# Quantum computing for portfolio optimization

Nick de Groote, University of Twente, The Netherlands

# **1 INTRODUCTION**

In the early stages of computing, co-founder, and former CEO of Intel Gordon Moore predicted that the number of transistors on a microchip would double every two years [90], thereby hinting toward an exponential increase in computing power every couple of years. To date, Moore's law has had a relative high degree of accuracy, however, it could be challenged by the laws of physics in the near future [102], as Heisenberg's uncertainty principle will interfere with the increased miniaturization of computing components [12], therefore contradicting Moore's law. As there are many assumptions that classical computers will reach their limit [15], quantum computing has garnered more attention in recent years. The need for computing architectures, especially quantum computers, that cater towards this necessity of constant improvements in computational power is persistently being emphasized by studies showing that there is an increased amount of attention and funding going towards projects in this industry [112, 107]. Actors in the financial industry such as JP Morgan Chase & Co, and Morgan Stanley are investing in quantum computing as they can see, and justify the great potential it can have on their operations [69, 86]

Quantum computing exploits the use of quantum mechanics, giving it the ability to compute complex mathematical problems faster than traditional computers in theory [116]. A company equipped with a quantum computer would gain a substantial competitive advantage over rivals, which is a key reason why some companies invest heavily in quantum computing [20].

In this research, the relationship between quantum computing and portfolio optimization will be explored. Additionally, the manner in which quantum computing and portfolio optimization are currently described in the literature will be examined by a systematic literature review. Subsequently, comprehensive research findings in corporate white papers are reviewed and related to the findings from the systematic literature review.

Currently, there is lack of literature that shows a congruent structure and relation between the development and implementation of quantum computing for portfolio optimization in academic and corporate settings, therefore this research is performed. As a result, the main research question is characterized as follows; *"how can quantum computing effectively be applied to address the challenges of portfolio optimization considering existing theories, practical use cases, and corporate whitepapers in the financial industry".* 

This study contributes to the field of literature by synthesizing a comprehensive review and analysis of the existing literature on

quantum computing, specifically in the context of portfolio optimization. Additionally, a document analysis based on up-todate corporate whitepapers is performed. By synthesizing these insights from academic and corporate sources, this research offers a clear overview of the current knowledge on the subject of portfolio optimization and quantum computing,

# 2 LITERATURE REVIEW

The following literature review gives insight into the components of quantum computing that are valuable towards this research, along with the current theoretical framework regarding quantum portfolio optimization.

# 2.1 Quantum computing theory

Classical computing works through bits in a binary format, these bits can have two possible values, of which are either '0' or '1' [109]. These bits are the smallest notation in which data is stored on a computer and are often represented by a certain value such as 'true/false' or 'yes/no' [108]. In classical computing, a bit can only be in one of the two states at a time [108]. Quantum computing works through 'qubits', which are bits that exist in a superposition of both '0' and '1' until they are observed [109, 110]. Following will be the most important subjects discussed.

### Superposition and qubits

Quantum computing is represented by qubits, which are bits that can be present in different states at the same time, this state is called superposition [85, 86]. However, the moment this state is measured, it will shift towards a definite, observable state of either '0' or '1'. A visual representation of how superposition works, and how qubits can be represented may help to give insight, figure 1 illustrates a simplified version of this.



# Figure 1, representation of qubit positions in a Bloch sphere when observed [70]

Figure 1 is a representation of qubit positions on a Bloch sphere. Following the green arrow, the two possible positions of an observed qubit are characterized by the state of '1' or '0'. For actual superposition, it must be envisioned that the green arrow is pointing in a direction that is not aligned with either '1' or '0'.

### Quantum entanglement

Quantum entanglement is a key subject enabling the exploration of multiple solutions simultaneously. Quantum entanglement is when two or more qubits are placed in entangled states [109, 110], meaning that despite the qubits being physically separated, they will still influence the outcome of measurements performed on each other [109, 110]. When measuring these entangled qubits, there will always be a correlation between the outcomes that they give [23], such a correlation can be depicted by an entangled pair of qubits. Qubit entanglement among other factors enables the exploitation of quantum operations to increase the probability of desired outcomes and decreasing undesired ones [109]. Figure 2 shows a representation of how entanglement can be interpreted in a simpler format.



Figure 2, entangled qubits [19]

Quantum decoherence

For quantum computing systems to work properly, they should be isolated from any outside interference [86]. If any outside factor interferes with the qubits, then the state of the qubit can collapse [86]. Examples of such interferences can be small changes in temperature, stray electric or magnetic fields [109].

In general, the measurement of qubits is probabilistic [96], meaning that multiple measurements have to be done over time to achieve a more desired output [96], where this is generally the highest average of the results given from the outputs *(e.g. results with the highest chance of occurrence)*. Furthermore, to achieve these results the state of the quantum system is often manipulated in such a way that the desired result has the highest likelihood of occurring [96, 95], this is further mentioned in 2.3

# 2.2 Insights into portfolio optimization

Portfolio optimization constitutes the act of maximizing gains while minimizing risk [79]. A financial portfolio is characterized by a collection of investments in assets such as stocks, bonds, commodities, cash, and ETFs [117]. The objective of the investor is different when observing the initial objectives [57], where the amount of risk an investor should take is related towards the degree of potential gains, this trade-off should be favorable to undertake an investment. One of the cornerstones of portfolio optimization is 'modern-portfolio theory' (MPT) [84], developed by Harry Markowitz [84], with the aim of creating an efficient portfolio that maximizes gains and minimizes risk [84]. The ideal trade-off between risk and reward can be visualized on a graph called the 'efficient frontier', see figure 3. Many factors can influence expected risk and return, these influences often appear in the form of added variables or constraints in the calculation of most efficient portfolios *(e.g. budget constraints, investor preferences, regulatory requirements, liquidity needs).* Both in classic and quantum computing methods, these variables and constraints are each integrated in models/algorithms adapted for the computing methods, this is further explained in 2.3. The capital market line (CML) represents portfolios that optimize the risk and return relationship, defined by the 'Sharpe ratio' and risk-free rate [46]. The Sharpe-ratio is a measure of risk adjusted return, mostly used as a performance measure for optimization models [61, 46]. The formula for the Sharpe-ratio is as follows:

Sharpe-ratio = 
$$(Rm - Rf) / \sigma p$$
 (2)

Where Rm is the expected return of a portfolio based on the market, Rf is the risk-free rate, and  $\sigma p$  is the standard deviation of returns of the portfolio [8].



Figure 3, Efficient frontier example [15]

Approaches toward portfolios are mainly determined by predefined objectives [1], these objectives are reflected in the asset mix and risk and reward trade-off over a predetermined amount of time [1]. Dependent on these objectives, the efficient frontier changes accordingly. Portfolio optimization can be approached in multiple ways, classical approaches, and intelligent approaches [51]. Classical approaches are based on traditional financial theories such as MPT, or Capital Asset Pricing Model (CAPM). 'Intelligent approaches' are characterized by their machine learning capabilities and ability to learn from historical data [51]. These intelligent approaches mainly include Bayesian, support vector machine, neural network, reinforcement learning, and evolutionary-based approaches [51]. For quantum computing, most often it is observed that classical and intelligent functions are altered in a way to fit certain quantum algorithms.

# 2.3 Quantum Portfolio Optimization Methods

The main goals of applying quantum mechanics towards the use of optimization problems is the greater speed and accuracy it can provide [57]. Portfolio optimization's main function should be to construct a portfolio of assets that maximizes returns and minimizes risk [79]. The next part only gives insight into the broader quantum methods to lay the foundation of what is to be specified in part 4 'findings'.

### Quantum hardware for finance

Solving quantum computational problems is facilitated through the use of quantum hardware [5, 57], where this hardware enables the solving of quantum problems not feasible on 'classical' hardware [5]. Quantum hardware mainly consists of two recognized types: gate-based quantum computers, and quantum annealers [5]. Quantum simulators can also be seen as a way to model the behavior of quantum systems [57], which is the simulation of quantum hardware on a classical computer [57], mostly used to theorize future quantum hardware possibilities in problem solving methods [57]. Current quantum hardware is also called 'noisy intermediate-scale quantum' (NISQ) devices, this characterizes the fact that current quantum hardware is still underpowered and prone to errors [57].

Quantum annealers are mostly used for optimization problems [5], which work through leveraging quantum mechanics principles to solve certain problems [40, 75]. The annealing process involves qubits in a superposition, which are influenced via biases (e.g. magnetic forces) and couplers to achieve different probabilities of finding a certain state of the qubit(s), either in the '0' or '1'state [40, 75]. Couplers serve the purpose of creating interaction, or entanglement, between qubits so that desired outcomes are achievable [40. 75]. In short, quantum annealers gradually change the form of a particle from its initial state to fit a desired functional form [96], this desired form in a quantum annealer is either a minimum or maximum state and therefore also the solution to the problem statement *(think of min/max size/cost/distance or risk from a set of solutions.)* 

Gate-based quantum computers have many different physical realizations [96], however, they all work according to the same fundamental principles. A gate-based quantum computer can be depicted as: *"quantum computers that operate using qubits in a superposition state, manipulated by quantum gates to perform specific computations for a desired classical result, where error correction techniques ensure greater reliability of results"* [96, 5, 57]. Gates in classical computers are switches that at discrete time intervals generate a pulse of electricity corresponding with either '0' or '1' [96]. Quantum gates are an extension on this principle, where they are physical devices made out of some material that manipulate the quantum state of qubits [96].

On these quantum hardware, certain mathematical and computational models are applied, each differing in their objective function and problem formulation. Models such as QUBO or the Ising model *(for a quantum annealer)* are often taken as the base and adapted upon to fit certain algorithms to optimize a variety of problems [96, 95], where problems for gate-based quantum computing are often reformulated to fit certain developed types of quantum gates, and differing numbers of qubits to best fit an objective function [96].

### Quantum algorithms

Quantum algorithms are specialized algorithms that run on quantum computers [41]. Quantum algorithms form the basis of quantum computing applications, where algorithms are adapted and tailored to find solution for specific problems, from optimization to machine learning and Monte Carlo [57]. Considering quantum algorithms, there are countless to name, each having their specific application towards certain problems. When analyzing the literature available, many reports either took inspiration from foundational algorithms/models and adapted upon them to fit specific problems or found ways to optimize existing quantum algorithms/models. Most commonly, foundational algorithms such as QUBO, the Ising Model, Grover's algorithm, Shor's algorithm, or Harrows-Hassidim-Lloyd (HHL) algorithm, to name a few, are taken and made to fit certain methodologies and problems (e.g. optimization for portfolio risk or Monte Carlo for derivative pricing) [5, 57].

### **Machine learning**

Quantum machine learning is a certain methodology that makes use of quantum algorithms to enhance traditional machine learning techniques to be used for things such as classification, clustering, regression, quantum neural networks, reinforced learning, generative models, dimensionality reduction, and other novel uses [57, 101]. As for portfolio optimization/finance, quantum machine learning has its potential use in big datasets for anomaly/fraud detection, asset pricing, financial forecasting, credit scoring, stock selection, and metrics that capture a market's forecast of likely movement [57, 101]

### Stochastic modeling (Monte Carlo)

Stochastic modeling tries to find the probability of various outcomes under different conditions using random variables [57, 72]. A key characteristic that makes stochastic modeling separate is that it inherently incorporates uncertainty into the analysis (which is often characterized by the term 'fuzzy' in literature) [72]. In the realm of quantum stochastic modeling for finance, quantum algorithms are often related towards a Monte Carlo type integration (MCI) [57, 5], where sampling from a probability distribution is traditionally utilized to approximate solutions for a desired problem statement [5]. Problem statements in stochastic modeling are found in the form of estimations of probabilities or expectations (e.g. estimation of risk measures, pricing of derivatives, or expected payoff of a financial derivative at a future time) [5, 41, 57]. In quantum Monte Carlo Integration (QMC), a quantum speedup is most often achieved through the use of the Quantum Amplitude Estimation algorithm (QAE) [57], an algorithm that aims to estimate the probability of a specific outcome in a quantum system. Compared to classical MCI, where samples are considered as classical queries [57], and thus the key to giving a desired result, QMC using QAE requires significantly less queries to achieve a result, thereby embodying a quantum speedup in theory [57]. Even though, the use of QAE for QMC

is most often considered, other algorithms for QMC exist. Examples of quantum algorithms used for Monte Carlo in finance are HHL, qPCA, QPA, and QPE [5].

### **Quantum Optimization**

Optimization is the most prevalent methodology in quantum computing for finance. Actual problem statements can be distinguished between two different general groups [57]. NPhard problems are seen as problems that are currently not solvable efficiently [57, 1], and therefore present a great challenge for both classical and quantum hardware, where quantum hardware is able to tackle NP-hard problems more efficiently than classical algorithms, it still cannot solve it most efficiently [57, 1]. Besides that, there are problems that are not NP-hard, which can be solved efficiently and have a great body of literature encompassing how to solve them efficiently [57]. Ultimately, NP-hard problems are not specific to optimization problems but can also be formed for other methodologies.

Types of quantum optimization problems can also be grouped in broad terms; three main groups can be recognized. 'Combinatorial optimization' is "the act of trying to find the combination of values of variables that optimizes an index from among many other options", often using discrete or integer optimization for quantum algorithms [57]. Next to that, (non) convex optimization problems encompass "the process of minimizing a convex objective function subject to convex constraints" [87], where the minimum of this function conveys the desired result for the problem [87]. Lastly, Large-scale optimization problems are characterized by a significant number of variables and constraints that currently may prove to be too hard to solve for NISQ hardware [57], where it is suggested that to compensate for this lack of computing power, a hybrid between classical and quantum computing is to be realized [57], where the problem is to be subdivided into subproblems that are either solved/optimized on a quantum computer and classical computer [57], multiple reports exist on this hybrid between quantum and classical computing for optimization.

Financial application for quantum optimization algorithms mainly includes portfolio optimization, swap netting *(financial consolidation of payments or obligations to reduce risk and create better operational efficiency [55])*, predicting financial crashes, identifying creditworthiness, optimal arbitrage *(buying and selling financial assets in different markets for a profit)* [57]. Most common algorithms for quantum optimization problems and quantum portfolio optimization include quantum annealing, QAOA, VQE, VarQITE, QTS, QUBO, QIPM, HHL, and other novel variations of these algorithms.

The next part explains the results found in the initial literature search, with its process being explained in part 3 'methodology', consisting of a comprehensive overview of quantum portfolio optimization methods from academic literature.

# 2.4 Quantum computing in finance review

As mentioned in part 2.3, quantum computing follows certain objective functions, algorithms, in certain methodologies, on quantum hardware. To visualize this process, figure 6 *(see appendix),* inspired by Alabereti et al (2022) shows this process. In the next part, a total of 57 papers, that were summarized for use in table 7, are analyzed and taken as a representative sample for current views on Quantum Computing in finance, specifically portfolio optimization.

### Algorithms used

To first put into perspective usage of quantum algorithms (Fullquantum algorithms, heuristics, metaheuristics) for PO problems, chart 1 is made.





In most of the literature, base algorithms such as VQE, or QTS were improved upon via certain proposed methods (e.g. parameter optimization, or optimization of the classical part of the algorithm, as it is a metaheuristic). Some papers did not use any algorithms for problem solving as they were surveys or literature reviews. Lastly, 'models' signify instances where solving a problem involves a conglomerate of methods put together into one to solve a particular problem (e.g. the use of DDQCL on QCBMs model [6])

Furthermore, in more than half of the papers, QUBO is used as a 'format' to both formulate certain problems and as a solver, this dual purpose can understandably create some confusion, QUBO can only be applied to combinatorial problem classes. Next to that, QAOAz is the successor of QAOA, which is found in more recent papers as it offers greater flexibility and exploration of the solution space. Additionally, QTS showed predominant use, this was mainly because different works in this literature pool sought to improve on other works that used QTS. Lastly, certain algorithms are also often used to optimize certain sub-parts of a calculation (*e.g. the use of VQE for parameter optimization, or the use of VQE to generate an optimized asset pool for a PO problem*). Results showed that the use of this method provided better and more efficient results on average.

