months [97]. 

The quantum method offered better solutions in more than half 

of the instances considering either risk measures or expected 

return measures [97]. Additional information is found in table 6. 

 

The second paper considered the use of the IONQ’s trapped ion 

device ‘AQTION’ for Quantum Monte Carlo compared to 

traditional Monte Carlo on 5 asset portfolios, with 1000-euro 

budgets, over a longer period, and for three different market 

scenarios (stable, bearish, bullish) [106]. The device showed 

better performances with QMC than traditional Monte Carlo in 

terms of error reduction and efficiency [106]. QMC had smaller 

estimation errors and provided more efficient and accurate 

means of estimating asset values under stable and bullish market 

conditions, as queries increased, the QMC achieved less errors 

compared to normal MC [106]. Quantum speedup was achieved 

according to the paper [106]. Nevertheless, in the multitude of 

papers from both the initial literature research, and the white 

paper research, it was found that current NISQ hardware still has 

multiple limitations, where better performances compared to 

classical methods are predominantly not linked to each other. 

 

Challenges and limitations 

Error, Noise, local minima/maximums, resource requirements 

Multiple whitepapers acknowledged the importance of error 

mitigation methods [49, 50]. These whitepapers implemented 

error mitigation techniques (e.g. a self-error reduction technique 

[49]) to try and show the practicality of it, and its use for more 

accurate results, which were achieved [49, 50]. Furthermore, it 

was found that error mitigation techniques were cause for 

additional computational overhead, thereby decreasing time-to-

solution [50]. Unfortunately, no whitepapers were found to 

specifically operate without error reduction techniques.   

 

As mentioned in 2.4; “a difficult hurdle to overcome was the 

convergence of the algorithms to local optima. As most of the 

used problem types (e.g. non-convex and combinatorial 

problems) are cause for there to be many suboptimal solutions”. 

The same was the case for some of the whitepapers, where 

convergence to local optima was perceived [28, 27], however, it 

was mentioned in one of the papers that these local minima 

could easily be avoided through various methods [27] 

 

Considering resource requirements, it follows the trend of the 

initial literature research, with a direct relation seen between the 

complexity of the problem and its inherent use of computational 

resources [28, 27, 45]. In one of the papers it was mentioned that 

computational resources needed for quantum computing can be 

anticipated as it follows a linear scheme, on the contrary, 

classical computing follows an exponential line in 

computational needs for larger problems [28]. Furthermore, as 

greater parameter precision was introduced to offer better 

precision values for more accurate/optimal results, it showed to 

be cause for greater computational overhead [27]. Next to that, it 

was found that increased repetitions of the quantum circuit 

resulted in a higher probability of finding the optimal solution, 

however, it is definite cause for additional computational 

overhead [45]. Lastly, one paper showed that the involvement of 

methods such as QCL enhanced QPE (which were specific to the 

HHL algorithms used in that instance), and qubit reset and reuse 

techniques offer more efficiency and thereby less computational 

overhead, signifying the potential, and the need, for these 

methods in current NISQ hardware [121] 

 

5    Discussion 
Conclusion 

What was found in initial literature review was that the most 

used algorithms included the VQE, QAOA, and QTS. 

Furthermore, adding real-world constraints improved the 

accuracy of results, and the likeness to investor preferences. 

However, coming at the cost of added complexity and 

computational resources. NISQ devices showed limitations in 

solving the problems due to increased error rates and noise. 

Comparing quantum and classical methods showed that in most 

cases; simulated methods outperformed classical (96%) and 

quantum methods (80%) based on time-to-solution and accuracy 

of results. Classical methods outperformed real NISQ devices 

(63%). As for challenges and limitations, both simulated and 

quantum devices faced noise and error challenges. Furthermore, 

a general challenge for certain problem types was the 

convergence of the algorithm toward a local optimum, thereby 

disregarding global optima. Certain efforts such as error/noise 



mitigation methods showed to increase performances, but at the 

cost of complexity to the problem and additional computational 

resources needed, thereby resulting in higher time-to-solution.  

 

In the whitepaper search it was found that most used algorithms 

were Quantum annealing and its variations such as SA, VA, and 

QBSOLV, along with moderate use of QAOA and QAOAz 

algorithms. The reason for this representation in whitepapers is 

because of D-Wave’s prevalence via their own works and 

collaborations with other companies in the literature availlable. 

Gate-based quantum computers are of less frequency in 

whitepapers due to its specialized applicability, less ‘practical’ 

use cases in NISQ hardware, and overall smaller development 

compared to quantum annealers. Therefore, the almost complete 

absence of VQE can be attributed to these named reasons, as 

VQE is primarily used on gate-based quantum computers. Most 

papers considering constraints showed that adding more 

constraints improved the practical relevance and accuracy of 

results on quantum methods. However, it was also shown to be 

cause for additional computational resources needed, thereby 

increasing time-to-solution. There were also some instances 

where constraints used were not adhered to, this was the case for 

a real NISQ device, and D-Wave QBSOLV (simulated solver). 

Furthermore, Problem sizes were found to have a positive 

relation with the number of computational resources needed. 

Simulated methods showed superior performances as compared 

to classical and quantum methods on NISQ devices, with 100% 

of the papers used (n = 15) showing the superiority of simulated 

devices versus classical ones. As for the comparison between 

quantum and classical methods, 25% (n = 2) of the quantum 

methods showed improved performances over classical methods 

in practice. These papers were especially interesting as they 

utilized the most up-to-date quantum devices the industry 

currently has to offer (D-Wave Advantage, and IonQ’s trapped-

ion device AQTION), showing that for impressive datasets and 

problem sizes (relative to what NISQ devices should be capable 

of performing), the real quantum hardware outperformed 

classical solutions. Lastly, the whitepapers showed that the 

importance of error mitigation techniques was acknowledged, 

and whitepapers that implemented it showed more accurate 

results. Two papers recognized the convergence of used 

algorithms to local optima. 

 

The comparison between the initial literature research and 

whitepaper search showed that both follow the same trends in; 

acknowledging the current limitations of NISQ hardware, as 

shown in both searches, where the general format regarding 

time-to-solve, performance, accuracy, followed simulation > 

classical > NISQ devices. Findings in this paper showed that 

academic literature and the experiments performed in those 

papers differ marginally from findings in the whitepapers. 

However, generally it can be assumed that there is a common 

trend followed in both types of literature. The current limitations 

of real NISQ-devices are highlighted, and it is shown that even 

though current NISQ-devices have their limitations, they could 

still offer some practical significance in finance. However, 

actual effective widespread application of quantum computers is 

not something that is likely to be realized in the near future. 

Hybrid devices may offer a middle ground during the 

development of real quantum-devices. 

 

Practical applications 

As far as practical applications go, this paper can be used for 

giving insight into current industry applications regarding the 

development level, use cases, and a more detailed view into the 

link between theoretical insights and current practical 

applications/company-findings on quantum computing for 

finance, specifically portfolio optimization. Furthermore, this 

paper can be used to give a clear view of benchmarked 

performances of quantum methods against each other and 

classical ones, along with current limitations and challenges 

regarding quantum devices, specifically NISQ devices. Next to 

that, industry trends in the use of certain algorithms are 

identified, along with an indication of current problem sizes able 

to be solved (mostly mentioned in table 6 and 7).  

  

Theoretical implications 

As for theoretical implications, this paper does not challenge 

existing theories, it rather tries to validate existing theories 

through comparing theoretical implementations, use cases, 

current industry applications, and company specific research 

from online databases and whitepapers.  

 

Limitations 

Publication bias is accounted for by performing two different 

literature searches. Limitations of this study include the small 

likelihood of the data pool used for both searches not being 

representative, however the chance of this being true is small as 

multiple measures have been taken during the gathering of the 

papers via the Prisma 2020 format to ensure reduced bias in the 

literature search. the only potential real source of bias that can 

be found is the misrepresentation in the actual prevalence of 

quantum annealers in the whitepaper literature. However, this 

can be justified to a degree by the efforts made from D-Wave to 

generate a lot of literature through their own research and 

collaborations made with other companies.  

 

Future research 

Suggested areas which a follow up paper could address is the 

use of added literature, as this paper includes limited, but high 

quality, number of papers, where multiple papers have been 

taken out of the final literature pool because of multiple valid 

reasons discussed in the PRISMA 2020 flow charts. Introducing 

additional search terms could bring to light more quality papers 

to the research Furthermore, an additional topic which could be 

further addressed and delved into in future research is the 

addition of more literature on real gate-based quantum 

computers addressing optimization problems in finance.
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Appendix 

 

Figure 4, PRISMA 2020 Flowchart  

 

 
Figure 5, PRISMA 2020 adjusted flow chart for corporate 

white papers  

 

 
Figure 6, visualization of main quantum computing process 

 

 Keywords 

Initial 

search 

“portfolio”, “optimization”, “quantum”, 

“computing”, “quantum optimization”, 

“analysis”, “methods”, “simulation”, 

“investment” 

Secondary 

search  

“quantum algorithm”, “quantum finance”, 

“quantum annealing”, “financial optimization”, 

“financial modeling”, “portfolio management”, 

“risk management”, “optimization model”, 

“optimization techniques”, “asset allocation”. 

“QUBO”, “eigensolver”, “forecasting”, 

Table 1; Keywords 

 

Criteria Reason for inclusion 

Studies from the timeframe 

of 2011-2024 

2011 was when quantum 

computing first appeared on 

the Gartner hype cycle and 

marks the first physical step 

towards quantum supremacy, 

therefore making room to 

(dis)prove previous articles. 

Literature containing the 

named combinations of 

keywords from table 2 in 

either the article title, 

abstract, or keywords 

Ensuring that keyword 

combinations made in table 2 

are included in the chosen 

literature 

Table 3: Inclusion Criteria 

 

 



Criteria Reason for exclusion 

Literature not containing 

the named keyword 

combination from table 2 in 

the title, abstract, or 

keywords 

Ensuring that keyword 

combinations made are 

included in the chosen 

literature 

Exclude literature not 

published in the English 

language 

Narrows down the results and 

facilitates consistent 

understanding of literature 

Exclude literature made 

before 2011 

Literature before 2011 has an 

increased risk of giving out 

wrongful information as the 

field of quantum computing 

has rapidly evolved after that 

timeframe 

Exclude unfinished 

literature 

Literature ought to be 

finished, as unfinished 

literature poses the risk of 

non-representative findings 

Duplicate papers (papers 

that are identical either on 

different databases, or in the 

same one) 

Duplicate papers ought to be 

excluded as they serve no 

additional purpose 

Table 4: Exclusion Criteria 

 

Comparison made Papers 

Simulated/digital versus 

Classical 

Simulated: 

[4], [6], [7], [9], [13], [17], 

[18], [24], [29], [30], [41], 

[51], [52], [53], [63], [64], 

[66], [71], [74], [77], [80], 

[82], [88], [92], [104], [118] 

 

Classical: 

[11] 

Quantum versus Classical Quantum: 

[8], [91], [119] 

 

Classical: 

[14], [22], [24], [44], [47] 

Simulated/Digital versus 

Quantum 

Quantum: 

[120] 

 

Simulated: 

[24], [60], [78], [81] 

Simulated vs Simulated [3], [56], [103], [111] 

Indifferent, Unclear, or 

Similar Performances 

[37], [38], [48], [67], [68], 

[76] 

Table 8, An insight into each academic paper’s findings 

 

Comparison made Papers 

Simulated/digital versus 

Classical 

Simulated: 

[105], [2], [19], [28], [45], 

[49], [83], [73], [121], [99], 

[58], [114], [7], [33], [36] 

 

Classical: 

N/A 

Quantum versus Classical Quantum: 

[97], [106] 

 

Classical: 

[2], [25], [28], [34], [35], 

[36] 

Simulated/Digital versus 

Quantum 

Quantum: 

N/A 

 

Simulated: 

[2], [33], [ 35], [36] 

Simulated vs Simulated [27] 

Indifferent, Unclear, or 

Similar Performances 

[43], [50], [59], [121] , [98] 

Table 9, An insight into each white paper’s findings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Prompts Initial results (ArXiv 

Search in ‘all fields’) 

Results with exclusion and 

inclusion criteria (not 

accounting for duplicates) 

(for Arxiv, this is done 

manually, along with direct 

observation of potential use 

for this research) 

Keyword 

combinations 

1. Quantum AND comput* AND portfolio AND optim*  

2. Portfolio AND optim* AND quantum 

3. (Quantum AND optim* AND portfolio) AND 

(invest* OR algorithm) 

4. Quantum AND simulation AND portfolio 

5. Quantum AND portfolio AND optim* AND 

algorithm 

6. Quantum AND machine AND learning AND 

portfolio 

7. Quantum AND algorithm AND finan* AND portfolio 

8. (Quantum AND portfolio AND optim*) AND 

(methods OR techniques) 

9. Quantum AND Portfolio AND management AND 

optim* 

10. (Quantum AND risk AND forecast*) AND (finan* 

OR management) 

11. Quantum AND portfolio AND asset AND allocation 

12. (Quantum AND optim* AND portfolio) AND 

(techniques OR risk OR model*) 

13. (Quantum AND methods AND portfolio) AND 

(optim* OR finan* OR model) 

14. Quantum AND QUBO AND portfolio 

15. Quantum AND eigensolver AND portfolio 

16. Quantum AND forecast* AND portfolio 

 

And for ArXiv, these additional searches were done: 

17. Quantum AND finan* AND model* AND optim* 

18. Quantum AND finan* AND optim* AND algorithm 

 

1. Scopus: n = 93 

WoS: n = 51 

Arxiv: n = 29 

2. Scopus: n = 159 

WoS: n = 100 

Arxiv: n = 97 

3. Scopus: n = 123 

WoS: n = 79 

Arxiv: n = 82 

4. Scopus: n = 50 

WoS: n = 22 

Arxiv: n = 29 

5. Scopus: n = 103 

WoS: n = 69 

Arxiv: n = 73 

6. Scopus: n = 37 

WoS: n = 14 

Arxiv: n = 19 

7. Scopus: n = 88 

WoS: n = 44 

Arxiv: n = 45 

8. Scopus: n = 82 

WoS: n = 48 

Arxiv: n = 51 

9. Scopus: n = 35 

WoS: n = 12 

Arxiv: n = 27 

10. Scopus: n = 45 

WoS: n = 13 

Arxiv: n = 4 

11. Scopus: n = 8 

WoS: n = 5 

Arxiv: n = 10 

12. Scopus: n = 117 

WoS: n = 66 

Arxiv: n = 83 

13. Scopus: n = 90 

WoS: n = 47 

Arxiv: n = 40 

14. Scopus: n = 12 

WoS: n = 9 

Arxiv: n = 11 

15. Scopus: n = 6 

WoS: n = 3 

Arxiv: n = 6 

16. Scopus: n = 10 

1. Scopus: n = 81 

WoS: n = 49 

Arxiv: n = 15 

2. Scopus: n = 134 

WoS: n = 95 

Arxiv: n = 35 

3. Scopus: n = 105 

WoS: n = 78 

Arxiv: n = 18 

4. Scopus: n = 37 

WoS: n = 20 

Arxiv: n = 5 

5. Scopus: n = 86 

WoS: n = 68 

Arxiv: n = 4 

6. Scopus: n = 30 

WoS: n = 14 

Arxiv: n = 2 

7. Scopus: n = 79 

WoS: n = 42 

Arxiv: n = 0 

8. Scopus: n = 71 

WoS: n = 48 

Arxiv: n = 1 

9. Scopus: n = 27 

WoS: n = 12 

Arxiv: n = 2 

10. Scopus: n = 37 

WoS: n = 12 

Arxiv: n = 1 

11. Scopus: n = 6 

WoS: n = 4 

Arxiv: n = 1 

12. Scopus: n = 97 

WoS: n = 63 

Arxiv: n = 2 

13. Scopus: n = 73 

WoS: n = 43 

Arxiv: n = 0 

14. Scopus: n = 12 

WoS: n = 9 

Arxiv: n = 0 

15. Scopus: n = 6 

WoS: n = 3 

Arxiv: n = 1 

16. Scopus: n = 10 



WoS: n = 3 

Arxiv: n = 1 

17. Arxiv: n = 72 

18. Arxiv: n = 38 

 

Total: n = 2.369 

Scopus: n = 1.058 

WoS: n = 585 

Arxiv: n = 729 

WoS: n = 3 

Arxiv: n = 1 

17. Arxiv: n = 14 

18. Arxiv: n = 4 

 

Total: n = 1.560  

Scopus: n = 891 

WoS: n = 563 

Arxiv: n = 106 

Table 2: keyword combinations and search results 

 

Table 5, search results in different stages for initial literature search 

 Results with inclusion and 

exclusion criteria  

(not accounting for duplicates) 

Results with inclusion and exclusion 

criteria  

(accounting for duplicate literature) 

Results with inclusion and exclusion criteria 

(accounting for duplicate literature and 

abstract, title, full-text screening, articles 

that were added later, articles not used, and 

white papers transferred/deleted:) 

Results  Articles with inclusion and 

exclusion criteria,  

not accounting for duplicates: 

Total:                  n = 1.560 

Scopus:               n = 891 

WoS:                   n = 563 

Arxiv:                 n = 106 

 

Articles with inclusion and exclusion 

criteria, accounting for duplicates: 

Total:                  n = 340 

-------------------------------------- 

Duplicates excluded in the same database: 

Total:                  n = 1.127 

Scopus:               n = 686 

WoS:                   n = 438 

Arxiv:                 n = 3 

-------------------------------------- 

Duplicates excluded among all databases 

together: 

Total:                    n = 93 

-------------------------------------- 

Total duplicates:   n = 1.220 

Articles with inclusion and exclusion criteria  

accounting for duplicate literature, abstract, 

title, full-text screening, papers that were 

added later, papers not used, and white papers 

transferred/deleted: 

Total:                  n = 340 

Excluded:           n = 185 

 

Reports added (n = 8) 

Reports not used (n = 65) 

White papers transferred (n = 22) 

White papers deleted because they were 

duplicate (n = 16) 

 

Total end number of reports (n = 57) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6, Insight into White Paper findings (Table 7 starts on page 57) 

Paper (25) 

(Actors 

involved, or 

whom the 

authors are 

affiliated 

to) 

(Authors) 

(Year) 

Challenge addressed 

/ Introduction 

Main findings/purpose Quantum 

hardware, 

Quantum 

algorithm, 

Methodology, Use 

case 

Additional 

specifics 

[105] 

Long-short 

minimum 

risk parity 

optimizatio

n using a 

quantum 

digital 

annealer  

 

(1Qbit) 

 

(Gili 

Rosenberg 

and 

Maxwell 

Rounds., 

2018) 

This white paper is 

issued by 1Qbit and 

entails a novel 

approach to PO which 

addresses the issue 

that many weight 

allocation strategies 

result in long-term 

portfolio positions. 

The proposed strategy 

is one where 

directions (long or 

short positions) are 

assigned to each 

weight allocation so 

that the variance of 

the portfolio is either 

minimized or 

maximized. 

 

Furthermore, this 

proposed problem 

formulation is then 

shown to be 

applicable towards 

real quantum 

annealers of D-Wave 

Systems, and the 

Digital Annealer of 

Fujitsu 

 

Next to that, back 

tested results are 

shown for the 

problem formulation 

on three datasets 

using a tabu solver. 

Objective: 

- Propose a weight allocation strategy where a 

direction is assigned to each weight encompassing 

either a short or long position, this is to ultimately 

reduce volatility and improve risk-adjusted returns 

for portfolios compared to traditional methods. 

- Furthermore, the proposed method is back tested on 

three datasets using a multi-start tabu 1-opt search 

with 100 starts (to act as a stand-in for the quantum 

digital annealer) and a sliding window mechanism of 

three months, portfolios were rebalanced on the first 

day of the month 

- To collect statistical data to run the algorithm on, 

bootstrapping is used with 25 samples 

 

Datasets: 

- Dataset 1 specifics: a portfolio for a commodity 

trading advisor (CTA), consisting of 38 futures 

contracts, including stocks and bond of different 

countries, as well as commodities such as oil, wheat, 

and gold 

- Dataset 2 specifics: Dow Jones Industrial Average, 

consisting of 30 large-cap US stocks 

- Dataset 3 specifics: nine S&P 500 sector ETFs 

 

Evaluation: 

- Show the performance acquired by the proposed 

formulation, it is applied on different methods 

(inverse variance parity, equal weighting, minimum 

variance, hierarchical risk parity, and quantum 

hierarchical risk-parity) used to show its improved 

efficiency and performance 

 

Results: 

- With the weighting methods used, it can concluded 

that the proposed method would outperform 

traditional methods in a risk-parity situation for PO, 

- “Our results suggest that by utilizing intelligent 

shorting, this method is able to reduce the volatility 

of long-only strategies, leading to shorter maximum 

drawdowns and higher Sharpe ratios, albeit with a 

higher turnover.” (p. 1) 

 

Quantum system: 

 

 

Algorithms used: 

Tabu Solver (TS) 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio 

optimization 

 



[2] 

Multi-

Objective 

Portfolio 

Optimizati

on Using a 

Quantum 

Annealer 

 

(Rabobank, 

School of 

business 

economics 

Maastricht) 

 

(Aguilera 

er al., 2024) 

“In this study, the 

portfolio optimization 

problem is explored, 

using a combination 

of classical and 

quantum computing 

techniques” (p.1) 

 

Furthermore, “In this 

paper, a specific 

problem is introduced, 

where a portfolio of 

loans needs to be 

optimized for 2030, 

considering ‘Return 

on Capital’ and 

‘Concentration Risk’ 

objectives, as well as 

a carbon footprint 

constraint. This paper 

introduces the 

formulation of the 

problem and how it 

can be optimized 

using quantum 

computing, using a 

reformulation of the 

problem as a 

quadratic 

unconstrained binary 

optimization 

(QUBO)” (p.1) 

Objective(s): 

- Using QUBO on simulated and physical quantum 

annealing, the paper sought to optimize a multi-

objective portfolio optimization problem specialized 

for two made QUBO formulations (QUBO1 and 

QUBO2) from a real financial case considering the 

next variables: the return per asset, outstanding 

amount per asset, regulatory capital per asset, lower 

and upper bound outstanding amounts per asset, and 

an emission intensity/reduction per asset (p. 7) 

- The two QUBO models were then subsequently 

experimented upon using, where a classical 

benchmark is used a baseline to compare results with 

 

Results: 

- The results after putting in the data in both simulated 

and physical annealing were compared to a classical 

convex optimization approach, where the classical 

approach yielded less portfolios that fit emission 

constraints and was increasingly slower than QUBO2 

(not QUBO1) using a higher number of assets.  

- For QUBO1, simulated annealing on QUBO1 

showed better performance than random sampling, 

meeting constraints more effectively and producing 

solutions closer to the Pareto frontier. 

- For QUBO2, The second QUBO formulation 

outperformed QUBO1 in finding solutions near the 

Pareto frontier, with simulated annealing results 

suggesting potential advantages over classical 

methods. 

- Quantum computing, particularly quantum annealing, 

demonstrates potential in solving complex portfolio 

optimization problems by generating multiple viable 

solutions. 

- The quantum annealer showed a broader range of 

solutions compared to the simulated annealing results 

but struggled to match the classical benchmark 

closely. 

- The quantum annealing approach yielded fewer 

solutions near the Pareto frontier compared to 

simulated annealing and had limited success in 

meeting emission constraints. 

Purpose: 

To give insight into a novel way to use QUBO on a quantum 

annealer for multi-objective portfolio optimization 

Quantum hardware: 

Simulated / physical 

annealing 

 

Quantum algorithm:  

QUBO  

 

Methodology: 

Optimization 

 

Use case: 

Multi-objective 

portfolio 

optimization 

Solving of multi-

objective portfolio 

optimization 

problem by 

deducting a 

specific real-

world case into a 

QUBO problem 

formulation for a 

quantum annealer 

(p.3) 

 

Next to that, a 

specific variant of 

multi-objective 

optimization is 

used that aims to 

find the most 

efficient pareto 

frontier of a 

combination of 

return, 

diversification, 

and carbon 

equivalent 

emissions 

(CO2e)” (p.3), 

pareto frontier 

meaning a line of 

portfolios on a 

graph with Y = 

ROC and X = 

diversification, 

where no portfolio 

can be improved 

without 

worsening another 

part of it 

[19] 

Approxima

ting 

Optimal 

Asset 

Allocations 

using 

A problem 

acknowledged by this 

paper is the lack of 

practical application 

by existing algorithms 

when datasets exceed 

100 elements, 

therefore, simulated 

Objective(s) 

- Analyze and apply simulated bifurcation to a PO 

problem for optimal asset-allocation following the 

Ising-problem formulation equivalent to the 

Markowitz model for maximizing risk-adjusted 

returns. 

- To test the usefulness of the proposed simulated 

bifurcation algorithm, a dataset is made from 

Quantum system: 

Simulated 

Bifurcation in 

PYTHON 

 

Algorithms used: 

Simulated 

bifurcation 

Simulated 

bifurcation = a 

method of 

optimization 

where solutions to 

simpler problems 

are modified to 



Simulated 

Bifurcation 

 

(NICS; 

CentraleSu

pélec; 

Université 

Paris-

Saclay) 

 

(Thomas 

Bouquet et 

al., 2021) 

bifurcation is 

mentioned as the 

potential solver of this 

problem in this paper 

 

The objective of the 

study is to analyze 

and apply simulated 

bifurcation to the PO 

problem of optimal 

asset allocation 

(maximizing risk-

adjusted returns over 

given time horizon) 

historical data from YAHOO! Finance and used in a 

particular case with one-bit weights whilst looking 

for the optimal subset of assets. 

- The results obtained by the simulated bifurcation will 

be compared to a brute-force algorithm 

 

 

Dataset specification: 

- Closing prices of 441 assets belonging to the S&P500 

index during the period of 02/2003 – 02/2021 on the 

New York Stock Exchange. Daily returns are 

calculated and used to estimate the covariance matrix 

 

Results: 

- Applying the one-bit weights simulated bifurcation 

method to the complete dataset shows that the 

algorithm runs the computation in about 5 seconds 

and selects 120 out of 441 assets 

- The performance of the selected portfolio by 

simulated bifurcation is significantly better than the 

one chosen via brute-force, indicating better risk-

awareness 

- The simulated bifurcation algorithm has great eye for 

diversification of assets to reduce correlation/spread 

risk. 

- As numbers of assets increased, the simulated 

bifurcation showed greater degrees of accuracy in 

approximating the weights for each asset, 138 out of 

150 simulations the algorithm could return the 

optimal allocation of weights. 

- For a problem with 4 assets and 5 bits per asset, the 

simulated bifurcation showed 90.4% Hamming 

accuracy (which basically is a measure of accuracy 

for algorithms) 

 

- Figure 7 in the paper gives a representation of a time 

efficiency comparison between brute-force (classical) 

and simulated bifurcation. This figure shows that 

after a certain point in a dataset, the complexity of 

solving a problem becomes exponentially more time 

consuming for brute-force, however, simulated 

bifurcation does not show this and thus has a superior 

ability to compute problem if they become 

exponentially more complex 

-  

 

Important notes: 

- It is impossible to proof optimality of the found 

portfolios, therefore methods can only be compared 

to each other. 

- In the computational tests for simulated bifurcation 

(to help give an indication of the amount of assets 

and bits needed to be used in the actual 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio 

optimization 

(optimal asset-

allocation) 

converge to an 

optimal solution 

 

Covariance matrix 

= a matrix giving 

insight into the 

covariance, or 

relationship 

between assets, in 

finance this is 

used to show 

correlation degree 

between assets. 



benchmarking), each assets can be represented by 

differing numbers of bits, more bits means better 

accuracy, however, as more bits also means more 

complexity to the calculation of the objective 

function, a consideration has to be made between 

number of bits and number of assets for this to work 

(or in other words a balance between accuracy and 

computation time needs to be found), this principle is 

also shown in table 6.2.1, as some combinations of 

number of assets and bits are computationally 

intractable. Ultimately, this test showed that lower bit 

values showed best accuracy toward the results 

obtained by brute-force strategies. 



[25] 

Comparing 

Classical-

Quantum 

Portfolio 

Optimizati

on with 

Enhanced 

Constraints 

 

(Deloitte 

Consulting, 

Salvatore) 

 

(Certo et 

al., 2022) 

In this paper, quantum 

advantage is put to the 

test in a portfolio 

optimization 

perspective, where a 

quantum annealer is 

used along with some 

algorithms against 

classical methods 

 

More specifically, this 

paper employs several 

real-world constraints 

on the quantum 

annealer, thereby 

adding to the 

complexity of the 

problem to be solved. 

Furthermore, diverse 

traditional and new 

constraints are used 

both on state-of-the 

art classical 

algorithms and 

quantum algorithms 

 

The state-of-the art 

algorithms are solved 

using the d-Wave’s 

quantum processor. 

Objective(s): 

- Compare state-of-the art algorithms toward 

algorithms used on a quantum annealer 

- Map the Markowitz problem into a QUBO format to 

solve on an annealer. 

- Employ a variety of new and traditional constraints to 

increase the complexity of the problem to be solved 

and give greater insight to the difference between 

classical and current hybrid solutions in the static PO 

model. 

- Constraints used interchangeably are: minimum and 

maximum sector bands (proportion of each industry 

sector is invested in), 2 types of balance sheet 

constraints (constraints based on mostly balance 

sheet ratios e.g. current ratio) first of which is a min 

current ratio constraint and the second being that the 

entire portfolio should have a minimum average, 

cardinality constraint of Limited Asset Markowitz 

(LAM), full budget must be used (budget constraint), 

and an asset must not be more than 2,5% of the 

portfolio. 

- For the real dataset test, only the last two mentioned 

constraints were used. And one last example with a 

volatility constraint added for CQM. The authors 

leave the combination of all  types of other 

constraints for further research. 

 

Dataset: 

- Full S&P 500 

 

Results: 

- For specifically the use of min and max sector 

constraints, the optimization model was run on the 

entire S&P 500 with quantum annealing. Results 

showed tighter investments bands, more flexibility, 

and the hybrid solver was able to satisfy all 

constraints. 

- The CQM model significantly outperformed the 

BQM model, but for higher values of q (above 25), 

BQM outperformed CQM. (q is the risk appetite 

level of the investor) 

- The classical solution found the efficient frontier with 

minimal effort, even with multiple real-world 

constraints 

- The CPLE solver outperformed all other in Sharpe 

ratios. 

- “Many have proposed portfolio optimization as a 

prime candidate for quantum advantage; however, the 

real-world constraints we have discussed thus far 

show that at least in the static integer-valued case, it 

is unlikely to outperform classical solutions.” (p. 5), 

although this is mentioned, the problem solved is still 

convex, thereby not fully giving way to the 

Quantum system: 

D-Wave’s hybrid 

models (binary 

quadratic model 

(BQM) and 

constrained 

Quadratic Model 

(CQM)), and 

CPLEX for classical 

optimizing  

 

Algorithms used: 

Classical and 

quantum-annealing 

algorithms 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio 

optimization 

Current ratio = a 

ratio giving 

insight into how 

well a company is 

able to fulfill 

short-term 

obligations, thus a 

measure of 

liquidity. 

 

LAM = a 

constraint that 

ensures assets in a 

portfolio are 

limited (which 

may be due to 

several reasons 

such as limiting 

transaction costs) 



advantages of quantum computing, if the problem 

were non-convex, the authors mentioned that QA 

may have an advantage, but they also question 

whether a real-world scenario with a non-convex 

constraint will actually be used. 

- Sharpe ratios for various constraints mentioned: 

 Q=1 Sector 

constr

aint 

Loc

al 

CR 

Global 

CR 

Car

dina

lity 

BQM 3.25 2.79 1.86 2.60 1.67 

CQM 3.88 3.81 3.41 3.32 3.40 

CPLE

X 

3.88 3.81 3.41 3.73 3.70 

-  

 

Important information: 

- Although  

- Constraints are mostly formed as penalty terms in the 

formulation of the objective function. 

- The problem in this paper follows that of the 

Markowitz’s modern portfolio theory of maximizing 

returns for a given level of risk. 

- “As current QA do not have the number of qubits nor 

the required connectivity between them to implement 

large-scale models directly on annealers, we explore 

the use of D-Wave’s hybrid models” (p. 2) 

- “While gate-based machines in the Noisy 

Intermediate Scale Quantum (NISQ) era struggle to 

find appropriate feasible applications, quantum 

annealers have less constraints and appear to be the 

most promising in near-term industrial 

implementations” (p. 1) 



[28] 

Black-

Litterman 

Portfolio 

Optimizati

on with 

Noisy 

Intermedia

te-Scale 

Quantum 

Computers 

 

(Chi-Chun 

Chen et al., 

2023) 

In this paper, the 

practical applications 

of NISQ algorithms 

are used in the 

enhancement of the 

Black-Litterman PO 

model. 

 

As proof of concept, a 

12-qubit example of 

selecting 6 assets out 

of a 12-asset pool is 

used, where the 

approach involves 

predicting investor 

views with Quantum 

Machine Learning 

(QML), and 

addressing the 

optimization problem 

using the Variational 

Quantum Eigensolver 

(VQE) 

 

 

Objective(s): 

- Formulate a Black-Litterman PO problem and 

estimate the investors ‘view via QML, and solve the 

QUBO formulation via VQE, or QAOA. Optimize 

the parameters using Sequential Least Squares 

Programming (SLSQP) 

- Formulate the Po problem into a QUBO format, 

where the aim of the formula is to maximize return 

while minimizing risk with a budget constraint and 

penalty terms. 

- Find the investors’ view in the formula with 

Quantum Machine learning, and the market implied 

return with data from the market, both are specific to 

the Black-Litterman approach. 

- Approach the quantification of the investors’ view 

via 4 quantum machine learning methods (QSVM, 

QNN, SVM, NN) 

- Demonstrate a 12 and 16 qubit case that shows the 

capability of obtaining solutions with good back 

testing performance. 

 

Data for the back test: 

- Time period 2008/01/01 to 2021/12/31 (split up in 9 

time segments) with a 260 week training period and 

52 week testing period.12 Individual stocks from 

S&P 500. VQE was used with p = 4 repetitions of the 

circuit, and QAOA with p = 8. Tests are compared to 

the approximation ratio, which is a ratio between ‘a 

good solution’ and that found through the test either 

via VQE or QAOA. 

 

Results: 

Investors’ view performances: 

- Specifically looking at the estimation of investors’ 

view, the following could be said: QSVM ≈ SVM > 

NN > QNN in terms of testing accuracy, and QSVM 

was also much faster to train than QNN. 

Optimization test of BL-PO: 

- Considering the BL-PO test, VQE had an 

approximation ratio of at least 0.9 and mean 0.96 

- Variances via VQE were close to zero (so low risk), 

and those form QAOA are large.  

- Tests were still proven to be susceptible to finding 

local minima instead of global minima. 

- VQE heuristic ansatz should be preferred over 

QAOA 

- Looking at the given figures depicting approximation 

ratios and variances, VQE outperforms QOA 

significantly, with QAOA having greatly varying and 

worse results. 

Back testing performance with investors’ view from QSVM: 

Quantum system: 

 

 

Algorithms used: 

VQE, QAOA, and 

QML 

 

Methodology: 

Optimization 

 

Use case: 

Black-Litterman 

Portfolio 

optimization 

 

Black-Litterman 

PO = a PO 

approach that 

combines 

elements of 

modern portfolio 

theory with 

investor views to 

improve the 

Markowitz mean-

variance model.  

 

Investors’ view = 

the objectification 

of the investors’ 

view on the 

assets, which will 

either be bullish 

or bearish.  



- The BL-PO model outperforms Modern Portfolio 

Theory in pure returns and certainty-equivalent return 

over a long continuous back testing period. 

- VQE/QOA find high approximation ratios close to 

the optimal solutions, and sometime even outperform 

exact solution in the approximation ratio. 

- There is balance problem found between balancing 

out computational cost and preciseness of the 

solution. 

- The ability to perform well without exact solutions 

suggests efficiency gains in quantum optimization 

methods. 

 

- “The solutions obtained from VQE exhibit a high 

approximation ratio behavior, and consistently 

outperform several common portfolio models in back 

testing over a long period of time.” (p. 1) 

- “The scale of real quantum device today are not able 

to solve discrete portfolio optimization problems 

beyond classical computer limit (and quantum 

computers cannot be efficiently simulated 

classically)” (p. 2) 

 

Important notes: 

- The computational resources needed for quantum 

computing can be anticipated as it follows a linear 

scheme, on the contrary, classical computing follows 

a exponential line when it comes to computational 

resources needed for larger problems. 

- QSVM was used for investors’ view approximation. 

[27] 

Quasi-

binary 

encoding 

based 

quantum 

alternating 

operator 

ansatz 

 

(CCB 

Fintech) 

 

(Bingren 

Chen et al., 

2023) 

 

In this paper, a quasi-

binary encoding based 

algorithm is proposed 

for solving specific 

quadratic optimization 

model in the QAOAz 

framework. 

 

Three constraints are 

imposed on the 

model: 

Discrete constraint, 

bound constraint, sum 

constraint 

 

In some parts of the 

given objective 

function for QAOA, 

ideas such as CVaR-

QAOA and parameter 

scheduling are used to 

optimize the solution 

quality. 

Objective: 

- Form a quasi-binary encoding based QAOAz to solve 

quadratic optimization problems (based on the 

Markowitz model for PO) with integer variables in a 

hard constraint way. 

- Make use of parameter scheduling techniques and 

CVaR-QAOAz to enhance solution quality 

- Use 4 methods for optimal parameter scheduling: 

1: Sample20: 20 random parameters are chosen for the 

training process, and over 1000 iteration in COBYLA, the 

best option will be chosen 

2: Optimized Linear Schedule (OLS) 

3: Iterative Optimized Linear Schedule (IOLS) 

4: Iterative QAOA (IQAOA) 

- Make use of COBYLA as the classical optimizer to 

finds the best parameter. 

- Lastly, perform experimental test with the CVaR-

QAOAz and Normal-QAOAz on two instances to 

show performance differences for their use in the 

broader QB-QAOAz framework: 

1: Selecting 6 stocks with a total of 18 qubits required for 

the experiment, and different simulations are conducted on 

P = 1, p = 2, p = 4, p = 8 and p = 16 (p represents the 

Quantum system: 

Qiskit (simulator) 

 

Algorithms used: 

QB-QAOAz 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio 

optimization 

Parameter 

scheduling = 

adjusting 

parameters of an 

algorithm over 

time to improve 

its performance 

 

Quasi-Binary 

approach = a way 

to simplify the 

problem 

representation so 

that quantum 

hardware can be 

leveraged more 

effectively, with 

the aim to reduce 

resource 

requirements and 

better 

performance. 



 

Lastly, a numerical 

simulation will be 

used on a PO case to 

show the performance 

of the given algorithm 

 

depth of the quantum circuit, the number of iterations, so 

in simple terms the complexity) and with α = 0.5 (with 

upper and lower bound being -1/+1) (which signifies the 

precision of the parameters, more precision = better 

results on average, but also more computational resources 

needed) using all 4 parameter methods. 

2: general stock pools from the Chinese Shenzhen and 

Shanghai Stock Exchange. 4-8 stocks are randomly 

selected from 4836 stocks. α = 0.05, 320 experiments on 

each of the four parameter scheduling methods and five 

different depths (p = 1, 2, 4, 8, 16) 

- Lastly, a method to increase precision of the 

instances is proposed for QB-QAOAz, first QB-

QAOAz is used with CVaR-QAOAz and IQAOA 

scheduling method, and then the course solution it 

gives is optimized via increasing α exponentially via 

an iterative method (with the purpose of finding a 

better solution with fewer qubits needed) 

 

Dataset specifications: 

- Six NASDAQ stocks with historical return rates of 

these stocks as the input data, 

 

Three constraints are imposed on the model: 

1. Discrete constraint, the variables are required to be 

integers 

2. bound constraint, variables ought to be greater than 

or equal to a certain constraint and less than or equal 

to another integer 

3. sum constraint, the sum of all variables should be a 

given integer 

 

Results: 

Result for instance 1: 

- Results showed that CVaR-QAOAz outperformed 

the normal-QAOAz significantly, where CVaR-

QAOAz is also superior to brute-force (classical) 

when p exceeded 2.  

- As for the parameter optimization, IQAOA could not 

show its proposed superiority over the other 

parameter scheduling methods, furthermore, IQAOA 

and IOLS often fell into local optima. In most cases, 

as p got higher, the performances decreased due to 

high parameter count. 

- IOLS performance increased with circuit dept, 

furthermore, IQAOA performed better under CVaR-

QAOAz than Normal-QAOAz, final recommendation 

was to use CVaR-QAOAz with IOLS or IQAOA 

with p above 8 to achieve an approximation ratio 

of 0.99. 

Instance 2: 

- CVaR-QAOA showed an approximation ratio 

between 0.973 and 0.997. 



- The approximation ratio of the parameter scheduling 

methods increased as circuit dept increased, with less 

errors 

- For the parameter scheduling methods, IQAOA 

performed the best. 

- Overall, for the two instances, it was still observed 

that the precision of results was too coarse for 

business application. 

Iterative QB-QAOAz method: 

- The iterative method  for QB-QAOAz with CVaR-

QAOAz and IQAOA showed significant 

improvements in the quality of solutions, and the 

probability of finding the optimal solution increased 

(all whilst keeping the same number of low qubits) 

 

 

- “If we increase the precision, for example, by setting 

α to one-thousandth, then the total number of qubits 

required in Instance 1 is 96, which already exceeds 

the computational limit of most quantum computers 

and simulators. “ (p. 15) 

 

Important notes: 

- To address the limitations of current (2023) quantum 

hardware, an iterative method will be used where the 

solution of the experiment will be improved through 

multiple few-qubit experiments, and parameters will 

slowly become more precise over the iterative 

process. 

- no penalty terms are used in the objective function. 

[43] 

Financial 

Portfolio 

Manageme

nt using D-

Wave 

Quantum 

Optimizer: 

The Case of 

Abu Dhabi 

Securities 

Exchange 

 

(UT-Batelle 

LLC with 

non-

exclusive 

contract 

with U.S. 

Departmen

t of 

Energy) 

 

Based on a 

formulation of the 

Markowitz’s mean-

variance model, 

where it is formulated 

as a QUBO problem 

including expected 

return, volatility, 

penalization terms, 

and according to 

weights for each 

criterion, to be solved 

via a D-Wave 

quantum optimizer 

Objective(s): 

- Formulate the mean0variance Markowitz model in a 

QUBO formulation, and solve it via a D-Wave 

quantum optimizer 

- Solve the given problem on MATLAB (mathematical 

software) via the genetic algorithm (classical 

approach) 

- Compare the results from the MATLAB experiment 

and those fo the D-Wave quantum optimizer 

 

Data specifics: 

- 63 to 68 securities from the Abu Dhabi Securities 

Exchange, with weekly closing prices over the period 

01/12/2015 to 30/11/2016 and a covariance matrix 

and matrix for expected returns was made. Total 

budget = 100 USD 

 

Results: 

- The QBSOLV produced portfolios that exceeded the 

budget (121.176 USD instead of the budget 100 

USD) in order to fit the QUBO model 

- The choice of exceeding the budget has clearly 

ignored the influence of the co-variance matrix to 

Quantum system: 

D-Wave QBSOLV 

(simulated solver) 

 

Algorithms used: 

D-Wave QBSOLV 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio 

optimization 

 



(Nada 

Elsokkary 

et al., 2021)  

minimize risk, so the portfolio was not diversified to 

spread risk 

- Longer annealing times showed slightly improved 

results with portfolios similar to lower annealing 

times, but with lower cost portfolios 

- Compared to the classical solution, QBSOLV found 

portfolios in good agreement with those found in the 

MATLAB-derived solution. 

 

Important notes: 

- This paper leaves a lot of additional, sometimes 

needed information, out of the picture, it mostly 

states the core findings and pre-requisites of the 

research 

[45] 

Quantum-

Enhanced 

Simulation-

Based 

Optimizati

on 

 

(IBM 

Research 

and ETH 

Zurich) 

 

(Gacon J et 

al., 2020) 

In this paper, a 

quantum-enhanced 

algorithm (QAE) for 

simulation-based 

optimization is 

introduced to 

optimize simulation 

based optimization 

and form the 

Quantum-Enhanced 

Simulation Based 

Optimization 

Algorithm (QSBO), 

where it is applied 

towards a PO problem 

with Value-at-Risk 

constraint and 

inventory 

management 

 

The algorithm is 

proposed for 

continuous and 

discrete decision 

variables.. 

Objective(s): 

- Formulate a Simulation based PO problem including 

Value-at-Risk or inventory management and solve it 

via the QSBO algorithm. 

- Optimize SBO with QAE to accelerate the estimation 

of values, specifically, use QAE in QSBO to enhance 

the precision and efficiency of evaluation the 

objective functions. 

- Use an adapted version of VQE (for discrete 

optimization problems) to optimize the decision 

variable y* (which is part of the objective QUBO 

function) (to optimize y* means to get better results 

for the eventual calculation of the QUBO function) 

- Apply the algorithm to small instances of practically 

relevant problems, from inventory management and 

finance to PO with VaR based objective function. 

 

Dataset specifications for PO problem: 

- A two-asset portfolio, where 13 qubits are used for 

the VaR estimation, and 12 qubits for the expectation 

value x, with a risk appetite of 0.09, and α = 0.05 

(simply put, precision level of the parameters) 

 

Results (objective function is to minimize risk): 

Newsvendor problem: 

- The most optimal solution was found accurately, 

looking at the graph depicting the given solutions, it 

can clearly be seen that all results are estimated 

accurately, and the optimal solution is found. 

Portfolio optimization: 

- The algorithm identified he optimal solution with a 

90% probability, showing that with 90% certainty, 

the first out of the two possible assets maximizes the 

portfolio. 

- The results show that the proposed algorithm is able 

to compute PO problems accurately. 

Overall: 

- Increasing the number of repetitions of the algorithm 

leads to more parameters, thereby more search space, 

Quantum system: 

Qiskit (simulator) 

And for the classical 

part of the 

algorithm, 

COBYLA is used 

 

Algorithms used: 

Quantum Amplitude 

Estimation (QAE), 

Quantum-enhance 

simulation based 

optimization 

(QSBO) 

 

Methodology: 

 

Use case: 

 

Newsvendor 

problem = a 

problem that 

involves 

determining the 

optimal number of 

newspaper 

batches to 

purchase to 

balance the cost 

of leftover 

newspapers and 

the lost income 

from unmet 

demand. The goal 

is to minimize the 

expected cost 

function, which 

accounts for both 

overage and 

opportunity costs. 



but at the expense of computational resources needed 

as the problem becomes more complex. 

- “Quantum Amplitude Estimation (QAE)  is a 

quantum algorithm that provides a quadratic speedup 

over classical Monte Carlo simulation, i.e., its 

estimation error scales as O(M−1 ).” (p. 1) 

 

- For all experiments, the optimal solution was found 

with high probabilities. 

- The algorithm shoed great capabilities in solving 

inventory management and PO problems with both 

continuous and discrete variables 

- “The algorithm offers a quadratic speedup for the 

evaluation of the objective function compared to 

classical Monte Carlo simulation.” (p. 7) 

 

 

Important notes: 

- QAE is commonly used for estimating parameters 

and optimizing them (ultimately reducing circuit 

complexity and depth), in the case of this paper it is 

used to estimate expected values of functions related 

to the objective function. This paper aims to use QAE 

for a quadratic speedup of the normal SBO. 

[49] 

A detailed 

end-to-end 

assessment 

of quantum 

algorithm 

for 

portfolio 

optimizatio

n 

 

(Goldman 

Sachs and 

AWS) 

 

(Alexander 

Dalzell et 

al., 2023) 

In this paper, a 

detailed explanation is 

given towards the use 

of a quantum 

algorithm for 

portfolio 

optimization. This 

paper is inspired by 

the “End-To-End 

Resource Analysis for 

Quantum Interior-

Point Methods and 

Portfolio 

Optimization” 

 

Issues addressed are: 

1: to determine the 

practicality of a 

quantum algorithm 

2: the PO model itself 

3: Quantum interior 

point methods 

4: Resource estimate 

for QIPM 

Points to determine the practicality of a quantum algorithm: 

- The quantum algorithm produces a classical output 

that allows for benchmarking via classical methods 

- The quantum algorithm relies on a reasonable input 

model, as some models (mostly for QML) were 

thought to offer significant advantages over classical 

methods until it was pointed out that they did not 

because they used unreasonable assumptions about 

the input model.  

- The quantum algorithm has a plausible case for 

asymptotic speedup, meaning that it is used on a case 

that shows the quantum algorithm to outperform a 

classical counterpart on a sufficiently large size 

instance, as that is where quantum advantage is 

found. 

- The instance size, or the tipping point where the 

quantum algorithm outperforms the classical one 

must be of commercial use, if it outperforms a 

classical algorithm at a point where it is of no 

commercial use, the quantum algorithm may as well 

not be used. 

 

QIPM for PO model: 

- PO aims to maximize returns while minimizing risk 

of a fixed investment budget. QIPM tries to achieve 

this by using quantum computing methods to specific 

computational processes in the classical algorithm. In 

particular, QIPM improves on classical interior point 

techniques by employing quantum algorithms to 

solve linear problems, quantum random access 

Quantum system: 

Amazon Braket 

 

Algorithms/method 

used: 

Quantum Interior 

Point Method 

(QIPM) 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio 

optimization 

 



memory (QRAM) to rapidly access data, and 

quantum state tomography to transform quantum 

states into classical information. 

 

Challenges for QIPM: 

- Error management: errors can affect accuracy, 

however, the IPM’s design allows for self-error 

correction. 

- Limitation of current NISQ hardware: e.g. limited 

qubits and frequency of errors and noise 

interferences. 

- Dependency on parameters 

 

Resource estimation for the QIPM: 

- The estimate to encode a PO problem with 100 assets 

is around 8 million qubits, far from what is currently 

feasible on quantum hardware. 

- Quantum gates needed for n = 100 (or more 

specifically T-gates for QIPM) is approximately 7 x 

10^29, far from currently feasible 

- T-Depth (or depth of the circuit / number of layers of 

T-gates in parallel) for n = 100 is 2 x 10^24, which is 

very computationally demanding and currently not 

realizable. 

- Currently, the estimation for QIPM runtime is in the 

millions of years for bigger PO problems. 

 

Results/findings: 

- Simulations suggest that QIPM may theoretically 

offer speedups, but current implementation do not 

show a clear advantage over classical algorithms for 

problem size between n = 10 and n = 120., 

practicality for larger problems remains uncertain. 

- Even when algorithms present promising advantages, 

further inspection on it can reveal a drastically 

different picture due to multiple factors (e.g. 

assumptions made for the algorithm are not realistic) 

- QIPM showed great data cost and computation time, 

needing significant QRAM to operate. 

- Currently, QRAM is not practical, it is suggested that 

to improve its practicality, dedicated QRAM 

hardware ought to be made that can leverage the 

special aspects of QRAM more efficiently. And this 

applies to all algorithms making use of QRAM. 

[50] 

Efficient 

DCQO 

Algorithm 

within the 

Impulse 

Regime for 

Portfolio 

In this paper, a digital 

quantum algorithm is 

proposed for portfolio 

optimization using the 

digitized-

counterdiabetic 

quantum optimization 

(DCQO) algorithm. 

 

Objective(s): 

- Form a fast, purely-quantum digitized-

counterdiabatic quantum optimization protocol 

(DCQO) relying on the concept of the impulse 

regime, along with a hybrid version (H-DCQO) 

- Experiment with these models on a 20-asset PO 

problem on the IonQ quantum computers. 

Quantum system: 

IonQ trapped-ion 

quantum computer 

 

Algorithms/model 

used: 

DCQO 

 

Methodology: 

Impulse regime = 

an approach that 

reduces circuit 

depth and 

enhances solution 

accuracy. In this 

paper it is sued as 

an alternative to 



Optimizati

on 

 

(Kipu 

Quantum 

and 

University 

of the 

Basque 

Country 

Departmen

t of 

Physics) 

 

(Alejandro 

Gomez 

Cadavid et 

al., 2023) 

The DCQO is applied 

to a real-case scenario 

of PO with 20 assets, 

using purely quantum 

and hybrid-quantum 

paradigms. It is 

performed using up to 

20 qubits on the IonQ 

trapped-ion quantum 

computer. 

 

The DCQO is 

benchmarked against 

the standard Quantum 

Approximate 

Optimization 

Algorithm (QAOA) 

and finite-time 

digitized-adiabetic 

algorithms. 

 

Note: this paper 

mostly compares the 

proposed quantum 

algorithms to each 

other, not directly 

mentioned any 

classical algorithms 

(only for the hybrid 

model for 

optimization), but it 

can generally be 

deducted by the 

results that promising 

results are shown 

from the experiments. 

- Integrate adiabatic quantum optimization and counter 

diabetic protocols in DCQO to address the PO 

problem more efficiently 

- Convert proposed Markowitz PO model in this paper 

(reformulated with single-time step modality of this 

problem with Boolean asset investment) (this is 

mainly to simplify the problem and make it more 

efficient to solve) to a Hamiltonian formulation to be 

able to make it solvable via DCQO 

- Test the DCQO and h-DCQO to each other, QAOA, 

and other digitized adiabatic protocols. 

- Results are put into perspective via the approximation 

ratio of the average energy needed for a solution 

compared to the actual energy used. 

 

Data specifics: 

- 20 assets, with historical data from 06/06/2022 to 

01/01/2023, budget is number of asset / 2.  

 

Results: 

DCQO: 

- Implementing CD protocols in the DCQO improved 

performances 2x in terms of approximation ratio 

compared to non-CD usage. 

- For the 20-asset problem on a simulator, the DCQO 

proved to be more efficient than compared methods, 

showing an average approximation ratio of 0.54 

- Implementing DCQO on IonQ’s 25-qubit device 

showed that the AR ratio could be 0.50 with error 

mitigation methods, similar to the simulated results. 

h-DCQO: 

- A five-layer (more complex, thus accurate results) 

QAOA performed similarly to a one-layer h-DCQO, 

showing that h-DCQO is more efficient. 

- For the PO problem, h-DCQO achieved an AR ratio 

of 0.72, showing the closest likeness to the desired 

solution out of all the tests.  

- When executed on IonQ’s device with error 

mitigation techniques, h-DCQO showed an 

approximation ratio of 0.58, which is lower than the 

simulated test. 

Overall: 

- The two methods are effective for both portfolio 

optimization and other combinatorial problems, 

demonstrating their general utility. 

- “we achieved a substantial reduction in the circuit 

complexity while maintaining a similar solution 

accuracy” (p. 7), referring to the methods used to 

lower circuit complexity such as CD protocols. 

- “We obtain a significant reduction in the circuit depth 

by factors of 2.5 to 40, while minimizing the 

dependence on the classical optimization subroutine.” 

(P. 1) 

Optimization 

 

Use case: 

Portfolio 

optimization 

suing methods 

like QAOA. 

 

Single time-step 

modality = means 

solving the 

problem in a 

single point in 

time, as opposed 

to multiple time 

steps or stages. 

Basically, 

meaning that the 

proposed model 

only has to solve 

the formulation 

once and give 

asset allocation in 

a portfolio one 

time. 

 

Boolean asset 

investment = a 

way of 

simplifying the 

inclusion, or 

exclusion, of an 

asset to a binary 

format, thereby 

simplifying the 

optimization 

problem to a 

series of yes/no 

decisions for each 

asset 

 

Counterdiabetic 

protocols (CD) = 

a set of techniques 

used in quantum 

computing to 

enhance the 

performance of 

quantum 

algorithms, 

particularly those 

involving 

quantum 

optimization and 

quantum 

annealing. 



- “Besides portfolio optimization, the proposed method 

is applicable to a large class of combinatorial 

optimization problems.”(p. 1) 

 

Important notes: 

- Classical optimization for the hybrid algorithms was 

done via COBYLA. 

- Multiple additional methods are used on DCQO and 

h-DCQO to optimize its efficiency and performance, 

these methods are not relevant to be explained but the 

following are employed: 

1. On DCQO: impulse regime, selective trotter 

steps, gate reduction strategy, threshold 

alignment, and critical point focus 

2. H-DCQO: simplified ansatz method, parameter 

reduction, variational optimization following 

variation quantum algorithms (as these are also 

hybrid quantum-classical), and layer count 

optimization. 

- The DCQO is a purely quantum optimizer, and h-

DCQO is a hybrid version employing classical 

methods also. 

- The paper leverages adiabatic quantum optimization 

and counterdiabatic protocols to address the portfolio 

optimization problem more efficiently, thereby 

reducing circuit depth and increasing accuracy 

[59] 

A 

Quantum-

Inspired 

Binary 

Optimizati

on 

Algorithm 

for 

Representa

tive 

Selection 

 

(Agnostiq 

Inc) 

 

(Anna G. 

Hughes et 

al., 2023) 

In this paper, a 

selector algorithm is 

proposed: a method 

for selecting the most 

representative subset 

of data from a larger 

dataset.  

 

The proposed dataset 

includes datapoints 

that meet two 

requirements: 

1: The data is 

maximally close to 

neighboring data 

2: The data is 

maximally far from 

more distant data 

points 

This is ti make sure 

data selected is as 

diversified as 

possible. 

 

 

Objective(s): 

- Form a unsupervised representative selector 

system/algorithm for selecting them sot 

representative subset of data from a data pool, where 

the algorithm meets two requirements: 

1: The data is maximally close to neighboring data 

2: The data is maximally far from more distant data 

points 

- Formulate the cost function as a QUBO problem 

aimed to be solved via multiple metaheuristics, where 

the selector algorithms pick out unique and 

representative data points by finding low-cost 

solutions to this QUBO function on quantum 

annealer. 

- Show two use cases for the selector algorithm: 

1: approximately reconstructing the NASDAQ 100 

index using a subset of stocks, comparing how close 

the return of the selected stocks are to those to the 

NASDAQ 100 

2: diversifying a portfolio of cryptocurrencies 

- For case 2, compare the performance of the algorithm 

using two quantum annealers provided by D-Wave. 

- Also do experiments with synthetic data 

 

Dataset specifications (Synthetic data): 

- One dataset containing simple and obviously 

clustered data, and another dataset containing time 

Quantum system: 

D-Wave QBSOLV 

for NASDAQ 100 

problem 

 

D-Wave Advantage 

(over 5000 qubits) 

and D-Wave 2000Q 

(2048 qubits) for 

crypto problem. 

 

Algorithms used: 

Selector algorithm 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio 

optimization 

 



series data; data ordered in a chronologically ordered 

sequence. 

Dataset specifications (use cases): 

Reconstructing NASDAQ 100 with a classical QUBO solver: 

- 102 stocks, performed on D-Wave QBSOLV, daily 

returns of each stock are considered, historical data 

from 2021/02/01 to 2022/02/01 (253 days), stocks are 

equally weighted. 

Diversifying crypto portfolios with quantum annealers: 

- Input data from daily returns of cryptos from 

Crescent Crypto Market Index in the period 

2021/04/01 to 2021/11/11 (seven months), annealing 

times were changed to find different solutions, 

constraint satisfaction was tested, and solution 

quality is compared. D-Wave Advantage and D-

Wave 2000Q were used.  

Constraint tested: whether the selector keeps to the 

max of 3 cryptos. 

 

Results: 

For synthetic data: 

- The selector algorithm successfully selected 

representative points from the clustered data points 

- The selector algorithm was able to select 

representative data even as noise increased. 

- The algorithm demonstrated robustness in selecting 

representative points of data from both clearly and 

loosely clustered data, showcasing its practical 

application. 

- he algorithm maintained high accuracy in 

distinguishing between clusters at low noise levels, 

with 100% accuracy. As noise increased, accuracy 

dropped, but was still better than random picking. 

For use cases: 

Reconstructing NASDAQ 100 with a classical QUBO solver 

(objective: use the selector algorithm to find assets that closely 

relate to the returns from the NASDAQ 100 index): 

- The selector algorithm found two stocks that 

approximated NASDAQ 100 closely, and the stock 

chosen proved to be competitive, meaning they 

performed well compared to other possible choices. 

- As more stocks were selected, e.g. 40, the selector 

achieved a reproduction of the NASDAQ 100 

(concluded from mean-square-error score) 

- Accuracy increased with increased number of stocks. 

Diversifying crypto portfolios with quantum annealers 

(objective: Use the selector algorithm to choose a subset of 

cryptocurrencies, optimizing the cost function on each quantum 

annealer): 

D-Wave 2000Q: 

- Succeeded in selecting exactly 3 cryptocurrencies in 

only 16% of the trials 



- Average cost function value of 4.02, within the 

lowest 4% of possible values, meaning that it can 

find good performing cryptos, but with room for 

improvement. 

D-Wave Advantage: 

- Achieved a success rate of over 85% in selecting 3 

cryptocurrencies. 

- Average cost function value of 0.32, within the 

lowest 0.03% of values, meaning that it can find 

cryptos that are among the very best compared to all 

possible solutions, suggesting significantly better 

performance in PO. 

Overall findings: 

- Average annealing times were between 20-990 

microseconds, but annealing times were significantly 

better for D-Wave advantage than for 1000Q 

- Longer annealing times improved the percentage of 

solutions meeting the constraints. 

- D-Wave 2000Q falls short of D-Wave Advantage 

- Both devices are able to select solutions with lower 

cost function values compared to the average of all 

possible solutions, however, D-Wave Advantage 

finds better solutions.  

 

Overall conclusions from all tests: 

- “Overall, we saw clear improvement between the 

newer Advantage QPU and the earlier 2000Q QPU, 

providing meaningful solutions to the combinatorial 

optimization problem.” (p. 9) 

 

[83] 

Improved 

and large-

scale 

portfolio 

optimizatio

n using 

vector 

annealing 

 

(Icosa 

Computing

; NEC M) 

 

(Esencan et 

al., 2023) 

In this paper form 

Icosa computing and 

NEC, a quantative 

comparison between 

NEC’s Vector 

Annealing (VA) 

solution against the 

simulated annealing 

algorithm is 

performed via a 

financial PO problem. 

 

 

Objective(s): 

- Propose a SA algorithm, solving a QUBO 

formulation of Markowitz’s Modern Portfolio 

Theory. 

- Tune the parameterization of both VA and SA, and 

compare results with non-optimized parameterization 

for SA and VA. 

- Compare VA and SA performance via subtracting 

both performances from each other to give 

perspective in the difference between both. 

- Employ a four-step process in testing SA approaches:  

1: obtain stock data from IEQ’s platform, or from 

Yahoo Finance 

2: using a tunable finance model, deconstruct and 

formulate the original problem in a discrete problem 

suitable for SA and VA 

3: use both SA and VA for finding a candidate 

solution to the formulated problem 

4: consider the candidate with the lowest energy state 

as the optimal solution. 

-  

 

Data specifics: 

Quantum system: 

N/A 

 

Algorithms used: 

Simulated annealing 

(SA) and NEC’s  

vector annealing 

(VA) 

 

Methodology: 

Optimization  

 

Use case: 

Portfolio 

optimization 

 

 



- A problem with differing numbers of linear variables, 

markets, stock numbers, granularity, with historical 

data as training periods from the used markets. (see 

figure X) 

- S&P 500 period was between 3/12/2018 and 

8/1/2019 with 486 stocks due to some missing data 

- US test was from the stock period between 3/18/2022 

and 3.2.2023, and second test for data between 

3/18/2022 and 5/16/2022. 

- For international test one, the period was 3/18/2022 

and 5/4/2022 (with 17,833 equities traded in France, 

Germany, U.K., and U.S.), and second test period 

being 3/17/2022 and 4/1/2022 (for 25,034 equities 

traded in Canada, France, Germany, Japan, Turkey, 

U.K., and the U.S.)  

 

Results: 

- Va constantly performed better than SA, producing 

better quality solutions 

- the energy gap between SA and VA grew as number 

of variables grew, showing that VA has a scaling 

advantage. 

- Looking at the results, and the graph in figure 1, it 

can be said that both SA and VA perform better after 

tuning the parameters. 

- “We found that Vector Annealing generally 

outperformed Simulated Annealing in terms of 

solution quality and that its advantage over SA scales 

with problem size.” (P. 1) 

- NEC’s VA is able to compute very large numbers of 

variables with complex, real-world constraints. 

- “NEC Vector Annealing greatly reduces the 

computational complexity associated with traditional 

Simulated Annealers and accelerates the narrowing 

down of the candidate solutions by a factor of up to 

300 times at problem sizes beyond the capabilities of 

conventional methods.” (p. 1) 

 

Important notes: 

- Actual financial returns are disregarded as this paper 

is only interested in performance difference between 

VA and SA. 

- It is mentioned that the SA and VA need finetuning 

for it to perform to a certain standard, but ‘this is out 

of the scope of this paper’ (p. 3) 

[73] 

Quantum 

Algorithms 

for 

Portfolio 

Optimizati

on 

 

This paper mentions it 

to develop the first 

quantum algorithm 

for constrained PO 

and test it on a PO 

instance 

 

Objective(s): 

- Design and analyze a quantum algorithm for the 

general constrained portfolio optimization problem, 

making it applicable to a PO problem with an 

arbitrary number of positivity and budget constraints.  

- Reduce the objective PO problem to a second order 

cone program (SOCP) for broader applicability (to 

classical interior point methods (IPM) and certain 

Quantum system: 

N/A 

 

Algorithms used: 

Quantum version of 

interior point 

methods. 

 

Second Order 

Cone Programs 

(SOCPs) = a 

convex 

optimization 

problem that 

generalizes linear 

and quadratic 



(CNRS, 

IRIF, 

Université 

Paris 

Diderot) 

 

(Anupam 

Prakash et 

al., 2019) 

Furthermore, some 

experiments are done 

to bound the problem-

dependent factors 

arising in the running 

time of the quantum 

computer, comparing 

computing times with 

classical algorithms  

quantum algorithms), efficiency, generalization, 

flexibility, and stability/robustness of results. 

- Conduct an experiment with the proposed quantum 

model on dataset, compare the results with classical 

IPM. 

 

Dataset specifications: 

- Historical data from the S&P 500 stock for a period 

of 9 years (2007-2016), 50 companies are sampled 

for their stock performance in the first 100 days. 

 

Results: 

- The quantum algorithm shows similar performance to 

the classical algorithms in terms of convergence. 

- The quantum algorithm offers significant speedup 

compared to the classical methods 

- Running time of the algorithm scale more favorably 

than that of its classical counterparts, indication 

quadratic speedup over classical algorithms. 

- The quantum advantage showed to be more 

pronounced when the number of assets is large, and 

constraint numbers are low. 

- “We obtain a polynomial speedup over the classical 

algorithms, and we provide experimental results to 

demonstrate the potential of these advantages in 

practice” (p. 1) 

- “The experiments suggest that this parameter κ in 

indeed bounded and that our algorithm achieves a 

speedup over the corresponding classical algorithm” 

(p. 4) 

 

Important notes: 

- The goal of the quantum IPM is to significantly 

outperform classical approaches, especially for big 

matrices and high-dimensional problems, by utilizing 

quantum linear systems solvers and QRAM. 

Methodology: 

Optimization 

 

Use case: 

Portfolio 

optimization 

programming, 

basically making 

it useful to 

optimize multiple 

objective 

problems better as 

it is flexible 

(meaning it can be 

formulated 

towards many 

types of problems, 

e.g. max return, 

min risk), and it 

can handle 

complex 

constraints (also 

common in 

portfolio 

optimization) 

 

[121] 

NISQ-HHL 

Portfolio 

optimizatio

n for near-

term 

quantum 

hardware 

 

(JP 

Morgan 

Chase) 

 

(Dylan 

Herman et 

al., 2021) 

As multiple 

components of current 

HHL are unsuitable to 

be applied to NISQ 

hardware, this paper 

introduces the NISQ-

HHL, which is the 

first hybrid 

formulation of HHL 

suitable for small-

scale PO instances. 

 

The NISQ-HHL is 

used in an experiment 

on a real quantum 

device to show its 

effectiveness 

Objective(s): 

- Propose the NISQ-HHL formulation, where HHL is 

improved via mid-circuit measurements, Quantum 

Conditional Logic (QCL) enhanced QPE (which is 

the standard method used in HHL), and qubit reset 

and reuse (which ensure fewer qubit needs for 

calculations, and reduced requirements for qubit 

connectivity, thereby making it more efficient) 

- Furthermore, make use of a new efficient procedure 

to scale the matrixes used (e.g. covariance matrix) for 

better accuracy of end results. 

- Experiment with the NISQ-HHL on a real quantum 

computer with a 2-asset PO problem form the S&P 

500. 

- Formulate the Markowitz’s mean-variance model as 

a Quantum Linear Systsems Problem (QLSP). As the 

HHL algorithm is designed to solve such a problem. 

Quantum system: 

Real quantum 

hardware (Trapped-

Ion Honeywell 

H1system), and for 

certain comparison 

simulated hardware. 

 

Algorithms used: 

NISQ-HHL 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio 

optimization 

Fidelity = a 

measure of how 

close probability 

distributions are 

to each other, 

thereby signifying 

degree of 

accuracy. 

 

Ancillary qubits = 

qubits that are not 

mpart of the main 

computational 

qubits that 

directly represent 

the problem’s 

fdata, but rather 



 

This paper proposes 

to make HHL more 

scalable. 

- Test the difference between the use of QCL enhance 

QPE, and standalone QPE for estimating eigenvalues. 

- Experiment with NISQ-HHL on two further 6-asset 

and 14-asset PO problems with a simulator and 

decipher its performance against uniformly controlled 

rotations (which are employed in the traditional HHL 

algorithm for eigenvalue estimation) 

 

Dataset specifications: 

- Two PO problems with 6 and 14 assets from the S&P 

500 index formed as a QLSP problem. 6 ancillary 

qubits used in both cases to increase efficiency. 

Results: 

QCL-QPE method compared to standalone QPE: 

- QCL enhanced QPE uses less qubits for the same 

problem instance than standalone QPE, thereby 

showing increased efficiency. Furthermore, as 

number of bits increase (complexity), the number of 

qubits stays the same for QCL-QPE as opposed to 

standalone QPE. 

- Results on the real quantum hardware shows that the 

fidelity of QCL-QPE is better than standalone QPE. 

NISQ-HHL performance (For the 6-asset and 14-asset PO 

problem it was found that the circuits were very deep, making 

real hardware execution infeasible, therefore simulation was 

used for analysis)(for the 2-asset problem, the Honeywell 

quantum computer was used): 

- NISQ-HHL circuits demonstrated reduced depth and 

improved precision in rotations, leading to better 

performance. 

- 14 qubits total were needed for the 6 asset problem, 

and 16 qubits total for the 14 asset problem. 

- For the experiment, the results showed high inner 

product values being found (close to 1), meaning that 

the algorithm is accurately solving the problems. 

- The algorithm showed better performance for the 

larger 14-asset problem, thereby showing its 

increased performance as complexity increases. 

- Compared to the uniformly controlled rotation in the 

normal HHL algorithm, NISQ-HHL performed better 

in terms of efficiency, using less rotations (4 instead 

of 64 for 6-asset PO, and 5 compared to 64 in the 14-

asset PO), and having lower circuit depth (1,877 for 

the 6-asset PO instead of 12,911, and 6,514 for the 

14-asset PO instead of 11.786 for the uniformly 

controlled rotations), thereby showcasing that the 

NISQ-HHL can facilitate a lessening in the 

computational resources needed for HHL. 

- Accuracy of NISQ-HHL was also perceived to be 

higher than with the uniformly controlled rotations. 

- NISQ-HHL demonstrated superior performance in 

terms of fewer controlled rotations and reduced 

 qubits that are 

used in quantum 

computation to 

facilitate 

efficiency and 

reliability of the 

quantum 

algorithm, which 

they are also used 

for in this paper. 

 

 



circuit depth while maintaining high accuracy in the 

inner product values. 

- NISQ-HHL was successfully implemented on the 

Honeywell System Model H1 to solve a portfolio 

optimization problem involving two S&P 500 assets. 

[98] 

Financial 

Index 

Tracking 

via 

Quantum 

Computing 

with 

Cardinality 

Constraints 

(Multiverse 

Computing

; Quantum 

Computing 

Services; 

Advanced 

Analytics; 

Donostia 

Internation

al Physics 

Center; 

Ikerbasque 

Foundation 

for Science) 

 

(Samuel 

Palmer et 

al., 2022) 

In this paper, it is 

demonstrated how 

non-linear cardinality 

constraints can be 

applied in real-world 

asset management to 

quantum PO. 

 

Furthermore, the 

methodology is 

applied to a practical 

problem of enhanced 

index trading. 