In multiple papers, quantum algorithms were put to the test against classical algorithms, where in the remaining they were put to the test against other quantum algorithms. For the sake of putting into perspective quantum speedup, a comparison against classical methods is a pre-requisite. As [49] mentions for one of the pre-requisites to fully assess quantum speedup, "*The quantum algorithm should have a plausible case for asymptotic quantum speedup*", indicating that a comparison between classical and quantum is a need to estimate practicality. Classical algorithms that were benchmarked against were predominantly; Brute-force, Genetic Algorithms, SMA [24], SRO [24], MVO [24], and the non-quantum counterparts of the algorithm *(e.g. PSO against QPSO [52]).* 

### Use of constraints and different problem sizes

It is natural to assume that conditions under which the optimal portfolio is formulated represent that of a real situation, therefore, the use of constraints and different problem sizes in the formulation of a PO problem is important, as this seeks to fill in the gap between theoretical and practical models. Furthermore, as investor preferences are different, certain constraints or changes to the formulation of the PO problem can be added. The greater part of the papers in this review incorporate the use of different constraints to achieve a higher degree of practicality, however, this is often at the cost of added complexity to solving the problem, thereby necessitating more computational resources.

In the case of the 57 reviewed papers, as problem sizes increased, the performance and accuracy of results of quantum algorithms increased overall [6, 41, 64, 92]. Some papers mentioned a decreasing trend in the ability to solve larger problem sizes [81] this may have been due to increased noise, error rates, and qubit connectivity of current NISQ devices in this paper, thereby also stressing the importance of error and noise reduction methods in current NISQ devices.

As for constraints, it was perceived that as more constraints were added for better representativeness to real-world situations, results tended to be closer to optimal for the objective function [92, 74, 82, 88, 104, 111]. However, added constraints were proven to be cause for additional computational power needed, thereby also increasing solving times slightly [37]. Sometimes constraints were neglected by the algorithm to find more adequate results [74, 88, 78], this can mainly be traced back to soft-constraints being applied instead of hard-constraints., meaning that solvers are allowed some tolerance in adhering to set constraints, and thereby given more room in the search space. Hard constrained optimizers are easier to optimize as their landscape is easier to quantify and has more direct parameters, therefore creating a straighter road to the solution so to say, whilst soft constrained optimizers have a more challenging landscape due to their increased flexibility, allowing for a broader range of possible solutions [14].

### Quantum versus Classical performances

A couple of preliminary things ought to be mentioned. First of all, finding an optimal solution to an objective function does not

directly imply better performances, as both methods may have found the optimal solution. It is only when the problem instances grow to a size or format (e.g. in non-convex optimization problems [88, 25]), where it is infeasible for classical methods to solve, that measures in optimality of solutions are relevant. In situations where both methods should be able to find the optimal solution, the two most looked at measures are that of 'time-to-solution' and whether the method can actually find that optimal solution. Furthermore, there are some instances where the optimal solution is not known. In such a situation, benchmarks are performed by comparing results of each method against each other, or against a baseline solution that is known to be 'good'.

Lastly, it is very important to mention the difference between tests performed on simulated/digital and real quantum hardware, where simulated/digital environments allow researchers to test algorithms and obtain theoretical performance measures in environments without most of the constraints of NISQ hardware (e.g. noise, errors, decoherence, qubit limitations, gate limitations, qubit connectivity, to name a few), it tries to simulate a close to idealized environment for potential performances of future realized and fully working quantum computers, as current quantum devices cannot perform on that level yet. However, simulations are performed on classical devices, thereby still being limited in their computational abilities. Nevertheless, in the 57 papers, some experiments are done on real-quantum hardware, but in general, simulated/digital hardware is used for benchmarking.

The following charts will give a good representation of NISQ, Classical, and simulated/digital performances against each other (where they show percentages of which method showed better performances than the one that is compared with), indicating which method is better 40/57 available papers are used.



Simulated/Digital vs Classical N = 8 vs Classical N = 27

Chart 4: Quantum vs Simulated /Digital N = 5

17 papers could not be used for comparisons due to multiple reasons; some papers only acknowledged simulated versus simulated results. Furthermore, some only mentioned performance benchmarking against previous works that were further build upon, only benchmarking against the previous iteration of the paper. Lastly, several papers either reported similar performances across methods, remained neutral, or were unclear about the differences between them.

Looking at the charts, simulated hardware outperforms classical methods 96% of the time, where the only outlier mentioned that the classical method (*Frieze-Kannan-Vempala*) outperformed the simulated hardware, where the proposed model was not well-suited for the quantum method due to its reliance on high-rank and high-condition number matrices, which led to poorer performance compared to classical methods like FKV, showing in the numerical results from the test (*high error rates, high noise, longer time-to-solve*).

Furthermore, the current limitations of real NISQ hardware can be traced back into the poor performances mentioned in most of the papers that utilize them. With only 37% and 20% of used papers linking better performances to real quantum devices. In the greater part of these instances, the only better performances were perceived via the most recent devices on the market, which are IonQ's Trapped-Ion Device 'Aria-1' [8], 'D-Wave 2000Q' [91, 119, 120] and 'D-Wave Advantage' [120]. However, problem sizes were limited due to the increased noise and error rates occurring in NISQ devices. Chart 2 gives a great indication in regard to a future outlook on the use of real quantum devices. For a detailed view into the results found in the above paragraph, see table 7 and Table 8 in the appendix.

### **Challenges and limitations**

As the name 'NISQ' suggests, current quantum computers perceive multiple challenges and limitations. Looking at the studied papers, a couple of things can be said on this topic.

### Noise and errors in simulated devices

As the use of simulated devices aims to show the full potential of quantum computing, nevertheless, there are still papers considering the simulated implementation of noise and error to test their mitigation methods on. These studies investigate a more 'realistic' scenario, where the inherent challenges of NISQ hardware are put to test using various error mitigation strategies.

*Error, Noise, local minima/maximums, resource requirements.* One of the main issues addressed was the importance of error mitigation techniques, as multiple papers found that the quantum algorithms used were prone to errors, which could be due to a multitude of reasons (e.g. Hamiltonian simulation error, or higher errors perceived due to increased distances between qubit connections [16, 22]), they suggested or implemented the use of error mitigation techniques to solve this issue [11, 72, 77]. Results using error mitigation techniques showed great improvements in error rates, and thereby superior solution quality and efficiency of the computational processes [29, 51, 80]. However, error mitigation techniques were proven to be cause for additional computational overhead [41, 52]. Realquantum hardware was found to be significantly more prone to error and noise.

Another difficult hurdle to overcome was the convergence of the algorithms to local optima. As most of the used problem types *(e.g. non-convex and combinatorial problems)* are cause for there to be many suboptimal solutions, the algorithms were prone to finding these suboptimal solutions and become stuck, thereby not recognizing the global optimal solution [18, 29, 82, 111], or for the algorithm to recognize it and move away from it. Multiple papers introduced measures that helped the algorithms to avoid these local solutions [18, 66, 74, 76, 82, 94]

Considering resource requirements, there was a relation seen between the complexity of the problem and the computational resources needed. However, it was mentioned that as complexity increased for classical methods, their time-to-solve would grow exponentially [24], whereas quantum methods showed a linear trend in increased complexity time-to-solve [24].

# **3** METHODOLOGY AND RESEARCH DESIGN

## 3.1 Research protocol and data gathering

The methodology part pertains information on exactly how the main research question is answered. Considering the current structure and layout of the research paper, a systematic literature review was chosen. A systematic literature review is characterized by its nature to identify, select, and critically appraise papers to be able to answer formulated research questions [26]. This research is meant to give perspective on the current, and of best quality, literature.

One important factor in a systematic literature review is bias, more specifically the lack of a bias. As systematic reviews and meta-analyses are susceptible to a multitude of biases, this ought to be minimized [39]. This research will follow the PRISMA 2020 flow diagram to ensure that up to date, unbiased, and highquality articles are chosen. The PRISMA flow diagram aims to enhance the transparency and reproducibility of systematic reviews. It assists in finding quality papers by going through a process/flow chart that gives a predefined protocol. Three databases are used to synthesize the primary and final pool of sources after they have gone through the process of screening and selection. These databases are the 'Scopus database' the 'Web of Science', and the 'ArXiv' database.

There are many papers discussing quantum computing, and many papers discussing portfolio optimization, however, the link between these two is found by searching for certain keywords in the databases of Scopus and Web of Science and ArXiv. Before the first search of literature, keywords had to be identified, after searching through the results these keywords gave, a secondary search for new terms based upon these results was issued. Table 1 in the appendix shows the formed keywords.

These keywords on their own will result in too broad of a search, therefore combinations of these keywords are searched for in a Boolean manner. A Boolean approach uses logical operators such as AND, OR, NOT. By using these logical operators certain keywords can be put together more effectively. Furthermore, truncation symbols may be used to get broader results when needed, where truncation symbols ensure that all variations of a word can be looked for *(e.g. comput\* can mean "computing", or "computer", or "computation" etcetera).* The combinations used both on Scopus and Web of Science can be seen in 'table 2' in the appendix, they were not used on Arxiv.

### 3.2 Searching for relevant studies, initial search

Following the Prisma 2020 flow chart, certain inclusion and exclusion criteria need to be stated. Particular search filters can be applied to find more relevant papers. First of all, considering the Gartner hype cycle for data security measures, specifically on quantum computing, it appeared first on the model in 2011 with a mainstream adoption expectation of more than ten years [62]. For the 2023 Gartner model, the expected plateau will be in two to five years [100]. Next to that, around the year 2011 was when the first commercial quantum processors went mainstream and could be tested on [21]. Furthermore, this time marks the start of the physical process to quantum supremacy [21]. Therefore, research from before the year of 2011 will be filtered out during the performed searches and results from the time span of 2011-2024 will be used. However, in the end, all papers (except one outlier) used in both the searches surprisingly proved to be from the period 2018-2024 as substantially more papers were uploaded in that period on this topic. Besides, the papers before 2018 were ultimately filtered out due to full-text analyses showing they all were irrelevant. Furthermore, the language in which papers will be searched is 'English'. The tables showing the inclusion and exclusion criteria can be found in the appendix. abstract, title, and full-text screening was performed after literature was collected, leaving 57 papers to be used. Following this rigorous selection process, the PRISMA 2020 flow diagram is shown in the appendix (figure 4).

Subsequently, these findings are uploaded, summarized and classified into different groups in the Endnote X9 software. Furthermore, as some papers in the final pool of literature are considered white papers, they will be added to the final pool of the 'white paper literature search', only if they are not cause for duplicate papers in that pool. Lastly, some papers were ultimately not used as they were either predecessors of other works, showed limited use in furthering the scope/quality of the thesis, or ultimately proved to be non-relevant to this thesis. Ultimately, the most important used papers were synthesized into a matrix (Table 7) to create a clear overview.

# 3.3 Use of corporate white papers

White papers are used to ensure the inclusion of practical, up-todate, and real-world insights into current industry applications of quantum computing for portfolio optimization.

The following steps were taken in the research. First, a layout of current companies and start-ups working on quantum computing for the finance industry was mapped out. Subsequently, websites of these corporations were analyzed, as they contain papers that are valuable to gather insights from. After an initial pool is collected and uploaded to the Endnote X9 software, they were included or excluded based upon the named criteria in part 3.2, criteria that does not apply to these papers are not used. Additionally, a final search is done on the databases of ArXiv, IEEE Xplore, and online libraries to gather additional papers, as ArXiv and IEEE Xplore are great options to find white papers from companies. Lastly, as some search inquiries from the first systematic literature review included some white papers, those that are no duplicates will be added to the final pool of the white paper research. To fully map out this process, a second PRISMA 2020 flow diagram was made, however, this one is altered to better fit this kind of search, see appendix (figure 5).

To map out companies and startups in the field of quantum computing, resources such as 'The Quantum Insider', 'Quantum Computing Report' (QCR), and 'The Quantum Economic Development Consortium' (QEDC) were used. Furthermore, as some financial companies are not directly related towards quantum computing, but do take effort in research on the subject, additional searches are done on these companies on various financial outlets and other sources. After that, the companies are screened based on whether they convey any valuable information regarding quantum computing and finance, those that do not are excluded from the final pool, the remaining amount are further researched, see figure 5.

### 4 White paper findings

Table 6 and 9 in the appendix give a full overview of papers used and their contents in this following part. Next, a total of 25 white papers are analyzed and taken as a representative sample.

### Algorithms used

To first put into perspective usage of quantum algorithms (Fullquantum algorithms, heuristics, metaheuristics) for PO problems in the 25 whitepapers, chart 5 is made.



Chart 5, Frequency of Quantum-algorithms used

As can be deterred from chart 5, Quantum Annealing (QA) is the most used method, a stark difference as compared to that of the initial literature search. In the use of the whitepapers, quantum annealing is mostly specialized under D-Wave's devices (including QBSOLV), as they have pioneered and extensively commercialized this approach, thereby signifying the companies' prevalence in this industry. Both D-Wave and collaborating companies experiment on D-Wave's devices in multiple whitepapers. Furthermore, a noticeable difference with the initial 57 papers, is the near total absence of Quantum Tabu Search (QTS), and the Variational Quantum Eigensolver (VQE). This may have been due to the VQE's primary use in gate-based quantum computing, of there is significantly less whitepapers on due to its specialized applicability, less 'practical' use in NISQ hardware, and the abundance of whitepapers experimenting on Quantum Annealers. As for QTS, it is a more recent algorithm, could be overshadowed by more 'practical' approaches, and may have had an unreasonable representation in the first literature search (as was mentioned there).

### Use of constraints and different problem sizes

Looking at the use of constraints, it can be said that the findings are mostly in line with those of the first literature search, showing that as more constraints were added, performances in regard to practical usage increased, or were generally very positive [2, 25, 83, 98, 99]. It was perceived that as more constraints were added, that computational resources needed also increased [25, 27]. In the initial literature review it was found that some models did not adhere to set constraints, two instances were found where this was the case in the whitepapers, this was for a real NISQ device, and D-Wave QBSOLV (simulated solver) [2, 43]. The possibility of constraints not being adhered to was also questioned and tested in some additional whitepapers [59, 99]. Findings that were contrary of those in the first literature search were sparse, however, two whitepapers managed to find opposing results. In the first, it was found that as less constraints were added, that only then quantum advantage showed over classical solutions [73]. As constraints are often a result of investor preferences, disobeying these constraints may have led to 'better performances', but not in the eyes of the investor. Furthermore, in one paper it was found that hard constraints performed better in the same model than soft constraints, thereby contradicting the findings in the first literature search. The reason for this contradiction may have been due to the initial paper in that search not adequately incorporating hard constraints (as this often proves to be *difficult*), which in the case of the white paper was done, where a method to better incorporate hard constraints was performed.

As for problem sizes, the findings were the same as the initial literature review, where performance of the quantum devices, mostly theoretically on simulations, showed to increase performances overall [98, 83, 73, 114]. Furthermore, computational resources needed were also found to increase as

problem sizes increased [114]. One paper did find contrary findings to those in the initial literature research, where this paper mentioned that quantum annealing struggled with larger problem sizes, as it was difficult to embed larger problem sizes into the system [36]. However, the device that the problem size was scaled on was the physical D-Wave Advantage, a NISQ device. Whereas real NISQ devices still show issues regarding larger problem sizes, this result was natural for them to find.

### Quantum versus Classical performances

The importance of the division between tests performed via simulated/digital devices and real NISQ devices has to be stressed. Where NISQ devices still show varying limitations and challenges in their computational abilities (*e.g. noise, errors, decoherence, qubit limitations, gate limitations, qubit connectivity, to name a few*), and simulated/digital devices aim to produce a more idealized/theorized environment of testing. The following charts give a representation of NISQ, Classical and simulated/digital performances against each other.



5 papers could not be used for comparison as they included either simulated versus simulated results, and papers that where either unclear on their standpoint, showed similar performances between methods, or were indifferent. Looking at the charts, a lot of interesting conclusions and comparisons can be made. Firstly, the dominance of simulated/digital quantum methods compared to classical ones were shown in chart 6, with simulated methods clearly being superior to classical ones. Experiments performed in the whitepapers showed that simulated methods had greater efficiency, time-to-solve, error rates, practical implementation, and quality of solutions. It is clear that the if the future of quantum computing follows this given, theoretical, outlook, it would mean substantial advancements in optimization and problem-solving capabilities.