 

 

Objective(s): 

- Propose a quantum model based on quantum 

annealing for solving of a cardinality-constrained 

Markowitz PO problem. 

- Form the PO problem as a QUBO formulation to be 

solved via the model. 

- Experiment with the model on a proposed PO 

problem with different problem sizes and qubit 

numbers used (400 – 3000), where the objective is to 

replicate the behaviors of a larger financial index of 

assets using a smaller sub-set of assets (index 

tracking), where error is tracked by measuring, he 

deviation of the solution forms the index. 

 

Dataset specifications: 

- Historical data consist of the daily returns from the 

Nasdaq 100 and S&P 500, the period form when this 

data is taken covers the period JUN/01/2021 to 

MAY/28/2022. A single asset may have a max 

holding of 20% in the portfolio. Tests are performed 

using different problem sizes and differing numbers 

of qubits. 

 

Results: 

- It is observed that the success rate of finding feasible 

portfolios is very high, close to 100% for the model, 

indicating that the cardinality-constrained model is 

extremely effective and reliable. 

- As the number of assets in the cardinality-constraint 

increased, the distribution of errors improved, 

meaning more accurate results. 

- The most optimal portfolio found had extremely low 

tracking error, almost completely tracking the given 

indexes, this was done for both a cardinality 

constraint of 25 and 75. 

- Smaller portfolios showed less ability to track the 

index to a high degree, but still performed well 

- As for the S&P 500 index, the model yielded good 

tracking results, with minimal volatility errors, and a 

Quantum system: 

Quantum Annealer 

(D-Wave LEAP 

Hybrid solver) 

 

Algorithms used: 

Quantum Annealing 

 

Methodology: 

Optimization  

 

Use case: 

Optimizing a 

portfolio for index 

tracking. 

Reason for 

cardinality-

constraints: the 

decision to use 

these constraints 

can be driven by 

reducing 

management 

costs, transaction 

costs, or portfolio 

complexity, or by 

other investor 

preferences. 

 

 



low median relative error, indicating good overall 

tracking performance. 

- For the experiment, using a cardinality-constraint of 

50 assets, the proposed model performed  

- For enhanced index trading, the method was able to 

“construct smaller portfolios that significantly 

outperform the risk profile of the target index whilst 

retaining high degrees of tracking” (p. 1) 

- Overall, the model showed that it is possible to 

successfully use quantum optimization in the tracking 

of financial indexes. 

 

Important notes: 

- Introducing the cardinality-constraint makes the PO 

problem a non-convex problem. 

- Cardinality constrained PO problems are very 

complex to solve, as it limits the number of assets a 

portfolio can use to solve the target objective. 

- “Previous work involving cardinality-constraint 

optimization has primarily relied on the use of 

heuristic algorithms such as genetic algorithms, or 

classical approximations, which do not scale well for 

large portfolios and are not practically reliable” (p. 2) 

[97] 

A 

Quantum 

Computing

-based 

System for 

Portfolio 

Optimizati

on using 

Future 

Asset 

Values and 

Automatic 

Reduction 

of the 

Investment 

Universe 

 

(TECNALI

A BRTA; 

Serikat) 

 

(Eneko 

Osaba et 

al., 2023) 

This paper entails a 

quantum computing-

based system for 

portfolio optimization 

with future asset 

values and automatic 

universe reduction 

(Q4FuturePOP) 

 

This system proposes 

the following 

innovations: 

1: the tool is 

developed for 

working with future 

prediction of assets, 

instead of historical 

values 

2: The tool includes 

an automatic universe 

reduction module to 

improve efficiency. 

 

Lastly, a brief 

preliminary 

performance review is 

discussed considering 

the system. 

Objective(s): 

- Develop a Quantum Computing-based system 

(Q4FuturePOP) that optimizes asset-allocation with 

the objectives of maximizing expected returns and 

minimizing the financial risk. This system follows 

the Markowitz POP formulation 

- Using future projected values (meaning that 

calculations are made via projected values of assets 

instead of historical data, and weights chosen for the 

assets are based on future predictions of the stock), 

and automatic universe reduction (where a 

representative good sub-group of the initial pool of 

assets is chosen and further improved upon to find 

the optimal asset allocation), reduce the complexity 

of the problem. 

- Then use the model on an experiment from the 

dataset below, where results are benchmarked against 

a historical set of portfolios obtained from Welzia 

Management company to serve as a baseline.  

- The experiment includes the data below, however, 

the data is split up into 6 different use cases that are 

12 to 28 months long 

 

Dataset specifications: 

- 53 daily values of different assets from the period 

01/01/2010 to 13/12/2022, this dataset is ultimately 

split up into 6 instances ranging from 12 to 28 

months (with respectively 45, 43, 35, 38, 40, and 53 

assets) 

 

Quantum system: 

D-Wave Advantage 

6.2 (5610 qubits) 

 

Algorithms/system 

used: 

Q4FuturePOP 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio 

optimization 

 



Results: 

- Results from the experiment proved to be promising, 

where they have been approved by experts from 

Welzia Management Company, thereby giving an 

indication as to how the industry looks at the problem 

(as it is usually the case that only academic results 

are compared with each other, giving no validation 

from the industry it ought to be used by) 

- The portfolios made by the model offered better 

solutions than the portfolios from the experts at 

Welzia Management in some cases. 

- Looking at table 1 that shows the results for the 6 

instances in the experiment, it can be seen that for 4/6 

instances the model performed better in finding 

higher expected returns than the experts, and 3/6 

times it had better volatility or risk results. 

- This work shows promising results regarding the use 

of the Q4FuturePOP model with future value 

prediction and universe reduction strategy for PO 

optimization. 

 

Important notes: 

- The model consists of 3 parts,  

1: A dedicated ‘predicted dataset generation model’ 

(PDG), which is used to simulate future asset prices, 

the PDG comes a step before the AUG, which uses 

the information from the PDG to find an optimal sub-

set of candidates. 

2: The quantum computing solver module (QCS), 

consisting of a QUBO problem builder and a 

Quantum Annealer solver to solve the QUBO 

formulated PO problem. 

3: the Assets Universe Reduction module AUR, with 

the main objective to decrease the complexity of the 

problem by finding a representatively good sub-set of 

assets to use in the PO solving. 

[99] 

Quantum 

Portfolio 

Optimizati

on with 

Investment 

Bands and 

Target 

Volatility 

(Multiverse 

Computing

; Donostia 

Internation

al Physics 

Center; 

Ikerbasque 

In this paper it is 

examined how some 

complex real-life 

constraints can be 

incorporated into PO 

problem, where it is 

formulated as a 

QUBO problem and 

subsequently solved 

the D-Wave Hybrid 

and D-Wave 

Advantage. 

Objective(s): 

- First. Explain how to target optimal investment 

portfolios with a fixed volatility (risk) 

- Second, show how to impose investment bands in the 

computed portfolios  

- Form the PO problem based on Markowitz’s Modern 

Portfolio Theory with investment band constraints, 

where the aim is to find the optimal return for a given 

volatility %  

- Form the problem as a QUBO formulation to be 

solved via a quantum annealer 

- Prove the validity of the model via an experiment by 

finding an optimal portfolio investment for the S&P 

100 and S&P 500 with the D-Wave Advantage 

quantum annealer. 

- Constraints used: investment band constraint, target 

volatility constraint, and a budget constraint. 

Quantum system: 

D-Wave Advantage 

(hybrid). 

 

Algorithms used: 

N/A 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio 

optimization 

Investment band = 

an imposed 

maximum and 

minimum 

investment for 

each asset.  



Foundation 

for Science) 

 

(Samuel 

Palmer et 

al., 2021) 

 

Dataset specifications: 

- closing prices are taken from 23/04/2021 to 

23/04/2021, and covariance matrix for values of 3 

months before 23/04/2021, max 10% of the portfolio 

may consist of one asset. Lastly, data is experimented 

on using different target volatilities (0.5%, 0.75%, 

and 1.00%) 

 

Results: 

S%P 100 results: 

- Sometimes, local minima were found, however, it is 

mentioned that this could be handled easily through 

various methods. 

- The S&P 100 example successfully followed 

volatility constraints. 

- As for the different target volatilities with investment 

bands, the found portfolios adhered to these 

constraints 

- The model demonstrated lower risks for the same 

return compared to random portfolios with the same 

return 

- The model demonstrated higher returns for the same 

level of risk as compared to random portfolios. 

S%P 500 results: 

- Target volatility constraints were met, indicating that 

the method is able to follow provided volatility 

constraints 

- For the different target volatility, the optimization 

method adhered to the specified investment bands 

and volatility constraints 

- The proposed portfolios achieved lower risk 

compared to random portfolios with the same levels 

of return 

- The proposed portfolios found higher returns for the 

same level of risk. 

- Compared to the S&P equally weighted index (which 

is also used as a benchmark), the proposed model 

outperformed the S&P 500 EWI, especially through 

favoring high-return sectors during COVID. 

 

Overall: 

- Both S&P500 and S&P100 quantum-optimized 

portfolios demonstrated improved performance over 

random portfolios and traditional indices, efficiently 

managing constraints and achieving better returns for 

the same or lower levels of risk. 

- This paper showcases the feasibility of a quantum PO 

model with realistic conditions on quantum 

computers, showing it to handle investment band and 

volatility constraints well, and optimize portfolios in 

a real-world scenario. 



- “Our results show how practical daily constraints 

found in quantitative finance can be implemented in a 

simple way in current NISQ quantum processors, 

with real data, and under realistic market conditions.” 

(p. 1) 

- “In combination with clustering algorithms, our 

methods would allow to replicate the behavior of 

more complex indexes, such as Nasdaq Composite or 

others, in turn being particularly useful to build and 

replicate Exchange Traded Funds (ETF).” (p. 1) 

 

Important notes: 

- It is also assumed that shares can only be sold in 

large bundles. 

- Short selling is not allowed. 

- The proposed model also allows for investment 

bands for specific sectors. 

- “To the best of our knowledge, these are the largest 

portfolio optimizations carried on a quantum 

computer and under real market conditions” (p. 4) 

[58] 

Portfolio 

rebalancing 

experiment

s using the 

Quantum 

Alternating 

Operator 

Ansatz 

(Rigetti 

Computing

; 

Commonw

ealth Bank 

of Autralia) 

 

(Mark 

Hodson et 

al., 2019) 

In this paper, the 

performance of a 

discrete PO problem 

on a gate-model of 

quantum computing is 

investigated. 

 

Furthermore, the 

model includes a 

novel problem 

encoding and hard 

constraint mixers for 

the Quantum 

Alternating Operator 

Ansatz (QAOAz) 

“In this paper we have 

brought together 

financial services and 

quantum software 

technologists to 

select, implement, and 

test a portfolio 

rebalancing use case 

using QAOA(z)” (p. 

1) 

 

The characteristics of 

the proposed model in 

this paper are trading 

in discrete lots, non-

linear trading costs, 

and investment 

constraints (all to 

Objective(s): 

- Describe the application of QAOA and QAOAz to a 

PO problem with the named aspects below 1 to 6 

- Experiment with the proposed QAOA and QAOAz 

via an experiment for PO including 1: a one-portfolio 

instance, and 2: portfolio rebalancing, both under 

different number of iteration (P) per constraint 

method, furthermore, compare both methods against 

brute-force algorithm (classical)(baseline) 

- Compare the use of soft, and hard investment 

constrained PO on the mentioned QAOA algorithms. 

- Incorporate the following in the model:  

1: Trading in discrete lots 

2: Model uncertainty into the model (thereby 

addressing this limitation in the traditional 

Markowitz model) 

3: Use an investment constraint that ensures the 

portfolio to maintain portfolio value during 

rebalancing. 

4: The model incorporates trading costs, assuming 

fixed costs for each trade (thereby reflecting a real 

trading scenario) 

5: Representation of short, long, no position, long 

and short positions into the spin states (simply put, 

different types of positions for an asset are included 

into the portfolio to maximize the optimization, 

however, it does increase complexity) 

6: Other constraints such as max asset holdings and 

min allocation sizes are used, but not detailed upon in 

the paper. 

Overall, the model aims to improve trading strategies 

by integrating discrete trading practices, market 

Quantum system: 

Gate-based 

simulator 

 

Algorithms used: 

QAOAz, and 

QAOA 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio 

optimization 

Portfolio 

rebalancing = “a 

periodic asset 

management 

process in which 

traders maintain 

an institutional 

portfolio’s net 

value, adjusting 

asset mix based 

on institutional 

advice and 

hedging risk as 

market conditions 

change.” (p. 2) 



achieve better 

accuracy towards 

practical use and 

accuracy) 

 

uncertainty, and trading costs into the optimization 

process. 

 

Data specifics: 

- Australian ASX.20 is used in the period 2017, the 

data covered 20 stocks and 252 trading days, daily 

returns are presented for the algorithms to work with. 

Data for N = 8 stocks were used in the experiments. 

- Number of iterations for both hard and soft 

constrained: p = 2,3,4. 20 runs of the algorithm are 

used for each instance. 

 

Results: 

Evaluation of QAOA, QAOAz, and brute-force for a single 

portfolio: 

- Looking at the given figure 8 (Which shows the 

performance of the algorithms in solving the 

soft/hard constrained problems compared to brute-

force), QAOA with hard constraints outperforms 

brute-force and soft-constrained QAOA in finding 

feasible solutions to the problem, Furthermore, 

QAOAz finds more low-cost feasible solutions than 

QAOA, it can also be said that QAOAz shows 

superior performance with respect to a random 

selection of feasible solutions. 

- QAOAz consistently returns feasible solutions (100% 

of the time) 

- Both QAOA and QAOAz show significant 

improvement in results compared to a random draw 

from the solution space. 

- Both variants of QAOA show a significant 

improvement over brute force methods, which 

validates the efficiency and effectiveness of quantum 

algorithms in navigating large combinatorial spaces. 

- Incorporating hard constraints directly into the 

optimization process shows better optimization 

results than soft constraints as penalty terms. 

For portfolio rebalancing with QAOA, QAOAz, and brute-

force: 

- The QAOAz demonstrates superior performance in 

both maximizing returns and minimizing risk 

compared to the original QAOA and brute force 

methods. 

- Both QAOA variants generally perform close to 

optimal, but the Quantum Alternating Operator 

Ansatz shows more consistent and reliable results 

- “Experimental analysis demonstrates the potential 

tractability of this application on Noisy Intermediate 

Scale Quantum (NISQ) hardware, identifying 

portfolios within 5% of the optimal adjusted returns 

and with the optimal risk for a small eight-stock 

portfolio.” (p. 1) 

Overall: 



- QAOAz performed best among QAOA and brute-

force 

- Hard-constrained problems, and the subsequent 

method used in this paper to better incorporate hard 

constraints, showed to garner better results using the 

algorithms than soft constraints. 

- QAOA and QAOAz show better results than the 

classical counterpart, navigating larger search spaces 

- This study highlights the potential that quantum 

algorithms on NISQ hardware have, achieving 

portfolios within 5% of optimal adjusted return and 

optimal risk for an 8-asset portfolio 

 

Important notes: 

- Scaling the problem might prove difficult due to 

current NISQ hardware limitations. 

- Statement: “The potential for QAOA to provide 

guarantees on performance for problems such as 

MaxCUT has been demonstrated” (p. 2) 

[106] 

Quantum 

portfolio 

value 

forecasting  

 

(Multiverse 

Computing

; Institut 

Für 

Experiment

alphysik; 

AQT; 

Ikerbasque 

Foundation 

for Science; 

Donostia 

internation

al Physics 

Center) 

 

(Cristina 

Sanz-

Fernández 

et al., 2021) 

In this paper, an 

algorithm is presented 

that efficiently 

estimates the intrinsic 

long-term value of a 

portfolio of asset 

using quantum 

computer, relying on 

quantum amplitude 

estimation. 

 

Two trapped ion-

computers are used to 

experiment upon with 

a 5-asset portfolio PO 

problem. 

Objective(s): 

- develop a quantum method to estimate the intrinsic 

long-term value of a portfolio of assets, and 

implement it with real-life data 

- The intrinsic-value of a portfolio is given by the 

Gorden-Shapiro model; therefore it is used in this 

paper in a modified fashion to account for both short-

term and long-term growth by incorporating earnings 

per share and stochastic variables to better 

approximate asset values over a two-year period (it is 

basically used for improved accuracy, creating a 

greater picture asset value over time horizons, 

flexibility, and a more precise calculation of portfolio 

value) 

- Compare results of the QMC on an IonQ device, 

AQTION device, and classical Monte Carlo 

 

Dataset specifications: 

- 5 asset portfolios, with 1000 euros invested in each 

asset. Bought at market value on 2021/04/25, each 

with 3 scenarios (stable, bearish, and bullish, which 

are accounted for using higher/lower volatility 

values) 

 

Results: 

- Looking at the given figures, figure 1 shows how 

quantum results align closely with classical results, 

but with lower errors. Furthermore figure 2 shows 

that QMC achieved a decrease in error with increased 

amounts of queries, outperforming classical Monte 

Carlo in term of error reduction efficiency. 

- Both classical and quantum methods showed that the 

given portfolio was a worthwhile investment, as the 

intrinsic value of it was higher than the market 

Quantum system: 

Real trapped-ion 

computers (IonQ, 

and AQTION) 

 

Algorithms used: 

Quantum Monte 

Carlo (QMC) 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio 

optimization 

 



- In the bearish market, the quantum method provided 

a more accurate estimation of the portfolio, as the 

classical portfolio overestimated the intrinsic value of 

the portfolio. 

- Quantum Monte Carlo methods demonstrated smaller 

estimation errors compared to classical methods, 

achieving a quadratic speedup in error reduction 

- Quantum Monte Carlo methods provide a more 

efficient and accurate means of estimating asset 

values, especially under stable or bullish market 

conditions. 

- results are consistent with classical benchmarks but 

result in smaller statistical errors for the same 

computational cost. 

 

Important notes: 

- Classical Monte Carlo methods in finance often take 

long running times to solve certain complex 

problems. 

- Furthermore, this paper gives examples of existing 

literature on quantum computers having similar or 

better results to classical algorithms. 

- “We choose to work with trapped ions because they 

provide a natural all-to-all connectivity among the 

qubits.” (p. 1) making it simpler to implement the 

quantum circuit. 

[114] 

Solving the 

optimal 

trading 

trajectory 

using 

simulated 

bifurcation 

 

(AlpacaJap

an) 

 

(Kyle 

Steinhauer 

et al., 2020) 

In this paper, an 

optimization 

procedure based on 

simulated bifurcation 

(SB) is used to solve 

integer PO and 

optimal trading 

trajectory problems. 

 

SB is then applied to 

an integer PO 

problem, showing 

numerical results for 

up to 1000 assets. 

Objective(s): 

- Following the mean-variance portfolio description, 

solve a PO problem using Simulated Bifurcation 

- Form the PO problem into an Ising problem to be 

solved via SB 

- Experiment with the SB on a data pool consisting of 

up to 1000 assets, where the objective is to find the 

optimal trading trajectory for a portfolio. In total, 2 

experiments take place: 

1: Optimal trading trajectory finding with the SB-

Algorithm in different risk aversion levels (low, 

moderate, and high) 

2: Optimal portfolio with the SB-Algorithm, thereby 

comparing results with randomly generated 

portfolios. 

3: Finding close-to-optimal solutions for a PO 

instance, and the challenges that come with it. 

 

Data specifications (for the second problem): 

- An artificial market is created with N different assets, 

up to 1000. 

 

Results: 

Portfolio optimization problem: 

- For a small portfolio of 5 assets, the SB algorithm 

optimized the portfolio correctly, finding 5 assets are 

close to optimal. 

Quantum system: 

Simulator 

 

Algorithms used: 

Simulated 

Bifurcation (SB) 

 

Methodology: 

Optimization 

 

Use case: 

Finding the optimal 

trading trajectory 

for a portfolio 

 



- In an instance with added risk-free asset, the SB 

algorithm correctly find the optimal portfolios 

including the risk-free asset. 

- In a third scenario, where the number of assets are n 

= 400, the SB 

- For an N = 1000 assets case, the SB found the 

optimal solution in roughly 1 second. 

Optimal trading trajectory: 

- Looking at figure 11, it can be concluded that as max 

investment per asset, and asset size increased, the 

computational time also increased for the SB. 

However, when the max investment per asset was 

kept low (e.g. 1, 2, 4), it can be seen that there is 

no/minimal increase in computing time for increasing 

number of assets in the data pool 

- For a low risk aversion instance, the Sb-algorithm 

mainly focused on maximizing returns, ignoring risk 

- For moderate risk aversion, the SB-Algorithm only 

takes risk when returns are high, and the portfolio 

value was maximized. 

- On a small, less complex, system, the SB-Algorithm 

found the optimum among all 2^18 possible 

trajectories. For larger systems, the Sb-Algorithm 

found optimal or close-to-optimal results. 

- For high risk-aversion, the SB-Algorithm minimizes 

risk completely by suggesting no investment and 

return levels are ignored due to the risk aversion 

level. 

- The SB-algorithm effectively finds optimal or close-

to-optimal asset allocation trajectories under different 

market conditions and risk preferences 

Finding close-to-optimal solutions: 

- Finding close-to-optimal solutions requires a lot of 

finetuning of parameters and other parts of the 

system, where ultimately the fine tuning showed 

increased accuracy in finding close-to-optimal 

solutions. 

- Furthermore, the proper-finetuning techniques 

resulted in the avoidance of finding sub-optimal 

solutions, and the SB-algorithm demonstrated 

significant computational efficiency and robustness. 

Overall performance findings: 

- In terms of scalability, the computation time 

increased exponentially with system size, the 

performance still is significantly faster than previous 

methods suc has branch-and-bound (classical), which 

took up to 4800 seconds for a 200 asset optimization, 

with SB performing a 256 asset Po in 4 seconds. 

- Performance was dependent on the parameters used 

in the algorithm, if incorrect parameters were used, 

the  

- The results indicate significant improvements over 

existing methods, however, there is still room for 



improvements in the system, as the performance of 

some parts is still sub-optimal. 

- Overall, the SB-algorithm is efficient, faster than 

classical methods, can find close-to-optimal solutions 

efficiently, showed great performance in increased 

complexity problems (only after some fine-tuning of 

the parameters and the system),  

 

Important notes: 

- “This formulation has already proven to beat state of 

the art computation times for other NP-hard problems 

and is expected to show similar performance for 

certain portfolio optimization problems.” (p. 1) 

- “Note that for smaller systems, different heuristic 

approaches, like the so called Digital Annealer, might 

still outperform the SB-approach” (p. 2) 

- “The SB-algorithm is, to our knowledge, currently 

the fastest way to solve a fully connected Ising 

problem and therefore also an ideal candidate to 

solve the optimal integer portfolio problem in the 

Ising representation.” (p. 2) 

- An example is taken from another paper, where it 

showed to solve a fully connected 2000 spin problem 

[65] 

GEO: 

Enhancing 

Combinato

rial 

Optimizati

on with 

Classical 

and 

Quantum 

Generative 

Models 

 

(Zapata 

Computing

) 

 

(Javier 

Alcazar et 

al., 2022) 

“Regardless of the 

quantum optimization 

approach proposed to 

date, there is a need to 

translate the real-

world problem into a 

polynomial 

unconstrained binary 

optimization (PUBO) 

expression – a task 

which is not 

necessarily 

straightforward and 

that usually results in 

an overhead in terms 

of the number of 

variables.”(p.1), 

  

So the problem 

addressed in this 

paper is to translate 

real-world problems 

better into a PUBO 

format, where this 

aids in solving 

problems such as best 

minimum of function 

calls for a given 

budget, however, 

benchmarks for TN-

GEO are run in the 

context of portfolio 

optimization and 

therefore it gives 

insight into an 

Findings: (SOTA = state-of-the-art) 

- In the tests done in the paper, the TN-GEO model 

was used as a booster, or standalone solver for a 

portfolio optimization problem with cardinality 

constraints, where results and objectives are the 

following; (objective 1 = choose portfolios which 

minimize risk or volatility given a specific return 

 

Objective 2 = choose the best portfolio given a fixed level of 

risk aversion). 

1. Booster: TN-GEO outperformed the classical 

strategies, providing more efficiency and 

effectiveness (p 3-5) 

2. Stand-alone: TN-GEO demonstrated superior 

performance compared to the four tested classical 

algorithms in the trial, finding better solutions with 

fewer evaluations p (3 -5) 

  

Compared to 9 SOTA optimizers: 

- 67% of the time, the TN-GEO performed better or 

equal to the 9 other optimizers. 

- The TN-GEO algorithm performance is significantly 

better than GTS and PBILD methods, but according 

to a Wilcoxon signed-rank test, the null-hypothesis 

regarding the hypothesis that the median difference 

between the results of the other algorithms is 

rejected, meaning that there is no significant 

difference between the TN-GEO algorithm and the 

other SOTA optimizers. (p. 6) 

Quantum hardware: 

N/A 

  

Quantum algorithm: 

Tensor-network 

Generator-

Enhanced 

Optimization (TN-

GEO) 

  

Methodology: 

(combinatorial) 

optimization 

  

Use case: 

Combinatorial 

optimization (in the 

case of the paper, an 

NP-hard version of 

portfolio 

optimization with 

cardinality 

constraints) 

 

TN-GEO 

comments: 

TN-GEO can 

propose unseen 

candidates with 

lower cost 

function values 

than classical 

solvers, which is 

the first 

demonstration of 

such type of 

model in the 

context of an 

industrial 

application (p.1) 

  

Furthermore, in 

this study, state of 

the art algorithms 

are compared to 

TN-GEO in a 

generalized 

version of 

portfolio 

optimization (p.1) 

 



optimized way for 

portfolio optimization 

 

[34] 

Portfolio 

Optimizati

on of 40 

Stocks 

Using the 

D-Wave 

Quantum 

Annealer  

 

(Chicago 

Quantum) 

 

(Cohen et 

al., 2020) 

In this paper, the use 

of quantum annealing 

for portfolio 

optimization in a US 

stock environment of 

40 liquid equities. 

 

Furthermore, this 

problem is first 

addressed in a 

multitude of classical 

approaches 

Objective(s): 

- Find the best relationship between risk and return for 

a portfolio in a dataset of 40 US liquid equities. 

- Approach the same problem using classical methods 

(brute force, genetic algorithm, random sampling, 

heuristic approaches, simulated annealer as a Monte 

Carlo) 

 

Results: 

- Classical approaches: 

On average, classical approaches performed worse 

than the quantum annealer, however, the genetic 

algorithms showed  

 

- Quantum annealing: In the case of quantum 

annealing, a couple of things stick out: 

First, The D-Wave quantum annealer approaches the 

efficient frontier in a few cases. Next to that, sometimes 

lower performing portfolios are suggested. Furthermore, 

due to the CQNS, more low-risk portfolios are chosen on 

the efficient frontier, making the results more 

conservative.  

- The D-Wave annealer performs well, even better that 

the simulated Monte Carlo methods, however, it 

underperforms related to the classical genetic 

algorithms. 

- The D-Wave annealer outperforms random sampling 

on average (showing that it is not picking randomly 

but better performing ones),  

- The completion times were fastest in the genetic (and 

D-Wave seeded) algorithms (3,18 ~ 3,47 seconds), 

followed by the D-Wave quantum annealer (3,40 

seconds), however, the quantum annealer beat all 

other classical approaches. 

 

 

Important notes: 

- For the quantum annealing process, an optimal 

portfolio is seen as one which optimizes the Sharpe 

ratio. However, computing this in a quadratic from 

gives some issues in a QUBO format, therefore the 

Chicago Quantum Net Score (CQNS) solves this 

problem and can therefore be used to formulate the 

problem in a QUBO formulation. 

Genetic D-Wave seeded algorithm is the genetic algorithm that 

uses more optimal results acquired from the D-Wave quantum 

annealer as an initial starting point to achieve better end results. 

Quantum hardware:  

D-Wave 2000Q 

annealer 

 

Quantum algorithm:  

Quantum annealing 

 

Methodology: 

optimization 

 

Use case: 

Portfolio 

optimization 

 

[35] 

Portfolio 

Optimizati

on of 60 

This paper builds 

upon the work of the 

optimization with 40 

stocks. In this paper, 

Objective(s): 

- Find the best relationship between risk and return for 

a portfolio in a dataset of 40 US liquid equities. 

Quantum hardware:  

D-Wave 2000Q 

annealer 

 

As this study was 

the follow up of 

the 40 stock 

version, it had 



Stocks 

Using 

Classical 

and 

Quantum 

Algorithms  

 

(Chicago 

Quantum) 

 

(Cohen et 

al., 2020) 

the use of quantum 

annealing for 

portfolio optimization 

in a US stock 

environment of 60 

liquid equities. The 

main objective is to 

find an optimal risk 

and return portfolio 

 

It is investigated 

whether quantum 

annealing can scale up 

and find a grouping of 

attractive portfolios as 

opposed to one. 

 

Furthermore, this 

problem is first 

addressed in a 

multitude of classical 

approaches 

- Approach the same problem using classical and 

hybrid classical/quantum methods (Fat tailed Monte 

Carlo, genetic algorithm, Simulated annealer, D-

Wave Tabu Multistart MST2 samples, D-Wave 

hybrid sampler) 

 

Results/stats: 

- Classical solutions: 

1. Fat tailed Monte Carlo analysis: 

221,660 samples, the ‘ideal’ portfolio was found, will 

perform well under either large/small solution spaces, 

it was run twice on the sampling distribution of 

assets; generating the best and 2nd best answer in both 

24 seconds 

2. Genetic algorithm: brought out the best attributes 

among combining two portfolios (this is done over 

and over to keep generating better portfolio 

combinations), to find the ‘most optimized’ portfolio 

in 7 seconds, and on a D-Wave simulator 48 seconds. 

3. Simulated annealer: It either finds the ‘most optimal 

solutions’ or ‘good solutions’ no bad portfolios, 

portfolio quality increased as the simulator ran 

longer, it found the optimal portfolio in 15 seconds 

on the simulator of the company where this paper is 

from (Chicago quantum), and the D-Wave simulator 

annealer did it in 11 seconds. 

4. D-Wave Tabu Multistart MST2 sampler: this 

simulated annealer was ran on the QUBO 

formulation and showed the least attractive portfolios 

from the QUBO method, the final run took 267 

seconds 

5. D-Wave hybrid sampler: no valid results from this 

sampler using the same QUBO formulation of the 

problem, it does find ‘good’ portfolios but CQNS 

score attributed to it are incorrect due to applied 

penalties (penalties are applied to at least get some 

good results) 

- D-Wave Quantum Annealer: 

The quantum annealer was run repeatedly on the 

QUBO formulation to accumulate more valid 

portfolios. 3725 valid portfolios were found within 

the parameters, better results came from larger 

portfolios. 

- It was consistently found that the D-Wave annealer 

picks portfolios ahead of the efficient frontier. 

Against 40.000 random portfolios (to show that the 

annealer does not just randomly pick out portfolios), 

the D-Wave annealer outperforms at higher risk 

levels. Furthermore, Portfolios tend to be more risky 

than classical methods, but still efficient 

- “D-Wave (annealer) appears to be picking efficient 

portfolios, even out of a population of average 

Quantum algorithm:  

Quantum annealing 

 

Methodology: 

optimization 

 

Use case: 

Portfolio 

optimization 

 

considerable 

improvements and 

material to learn 

from, as shown in 

the results tab. 



results” (p. 14), the efficient frontier is constantly 

found 

 

Overall: 

- Comparative analysis show the best method (again), 

was the genetic algorithm, it found the ideal CQNS 

score in the least amount of time, followed by the D-

Wave simulated annealer, Bespoke simulated 

annealer, D-Wave quantum annealer, Fat tailed 

Monte Carlo, and the D-Wave genetic algorithm 

- The D-Wave Tabu Sampler, and D-Wave Hybrid 

sampler were dead last due to them not finding ideal 

CQNS scores, bad portfolios, and long run times. 

- The quantum annealer comes close to the best 

classical algorithms used, as shown above. 

 

Important notes: 

- The difference with the paper considering 40 stock 

indexes is that this paper: 

a) Considers 60 stock indexes from the US market 

b) Quantum annealing is benchmarked against more 

advanced classical methods 

c) It is investigated whether quantum annealing can find 

groups of attractive portfolios as opposed to one 

d) Prior formulations of the Chicago Quantum Net 

Score are kept 

- “We performed our research during a time of market 

increases for the largest companies, and a relatively 

low interest rate environment. Our analysis used a 

risk-free rate of 1%.” (p. 2) 

“Our model does use prior year trading history to pick its 

portfolios.” (p. 2) 

[33] 

Picking 

Efficient 

Portfolios 

from 3,171 

US 

Common 

Stocks with 

New 

Quantum 

and 

Classical 

Solvers  

 

(Chicago 

Quantum) 

 

(Cohen, 

Jeffrey & 

Alexander, 

In this paper, 3.171 

United States 

common stocks are 

analyzed to create an 

optimal portfolio 

based upon the 

Chicago Quantum Net 

Score (CQNS), which 

is used to quantify the 

desirability of the 

portfolio generated 

 

“We begin with 

classical solvers, then 

incorporate quantum 

annealing.” (p. 1) 

 

In this work, the pool 

of stocks is run 

through a classical 

solver to find the most 

Objective(s): 

- Create an optimal portfolio in 3.171 United States 

common stocks using quantum annealing via 

simulated bifurcation 

- Create an optimal portfolio in 3.171 United States 

common stocks using quantum annealing on the 

physical D-Wave Advantage quantum annealing 

computer 

- Compare results of both methods using CQNS 

 

Results: 

- The classical solvers (e.g. Monte Carlo, Genetic 

algorithms, simulated annealers) used to find 

attractive portfolios found multiple good portfolios, 

including the best one consisting of 134 stocks with a 

CQNS score of −3.14×10^-3, which suggest a 

relatively high attractiveness of the portfolio among 

the datasets 

- The simulated bifurcation machine showed ‘good’ 

solutions, however, it struggled with larger problem 

sizes. 

Quantum hardware:  

Simulated 

Bifurcator and the 

physical D-Wave 

Advantage quantum 

annealing computer 

(5.760 qubits) 

 

Quantum algorithm:  

Quantum annealing 

(and results are 

benchmarked by 

CQNS) 

 

Methodology: 

Optimization  

 

Use case: 

Portfolio 

optimization 

The CQNS is a 

measure/computat

ional technique 

that evaluates the 

attractiveness of a 

portfolio, where 

the closer the 

value is from zero 

(negatively), the 

better or more 

attractive the 

portfolio is (at 

least in the case of 

this paper, this 

could change in 

accordance with 

other 

functions/objectiv

es from other 

studies) , where 

the portfolio 



Clark. 

2020) 

attractive portfolios 

that can be run on 

quantum annealers, 

then the best stock 

portfolios are taken 

and ran through 

additional solvers to 

find the most 

attractive portfolios 

out of the bunch 

- There were some challenges with the D-Wave 

quantum annealer, mainly; long waiting times 

between runs, high chai break rates, and difficulty 

embedding large problem sizes 

- The best run with the quantum annealer had a CQNS 

score of -1.69 x 10^-3 

- In the case of this paper, classical solver 

demonstrated; quicker results, better results, 

indicating that at the time this paper was made, 

classic/simulated methods outperform those run on 

physical ones. Still, simulated bifurcation showed the 

best results, thereby showing that there is great 

potential in real quantum hardware. 

 

 

Important notes: 

- This paper does not claim to have found the most 

optimal solution, rather it mentions that all solution 

found are ‘good’ solutions which measure better 

empirically by their stock performance than other 

similar methods. 

Lower CQNS scores indicate better portfolios in this paper 

having a negative 

CQNS score 

indicates it not 

being optimized, 

but still better 

than most 

alternative 

portfolios. 

Furthermore, in 

the next paper it is 

used as a way to 

compensate for 

the shortcoming 

of the QUBO 

model in 

translating the 

Sharpe ratio into 

its format. 

 

Chain break rates 

= disruptions or 

failures in the 

chain of qubits 

that are 

connected, thus 

meaning that the 

D-Wave quantum 

annealer was less 

reliable when it 

comes to 

performance 

 

Embedding large 

problem sizes = 

the process of 

transferring a 

large and complex 

optimization 

problem into a 

physical system 

 

[36] 

End-To-

End 

Resource 

Analysis 

for 

Quantum 

Interior-

Point 

Methods 

and 

Portfolio 

“We study quantum 

interior point methods 

(QIPMs) for second-

order cone 

programming 

(SOCP), guided by 

the example use case 

of portfolio 

optimization (PO). 

We provide a 

complete quantum 

circuit-level 

Objective(s):  

- Develop the QIPMs for the use case of portfolio 

optimization (max return, min risk) 

- Estimate the exact resource cost of QIPM for a given 

PO problem with up to 120 assets, which would need 

up to 8 x 10^6 qubits (which is far beyond what 

current quantum hardware is possible of) 

- Put into perspective the practical quantum advantage, 

and the current bottlenecks, that the QIPM could 

have by applying it to a PO use case and 

benchmarking it against classical solvers. 

Quantum hardware:  

N/A 

 

Quantum algorithm 

/ method:  

Quantum Interior 

Point Method 

(QIPM) with 

Quantum Linear 

System Solver 

(QLSS) 

 

(Quantum) 

interior point 

methods = finding 

optimal solutions 

to an objective 

problem by 

slowly moving to 

the optimal 

solution through 

multiple iterations 

within set 

parameters  



Optimizati

on  

 

(AWS, 

Golman  

Sachs) 

 

(Dalzell et 

al., 2023) 

description of the 

algorithm from 

problem input to 

problem output, 

making several 

improvements to the 

implementation of the 

QIPM” (p. 1) 

 

- Convert the PO problem as an SOCP so that it can be 

solved by the QIPM 

- Use the QLSS algorithm on QIPM to solve the SOCP 

converted PO problem (QLSS = Quantum Linear 

System Solver, it is used because IPM (interior point 

methods) make use of a linear system of equation, 

therefore QLSS is needed to perform the step of 

solving linear equations in the QIPM. The linear part 

of the QIPM is a subroutine of the greater problem 

that is better solved using QLSS) 

 

Results: 

- QIPM could theoretically offer quantum advantage, 

however, practical implications yet do not show clear 

improvements over classical methods, significant 

improvements still need to be made 

- Current challenges are high variability in tomography 

precision and the computational resources needed for 

problems to be solved efficiently on real quantum 

computers. 

- In the example experiment, n = 30 stocks were used, 

and it showed that the duality gap (between risk and 

return) increased exponentially for more iterations, 

infeasibility increased exponentially. And for scaling 

using various other portfolio sizes and duality gaps, 

the circuit becomes more sensitive to perturbations  

- The amount of Quantum RAM needed to perform the 

given PO problems was computationally infeasible at 

the moment. 

- Classical methods outperformed the QIPM, mainly 

due to current QRAM limitations and large constant 

factors. 

- Furthermore, compared to classical methods, QIPMs 

showed to be constrained in their quantum advantage 

by practical challenges and resource demands 

 

Important notes: 

- Most current quantum algorithms are hard to test 

whether they are practically useful, as they are mere 

heuristic and can only be tested on actual quantum 

hardware 

- “QIPMs structurally mirror CIPMs, and seek 

improvements by replacing certain subroutines with 

quantum primitives” (p. 2) 

- “The QIPM is a complex algorithm that delicately 

combines some purely classical steps with multiple 

distinct quantum subroutines” (p. 2) 

- Regarding the QIPM, multiple improvements are 

made to it before applying it towards the PO 

problem, for more optimal results. These 

improvements made are inspired by previous works 

from other authors. 

Methodology: 

Optimization, and 

solving of Second 

Order Cone 

programs 

 

Use case: 

Portfolio 

optimization 

 

Second Order 

Cone Programs 

(SOCPs) = a 

convex 

optimization 

problem that 

generalizes linear 

and quadratic 

programming, 

basically making 

it useful to 

optimize multiple 

objective 

problems better as 

it is flexible 

(meaning it can be 

formulated 

towards many 

types of problems, 

e.g. max return, 

min risk), and it 

can handle 

complex 

constraints (also 

common in 

portfolio 

optimization) 

 

Tomography = 

used for 

calibrating 

quantum gates 

and circuits 

 

Infeasibility = 

degree to how 

much the given 

solution violates 

given parameters 

or constraints 

 

Duality gap = in 

essence a gap that 

shows how 

optimal the 

solution is, the 

less this gap, the 

more optimal the 

solution 



The quantum component of QIPM was simulated, as 

mentioned, current quantum hardware cannot facilitate the 

problem mentioned. 

 

 

 

 

 

 

Table 7, Insight into literature synthetization process 

Paper (57) 

(Authors) 

(Year) 

Challenge addressed / 

introduction 

Main findings/purpose Quantum hardware, 

Quantum algorithm, 

Methodology, Use case 

Additional 

specifics / 

Explanations 

[1] 

Quantum 

Optimization: 

Potential, 

Challenges, and the 

Path Forward 

(Abbas Et AL., 2023) 

“In this work we 

address the potential of 

quantum optimization 

from various angles, 

namely, complexity 

theory, problem classes 

and algorithmic design, 

execution on noisy 

hardware at scale, and 

fair benchmarking, 

while outlining 

illustrative examples 

form real-world cases” 

(p. 2) 

Findings: 

- Complexity theory is useful, but may 

not always be useful for quantum 

advantage, therefore underscoring the 

need to develop and analyze quantum 

optimization (p.50) 

- The paper emphasizes the fact that 

there is a strong need to continue 

discovering new algorithms and 

development, as intuition gained from 

practical tests and new algorithms 

provides validation and technical 

advances important to optimization 

problems (p.50) 

- There should be a need to establish 

clear benchmarks, for a reliable 

interpretation of scientific insight for 

the broader audience (p.50) 

 

Purpose: 

- The purpose of this paper is mainly to 

give a comprehensive overview of 

potential challenges, and emerging 

research in quantum optimization. 

- Next to that, this paper ought to be 

used in this paper as a way to explain 

general subjects and limitations for 

quantum optimization 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

N/A 

 

Methodology: 

N/A 

 

Use case: 

N/A 

N/A 

[3] 

FORECASTING 

STOCK MARKET 

CRASHES VIA 

REAL-TIME 

RECESSION 

PROBABILITIES: 

A QUANTUM 

COMPUTING 

APPROACH 

(Alaminos et al., 

2022) 

The main problem 

addressed in this study 

is the inefficiency and 

inaccuracy of models 

that predict stock 

market crashes, where 

existing models, despite 

their high explanatory 

power, fail to account 

for time-varying risk 

premium and is often 

focused on developed 

Findings: 

- “The methods of Quantum Support 

Vector Regression, Quantum 

Boltzmann Machines (QBMs), and 

Quantum Neural Networks (QNNs) 

have been used, and the QBMs used 

have obtained the highest levels of 

accuracy” (p-3). To test the algorithm 

made, the above methods have been 

used and adapted upon to fit the 

solution. 

Quantum hardware:  

N/A 

 

Quantum 

algorithm/models:  

Support vector 

regression Quantum Bat 

algorithm (svrQBA), 

Quantum Boltzman 

Machine (QBM),  

 

Methodology: 

“In order to 

improve the 

accuracy of 

forecasting stock 

market crashes 

models, a 

comparison of 

methodologies 

has been carried 

out in this study to 

predict stock 

market crashes via 



economies, this leads to 

less accurate forecasts 

(p. 2-3) 

 

“The literature calls for 

a different recession 

prediction model, in 

particular new ones that 

offer a more accurate to 

global scenes, and that 

make comparisons 

between approaches to 

obtain better and more 

accurate results.” (p.2) 

- Usage of the svrQBA and QBM 

models showed respectively an 

increase of 94.59% and 96.22% on 

average over other models (p.8), and 

it showed superior results over other 

studies, therefore optimizing the 

accuracy of the named quantum 

algorithms for predicting stock 

market crashes (p.13)  

 

Purpose: 

- This study gives new insights into a 

potential new model that can 

optimize the prediction of stock 

market crashes, whereby three 

quantum algorithms are each used to 

test the proposed model 

Optimization 

 

Use case: 

Predicting stock market 

crashes 

real-time 

recession 

probabilities and, 

as a result, a new 

model that will 

lead to better 

estimates on the 

likelihood of a 

down-turn and, 

therefore, a stock 

market crash, will 

occur in the 

future.” (p.3) 

[4] 

Quantum Monte 

Carlo simulations 

for estimating 

FOREX markets: a 

speculative attacks 

experience 

(Alaminos et al., 

2023) 

“In this study, we 

propose to apply 

Auxiliary-Field 

Quantum Monte Carlo 

to increase the precision 

of the FOREX markets 

models from different 

sample sizes to test 

simulations in different 

stress contexts.” (p.1) 

 

“Our paper analyses 

USD/EUR and 

USD/JPY exchange 

rates in the period 

2013–2021. This work 

compares three Monte 

Carlo techniques, 

Markov Chain Monte 

Carlo, Sequential Monte 

Carlo, and Auxiliary-

Field Quantum Monte 

Carlo (AFQMC), with 

the AFQMC technique 

being the best 

performer” (p.2) 

 

Findings: 

- The AFQMC has increased the 

accuracy of the FOREX market 

model over the Markov Chain Monte 

Carlo and Sequential Monte Carlo 

(classical methods) (p.3) 

- Through Quantum Monte Carlo 

Simulation, the study is able to 

identify possible currency movements 

in the foreign exchange market (p.3) 

- The AFQMC model is compared 

towards two traditional methods, 

specifically Markov Chain Monte 

Carlo and Sequential Monte Carlo, 

where the AFQMC technique 

outperforms other methods (p.19) 

 

Quantum hardware:  

Simulated hardware 

 

Quantum algorithm:  

Auxiliary-Field 

Quantum Monte Carlo 

(AFQMC) 

 

Methodology: 

Quantum Monte Carlo 

 

Use case: 

Increase the accuracy of 

FOREX market models 

“The present 

research differs 

from others in that 

it compares 

various Monte 

Carlo techniques 

in FOREX 

markets 

prediction. Most 

of the models in 

previous studies 

have been 

dominated by 

statistical 

techniques such as 

ordinary least 

squares, quantile 

regression, and 

recently neural 

network 

techniques” (p.3) 

[5] 

A Structured Survey 

of Quantum 

Computing for the 

Financial Industry 

(Alabereti et al., 

2022) 

“This survey reviews 

platforms, algorithms, 

methodologies, and use 

cases of quantum 

computing for various 

applications in finance 

in a structured way.” 

(p.1) 

 

“We conducted an 

extensive literature 

search and designed a 

multi-layered 

framework to enable a 

structured analysis of 

Findings: 

- A morphological box showing 

exactly how quantum hardware, 

quantum algorithms, methodologies, 

and use cases are related. 

- Furthermore, each use case for certain 

algorithms and methodologies is 

elaborated upon to give insight into 

actual use of quantum computing for 

finance (e.g. Variational Quantum 

Eigensolver used for optimization of 

transaction settlement) 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

N/A 

 

Methodology: 

N/A 

 

Use case: 

N/A 

N/A 



the available literature 

and the use cases 

described.” (p.13) 

 

- This paper serves as inspiration for 

figure 5. 

- Specific relation of quantum 

computing to portfolio optimization 

is given, and therefore helps to give 

further insight into quantum 

computing for portfolio optimization. 

- The paper highlights that in their 

literature research, NO paper was 

found that describes a use case for 

Quantum Machine Learning (p.13), 

which is peculiar as other papers do 

mention use cases for Quantum 

Machine Learning. 

 

Purpose: 

- This paper gives a great overview and 

visualization through e.g. a 

morphological box of how quantum 

computing can be used in the 

financial industry, from the current 

state of quantum computing to a 

framework for a systematic analysis 

of proposals for the use of quantum 

computing in finance. (p.1) 

[6] 

Classical versus 

quantum models in 

machine learning: 

insights from a 

finance application 

(Alcazar et al., 2020) 

“a direct comparison of 

the expressive power 

and efficiency of 

classical versus 

quantum models for 

datasets originating 

from real-world 

applications is one of 

the key milestones 

towards a quantum 

ready era. Here, we take 

a first step towards 

addressing this 

challenge” (p.1) 

 

In this paper Restricted 

Boltzmann Machines 

(RBMs) (classical) are 

compared to Quantum 

Circuit Born Machines 

(QCBMs) (quantum) 

 

To assess the 

performance of the 

QCBMs on real-world 

data sets, probabilistic 

scenarios from portfolio 

optimization are taken, 

Objective of the test between QCBMs and 

RBMs = select optimal investment portfolios 

whilst either maximizing returns with minimal 

risk, or maximizing return for a given level of 

risk, following the optimization goal of 

Markowitz. This can be done whilst imposing 

constraints, such as a cardinality constraint in 

the number of assets (p. 3)  

 

Findings: 

- The quantum model clearly imposed 

outperformance the classical machine 

learning model. (p. 5-6) 

- A scatterplot was made to better 

visualize the results between the 

QCBM and RBM models. The 

scatterplot shows superior 

performance of the QCBM model, 

where it wins in close to 100% of the 

instances (p. 5-6) 

- As problem size increased, the 

QCBM model performed increasingly 

better compared to the RBM model 

(p.5-6) 

Quantum hardware:  

Simulated on ion-trap 

quantum computers 

 

Quantum 

algorithm/model:  

Differentiable Quantum 

Circuit Learning 

(DDQCL) used on the 

Quantum Circuit Born 

Machines model 

(QCBMs model) 

 

Methodology: 

Optimization / machine 

learning 

 

Use case: 

Portfolio optimization 

“To date, 

experimental 

implementations 

of QCBMs via 

DDQCL have 

been implemented 

in ion trap and 

superconducting 

devices.” (p.1) 

 

 



specifically data from 

asset subsets of the 

S&P500 stock market 

index (p.1) 

[7] 

Enhancing 

combinatorial 

optimization with 

classical and 

quantum generative 

models (Alcazar et 

al., 2024) 

The focus in this paper 

is on Generator 

Enhanced Optimization 

(GEO), which is a 

framework that 

leverages any 

generative model (e.g. 

classical, quantum, or 

quantum-inspired), 

where in this paper is 

mainly focused on a 

quantum-inspired 

version of GEO named 

TN-GEO (p. 1) 

 

With this TN-GEO 

strategy, benchmarks 

are made in the context 

of the canonical 

cardinality-constrained 

portfolio optimization 

problem through 

constructing situations 

based on S&P 500 and 

other financial stock 

indexes. (p. 1) 

 

The aim is to show the 

real value that these 

quantum-inspired 

models have on 

industrial application. 

Lastly, a comparison is 

made between TN-GEO 

and state-of-the-art 

algorithms (p. 1) 

Objective: The text highlights the need for a 

quantum optimization strategy that can work 

directly on arbitrary objective functions, 

thereby bypassing the translation and overhead 

limitations, meaning that the process of difficult 

optimization problems Would become more 

efficient and applicable to more real-world 

problems as, for example, the number of 

variables used in these calculations give current 

computational methods a hard time. 

 

In the experiment for cardinality-constrained 

portfolio optimization to compare results of 

TN-GEO with classical approaches, the TN-

GEO is used as a standalone-solver, and as a 

booster to enhance existing solvers: 

- TN-GEO standalone: Portfolio 

optimization without relying on 

intermediate results from classical 

solvers using S&P 500 portfolio, with 

the aim to reduce risk and increase 

expected returns. 

- TN-GEO booster: use intermediate 

results from simulated annealing 

(SA)(or combined results from SA 

and previous algorithms) as training 

data for the TN-GEO, and then 

compare performance between 

classical algorithm results and TN-

GEO booster 

 

Findings: 

- TN-GEO as booster: on average, the 

TN-GEO booster outperformed 

classical-only algorithms, and the the 

performance of the TN-GEO booster 

(compared to classical-only) 

increased as the number of variables 

increased with tests performed in the 

ranges of N=30 - N=100 variables. 

Furthermore, “The observed 

performance enhancement compared 

with the classical-only strategy must 

be coming from a better exploration 

of the relevant search space” (p. 4) 

- TN-GEO as standalone: the TN-GEO 

shows performance compared to the 

classical solvers across all scenarios 

(number of assets: 30;50;80;100) 

Quantum hardware: 

Simulated hardware 

 

Quantum (inspired) 

algorithm:  

TN-GEO 

 

Methodology: 

Optimization 

 

Use case: 

(cardinality-

constrained) Portfolio 

optimization 

N/A 



Comparison with state-of-the-art 

algorithms (SOTA): TN-GEO was 

compared to SOTA algorithms and 

showed: 

- In 67% of the instances, TN-GEO 

either draws or outperforms the 

SOTAs 

- In all pairwise comparisons with 

SOAT algorithms and the TN-GEO, 

TN-GEO wins more than 50% of the 

time, every time (null hypothesis 

(“there is no difference between 

results of SOTA and TN-GEO”) 

rejected every time with Wilcoxon 

signed-rank sum tests to validate 

results) 

[8] 

Alleviating the 

quantum Big-

$M$ problem 

(Alessandroni et al., 

2023) 

Quantum optimizers 

often need to 

reformulate constraints 

to fit the well-know 

QUBU format, 

however, current 

QUBO translators often 

fail to acknowledge the 

weight M of penalty 

terms (p. 1) 

 

Therefore, in this paper 

a new practical 

translation algorithm is 

proposed to outperform 

previous methods (p. 1) 

 

After presenting the 

algorithm, it is then 

used in portfolio 

optimization instances 

to show significant 

advantages in time to 

solution and solution 

quality (p.1) 

Objective: Reformulating QUBO problems for 

quantum solvers so that they can operate more 

efficiently and effectively. This is mainly done 

by addressing “the big-M problem”, which is 

the weights that penalties have in this 

algorithm, something which should be carefully 

optimized for optimal and efficient results 

according to the paper. However, the main 

focus for this paper on portfolio optimization is 

the results it has on quantum portfolio 

optimization 

 

Results for quantum portfolio optimization: 

The improved QUBO translator formulation 

was tested upon the Markowitz model for 

maximizing returns and minimizing risk, results 

showed: 

- Using MSDP when translating 

problems to a QUBO format shows a 

significant advantage over traditional 

penalty optimization approaches 

- As the complexity of the problem 

grows, using MSDP to reformulate 

problems to a QUBO format shows 

increasing efficiency and quality of 

results compared to traditional 

penalty optimization approaches 

- Using a 6-qubit trapped ion quantum 

computer from IonQ showed that 

MSDP formulations give out a 

superior probability of measuring the 

optimal solution 

Quantum hardware:  

IonQ (company) 

trapped-ion device 

Aria-1 

 

Quantum algorithm:  

QUBO (reformulation 

method), where 

formulation of 

optimizing penalty 

weight is called MSDP 

(Minimum Spectral Gap 

Differential), all in all 

we can call it QUBO-

MSDP 

 

Methodology: 

(Penalty) Optimization 

 

Use case: 

Portfolio optimization 

Spectral gap = the 

energy difference 

between optimal 

and suboptimal 

solutions, a lesser 

spectral gap is 

better as it leads 

to more effective 

and efficient 

results 

[9] 

Quantum 

Chameleon Swarm 

with Fuzzy Decision 

Making Tool for 

“This study develops a 

Quantum Chameleon 

Swarm Optimization 

with Fuzzy Decision 

Making Tool (QCSO-

Objective: presenting a novel technique that 

tries to optimize financial risk management, 

especially predicting financial distress in firms, 

the proposed tool (QCSO-FDMT is then 

benchmarked using two datasets; Australian 

Quantum hardware:  

N/A 

 

Quantum algorithm: 

QCSO-FDMT 

Fuzzy = a 

decision making 

criteria that is 

used when data is 

uncertain or 



Financial Risk 

Management 

(Alkhafaji et al., 

2023) 

FDMT) for Financial 

Risk Management. The 

purpose of the 

QCSOFDMT system is 

to determine if the 

financial firm 

undergoes distress or 

not.”(p. 1) 

 

 

credit dataset, and Analecta dataset, both of 

which are used to test the algorithm/tool to 

detect financial distress/risk) 

 

Results: 

- Australian credit dataset: QCSO-

FDMT outperformed other classical 

and modern machine learning 

models, having the highest accuracy 

of predicting financial distress, with a 

98.98% accuracy. All other methods 

showed results below at least 97.10%,  

- Analecta dataset: QCSO-FDMT 

outperformed other classical and 

machine learning algorithms, 

showing a 94.44% accuracy of 

predicting financial distress, all other 

methods showed results below 

93.60% 

 

To conclude, the QCSO-FDMT technique is a 

highly effective method to detect financial 

distress in companies as compared to current 

methods already being used. 

 

(Quantum Chameleon 

Swarm Optimization 

(which is the 

algorithmic part) with 

Fuzzy Decision-Making 

Tool) 

 

Methodology: 

Optimization 

 

Use case: 

Fuzzy financial risk 

management 

incomplete, it 

tries to 

compensate for 

this lack of 

certainty or 

completeness 

 

The algorithm 

utilizes swarm-

intelligence based 

optimization 

inspired by the 

behavior of 

chameleons, 

thereby stating 

that the algorithm 

can take account 

of many things at 

one time, like a 

chameleon. 

[11] 

Quantum-inspired 

algorithms in 

practice (Arrazola et 

al., 2020) 

“We study the practical 

performance of 

quantum-inspired 

algorithms for 

recommendation 

systems and linear 

systems of equations. 

These algorithms were 

shown to have an 

exponential asymptotic 

speedup compared to 

previously known 

classical methods for 

problems involving 

low-rank matrices, but 

with complexity bounds 

that exhibit a hefty 

polynomial overhead 

compared to quantum 

algorithms” (p. 1), with 

the last part meaning 

that quantum-inspired 

algorithms show better 

results than classical 

options, but come at 

considerable additional 

computational costs 

(e.g. energy usage, 

Results of Quantum-inspired Algorithms 

benchmarked against portfolio optimization 

with stocks from the S&P 500: 

- The quantum-inspired algorithm 

required substantial time to estimate 

coefficients and sampling, using 

114.15 seconds to run the full 

calculation. In comparison, direct 

calculation methods using for 

instance the Frieze-Kannan-Vempala 

Algorithm (which is the equivalent of 

a classical solving method) 

performed these tasks much faster 

(0.15 seconds). Increased running 

time for the quantum-inspired 

algorithm was due to coefficient 

estimation and sampling, as opposed 

to the direct calculation method of the 

FKV algorithm 

- The quantum-inspired algorithm 

showed multiple errors in 

approximating the solution, showing 

multiple dis-promising statistics 

considering the discrepancies 

between approximate and real 

solutions. As the quantum-inspired 

algorithm used sampling, it was 

prone to more error due to sampling 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

Quantum-inspired 

algorithms  

 

Methodology: 

optimization 

 

Use case: 

Portfolio optimization 

Asymptotic 

speedup = an 

increase in 

performance of 

usually an 

algorithm as the 

size of the input 

grows larger 

 

Recommendation 

systems = 

software 

algorithms and 

techniques 

designed to 

suggest items 

worth of notice to 

users, it provides 

personalized 

recommendations 

 

(Low) Rank = the 

number of 

independent rows 

or columns in a 

matrix which is 

calculated from, 

low rank means a 



time) than real quantum 

algorithms 

 

Furthermore, these 

quantum-inspired 

algorithms are 

benchmarked using, but 

not included to, 

portfolio optimization 

noise and more estimation that 

needed to be done 

- “Quantum-inspired techniques only 

become advantageous for problems 

of extremely large dimension” (p. 18) 

 

To conclude, overall, the paper showed that 

quantum-inspired algorithms provide 

reasonable low errors and short computational 

times in general, but in the case of this paper 

(with increased rank and condition numbers), 

the quantum-inspired algorithms had more 

errors and computation times, mainly due to the 

way the algorithms computed the problems 

(which is stated above). Furthermore, direct 

calculation methods such as the Frieze-Kannan-

Vempala (FKV) algorithm used, operated 

efficiently without the need for extensive 

sampling or coefficient estimation,  

 

As direct methods such as the FKV are tailored 

to exploit the low-rank structure of the dataset, 

it will be faster than the quantum-inspired 

model as the quantum-inspired model 

calculates differently and is tailored to this low-

rank situation. 

matrix which is 

characterized by it 

having less 

columns or rows 

than the minimum 

that is allowed 

(mostly to 

increase 

efficiency) 

 

 

[13] 

A Study of 

Scalarization 

Techniques for 

Multi-Objective 

QUBO Solving 

(Ayodele et al., 2022) 

“QUBO solvers are 

single objective solvers. 

To make them more 

efficient at solving 

problems with multiple 

objectives, a decision 

on how to convert such 

multi-objective 

problems to single-

objective problems need 

to be made” (p. 1) 

 

“In this study, we 

compare methods of 

deriving scalarization 

weights when 

combining two 

objectives of the 

cardinality constrained 

mean-variance portfolio 

optimization problem 

into one” (p. 1),  

Objective: Many optimization problems have 

more than one objective (e.g. the Cardinality 

Constrained Mean-Variance Portfolio 

Optimization Problem, which entails selecting 

assets that both maximize returns while 

minimizing risk). Normally, these multi-

objective problems ought to be compiled into a 

single objective problem before solving them, 

so that they are pareto efficient, via quantum 

hardware such as Ising Machines. The objective 

of this paper is to derive scalarization weights 

so that less explored parts of the pareto frontier 

can be explored which normally cannot, or are 

usually undesirable due to certain factors (e.g. 

due to increased complexity, bias from the 

algorithm, or objective dependency of the 

algorithm) 

 

In this study, three methods of generating 

scalarization weights within the given objective 

for QUBO (minimizing risk, and maximizing 

returns) are explored, these three methods were 

applied to a QUBO formulation of CCMVPOP; 

iterative, random, and uniform 

 

Results: 

Quantum hardware:  

Digital annealer (from 

Fujitsu) (Ising machine) 

 

Quantum algorithm:  

QUBO 

 

Methodology: 

Optimization 

 

Use case: 

Scalarization 

optimization for 

Cardinality Constrained 

Mean-Variance 

Portfolio optimization 

(CCMVPOP) 

Cardinality 

constrained = a 

restriction/constra

int on the number 

of assets that can 

included into a 

portfolio 

 

Scalarization 

(weights) = 

scalarization is the 

act of combining 

multiple 

objectives into a 

single function, 

hereby weights 

are assigned to 

each element of 

the combined 

objective 

function. 

 

Pareto frontier = a 

set of all optimal 

solutions where 

no solution can be 

improved without 



- The ‘iterative’ approach showed 

advantages over random and uniform 

methods in terms if finding diverse 

and high-quality solutions 

- The ‘iterative’ methods ability to 

explore certain regions of the pareto 

front not normally explored showed 

better trade-off solution in multi-

objective scenarios (max return, min 

risk) 

- Uniform scalarization showed the 

most consistent and highest number 

of non-dominated results in multi-

objective problems 

-  “Quadratic Unconstrained Binary 

Optimization (QUBO) formulations 

of optimization problems. This is a 

common formulation used by 

hardware solvers classified as 

quantum or quantum-inspired 

machines. They have been shown to 

achieve a speed up compared to 

classical optimization algorithms 

implemented on general purpose 

computers”(p. 1) 

Ultimately, this study shows that attention 

given on scalarization methods can improve 

results regarding certain multi-objective 

problems such as portfolio optimization 

negatively 

influencing 

another  

Uniform 

scalarization = 

distributes 

weights evenly 

across the 

objective 

 

Random 

scalarization = 

distributes eights 

randomly 

 

Iterative = 

distributes/adjusts 

weights according 

to desired pareto 

front, thereby 

exploring less 

explored regions  

[14] 

Wasserstein Solution 

Quality and the 

Quantum 

Approximate 

Optimization 

Algorithm: A 

Portfolio 

Optimization Case 

Study (Baker, Jack 

S. & Radha, Santosh 

Kumar, 2022) 

Quantum Processing 

Units (QPU can be very 

suitable for optimizing a 

portfolio of financial 

assets (p. 1) 

“We benchmark the 

success of this approach 

using the Quantum 

Approximate 

Optimization Algorithm 

(QAOA); an algorithm 

targeting gate-model 

QPUs.” 

 

In this paper, the aim is 

to find the highest 

quality of solutions 

using the QAOA 

algorithm on the 

optimization of 

financial asset 

portfolios using QPUs 

 

Objective: Assess the quality of 

results/performance of the QAOA algorithm 

using QPUs by solving the Mean-Variance 

Portfolio Optimization problem from 

Markowitz. These results are then to be 

compared to eachother. 

 

Results: 

- Hard constrained optimizers are 

easier to optimize as their landscape 

is easier to quantify and has more 

direct parameters, therefore creating a 

straighter road to the solution so to 

say, whilst soft constrained 

optimizers have a more challenging 

landscape due to their increased 

flexibility, allowing for a broader 

range of possible solutions, 

- The main conclusion from the paper 

is that QAOA algorithms show 

promising performance for solving 

MVPO problems, especially when 

applied to gate-model Quantum 

Quantum hardware:  

Gate-model quantum 

processing units 

simulated on IBM, 

IonQ, Rigetti, and using 

real hardware Quantum 

GPU hardware 

(QULACS, ASPEN_10, 

IBMQ_Manila, 

IBMQ_Bogota, 

IBMQ_Quito, 

IBMQ_Belem, and 

IBMQ_Lima) 

 

Quantum algorithm:  

QAOA 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

QPUs = quantum 

processing units, 

which are 

advanced 

computers using 

quantum 

mechanics to 

perform 

calculations 



To benchmark 

performance the 

variable ‘η’ is used, ‘η’ 

stands for “the 

normalized and 

complementary 

Wasserstein distance”, 

however, the most 

important part about 

this is understanding 

whether ‘η’ from the 

resulting tests shows 

good or bad quality of 

results, usually a lower 

‘η’ means better 

quality of results 

because the difference 

between achieved and 

desired probability 

distributions are smaller 

(which is more 

desirable) 

 

Next to that, a variable 

used to test quality is ‘p 

‘, which is related to 

“the circuit depth of the 

QPU system using 

QAOA”, simply 

explained: the number 

of operations that are 

applied in sequence on 

the specific number of 

qubits (more operations 

= more complex 

computations = more 

accurate results = more 

computing time) 

 

Furthermore, tests are 

performed with 

differing numbers of 

qubits. 

Processing Units (QPUs) such as 

those from IBM, IonQ and Rigetti. 

- On another note, as a big aim of the 

paper was to address how ‘η’ can be 

used to assess performances of GPUs 

on QAOA problems, specifically 

MVPO, it showed ‘η’ to be a great 

standardized way to evaluate 

performances, 

 

Among the real-quantum hardware, general 

observations were: 

- that soft-constrained problems 

outperformed the hard constrained 

problems 

- Compared to previous hardware, the 

newer hardware outperformed it, 

showing increased circuit depth and 

efficiency 

- Rigetti’s Aspen-10 and IonQ’s 11-Q 

showed robust performance 

- Significant variability in solution 

quality was observed across repeated 

runs, attributed to factors like qubit 

assignment differences, calibration 

issues, and time-varying qubit 

coherence times. 

- Current QPU benchmarks and 

performance are not reliably 

predictable based on general metrics 

like quantum volume (QV); 

application-specific benchmarks are 

necessary. 

[16] 

Grover Mixers for 

QAOA: Shifting 

Complexity from 

Mixer Design to 

State Preparation 

(Bärtschi, A. 

Eidenbenz, S., 2020) 

“We propose GM-

QAOA, a variation of 

the Quantum 

Alternating Operator 

Ansatz (QAOAz) that 

uses Grover-like 

selective phase shift 

mixing operators.”(p. 1) 

 

Objective:  

- “we are given a number of assets and 

a portfolio of short and long positions 

on these assets. Periodically, such a 

portfolio has to be rebalanced in order 

to maintain in order to react to market 

and risk changes.” (p. 9) 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

GM-QAOAz 

 

Methodology: 

Optimization 

 

Hamiltonian 

simulation error = 

The discrepancy 

between the 

evolution of a real 

quantum system 

when used over 

time and that of a 

simulator that 



“We illustrate the 

potential of GM-QAOA 

on several optimization 

problem classes” (p. 1) 

 

 

- furthermore, the GM-QAOAz 

algorithm is then compared towards 

the QAOAz algorithm 

 

Results: 

- Following the discrete portfolio 

rebalancing problem, both algorithms 

show some similarities, however, 

GM-QAOA was able to better focus 

on creating an equal superposition of 

all feasible states, meaning can more 

effectively explore the solution space 

and create more optimal solutions 

- Furthermore, resulting from other 

tests, GM-QAOAz showed multiple 

strengths: it can reduce circuit 

complexity compared to existing 

mixers, and it can even, as a first in 

the industry, stay in the feasible space 

of solutions and provide transition 

between all states in this space whilst 

mixing unitaries (mixing unitaries = 

operators that intend to change the 

amplitudes of different quantum 

states, with the purpose of creating a 

larger solution space.) 

 

Important notes: 

- “GM-QAOAz works on any NP 

optimization problem for which it is 

possible to efficiently prepare an 

equal superposition of all feasible 

solutions; it is designed to perform 

particularly well for constraint 

optimization problems, where not all 

possible variable assignments are 

feasible solutions.” (p. 1) 

- GM-QAOAz is not susceptible to 

Hamiltonian simulation error 

compared to standard mixers for 

QAOAz, and solutions with the same 

objective value are always sampled 

with the same amplitude 

Use case: 

Discrete portfolio 

rebalancing 

tries to imitate 

such a real 

system, basically 

meaning in this 

paper that the 

simulated system 

is alike to a real 

system when it 

comes to the 

change it 

perceives over 

time in its 

quantum state 

[17] 

Quantum 

optimization via 

maximally amplified 

states (Bennett, 

Tavis 

Wang, Jingbo B., 

2021) 

 

“This paper presents the 

‘Maximum 

Amplification 

Optimisation 

Algorithm’ (MAOA), a 

novel quantum 

algorithm designed for 

combinatorial 

optimization in the 

restricted circuit depth 

Objective(s): 

1. Formulate MAOA mainly by using 

the Quantum Walk Optimization 

Algorithm as a way to achieve 

maximally amplified states in a low-

convergence regime. (basically, we 

want the (possibly) best solutions 

grouped together in a place where 

finding these solutions is maximized, 

this means that the quantum system is 

Quantum hardware:  

Simulated hardware 

 

Quantum algorithm:  

RGAS and MAOA 

(compared to each 

other, classical 

algorithms, and Grovers 

Adaptive Search (GAS) 

 

Maximally 

amplified state = a 

state in a quantum 

system that can be 

achieved through 

some methods (in 

the case of this 

paper by using the 

Quantum Walk 

Optimization 



context of near-term 

quantum computing.” 

(p. 1) 

 

Furthermore, another 

algorithm is 

synthesized, the 

‘Restricted Grover 

Adaptive Search’ 

(RGAS) algorithm, 

which is a modification 

of the existing ‘Grover 

Adaptive Search’ 

algorithm 

 

Additionally, MAOA 

and RGAS are 

compared to each other 

and the QAOA 

algorithm 

 

Next to that, they are 

simulated on multiple 

types of problems, 

including a 

computationally 

demanding portfolio 

optimization problem 

tuned to produce a high probability 

of measuring the best solutions while 

avoiding the chaotic behavior and 

inefficiencies.) 

2. Formulate RGAS by placing a limit 

on the rotation count in GAS as 

current quantum devices cannot 

handle certain rotation amounts 

efficiently enough to create optimal 

results 

3. Benchmark MAOA and RGAS 

against each other, classical sampling 

and normal Grover Adaptive Search 

in a portfolio optimization problem 

 

Results 

- Following the portfolio optimization 

problem (where the probability 

success relates to to finding the single 

highest return portfolio within the 

lowest 10% of risk), it is shown that 

MAOA performs best, consistently 

outperforming RGAS, GAS, and 

classical sampling. 

- Next to that, classical sampling 

comes nowhere near the speed 

(number of iterations / rotations) used 

to find the optimal solutions 

- Next to that, RGAs outperforms Gas, 

showing that GAS can currently be 

optimized by restricting it (as 

mentioned earlier, current quantum 

systems lack the ability to accurately 

and efficiently make use of 

unrestricted counts of rotations due to 

high complexity as more rotation are 

employed) 

- Furthermore,  

 

Important notes: 

- MAOA a opposed to RGAs and GAS 

had the ability to explore 2 

dimensional solutions (e.g high 

return and low risk), therefore, 

RGAS and GAS needed to operate on 

such a problem translated into a 1 

dimensional problem statement 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

Algorithm) to 

increase the 

probability of the 

most optimal 

solution 

occurring, thereby 

making it easier 

for something like 

the MAOA 

algorithm to find 

the most optimal 

solution 

 

Low convergence 

regime = A range, 

a threshold within 

the number of 

solutions is few 

enough that the 

MAOA algorithm 

has a significantly 

less likelihood of 

experiencing any 

issues in 

efficiency or 

quality of 

solutions when 

operating. 