As for the comparison between NISQ devices and simulated devices, the same trend followed in the initial literature search is perceived in the white papers: simulated/digital devices consistently outperformed NISQ devices. This outcome is to be expected, as simulated/digital devices can account for some of the current limitations of NISQ hardware.

A very noticeable difference in the comparison between quantum and classical methods was that in 25% of the instances, PO problem solving on real NISQ devices outperformed classical methods. This case was close to the same for the initial literature search, however, there it was mentioned that problem sizes were downsized to compensate for the lack of NISQ hardware to solve large problem sizes. However, in the case of the two papers that outperformed the classical methods, the objective problems and data pools were of more practical use. These two papers are amongst the most relevant in the benchmarking of current NISQ hardware. Nevertheless, they still did not show the full potential of quantum computing.

In the first paper, the D-Wave advantage 6.2 system was used [97], it has 5610 qubits, however, these cannot be used to their full potential due to the limitations in qubit connectivity, coherence times, embedding difficulty, and calibration difficulties, meaning that only a certain small amount of those 5610 qubits can be used close to their potential. Nevertheless, the quantum method performed on the D-Wave Advantage with the Q4FuturePOP algorithm showed better results than industry experts at Welzia Management Company were able to achieve [97]. The experiment performed involved the use of 53 daily values of different assets spanning over a period of 13 years, the dataset is split up in 6 different combinations of periods and asset counts, with periods ranging from 12 to 28 months [97]. The quantum method offered better solutions in more than half of the instances considering either risk measures or expected return measures [97]. Additional information is found in table 6.

The second paper considered the use of the IONQ's trapped ion device 'AQTION' for Quantum Monte Carlo compared to traditional Monte Carlo on 5 asset portfolios, with 1000-euro budgets, over a longer period, and for three different market scenarios (stable, bearish, bullish) [106]. The device showed better performances with QMC than traditional Monte Carlo in terms of error reduction and efficiency [106]. QMC had smaller estimation errors and provided more efficient and accurate means of estimating asset values under stable and bullish market conditions, as queries increased, the QMC achieved less errors compared to normal MC [106]. Quantum speedup was achieved according to the paper [106]. Nevertheless, in the multitude of papers from both the initial literature research, and the white paper research, it was found that current NISQ hardware still has multiple limitations, where better performances compared to classical methods are predominantly not linked to each other.

### **Challenges and limitations**

*Error, Noise, local minima/maximums, resource requirements* Multiple whitepapers acknowledged the importance of error mitigation methods [49, 50]. These whitepapers implemented error mitigation techniques *(e.g. a self-error reduction technique* [49]) to try and show the practicality of it, and its use for more accurate results, which were achieved [49, 50]. Furthermore, it was found that error mitigation techniques were cause for additional computational overhead, thereby decreasing time-tosolution [50]. Unfortunately, no whitepapers were found to specifically operate without error reduction techniques.

As mentioned in 2.4; "a difficult hurdle to overcome was the convergence of the algorithms to local optima. As most of the used problem types *(e.g. non-convex and combinatorial problems)* are cause for there to be many suboptimal solutions". The same was the case for some of the whitepapers, where convergence to local optima was perceived [28, 27], however, it was mentioned in one of the papers that these local minima could easily be avoided through various methods [27]

Considering resource requirements, it follows the trend of the initial literature research, with a direct relation seen between the complexity of the problem and its inherent use of computational resources [28, 27, 45]. In one of the papers it was mentioned that computational resources needed for quantum computing can be anticipated as it follows a linear scheme, on the contrary, classical computing follows an exponential line in computational needs for larger problems [28]. Furthermore, as greater parameter precision was introduced to offer better precision values for more accurate/optimal results, it showed to be cause for greater computational overhead [27]. Next to that, it was found that increased repetitions of the quantum circuit resulted in a higher probability of finding the optimal solution, however, it is definite cause for additional computational overhead [45]. Lastly, one paper showed that the involvement of methods such as QCL enhanced QPE (which were specific to the HHL algorithms used in that instance), and qubit reset and reuse techniques offer more efficiency and thereby less computational overhead, signifying the potential, and the need, for these methods in current NISQ hardware [121]

### **5** Discussion

### Conclusion

What was found in initial literature review was that the most used algorithms included the VQE, QAOA, and QTS. Furthermore, adding real-world constraints improved the accuracy of results, and the likeness to investor preferences. However, coming at the cost of added complexity and computational resources. NISQ devices showed limitations in solving the problems due to increased error rates and noise. Comparing quantum and classical methods showed that in most cases; simulated methods outperformed classical (96%) and quantum methods (80%) based on time-to-solution and accuracy of results. Classical methods outperformed real NISQ devices (63%). As for challenges and limitations, both simulated and quantum devices faced noise and error challenges. Furthermore, a general challenge for certain problem types was the convergence of the algorithm toward a local optimum, thereby disregarding global optima. Certain efforts such as error/noise

mitigation methods showed to increase performances, but at the cost of complexity to the problem and additional computational resources needed, thereby resulting in higher time-to-solution.

In the whitepaper search it was found that most used algorithms were Quantum annealing and its variations such as SA, VA, and QBSOLV, along with moderate use of QAOA and QAOAz algorithms. The reason for this representation in whitepapers is because of D-Wave's prevalence via their own works and collaborations with other companies in the literature availlable. Gate-based quantum computers are of less frequency in whitepapers due to its specialized applicability, less 'practical' use cases in NISQ hardware, and overall smaller development compared to quantum annealers. Therefore, the almost complete absence of VQE can be attributed to these named reasons, as VQE is primarily used on gate-based quantum computers. Most papers considering constraints showed that adding more constraints improved the practical relevance and accuracy of results on quantum methods. However, it was also shown to be cause for additional computational resources needed, thereby increasing time-to-solution. There were also some instances where constraints used were not adhered to, this was the case for a real NISQ device, and D-Wave QBSOLV (simulated solver). Furthermore, Problem sizes were found to have a positive relation with the number of computational resources needed. Simulated methods showed superior performances as compared to classical and quantum methods on NISQ devices, with 100% of the papers used (n = 15) showing the superiority of simulated devices versus classical ones. As for the comparison between quantum and classical methods, 25% (n = 2) of the quantum methods showed improved performances over classical methods in practice. These papers were especially interesting as they utilized the most up-to-date quantum devices the industry currently has to offer (D-Wave Advantage, and IonQ's trappedion device AOTION), showing that for impressive datasets and problem sizes (relative to what NISO devices should be capable of performing), the real quantum hardware outperformed classical solutions. Lastly, the whitepapers showed that the importance of error mitigation techniques was acknowledged, and whitepapers that implemented it showed more accurate results. Two papers recognized the convergence of used algorithms to local optima.

The comparison between the initial literature research and whitepaper search showed that both follow the same trends in; acknowledging the current limitations of NISQ hardware, as shown in both searches, where the general format regarding time-to-solve, performance, accuracy, followed simulation > classical > NISQ devices. Findings in this paper showed that academic literature and the experiments performed in those papers differ marginally from findings in the whitepapers. However, generally it can be assumed that there is a common trend followed in both types of literature. The current limitations of real NISQ-devices are highlighted, and it is shown that even though current NISQ-devices have their limitations, they could still offer some practical significance in finance. However, actual effective widespread application of quantum computers is not something that is likely to be realized in the near future. Hybrid devices may offer a middle ground during the development of real quantum-devices.

### **Practical applications**

As far as practical applications go, this paper can be used for giving insight into current industry applications regarding the development level, use cases, and a more detailed view into the link between theoretical insights and current practical applications/company-findings on quantum computing for finance, specifically portfolio optimization. Furthermore, this paper can be used to give a clear view of benchmarked performances of quantum methods against each other and classical ones, along with current limitations and challenges regarding quantum devices, specifically NISQ devices. Next to that, industry trends in the use of certain algorithms are identified, along with an indication of current problem sizes able to be solved *(mostly mentioned in table 6 and 7)*.

### **Theoretical implications**

As for theoretical implications, this paper does not challenge existing theories, it rather tries to validate existing theories through comparing theoretical implementations, use cases, current industry applications, and company specific research from online databases and whitepapers.

### Limitations

Publication bias is accounted for by performing two different literature searches. Limitations of this study include the small likelihood of the data pool used for both searches not being representative, however the chance of this being true is small as multiple measures have been taken during the gathering of the papers via the Prisma 2020 format to ensure reduced bias in the literature search. the only potential real source of bias that can be found is the misrepresentation in the actual prevalence of quantum annealers in the whitepaper literature. However, this can be justified to a degree by the efforts made from D-Wave to generate a lot of literature through their own research and collaborations made with other companies.

### Future research

Suggested areas which a follow up paper could address is the use of added literature, as this paper includes limited, but high quality, number of papers, where multiple papers have been taken out of the final literature pool because of multiple valid reasons discussed in the PRISMA 2020 flow charts. Introducing additional search terms could bring to light more quality papers to the research Furthermore, an additional topic which could be further addressed and delved into in future research is the addition of more literature on real gate-based quantum computers addressing optimization problems in finance.

# REFERENCES

- 1 Abbas, A., Ambainis, A., Augustino, B., Bärtschi, A., Buhrman, H., Coffrin, C., Cortiana, G., Dunjko, V., Egger, D. J., Elmegreen, B. G., Franco, N., Fratini, F., Fuller, B., Gacon, J., Gonciulea, C., Gribling, S., Gupta, S., Hadfield, S., Heese, R., Kircher, G., Kleinert, T., Koch, T., Korpas, G., Lenk, S., Marecek, J., Markov, V., Mazzola, G., Mensa, S., Mohseni, N., Nannicini, G., O'Meara, C., Peña Tapia, E., Pokutta, S., Proissl, M., Rebentrost, P., Sahin, E., Symons, B. C. B., Tornow, S., Valls, V., Woerner, S., Wolf-Bauwens, M. L., Yard, J., Yarkoni, S., Zechiel, D., Zhuk, S., & Zoufal, C. (2023). Quantum Optimization: Potential, Challenges, and the Path Forward. arXiv:2312.02279. Retrieved December 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv23120227 9A
- 2 Aguilera, E., de Jong, J., Phillipson, F., Taamallah, S., & Vos, M. (2024). Multi-Objective Portfolio Optimization Using a Quantum Annealer. *Mathematics*, 12(9), 1291. https://www.mdpi.com/2227-7390/12/9/1291
- 3 Alaminos, D., Salas, M. B., & Fernández-Gámez, M. A. (2022, Aug). FORECASTING STOCK MARKET CRASHES VIA REAL-TIME RECESSION PROBABILITIES: A QUANTUM COMPUTING APPROACH. Fractals-Complex Geometry Patterns and Scaling in Nature and Society, 30(05), Article 2240162. https://doi.org/10.1142/s0218348x22401624
- 4 Alaminos, D., Salas, M. B., & Fernández-Gámez, M. A. (2023, Jun). Quantum Monte Carlo simulations for estimating FOREX markets: a speculative attacks experience. *Humanities & Social Sciences Communications, 10*(1), Article 353. https://doi.org/10.1057/s41599-023-01836-2
- 5 Albareti, F. D., Ankenbrand, T., Bieri, D., Hänggi, E., Lötscher, D., Stettler, S., & Schöngens, M. (2022). A Structured Survey of Quantum Computing for the Financial Industry. arXiv:2204.10026. Retrieved April 01, 2022, from https://ui.adsabs.harvard.edu/abs/2022arXiv22041002 6A
- 6 Alcazar, J., Leyton-Ortega, V., & Perdomo-Ortiz, A. (2020, Sep). Classical versus quantum models in machine learning: insights from a finance application. *Machine Learning-Science and Technology*, 1(3), Article 035003. https://doi.org/10.1088/2632-2153/ab9009
- 7 Alcazar, J., Vakili, M. G., Kalayci, C. B., & Perdomo-Ortiz, A. (2024, Mar). Enhancing combinatorial optimization with classical and quantum generative models. *Nature Communications*, 15(1), Article 2761. https://doi.org/10.1038/s41467-024-46959-5
- 8 Alessandroni, E., Ramos-Calderer, S., Roth, I., Traversi, E., & Aolita, L. (2023). Alleviating the quantum Big-\$M\$ problem. arXiv:2307.10379. Retrieved July 01, 2023,

from https://ui.adsabs.harvard.edu/abs/2023arXiv23071037 9A

- 9 Alkhafaji, M. A., Ameer, S. A., Alawadi, A. H., & Sharif, H. (2023). Quantum Chameleon Swarm with Fuzzy Decision Making Tool for Financial Risk Management. 6th Iraqi International Conference on Engineering Technology and its Applications, IICETA 2023,
- 10 Arcuri, M. C., Gandolfi, G., & Laurini, F. (2023, 2023/06/01). Robust portfolio optimization for banking foundations: a CVaR approach for asset allocation with mandatory constraints. *Central European Journal of Operations Research*, 31(2), 557-581. https://doi.org/10.1007/s10100-022-00821-5
- 11 Arrazola, J. M., Delgado, A., Bardhan, B. R., & Lloyd, S. (2020, Aug). Quantum-inspired algorithms in practice. *Quantum*, 4, Article 307. https://doi.org/10.22331/q-2020-08-13-307
- 12 Atkinson, D., & Peijnenburg, J. (2022). How Certain is Heisenberg's Uncertainty Principle? HOPOS: The Journal of the International Society for the History of Philosophy of Science, 12(1), 1-21. https://doi.org/10.1086/716930
- 13 Ayodele, M., Allmendinger, R., López-Ibáñez, M., & Parizy, M. (2022). A Study of Scalarisation Techniques for Multi-Objective QUBO Solving. arXiv:2210.11321. Retrieved October 01, 2022, from https://ui.adsabs.harvard.edu/abs/2022arXiv22101132 1A
- 14 Baker, J. S., & Radha, S. K. (2022). Wasserstein Solution Quality and the Quantum Approximate Optimization Algorithm: A Portfolio Optimization Case Study. arXiv:2202.06782. Retrieved February 01, 2022, from https://ui.adsabs.harvard.edu/abs/2022arXiv22020678 2B
- 15 Barde, N., Thakur, D., Bardapurkar, P., & Dalvi, S. (2011, 07/01). Consequences and Limitations of Conventional Computers and their Solutions through Quantum Computers. *Leonardo Electronic Journal of Practices and Technologies*, 10, 161-171.
- 16 Bärtschi, A., & Eidenbenz, S. (2020, Oct 12-16). Grover Mixers for QAOA: Shifting Complexity from Mixer Design to State Preparation. [Ieee international conference on quantum computing and engineering (qce20)]. IEEE International Conference on Quantum Computing and Engineering (QCE), Electr Network.
- 17 Bennett, T., & Wang, J. B. (2021). Quantum optimisation via maximally amplified states. arXiv:2111.00796. Retrieved November 01, 2021, from https://ui.adsabs.harvard.edu/abs/2021arXiv21110079 6B

- 18 Bouchti, A. E., Tribis, Y., Nahhal, T., & Okar, C. (2018). Forecasting financial risk using quantum neural networks. 2018 13th International Conference on Digital Information Management, ICDIM 2018,
- 19 Bouquet, T., Hmyene, M., Porcher, F., Pugliese, L., & Zeroual, J. (2021). Approximating Optimal Asset Allocations using Simulated Bifurcation. arXiv:2108.03092. Retrieved August 01, 2021, from https://ui.adsabs.harvard.edu/abs/2021arXiv21080309 2B
- 20 Bova, F. a. G., Avi and Melko, Roger. (February 2022). Quantum Economic Advantage. *NBER*. https://ssrn.com/abstract=4028340
- 21 BTQ. (2024). Quantum computing: a timeline. https://www.btq.com/blog/quantum-computing-atimeline
- 22 Buonaiuto, G., Gargiulo, F., De Pietro, G., Esposito, M., & Pota, M. (2023, 2023/11/08). Best practices for portfolio optimization by quantum computing, experimented on real quantum devices. *Scientific Reports*, *13*(1), 19434. https://doi.org/10.1038/s41598-023-45392-w
- 23 Caltech Science Exchange. (2024). What is entangelement and why is it important? Caltech. <u>https://scienceexchange.caltech.edu/topics/quantum-</u> <u>science-</u> <u>explained/entanglement#:~:text=When%20two%20pa</u> <u>rticles%2C%20such%20as,from%20the%20connectio</u> <u>n%20between%20particles</u>.
- 24 Carrascal, G., Hernamperez, P., Botella, G., & Barrio, A. D. (2024). Backtesting Quantum Computing Algorithms for Portfolio Optimization [Article]. *IEEE Transactions on Quantum Engineering*, 5, 1-20, Article 3100220. https://doi.org/10.1109/TQE.2023.3337328
- 25 Certo, S., Dung Pham, A., & Beaulieu, D. (2022). Comparing Classical-Quantum Portfolio Optimization with Enhanced Constraints. arXiv:2203.04912. Retrieved March 01, 2022, from https://ui.adsabs.harvard.edu/abs/2022arXiv22030491 2C
- 26 Charles Sturt University. (2024). Systematic literature review meaning. Retrieved 30/07/2024 from https://libguides.csu.edu.au/review/Systematic

27 Chen, B., Wu, H., Yuan, H., Wu, L., & Li, X. (2023). Quasibinary encoding based quantum alternating operator ansatz. arXiv:2304.06915. Retrieved April 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv23040691 5C

28 Chen, C.-C., Chung, S.-L., & Goan, H.-S. (2023). Black-Litterman Portfolio Optimization with Noisy Intermediate-Scale Quantum Computers. arXiv:2312.00892. Retrieved December 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv23120089 2C

- 29 Chimprang, N., & Tansuchat, R. (2022). An Application of Quantum Optimization with Fuzzy Inference System for Stock Index Futures Forecasting. In *Studies in Systems, Decision and Control* (Vol. 429, pp. 393-410). https://doi.org/10.1007/978-3-030-97273-8 27
- 30 Chou, Y. H., Jiang, Y. C., Hsu, Y. R., Kuo, S. Y., & Kuo, S. Y. (2022, Aug). A Weighted Portfolio Optimization Model Based on the Trend Ratio, Emotion Index, and ANGQTS. *Ieee Transactions on Emerging Topics in Computational Intelligence*, 6(4), 867-882. https://doi.org/10.1109/tetci.2021.3118041
- 31 Chou, Y. H., Jiang, Y. C., & Kuo, S. Y. (2021). Portfolio Optimization in Both Long and Short Selling Trading Using Trend Ratios and Quantum-Inspired Evolutionary Algorithms. *Ieee Access*, 9, 152115-152130. https://doi.org/10.1109/access.2021.3126652
- 32 Chou, Y. H., Kuo, S. Y., & Jiang, Y. C. (2019, Aug). A Novel Portfolio Optimization Model Based on Trend Ratio and Evolutionary Computation. *Ieee Transactions on Emerging Topics in Computational Intelligence*, 3(4), 337-350. https://doi.org/10.1109/tetci.2018.2868939
- 33 Cohen, J., & Alexander, C. (2020). Picking Efficient Portfolios from 3,171 US Common Stocks with New Quantum and Classical Solvers. arXiv:2011.01308. Retrieved October 01, 2020, from https://ui.adsabs.harvard.edu/abs/2020arXiv20110130 8C
- 34 Cohen, J., Khan, A., & Alexander, C. (2020). Portfolio Optimization of 40 Stocks Using the DWave Quantum Annealer. arXiv:2007.01430. Retrieved July 01, 2020, from https://ui.adsabs.harvard.edu/abs/2020arXiv20070143 0C
- 35 Cohen, J., Khan, A., & Alexander, C. (2020). Portfolio Optimization of 60 Stocks Using Classical and Quantum Algorithms. arXiv:2008.08669. Retrieved August 01, 2020, from https://ui.adsabs.harvard.edu/abs/2020arXiv20080866 9C

36 Dalzell, A. M., Clader, B. D., Salton, G., Berta, M., Lin, C. Y.-Y., Bader, D. A., Stamatopoulos, N., Schuetz, M. J. A., Brandão, F. G. S. L., Katzgraber, H. G., & Zeng, W. J. (2023, November 01, 2023). End-To-End Resource Analysis for Quantum Interior-Point Methods and Portfolio Optimization. *PRX Quantum*, 4, 040325. https://doi.org/10.1103/PRXQuantum.4.040325

37 Dalzell, A. M., McArdle, S., Berta, M., Bienias, P., Chen, C.-F., Gilyén, A., Hann, C. T., Kastoryano, M. J., Khabiboulline, E. T., Kubica, A., Salton, G., Wang, S., & Brandão, F. G. S. L. (2023). Quantum algorithms: A survey of applications and end-to-end complexities. arXiv:2310.03011. Retrieved October 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv23100301 1D

- 38 de Pedro, L., Murillo, R., de Vergara, J. E. L., López-Buedo, S., & Gómez-Arribas, F. J. (2023, Oct). VaR Estimation with Quantum Computing Noise Correction Using Neural Networks. *Mathematics*, *11*(20), Article 4355. https://doi.org/10.3390/math11204355
- 39 Drucker, A. M., Fleming, P., & Chan, A. W. (2016, Nov). Research Techniques Made Simple: Assessing Risk of Bias in Systematic Reviews. J Invest Dermatol, 136(11), e109-e114. https://doi.org/10.1016/j.jid.2016.08.021
- 40 D-Wave. (2024). What is quantum annealing? https://docs.dwavesys.com/docs/latest/c\_gs\_2.html
- 41 Egger, D. J., Gambella, C., Marecek, J., McFaddin, S., Mevissen, M., Raymond, R., Simonetto, A., Woerner, S., & Yndurain, E. (2020). Quantum Computing for Finance: State of the Art and Future Prospects. arXiv:2006.14510. Retrieved June 01, 2020, from https://ui.adsabs.harvard.edu/abs/2020arXiv20061451 0E
- 42 Egger, D. J., Gambella, C., Marecek, J., McFaddin, S., Mevissen, M., Raymond, R., Simonetto, A., Woerner, S., & Yndurain, E. (2020). Quantum Computing for Finance: State of the Art and Future Prospects. arXiv:2006.14510. Retrieved June 01, 2020, from https://ui.adsabs.harvard.edu/abs/2020arXiv20061451 0E
- 43 Elsokkary, N., Khan, F. S., La Torre, D., Humble, T., & Gottlieb, J. (2017). Financial Portfolio Management using D-Wave Quantum Optimizer: The Case of Abu Dhabi Securities Exchange Conference: 2017 IEEE High-performance Extreme Computing (HPEC) -Waltham, Massachusetts, United States of America -9/12/2017 12:00:00 PM-, United States. https://www.osti.gov/biblio/1423041
- 44 Fernandes, L., Kulkarni, M., & Pande, M. B. (2023). A Systematic Literature Review of Classical and Quantum Machine Learning Approaches for Mutual Fund Portfolio Optimization. 2023 IEEE Pune Section International Conference, PuneCon 2023,
- 45 Gacon, J., Zoufal, C., & Woerner, S. (2020). Quantum-Enhanced Simulation-Based Optimization. Proceedings - IEEE International Conference on Quantum Computing and Engineering, QCE 2020,

- 46 Ganti, A. (2022, June 29, 2024). Understanding capital market line. https://www.investopedia.com/terms/c/cml.asp
- 47 Gilliam, A., Woerner, S., & Gonciulea, C. (2021, Apr). Grover Adaptive Search for Constrained Polynomial Binary Optimization. *Quantum*, 5, Article 428. https://doi.org/10.22331/q-2021-04-08-428
- 48 Giron, M., Korpas, G., Parvaiz, W., Malik, P., & Aspman, J. (2023). Approaching Collateral Optimization for NISQ and Quantum-Inspired Computing. arXiv:2305.16395. Retrieved May 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv23051639 5G
- 49 Goldman Sachs, A. (2023). A detailed end-to-end assessment of quantum algorithm for portfolio optimization. https://aws.amazon.com/blogs/quantum-computing/adetailed-end-to-end-assessment-of-a-quantumalgorithm-for-portfolio-optimization-released-bygoldman-sachs-and-aws/
- 50 Gomez Cadavid, A., Montalban, I., Dalal, A., Solano, E., & Hegade, N. N. (2023). Efficient DCQO Algorithm within the Impulse Regime for Portfolio Optimization. arXiv:2308.15475. Retrieved August 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv23081547 5G
- 51 Gunjan, A., & Bhattacharyya, S. (2023, 2023/05/01). A brief review of portfolio optimization techniques. *Artificial Intelligence Review*, 56(5), 3847-3886. https://doi.org/10.1007/s10462-022-10273-7
- 52 Gunjan, A., & Bhattacharyya, S. (2024, 2024 Mar). Quantum-inspired meta-heuristic approaches for a constrained portfolio optimization problem. *Evolutionary Intelligence*. https://doi.org/10.1007/s12065-024-00929-4
- 53 Gunjan, A., Bhattacharyya, S., & Hassanien, A. E. (2023). Portfolio Optimization Using Quantum-Inspired Modified Genetic Algorithm. Smart Innovation, Systems and Technologies,
- 54 Guo, Z., Song, T., & Lin, G. (2024, 2024/07/09). Portfolio optimization based on quantum linear algorithm. *Physica Scripta*, 99(8), 085107. https://doi.org/10.1088/1402-4896/ad5c1d
- 55 Hargrave, M. (2024). *Netting: definition, how it works, types, benefits, and example.* https://www.investopedia.com/terms/n/netting.asp
- 56 He, G., & Lu, X. L. (2021, Jun). An improved QPSO algorithm and its application in fuzzy portfolio model with constraints. *Soft Computing*, 25(12), 7695-7706. https://doi.org/10.1007/s00500-021-05688-3
- 57 Herman, D., Googin, C., Liu, X., Galda, A., Safro, I., Sun, Y., Pistoia, M., & Alexeev, Y. (2022). A Survey of

Quantum Computing for Finance. arXiv:2201.02773. Retrieved January 01, 2022, from https://ui.adsabs.harvard.edu/abs/2022arXiv22010277 3H

- 58 Hodson, M., Ruck, B., Ong, H., Garvin, D., & Dulman, S. (2019). Portfolio rebalancing experiments using the Quantum Alternating Operator Ansatz. arXiv:1911.05296. Retrieved November 01, 2019, from https://ui.adsabs.harvard.edu/abs/2019arXiv19110529 6H
- 59 Hughes, A. G., Baker, J. S., & Radha, S. K. (2023). A Quantum-Inspired Binary Optimization Algorithm for Representative Selection. arXiv:2301.01836. Retrieved January 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv23010183 6H
- 60 Huot, C., Kea, K., Kim, T.-K., & Han, Y. (2024). Empirical Analysis of Quantum Approximate Optimization Algorithm for Knapsack-based Financial Portfolio Optimization. arXiv:2402.07123. Retrieved February 01, 2024, from https://ui.adsabs.harvard.edu/abs/2024arXiv24020712 3H
- 61 J, Fernando. (2024). Sharpe ratio: definition, formula, and examples. https://www.investopedia.com/terms/s/sharperatio.asp
- 62 Jack Fenn, H. L. (2011). *Gartner hype cycle*. https://www.gartner.com/en/documents/1754719
- 63 Jain, N., & Girish Chandra, M. (2023). Exploring the synergistic potential of quantum annealing and gate model computing for portfolio optimization. arXiv:2305.01480. Retrieved May 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv23050148 0J
- 64 Jain, N., Khandelwal, A., & Girish Chandra, M. (2023).
   Efficient and Flexible Annealer-Gate Hybrid Model for Solving Large-Scale Portfolio Optimization.
   Proceedings - 2023 IEEE International Conference on Quantum Computing and Engineering, QCE 2023,
- 65 Javier Alcazar, M. G. V., Can B. Kalayci,, and Alejandro Perdomo-Ortiz. (2022). *GEO: Enhancing Combinatorial Optimization with Classical and Quantum Generative Models.*
- 66 Jiang, Y. C., Cheam, X. J., Chen, C. Y., Kuo, S. Y., Chou, Y. H., & Ieee. (2018, Oct 07-10). A Novel Portfolio Optimization with Short Selling Using GNQTS and Trend Ratio.*IEEE International Conference on Systems Man and Cybernetics Conference Proceedings* [2018 ieee international conference on systems, man, and cybernetics (smc)]. IEEE International Conference on Systems, Man, and

Cybernetics (SMC), IEEE Syst Man & Cybernet Soc, Miyazaki, JAPAN.

- 67 Jiang, Y. C., Lai, Y. T., Chen, P. C., Chang, Y. Y., Wu, K. M., Kuo, S. Y., Chou, Y. H., Kuo, S. Y., & Ieee. (2023, Jul 02-05). Quantum-inspired Computing: Entanglement-enhanced Technique for Short Portfolio in Global Markets.*IEEE International Conference on Nanotechnology* [2023 ieee 23rd international conference on nanotechnology, nano]. IEEE 23rd International Conference on Nanotechnology (NANO), Jeju, SOUTH KOREA.
- 68 Jiang, Y. C., Yeoh, W. L., Kuo, S. Y., Chou, Y. H., & Ieee. (2018, Oct 07-10). Portfolio Optimization considering Diversified Investment Methods using GNQTS and Trend Ratio.*IEEE International Conference on Systems Man and Cybernetics Conference Proceedings* [2018 ieee international conference on systems, man, and cybernetics (smc)]. IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE Syst Man & Cybernet Soc, Miyazaki, JAPAN.
- 69 JP. Morgan. (2024). Applied research JP Morgan. https://www.jpmorgan.com/technology/appliedresearch
- 70 Kasirajan, V. (2021). The Quantum Superposition Principle and Bloch Sphere Representation. In V. Kasirajan (Ed.), Fundamentals of Quantum Computing: Theory and Practice (pp. 75-104). Springer International Publishing. https://doi.org/10.1007/978-3-030-63689-0\_3
- 71 Kaushik, N., Raj, A., Srivastava, M., Ansari, M. S., Pushpalatha, M., Gayathri, M., Kavisankar, L., Deshpande, S., & Venkatraman, R. (2023). Financial Portfolio Optimization: A QAOA and VQE Formulation for Sharpe Ratio Maximization. Proceedings of the 2023 6th International Conference on Recent Trends in Advance Computing, ICRTAC 2023,
- 72 Kenton, W. (2021). Stochastic modeling: definition, advantage, and who uses it. https://www.investopedia.com/terms/s/stochasticmodeling.asp
- 73 Kerenidis, I., Prakash, A., & Szilágyi, D. (2019). Quantum Algorithms for Portfolio Optimization. arXiv:1908.08040. Retrieved August 01, 2019, from https://ui.adsabs.harvard.edu/abs/2019arXiv19080804 0K
- 74 Khan, A. T., Cao, X. W., Li, S., Hu, B., & Katsikis, V. N. (2021, May). Quantum beetle antennae search: a novel technique for the constrained portfolio optimization problem. *Science China-Information Sciences*, 64(5), Article 152204. https://doi.org/10.1007/s11432-020-2894-9