 

Rotation count = 

the number of 

iterations applied 

to amplify the 

probability of 

finding the 

optimal solution 

 

Iteration = a 

single cycle or 

repetition of 

specific steps 



[18] 

Forecasting financial 

risk using quantum 

neural networks 

(Bouchti et al., 2018) 

In this paper, a novel 

Quantum Neural 

Networks are 

introduced for machine 

learning in forecasting 

potential financial risks 

in a company 

 

Furthermore, a method 

of training these QNNs 

is introduced 

 

Lastly, a new financial 

risk forecasting model 

in introduced which will 

be applied to 

forecasting risk in 

Moroccan companies. 

Afterwards, these 

results are then 

compared with 

Artificial Neural 

Networks (ANN) 

(classical approach) 

 

“In this work, we 

introduce the quantum 

neural networks: a 

hybrid quantum-

classical framework 

with the potential of 

tackling high-

dimensional real-world 

machine learning 

datasets on continuous 

variables.” (p. 1) 

Objective: 

- Develop a QNN model with features 

that fit toward forecasting financial 

risk in companies whilst at the same 

time having features that make it as 

easy as possible to model. A QNN is 

proposed that operates much like an 

ANN, however, the QNN has its 

functions grounded in quantum 

mechanics. The QNN is subsequently 

trained using genetic algorithms to 

avoid getting into local minima. 

 

Results: 

- The proposed QNN improved 

prediction efficiency of financial risk 

in the chosen Moroccan companies 

compared to classical methods 

(ANN) 

- The QNN algorithm provided good 

approximation results, reduced 

computing time, and maintained 

prediction accuracy over classical 

methods (ANN) 

 

Important notes: 

- The study faced limitations due to a 

small sample size and the exclusion 

of non-financial factors 

Quantum hardware:  

Simulated hardware 

 

Quantum algorithm:  

QNNs 

 

Methodology: 

Forecasting 

 

Use case: 

Financial risk 

forecasting 

“Quantum neural 

networks have 

been proposed 

[1], but very few 

of these proposals 

have attempted to 

provide an 

indepth method of 

training them. 

Most either do not 

mention how the 

network will be 

trained or simply 

state that they use 

a standard 

gradient descent 

algorithm.” (p. 1) 

 

Local minima = a 

value that is low 

considering its 

neighbors (other 

groups of values), 

but is considered 

high in its own 

group, thereby 

making it an 

undesirable value 

to find with the 

algorithm, giving 

the algorithm the 

probability to 

settle for a 

solution that is 

suboptimal 

[22] 

Best practices for 

portfolio 

optimization by 

quantum computing, 

experimented on 

real quantum 

devices (Buonaiuto 

et al., 2023) 

In this paper, QUBO 

formulated portfolio 

optimization is solved 

using the Variational 

Quantum Eigensolver 

(VQE) Algorithm 

 

The main outcome of 

this work consists of 

finding the best 

hyperparameters (part 

of the ansatz) to set in 

order to find the most 

optimal solution using 

VQE, however, in this 

paper for portfolio 

optimization, only the 

Objective: 

- Benchmark the VQE against classical 

algorithms 

- Benchmark the performance of VQE 

on real and simulator quantum 

hardware 

- Find the optimal investment portfolio 

by balancing risk and return using 

certain constraints such as budgets 

and risk aversion 

- Formulate the PO problem in a 

QUBO format, and then approximate 

the minimum eigenvalue (most 

optimal solution in this case) by using 

VQE 

 

Quantum hardware:  

Different simulated 

(IBM QASM simulator) 

and real quantum 

computers (IBM 

Toronto, IBM Kolkata, 

IBM Auckland, IBMQ 

Toronto, IBM Geneva, 

IBMQ Guadalupe, IBM 

Hanoi, IBM Cairo, 

IBMQ Montreal, IBMQ 

Mumbai) 

 

Quantum algorithm:  

QUBO formulated PO 

optimized by VQE 

 

Ansatz = the 

proposed form of 

the state in which 

an objective 

function is solved 

on a quantum 

computer, this 

state or Ansatz 

structure is then 

adjusted to 

optimize the 

solution, which is 

also tested for and 

used in the case of 

this paper. 

 



results using VQE on a 

portfolio optimization 

problem are considered 

 

Optimization problems 

are solved in this paper 

by using simulated and 

real quantum computers 

 

“This work presents 

solutions to the problem 

obtained on different 

quantum computers and 

with different 

hyperparameters 

settings, to find the best 

practices to perform PO 

by VQE on real 

quantum devices.” (p. 

2) 

 

“Finally, the optimal 

solutions are compared 

among those obtained 

on simulators and on 

real quantum computers 

of different sizes and 

architectures and with 

the benchmark 

solution.”(p. 2) 

Results (results shown in the paper are based on 

quality of the optimal solution found and 

algorithm convergence  

- For Real quantum devices (results are 

shown in a graph with the efficient 

frontier and x = volatility, and y = 

expected return): 

IBM Toronto: found the optimal solution, 

IBM Kolkata: found the optimal solution, 

IBM Auckland: found the optimal 

solution,  

IBM Geneva, IBMQ Guadalupe, IBM 

Hanoi, IBM Cairo, IBMQ Montreal, 

IBMQ Mumbai: did not find the optimal 

solution on efficient frontier 

- Less than optimal results were mainly 

caused by the quantum hardware not 

being good enough in terms of 

limited quantum volume and circuit 

depth to compute the given problem. 

- The classical solution (Branch-and-

Bound method) did find the same 

optimal solution as the QUBO -VQE 

on different quantum hardware, and 

was able to solve up to 120 asset 

portfolios 

- As for simulated quantum hardware, 

the experiments used in the QASM 

quantum simulator from IBM on 

either noisy (which is done by 

importing noise from a real quantum 

computer) and noiseless 

environments using three possible 

optimizers from Qiskit (Cobyla, NFT, 

SPSA) showed that Cobyla 

persistently provided stable and rapid 

convergence to finding optimal 

solutions, NFT exhibited unstable and 

oscillatory behavior, particularly in 

noisy settings, and SPSA 

demonstrated slower convergence 

with increased variability. 

 

Important notes: 

- For the classical benchmark, the 

branch-and-bound method is used 

which is an algorithmic technique 

particularly useful in discrete and 

large solution spaces 

- The dataset used to benchmark VQE 

and other methods is as follows: the 

dataset is collected from Yahoo! 

Finance, using Yfinance (which is an 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

Quantum volume 

= a single number 

that encapsulates 

how well a 

quantum 

computer can 

handle quantum 

computations. 

 

Convergence = 

stability and 

consistency of the 

iterative process 



open-source tool) where a small 

selection of representative global 

assets are used (e.g. Apple, Netflix, 

Tesla) 

- “Results show that both the mapping 

of the ansatz structure on the 

hardware topology and the quantum 

volume is of pivotal importance for 

reaching the desired convergence. 

The topology of a quantum computer 

refers to the physical arrangement of 

qubits: while ansatzes connecting 

only the nearest qubits can be 

mapped efficiently, those entailing 

long-range connections require an 

overhead of gates that ultimately 

increases the depth of the circuit and 

hence foster an increase of the overall 

error rate during computation” (p. 11) 

- The VQE is a hybrid quantum-

classical algorithm, whereby the 

quantum component is the hardware 

it operates on, the circuits and the 

ansatz it employs, and the classical 

component is the optimization of 

parameters in the quantum circuit to 

find more optimal solutions 



[24] 

Backtesting 

Quantum 

Computing 

Algorithms for 

Portfolio 

Optimization 

(Carrascal et al., 

2024) 

“By backtesting 

classical and quantum 

computing algorithms, 

we can get a sense of 

how these algorithms 

might perform in the 

real world. This work 

establishes a 

methodology for 

backtesting classical 

and quantum algorithms 

in equivalent 

conditions, and uses it 

to explore four quantum 

and three classical 

computing algorithms 

for portfolio 

optimization and 

compares the results” 

(p. 1) 

 

Furthermore, 10.000 

experiments are 

performed under 

conditions that were 

found where quantum 

methods outperform 

classical methods. 

 

Furthermore, the 

Variational Quantum 

Eigensolver (VQE) 

algorithm is analyzed in 

detail. It is mainly 

tested on simulators and 

real quantum hardware 

from IBM 

 

“The main contribution 

of this work is to 

establish a reusable 

methodology for 

backtesting of quantum 

and classical computing 

algorithms for portfolio 

optimization” (p. 2) 

 

Lastly, the challenges 

involved in using real 

quantum computers for 

more than 100 qubits 

are discussed 

Objective: 

- Formulate a reliable and reusable 

method of back testing classical and 

quantum algorithms for portfolio 

optimization 

- Cite the drawbacks of > 100 qubits in 

a quantum system 

- Compare different quantum and 

classical optimizer against each other, 

whilst specifically taking a look at 

VQE, this is executed on 27 and 127-

qubit machines 

 

Results: 

- “Results show quantum algorithms 

can be competitive with classical 

ones, with the advantage of being 

able to handle a large number of 

assets in a reasonable time on a future 

larger quantum computer.” (p. 1) 

- First a test of VQE on IBM Athens (5 

qubits) real hardware is performed on 

3 assets. Herein the VQE did not find 

the optimal result, mainly due to it 

being restricted in the number of 

iterations it can perform, more 

iteration would probably mean an 

optimal result 

- Next the execution time on a real 

quantum computer (IBM Brisbane, 

IBM Cusco, and IBM Nazca which 

are all 127 qubit) vs classical 

computer was tested using VQE and, 

this showed that:  

each iteration of VQE took approximately 

2 hours, newer quantum computers 

showed better times, classical computing 

time grew exponentially with increasing 

number of assets whilst quantum methods 

computing times increased on a linear 

scale, also the IBM QASM simulator was 

used and showed optimal results after 100 

qubits 

- Furthermore, VQE was used to colve 

a Cvar PO problem on a 27 qubit 

IBM Cairo machine, this showed 

similar results to classical methods of 

solving, however the quantum 

method was faster 

- Lastly, back testing was performed 

using historical data from IBEX35 

2016-2020, where 2016 is used for 

calculations going forward in year 

Quantum hardware:  

Real quantum hardware 

(IBM Athens),  and 

some simulated results 

via IBM simulators 

 

Quantum algorithm:  

Specifically VQE, but 

also: VQE_CvaR, GAS, 

QAOA. Which are 

benchmarked against 

each other and classical 

algorithms: Moving 

Average Strategy 

(SMA), Sharpe Ratio 

Optimization (SRO), 

Risk-Rentability 

Optimization (MVO) 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

and back testing 

methodologies 

Back testing = a 

method to 

evaluate 

performance of a 

financial model 

by applying it to 

historical data 



2017 (results were plotted monthly 

and strategies were allowed to change 

monthly), classical algorithms used: 

(SMA, SRO, MVO), quantum (VQE, 

QAOA, VQE_CVaR, and GAS) 

results showed: SMA performed 

poorly, QAOA and VQE_CvaR had a 

better strategy than the rest 20%-30% 

of the time, QAOA and VQE_CvaR 

showed to be competitive algorithms 

with the classical ones, the main 

advantage perceived was that 

quantum algorithm perform 

exponentially better using a larger 

number of assets, where classical 

algorithms become unfeasible 

 

Important notes: 

- “It is important to make it clear that 

today, quantum computers do not 

solve the portfolio optimization 

problem in a novel way, and they do 

not reformulate the problem to make 

them easier to solve, instead, they 

solve the same optimization problem 

with different variable types, but in a 

different method.” (p. 2) 

- The VQE is a hybrid quantum-

classical algorithm, whereby the 

quantum component is the hardware 

it operates on, the circuits and the 

ansatz it employs, and the classical 

component is the optimization of 

parameters in the quantum circuit to 

find more optimal solutions 

- “QAOA circuits have inherently 

more depth, making them more prone 

to noise disturbances on real 

computers. For this reason we have 

chosen VQE as the main algorithm 

for testing on real devices during this 

study.”(p. 8) 

 

[29] 

An Application of 

Quantum 

Optimization with 

Fuzzy Inference 

System for Stock 

Index Futures 

Forecasting 

“In this study, we 

propose using a novel 

hybrid Wavelet 

Transformation-

Quantum-behaved 

Particle Swarm 

Optimization-Adaptive 

NeuroFuzzy Inference 

Objective: 

- Develop an new model (WT-QPSO-

ANFIS) to optimize the forecasting if 

stock index futures in a fuzzy 

environment 

- Benchmark the WT-QPSO-ANFIS 

against classical methods (ANFIS 

model, ANN model and ARIMA 

Quantum hardware:  

Simulated hardware 

 

Quantum algorithm 

model:  

Wavelet 

Transformation-

Quantum-behaved 

Stock index 

futures = contracts 

that obligate the 

buyer to purchase 

(or the seller to 

sell) a stock index 

at a predetermined 

price in the future 



(Chrimprang, N. 

Tansuchat, R. 2022) 

System (WT-QPSO-

ANFIS) model to 

forecast stock index 

futures.” (p. 1) 

model) using 10 major daily stock 

index futures from 2009 - 2020 

 

Results: 

- Compared to classical methods, WT-

QPSO-ANFIS consistently shows 

better: root means square error 

values, mean absolute percentage 

error, mean absolute error, standard 

error of the mean, basically meaning 

that the WT-QPSO-ANFIS results are 

more optimized and precise 

- “The result reveals that the hybrid 

WT-QPSO-ANFIS model provides 

higher efficiency and accuracy in 

predicting all 11 stock index futures 

considered in this study compared to 

the conventional Sugeno-type ANFIS 

model, ANN model and ARIMA 

model” (p. 1) 

 

Important notes: 

- “The machine learning models 

generally involve complex and 

unintelligible rules as well as a 

complicated network structure. In 

addition, the machine learning model 

itself did not guarantee a global 

optimum solution. It easily falls to the 

local optimum answer that directly 

affects the model’s predicted value 

accuracy.”(p. 1) 

 

Particle Swarm 

Optimization-Adaptive 

NeuroFuzzy Inference 

System (WT-QPSO-

ANFIS) 

 

Methodology: 

optimization 

 

Use case: 

Stock index futures 

[67] 

An Investigation on 

Quantum-Inspired 

Algorithms for 

Portfolio 

Optimization Across 

Global Markets 

(Chou et al., 2024) 

“This article introduces 

a portfolio 

recommendation system 

based on trend ratio and 

quantum-inspired 

optimization 

specifically designed 

for global cross stock 

markets” (p. 1) 

 

 

Objective: 

- Develop a transparent and 

interpretable portfolio 

recommendation system based on a 

quantum-inspired algorithm fitted 

towards the trend-ratio model (trend 

ratio = daily expected return / daily 

risk) and quantum inspired 

optimization algorithm (ELSA-QTS) 

forming ELSA-QNQTS 

- The proposed system is used in a 

group of the G7 markets 

 

Results: 

- The first experiment using the ELSA-

QNQTS compared performances 

between G7 markets to gather the 

best market, results showed great 

perspective into the performance and 

Quantum hardware:  

Simulator 

 

Quantum algorithm:  

ELSA-QNQTS 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

 



risk levels of portfolios in the G7 

markets. 

- Furthermore, a cross-market analysis 

is done, where the fluctuation of 

stock markets in each country is put 

into perspective, and it shows that 

cross-market investments generate 

superior portfolios based on the 

ELSA-QNQTS model. 

- “The proposed intelligent portfolio 

optimization model excels at 

identifying strong, stable uptrends 

within individual markets and 

extends its effectiveness to cross-

market analysis. Furthermore, this 

financial application prioritizes 

explainability and transparency, 

empowering investors to comprehend 

ai-generated results” (p. 1) 

- “Experimental results show that the 

proposed model has excellent 

capability to explore portfolios with 

stable uptrends within a single market 

and extend its effectiveness to cross 

markets.” (p. 7) 

 

[30] 

A Weighted 

Portfolio 

Optimization Model 

Based on the Trend 

Ratio, Emotion 

Index, and ANGQTS 

(Chou et al., 2022) 

“This paper proposes a 

novel weighted 

portfolio optimization 

model based on the 

trend ratio and emotion 

index to 

comprehensively 

consider the volatility of 

the portfolio and more 

accurately evaluate the 

performance of 

portfolios than the 

classical indicator, the 

Sharpe ratio” (p. 1) 

 

Furthermore, this 

proposed model is 

applied towards the US 

stock market, where it is 

benchmarked against 

traditional methods. 

Objective: 

- Develop a novel weighted portfolio 

optimization model based on the 

trend-ratio and emotion index to 

consider the volatility (risk) of a 

portfolio more accurately, thereby 

optimizing it 

- This model ought to have three main 

contributions; it utilizes trend ratio 

and emotion index, it makes use of 

ANGQTS, and the sliding window 

mechanism is adopted. 

- Test the proposed model in the US 

market with Dow Jones 30, and 

during the covid-19 pandemic 

 

Results: 

- The trend ratio can better evaluate 

portfolios than the Sharpe ratio 

- ANGQTS can effectively and 

efficiently construct near-optimal 

solutions 

- The sliding window mitigates under 

and overfitting in the proposed model 

- Statistical tests show that ANGQTS 

outperforms GNQTS in weighted 

portfolio optimization 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

global-best guided 

quantum-inspired tabu 

search with a self-

adaptive strategy and 

quantum-NOT gate 

(ANGQTS) 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization, 

specifically in short and 

long selling trading 

using the trend ratio 

Emotion index = a 

way of 

quantifying 

emotional 

responses (e.g. 

investor 

sentiment) into a 

value that can be 

used when 

computing certain 

problems. 

 

Sliding window 

mechanism = a 

versatile and 

efficient method 

of processing data 

allowing for 

constant 

evaluation of 

subsets of data in 

larger pools, 

which supposedly 

benefits the 

introduced novel 

portfolio 



- The proposed model was applied to 

the US stock market Dow Jones 30 

and showed better stability than the 

Dow Jones industry average and the 

Sharpe ratio during economic 

fluctuations 

- So all in all, the proposed model is 

more precise and stable than 

comparable traditional methods. 

 

Important notes: 

- The classical method in this paper is 

seen as the ‘Sharpe-ratio’ 

- The difference between ANGQTS 

and GNQTS is that QNQTS is more 

static than ANGQTS, furthermore, 

ANGQTS outperforms GNQTS in 

larger solution spaces, lastly, 

ANGQTS demonstrates better 

searchability and higher trend ratios. 

Thus ANGQTS has better 

performance and is more efficient 

 

optimization 

model 

[31] 

Portfolio 

Optimization in 

Both Long and Short 

Selling Trading 

Using Trend Ratios 

and Quantum-

Inspired 

Evolutionary 

Algorithms (Chou et 

al., 2021) 

“This paper utilizes the 

global quantum-inspired 

tabu search algorithm 

with a quantum NOT-

gate (GNQTS) to 

effectively find the best 

combination of stocks. 

To avoid the overfitting 

problem, this paper 

employs a sliding 

window. Specifically, 

this paper combines the 

trend ratio, GNQTS, 

short selling with 

certificates of deposit, 

and sliding windows to 

perform the stock 

selection” (p. 1) 

 

“This paper uses the 

global-best guided 

quantum inspired tabu 

search algorithm with a 

quantum NOT-gate, 

called GNQTS” (p. 2) 

 

“This paper proposes 

investing 

simultaneously in 

normal trading and 

Objective: 

- Synthesize a model incorporating; the 

sliding window mechanism, the trend 

ratio (as it is better than the Sharpe 

ratio), GNQTS, long and short selling 

positions to outperform existing 

models 

- Compare the proposed method 

against the Sharpe ratio and  

- Benchmark the proposed model on 

Taiwan’s 50 largest market 

capitalization stocks from the period 

2010 – 2017, where funds are 

distributed in the portfolio for both 

long- and short-term selling. 

 

Results: 

- Portfolios selected by the trend ratio 

have a lower risk than portfolios 

selected by the Sharpe ratio, and a 

higher average return. 

- Combining long and short selling 

improves performance compared to 

using a single trading method 

- Overall, the GNQTS method 

effectively finds stable portfolios 

long and short-term selling, it 

outperforms the Sharpe ratio in risk 

management and average returns. 

Thereby, the experiment validates the 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

Quantum-inspired tabu 

search algorithm with 

GNQTS 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization, 

specifically in short and 

long selling trading 

using the trend ratio 

 



short selling by a trend 

ratio, which can further 

increase investment 

profits and spread 

risks.” (p. 1) 

fact that a broader solution space will 

positively influence portfolio return 

and risk 

- “The experimental results show that 

the trend ratio can truly derive better 

performance than the Sharpe ratio” 

(p. 15) 

 

Important notes: 

- This paper differentiates between 

long and short selling, the GNQTS is 

used in both of these instances. 

[32] 

A Novel Portfolio 

Optimization Model 

Based on Trend 

Ratio and 

Evolutionary 

Computation (Chou 

et al., 2019) 

“This paper makes use 

of the quantum inspired 

tabu search algorithm, 

which is improved by 

an adaptive strategy, the 

current best-known 

solution, and the 

quantum not gate 

(ANQTS) to find the 

best portfolio in a large 

solution space.” (p. 1) 

 

“This paper employs the 

sliding window to avoid 

the over-fitting 

problem.” (p. 1) 

 

“In summary, this paper 

combines the trend 

ratio, ANQTS, and the 

sliding window to solve 

the problem of stock 

selection.”(p. 1) 

Objective: 

- Synthesize a model incorporating; the 

sliding window mechanism, the trend 

ratio (as it is better than the Sharpe 

ratio), ANQTS, to solve the problem 

of stock selection for a portfolio 

- Benchmark the given model on 

Taiwan’s 50 largest market cap 

stocks between 2010 and 2016 and 

compare them to the Sharpe ratio 

- Benchmark trend ratio usage against 

the Sharpe ratio 

 

Results: 

- The trend ratio is more effective than 

the Sharpe ratio in finding optimal 

portfolios and single stock uptrends 

- Compared to to other similar 

quantum algorithms, ANQTS 

outperforms GA, GQTS, and NQTS 

in the same experiments in finding 

the portfolio solution efficiently and 

achieving better stability 

- “The experiment results show that the 

proposed method can find the better 

portfolio, and the performance is 

better than Taiwan 50 ETF which is 

recommended by the government.” 

(p. 13) 

- Results from the model also showed 

that risk can be spread better through 

effective  fund allocation 

 

Important notes: 

- In this paper, and most likely the 

previous two, trend ratio is a 

component of the model that is 

synthesized, to show that trend ratio 

is a better method to include rather 

than the similar Sharpe ratio, certain 

experiments are done, concluding in 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

Quantum inspired tabu 

search algorithm 

(optimized by GNQTS, 

adaptive strategy, 

current best-know 

solution)  

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

(specifically stock 

selection) 

 



all three papers that the trend ratio is 

better and should thus be used for the 

total of the model. Next to that, these 

3 papers focus on generating certain 

models including many different 

aspects that will optimize a certain 

objective (e.g. finding an optimal 

portfolio including long and short 

selling positions), instead of fully 

focusing on one type of algorithm, 

making it so that the quantum aspect 

of these portfolio optimization papers 

is a bit toned down considering other 

papers. Nevertheless, what can be 

learned mostly from these three 

papers is that quantum mechanics can 

also aid in alleviating certain 

problems of lesser proportions (e.g. 

giving the model the ability to handle 

larger amounts of data faster). 

- “The best portfolio may not include 

the best single stock and may include 

a stock which has negative return. As 

a result, the proposed method has the 

ability to select the portfolio, which is 

in a stable uptrend, and has 

outstanding performance in the 

experiments” (p. 13) 

[37] 

Quantum 

algorithms: A survey 

of applications and 

end-to-end 

complexities (Dalzell 

et al., 2023) 

As the title says, this 

paper is a complete 

survey of applications 

and end-to end 

complexities of 

quantum computing, 

337 pages of; areas of 

application, quantum 

algorithmic primitives, 

and fault tolerant 

quantum computation. 

 

However, in this paper, 

only the application 

area of ‘portfolio 

optimization’ will be 

summarized 

Objective(s): 

- Give an overview of; actual end-to-

end problems solved in PO, NISQ 

implementations, outlook, speedup, 

caveats.  

 

Actual end-to-end problems solved (using the 

Markowitz model): 

- Maximize return with fixed risk 

parameters 

- Minimize risk with fixed return 

parameters 

- Optimal risk-return tradeoffs with 

‘risk-aversion’ parameter (or an 

alternative formulation using the 

square root of the risk) 

In these models, certain constraints are 

often used, the following are recognized: 

- Long asset position constraints 

- Investment bands (the asset must be 

located between min or max bounds) 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

N/A 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

 



- Turnover constraints (constraint in 

the degree of changing asset holding 

between portfolios) 

- Cardinality constraints (restriction on 

the number of assets included in a 

portfolio) 

- Sector constraints (specified min/max 

allocations to groups of assets) 

- Transaction costs (extra costs linked 

to changing asset holdings) 

 

Caveats: 

- QLSS-based approaches are often 

dependent on multiple specific-

instance parameters, resulting in 

computationally increased demands 

(e.g. high log-depth QRAM demands, 

log-depth being a measure of time for 

QRAM to find a piece of data, simply 

put) 

- Branch-and-bound approaches do not 

require log-depth QRAM to acquire 

quantum speedup 

 

Speedup (only for QIPMs): 

- Speedups for using QIPMS compared 

to classical methods will often come 

from optimizing the QLSS (used for a 

sub-routine of QIPMs including 

linearity) and tomography for a linear 

system (at least, until current 

hardware can better facilitate the 

QIPMs) 

NISQ implementations (alternative approaches 

for quantum PO solutions): 

- NISQ-HHL (generalizes QIPMs to 

better fit current hardware 

specifications) 

- QAOA 

- Quantum annealing 

 

Outlook: 

- QIPMS (and other QLSS-based 

approaches) for continuous PO 

formulations offer the potential of 

quantum speedup in the future 

- The Branch-and-bound approach for 

discrete formulations has the 

possibility of a larger speedup than 

QIPMs 

- “In the context of Grover-like 

quadratic speedups in combinatorial 

optimization, it is unclear whether the 



quadratic speedup is sufficient to 

overcome the inherently slower 

quantum clock speeds and overheads 

due to fault tolerant quantum 

computation for practical instance 

sizes.” (p. 121) 

 

Important notes: 

- More constraint often means harder 

problems and more computational 

power needed.  

- Convex PO problems are easier to 

solve than non-convex problems (a 

PO problem often becomes non-

convex due to its imposed 

constraints) 

- Non-convex PO problems (or its 

constraints) can be converted to a 

Mixed-Integer Program (MIP), which 

in essence makes it easier to solve. 

Furthermore, if these integer 

variables are encoded in binary, then 

it can be formulated as a QUBO 

problem (which is widely used for 

PO). Therefore, a multitude of papers 

will make use of this, thereby making 

QUBO a often reoccurring 

formulation in these papers. 

[38] 

VaR Estimation with 

Quantum 

Computing Noise 

Correction Using 

Neural Networks (de 

Pedro et al., 2023) 

“In this paper, we 

present the development 

of a quantum computing 

method for calculating 

the value at risk (VaR) 

for a portfolio of assets 

managed by a finance 

institution” (p. 1) 

 

The classical Monte 

Carlo algorithm to 

calculate VaR is 

extended upon in a 

quantum manner 

 

“The resulting 

algorithm is suitable to 

be executed on real 

quantum computers,” 

(p. 1), 

 

Using feedback from 

real quantum 

computers, the neural 

network processing is 

Objective(s) 

- Develop a quantum neural network to 

extend conventional Monte Carlo for 

calculating Value at Risk (VaR) 

- Compare the results of this work with 

other works 

 

Results: 

- The quantum simulation and actual 

quantum computer results had 

discrepancies due to noise, 

highlighting the limitations of current 

quantum technology 

- “The results show that this approach 

is useful for estimating the VaR in 

finance institutions, particularly when 

dealing with a large number of 

assets.” (p. 1) 

- Neural networks were used to 

mitigate noise in the quantum circuit 

by optimizing parameters. 

- The authors compared their work 

with other works, and it showed that: 

quantum monte carlo methods 

showed promising results, however, 

Quantum hardware:  

IBM Qiskit (simulated 

hardware, 5 qubit) 

 

Quantum algorithm:  

Quantum (and neural 

network) optimized 

Monte Carlo 

 

Methodology: 

Monte Carlo 

 

Use case: 

Portfolio optimization 

(VaR) 

This paper mainly 

considers 

optimizing 

classical Monte 

Carlo methods 

using, but not 

limited to, 

quantum methods. 



finetuned, as the neural 

network is used to 

mitigate noise in the 

quantum circuit. 

 

are often faced with challenges 

related to resource requirements and 

circuit depth. Comparing it to the 

proposed method in this paper, their 

approach of using neural networks for 

quantum noise showed a promising 

feasible solution effectively utilizing 

current quantum computing 

resources. 

 

Important notes: 

- The noise affecting current quantum 

computers makes it almost useless to 

perform the posed algorithm on real 

quantum computers 

- Challenges: Grow a sufficient 

number of samples needed for the 

Quantum Monte Carlo method for 

increased asset sizes in portfolios, 

and find ‘real’ random generated 

samples using quantum computing, 

use neural networks to mitigate the 

noise in the quantum circuit 

- “A VaR estimation problem could be 

divided into parts and simulated 

partially by real quantum computers.” 

(p. 16) 



[41] 

Quantum 

Computing for 

Finance: State of the 

Art and Future 

Prospects (Egger et 

al., 2020) 

This paper gives an 

overview off the current 

(2020) state of quantum 

computing for finance, 

thereby giving insight 

into; a survey on 

problem classes that are 

computationally 

challenging classically 

and show advantages on 

quantum systems, in 

detail described 

quantum algorithms, 

specific applications of 

these algorithms 

(simulation, 

optimization, Monte 

Carlo), and lastly a 

demonstrations of 

quantum algorithms on 

IBM quantum back-

ends 

Problems/segments recognized in financial 

services for quantum computing: 

- Banking: balancing cash with interest 

rates, while controlling threats (risks) 

related to liquidity, fraud, money 

laundry, and non-performing loans 

- Financial markets: manage 

geographic time-zones, immediacy 

needs, counter-party risk 

- Insurance: maximize premiums, 

manage threats it unplanned risks 

- The main reoccurring problem is risk 

management 

 

Problem classes for classical computing 

methods where quantum methods may show 

promising advantages: 

- Simulation: customer identification, 

financial products (e.g. Value at Risk 

estimates), monitor transactions, 

customer retention.  

Furthermore, in this section it is discussed 

how quantum amplitude estimation can 

provide quantum speedup over classical 

Monte Carlo; with current quantum 

methods they estimated a 30-minute 

runtime for calculating VaR for a one-

million-asset portfolio, showing a speedup 

over classical methods 

- Optimization: Customer 

identification (and assessment), 

financial products, monitor 

transactions (e.g. re-balancing 

portfolios), customer retention 

Furthermore, for problem classes: convex 

problems (linear programming, convex 

programming, semidefinite programming), 

quantum methods showed the potential of 

significant speedups over classical 

methods, however, practical effectiveness 

is mainly determined by the specific 

problem instance.  

For problem classes: combinatorial 

problems (generally non-convex with 

discrete decision variables). “We note that, 

currently, there is no theoretical guarantee 

that variational algorithms on quantum 

devices can achieve significant speed-ups 

for QUBOs” (p. 11), however, they are 

appealing to study on NISQ devices as 

they show provable guarantees for 

performance. Tests performed with VQE 

and QAOA showed that the quantum 

Quantum hardware:  

IBM Quantum back-

ends 

 

Quantum algorithm:  

N/A 

 

Methodology: 

Optimization, Machine 

learning, simulation 

 

Use case: 

N/A 

 



methods got the best results following the 

efficient frontier in a active investment 

management PO example. (however, it 

was mentioned that current quantum 

hardware cannot facilitate such results). 

And for a passive investment management 

PO problem, quantum algorithms showed 

performances just below classical 

methods, however it was mentioned that 

performance of quantum algorithms will 

increase with larger problem sizes. 

- Machine learning: Prediction, 

classifying, finding patterns (all in 

customer scoring/evaluation, 

financial product usage, transaction 

monitoring, customer retention 

methods) 

Furthermore, two quantum Monte Carlo 

methods are mentioned Variational 

Quantum Classification (VWC), and 

Quantum Kernel Estimation (QKE). 

Compared to classical techniques, the 

quantum algorithms showed improved 

performances in machine learning tasks, 

particularly in advanced feature spaces and 

classifiers, however, practical advantages 

still do not show coherently. 

 

Technical challenges in Quantum Computing: 

- Loading data in a quantum state is 

very complex compared to classical 

methods, increasing number of qubits 

in the system are cause for 

exponential effort increases in 

preparing the system 

- Error correction, to protect the 

quantum system from error, multiple 

mitigation techniques are used that 

cost significant overhead 

- Precision and sample complexity, 

many repetitions need to be made in 

quantum system to achieve accurate 

results, this has high computational 

costs 

 

Important notes: 

- Challenging problems for classical 

computers that are addressed are 

those in: asset management, 

investment banking, retail and 

corporate banking. 



[44] 

A Systematic 

Literature Review of 

Classical and 

Quantum Machine 

Learning 

Approaches for 

Mutual Fund 

Portfolio 

Optimization 

(Fernandes et al., 

2023) 

“This review paper 

examines literature on 

classical and quantum 

machine learning 

approaches for Mutual 

Fund PO, analyzing 44 

papers from 2003 to 

2023” (p. 1) 

 

“We provide an 

overview to the types of 

problems, preferred 

approaches, their 

benchmarks, deduced 

conclusions, and 

research gaps as a 

comprehensive survey 

for diverse readers.”  

(p. 1) 

Findings: 

- “Quantum Machine Learning (QML) 

PO algorithms which are an 

intersection of QC and ML 

techniques, process large datasets 

more efficiently, revealing hidden 

patterns and insights that traditional 

ML approaches may potentially not 

be able to identify” (p. 1) 

- Traditional ML approaches face the 

following problems: time constraints, 

high costs due to their inability to 

consider risk calculations at various 

levels 

- Quantum (assisted) machine learning 

approaches have the following 

benefits: provide real time solutions 

to market scenarios,  

- Quantum algorithms have 

successfully been implemented for 

portfolio optimization.  

- Main research gaps found were: 

a) The validation of quantum 

computer output is still a 

difficulty in the NISQ era of 

quantum technology 

b) Quantum linear-algebra 

techniques sometimes have 

issues being applicable towards 

specific linear-algebra and 

financial use cases due to certain 

constraints and prerequisites 

which bottleneck quantum 

speedup 

c) “No dynamic portfolio 

optimization framework can 

outperform the covariance 

model. ML/DL approaches 

require more research due to the 

curse of dimensionality and the 

DL architectures inability to 

improve performance of sample-

based portfolios” (p. 4) 

- “With numerous variables and 

conditions that need to be considered 

for a Mutual Fund PO problem, 

classical algorithms eventually end 

up at the local optima and offer a 

non-optimal solution” (p. 4) 

- Currently (2023) quantum machine 

learning shows benefit in specific use 

cases in terms of solution quality and 

computing speed. However, 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

Quantum machine 

learning 

 

Methodology: 

Machine learning 

 

Use case: 

Portfolio optimization 

Mutual funds = a 

portfolio of 

stocks, bonds, or 

other securities 

overseen by a 

professional fund 

manager. 5 main 

mutual fund 

portfolio 

optimization 

problems 

mentioned in the 

paper are: asset 

allocation, 

portfolio 

diversification, 

risk-management. 

Minimizing 

transaction costs, 

tax efficiency. 