- 75 Krishnan, A. (2023). Quantum annealing for absolute beginners. https://medium.com/@anjanakrishnan3100/quantumannealing-for-absolute-beginners-d38c51ac2b3f
- 76 Kuo, S. Y., Cheam, X. J., Jiang, Y. C., Lai, Y. T., Chang, K. N., Chou, Y. H., & Ieee. (2019, Oct 06-09). Portfolio Optimization Model using ANQTS with Trend Ratio on Quadratic Regression.*IEEE International Conference on Systems Man and Cybernetics Conference Proceedings* [2019 ieee international conference on systems, man and cybernetics (smc)]. IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, ITALY.
- 77 Kuo, S. Y., Lai, Y. T., Jiang, Y. C., Chang, M. H., Wu, K. M., Chen, P. C., Chang, Y. Y., Tong, Y. F., Chou, Y. H., & Acm. (2023, Jul 15-19). Entanglement Local Search-Assisted Quantum-Inspired Optimization for Portfolio Optimization in G20 Markets. [Proceedings of the 2023 genetic and evolutionary computation conference companion, gecco 2023 companion]. Genetic and Evolutionary Computation Conference (GECCO), Lisbon, PORTUGAL.
- 78 Lang, J., Zielinski, S., & Feld, S. (2022, Dec). Strategic Portfolio Optimization Using Simulated, Digital, and Quantum Annealing. *Applied Sciences-Basel*, 12(23), Article 12288. https://doi.org/10.3390/app122312288
- 79 Li, F. e. a. (2021). Portfolio optimization [Computational Optimization Open Textbook ]. https://optimization.cbe.cornell.edu/index.php?title=P ortfolio\_optimization
- 80 Li, Q. H., Wu, H., Qian, W. Z., Li, X. Y., Zhu, Q. S., & Yang, S. (2022, Jul 15-20). Portfolio Optimization Based on Quantum HHL Algorithm.*Lecture Notes in Computer Science* [Artificial intelligence and security, icais 2022, pt ii]. 8th International Conference on Artificial Intelligence and Security (ICAIS), Qinghai, PEOPLES R CHINA.
- 81 Liu, C.-Y., & Goan, H.-S. (2022). Hybrid Gate-Based and Annealing Quantum Computing for Large-Size Ising Problems. arXiv:2208.03283. Retrieved August 01, 2022, from https://ui.adsabs.harvard.edu/abs/2022arXiv22080328 3L
- 82 Lu, X. L., & He, G. (2021, Feb). QPSO algorithm based on Levy flight and its application in fuzzy portfolio. *Applied Soft Computing*, 99, Article 106894. https://doi.org/10.1016/j.asoc.2020.106894
- 83 M. Esencan, C. F., A. Ho, T. Kumar, C. Unlu. (2023). Improved and large-scale portfolio optimization using vector annealing. https://icosacomputing.com/wpcontent/uploads/2023/10/icosa-whitepaper-1.pdf
- 84 M, Zandjirdar. (2020). Overview of PO models. Advances in Mathematical finance & applications, 5(4).

https://sanad.iau.ir/journal/amfa/Article/674941?jid=674941

- 85 Maiyahi, S. S. A. (2019). *Efficient frontier curve*. https://www.linkedin.com/pulse/efficient-frontiercurve-sultan-saif-al-maiyahi
- 86 Management, Morgan Stanley Investment. (2020). *Quantum Computing*. https://www.morganstanley.com/im/enus/individual-investor/insights/articles/quantumcomputing.html

87 Mathworks. (2024). *What is convex optimization*? Retrieved 30/07/2024 from https://www.mathworks.com/discovery/convex-optimization.html

88 Mattesi, M., Asproni, L., Mattia, C., Tufano, S., Ranieri, G., Caputo, D., & Corbelletto, D. (2023). Diversifying Investments and Maximizing Sharpe Ratio: a novel QUBO formulation. arXiv:2302.12291. Retrieved February 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv23021229 1M

- 89 Mironowicz, P., Shenoy H., A., Mandarino, A., Yilmaz, A. E., & Ankenbrand, T. (2024). Applications of Quantum Machine Learning for Quantitative Finance. arXiv:2405.10119. Retrieved May 01, 2024, from https://ui.adsabs.harvard.edu/abs/2024arXiv24051011 9M
- 90 Moore, G. (1965). Moore's law. *Electronics Magazine*, *38*(8), 114.
- 91 Mugel, S., Abad, M., Bermejo, M., Sánchez, J., Lizaso, E., & Orús, R. (2021, Oct). Hybrid quantum investment optimization with minimal holding period. *Scientific Reports*, 11(1), Article 19587. https://doi.org/10.1038/s41598-021-98297-x
- 92 Mugel, S., Kuchkovsky, C., Sánchez, E., Fernández-Lorenzo, S., Luis-Hita, J., Lizaso, E., & Orús, R. (2022, Jan). Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks. *Physical Review Research*, 4(1), Article 013006. https://doi.org/10.1103/PhysRevResearch.4.013006
- 93 Mugel, S., Lizaso, E., & Orús, R. (2022). Use Cases of Quantum Optimization for Finance. In *Studies in Systems, Decision and Control* (Vol. 429, pp. 211-220). https://doi.org/10.1007/978-3-030-97273-8\_15
- 94 Naik, A., Yeniaras, E., Hellstern, G., Prasad, G., & Lalta Prasad Vishwakarma, S. K. (2023). From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance. arXiv:2307.01155. Retrieved June 01, 2023, from

https://ui.adsabs.harvard.edu/abs/2023arXiv23070115 5N

- 95 NOREA. (2024). Quantum annealing explained. https://www.norea.nl/uploads/bfile/b2f8c1cd-f550-427e-90ac-535ee9e79af8
- 96 NOREA. (2024). Quantum computing explained. https://www.norea.nl/uploads/bfile/b90d6290-5f15-4736-9cb8-4a001d1539a8
- 97 Osaba, E., Gelabert, G., Villar-Rodriguez, E., Asla, A., & Oregi, I. (2023). A Quantum Computing-based System for Portfolio Optimization using Future Asset Values and Automatic Reduction of the Investment Universe. arXiv:2309.12627. Retrieved September 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv23091262 70
- 98 Palmer, S., Karagiannis, K., Florence, A., Rodriguez, A., Orus, R., Naik, H., & Mugel, S. (2022). Financial Index Tracking via Quantum Computing with Cardinality Constraints. https://ui.adsabs.harvard.edu/abs/2022arXiv22081138 0P
- 99 Palmer, S., Sahin, S., Hernandez, R., Mugel, S., & Orus, R. (2021). Quantum Portfolio Optimization with Investment Bands and Target Volatility. arXiv:2106.06735. Retrieved June 01, 2021, from https://ui.adsabs.harvard.edu/abs/2021arXiv21060673 5P
- 100 Perri, L. (2023). What's New in the 2023 Gartner Hype Cycle for Emerging Technologies. https://www.gartner.com/en/articles/what-s-new-inthe-2023-gartner-hype-cycle-for-emergingtechnologies
- 101 Pistoia, M., Farhan Ahmad, S., Ajagekar, A., Buts, A., Chakrabarti, S., Herman, D., Hu, S., Jena, A., Minssen, P., Niroula, P., Rattew, A., Sun, Y., & Yalovetzky, R. (2021). Quantum Machine Learning for Finance. arXiv:2109.04298. Retrieved September 01, 2021, from https://ui.adsabs.harvard.edu/abs/2021arXiv21090429 8P
- 102 Powell, J. R. (2008). The Quantum Limit to Moore's Law. *Proceedings of the IEEE, 96*(8), 1247-1248. https://doi.org/10.1109/JPROC.2008.925411
- 103 Qu, D. K., Matwiejew, E., Wang, K. K., Wang, J. B., & Xue, P. (2024, Apr). Experimental implementation of quantum-walk-based portfolio optimization. *Quantum Science and Technology*, 9(2), Article 025014. https://doi.org/10.1088/2058-9565/ad27e9
- 104 Ramaiah, K., & Soundarabai, P. B. (2024, 2024 Feb). A constrained multi-period portfolio optimization model based on quantum-inspired optimization. *Multimedia*

Tools and Applications. https://doi.org/10.1007/s11042-024-18597-y

- 105 Rounds, M., Rosenberg, G. (2018). Long-Short Minimum Risk Parity Optimization Using a Quantum or Digital Annealer.
- 106 Sanz-Fernandez, C., Hernandez, R., Marciniak, C. D., Pogorelov, I., Monz, T., Benfenati, F., Mugel, S., & Orus, R. (2021). Quantum portfolio value forecasting. arXiv:2111.14970. Retrieved November 01, 2021, from https://ui.adsabs.harvard.edu/abs/2021arXiv21111497 0S
- 107 Shalf, J. (2020, 01/20). The future of computing beyond Moore's Law. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378, 20190061. https://doi.org/10.1098/rsta.2019.0061
- 108 Sheldon, R. (2022). bit (binary digit). https://www.techtarget.com/whatis/definition/bitbinarydigit#:~:text=A%20bit%20(binary%20digit)%20is,%2 Foff%20or%20true%2Ffalse
- 109 Singh Gill, S., Kumar, A., Singh, H., Singh, M., Kaur, K., Usman, M., & Buyya, R. (2020). Quantum Computing: A Taxonomy, Systematic Review and Future Directions. arXiv:2010.15559. Retrieved September 01, 2020, from https://ui.adsabs.harvard.edu/abs/2020arXiv20101555 9S
- 110 Singh, J., & Bhangu, K. S. (2023, 2023/01/01). Contemporary Quantum Computing Use Cases: Taxonomy, Review and Challenges. Archives of Computational Methods in Engineering, 30(1), 615-638. https://doi.org/10.1007/s11831-022-09809-5
- 111 Slate, N., Matwiejew, E., Marsh, S., & Wang, J. B. (2021, Jul). Quantum walk-based portfolio optimisation. *Quantum*, 5. https://doi.org/10.22331/q-2021-07-28-513
- 112 Smith, C. S. (2024 May 9). Top 10 quantum computing companies making change. Forbes. https://www.forbes.com/sites/technology/article/topquantum-computing-companies/?sh=7243cd83a941
- 113 Stackpole, B. (2024). *Quantum computing: what leaders need to know*. https://mitsloan.mit.edu/ideas-made-tomatter/quantum-computing-what-leaders-need-toknow-now
- 114 Steinhauer, K., Fukadai, T., & Yoshida, S. (2020). Solving the Optimal Trading Trajectory Problem Using Simulated Bifurcation. arXiv:2009.08412. Retrieved September 01, 2020, from https://ui.adsabs.harvard.edu/abs/2020arXiv20090841 2S

- 115 Stuart Robertson, D. J. (2022). Quantum Computing New Paradigm or False Dawn? https://www.lek.com/insights/ei/quantum-computingnew-paradigm-or-false-dawn
- 116 Surya Teja Marella, H. S. K. P. (2022). Introduction to quantum computing. In *Quantum computing and Communications*. https://books.google.nl/books?hl=nl&lr=&id=KF5iEA AAQBAJ&oi=fnd&pg=PA61&dq=advantages+of+qu antum+computing&ots=R2UKAAVQDV&sig=J8-TfmwerFfHaKLs90lUKJEw9nw&redir\_esc=y#v=one page&q&f=false
- 117 Tardi, C. (2024, 06/06/2024). *Financial portfolio: what is it, and how to create and manage one.* https://www.investopedia.com/terms/p/portfolio.asp
- 118 Tripathy, S. S., Koul, N., & Patel, H. (2022). Comparative Study between Quantum and Classical Methods: Few Observations from Portfolio Optimization Problem. 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies, TQCEBT 2022,
- 119 Venturelli, D., & Kondratyev, A. (2019, May). Reverse quantum annealing approach to portfolio optimization problems. *Quantum Machine Intelligence*, 1(1-2), 17-30. https://doi.org/10.1007/s42484-019-00001-w
- 120 Xu, H. J., Dasgupta, S., Pothen, A., & Banerjee, A. (2023, Mar). Dynamic Asset Allocation with Expected Shortfall via Quantum Annealing. *Entropy*, 25(3), Article 541. https://doi.org/10.3390/e25030541

121 Yalovetzky, R. (2021). *NISQ-HHL Portfolio optimization* for near-term quantum hardware. https://www.jpmorgan.com/content/dam/jpm/cib/complex/conte

nt/ps://www.jpin/gan.com/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo/complex/content/dam/jpin/clo

# Appendix



Figure 4, PRISMA 2020 Flowchart



Figure 5, PRISMA 2020 adjusted flow chart for corporate white papers



Figure 6, visualization of main quantum computing process

|           | Keywords                                       |  |  |  |  |
|-----------|------------------------------------------------|--|--|--|--|
| Initial   | "portfolio", "optimization", "quantum",        |  |  |  |  |
| search    | "computing", "quantum optimization",           |  |  |  |  |
|           | "analysis", "methods", "simulation",           |  |  |  |  |
|           | "investment"                                   |  |  |  |  |
| Secondary | "quantum algorithm", "quantum finance",        |  |  |  |  |
| search    | "quantum annealing", "financial optimization", |  |  |  |  |
|           | "financial modeling", "portfolio management",  |  |  |  |  |
|           | "risk management", "optimization model",       |  |  |  |  |
|           | "optimization techniques", "asset allocation". |  |  |  |  |
|           | "QUBO", "eigensolver", "forecasting",          |  |  |  |  |

Table 1; Keywords

| Criteria                   | Reason for inclusion          |
|----------------------------|-------------------------------|
| Studies from the timeframe | 2011 was when quantum         |
| of 2011-2024               | computing first appeared on   |
|                            | the Gartner hype cycle and    |
|                            | marks the first physical step |
|                            | towards quantum supremacy,    |
|                            | therefore making room to      |
|                            | (dis)prove previous articles. |
| Literature containing the  | Ensuring that keyword         |
| named combinations of      | combinations made in table 2  |
| keywords from table 2 in   | are included in the chosen    |
| either the article title,  | literature                    |
| abstract, or keywords      |                               |

**Table 3: Inclusion Criteria** 

| Criteria                       | Reason for exclusion           |
|--------------------------------|--------------------------------|
| Literature not containing      | Ensuring that keyword          |
| the named keyword              | combinations made are          |
| combination from table 2 in    | included in the chosen         |
| the title, abstract, or        | literature                     |
| keywords                       |                                |
| Exclude literature not         | Narrows down the results and   |
| published in the English       | facilitates consistent         |
| language                       | understanding of literature    |
| Exclude literature made        | Literature before 2011 has an  |
| before 2011                    | increased risk of giving out   |
|                                | wrongful information as the    |
|                                | field of quantum computing     |
|                                | has rapidly evolved after that |
|                                | timeframe                      |
| Exclude unfinished             | Literature ought to be         |
| literature                     | finished, as unfinished        |
|                                | literature poses the risk of   |
|                                | non-representative findings    |
| Duplicate papers (papers       | Duplicate papers ought to be   |
| that are identical either on   | excluded as they serve no      |
| different databases, or in the | additional purpose             |
| same one)                      |                                |

## Table 4: Exclusion Criteria

| Comparison made          | Papers                                                                                                                                                               |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Simulated/digital versus | Simulated:                                                                                                                                                           |
| Classical                | [4], [6], [7], [9], [13], [17],<br>[18], [24], [29], [30], [41],<br>[51], [52], [53], [63], [64],<br>[66], [71], [74], [77], [80],<br>[82], [88], [92], [104], [118] |
|                          | Classical:                                                                                                                                                           |
|                          | [11]                                                                                                                                                                 |
| Quantum versus Classical | Quantum:                                                                                                                                                             |

|                          | [8], [91], [119]<br>Classical:<br>[14], [22], [24], [44], [47] |
|--------------------------|----------------------------------------------------------------|
| Simulated/Digital versus | Quantum:                                                       |
| Quantum                  | [120]                                                          |
|                          |                                                                |
|                          | Simulated:                                                     |
|                          | [24], [60], [78], [81]                                         |
| Simulated vs Simulated   | [3], [56], [103], [111]                                        |
| Indifferent, Unclear, or | [37], [38], [48], [67], [68],                                  |
| Similar Performances     | [76]                                                           |

Table 8, An insight into each academic paper's findings

| Comparison made          | Papers                         |
|--------------------------|--------------------------------|
| Simulated/digital versus | Simulated:                     |
| Classical                | [105], [2], [19], [28], [45],  |
|                          | [49], [83], [73], [121], [99], |
|                          | [58], [114], [7], [33], [36]   |
|                          |                                |
|                          | Classical:                     |
|                          | N/A                            |
| Quantum versus Classical | Quantum:                       |
|                          | [97], [106]                    |
|                          |                                |
|                          | Classical:                     |
|                          | [2], [25], [28], [34], [35],   |
|                          | [36]                           |
| Simulated/Digital versus | Quantum:                       |
| Quantum                  | N/A                            |
|                          |                                |
|                          | Simulated:                     |
|                          | [2], [33], [ 35], [36]         |
| Simulated vs Simulated   | [27]                           |
| Indifferent, Unclear, or | [43], [50], [59], [121] , [98] |
| Similar Performances     |                                |

Table 9, An insight into each white paper's findings

|              | Prompts |                                                                     | Initial re | sults (ArXiv                        | Results v  | vith exclusion and                  |
|--------------|---------|---------------------------------------------------------------------|------------|-------------------------------------|------------|-------------------------------------|
|              | 1       |                                                                     | Search in  | n 'all fields')                     | inclusion  | criteria (not                       |
|              |         |                                                                     |            | ,                                   | accountin  | ng for duplicates)                  |
|              |         |                                                                     |            |                                     | (for Arvi  | v this is done                      |
|              |         |                                                                     |            |                                     | manually   | v along with direct                 |
|              |         |                                                                     |            |                                     | observati  | ion of potential use                |
|              |         |                                                                     |            |                                     | for this r | esearch)                            |
| Varyyand     | 1       | Quantum AND commute AND controlic AND contine                       | 1          | $S_{aamuaa} = 02$                   |            | $\frac{1}{2}$                       |
| Reywold      | 1.      | Quantum AND comput <sup>®</sup> AND portions AND optim <sup>®</sup> | 1.         | Scopus. II $= 95$<br>WeSt $n = 51$  | 1.         | 3 $copus. n = 40$                   |
| combinations | 2.      | Portiono AND opum <sup>*</sup> AND quantum                          |            | wos: n = 51                         |            | wos: $n = 49$                       |
|              | 3.      | (Quantum AND optim* AND portfolio) AND                              |            | Arxiv: $n = 29$                     |            | Arxiv: $n = 15$                     |
|              |         | (invest* OR algorithm)                                              | 2.         | Scopus: $n = 159$                   | 2.         | Scopus: $n = 134$                   |
|              | 4.      | Quantum AND simulation AND portfolio                                |            | WoS: $n = 100$                      |            | WoS: $n = 95$                       |
|              | 5.      | Quantum AND portfolio AND optim* AND                                |            | Arxiv: $n = 97$                     | -          | Arxiv: $n = 35$                     |
|              |         | algorithm                                                           | 3.         | Scopus: $n = 123$                   | 3.         | Scopus: $n = 105$                   |
|              | 6.      | Quantum AND machine AND learning AND                                |            | WoS: $n = 79$                       |            | WoS: $n = 78$                       |
|              |         | portfolio                                                           |            | Arxiv: $n = 82$                     |            | Arxiv: $n = 18$                     |
|              | 7.      | Quantum AND algorithm AND finan* AND portfolio                      | 4.         | Scopus: $n = 50$                    | 4.         | Scopus: $n = 37$                    |
|              | 8.      | (Quantum AND portfolio AND optim*) AND                              |            | WoS: $n = 22$                       |            | WoS: $n = 20$                       |
|              |         | (methods OR techniques)                                             |            | Arxiv: $n = 29$                     |            | Arxiv: $n = 5$                      |
|              | 9.      | Quantum AND Portfolio AND management AND                            | 5.         | Scopus: $n = 103$                   | 5.         | Scopus: n = 86                      |
|              |         | optim*                                                              |            | WoS: $n = 69$                       |            | WoS: $n = 68$                       |
|              | 10.     | (Quantum AND risk AND forecast*) AND (finan*                        |            | Arxiv: $n = 73$                     |            | Arxiv: $n = 4$                      |
|              |         | OR management)                                                      | 6.         | Scopus: $n = 37$                    | 6.         | Scopus: $n = 30$                    |
|              | 11.     | Quantum AND portfolio AND asset AND allocation                      |            | WoS: $n = 14$                       |            | WoS: $n = 14$                       |
|              | 12.     | (Quantum AND optim* AND portfolio) AND                              |            | Arxiv: $n = 19$                     |            | Arxiv: $n = 2$                      |
|              |         | (techniques OR risk OR model*)                                      | 7.         | Scopus: $n = 88$                    | 7.         | Scopus: $n = 79$                    |
|              | 13.     | (Quantum AND methods AND portfolio) AND                             |            | WoS: $n = 44$                       |            | WoS: $n = 42$                       |
|              | _       | (optim* OR finan* OR model)                                         |            | Arxiv: $n = 45$                     |            | Arxiv: $n = 0$                      |
|              | 14.     | Quantum AND QUBO AND portfolio                                      | 8.         | Scopus: $n = 82$                    | 8.         | Scopus: $n = 71$                    |
|              | 15      | Quantum AND eigensolver AND portfolio                               | 0.         | WoS: $n = 48$                       | 0.         | WoS: $n = 48$                       |
|              | 16      | Quantum AND forecast* AND portfolio                                 |            | Arxiv: $n = 51$                     |            | Arxiv: $n = 1$                      |
|              | 10.     | Quantum Th' D Torocast Th' D portiono                               | 9          | Scopus: $n = 35$                    | 9          | Sconus: $n = 27$                    |
|              | And for | ArXiv these additional searches were done.                          | ).         | WoS: $n = 12$                       | γ.         | WoS: $n = 12$                       |
|              | 17      | Quantum AND finan* AND model* AND ontim*                            |            | Arviv: $n = 27$                     |            | $\Lambda r v i v : n = 2$           |
|              | 17.     | Quantum AND finan* AND antim* AND algorithm                         | 10         | ATAIV: $n = 27$<br>Scopus: $n = 45$ | 10         | ALXIV: $II = 2$<br>Sconus: $n = 37$ |
|              | 10.     | Quantum AND Iman AND optim AND algorithm                            | 10.        | $W_{2}S_{1} = 12$                   | 10.        | $W_0 S_1 = 12$                      |
|              |         |                                                                     |            | wos. II – 13                        |            | 12                                  |
|              |         |                                                                     | 11         | Arxiv: $n = 4$                      | 11         | Arxiv: $n = 1$                      |
|              |         |                                                                     | 11.        | Scopus: $n = 8$                     | 11.        | Scopus: $n = 6$                     |
|              |         |                                                                     |            | wos: $n = 5$                        |            | wos: $n = 4$                        |
|              |         |                                                                     | 10         | Arxiv: $n = 10$                     | 10         | Arxiv: $n = 1$                      |
|              |         |                                                                     | 12.        | Scopus: $n = 117$                   | 12.        | Scopus: $n = 97$                    |
|              |         |                                                                     |            | WoS: $n = 66$                       |            | WoS: $n = 63$                       |
|              |         |                                                                     |            | Arxiv: $n = 83$                     |            | Arxiv: $n = 2$                      |
|              |         |                                                                     | 13.        | Scopus: $n = 90$                    | 13.        | Scopus: $n = 73$                    |
|              |         |                                                                     |            | WoS: $n = 47$                       |            | WoS: $n = 43$                       |
|              |         |                                                                     |            | Arxiv: $n = 40$                     |            | Arxiv: $n = 0$                      |
|              |         |                                                                     | 14.        | Scopus: $n = 12$                    | 14.        | Scopus: $n = 12$                    |
|              |         |                                                                     |            | WoS: $n = 9$                        |            | WoS: $n = 9$                        |
|              |         |                                                                     |            | Arxiv: $n = 11$                     |            | Arxiv: $n = 0$                      |
|              |         |                                                                     | 15.        | Scopus: $n = 6$                     | 15.        | Scopus: $n = 6$                     |
|              |         |                                                                     |            | WoS: $n = 3$                        |            | WoS: $n = 3$                        |
|              |         |                                                                     |            | Arxiv: $n = 6$                      |            | Arxiv: $n = 1$                      |
|              |         |                                                                     | 16.        | Scopus: $n = 10$                    | 16.        | Scopus: $n = 10$                    |

| WoS: $n = 3$<br>Arxiv: $n = 1$ 17.Arxiv: $n = 72$ 18.Arxiv: $n = 38$    | WoS: $n = 3$<br>Arxiv: $n = 1$<br>17. Arxiv: $n = 14$<br>18. Arxiv: $n = 4$ |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Total: n = 2.369<br>Scopus: n = 1.058<br>WoS: n = 585<br>Arxiv: n = 729 | Total: n = 1.560<br>Scopus: n = 891<br>WoS: n = 563<br>Arxiv: n = 106       |

Table 2: keyword combinations and search results

|         | Table 5, search results in unrefent stages for initial interature search |                 |                                               |                           |                                                |                                  |
|---------|--------------------------------------------------------------------------|-----------------|-----------------------------------------------|---------------------------|------------------------------------------------|----------------------------------|
|         | Results with in                                                          | clusion and     | Results with inclusion and exclusion criteria |                           | Results with in                                | clusion and exclusion criteria   |
|         | exclusion crite                                                          | ria             |                                               |                           | (accounting fo                                 | r duplicate literature and       |
|         | (not accounting for duplicates)                                          |                 | (accounting for duplicate literature)         |                           | abstract, title,                               | full-text screening, articles    |
|         |                                                                          |                 |                                               |                           | that were adde                                 | ed later, articles not used, and |
|         |                                                                          |                 |                                               |                           | white papers t                                 | ransferred/deleted:)             |
| Results | Articles with in                                                         | clusion and     | Articles with                                 | n inclusion and exclusion | Articles with in                               | clusion and exclusion criteria   |
|         | exclusion criter                                                         | ria,            | criteria, acco                                | ounting for duplicates:   | accounting for duplicate literature, abstract, |                                  |
|         | not accounting                                                           | for duplicates: | Total:                                        | n = 340                   | title, full-text so                            | creening, papers that were       |
|         | Total: $n = 1.560$                                                       |                 |                                               |                           | added later, papers not used, and white papers |                                  |
|         | Scopus:                                                                  | n = 891         | Duplicates excluded in the same database:     |                           | transferred/dele                               | eted:                            |
|         | WoS:                                                                     | n = 563         | Total:                                        | n = 1.127                 | Total:                                         | n = 340                          |
|         | Arxiv:                                                                   | n = 106         | Scopus:                                       | n = 686                   | Excluded:                                      | n = 185                          |
|         |                                                                          |                 | WoS:                                          | n = 438                   |                                                |                                  |
|         |                                                                          |                 | Arxiv:                                        | n = 3                     | Reports added                                  | (n = 8)                          |
|         |                                                                          |                 |                                               |                           | Reports not use                                | d(n = 65)                        |
|         |                                                                          |                 | Duplicates excluded among all databases       |                           | White papers transferred $(n = 22)$            |                                  |
|         |                                                                          |                 | together:                                     |                           | White papers deleted because they were         |                                  |
|         |                                                                          |                 | Total:                                        | n = 93                    | duplicate ( $n = 1$                            | 6)                               |
|         |                                                                          |                 |                                               |                           |                                                |                                  |
|         |                                                                          |                 | Total duplic                                  | ates: $n = 1.220$         | Total end numb                                 | per of reports $(n = 57)$        |

| Table 5. se  | earch results in | different stages  | for initial | literature search |
|--------------|------------------|-------------------|-------------|-------------------|
| 1 abic 5, 50 | caren results in | uniter ent stages | ioi mittai  | nici ature scaren |

| Table 6   | Insight into | White Paner | findings ( | Table 7 s | tarts on nage 57  | ) |
|-----------|--------------|-------------|------------|-----------|-------------------|---|
| 1 abic 0, | margine meo  | white raper | innunigs ( | rable / s | tar to on page 57 | , |

| Paper (25)         | Challenge addressed     | Main findings/purpose                                  | Quantum          | Additional |
|--------------------|-------------------------|--------------------------------------------------------|------------------|------------|
| (Actors            | / Introduction          |                                                        | hardware,        | specifics  |
| involved, or       |                         |                                                        | Quantum          | _          |
| whom the           |                         |                                                        | algorithm,       |            |
| authors are        |                         |                                                        | Methodology, Use |            |
| affiliated         |                         |                                                        | case             |            |
| to)                |                         |                                                        |                  |            |
| (Authors)          |                         |                                                        |                  |            |
| (Year)             |                         |                                                        |                  |            |
| [105]              | This white paper is     | Objective:                                             | Ouantum system:  |            |
| Long-short         | issued by 10bit and     | - Propose a weight allocation strategy where a         |                  |            |
| minimum            | entails a novel         | direction is assigned to each weight encompassing      |                  |            |
| risk parity        | approach to PO which    | either a short or long position, this is to ultimately | Algorithms used: |            |
| optimizatio        | addresses the issue     | reduce volatility and improve risk-adjusted returns    | Tabu Solver (TS) |            |
| n using a          | that many weight        | for portfolios compared to traditional methods.        |                  |            |
| digital            | allocation strategies   | - Furthermore, the proposed method is back tested on   | Methodology:     |            |
| annealer           | result in long-term     | three datasets using a multi-start tabu 1-opt search   | Optimization     |            |
|                    | portfolio positions.    | with 100 starts (to act as a stand-in for the quantum  | 1                |            |
| (1Qbit)            | The proposed strategy   | digital annealer) and a sliding window mechanism of    | Use case:        |            |
|                    | is one where            | three months, portfolios were rebalanced on the first  | Portfolio        |            |
| (Gili<br>Dosonhong | directions (long or     | day of the month                                       | optimization     |            |
| and                | short positions) are    | - To collect statistical data to run the algorithm on. | -1               |            |
| Maxwell            | assigned to each        | bootstrapping is used with 25 samples                  |                  |            |
| Rounds.,           | weight allocation so    |                                                        |                  |            |
| 2018)              | that the variance of    | Datasets:                                              |                  |            |
|                    | the portfolio is either | - Dataset 1 specifics: a portfolio for a commodity     |                  |            |
|                    | minimized or            | trading advisor (CTA) consisting of 38 futures         |                  |            |
|                    | maximized               | contracts including stocks and bond of different       |                  |            |
|                    | inuxinin200.            | countries as well as commodities such as oil wheat     |                  |            |
|                    | Furthermore this        | and gold                                               |                  |            |
|                    | proposed problem        | - Dataset 2 specifics: Dow Jones Industrial Average    |                  |            |
|                    | formulation is then     | consisting of 30 large-cap US stocks                   |                  |            |
|                    | shown to be             | - Dataset 3 specifics: nine S&P 500 sector ETFs        |                  |            |
|                    | applicable towards      |                                                        |                  |            |
|                    | real quantum            | Evaluation:                                            |                  |            |
|                    | annealers of D-Wave     | - Show the performance acquired by the proposed        |                  |            |
|                    | Systems, and the        | formulation, it is applied on different methods        |                  |            |
|                    | Digital Annealer of     | (inverse variance parity, equal weighting, minimum     |                  |            |
|                    | Fujitsu                 | variance, hierarchical risk parity, and quantum        |                  |            |
|                    | -                       | hierarchical risk-parity) used to show its improved    |                  |            |
|                    | Next to that, back      | efficiency and performance                             |                  |            |
|                    | tested results are      | _                                                      |                  |            |
|                    | shown for the           | Results:                                               |                  |            |
|                    | problem formulation     | - With the weighting methods used, it can concluded    |                  |            |
|                    | on three datasets       | that the proposed method would outperform              |                  |            |
|                    | using a tabu solver.    | traditional methods in a risk-parity situation for PO, |                  |            |
|                    |                         | - "Our results suggest that by utilizing intelligent   |                  |            |
|                    |                         | shorting, this method is able to reduce the volatility |                  |            |
|                    |                         | of long-only strategies, leading to shorter maximum    |                  |            |
|                    |                         | drawdowns and higher Sharpe ratios, albeit with a      |                  |            |
|                    |                         | higher turnover." (p. 1)                               |                  |            |
|                    |                         |                                                        |                  |            |