 

Curse of 

dimensionality = 

common issues 

arising when 

dimensions in a 

problem 

formulation or 

system increase 

(e.g. amount of 

data, exponential 

growth of 

results/data etc, 

distinctions 

between near and 

far points blurring 

in high-

dimensional 

spaces, increased 

computational 

complexity, 

overfitting).  



generally, papers show that many 

fields of research (such as machine 

learning) still need to experience real 

benefit from quantum computing 

 

Important notes: 

- “The existing breed of NISQ (Noisy 

Intermediate Scale Quantum) 

quantum computers have a significant 

potential to provide faster solutions to 

problems in various domains which 

are not just relevant for the present 

but also for the future” (p. 1) 

- The current (2023) stage of quantum 

technology with 50-1000 qubits that 

are not-fault tolerant is called ‘Noise 

Intermediate-scale quantum 

computing (NISQ) 

- “This paper focuses on Mutual Fund 

(MF) because it has seen a rise in 

investment in the past years and a low 

rate of risk in comparison to the ever-

fluctuating stock market industry”  

- (p. 2) 

[47] 

Grover Adaptive 

Search for 

Constrained 

Polynomial Binary 

Optimization 

(Gilliam et al., 2021) 

“In this paper we 

discuss Grover 

Adaptive Search (GAS) 

for Constrained 

Polynomial Binary 

Optimization (CPBO) 

problems, and in 

particular, Quadratic 

Unconstrained Binary 

Optimization (QUBO) 

problems, as a special 

case” (p. 1) 

 

“In this paper, we 

provide a framework for 

automatically 

generating efficient 

oracles for solving 

Constrained Polynomial 

Binary Optimization 

(CPBO)— a 

generalization of 

QUBO—with GAS.” 

(p. 1) 

 

In the analysis of this 

paper, there will only be 

focusses on the 

application towards 

Objective(s): 

- Test the proposed GAS with QUBO 

and efficient oracles on a PO problem 

- In the experiment: minimize the 

weighted variance – portfolio return 

to create an optimized portfolio with 

budget constraints. The portfolio 

consist of 3 assets, no more than 7 

qubits were used, and searching wads 

stopped after 3 iterations each time 

 

Results: 

- “GAS can provide a quadratic speed-

up for combinatorial optimization 

problems compared to brute force 

search” (p. 1), however, this can only 

be performed under certain search 

criteria and efficient oracles 

- The noise in current era NISQ 

hardware impacted results, increasing 

the probability of wrong results. 

When the noise was not too strong, it 

achieved good results 

- QUBO with GAS on real quantum 

hardware consistently found the 

optimal solution in the given 

environment  

 

Quantum hardware:  

Simulated hardware 

(Qiskit), and real 

hardware (IBMQ 

Toronto) 

 

Quantum algorithm:  

Grover Adaptive Search 

(on CPBO and QUBO) 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

Oracle = a 

subroutine in an 

operation that 

provides 

information on an 

objective 

problem’s 

solution, this 

information is 

used to increase 

the probability of 

finding the 

optimal solution 

in the algorithm in 

quantum 

optimization cases 



portfolio optimization 

of the GAS for QUBO 

- Besides the portfolio optimization 

problem, this paper managed to 

reduce the number of gates required 

for computation compared to 

standard quantum arithmetic 

approaches (“i.e. it lowers the 

requirements to apply GAS on real 

quantum hardware for practically 

relevant problems.” (p. 7)) 

 

- Even though the quantum hardware 

showed promising results, it could 

still be said that it can not solve lager 

problem sizes, as the problem size 

used in this paper on the real 

hardware remains small, thereby it 

can also be said that the quantum 

hardware currently is not better than 

classical methods in bigger problem 

sizes. On the other hand, for 

simulations according to paper, it can 

be said that performances are good, 

but no definite conclusion can be 

made on the comparison with 

classical methods. 

 

 

[48] 

Approaching 

Collateral 

Optimization for 

NISQ and Quantum-

Inspired Computing 

(Giron et al., 2023) 

“In this study, we 

initially present a Mixed 

Integer Linear 

Programming (MILP) 

formulation for the 

collateral optimization 

problem, followed by a 

Quadratic 

Unconstrained Binary 

optimization (QUBO) 

formulation in order to 

pave the way towards 

approaching the 

problem in a hybrid 

quantum and NISQ-

ready way” (p. 1) 

 

“In summary, the main 

objective of our paper is 

to present a case study 

on the formulation and 

approach of the ColOpt 

problem using quantum 

computing techniques, 

with the overarching 

aim of advancing the 

ongoing effort towards 

Objective(s) 

- Study the ColOpt problem in detail 

- Provide a MILP formulation that is to 

be used as a testbed for; a QUBO 

version of ColOpt (making it so that 

quantum and quantum-inspired 

hardware can process it), perform 

small-scale experiments using that 

QUBO version and benchmark it to 

MILP 

- Investigate the QUBO formulations 

for the KnapsackProb problem, and 

use the best formulation for this to 

apply to the collateral optimization 

problem. 

 

Results: 

- “We find that while the QUBO based 

approaches fail to find the global 

optima in the small-scale 

experiments, they are reasonably 

close suggesting their potential for 

large instances” (p. 1) 

- For the KnapsackProb, classical 

approaches (MILP) managed to find 

the known optimal solutions, and for 

the QUBO formulation on simulated 

Quantum hardware:  

Simulated annealing 

(On Fujitsu simulators, 

and D-Wave simulated 

annealer) ColOpt 

problem, and simulated 

annealing for the 

KnapsackProb (on 

ToQUBO.jl, Qiskit’s 

QuadraticProgramToQ

UBO, PyQubo, and 

Digital Annealer). 

 

Quantum algorithm:  

QUBO (with MILP 

mapped to it in the 

formulation) 

 

Methodology: 

Optimization 

 

Use case: 

Collateral optimization 

Collateral 

optimization = 

“the systematic 

allocation of 

financial assets to 

satisfy obligations 

or secure 

transactions, 

while 

simultaneously 

minimizing costs 

and optimizing 

the usage of 

available 

resources.” (p. 1) 

 

ColOpt = an 

example 

Collateral 

optimization 

problem to solve 

on the given 

lassical and 

quantum methods. 

 

KnacksackProb = 

example knapsack 



achieving “quantum 

advantage” in practical 

applications” (p. 3) 

annealing: ToQUBO.jl found the 

optimal solution, Qiskit found the 

optimal solution (through multiple 

runs), PyQUBO found the optimal 

solution (and for larger instance sizes 

close to optimal) Neal and Fujitsu 

machines consistently found optimal 

solution, even under penalty regimes.   

- For the ColOpt problem, quantum 

methods showed that they could not 

find the global optimal solution, each 

run found different global minima. 

The reason for this mentioned in the 

paper is probably due to a lack of 

runs performed in the annealing 

process, making it so that it could not 

explore sufficient search space. 

- The paper did mention that the 

solving of the problem was not fully 

optimized, as certain improvements 

can be made to obtain higher quality 

solutions (e.g. optimizing the 

annealing schedule, QUBO parameter 

optimization) 

- Classical solver showed to find 

optimal solution every time in the 

experiments, while quantum methods 

often fell short, there are still certain 

factors inhibiting it from working to 

its full potential in this paper on the 

given ColOpt and KnapsackProb 

problems. 

 

 

Important notes: 

- On the ColOpt problem for quantum 

methods, multiple penalty weights 

were used to make the process more 

efficient and give mote optimized 

results. 

- Using QUBO or Ising approaches, 

problem can be addressed as follows 

in a quadratic way: 

Using variation quantum algorithms 

(e.g. QAOA on gate-based quantum 

computers), using quantum annealing 

on adiabatic quantum computers 

(quantum annealers), using quantum 

inspired methods which can be 

understood under a QUBO model 

formulation 

problem involving 

the optimal 

approach to filling 

a knapsack (with 

capacity W) with 

the highest 

possible value 

from a 

corresponding set 

of n items. 



“We would like to note that our paper 

does not aim to provide an empirical 

comparison between quantum and  

classical approaches for solving 

MILPs, given the limited 

computational resources available to 

us” (p. 3) 

- “The QUBO model can be applied to 

a wide range of combinatorial 

optimization problems that are known 

to be NPhard,” (p. 4) 

- “we utilize simulated annealing (SA), 

which as a metaheuristic algorithm, is 

quite sensitive to the problem 

structure and its performance can 

vary significantly depending on the 

problem instance.”(p. 12) 

 

[51] 

A brief review of 

portfolio 

optimization 

techniques (Gunjan, 

A. & Bhattacharyya, 

S. 2023) 

This paper lists a brief 

review of portfolio 

optimization 

techniques, most 

techniques mentioned 

are non-quantum 

techniques. The paper 

makes a distinction 

between classical 

approaches and 

intelligent approaches. 

Under the list of 

intelligent approaches 

fall ‘quantum-based 

approaches’ 

 

In the summary of this 

paper, a brief list of 

non-quantum 

approaches will be 

mentioned (classical 

and intelligent 

approaches), after that 

there will be elaborated 

on the quantum PO part 

of this paper. 

 

List of non-quantum approaches (classical and 

intelligent): 

Classical: 

- Markowitz mean-variance 

optimization, Mean Absolute 

Deviation, Minimax, Variance with 

skewness, Lower partial moments, 

Value-at-risk (VAR), Conditional 

value-at-risk (CVar). Each of these 

approaches will have their own 

advantages,  disadvantages, specific 

uses but most notably, many of these 

classical approaches make an 

appearance in the mentioned papers 

as adapted versions are used for 

certain quantum algorithms, 

specifically QUBO 

Intelligent approaches (mostly referring to 

machine learning based techniques): 

- Bayesian approaches (e.g. Black-

Litterman approach), Support vector 

machine-based approaches (SVR), 

Neural network-based approaches, 

reinforcement learning approaches, 

and evolutionary approaches. Again, 

most of these types of approaches can 

be seen back in adapted versions for 

quantum computing PO. 

 

Quantum Computing for PO; the following is 

mentioned: 

- “On multiple experiments, QC is 

shown to give better performance on 

complex and NP-hard problems 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

N/A 

 

Methodology: 

N/A 

 

Use case: 

N/A 

Metaheuristic = 

procedures or 

strategies 

designed to 

generate or find 

god solutions to 

an optimization 

problem 



which require large solution space.” 

(p. 23) 

- Quantum-inspired metaheuristic 

techniques are methods take 

advantage of the promising power 

that quantum computing has and 

those of metaheuristics, “and have 

shown to perform better than classical 

counterparts” (p. 30). Furthermore, 

these methods are widely used in 

constrained and unconstrained 

method (e.g. constraints in PO) 

- The following meta-heuristic 

approaches are mentioned that show 

promising results (however, there are 

more to be mentioned, as shown from 

the above summarized papers): 

Quantum-inspired Tabu search 

(QTS), Multi-Objective Quantum-

Inspired Tabu Search (MOQTS, 

flexible, profitable, can optimize 

multiple objectives, but needs further 

evaluation), Quantum-Inspired 

Firefly algorithm with Particle 

Swarm Optimization (QIFAPSO, no 

experiments with this method to date 

2023), Quantum-Inspired Tensor 

Networks (TN), Quantum-Inspired 

Acromyrmex evolutionary algorithm 

(QIAEA, finds efficient global 

optimization for complex systems, 

high accuracy, low error, but cannot 

do multiple objective scenarios, and 

that may be the reason it is not 

frequent in PO literature), Variational 

Quantum Eigensolver (VQE), D-

Wave hybrid Quantum Annealing. 

- Advantage of QC approaches: 

“Adding qubits can increase the 

storage exponentially and are useful 

to solve very complex compute 

extensive problems. Faster as 

compared to any other methods.” (p. 

25) 

- Limitations of QC approach: “The 

energy required by quantum 

computer is much larger than 

traditional computers. Still there is a 

lot of unknowns as this is an ongoing 

area of research.” (p. 25) 

[52] 

Quantum-inspired 

meta-heuristic 

approaches for a 

“This paper covers and 

compares quantum 

inspired versions of four 

Objective(s): Quantum hardware:  

N/A 

 

 



constrained portfolio 

optimization 

problem 

(Gunjan, A. & 

Bhattacharyya, S. 

2024) 

popular evolutionary 

techniques with three 

benchmark datasets. 

Genetic algorithm, 

differential evolution, 

particle swarm 

optimization, ant colony 

optimization, and their 

quantum-inspired 

incarnations are 

implemented, and the 

results are compared” 

(p. 1) 

 

The experiment done on 

the optimization 

approaches were done 

using 10 years of stock 

price data from 

NASDAQ, Dow Jones, 

and BSE 

- Use a genetic algorithm (GA) to 

solve a PO problem for the given 

datasets 

- Use Differential evolution (DE) to 

solve a PO problem for the given 

dataset 

- Use Particle swarm (PSO) to solve a 

PO problem for the given dataset 

- Use ant colony optimization (ACO) 

to solve a PO problem for the given 

dataset 

- Use the quantum inspired version of 

GA, DE, PSO, and ACO to solve a 

PO problem for the given dataset 

- Measure the performance of the 

mentioned techniques via mean error, 

execution time, and fitness function 

(minimum risk) 

 

Results: 

- Classical PSO showed to have lowest 

mean square error, root mean square 

error, mean absolute error, and mean 

absolute percentage error, basically 

indication that it can very closely 

approximate optimal solutions.   

- Quantum-inspired versions were 

faster, and often had better quality of 

results 

- “The experiments reveal that 

quantum-inspired ant colony 

optimization (QiACO) is more 

effective and faster than the other 

techniques chosen in both the 

classical and quantum inspired 

domains” (p. 23) 

- Further analysis of results showed: 

quantum-inspired approaches 

produce better risk values than 

classical approaches, Quantum PSO 

showed to generate the most optimal 

risk compared to classical methods 

- Results from the given tables for the 

experiments confirm statements made 

on fastness and quality of results. 

- Further Wilcoxon tests (to show 

whether made conclusion on the 

differences between classical and 

quantum methods are significant) 

show that almost all comparisons 

between classical and quantum 

algorithms lead to the quantum 

Quantum algorithm:  

Quantum versions of 

the classical algorithms 

named 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 



algorithm either performing on par 

with classical ones, or better. 

 

- “It is observed that the quantum-

inspired techniques outperform the 

classical counterparts.” (p. 1) 

- “Experiments have demonstrated that 

these quantum-inspired versions are 

faster, and the results are comparable 

or even better than their classical 

counterparts “(p. 35) 

- “Specifically, the quantum-inspired 

ACO surpasses all the selected 

techniques in terms of speed, and its 

optimization results closely match 

those of the other selected 

techniques” (p. 35) 

 

Important notes: 

- benchmark datasets, NASDAQ (from 

2012-06-23 to 2022-06-27), BSE 

(from 2011-05-13 to 2023-02-07) , 

and Dow Jones (from 2009-08-06 to 

2023-05-05). 

- Four enhancements to the named 

techniques are given so that errors are 

minimized, they become more 

efficient, and quality of results are 

better:  

[53] 

Portfolio 

Optimization Using 

Quantum-Inspired 

Modified Genetic 

Algorithm (Gunjan 

et al., 2023) 

“An effort is made to 

implement two different 

genetic versions along 

with their extension in 

the quantum-inspired 

space. Improvements to 

the popular crossover 

techniques, viz. (i) 

arithmetic and (ii) 

heuristic crossover are 

proposed to reduce 

computational time.” (p. 

665) 

 

 

 

Objective(s): 

- Optimize risk and return in a PO 

problem for a proposed quantum 

genetic algorithm. 

- Use the following proposed classical 

techniques to base the QiGA upon: 

Arithmetic crossover, Heuristic 

crossover 

- Conduct the experiments on a dataset 

from the NASDAQ in the period 

2012-06-28 to 2022-06-27, objective 

function is to find minimum risk, 

evaluation are done via mean square 

error (MSE), mean absolute error 

(MAE), root mean square error 

(RMSE), mean absolute percentage 

error (MAPE). Lastly, execution 

times are measured for the QiGA. 

 

Results: 

- ‘It is evident from the results that the 

quantum-inspired version 

outperforms the classical counterparts 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

Quantum genetic 

algorithm (QiGA) 

 

Methodology: 

N/A 

 

Use case: 

N/A 

Crossover = 

create new 

solutions to a 

problem by 

combining the 

features of two 

parent solutions, 

generating 

offspring that is 

closer to the 

optimal solution 

 

Arithmetic 

crossover = 

continuous 

optimization by 

taking a parent 

group of 2 and 

then making 

offspring 

generations as a 

weighted average 

of the parents 

 



as far as the minimization of portfolio 

risk is concerned.” (p. 671) 

- The QiGA with arithmetic crossover 

performs best overall 

- The classical GA algorithm is worse 

off on all evaluated parameters (Risk, 

Return, MSE, MAE, RMSE, MAPE, 

Mean Execution Time (MET), Total 

Execution Time (TET))  

- QiGA with arithmetic crossover 

performs best on MSE, MAE, RMSE, 

MAPE, MET, TET 

- QiGA with heuristic crossover 

performs best on the lowest risk 

measure 

- “It is also observed that quantum-

inspired versions are faster and more 

efficient than their classical 

counterparts.” (p. 672) 

 

Important notes: 

- “Portfolio optimization, in other 

words, is an iterative and 

computationally extensive task where 

a near-optimal solution is achieved 

through an iterative process.” (p. 665) 

Heuristic 

crossover = 

choose two 

parents, out of 

which one is 

superior, or when 

combined creates 

a solution more 

specific to the 

objective problem 

[56] 

An improved QPSO 

algorithm and its 

application in fuzzy 

portfolio model with 

constraints (He, G. 

& Lu, X, L. 2021) 

“Aiming at the 

shortcomings of 

quantum-behaved 

particle swarm 

optimization algorithm 

(QPSO), an improved 

quantum behaved 

particle swarm 

optimization algorithm 

(IQPSO) is put forward, 

and the improved 

algorithm is applied in 

solving a kind of fuzzy 

portfolio selection 

problems” (p. 1) 

 

 

Objectives: 

- Synthesize an improved QSPO 

algorithm based on the shortcoming 

of the QSPO algorithm 

- Use the other three given algorithms 

(QSPO, PSO-w, RQSPO) in the 

paper to benchmark against each 

other and similar metaheuristic 

approaches to IQSPO. Benchmarking 

is performed on a fuzzy PO problem 

with 16 different benchmarks, 

number of iterations: 1000-1500-

2000, algorithms were run 30 times 

for each instance. 

- Compare the IQSPO with six well-

know metaheuristics (Genetic 

algorithm, Differential evolution, bat 

algorithm, Cuckoo search, PSO, and 

QSPO), with max number of 

iterations 1500, and population size 

(assets) of 50, run 30 times 

 

Results: 

- For 14 of the 16 benchmarks, IQSPO 

was superior to the other tested 

algorithms (including metaheuristic 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

(I)QSPO 

 

Methodology: 

Optimization 

 

Use case: 

(Fuzzy) portfolio 

optimization 

Convergency = 

the process where 

an optimization 

algorithm 

approaches the 

optimal/sufficientl

y good solution 

over time 

iteratively 



PSO-w), showing higher accuracy 

and less standard deviation 

- Using a Wilcoxon rank-sum test, it 

shows that IQSPO significantly 

outperforms the rest of the algorithms 

on most of the 16 test functions.  

 

- For the comparison with other 

metaheuristics, IQSPO showed a 

better ability to search for global 

optima, IQSPO gets better means, 

more promising standard deviation, 

indicating more robustness and 

effectiveness 

 

- “IQPSO shows better calculation 

precision and robustness” (p. 6), 

“IQSPO has better mean and standard 

deviation across all algorithms” (p. 6) 

- “The experimental results on 16 

benchmark functions show that 

IQPSO has better convergence and 

robustness than PSO with inertia 

weight, QPSO and QPSO with a 

hybrid probability distribution in 

most cases.” (p. 1) 

- “When solving a fuzzy portfolio 

model, IQPSO provides comparable 

and superior results compared with 

the other metaheuristics.” (p. 1) 

- The novel QSPO algorithm already 

has some advantages over the 

classical PSO algorithm, mainly 

fewer parameters needed, faster 

convergence speed, and strong search 

capability for complex problems 

 

Important notes: 

- Shortcomings of the QSPO algorithm 

are addressed in the IQSPO 

algorithm. 

[60] 

Empirical Analysis 

of Quantum 

Approximate 

Optimization 

Algorithm for 

Knapsack-based 

Financial Portfolio 

Optimization (Huot 

et al., 2024) 

“Herein, we proposed a 

method that uses the 

knapsack-based 

portfolio optimization 

problem and 

incorporates the 

quantum computing 

capabilities of the 

quantum walk mixer 

with the quantum 

approximate 

optimization algorithm 

Objectives: 

- Construct the use of quantum walks 

(QWS) with QAOA to enhance its 

performance in searching for optimal 

portfolio configuration.  

- Use the proposed QAOA model on a 

PO problem using 2-5 stocks from 

well-known companies (e.g. Apple, 

Amazon) from the timeframe 01-01-

2018 to 01-01-2023. It was tested on: 

a noiseless simulator, noisy fake 

backend, noisy real device. Required 

Quantum hardware:  

QASM simulator from 

Qiskit to give insight 

into the proposed 

QAOA algorithm, then 

afterwards IBM Cairo 

(27 qubit) is used for 

the given PO problem 

 

Quantum algorithm:  

QWM-QAOA 

 

 



(QAOA) to address the 

challenges presented by 

the NP-hard problem.” 

(p. 1) 

 

Furthermore, the 

proposed method of 

using QAOA for a 

knapsack-based PO 

problem is then 

experimented upon and 

results are put into 

perspective 

 

“Our methodology is 

based on the 

fundamental principles 

of mean–variance 

optimization, focusing 

on the Markowitz 

model.” (p. 6) 

qubits were different for certain stock 

counts but max qubits were 11 for 5 

stocks, and min 7 for 2 stocks.  

 

Results: 

- The proposed QWM-QAOA model 

revealed a consistent enhancement in 

identifying optimal solution to the 

knapsack problem, approximating 

optimal solutions 100%-98% with 2-

5 stocks.  

- “Our proposed method achieves 

efficient results in noiseless and fake 

device settings, ranging from100% to 

98% and 98% to 80%.” (p. 11) 

- For real devices the results showed an 

accuracy of 50% due to errors, 

indicating that there are still error 

performance enhancements to be 

made on real quantum devices.   

 

Important notes: 

- The proposed model and knapsack 

problem is based upon the Markowitz 

model of max return/min risk 

- During the optimization process, the 

QAOA model was optimized using a 

classical optimizer SHGO, and 

quantum walk was used to boost 

optimization by its ability to refine 

the process. 

 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

[63] 

Exploring the 

synergistic potential 

of quantum 

annealing and gate 

model computing for 

portfolio 

optimization (Jain 

Naman. & Girish 

Chandra, M., 2023) 

“In this work, we 

extend upon a study to 

use the best of both 

quantum annealing and 

gate-based quantum 

computing systems to 

enable solving large-

scale optimization 

problems efficiently on 

the available hardware.” 

(p. 1) 

 

Test are conducted on 

real-world dataset 

derived from Indian 

stock market, up to 64 

assets are used. 

 

“We also demonstrate 

the effectiveness of our 

Objective(s): 

- Form an Ising/QUBO problem 

formulation (as the paper mention; 

QUBO and ising formulations are 

interchangeable) and use Large 

System Sampling Approximation 

(LSSA) to divide it into smaller sub-

systems. Determine the right assets 

for creating these sub-systems by 

finding the Maximum Independent 

Set (MIS) on a quantum annealer. 

Solve the smaller sub-systems 

independently via LSSA on a 

quantum annealer and then combine 

their solutions using Variational 

Quantum Eigensolver (VQE) on a 

gate-based quantum computer to find 

the optimal solution. 

- For the second model, change the 

sampling method for the sub-systems 

Quantum hardware:  

Quantum annealer and 

gate-based system (D-

Wave Advantage 

system 4.1) (VQE 

amplitude optimization 

is performed on Qiskit 

simulator, and 

parameter optimization 

via a classical solver 

COBYLA) (Python 

library PyQUBO was 

used to form the QUBO 

problem) 

 

Quantum algorithm:  

N/A 

 

Methodology: 

Optimization 

The proposed 

method in the 

paper that this 

paper is based 

upon works using 

the Large System 

Sampling 

Approximation 

(LSSA) method, 

which entail 

dividing a larger 

problem in 

subsets of 

problems, to then 

combine the 

solution of those 

to approximate a 

solution to the 

original problem. 

 



approach on a range of 

portfolio optimization 

problems of different 

sizes.” (p. 1) 

 

A QUBO formulation is 

made and tested on real-

world stock datasets, 

comparing 

performances with 

previous techniques for 

varying numbers of 

assets and parameters.  

 

Lastly, the effects of 

different parameters on 

the PO problem solution 

quality are investigated 

and benchmarked 

against earlier works. 

to MIS and random-based sampling 

instead of only MIS. 

- For the third model, use only random 

sampling 

- Benchmark the given model on a PO 

problem in the Indian stock market 

with data from 2018-2023, with n = 

64 stocks, risk aversion constraints. 

 

Results: 

- Results from the experiment showed 

that both the LSSA_MIS and the 

LSSA_MIS_RANDOM models 

performed comparably to a classical 

D-Wave Tabu Solver, but with fewer 

samples needed.  

- Samples needed for near optimal 

solution: 

LSSA_MIS: 12 samples 

LSSA_MIS_RANDOM: 13 samples 

LSSA_RANDOM: 32 samples 

- “Our experimentation shows that the 

hybrid approach performs at par with 

the traditional classical optimization 

methods with a good approximation 

ratio” (p. 1) 

- “Our findings suggest that hybrid 

annealer-gate quantum computing 

can be a valuable tool for portfolio 

managers seeking to optimize their 

investment portfolios in the near 

future” (p. 1) 

- Scatter plots reflect the findings made 

in the paper. 

- “our findings suggest that a hybrid of 

annealing and gate-based quantum 

computing can be a promising tool 

for portfolio optimization,”(p. 10) 

 

Important notes: 

- LSSA enables the solving of greater 

problem sizes on available quantum 

hardware 

- “large-scale problems cannot be 

solved on today’s (2023) quantum 

hardware” (p. 1) 

- Classical optimization methods such 

as Monte Carlo methods have 

limitation dealing with large-scale 

problems. 

- “Quantum computing methods, viz. 

quantum annealing [2, 3] and gate-

based quantum computing can 

 

Use case: 

Portfolio optimization 

This paper 

modifies the 

LSSA by 

introducing a 

modified sample 

step in the LSSA. 

This modified 

example is 

depicted as: 

dividing a PO 

problem into sub-

systems of smaller 

sizes by selecting 

representative 

stocks of the 

entire market and 

capture the 

highest 

correlation among 

them. 

 

Maximum 

Independent Set = 

a way of ensuring 

that a subset of 

assets has no 

strongly 

correlated assets, 

as correlation is 

an indicator of 

redundancy or 

overlapping. For 

this paper MIS is 

mainly used to 

increase 

efficiency and 

effectiveness of 

solving large-

scale optimization 

problems. 



potentially solve complex 

optimization problems more 

efficiently than classical methods and 

may provide better solutions for 

practical problems with many 

variables and constraints.” (p. 2) 

- “several studies show remarkable 

results in portfolio optimization using 

the above-described common 

methods (VQE, QAOA, QUBO, QE), 

these approaches require an N-qubit 

quantum computer to solve the 

problem with N assets” (p. 2) 

- “The proposed method is best suited 

for problem instances where there are 

grades of diversity, which is usually 

true in a real setting.” (p. 10) 

- Th text mentioned that gorver 

adaptive search might be better to 

solve the sub-sysetms instead of the 

imposed method. 

[64] 

Efficient and 

Flexible Annealer-

Gate Hybrid Model 

for Solving Large-

Scale Portfolio 

Optimization (Jain 

et al., 2023) 

A two-stage approach 

combining quantum-

annealing and gate-

based quantum 

computing for large-

scale PO problems 

 

LSSA is used and 

modified upon to create 

a more efficient and 

effective framework for 

he specific PO problem 

 

MIS is used to divide 

the problem in sub-

systems, using a 

parameterized quantum 

circuit to combine sub-

problem solutions. 

 

Experiments are 

performed on 128 asset 

simulators. 

 

Objective(s) 

- Solve a QUBO formulation of the PO 

problem (for only long positions in an 

equal weighted portfolio, minimizing 

the objective function for various 

problem sizes) using a quantum 

annealing and gate-based quantum 

computing hybrid approach involving 

LSSA and MIS, aggregating sub-

systems using quantum parameterized 

circuit (PQC) (in the previous paper 

VQE was used for that) 

- Experiment on the given 128 asset 

PO problem with different increasing 

numbers of sub-problems (Ns) and 

sub-problem sizes (Ng), the following 

distributions are tested upon 

(following Ns / Ng format): (64 / 8), 

(32 / 32), (32 / 64) 

 

Results: 

- For the experiment with 128 asset the 

following could be noticed: number 

of calls made to the quantum annealer 

increased as number of sub-problems 

increased, performance with the 

imposed hybrid method was 

increased by the imposed method 

involving MIS, LSSA PQC, and the 

framework around it. 

Quantum hardware:  

D-Wave simulator 

 

Quantum algorithm:  

Hybrid quantum 

annealing / gate-based 

approach 

 

Methodology: 

Optimization  

 

Use case: 

Portfolio optimization 

 



- Performance increased with the full-

hybrid model as problem sizes 

increased to 128 assets. 

- ”Our results demonstrate that the 

proposed approach performs better 

with the same hardware resources” 

(p. 1) 

- “The outcomes of our research 

suggest that hybrid annealer-gate 

quantum computing can provide a 

practical and scalable solution to 

large-scale portfolio optimization 

problems, bridging the gap between 

theoretical advancements in quantum 

computing and real-world 

applications in finance” (p. 1) 

 

Important notes: 

- “The hardware limitations of 

quantum computers prevent the direct 

application of quantum algorithms to 

large-scale problems.” (p. 1) 

- More qubits are needed as the 

problem size increases 

[66] 

A Novel Portfolio 

Optimization with 

Short Selling Using 

GNQTS and Trend 

Ratio (Jiang et al., 

2018) 

“This paper proposes a 

strategy to improve the 

Sharpe ration denoted 

the trend ratio where the 

daily expected return is 

the slope of the trend 

line, and the risk is the 

difference between the 

trend line and the fund 

standardization” (p. 1) 

 

The proposed model 

includes doing normal 

trading and short selling 

simultaneously to 

increase profits and 

spread risk. 

 

 

Objective(s): 

- Formulate a novel quantum model 

involving QTS optimized by 

GNQTS, whilst utilizing sliding 

windows to overcome over-fitting 

problems, and trend ratio to identify 

stable uptrend portfolios for normal 

trading, and stable downtrends for 

short selling. 

- Use the model on an experiment 

based upon the Taiwan top 50 ETF 

stocks from 2010-2017 as the training 

periods for the model, and 2011-2018 

as the investment periods for the 

model. Parameters used were: initial 

fund of 10 million TWD, population 

of 10, 10000 generations with an 

execution number of 50. 

- “Use the trend ratio and GNQTS to 

help investors to select a potential 

uptrend and a downtrend portfolio, 

using the sliding windows to train 

and test, and then evaluate and 

change a more potential portfolio 

suitable for a new investment period, 

hoping that we can make maximum 

profit with low risk.” (p. 4) 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

Quantum-inspired Tabu 

Search algorithm (QTS) 

(improved by GNQTS) 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

 



- Utilizing the sliding window 

mechanism, find the best training and 

testing period 

 

Results: 

- Using the sliding window on the 

experimental results from the model, 

it became clear that the best training 

and testing periods were month-to-

month, and year-on-year month 

periods (comparing the same month 

of last and current year) 

- Utilizing trend ratio and GNQTS, the 

paper was able to find portfolios with 

stable up-and-down trends. Showing 

that it is possible to short sell and 

trade normally simultaneously.  

- Utilizing normal and short trading, 

the model was successfully able to 

simultaneously increase returns and 

minimize risks. 

- There were still some fluctuations in 

in the results of the experiments, but 

overall, the model showed promising 

results. 

- Differing period with higher/lower 

down/uptrends were also successfully 

recognized by them model. 

- “QTS can find the best portfolio in an 

extremely complicated solution space 

while decreasing the computational 

complexity” (p. 6) 

- “The experiment results show a 

promising result in which the risk is 

spread effectively, and the profit is 

maximized.” (p. 1) 

- “Using these methods, the 

experimental results show that we can 

find a portfolio that has better 

performance than the government-

recommended Taiwan 50 ETF” (p. 6) 

 

Important notes: 

- The sliding window mechanism is 

used to overcome any over-fitting 

problems 

- Trend ratio is used to identify stable 

uptrend portfolios for normal trading, 

and stable downtrends for short 

selling. 

- The trend ratio can evaluate the risk 

of a portfolio more accurately than 

the Sharpe ratio 



- QTS aims to move individuals away 

from the worst solution and towards 

best solution “in the other words, 

QTS finds the best solution more 

quickly and efficiently.” (p. 1) 

- “This paper uses the trend ratio, 

GNQTS, and sliding window to 

select potential stocks” (p. 2) 

- The number of stocks in a portfolio is 

unrestricted in the case of this paper. 

- GNQTS is used to make sure the 

QTS algorithm does not get stuck in a 

local optima (which may not be the 

best solution) 

- Sliding window mechanism was also 

used to find the best training periods, 

these were proven to be month to 

month trading periods, and year-on-

year month trading periods. Most of 

the ‘results’ part of this paper is based 

upon these two periods 

[67] 

Quantum-inspired 

Computing: 

Entanglement-

enhanced Technique 

for Short Portfolio in 

Global Markets 

(Jiang et al., 2023) 

“This study proposes an 

entanglement-based 

QIO to optimize the 

short-selling portfolio in 

a group of seven (G7) 

industrialized nations” 

(p. 1) 

 

“Trend-ratio is used to 

precisely determine the 

performance of a short-

selling portfolio during 

a stable downward 

trend” (p. 1), this is 

mainly to recognize 

portfolios for inclusion 

in the model. 

 

Sliding window is used 

to select appropriate 

training and test periods 

for the experiment. 

Objective(s): 

- Form a GIO based model, utilizing 

trend ratio to identify stable 

downtrend portfolios, to optimize a 

for a short-selling portfolio. 

- Experiment with the proposed model 

on in the G7 stock market from the 

period January 2013 to December 

2022, selecting the 30 largest 

capitalization stocks. Parameters of 

ELSA-GNQTS: 10 individuals, 

10.000 generations, 50 independent 

experiments, initial funds of 1 billion 

in local currency. Then take the best 

solution from the 50 experiments as 

benchmark. 

- Propose a novel Entanglement local 

search-assisted (ELSA) mechanism, 

and quantum not gate techniques, to 

improve Quantum Tabu Search 

algorithm ((GN)QTS) 

Results: 

- The best-found portfolio from the 

experiment can diversify risk better 

and achieve higher returns than other 

QIO algorithms.  

- Portfolio risk of the experiment is 

lower than the single-stock risk 

- Compared to a Sharpe ratio based 

ELSA-GNQTS model, the proposed 

trend ratio ELSA-GNQTS performed 

better 

Quantum hardware:  

Simulator 

 

Quantum algorithm:  

Quantum inspired 

optimization algorithm 

(QIO) based ELSA - 

GNQTS 

 

Methodology: 

Optimization  

 

Use case: 

Portfolio optimization 

 



- “Implementing the short-selling trend 

ratio model in the significant G7 

markets broadens its applicability” 

(p.1) 

- “A steady profit short-selling 

portfolio can be constructed in G7 

nations. The proposed ELSA 

technique significantly outperforms 

other QIO algorithms.” (p. 4),  

 

Important notes: 

- “Quantum search algorithms are 

among the applications, where the 

quantum computer outperforms the 

classical computer” (p. 1) 

- “Nevertheless, the current quantum 

computer has lower fidelity, 

coherence time, and fault tolerance” 

(p. 1) 

- “The QIO proves to be more effective 

in portfolio optimization than 

traditional GA” (p. 2) 

[68] 

Portfolio 

Optimization 

considering 

Diversified 

Investment Methods 

using GNQTS and 

Trend Ratio (Jiang 

et al., 2018) 

“This paper uses the 

trend ratio to access the 

portfolio with a stable 

upward trend. By the 

portfolio trend line with 

initial funds” 

 

Sliding window 

mechanism is used to 

select appropriate 

training and test periods 

for the experiment. 

 

“This paper provides 

time deposit choice and 

two investment options: 

buying round lots only 

or additional odd lots, 

and utilizes the GNQTS 

to find which 

investment method is 

better under the 

investment periods.” (p. 