| [2]           | "In this study the     | Objectiv | e(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quantum hardware:    | Solving of multi-   |
|---------------|------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|
| Multi-        | portfolio optimization | objectiv | Using OUBO on simulated and physical quantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Simulated / physical | objective portfolio |
| Objective     | problem is explored,   | -        | annoaling, the paper sought to optimize a multi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | annoaling            | objective portiono  |
| Portfolio     | using a combination    |          | allicating, the paper sought to optimize a multi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | anneanng             |                     |
| Optimizati    | of classical and       |          | objective portiono optimization problem specialized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | problem by          |
| on Using a    | quantum computing      |          | for two made QUBO formulations (QUBOI and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quantum algorithm:   | deducting a         |
| Quantum       | techniques" (p.1)      |          | QUBO2) from a real financial case considering the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QUBO                 | specific real-      |
| Annealer      |                        |          | next variables: the return per asset, outstanding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | world case into a   |
|               | Furthermore, "In this  |          | amount per asset, regulatory capital per asset, lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Methodology:         | QUBO problem        |
| (Rabobank,    | paper, a specific      |          | and upper bound outstanding amounts per asset, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Optimization         | formulation for a   |
| School of     | problem is introduced, |          | an emission intensity/reduction per asset (p. 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | quantum annealer    |
| business      | where a portfolio of   | -        | The two QUBO models were then subsequently                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Use case:            | (p.3)               |
| economics     | loans needs to be      |          | experimented upon using, where a classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Multi-objective      |                     |
| Maastricht)   | optimized for 2030,    |          | benchmark is used a baseline to compare results with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | portfolio            | Next to that, a     |
|               | considering 'Return    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | optimization         | specific variant of |
| (Aguilera     | on Capital' and        | Results: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | multi-objective     |
| er al., 2024) | 'Concentration Risk'   | -        | The results after putting in the data in both simulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | optimization is     |
|               | objectives, as well as |          | and physical annealing were compared to a classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | used that aims to   |
|               | a carbon footprint     |          | convex optimization approach, where the classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | find the most       |
|               | constraint. This paper |          | approach yielded less portfolios that fit emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | efficient pareto    |
|               | introduces the         |          | constraints and was increasingly slower than QUBO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | frontier of a       |
|               | formulation of the     |          | (not QUBO1) using a higher number of assets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | combination of      |
|               | problem and how it     | -        | For QUBO1, simulated annealing on QUBO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | return,             |
|               | can be optimized       |          | showed better performance than random sampling,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | diversification,    |
|               | using quantum          |          | meeting constraints more effectively and producing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | and carbon          |
|               | computing, using a     |          | solutions closer to the Pareto frontier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | equivalent          |
|               | reformulation of the   | -        | For OUBO2. The second OUBO formulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | emissions           |
|               | problem as a           |          | outperformed OUBO1 in finding solutions near the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | (CO2e)" (p.3).      |
|               | quadratic              |          | Pareto frontier, with simulated annealing results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | nareto frontier     |
|               | unconstrained binary   |          | suggesting potential advantages over classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | meaning a line of   |
|               | optimization           |          | methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | nortfolios on a     |
|               | (OUBO)" (n 1)          | _        | Quantum computing particularly quantum appealing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | araph with V =      |
|               | (((0))) (p.1)          | _        | demonstrates potential in solving complex portfolio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | ROC and X =         |
|               |                        |          | optimization problems by generating multiple visible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | diversification     |
|               |                        |          | solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | where no portfolio  |
|               |                        |          | The quantum annealer showed a broader range of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | can be improved     |
|               |                        | -        | solutions compared to the simulated appealing results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | without             |
|               |                        |          | but struggled to metab the aloggical banchmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | without             |
|               |                        |          | elosaly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | worsening another   |
|               |                        |          | The quantum ennealing ennrough violded fewer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | part of it          |
|               |                        | -        | solutions near the Derete frontier compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                     |
|               |                        |          | solutions hear the Fareto Hontier compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                     |
|               |                        |          | simulated annealing and had infined success in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                     |
|               |                        | D        | meeting emission constraints.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                     |
|               |                        | Turpose: | out the second |                      |                     |
|               |                        |          | for most into a novel way to use QUBO on a quantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     |
| [10]          | A 11                   | annealer | for multi-objective portfolio optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | 0.141               |
| [19]          | A problem              | Objectiv | (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quantum system:      | Simulated           |
| Approxima     | acknowledged by this   | -        | Analyze and apply simulated bifurcation to a PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Simulated            | onurcation = a      |
| ting          | paper is the lack of   |          | problem for optimal asset-allocation following the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BITURCATION IN       | method of           |
| Optimal       | practical application  |          | ising-problem formulation equivalent to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PYTHON               | optimization        |
| Asset         | by existing algorithms |          | Markowitz model for maximizing risk-adjusted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A 1 1 1 1            | where solutions to  |
| Allocations   | when datasets exceed   |          | returns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Algorithms used:     | simpler problems    |
| using         | 100 elements,          | -        | I o test the usefulness of the proposed simulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Simulated            | are modified to     |
|               | therefore, simulated   |          | bifurcation algorithm, a dataset is made from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bifurcation          |                     |

| Simulated   | bifurcation is           |           | historical data from YAHOO! Finance and used in a       |                 | converge to an     |
|-------------|--------------------------|-----------|---------------------------------------------------------|-----------------|--------------------|
| Bifurcation | mentioned as the         |           | particular case with one-bit weights whilst looking     | Methodology:    | optimal solution   |
|             | potential solver of this |           | for the optimal subset of assets.                       | Optimization    |                    |
| (NICS;      | problem in this paper    | -         | The results obtained by the simulated bifurcation will  |                 | Covariance matrix  |
| CentraleSu  |                          |           | be compared to a brute-force algorithm                  | Use case:       | = a matrix giving  |
| pélec;      | The objective of the     |           |                                                         | Portfolio       | insight into the   |
| Université  | study is to analyze      |           |                                                         | optimization    | covariance, or     |
| Paris-      | and apply simulated      | Dataset s | pecification:                                           | (optimal asset- | relationship       |
| Saclay)     | bifurcation to the PO    | -         | Closing prices of 441 assets belonging to the S&P500    | allocation)     | between assets, in |
|             | problem of optimal       |           | index during the period of $02/2003 - 02/2021$ on the   | ,               | finance this is    |
| (Thomas     | asset allocation         |           | New York Stock Exchange. Daily returns are              |                 | used to show       |
| Bouquet et  | (maximizing risk-        |           | calculated and used to estimate the covariance matrix   |                 | correlation degree |
| al., 2021)  | adjusted returns over    |           |                                                         |                 | between assets.    |
| , ,         | given time horizon)      | Results:  |                                                         |                 |                    |
|             |                          | -         | Applying the one-bit weights simulated bifurcation      |                 |                    |
|             |                          |           | method to the complete dataset shows that the           |                 |                    |
|             |                          |           | algorithm runs the computation in about 5 seconds       |                 |                    |
|             |                          |           | and selects 120 out of 441 assets                       |                 |                    |
|             |                          | -         | The performance of the selected portfolio by            |                 |                    |
|             |                          |           | simulated bifurcation is significantly better than the  |                 |                    |
|             |                          |           | one chosen via brute-force, indicating better risk-     |                 |                    |
|             |                          |           | awareness                                               |                 |                    |
|             |                          | -         | The simulated bifurcation algorithm has great eve for   |                 |                    |
|             |                          |           | diversification of assets to reduce correlation/spread  |                 |                    |
|             |                          |           | risk                                                    |                 |                    |
|             |                          | -         | As numbers of assets increased, the simulated           |                 |                    |
|             |                          |           | bifurcation showed greater degrees of accuracy in       |                 |                    |
|             |                          |           | approximating the weights for each asset 138 out of     |                 |                    |
|             |                          |           | 150 simulations the algorithm could return the          |                 |                    |
|             |                          |           | optimal allocation of weights                           |                 |                    |
|             |                          | -         | For a problem with 4 assets and 5 bits per asset the    |                 |                    |
|             |                          |           | simulated bifurcation showed 90 4% Hamming              |                 |                    |
|             |                          |           | accuracy (which basically is a measure of accuracy      |                 |                    |
|             |                          |           | for algorithms)                                         |                 |                    |
|             |                          |           |                                                         |                 |                    |
|             |                          | _         | Figure 7 in the paper gives a representation of a time  |                 |                    |
|             |                          |           | efficiency comparison between brute-force (classical)   |                 |                    |
|             |                          |           | and simulated bifurcation. This figure shows that       |                 |                    |
|             |                          |           | after a certain point in a dataset, the complexity of   |                 |                    |
|             |                          |           | solving a problem becomes exponentially more time       |                 |                    |
|             |                          |           | consuming for brute-force, however, simulated           |                 |                    |
|             |                          |           | bifurcation does not show this and thus has a surgerier |                 |                    |
|             |                          |           | ability to compute problem if they become               |                 |                    |
|             |                          |           | autity to compute problem if they become                |                 |                    |
|             |                          |           | exponentially more complex                              |                 |                    |
|             |                          | -         |                                                         |                 |                    |
|             |                          | Importor  | it notes:                                               |                 |                    |
|             |                          | mportan   | It is impossible to proof optimality of the found       |                 |                    |
|             |                          | -         | nortfolios, therefore methods can only be compared      |                 |                    |
|             |                          |           | to each other                                           |                 |                    |
|             |                          |           | In the computational toots for simulated hiturastics    |                 |                    |
|             |                          | -         | to help give an indication of the amount of genete      |                 |                    |
|             |                          |           | (to netp give an indication of the amount of assets     |                 |                    |
|             |                          |           | ana dus neeaea to be usea in the actual                 |                 |                    |

| <i>benchmarking)</i> , each assets can be represented by       |  |
|----------------------------------------------------------------|--|
| differing numbers of bits, more bits means better              |  |
| accuracy, however, as more bits also means more                |  |
| complexity to the calculation of the objective                 |  |
| function, a consideration has to be made between               |  |
| number of bits and number of assets for this to work           |  |
| (or in other words a balance between accuracy and              |  |
| <i>computation time needs to be found</i> ), this principle is |  |
| also shown in table 6.2.1, as some combinations of             |  |
| number of assets and bits are computationally                  |  |
| intractable. Ultimately, this test showed that lower bit       |  |
| values showed best accuracy toward the results                 |  |
| obtained by brute-force strategies.                            |  |

|   | [25]                    | In this paper, quantum  | Objectiv | e(s):                                                    | Quantum system:      | Current ratio = a   |
|---|-------------------------|-------------------------|----------|----------------------------------------------------------|----------------------|---------------------|
|   | Comparing               | advantage is put to the | -        | Compare state-of-the art algorithms toward               | D-Wave's hybrid      | ratio giving        |
|   | Classical-              | test in a portfolio     |          | algorithms used on a quantum annealer                    | models (binary       | insight into how    |
|   | Quantum                 | optimization            | -        | Map the Markowitz problem into a QUBO format to          | quadratic model      | well a company is   |
|   | Portiolio<br>Ontimizati | perspective, where a    |          | solve on an annealer.                                    | (BQM) and            | able to fulfill     |
|   | on with                 | quantum annealer is     | -        | Employ a variety of new and traditional constraints to   | constrained          | short-term          |
|   | Enhanced                | used along with some    |          | increase the complexity of the problem to be solved      | Ouadratic Model      | obligations, thus a |
|   | Constraints             | algorithms against      |          | and give greater insight to the difference between       | (COM)) and           | measure of          |
|   |                         | classical methods       |          | classical and current hybrid solutions in the static PO  | CPL FX for classical | liquidity           |
|   | (Deloitte               | classical methods       |          | model                                                    | ontimizing           | inquiaity.          |
|   | Consulting.             | M                       |          | Constraints and internal an archite and minimum and      | opuninzing           | TAM                 |
|   | Salvatore)              | More specifically, this | -        | Constraints used interchangeably are: minimum and        | A 1 1 1              | LAM = a             |
|   | Salvatorej              | paper employs several   |          | maximum sector bands (proportion of each industry        | Algorithms used:     | constraint that     |
|   | (Conto at               | real-world constraints  |          | sector is invested in), 2 types of balance sheet         | Classical and        | ensures assets in a |
|   |                         | on the quantum          |          | constraints (constraints based on mostly balance         | quantum-annealing    | portfolio are       |
|   | al., 2022)              | annealer, thereby       |          | sheet ratios e.g. current ratio) first of which is a min | algorithms           | limited (which      |
|   |                         | adding to the           |          | current ratio constraint and the second being that the   |                      | may be due to       |
|   |                         | complexity of the       |          | entire portfolio should have a minimum average,          | Methodology:         | several reasons     |
|   |                         | problem to be solved.   |          | cardinality constraint of Limited Asset Markowitz        | Optimization         | such as limiting    |
|   |                         | Furthermore, diverse    |          | (LAM), full budget must be used (budget constraint),     |                      | transaction costs)  |
|   |                         | traditional and new     |          | and an asset must not be more than 2,5% of the           | Use case:            |                     |
|   |                         | constraints are used    |          | portfolio.                                               | Portfolio            |                     |
|   |                         | both on state-of-the    | -        | For the real dataset test, only the last two mentioned   | optimization         |                     |
|   |                         | art classical           |          | constraints were used. And one last example with a       | •                    |                     |
|   |                         | algorithms and          |          | volatility constraint added for COM. The authors         |                      |                     |
|   |                         | quantum algorithms      |          | leave the combination of all types of other              |                      |                     |
|   |                         | 1                       |          | constraints for further research.                        |                      |                     |
|   |                         | The state-of-the art    |          |                                                          |                      |                     |
|   |                         | algorithms are solved   | Dataset  |                                                          |                      |                     |
|   |                         | using the d Wave's      | Dataset. | Full S&D 500                                             |                      |                     |
|   |                         | using the d-wave s      | -        | run sær 500                                              |                      |                     |
|   |                         | quantum processor.      | Degultar |                                                          |                      |                     |
|   |                         |                         | Results. | For analifically the use of min and may sector           |                      |                     |
|   |                         |                         | -        | For specifically the use of min and max sector           |                      |                     |
|   |                         |                         |          | constraints, the optimization model was run on the       |                      |                     |
|   |                         |                         |          | entire S&P 500 with quantum annealing. Results           |                      |                     |
|   |                         |                         |          | showed tighter investments bands, more flexibility,      |                      |                     |
|   |                         |                         |          | and the hybrid solver was able to satisfy all            |                      |                     |
|   |                         |                         |          | constraints.                                             |                      |                     |
|   |                         |                         | -        | The CQM model significantly outperformed the             |                      |                     |
|   |                         |                         |          | BQM model, but for higher values of q (above 25),        |                      |                     |
|   |                         |                         |          | BQM outperformed CQM. (q is the risk appetite            |                      |                     |
|   |                         |                         |          | level of the investor)                                   |                      |                     |
|   |                         |                         | -        | The classical solution found the efficient frontier with |                      |                     |
|   |                         |                         |          | minimal effort, even with multiple real-world            |                      |                     |
|   |                         |                         |          | constraints                                              |                      |                     |
|   |                         |                         | -        | The CPLE solver outperformed all other in Sharpe         |                      |                     |
|   |                         |                         |          | ratios.                                                  |                      |                     |
|   |                         |                         | -        | "Many have proposed portfolio optimization as a          |                      |                     |
|   |                         |                         |          | prime candidate for quantum advantage: however. the      |                      |                     |
|   |                         |                         |          | real-world constraints we have discussed thus far        |                      |                     |
|   |                         |                         |          | show that at least in the static integer-valued case it  |                      |                     |
|   |                         |                         |          | is unlikely to outperform classical solutions " (n. 5)   |                      |                     |
|   |                         |                         |          | although this is mentioned the problem solved is still   |                      |                     |
|   |                         |                         |          | annough this is mentioned, the problem solved is suit    |                      |                     |
| 1 |                         |                         | 1        | convex, mereby not runy giving way to the                | 1                    | 1                   |

advantages of quantum computing, if the problem were non-convex, the authors mentioned that QA may have an advantage, but they also question whether a real-world scenario with a non-convex constraint will actually be used.