2) 

 

The best portfolio 

among the sliding 

window periods is 

found effectively and 

efficiently using the 

GNQTS  

Objective(s): 

- Form a GNQTS model incorporating 

trend ratio, 2-phase sliding window 

mechanism, funds standardization, 

time deposit, round lots and odd lots 

- Experiment with the proposed model 

on a stock selection problem for the 

Taiwan 50 ETF from 2010 to 2017 

and 13 sliding window periods., 

without restrictions on the stocks (so 

the algorithm can choose zero or only 

one stock if it is the best option). The 

experiment is analyzed by the values: 

the trend ratio, daily expected return, 

daily risk, round lots, and odd lots. 

- For the algorithm:  execution number 

is 50, 10.000 generations, and a 

population of 10  

 

Results: 

- The experiments showed that 

different investment methods had 

their own unique suitable portfolios. 

- Round lots had lower risk, but also 

lower expected returns than odd lots, 

with trend ratio helping to balance 

return and risk for the best investment 

method. 

- The most suitable investment method 

varied per period in the experiment 

Quantum hardware:  

Simulator 

 

Quantum algorithm:  

GNQTS 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

Funds 

standardization =  

 

Time deposit = a 

bank account with 

interest that has a 

predetermined 

maturity date. 

 

Lot = number of 

units of a 

financial product 

traded on a 

financial market 

 

Round lots = the 

general trading 

unit on the 

financial 

exchange, which 

on the Taiwan 

stock market is 

1000 shares 

 

Odd lots = an 

order amount less 

than the normal 

unit of trading for 

that asset, in the 

case of this paper 

it is less than 1000 



- Using the proposed 2-phase, sliding 

window, GNQTS model a higher 

trend ratio could be found than in a 

single investment situation, indicating 

a performance increase achieved by 

the proposed model. 

 

- “This paper finds that the different 

investment method suits the different 

situations and the different 

portfolios.” (p. 6) 

- “The experimental results show that the 

proposed method can find the well-

performing portfolio with higher 

return and lower risk in both the 

training and testing periods.” (p. 1) 

 

Important notes: 

- “The trend ratio can simultaneously 

consider the daily expected return, 

daily risk and fairly compare with the 

different portfolios and different 

investment periods lengths.” (p. 1) 

shares in the 

Taiwan stock 

market. 

[71] 

Financial Portfolio 

Optimization: A 

QAOA and VQE 

Formulation for 

Sharpe Ratio 

Maximization 

(Kaushik et al., 

2023) 

This paper discusses the 

application of QAOA 

and VWE for PO 

problems 

 

Results from the 

proposed approaches 

are compared towards 

each other in an 

experiment  

Objective(s): 

- Transform the Markowitz model in a 

QUBO formulation for stocks traded 

on the Abu Dhabi Securities 

Exchange and then solved through 

VQE and QAOA 

- For the classical method of 

benchmarking, use the Sequential 

Least Squares Programming (SLQP) 

to form a discrete programming 

problem of the objective PO function, 

and then solve it through the classical 

Branch-and-Bound method. 

- The experiment for the quantum 

solvers includes 10 stocks on the Abu 

Dhabi Securities Exchange, which are 

subsequently either minimized in risk 

for a particular level of return for a 

portfolio, or maximized on returns 

with certain risk levels for a portfolio. 

Then do the same for a risk factor 

weight. 

 

Results: 

- The highest achieved Sharpe ratio on 

the 10-stock example was1.14, 

indicating that the best portfolio 

should give a return of 1.14 times 

above the risk-free rate. 

Quantum hardware:  

D-Wave quantum 

optimizer QBSOLV 

(simulator) 

 

Quantum algorithm:  

QAOA, VQE 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

(particularly Sharpe 

ratio optimization) 

 

Sharpe ratio = a 

ratio for the 

comparison 

between the return 

and risk  of an 

investment, 

Sharpe-ratio is 

used to determine 

risk-adjusted 

performance 



- The highest Sharpe ratio for the 

added risk factor formulation 

achieved a Sharpe ratio of 1.20, this 

Sharpe ratio was 60 base points more 

than the classical approach. 

- “The Sharpe ratio obtained by VQE 

Model and QAOA Model is 1.20 and 

1.21 respectively which is better than 

the one obtained from the classical 

model having a value of 1.11.” (p. 6) 

- The paper mentioned the potential of 

real-life PO problems being solved by 

quantum hardware as the challenges 

of NISQ hardware are solved. 

- Result of the classical method on the 

10 asset portfolio: Expected returns = 

34.48, expected risk = 31.15 Sharpe 

ratio = 1.11 

- Results of VQE: Expected returns = 

45.27, expected risk = 37.69, Sharpe 

ratio = 1.20 

- Results for QAOA: Expected returns 

= 40.11, expected risk = 33.14, 

Sharpe ratio = 1.21 

- “We found that Quantum algorithms 

are giving better results than classical 

solver” (p. 7) 

 

Challenges for the QUBO formulated PO 

problem solved via VQE and QAOA in this 

paper: 

- Restricted number of qubits available 

on NISQ devices. As more assets are 

brought into the mix, more qubits are 

needed to find the optimal solution. 

Current (2023) NISQ devices have a 

max of 20 qubits. 

- Qubit connectivity is restricted, 

which makes the mapping of complex 

problems difficult 

- Recision of results is decreased by 

errors through the noise of current 

NISQ devices. Quantum error 

correction measures ought to be 

imposed for higher result quality. 

- The complexity of encoding bigger 

portfolio optimization problems into 

the quantum hardware. 

 

Important notes: 

- “Quantum computing helps in faster 

and more accurate calculations than 

the classical approach, therefore it 



can play an important role in finance 

and portfolio optimization.” (p. 1) 

- “Quantum Annealing systems have 

been able to achieve more dependable 

qubits, however, these qubits 

encounter challenges related to low 

connectivity” (p. 1) 

[74] 

Quantum beetle 

antennae search: a 

novel technique for 

the constrained 

portfolio 

optimization 

problem (Khan et 

al., 2021) 

A Quantum Beetle 

Antennae Search 

(QBAS) is formulated, 

where it is applied to a 

maximization PO 

problem, whilst 

comparing the solutions 

it gives towards other 

similar metaheuristics 

(GA, PSO, BAS) 

Objective(s): 

- Formulate a quantum version of BAS 

named QBAS 

- Find the set of optimal stock 

allocation in a portfolio with QBAs 

so that it minimizes risk and 

maximizes mean-return. 

- Experiment with the proposed QBAS 

algorithm on different stacks of stock 

the Shanghai Stock Exchange 50 

Index (SSE 50) to assess efficiency 

benchmarked on 4 given benchmark 

optimization functions with differing 

numbers of stocks (20, 50, 75, 100) 

obtained from the date 21March 2019 

– 18 April 2019. 

- Apply the QBAS to real-world stock 

data and compare results with other 

meta-heuristic optimization 

algorithms (BAS, PSO, GA). 

 

Results: 

- Results with 20 stocks for QBAS 

compared to BAS, GA, and PSA: 

highest Sharpe ratio, Equality 

constraint is almost achieved, the best 

result for F(e), fastest solution time 

with least iterations used. 

- Results with 50 stocks for QBAS 

compared to BAS, GA, and PSA: 

F(e) was more optimized than the 

rest, Sharpe ratio was highest, 

equality constraint is almost followed 

(for all algorithms except PSO), 

faster computing times for finding the 

optimal solution. 

- Results with 75 stocks for QBAS 

compared to BAS, GA, and PSA: 

Highest value for F(e), Sharpe ratio is 

highest and comparable with GA, 

fastest converging times, all 

algorithms obey equality constraints.  

Quantum hardware:  

Quantum-annealer D-

Wave system 

 

Quantum algorithm:  

QBAS 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio Optimization 

F(e) = the given 

PO maximization 

problem 

 

Equality 

constraint = 

conditions that a 

found solution 

must satisfy, a 

solution must be 

equal to a given 

value in an 

equality constraint 

 



- Results with 50 stocks for QBAS 

compared to BAS, GA, and PSA: 

QBAs outsmarted the other 

algorithms and found the highest 

value for maximization function F(e), 

highest Sharpe ratio, fulfilling the 

equality constraint, faster 

convergence 

 

- “Results how that QBAS outperforms 

swarm algorithms such as Particle 

Swarm Optimization (PSA) and the 

genetic algorithm (GA) 

- “QBAS is powerful enough to 

converge to the global solution even 

with different initial conditions.” (p. 

9), and within 120 iterations, the 

QBAS algorithm found the optima 

value for the four given optimization 

functions. 

- QBAS showed to have the ability to 

avoid local minima, avoiding them al 

in 20 consecutive simulations 

 

Important information: 

- In a theoretical analysis the proposed 

QBAs formulation showed to be 

stable and convergent. 

- Constraints in the QBAs are turned 

into a penalty function in QBAS 

algorithm. 

- QBAS is the first quantum version of 

BAS 

- The QBAS is a metaheuristic 

- To the knowledge of the authors, no 

metaheuristic to date (2020) has been 

applied to address the PO problem of 

min risk and max mean-return. 

- The text mentioned that classical 

algorithms have a hard time 

considering real-world challenges in 

PO such as: cardinality constraints, 

lower/upper bounds, substantial stock 

size, class constraint, round-lots of 

constraint, computational power and 

time, pre-assignment constraint, and 

local-minima avoidance. 

- Current meta-heuristic approaches 

achieve higher efficiency and 

accuracy than classical approaches. 

[76] 

Portfolio 

Optimization Model 

In the paper , the 

adaptive quantum 

inspired tabu search 

Objectives: 

- Develop a ANQTS model 

incorporating a 2-phase sliding 

Quantum hardware:  

N/A 

 

 



using ANQTS with 

Trend Ratio on 

Quadratic 

Regression (Kuo et 

al., 2019) 

(ANQTS) is used 

together with a 

quadratic regression 

trend line, and 2-phase 

sliding window to 

search for the most 

optimized portfolio. 

window, and a quadratic regression 

trend line 

- Experiment with the ANQTS model 

on stock chosen from the Taiwan 50 

ETF with an investment period of 

2010-2018. Model specification: 13 

types of sliding window, initial fund 

is 10 million TQD, population is 10, 

10.000 generations, 50 executions. 

 

Results: 

- Best sliding window periods were 

month to month, and year-to-year 

month (meaning analyzing the same 

month only, for every year) 

- The quadratic trend ratio showed to 

give a more specific description of 

the trend in the portfolio than the 

normal trend line. 

- Portfolio formed using the quadratic 

trend ratio show to have higher daily 

expected returns per unit of risk than 

the trend ratio, with daily risks also 

being lower on average for the 

quadratic trend ratio. 

- In 9 out of 13 sliding window 

periods, the quadratic trend ratio 

derived better performance than the 

trend line, showing stronger upward 

trend than the linear trend. 

Furthermore, compared with the 

Scharpe ratio, both the trend ratio and 

quadratic trend ratio outperform it 

based on upward trend. 

- “The experiment results show that the 

proposed portfolio optimization 

model has better performance than 

the Sharp ratio and trend ratio on 

linear regression” (p.1) 

- “The result shows that the proposed 

method is able to obtain better 

results.” (p. 5) 

 

Important notes: 

- As many papers consider the 

shortcomings of the Sharpe ratio for 

PO problems, a trend line method is 

often approaches. However, even the 

trend line has some issues 

considering portfolio up/down trends 

precisely, so to achieve a precise 

estimation of up/down trends, a 

quadratic regression trend line. 

Quantum algorithm:  

ANQTS 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 



- QTS has been proven to have beta 

search abilities than other 

metaheuristic algorithms. 

- “When ANQTS is stuck in the local 

optima, it can detect and jump out of 

the local area; hence, ANQTS has 

better search abilities than QTS.” (p. 

2) 

- “The core concept of QTS is that 

QTS moves the individuals toward 

the best solution and away from the 

worst solutions at the same time 

while enabling QTS to outperform 

other traditional optimization 

algorithms” (p. 3) 

[77] 

Entanglement Local 

Search-Assisted 

Quantum-Inspired 

Optimization for 

Portfolio 

Optimization in G20 

Markets (Kuo et al., 

2023) 

In this paper, a quantum 

algorithm is proposed 

for PO problems, the 

ELSA-GNQTS. 

 

The ELSA-GNQTS is 

used to search for stable 

uptrend portfolios in the 

global g20 markets 

 

“This study discusses 

the expanded markets to 

demonstrate the 

superior ability of the 

proposed QIO method 

in a vast solution 

space.” (p. 1)  

 

“This study aims to 

enhance the ability of 

QTS to solve a more 

complicated PO, and 

thus the quantum 

entanglement 

mechanism is simulated 

to propose a novel 

entanglement local 

search-assisted (ELSA) 

technique for PO” (p. 1) 

 

“This is the first study 

to apply trend ratio 

evaluation in an 

intermarket of G20 

markets” (p. 2) 

Objective(s) 

- Form a novel formulation of the QTS 

algorithm, employing ELSA to assist 

QTS in searching more accurately in 

the potential area with domain-

dependent information where it is 

used. 

- Use the trend ratio-based improved 

ELSA-GNQTS formulation in an 

experiment where stable uptrends are 

to be identified from the global G20 

markets from January 2013 to 

December 2022, selecting the top 30 

companies from the G20. 

Specifications of the setting: initial 

funds of 1 billion local currency, 50 

independent experiments, 10 

populations, 10.000 iterations, 

equally weighted stocks. The results 

are benchmarked based by analyzing 

the financial performance of the 

found ‘optimal portfolio’ on different 

investment strategies, the robustness 

of results. 

- Use the trend ratio to evaluate a 

portfolio’s utility and use it to further 

construct portfolios with stable 

uptrends. 

- Furthermore, use sliding window 

mechanism to find optimal training 

and testing periods, 13 sliding 

windows were used. 

 

Results: 

- Resulting portfolio had better results 

regarding risk than the single best 

stock performance for risk, the 

portfolio trend ratio was also higher 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

QIO inspired ELSA-

GNQTS 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

 



than that of the single best stock, 

indicating  

- The proposed QIO system 

demonstrates outstanding 

performance in managing risk and 

maximizing returns, significantly 

outperforming traditional strategies 

and market indexes in the G20 

markets. 

- Considering the 13 chosen sliding 

windows, the ELSA-GNQTS 

outperformed the GNQTS every time 

based upon the given trend ratios. 

- The proposed QIO can effectively 

and efficiently find portfolios with 

stable trend ratios, and balance risk 

and return 

- Furthermore, ELSA-GNQTS 

outperformed other algorithms 

(GNQTS, GQTS, QTS, GA) based on 

the trend ratio 

- Adding more markets to them ix 

proved to incrementally improve 

performance of the ELSA-GNQTS in 

efficiency, and balancing risk-return. 

- “Through trend ratio evaluation, a 

global asset management system that 

integrates G20 markets can facilitate 

more robust investment.” (p. 5) 

- “The ELSA-GNQTS demonstrates its 

robustness by outperforming other 

QIO algorithms and GA in an 

integrated market analysis.” (p. 8) 

 

Important notes: 

- “The entanglement relationship can 

decrease the degree of freedom 

searched” (p. 1) 

- “QIO algorithms can serve as a 

bridge to realizing preliminary 

quantum advantages by exploiting 

classical computation abilities.” (p. 1) 

- NISQ computers still have many 

challenges considering error 

correction and fault tolerance. 

- QIO simulates quantum mechanics 

on a classical computer to exploit 

potential quantum benefits. 



[78] 

Strategic Portfolio 

Optimization Using 

Simulated, Digital, 

and Quantum 

Annealing (Lang et 

al., 2022) 

In this paper, a new 

workflow is introduced 

for quantum annealing 

platforms to solve PO 

problems. 

 

A classical pre-

processing step is 

combined with a 

modified QUBO model 

an evaluated using, 

simulated annealing 

(classical computer), 

digital annealing 

(Fujitsu’s digital 

annealing unit), and 

quantum annealing on 

the D-wave advantage 

 

“In this paper, we focus 

on the applicability of 

annealing techniques to 

the NP-hard problem of 

portfolio optimization, a 

well-known topic for 

investment funds and 

individual investors” (p. 

2) 

Objectives: 

- Steps in the proposed workflow: 

1. Markowitz’s theory on PO is used in 

a classical pre-processing step where 

the most promising assets are found 

from an initial pool of assets. 

2. The QUBO is modified to fit models 

for PO problems, it is modified such 

that there are no limitations on the 

number of stocks that be invested in. 

With optimization functions 

including Sharpe ratio maximization, 

diversification through covariance 

minimization, and budget constraints. 

3. This QUBO formulation is then used 

on the identified set of assets from the 

New York Stock Exchange over a 

period of 5 years (31-12-2014, 31-12-

2019) to find the percentage of capital 

that should be used on which asset. 

Specification of the experiment: 1000 

random portfolios as benchmark, 

10.000 samples for the annealing 

process, and the 10 best solutions 

each time are visualized in the paper. 

4. As the QUBO formulation consists of 

three parts (a part for expected 

returns, a part for risk, and the third 

part being a budget constraint), tests 

are done using different weights for 

each part.  

- Perform the test for the QUBO 

formulation on real-world data from 

sets of stock in the New York Stock 

exchange as well as common ETFs. 

- Lastly, compare the results from the 

test against randomly generated 

portfolios using return, variance, and 

diversification measures. 

 

Results: 

- Looking at the given graphs for the 

results of the experiment, it can be 

seen that Digital and simulated 

annealing yield almost the same 

results. With quantum annealing 

performing not as good as simulated 

and digital annealing (probable cause 

is inherent noise missing error 

correction, and scaling of parameters) 

- Simulated annealing showed that the 

QUBO model approach worked as 

intended, meaning that portfolios 

Quantum hardware:  

Classical computer 

(using simulated 

annealing), Fujitsu’s 

digital annealing unit, 

and D-Wave advantage 

(~5000 qubits)as real 

quantum hardware. 

 

Quantum algorithm:  

QUBO model 

 

Methodology: 

Optimization  

 

Use case: 

Portfolio optimization 

(particularly how to 

spread funds over a 

portfolio) 

 



were generated that respected the 

given preferences to either returns, 

risk, or budget constraint. 

- Changing the weights for either risk, 

return, and budget showed that results 

in the experiment gravitated 

accordingly and efficiently towards 

the objective weight distribution of 

the model (e.g. more weight 

relatively on expected returns yielded 

higher return portfolios) 

- Simulate and digital annealing both 

managed to use 100% of the budget 

every time, but for quantum 

annealing a bias of +- 9 percent was 

perceived in budget spending. 

- Sometimes over/underspending was 

needed for the optimal portfolio. 

- In part of the experiment, the 

differences between the different 

annealing approaches can be linked to 

better/worse diversification and 

different degrees of allocations of the 

budget to an asset. 

- “The results show that our QUBO 

formulation is capable of creating 

well diversified portfolios that respect 

certain criteria given by an investor, 

such as maximizing return, 

minimizing risk, or sticking to a 

certain budget.” (p. 1) 

 

Important notes: 

- Heuristic methods such as simulated 

annealing, genetic algorithms, swarm 

intelligence have been found to not 

always fin the most optimal solution 

to a PO problem. 

- Current annealing solution for PO 

problems suffer from the following 

limitations: limited amount of assets 

to choose from, and use of naïve 

investment strategies for the 

calculation of future returns (meaning 

that the strategies rely mostly on 

basic assumptions and historical 

averages) 

- PO has been solved by two other 

quantum methods according to the 

paper: 1. Quantum linear systems 

algorithm, 2. Quantum annealing 

(afterwards the paper gives an 

example of an earlier study that 



managed to use quantum annealing to 

construct a portfolio with a budget of 

100 dollars and turn it into 121.176 

dollars, showing how advantageous 

quantum annealing can be for PO) 

[80] 

Portfolio 

Optimization Based 

on Quantum HHL 

Algorithm (Li et al., 

2022) 

In this paper a quadratic 

HHL algorithm is 

proposed with equality 

constraints to solve 

combinatorial problems 

in finance. 

 

Results gathered from 

the proposed quadratic 

HHL algorithm design 

are measured analyzed, 

and compared with 

classical solutions 

 

“In this article, we 

proved the feasibility of 

the HHL algorithm to 

solve this type of 

portfolio problem (with 

constraints, NP-hard 

problem), and set up the 

actual problem to solve 

it” (p. 2) 

Objectives: 

- Form a quadratic HHL algorithm 

with equality constraints and 

benchmark it using an example PO 

problem. (the exact origin of the 

values given to calculate the PO 

model have not been given)  

 

Results: 

- Compared to classical algorithms, the 

proposed HHL algorithm is able to 

solve combinatorial optimization 

problems, and the solution it gives is 

in good agreement with the exact 

optimal solution. 

- Proving the feasibility of the HHL 

algorithm on a PO problem showed 

solutions very close to the exact 

solution, and minimal error of each 

component. 

- Increasing then number of qubits 

(from 9) would likely increase the 

solution’s accuracy, but it will also 

increase the circuit complexity and 

quantum gates used.  

 

Important Notes: 

- The HHL algorithm was proposed by 

Harrow, Hassidim and Lloyd for 

solving linear systems with 

exponential acceleration compared to 

classical algorithms. 

- “The high computational complexity 

of financial problems sometimes 

makes them difficult to be solved on 

classical computers.” (p. 2) 

- “Some quantum algorithms applying 

in financial problems have been 

proved to be better than classical 

methods, which can provide 

considerable acceleration, such as 

quantum Monte Carlo algorithm, 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

Quantum HHL 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

 



portfolio optimization algorithm” (p. 

2) 

[81] 

Hybrid Gate-Based 

and Annealing 

Quantum 

Computing for 

Large-Size Ising 

Problems (Liu, 

Chen-Yu. & Goan, 

his-Sheng. 2022) 

In this work the Large-

System Sampling 

approximation (LSSA) 

algorithm is proposed to 

solve large size Ising 

problems with a hybrid 

quantum annealer / 

gate-based approach. 

 

“By dividing the full-

system problem into 

smaller subsystem 

problems, the LSSA 

algorithm then solves 

the subsystem problems 

by either gate-based 

quantum computers or 

quantum annealers” (p. 

1), and is then further 

optimized by VQE 

 

Both random Ising 

problems and PO 

problems are solved on 

simulators and real 

quantum hardware 

 

Objective(s): 

- Form the LSSA algorithm for large 

size Ising problems,  

- solve different PO and random Ising 

problems (both on simulated and real 

hardware). Which are either: 

1. fully connected random Ising 

problems with up to 160 variables on 

a 5-qubit quantum computer, or a PO 

problem with up to 4096 variables on 

100 qubit quantum computer + a 7 

qubit gate-based computer 

2. A PO problem with up to 5120 

variables. 

- Lastly, examine the effects that 

different sub-system sizes/numbers, 

and problem sizes have on the 

performance of LSSA on simulators 

and real hardware 

 

Results: 

For the simulated problems: 

For random Ising problems (using IBM Tabu 

for sub-system solving and IBM QASM for 

amplitude estimation): 

- For small size Ising problems with 

the QASM-simulator (simulated 

quantum computer), high 

approximation ratios are found, 

indication good performance of the 

LSSA algorithm 

- For larger size Ising problems with 

the Dwave-Tabu solver (classical 

solver), a decreasing trend in the 

approximation ratio as problem size 

increases, ultimately falling to 68%. 

For PO problems (IBM QASM simulator): 

- The LSSA achieved approximation 

ratio results close to 1, indicating 

similar performance to Dwave Tabu, 

the simulator showed robustness in 

results. 

Quantum hardware:  

Simulators (IBM 

QASM Simulator), and 

real-quantum hardware 

(D-wave annealer 

advantage 4 with 5760 

qubits, and IBM 

Auckland, IBM Cairo 

and IBM Guadeloupe 

gate-based computer) 

 

Quantum algorithm:  

LSSA algorithm 

(model) 

 

Methodology: 

Optimization 

 

Use case: 

Large-size Ising 

problem (portfolio 

optimization 

particularly) 

 Approximation 

ratio =  

Approximation 

ratios are different 

for each problem 

in this paper, the 

approximation 

ratio is a ratio that 

benchmarks 

solutions from 

experiments 

toward a given 

value obtained as 

an objective 

benchmark (so if 

approximation 

ratio is 1, it 

indicates 

performance alike 

to the given 

denominator 

(which changes 

each time to one 

of the two in this 

paper: e.g. results 

from the classical 

method Dwave 

Tabu, or the exact 

ground state 

energy (which is a 

measure of 

optimality))), so 

approximation 

ratios will look as 

follows: result 

obtained / result 

from dwave tabu, 

or result obtained 

/ exact GSE 

(optimal solution). 

Overall if 

approximation 



- As problem size increased, 

approximation ratio stayed close to 1 

 

Real-quantum hardware findings: 

For random Ising problems (with D-Wave 

advantage 4, and IBM gate-based computers): 

- “The trend of the average 

approximation ratio is similar to that 

obtained by the simulators, i.e., it 

decreases considerably to a low value 

when Np (problem size) > Ng (sub-

system size), indicating a relatively 

poor performance.” (p.8) 

For PO problems with simulated stock data 

(using D-Wave advantage 4 and IBM 

Auckland): 

- Approximation ratio for solving only 

the sub-systems using the D-Wave 

advantage 4 show good 

approximation ratios close to 1, 

indicating good performance.  

- Simulations with different PO 

problems on the IBM QASM 

Simulator showed similar results to a 

classical solver such as Dwave Tabu. 

- The impact sub-system size had was 

positive with greater sub-system 

sizes, and the fewer samples were 

performed, the better the results. 

For PO problems with real-world data over 47 

months, and problem sizes (stock amounts) of 

32 and 64 months from the US stock market to 

examine LSSA (using IBM Cairo): 

- Sharpe ratio of the LSSA was slightly 

lower than the classical solver for 

both problem sizes, indicating still 

good performance, but lower than the 

classical method 

 

- “Our proposed algorithm can solve 

fully-connected random Ising 

problems that are O(10^0) and 

portfolio optimization problems that 

are O(10^1) larger in size than the 

available quantum annealers and 

gate-based quantum computers” (p. 

2), both with good performance from 

simulated and real-hardware 

- For Random Ising problems, 

performance declined with increasing 

problem size, which was not the case 

for PO problems 

ratio is close to 1, 

it is good. 

 



- This paper shows promising results 

from a hybrid quantum annealing 

gate-based LSSA model. 

 

Important information 

- The given problem function is 

divided into sub-systems which are 

then solved first, after which an 

estimation of the full system is made. 

- “Even the largest gate-based quantum 

computer to date provided by IBM 

(IBM Washington) can only solve the 

problem with 127 variables if we use 

the original VQE and QAOA 

algorithms.” (p. 1) 

[82] 

QPSO algorithm 

based on Levy flight 

and its application in 

fuzzy portfolio (Lu, 

X, L. & He, G. 2021) 

In this paper, an 

improvised quantum-

behaved particle swarm 

optimization algorithm 

(LQPSO) is proposed 

based upon the (Q)PSO 

 

The LQPSO is then 

used in an experimental 

setting with fuzzy 

portfolio models with 

transaction costs and 

background risk process 

to consider its 

practicality 

 

To enhance particle 

exploration (searching 

for potential solutions), 

Lévy flight strategy, 

premature prevention 

mechanism and 

contraction-expansion 

coefficient with non-

linear structure are 

considered 

 

Objectives: 

- Form an improved quantum-behaved 

particle swarm optimization 

algorithm (LQPSO), including Lévy 

strategy and contraction expansion 

coefficient with non-linear structure 

to enhance particle exploration 

- Evaluate the improvised algorithm 

via 12 basic benchmark functions and 

benchmark it against QPSO, PSO-w, 

RQPSO. With parameter setting 

being: population size of 100 (assets), 

search spaces of 10, 20, 30, with 

corresponding max iterations of 500, 

1000, 1500. 

 

Results: 

- For the five uni-modal functions and 

seven multi-modal functions, LQPSO 

was superior to PSO-w, QPSO and 

RQPSO, showing higher accuracy 

and less standard deviation. 

- For the five uni-modal functions, 

LQPSO achieves theoretic optima 

each time 

- For the seven multi-modal functions, 

LQPSO shows that optimization 

results are better than the other three 

algorithms. 

- LQSPO overcame finding 

premature/sub-optimal solutions 

better than the other algorithms, 

jumping from local optima towards 

the global optimum (whilst the other 

algorithms often got stuck in local 

optima). 

- Under high-dimension and complex 

situations (30 dimensions, 1500 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

LQPSO 

 

Methodology: 

Optimization  

 

Use case: 

Portfolio optimization 

Lévy flight 

strategy = a 

particular tool that 

enhances 

exploration 

capabilities of 

search algorithms 

to improve 

efficiency and 

effectiveness of 

the optimization 

process.  

 

Contraction-

expansion 

coefficient with 

non-linear 

structure = a 

parameter used in 

optimization 

algorithms to 

control the 

movement of 

particles (possible 

solutions) in the 

search space, this 

helps balancing 

the exploration 

and exploitation 

phase of the 

algorithm. It is 

useful in complex 

search landscapes. 

 

Premature 

prevention 

mechanism = a 

mechanism that 



generations, convergence accuracy 

10^-6), PSO-W successfully follows 

accuracy requirements in 2/30 

functions, and QPSO and RQPSO 

accomplish error requitements in 

seven 7/30 functions with success 

rates of 100%, thus demonstrating 

strong robustness. 

- Wilcoxon rank sum test shows that 

LQPSO outperforms the rest of the 

algorithms. 

- “LQPSO demonstrates better 

convergence and robustness than 

PSO with inertia weight, QPSO and 

QPSO with a hybrid probability 

distribution in 12 benchmark 

functions.” (p. 1) 

- “Experimental results indicate that 

LQPSO outperforms several 

metaheuristics when seeking optimal 

solution for the fuzzy portfolio model 

with constraints.” (p. 1) 

 

Important notes: 

- The paper mentioned that QPSO has 

better converging speeds and global 

search ability than PSO 

- Investment proportions of each stock 

are constrained to a certain number. 

ensures that the 

algorithm does 

not converge to a 

suboptimal 

solution by 

getting stuck in a 

local minima or 

maxima (which is 

often a problem 

for PSO 

algorithms) 

 

Uni-modal 

function = 

function with one 

local min/max 

(e.g. min risk) 

 

Multi-modal 

function = 

function with 

multiple local 

min/max (so it has 

multiple good 

solutions, but is 

prone to 

generating 

suboptimal 

solutions as there 

are more peaks, 

global best values 

are more complex 

to find) 

[88] 

Diversifying 

Investments and 

Maximizing Sharpe 

Ratio: a novel 

QUBO formulation 

(Mattesi et al., 2023) 

As classical 

optimization of the 

Sharpe ratio becomes 

more complex through 

additional needs such as 

new constraints or new 

objective function 

terms, the problem may 

become non-convex and 

thus not solvable via 

classical methods 

 

The proposed solution 

for this problem in this 

paper is a novel QUBO 

formulation of Sharpe 

ratio optimization with 

a diversification term 

Objective(s): 

- Propose a novel QUBO formulation 

of a PO problem including 

maximization of Sharpe ratio with a 

diversification measure to spread risk. 

- Benchmark the novel QUBO 

formulation on two main aspects of 

the QUBO formulation: 1. Report the 

behavior of the complete model as 

parameters influencing the Sharpe 

ratio and diversification terms are 

employed, evaluate the performance 

of the formulation for the sole Sharpe 

ratio maximization compared to other 

techniques. 

- Benchmark performances of the 

QUBO model against classical 

solvers on a real-world dataset 

including 

Quantum hardware:  

“existing QUBO 

solvers” (classical 

QBSOLV, and D-wave 

leap hybrid classical-

quantum solver (which 

makes sub-systems that 

are then solved via 

tabu-search algorithm)) 

 

Quantum algorithm:  

QUBO 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

(maximizing Sharpe 

Log returns = a 

different measure 

to assess assets in 

this case for the 

data pool, which 

employes 

assessment 

through the 

natural 

logarithmic of 

return of an asset, 

thereby aiming to 

increase 

efficiency of 

results. 



- Specifications of the experiment: 460 

assets for simple returns, and 432 

assets for log-returns. As the D-Wave 

system restricts high precision 

measures, the precision value of p = 

12 bits. 

 

Results: 

- Results for Sharpe ratio 

maximization: more feasible optimal 

solutions are found as the 

diversification term is discarded, best 

Sharpe ratio values are observed 

when solving via the QBSOLV.  

- Results for Sharpe ratio including 

diversification measures: risk is 

lower, but the optimization is 

significantly impacted and the Sharpe 

ratio tends to decrease as more funds 

are allocated to spread the 

investments over more assets, thereby 

making it so that there is less impact 

on the expected returns or covariance 

of the assets. 

- For both formulations, the best 

performances are obtained by 

different solvers: D-Wave Hybrid and 

QBSOLV (which is mainly attributed 

to differing number of variables) 

- Furthermore, for the QUBo 

formulation, the QBSOLV performed 

best, being able to handle 5184 binary 

variables. 

- Constraints are fulfilled by several 

solvers, demonstrating a consistent 

viability as demonstrated by the 

proposed formulation. Competitive 

performance is shown by QUBO 

formulations when compared to 

PyPortfolioOpt, the classical solution. 

- The QUBO formulations offer a 

viable alternative to classical solvers, 

especially in handling complex 

optimization problems involving both 

Sharpe Ratio and diversification. 

 

Important notes: 

- “We do not emphasize the 

computational time required to obtain 

the solutions as it is not the primary 

focus of our study. Instead, we draw 

attention to the quality of the results 

ratio with a 

diversification term) 



in terms of objective function value” 

(p. 14) 

- “Portfolio optimization has been 

approached by different means, 

including linear programming, 

quadratic programming, semidefinite 

programming, meta-heuristics, deep 

learning, and reinforcement 

learning.” (p. 2) 

- “It is widely believed, based on 

reasonable computational complexity 

assumptions [24], that neither 

classical nor Quantum Computers can 

efficiently solve NP-hard 

optimization problems.” (p. 5), but 

significant speedup compared to 

classical algorithms is still proven. 

[89] 

Applications of 

Quantum Machine 

Learning for 

Quantitative Finance 

(Mironowicz et al., 

2024) 

This paper examines the 

connection between 

quantum computing and 

machine learning for 

applications in finance, 

in the summary of this 

paper, there will mostly 

ne looked at application 

for portfolio 

optimization. 

 

Further on in the paper, 

there is a specific 

section dedicated 

towards a review of 

current (2024) 

literature, which gives 

insight of Quantum 

Machine Learning from 

mother perspectives. 

 

Uses of Quantum Machine Learning for 

portfolio optimization, a review: 

- Most commonly, the Sharpe ratio is 

taken as a measure of risk-adjusted 

return, this ratio is sought to be 

maximized in many of the quantum 

PO algorithms and use cases 

- The importance of taking crucial 

elements in the PO problem 

formulation is considered, as PO 

problems are not as black and white 

as max return and min risk, multiple 

measures come into play when 

achieving this (e.g. liquidity of assets, 

transactions costs, constraints set by 

the investor) 

- Two main types of PO problems are 

recognized: constrained and 

unconstrained, which respectively 

differ in the fact that one has certain 

set constraints (e.g. budget constraint 

or weights) an the other has a lack of 

constraints, but can still have weights 

assigned to certain parts of the 

function (e.g. giving higher allocation 

to expected return part of a formula). 

- When solving PO problems, you 

want to achieve portfolios that are on 

the line of the efficient frontier (see 

literature review for explanation) 

- There are also factor-based PO 

models that incorporate other factors 

influencing outcomes such as value, 

size, momentum, and quality. These 

are often measures used to estimate 

riskiness and relationship between 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

N/A 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

 



securities in a portfolio, thereby being 

a good technique to form 

(un)correlated portfolios if needed. 

 

PO and Quantum Machine Learning (QML): 

- An example QML case is taken in the 

paper to explain the benefits of it. 

The example showed how QML was 

used for a multi-period PO problem 

on D-Wave systems ‘quantum 

annealer, showcasing high success 

rates in finding optimal portfolios 

with included transaction costs. 

- Furthermore, another study was taken 

where 63 securities listen on the Abu 

Dhabi Security Exchange were 

considered with certain budget and 

parameters to test whether the use of 

a D-Wave QPU could be beneficial 

for solving Markowitz portfolio. 

Results from this study showed that it 

could be sued to find optimal 

solutions 

- Next, the authors of the paper used an 

instance of another example paper 

where the importance of additional 

measures to optimize quantum 

models for efficiency is stressed. 

Even if a quantum model for a certain 

problem outperforms other 

benchmarked measures does not 

mean it cannot be significantly 

improved. In the case of the example 

paper, they discovered that certain 

measures such as seeding the 

algorithm with better data acquired 

from a quantum annealer and a 

reverse annealing protocol yielded 

100 times faster time-to-solution as 

opposed to the corresponding forward 

quantum annealing process. 

- Furthermore, more examples are 

given to stress the notion that QML 

for PO problems are proven to be 

beneficial for efficiency and 

performances, 

- Lastly, In a comparison with the D-

Wave 2000Q system and classical 

commercial solvers, results showed 

promising performances, coming 

close to the performance of existing 

classical solvers for same instance 

sizes. 



- “Quantum technologies offer 

promising applications in portfolio 

optimization, leveraging quantum 

computing’s potential to efficiently 

solve complex optimization 

problems.” (p. 29) 

 

QML (Quantum Circuit Born Machines in this 

case) compared to classical ML methods 

(restricted Boltzmann machines 

predominantly): 

- “The quantum models demonstrated 

superior performance compared to 

RBMs when considering the same 

number of parameters” (p. 21) that 

was under data from the S&P500 

- “The effectiveness of certain HHL 

enhancements is empirically 

demonstrated through the application 

to small portfolio optimization 

problems” (p. 21) 

- Another example was taken where 

the QML technique offered a 

quadratic speedup, along with 

statements of the great practical use 

of it. 

- Another instance where VQE is used 

on IBM 100 qubit simulators is 

analyzed, and it showed a strong 

relation between solution quality and 

quantum hardware size, VQE can 

generate solutions close to 

optimal/exact ones (even without 

error-mitigation) 

 

Important notes: 

- “As quantum computers continue to 

evolve and become more accessible, 

the integration of QML into finance 

applications is expected.” (p. 1) 

[91] 

Hybrid quantum 

investment 

optimization with 

minimal holding 

period (Mugel et al., 

2021) 

A hybrid-quantum 

classical algorithm is 

proposed for dynamic 

PO problems with 

minimal holding 

periods. 

 

The hybrid quantum-

classical algorithm is 

then experimented upon 

on a dataset consisting 

of 50 assets over a one-

Objective(s): 

- Form a hybrid-quantum classical 

algorithm for dynamic PO problems 

with minimal holding periods 

- Use clustering techniques to improve 

diversification and reduce risk, and at 

the same time reduce required  

resources from the quantum system. 

Do pre-processing of the assets on 

their historic volatility to measure and 

compare with a given risk 

threshold/category to form a pool of 

assets with require volatility. 

Quantum hardware:  

Quantum annealing (D-

Wave 2000Q)  

 

Quantum algorithm:  

A quantum-classical 

hybrid algorithm (exact 

name not specified) 

 

Methodology: 

Optimization 

 

Use case: 

Integer bundles = 

the requirements 

that assets, in this 

case, must be sold 

in whole discrete 

units. 

 

(minimum) 

holding period = 

the amount of 

time elapsed 

between an 

investment’s 



year period using the D-

Wave 2000Q system. 

 

- Experiment with the proposed hybrid 

algorithm on 50 international assets 

between May 31st 2019 and May 31st 

2020 on a quantum annealer and 

compare to a random asset chosen 

portfolio (within risk requirements). 

Both portfolios are daily portfolios. 

 

Results: 

- During the given period of the 

experiment, the optimal investment 

trajectory was found for 50 assets on 

the D-Wave2000Q using five risk 

packages (5%, 10%, 15%, 20%). 

- Comparing with a randomly chosen 

portfolio of assets within the risk 

requirements, the quantum annealing 

method based upon dimensional 

reduction and post-selection showed 

solutions closers to the efficient 

frontier. 

- Computing time was “just a few 

minutes” on daily portfolios for 50 

assets with the proposed method. 

Compared to classical (brute force), 

the algorithm performed way faster, 

and with comparison to other 

quantum methods (VQE), the 

proposed algorithm can compute 

greater problem sizes (as VQE could 

only perform this task with max 3 

assets). 

- D-Wave2000Q showed to be faster 

than other solvers such as Gekko. 

 

- “Our study shows that the method is 

remarkably efficient and produces in 

few minutes results close to the 

optimal efficient frontier in portfolio 

space, much better than typical 

random portfolios.” (p. 4) 

 

- Furthermore, this study showed that 

the proposed algorithm can perform 

well in giving out optimal investing 

trajectories for differing risk profiles. 

- “Our method is remarkably efficient, 

and produces results much closer to 

the efficient frontier than typical 

portfolios” (p. 1) 

- “Our results are a clear example of 

how the combination of quantum and 

classical techniques can offer novel 

valuable tools to deal with real-life 

Portfolio optimization purchase and its 

sale, and as 

investments are 

often taxed 

favorably in the 

long-term, a 

minimal holding 

period is imposed 

(minimal holding 

period in this 

paper is seven 

days, investing 

options that do 

not apply to the 

seven-day period 

are ruled out) 



problems, beyond simple toy models, 

in current NISQ quantum 

processors.” (p. 1) 

 

Important notes: 

- The aim for the financial model is to 

maximize returns for a given level of 

risk considering the given constraints. 

- The metric used for comparing 

investments is the Sharpe ratio. 

- It is assumed that shares can only be 

sold in large bundles. 

- Number of objective variables is 

proportional to the number of assets. 

- NISQ devices are limited in their 

resources, therefore, dimensional 

reduction techniques are used to 

reduce required resources. 

- This work is a successor of a previous 

work entailing a hybrid algorithm 

alike, the differences proposed in this 

paper is an efficient post-selection 

protocol to impose a minimal holding 

period constraint, and a proposition 

that investors should invest in integer 

bundles 

- “There are many important 

optimization problems in finance 

which can be solved more efficiently 

using quantum computing.” (p. 1) 

[92] 

Dynamic portfolio 

optimization with 

real datasets using 

quantum processors 

and quantum-

inspired tensor 

networks (Mugel et 

al., 2022) 

In this paper a PO 

problem involving 

transaction costs and 

other possible 

constraints is tackled 

using a number of 

quantum and quantum-

inspired algorithms on 

different hardware 

platforms. 

 

The po problem data 

consists of daily prices 

from over 8 years of 52 

assets 

 

Methods used are: 

Gekko exhaustive 

(classical), D-Wave 

hybrid quantum 

annealing, two VQE 

approaches on IBM-Q 

and a quantum-inspired 

Objective(s): 

- Make use of D-Wave hybrid quantum 

annealing, IBM-Q with VQE and 

VQE-constrained and TN to solve a 

PO problem for a dataset of up to 52 

assets over 8 years, with ultimate 

datasets varying in size. 

- Benchmark the solutions of the above 

algorithms with results obtained by 

classical methods (Gekko solver, and 

an exhaustive solver) via Sharpe ratio 

and computing times for different 

problem sizes (XS, S, M, L, XL, 

XXL 

-  

 

Results: 

Results from Gekko, Exhaustive, DWave 

Hybrid, VQE, VQE-Constrained, and TN 

solvers (results for problem sizes XS-XXL are 

only shown for XS, M, and XXL for a 

summarized overview, and N/A values for XS-

Quantum hardware:  

Gekko exhaustive 

(classical), D-Wave 

hybrid quantum 

annealing (D-Wave 

2000Q), two VQE 

approaches on IBM-Q 

and a quantum-inspired 

optimizer based on 

tensor networks, 

 

 

Quantum algorithms:  

VQE, VQE-constrained, 

Quantum inspired 

tensor network (TN) 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

 



optimizer based on 

tensor networks, 

 

To be able to fit the data 

on the platforms, pre-

processing with 

clustering assets is 

performed. 

XXL are taken out as there were no values 

obtained for that):  

- Gekko: Sharpe ratio  

Sharpe ratio (XS- 5.98, M- 8.39, XL- 

20.76),  

profits% (XS-5.8%, M-13.6%, XL-

71.6%),  

time (XS-24s, M-21s, XL-261s) 

- Exhaustive (brute-force search): 

Sharpe ratio (XS-6.31) 

profits% (XS-5.1%)  

time (XS-0.005s) 

- D-Wave Hybrid: could solve 

problems up to 1272 fully connected 

qubits in 172 seconds, which is 

REALLY fast according to the 

authors. For the PO experiment, 

following results were obtained: 

Sharpe ratio (XS- 5.98, M-8.39, XL-

12.16),  

profits% (XS-5.8%, M-13.6%, XL-

67.6%),  

time (XS-8s, M-19s, XL-74s) 

- VQE:  

Sharpe ratio (XS-3.59)  

profits% (XS-2.4%)  

time (XS-278) 

- VQE-constrained:  

Sharpe ratio (XS-6.31, M-4.81)  

profits% (XS-5.1%, M-7.1%)  

time (XS-123s, M-490s) 

- TN solver:  

Sharpe ratio (XS-5.98, M-9.54, XL-

15.83),  

profits% (XS-5.8%, M-15.4%, XL-

39.7%),  

time (XS-0.838, M-120s, XL-82698s) 

Results showed that not all problem sizes could 

be computed for some methods, only D-Wave 

hybrid and TN could solve XXL problems, and 

VQE could not solve above XS problems. 

Computation times showed the increased. 

competition times that hybrid quantum-

classical strategies can have over classical 

methods as these D-Wave hybrid was faster 

than the classical methods for increased 

problem sizes. 

 

Tn-solutions were quite high in computational 

times but did have better solution quality in 

finding minima than D-Wave hybrid, with 

different hyperparameters and fine-tuning the 



authors propose that the solution quality and 

run-time of TN could be improved. 

 

the largest problem size XXL included 10^382 

candidates, which is more than the number of 

observable atoms in the universe, 2 algorithms 

could find a solution to this problem, TN and 

D-Wave hybrid, showcasing the potential of 

quantum computing to tackle extreme problem 

sizes. 

 

Lastly, the authors propose to add more 

constraints and improved hardware to make 

solution quality better as a future work. 

 

Quotes on solution quality, speed, and overall 

results: 

- “From our results we also conclude 

that there seems to be no clear answer 

as to which is the “best” algorithm 

and hardware platform to solve the 

dynamic portfolio optimization 

problem for large systems. This is 

because there are several figures of 

merit at play: profits, Sharpe ratio, 

time cost, and also money cost. The 

performance of the algorithms is 

different depending on the figure of 

merit, leading us to conclude that, in 

practice, the more options we have, 

the better.” (p. 11) 

- “We observed also that D-Wave 

Hybrid is remarkably fast, whereas 

Tensor Networks sometimes provide 

better portfolios at the expense of a 

longer calculation time” (p. 11) 

- “From our comparison, we conclude 

that D-Wave Hybrid and Tensor 

Networks are able to handle the 

largest systems, where we do 

calculations up to 1272 fully 

connected qubits for demonstrative 

purposes.” (p. 1) 

- D-Wave Hybrid performed better 

than normal D-Wave, indicating 

classical-quantum to be better in this 

instance. 

- “We see that there is no clear answer 

as to which is the “best” algorithm 

and/or hardware platform to deal with 

large systems, as this depends 

strongly on different figures of 

merit.” (p. 1) 



- “In fact, the performance of Gekko is 

quite remarkable, sometimes even 

better than quantum and quantum-

inspired solutions depending on the 

metric, but unfortunately the method 

hits a memory wall around 500 

qubits” (p. 8) 

[93] 

Use Cases of 

Quantum 

Optimization for 

Finance (Mugel et 

al., 2022) 

This paper gives an 

overview of some of the 

applications of quantum 

computing towards 

finance, however, in 

this summary there will 

only be looked at 

quantum computing use 

for PO. 

 

 

 

For the summary considering PO, this paper 

mostly makes use of the paper above as an 

example to show performances of TN, VQE, 

classical methods, and D-Wave Hybrid, 

therefore only the following can be said on this 

paper for PO: 

- “Examples show that real business 

value can be derived from present day 

quantum computers. This is 

particularly true for the portfolio 

optimization case, where we found 

the best investment portfolio by 

optimizing over 52 assets and four 

years of data” (p. 224) 

- Tensor networks use by simulating 

quantum mechanics on classical 

computers 

Quantum hardware:  

Gekko exhaustive 

(classical), D-Wave 

hybrid quantum 

annealing (D-Wave 

2000Q), two VQE 

approaches on IBM-Q 

and a quantum-inspired 

optimizer based on 

tensor networks, 

 

 

Quantum algorithm:  

VQE, VQE-constrained, 

Quantum inspired 

tensor network (TN) 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

 

[94] 

From Portfolio 

Optimization to 

Quantum 

Blockchain and 

Security: A 

Systematic Review 

of Quantum 

Computing in 

Finance (Naik et al., 

2023) 

This paper gives a 

detailed and great 

overview of current 

(2023) quantum 

computing uses for PO, 

quantum blockchain 

and security.  

 

In this summary there 

will only be focused on 

the PO part, which 

gives great detail into 

recent contributions 

from other works in a 

neat table, use cases, 

previous survey works 

Intro: 

- In PO problems, assets are chosen 

based upon factors like risk, return, 

liquidity, average return etcetera. PO 

problems can be categorized in two 

categories based on their formulation: 

1. Convex and 2. Combinatorial 

optimization, where approaches have 

evolved from classical ways (e.g. 

mean-variance, variance with 

skewness, VaR, CVaR, mean 

absolute deviation, and minimax) to 

heuristic and meta-heuristic approach 

based methods.  

- Popular choices for these algorithms 

are: evolutionary algorithms, and 

swarm intelligence 

- Furthermore, some quantum 

approaches are also explored in the 

industry: as data increases 

exponentially (due to the curse of 

dimensionality), quantum computing 

methods become more of interest. 

Quantum hardware:  

N/A 

 

Quantum algorithm:  

N/A 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

 



- The two major computation models 

used for quantum PO problems are 

quantum annealing and gate-based 

models. Where quantum annealing is 

more suitable for certain optimization 

problems, gate-based annealing is 

more suitable for universal problems 

but have less stable qubits on average 

than quantum annealing. 

 

Table showing literature review results from 

this paper, the following table contains an 

overview of works that were cited in the 

literature review of the author that my paper has 

not covered, this gives a great overview of 

some literature evaluated in quantum 

computing application for PO: 

Work 

Surveyed 

Contribution 

Financial 

portfolio 

management 

using d-

wave’s 

quantum 

optimizer: The 

case of Abu 

Dhabi 

securities 

exchange  

“Portfolio Optimization 

problem for stocks from 

the Abu Dhabi Securities 

Exchange formulated as a 

QUBO, solved using 

DWave’s simulator” (p. 

16) 

Improving 

variational 

quantum 

optimization 

using CVaR  

“Proposed a method to 

improve the results by 

measurement system by 

using CVaR(Conditional 

Value at Risk)” (p. 17, 

where promising results 

were found 

A variational 

approach for 

combinatorial 

optimization 

on noisy 

quantum 

computers 

Layer-VQE was proposed 

in this paper, where it 

served the purpose of 

optimizing VQE that helps 

avoid local minima and 

improve chances of 

finding optimal solution 

 

Comapred to QAOA its 

gate count increased 

linearly, while that of 

QAOA increased 

quadratically, furthermore, 

layer-VQE had finite 

sampling errors, it was 



also simpler to implement 

than QAOA 

 

Quality of results 

improves with each 

additional layer in layer-

VQE, unlike VQE. 

Quantum 

metropolis 

solver: A 

quantum 

walks 

approach to 

optimization 

problems  

“Developed an open 

software solution that used 

the Quantum Metropolis 

Hasting algorithm to 

provide a solution to 

optimization problems” 

(p. 17) 

 

It achieved a speedup over 

its classical counterpart, 

and as the problem scales, 

the quantum algorithm 

performed better than 

classical Metropolis 

Hasting algorithm, mostly 

with regard to time to 

solution. 

Financial 

index tracking 

via quantum 

computing 

with 

cardinality 

constraints  

“Tackled the problem of 

Financial Index Tracking 

by using discretized 

portfolio optimization to 

directly implement 

cardinality constraints in a 

single optimization 

procedure” (p. 17) 

 

The approach was 

successful in generating 

smaller portfoliosthat 

could track S&P 100 and 

S&P 500 indexes 

Benchmarking 

the 

performance 

of portfolio 

optimization 

with QAOA 

“Benchmarked the various 

versions of QAOA 

concerning its suitability 

to the current hardware” 

(p. 18) 

 

They imply that it is 

simpler to optimize 

examples with widely 

scattered correlations and 

returns as opposed to 

those with comparable 

correlations. This is 

because increased 

diversity in correlations 

and returns creates a more 

recognizable energy 



landscape, which makes 

portfolios easier to 

identify and improve. 

Basically, it gives 

perspective into the 

different aspects of 

problems and how they 

affect solution quality, 

time etcetera for QAOA 

 

Portfolio 

optimization 

with digitized 

counterdiabati

c quantum 

algorithms  

“Digitized counter 

adiabatic quantum 

computing (DCQC) and 

digitized counter adiabatic 

QAOA (DC-QAOA) were 

studied.” (p. 12) 

 

Higher success rates of 

finding the optimal 

portfolio are achieved by 

optimizing the success 

rate in finding the ground 

state energy of the 

problem Hamiltonian 

(optimal solution) 

Financial 

portfolio 

optimization: a 

QUBO 

formulation 

for Sharpe 

ratio 

maximization  

“Proposed an 

improvement in the 

QUBO formulations of  

allowing the investor to 

decide the optimal fund 

allocation in each asset” 

(p. 18), which was 

achieved 

 

 

[103] 

Experimental 

implementation of 

quantum-walk-

based portfolio 

optimization (Qu et 

al., 2024) 

In this paper, a 

quantum-walk based 

optimization algorithm 

experimented upon to 

show evidence for 

practical 

implementation of 

quantum-walk based 

algorithms. 

 

“We realize the first 

experimental 

implementation of the 

QWOA mixing unitary 

and demonstrate its 

reliable convergence to 

high-quality solutions 

over a wide range of 

Objective(s) 

- Form a QWOA model for a 

combinatorial optimization problem 

for PO, 

- For the experiment on a PO problem, 

there are three positions taken for the 

investor: 1. Short position, 2. Long 

position 3. No position. The PO 

problem is a discrete mean-variance 

Markowitz model for a cost function 

that considers historical behavior of 

the assets, it is expressed as a 

minimization problem. 

- The experimental Po problem 

specifications are: 3 stocks (Google, 

IBM, and Microsoft), with zero 

constraints, in the period 1/1/2019-

12/31/2020, on QuOp_MPI software, 

Quantum hardware:  

QuOp_MPI (simulator) 

 

Quantum algorithm:  

QWOA 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

 



quantum circuit depths” 

(p. 3) 

 

test are done with 1 through 6 

iterations of the algorithm.\ 

- “Our experimental approach is direct, 

flexible, and holds the potential for 

scalability” (p. 7) 

 

Results: 

- After comparing the results from the 

experiment with the known optimal 

solutions, it an be said that the 

experiment found the highest-quality 

portfolio with a probability of finding 

it to be 100% over 1 to 6 iterations. 

- Previous works on simulators 

compared QWOA with WAOA and it 

showed that QWAO was advantages 

over QAOA as it needed significantly 

less search space in achieving high-

quality portfolios with fewer 

iterations. QWOA also showed great 

promise in solving heavily 

constrained formulations.  

- “Our work provides strong evidence 

for the potential of quantum-walk-

based algorithms to solve complex 

optimization problems of practical 

significance” (p. 3) (complexity of 

setup is independent of number of 

iterations and only depends on 

number of dimensions, which is 

always 7) 

 

Important notes: 

- This experiment was performed 

under a noise-free system 

- “The exploration of quantum 

algorithms in practical applications is 

gaining momentum [53–55], even 

though they are currently in a 

preliminary stage. With the dedicated 

efforts of scientific researchers, we 

anticipate that quantum technology 

will soon be leveraged to tackle 

challenging real-life problems” (P. 7) 



[104] 

A constrained multi-

period portfolio 

optimization model 

based on quantum-

inspired 

optimization 

(Ramaiah, K. 

Soundarabai, P, B. 

2024) 

In this paper, a novel 

quantum-inspired whale 

optimization (QWOA) 

is proposed to tackle 

multi-period and multi-

constrained portfolio 

optimization problems. 

 

Next to that, factors 

such as skewness, 

kurtosis, transaction 

costs, diversification, 

boundary and budget 

constraints are 

considered for assets 

 

The algorithm is then 

compared with Wale 

optimization (WOA), 

Gray Wolf 

Optimization (GWO), 

Fruit fly Optimization 

Algorithm (FOA), 

Particle Swarm 

Optimization (PSO), 

and Fruit fly Algorithm 

(FA), (MBO), (FSO), 

(CSO) 

 

Objective(s): 

- Form a model based upon multi-

constrained (boundary constraint, 

budget constraint, diversification 

measure, high order constraints 

(kurtosis, skewness)) QWOA for 

multi-period portfolio optimization 

- Benchmark the model against QOA, 

GWO, FOA, PSO, and FA based 

upon excess mean return (EMR), net 

return, and transaction costs. 

- Dataset specifications: monthly return 

from 1963-2021 of the New York 

Stock Exchange, max iterations are 

100, input size 32, initial population 

100, performance indicators: Sharpe 

ratio, Sortino ratio, STARR ratio, 

information ratio, Shannon entropy, 

downside deviation. 

 

Experiment Results: 

- The proposed QWOA model showed 

to find the optimal results under 

different time periods 

- Compared to the other algorithms, 

QWOA achieved the highest mean 

Sharpe ratio (4.101048), indicating it 

to be the best algorithm under the 

other ones for this specific PO 

problem.  

- QWOA also achieved the best mean 

Sortino ratio and thus provides the 

best risk-adjusted returns.  

- QWOA also achieved the best mean 

STARR ratio 

- QWOA also achieved the best mean 

information ratio 

- QWOA also obtained the best mean 

Shannon entropy 

- The QWOA algorithm achieved 

better downward deviation than other 

classical models 

- Furthermore, the QWOA achieved 

higher net return rates, lower loss 

rates, and global optimal solutions 

were achieved more accurately and 

efficiently than traditional algorithms, 

- “QWOA provided an optimal 

portfolio with high return rates. The 

returns provided by the QWOA are 

high compared to the portfolios 

chosen by the other algorithms” (p. 

21) 

Quantum hardware:  

Classical computer. 

 

Quantum algorithm:  

QWOA 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

Sortino ratio = a 

ratio that 

evaluates risk 

adjusted return of 

an investment 

 

STARR ratio = 

same as Sortino 

ratio but it also 

takes account of 

CVaR for tail risk, 

thereby making it 

more useful for 

portfolios with 

significant 

downside risk 

 

information ratio 

= helps to identify 

risk consistent 

returns 

 

Shannon entropy 

=  a measure of 

uncertainty or 

randomness, in 

this case used to 

evaluate to what 

degree a portfolio 

is diversified. 

 

downside 

deviation = a 

measure that puts 

into perspective 

how well the 

formulated 

portfolios keep 

the volatility of 

returns below a 

specific threshold, 

often the 

minimum 

acceptable return 

line. 



- “Results suggested that the proposed 

model provided beneficial outcomes 

as compared with other algorithms” 

(p. 1) 

- Net return rate of the proposed model 

is always above 0.85%, Sharpe ratio 

is 5.016254 according to the 

experimental test. 

 

Statistical test results (to show strength of the 

proposed model): 

- QWOA had lowest standard 

deviation, lowest p-value (meaning 

high statistical significance of the 

results obtained in the test), and 

lowest t-statistic 

 

[111] 

Quantum walk-

based portfolio 

optimisation (Slate 

et al., 2021) 

In this paper, a quantum 

algorithm for PO on 

NISQ devices is 

proposed. A Quantum 

Walk Optimization 

algorithm (QWOA) is 

proposed for high-

quality solutions to PO 

problems 

 

Furthermore, QWOA, 

Quantum Approximate 

Optimization Algorithm 

(QAOA), and Quantum 

Alternating Operator 

Ansatz (QAOAz) are 

compared against 

eachother 

 

Objective(s): 

- Based on the mean-variance 

Markowitz model, form a PO 

problem that ought to be solved by 

QWOA, QAOA, QAOAz 

- Compare the results obtained from a 

PO experiment with two datasets 

(with long-position, short-position, 

and no-position) with the named 

algorithms to show which one 

performs better.  

- Dataset A specifications: 8 stocks 

with adjusted close price form the 

ASX20 index, period 01/01/2017 to 

31/12/2018 

- Dataset B specifications: 8 stocks 

with adjusted close price from 

ASX20 index, period 24/03/2020 to 

06/09/2020 

 

Results: 

Dataset A: 

Quantum hardware:  

Classical computer 

(QUOP_MPI software) 

 

Quantum algorithm:  

QWOA, QAOA, 

QAOAz (all hybrid-

quantum classical) 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio Optimization 

(and periodic re-

balancing)  

 



- QAOA performs poorly compared to 

the other algorithms, has large 

standard deviation (with max 12.96), 

these results may be due to the 

classical solver part for the QAOA to 

have a higher likelihood of getting 

stuck in local minima than the other 

algorithms 

- QAOAz shows diminishing 

improvements after 8 iterations, 

- QWAO has superior performance at 

low iteration values, needing less 

search space for good results. 

Furthermore, QWAO performs 

significantly better considering 

annual return 

Dataset B: 

- Dataset B is consistent with the 

findings of dataset A 

- QWOA consistently finds the best 

expected solution quality, followed 

by QAOAz and QAOA.  

- QWAO had the best value for 

standard deviation, QAOAz in them 

idle, and then QAOA 

- QWOA shows significant advantage 

over QAOAz in optimizing portfolios 

- QWAO converges to the optimal 

solution efficiently 

- QWAo yields the best expected 

returns after iterations >2 (max 19) 

 

Overall results from the paper: 

- “Our earlier work indicated that 

QWOA offers significant advantages 

over pre-existing methods through a 

reduction in the search space and an 

unbiased encoding of optimization 

constraints” (P. 2) 

- QWOA outperforms QAOAz and 

QAOA in terms of amplifying 

optimal solutions and achieving 

higher expected returns with 

acceptable risk levels. The QWOA 

algorithm demonstrates robust 

performance in both convergence and 

optimization across different data 

sets. 

- QWAO also showed better 

performance in convergence, 

stability, and applicability to multiple 

combinatorial problems. 

 



Important notes:  

- “QAOA and QAOAz are hindered by 

bias in the mixing operator over 

nontrivial feasible solution spaces.” 

(p. 15) 

- For each dataset problem, the 

algorithms had different search space 

sizes (2^16 for QAOA, 1820 for 

QAOAz, and 266 for QWOA) 

- Each local optimal minimum for the 

algorithms is different (dataset A: -

0.318 for QAOA and QWOA, and -

0.305 for QAOAz), (dataset B: -1.25 

for all three algorithms) 

- Highest returns did not mean lowest 

risk in the case of this paper as with 

the mean variance Markowitz model, 

a best combination of risk and return 

is to be found, therefore the highest 

return portfolio will not necessarily 

have the lowest risk. 

[118] 

Comparative Study 

between Quantum 

and Classical 

Methods: Few 

Observations from 

Portfolio 

Optimization 

Problem (Tripathy 

et al., 2022) 

In this paper, the 

difference in overall 

efficiency and 

execution speed 

between classical and 

quantum computing for 

optimization problems 

is explored, where a 

Markowitz mean-

variance PO problem is 

used to benchmark both 

methods. 

 

The data used for the 

benchmarking is 

historical data from 48 

NSE stocks 

 

Quantum methods used 

are VQE and QAOA 

 

Classical method used 

is Monte Carlo, 

Objective(s): 

- Compare classical and quantum 

methodologies in an example PO 

problem to show the advantages of 

quantum computing compared to 

classical 

- Overcome the qubit limitation (max 

12) of the simulator by piling 48 

stocks in 4 buckets. 

- Formulate the quadratic program as a 

QUBO formulation and optimize the 

parameters using optimizers. 

- Data specifications: 48 NSE stocks 

from the period 01/01/2011 to 

01/11/2021, with 2011 till 2016 being 

used for training, and the rest for 

investing. A 16 asset portfolio ought 

to be made by the algorithms. 

 

Results: 

- Execution times were respectively: 

11 minutes for VQE on Qiskit, 3.33 

minutes for QAOA on Qiskit, 44 

seconds for D-Wave CQM quantum 

annealing, and 16 hours for classical 

Monte Carlo. 

- Results achieved are comparable with 

classical approaches, however, 

calculation times were significantly 

less,  

Quantum hardware 

(simulator):  

Gate model quantum 

computer (on Qiskit 

SDK), followed by D-

Wave CQM (annealer, 

can handle up to 5000 

variables and 100.000 

constraints) 

 

Quantum algorithm:  

Quantum: VQE, QAOA 

on Qiskit and 

constrained quantum 

models (CQM) on D-

Wave annealer 

 

Methodology: 

Optimization  

 

Use case: 

Portfolio optimization 

 



- Gate-based quantum computers on 

average provide smaller numbers of 

qubits 

- “From the above CAGR plot, we 

observe that both classical and 

quantum approach are providing 

equally good and comparable results. 

From our experimentation performed 

on D-wave annealers and gate-model 

simulators, we observed that 

implementations using quantum 

methods were faster than the 

corresponding implementation of 

classical methods” (P. 5) 

- “We observed that implementations 

using quantum methods were faster 

than the corresponding 

implementation of classical methods” 

 

Important notes: 

- There was a qubit limitation in using 

the quantum simulator (max 12 

qubits).  

- The paper stresses the importance of 

comparing classical and quantum 

computing methods through real-

world tests to substantiate the 

difference. 

- An example is shown in the paper 

where a classical computer tires to 

solve a NP-hard PO problem, as can 

be seen, the total time to compute the 

ideal portfolio increases dramatically 

as assets increase along with required 

assets per portfolio. For a portfolio of 

4 assets under 8 stocks to choose 

from, the computation time was 9 

minutes, but for a portfolio of 10 

stock with 50 stocks to choose from, 

the computation times is 11000 years. 

 

[119] 

Reverse quantum 

annealing approach 

to portfolio 

optimization 

problems 

(Venturelli, D. & 

Kondratyev, A., 

2019) 

In this paper, a hybrid 

quantum-classical 

solution method is 

proposed, where the 

mean-variance PO 

problem from 

Markowitz is taken as 

the objective problem. 

 

Several solvers for the 

QUBO formulation 

were used: Greedy 

Objective(s): 

- Form a hybrid quantum annealing 

solver along with a specific setup to 

solve a mean-variance PO model 

casted into a QUBO formulation. 

- Benchmark the proposed 

model/algorithm along with the 

classical Genetic Algorithm (GA) on 

a dataset where the objective is to 

maximize risk-adjusted returns or 

Sharpe ratio on an unconstrained 

problem set. 

Quantum hardware:  

D-Wave quantum 

annealer 2000Q  

 

Quantum algorithm:  

N/A 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

 



search, genetic 

algorithm (GA), 

forward quantum 

annealing, and reverse 

quantum annealing. 

- Benchmarking was done with 

different problem sizes, parameters, 

and solvers to evaluate the 

performance of the D-Wave 2000Q 

against classical heuristic methods 

(GA) 

- The test was performed on sets of 

assets: 24, 30, 36, 42, 48, 54, 60, and 

for reverse QA, pause times before 

resuming the process to mitigate 

errors  

 

Results: 

- Looking at the graphs depicting 

various information on time-to-

solution (TTS), and effects of 

parameter settings, it can be said that 

as problem size increased: 1. Reverse 

QA with greedy search had best 

performances in TTS, 2. GA (from 

random starting point) performed 

worse in TTS than GA starting with 

Greedy Search but both increased in 

TTS quite stably, 3. Forward QA 

increased more in TTS as problem 

size increased, but was still faster 

than GA but not QA with Greedy 

Search. 

- Optimal results for Reverse QA were 

found using shorter annealing times. 

- Reverse QA with shorter pause times 

had less TTS 

- The performance of the greedy and 

classical approaches decreased as 

problem sizes increased, not taking 

away that the results obtained from 

the Greedy approaches were better, it 

still suggests that increased problem 

sizes may be difficult for them. 

- The best results in terms of time-to-

solution for the hardest set instance 

were obtained by seeding the 

quantum annealer with better solution 

candidates found by greedy local 

search and then performing reverse 

annealing  

- “The optimized reverse annealing 

protocol is found to be more than 100 

times faster than the corresponding 

forward quantum annealing on 

average.” (p. 1) 

 

Important notes: 



- Greedy search was used as a 

benchmark, and to initialize the state 

for reverse quantum annealing, giving 

it a head start as it starts with a 

reasonably good approximation. 

- The D-Wave system has a maximum 

controllable energy, making it 

challenging to program accurately. 

[120] 

Dynamic Asset 

Allocation with 

Expected Shortfall 

via Quantum 

Annealing (Xu et al., 

2023) 

In this paper, a hybrid 

quantum-classical 

algorithm is proposed to 

solve dynamic asset 

allocation with target 

return and target risk 

metric (expected 

shortfall)  

 

The proposed algorithm 

is benchmarked using 

D-Wave 2000Q and D-

Wave Advantage 

annealers against 

classical approaches. 

 

Contributions of this 

paper: 

1: a demonstration of 

how NP constraints 

such as expected 

shortfall in an 

optimization problem 

can be solved using a 

hybrid quantum-

classical approach 

2: This paper serves as a 

first case employment 

in the industry of 

solving expected 

shortfall based dynamic 

asset allocation 

problems 

3: this is one of the first 

papers to introduce the 

problem solving on a 

real quantum computer 

using real financial data 

 

5 datasets are used and 

tested upon, the exact 

specifications of these 

Objective(s):  

- Form a hybrid quantum-classical 

algorithm for a PO problem with 

dynamic asset allocation, target risk 

and target return 

- Compare the algorithms of classical 

and quantum kind against each other 

on D-Wave 2000Q and D-Wave 

Advantage with each other and 

simulated annealing on real-world 

financial data. 

- Form a modified Markowitz 

framework (to fit specifications of the 

objective problem) into a QUBO 

format 

- Objective problem = computing 

portfolios with minimum variance for 

a given target return 

- Data specifications overall: top-six 

ETFs by trading volumes, and six 

major Currencies exchange rates, 

respectively 12 and 23 assets in the 

experiments, expected shortfall of 

5%, 30000 samples are taken on the 

QUBO formulation for more specific 

results. Ultimately, 5 datasets are 

made with different starting dates 

between 2010 and 2020 and each 

method has 100 days of data to work 

with. 

 

Results: 

- Simulated annealing followed the 

optimal solution in most tests 

- For test 4 of the currency tests, the 

real quantum annealers were able to 

find a portfolio with higher returns 

than simulated annealing (with a still 

acceptable but slightly increased risk) 

- It is observed that currency tests 

perform better on real quantum 

Quantum hardware:  

D-Wave 2000Q (2048 

qubits, up to 68 logical 

variables), D-Wave 

Advantage (5760 

qubits, up to 180 logical 

variables) quantum 

annealers. 

 

Both simulated and 

physical quantum 

annealing are used. The 

simulator is not 

specified 

 

Quantum algorithm:  

N/A 

 

Methodology: 

Optimization 

 

Use case: 

Portfolio optimization 

 



datasets are NOT 

mentioned 

hardware than ETF tests on the same 

hardware. 

- “ealing. Both 2000Q and Advantage 

processors are able to compute 

returns that are consistently more 

than 80% of the optimal, except the 

two currency test cases where the 

algorithm fails to converge on the 

2000Q” (p. 15) 

- “Both quantum annealers are able to 

generate portfolios with more than 

80% of the return of the classical 

optimal solutions, while satisfying the 

expected shortfall” (P. 1) 

- “We observe that experiments on 

assets with higher correlations tend to 

perform better, which may help to 

design practical quantum applications 

in the near term.” (p. 1) 

 

Remarks on the real quantum hardware: 

- 2000Q processor: can natively handle 

up to 12 assets 

- Advantage processor: can handle up 

to 23 assets, however due to defective 

qubits and connectors, only 119 

qubits can be used currently (2023) 

- The Advantage processor fails to find 

the ground state effectively, with high 

chain lengths (up to 17) leading to 

poor performance. This indicates 

limitations in handling larger 

problems due to current hardware 

constraints. 

- The 2000Q processor struggles with 

embedding chain lengths of 16 and 

has difficulty finding the optimal 

solution. 

 

Important notes: 

- “Although we acknowledge there 

may be other factors contributing to 

our observations that currency tests 

do better than ETF tests on for 

quantum annealers, Figure 7 implies 

that more correlated assets tend to” 

(P. 15) 

Table 7, overview of articles used for literature synthetization  

 

 