Sharpe ratios for various constraints mentioned:

|      | Q=1  | Sector | Loc  | Global | Car  |
|------|------|--------|------|--------|------|
|      |      | constr | al   | CR     | dina |
|      |      | aint   | CR   |        | lity |
| BQM  | 3.25 | 2.79   | 1.86 | 2.60   | 1.67 |
| CQM  | 3.88 | 3.81   | 3.41 | 3.32   | 3.40 |
| CPLE | 3.88 | 3.81   | 3.41 | 3.73   | 3.70 |
| Х    |      |        |      |        |      |

Important information:

- Although

- Constraints are mostly formed as penalty terms in the formulation of the objective function.
- The problem in this paper follows that of the Markowitz's modern portfolio theory of maximizing returns for a given level of risk.
- "As current QA do not have the number of qubits nor the required connectivity between them to implement large-scale models directly on annealers, we explore the use of D-Wave's hybrid models" (p. 2)
- "While gate-based machines in the Noisy Intermediate Scale Quantum (NISQ) era struggle to find appropriate feasible applications, quantum annealers have less constraints and appear to be the most promising in near-term industrial implementations" (p. 1)

| [28]             | In this paper, the     | Objective(s):                                             | Quantum system:             | Black-Litterman     |
|------------------|------------------------|-----------------------------------------------------------|-----------------------------|---------------------|
| Black-           | practical applications | - Formulate a Black-Litterman PO problem and              |                             | PO = a PO           |
| Litterman        | of NISQ algorithms     | estimate the investors 'view via QML, and solve the       |                             | approach that       |
| Portfolio        | are used in the        | QUBO formulation via VOE, or QAOA. Optimize               | Algorithms used:            | combines            |
| Optimizati       | enhancement of the     | the parameters using Sequential Least Squares             | VOE, OAOA, and              | elements of         |
| on with<br>Noisy | Black-Litterman PO     | Programming (SLSOP)                                       | OML                         | modern portfolio    |
| Intermedia       | model                  | - Formulate the Poproblem into a OUBO format              | <b>Z</b>                    | theory with         |
| te-Scale         | modeli                 | where the aim of the formula is to maximize return        | Methodology                 | investor views to   |
| Quantum          | As proof of concept a  | while minimizing risk with a hudget constraint and        | Ontimization                | improve the         |
| Computers        | 12-qubit example of    | nenalty terms                                             | optimization                | Markowitz mean-     |
|                  | selecting 6 assets out | - Find the investors' view in the formula with            | Use case:                   | variance model      |
| (Chi-Chun        | of a 12-asset pool is  | Ouantum Machine learning, and the market implied          | Black-Litterman             | variance model.     |
| Chen et al.,     | used where the         | return with data from the market, both are specific to    | Diack-Enterman<br>Portfolio | Investors' view -   |
| 2023)            | approach involves      | the Pleak Littermen ennreach                              | antimization                | the objectification |
|                  | approach involves      | Ammassh the quartification of the investors' view         | opunnization                | af the investors?   |
|                  | predicting investor    | - Approach the quantification of the investors view       |                             |                     |
|                  | views with Quantum     | via 4 quantum machine learning methods (QS V M,           |                             | view on the         |
|                  | Machine Learning       | Q(NN, SVM, NN)                                            |                             | assets, which will  |
|                  | (QML), and             | - Demonstrate a 12 and 16 qubit case that shows the       |                             | either be bullish   |
|                  | addressing the         | capability of obtaining solutions with good back          |                             | or bearish.         |
|                  | optimization problem   | testing performance.                                      |                             |                     |
|                  | using the Variational  |                                                           |                             |                     |
|                  | Quantum Eigensolver    | Data for the back test:                                   |                             |                     |
|                  | (VQE)                  | - Time period 2008/01/01 to 2021/12/31 (split up in 9     |                             |                     |
|                  |                        | time segments) with a 260 week training period and        |                             |                     |
|                  |                        | 52 week testing period.12 Individual stocks from          |                             |                     |
|                  |                        | S&P 500. VQE was used with $p = 4$ repetitions of the     |                             |                     |
|                  |                        | circuit, and QAOA with $p = 8$ . Tests are compared to    |                             |                     |
|                  |                        | the approximation ratio, which is a ratio between 'a      |                             |                     |
|                  |                        | good solution' and that found through the test either     |                             |                     |
|                  |                        | via VQE or QAOA.                                          |                             |                     |
|                  |                        |                                                           |                             |                     |
|                  |                        | Results:                                                  |                             |                     |
|                  |                        | Investors' view performances:                             |                             |                     |
|                  |                        | - Specifically looking at the estimation of investors'    |                             |                     |
|                  |                        | view, the following could be said: QSVM $\approx$ SVM $>$ |                             |                     |
|                  |                        | NN > QNN in terms of testing accuracy, and QSVM           |                             |                     |
|                  |                        | was also much faster to train than QNN.                   |                             |                     |
|                  |                        | Optimization test of BL-PO:                               |                             |                     |
|                  |                        | - Considering the BL-PO test, VQE had an                  |                             |                     |
|                  |                        | approximation ratio of at least 0.9 and mean 0.96         |                             |                     |
|                  |                        | - Variances via VQE were close to zero (so low risk),     |                             |                     |
|                  |                        | and those form QAOA are large.                            |                             |                     |
|                  |                        | - Tests were still proven to be susceptible to finding    |                             |                     |
|                  |                        | local minima instead of global minima.                    |                             |                     |
|                  |                        | - VQE heuristic ansatz should be preferred over           |                             |                     |
|                  |                        | QAOA                                                      |                             |                     |
|                  |                        | - Looking at the given figures depicting approximation    |                             |                     |
|                  |                        | ratios and variances, VQE outperforms QOA                 |                             |                     |
|                  |                        | significantly, with QAOA having greatly varying and       |                             |                     |
|                  |                        | worse results.                                            |                             |                     |
|                  |                        | Back testing performance with investors' view from QSVM:  |                             |                     |

|              |                         | <ul> <li>The BL-PO model outperforms Modern Portfolio<br/>Theory in pure returns and certainty-equivalent return<br/>over a long continuous back testing period.</li> <li>VQE/QOA find high approximation ratios close to<br/>the optimal solutions, and sometime even outperform<br/>exact solution in the approximation ratio.</li> <li>There is balance problem found between balancing<br/>out computational cost and preciseness of the<br/>solution.</li> <li>The ability to perform well without exact solutions<br/>suggests efficiency gains in quantum optimization<br/>methods.</li> </ul> |                    |                   |
|--------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|
|              |                         | <ul> <li>"The solutions obtained from VQE exhibit a high approximation ratio behavior, and consistently outperform several common portfolio models in back testing over a long period of time." (p. 1)</li> <li>"The scale of real quantum device today are not able to solve discrete portfolio optimization problems beyond classical computer limit (and quantum computers cannot be efficiently simulated classically)" (p. 2)</li> </ul>                                                                                                                                                         |                    |                   |
|              |                         | Important notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                   |
|              |                         | - The computational resources needed for quantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                   |
|              |                         | computing can be anticipated as it follows a linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                   |
|              |                         | scheme, on the contrary, classical computing follows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                   |
|              |                         | resources needed for larger problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                   |
|              |                         | - OSVM was used for investors' view approximation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |
| [27]         | In this paper, a quasi- | Objective:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quantum system:    | Parameter         |
| Quasi-       | binary encoding based   | - Form a quasi-binary encoding based OAOAz to solve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Oiskit (simulator) | scheduling =      |
| binary       | algorithm is proposed   | auadratic optimization problems (based on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | adjusting         |
| encoding     | for solving specific    | Markowitz model for PO) with integer variables in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Algorithms used    | narameters of an  |
| based        | quadratic optimization  | hard constraint way.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OB-OAOAz           | algorithm over    |
| quantum      | model in the OAOAz      | - Make use of parameter scheduling techniques and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | time to improve   |
| operator     | framework.              | CVaR-OAOAz to enhance solution quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methodology:       | its performance   |
| ansatz       |                         | - Use 4 methods for optimal parameter scheduling:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Optimization       |                   |
|              | Three constraints are   | 1: Sample20: 20 random parameters are chosen for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                  | Quasi-Binary      |
| (ССВ         | imposed on the          | training process, and over 1000 iteration in COBYLA, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Use case:          | approach = a way  |
| Fintech)     | model:                  | best option will be chosen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Portfolio          | to simplify the   |
|              | Discrete constraint,    | 2: Optimized Linear Schedule (OLS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | optimization       | problem           |
| (Bingren     | bound constraint, sum   | 3: Iterative Optimized Linear Schedule (IOLS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | representation so |
| Chen et al., | constraint              | 4: Iterative QAOA (IQAOA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | that quantum      |
| 2023)        |                         | - Make use of COBYLA as the classical optimizer to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | hardware can be   |
|              | In some parts of the    | finds the best parameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | leveraged more    |
|              | given objective         | - Lastly, perform experimental test with the CVaR-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | effectively, with |
|              | function for QAOA,      | QAOAz and Normal-QAOAz on two instances to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | the aim to reduce |
|              | ideas such as CVaR-     | show performance differences for their use in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | resource          |
|              | QAOA and parameter      | broader QB-QAOAz framework:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | requirements and  |
|              | scheduling are used to  | 1: Selecting 6 stocks with a total of 18 qubits required for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | better            |
|              | optimize the solution   | the experiment, and different simulations are conducted on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | performance.      |
|              | quality.                | P = 1, $p = 2$ , $p = 4$ , $p = 8$ and $p = 16$ (p represents the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |

|                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I | 1 |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| Lastly, a numerical<br>simulation will be<br>used on a PO case to<br>show the performance<br>of the given algorithm | <ul> <li>depth of the quantum circuit, the number of iterations, so in simple terms the complexity) and with α = 0.5 (with upper and lower bound being -1/+1) (which signifies the precision of the parameters, more precision = better results on average, but also more computational resources needed) using all 4 parameter methods.</li> <li>2: general stock pools from the Chinese Shenzhen and Shanghai Stock Exchange. 4-8 stocks are randomly selected from 4836 stocks. α = 0.05, 320 experiments on each of the four parameter scheduling methods and five</li> </ul>                                                                                                                                                                                                             |   |   |
|                                                                                                                     | <ul> <li>different depths (p = 1, 2, 4, 8, 16)</li> <li>Lastly, a method to increase precision of the instances is proposed for QB-QAOAz, first QB-QAOAz is used with CVaR-QAOAz and IQAOA scheduling method, and then the course solution it gives is optimized via increasing α exponentially via an iterative method (with the purpose of finding a better solution with fewer qubits needed)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                   |   |   |
|                                                                                                                     | <ul> <li>Dataset specifications:</li> <li>Six NASDAQ stocks with historical return rates of these stocks as the input data,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |
|                                                                                                                     | <ol> <li>Three constraints are imposed on the model:         <ol> <li>Discrete constraint, the variables are required to be integers</li> <li>bound constraint, variables ought to be greater than or equal to a certain constraint and less than or equal to another integer</li> <li>sum constraint, the sum of all variables should be a given integer</li> </ol> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |
|                                                                                                                     | <ul> <li>Results:</li> <li>Result for instance 1: <ul> <li>Results showed that CVaR-QAOAz outperformed the normal-QAOAz significantly, where CVaR-QAOAz is also superior to brute-force (classical) when p exceeded 2.</li> <li>As for the parameter optimization, IQAOA could not show its proposed superiority over the other parameter scheduling methods, furthermore, IQAOA and IOLS often fell into local optima. In most cases, as p got higher, the performances decreased due to high parameter count.</li> <li>IOLS performance increased with circuit dept, furthermore, IQAOA performed better under CVaR-QAOAz than Normal-QAOAz, final recommendation was to use CVaR-QAOAz with IOLS or IQAOA with p above 8 to achieve an approximation ratio of 0.99.</li> </ul> </li> </ul> |   |   |
|                                                                                                                     | - CVaR-QAOA showed an approximation ratio between 0.973 and 0.997.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |

|                                                           |                                                                                                           | <ul> <li>The approximation ratio of the parameter scheduling methods increased as circuit dept increased, with less errors</li> <li>For the parameter scheduling methods, IQAOA performed the best.</li> <li>Overall, for the two instances, it was still observed that the precision of results was too coarse for business application.</li> <li>Iterative QB-QAOAz method:         <ul> <li>The iterative method for QB-QAOAz with CVaR-QAOAz and IQAOA showed significant improvements in the quality of solutions, and the probability of finding the optimal solution increased (all whilst keeping the same number of low qubits)</li> </ul> </li> </ul> |                                                                          |  |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
|                                                           |                                                                                                           | <ul> <li>"If we increase the precision, for example, by setting α to one-thousandth, then the total number of qubits required in Instance 1 is 96, which already exceeds the computational limit of most quantum computers and simulators." (p. 15)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |  |
|                                                           |                                                                                                           | <ul> <li>Important notes:</li> <li>To address the limitations of current (2023) quantum hardware, an iterative method will be used where the solution of the experiment will be improved through multiple few-qubit experiments, and parameters will slowly become more precise over the iterative process.</li> </ul>                                                                                                                                                                                                                                                                                                                                          |                                                                          |  |
| [43]                                                      | Based on a                                                                                                | - no penalty terms are used in the objective function.<br>Objective(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quantum system:                                                          |  |
| Financial<br>Portfolio<br>Manageme<br>nt using D-<br>Wave | formulation of the<br>Markowitz's mean-<br>variance model,<br>where it is formulated<br>as a OUBO problem | <ul> <li>Formulate the mean0variance Markowitz model in a QUBO formulation, and solve it via a D-Wave quantum optimizer</li> <li>Solve the given problem on MATLAB (mathematical software) via the genetic algorithm (classical</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                      | D-Wave QBSOLV<br>(simulated solver)<br>Algorithms used:<br>D-Wave OBSOLV |  |
| Quantum<br>Optimizer:<br>The Case of<br>Abu Dhabi         | including expected<br>return, volatility,<br>penalization terms,<br>and according to                      | <ul> <li>approach)</li> <li>Compare the results from the MATLAB experiment and those fo the D-Wave quantum optimizer</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Methodology:<br>Optimization                                             |  |
| Securities<br>Exchange<br>(UT-Batelle                     | weights for each<br>criterion, to be solved<br>via a D-Wave<br>quantum optimizer                          | Data specifics:<br>- 63 to 68 securities from the Abu Dhabi Securities<br>Exchange, with weekly closing prices over the period<br>01/12/2015 to 30/11/2016 and a covariance matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Use case:<br>Portfolio<br>optimization                                   |  |
| LLC with<br>non-<br>exclusive                             |                                                                                                           | and matrix for expected returns was made. Total<br>budget = 100 USD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |  |
| contract                                                  |                                                                                                           | Results:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |  |
| with U.S.                                                 |                                                                                                           | - The QBSOLV produced portfolios that exceeded the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |  |
| Departmen<br>t of                                         |                                                                                                           | budget (121.176 USD instead of the budget 100<br>USD) in order to fit the OURO model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          |  |
| Energy)                                                   |                                                                                                           | <ul> <li>The choice of exceeding the budget has clearly<br/>ignored the influence of the co-variance matrix to</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                          |  |

| (Nada         |                      | minimize risk, so the portfolio was not diversified to     |                       |                    |
|---------------|----------------------|------------------------------------------------------------|-----------------------|--------------------|
| Elsokkarv     |                      | spread risk                                                |                       |                    |
| et al., 2021) |                      | - Longer annealing times showed slightly improved          |                       |                    |
| ,             |                      | results with portfolios similar to lower annealing         |                       |                    |
|               |                      | times, but with lower cost portfolios                      |                       |                    |
|               |                      | - Compared to the classical solution. OBSOLV found         |                       |                    |
|               |                      | nortfolios in good agreement with those found in the       |                       |                    |
|               |                      | MATLAR-derived solution                                    |                       |                    |
|               |                      |                                                            |                       |                    |
|               |                      | Important notes:                                           |                       |                    |
|               |                      | - This paper leaves a lot of additional, sometimes         |                       |                    |
|               |                      | needed information, out of the picture, it mostly          |                       |                    |
|               |                      | states the core findings and pre-requisites of the         |                       |                    |
|               |                      | research                                                   |                       |                    |
| [45]          | In this paper, a     | Objective(s):                                              | Quantum system:       | Newsvendor         |
| Quantum-      | quantum-enhanced     | - Formulate a Simulation based PO problem including        | Qiskit (simulator)    | problem = a        |
| Enhanced      | algorithm (QAE) for  | Value-at-Risk or inventory management and solve it         | And for the classical | problem that       |
| Simulation-   | simulation-based     | via the QSBO algorithm.                                    | part of the           | involves           |
| Based         | optimization is      | - Optimize SBO with QAE to accelerate the estimation       | algorithm,            | determining the    |
| Optimizati    | introduced to        | of values, specifically, use QAE in QSBO to enhance        | COBYLA is used        | optimal number of  |
| on            | optimize simulation  | the precision and efficiency of evaluation the             |                       | newspaper          |
|               | based optimization   | objective functions.                                       | Algorithms used:      | batches to         |
| (IBM          | and form the         | - Use an adapted version of VQE (for discrete              | Quantum Amplitude     | purchase to        |
| Research      | Quantum-Enhanced     | optimization problems) to optimize the decision            | Estimation (QAE),     | balance the cost   |
| and ETH       | Simulation Based     | variable y* (which is part of the objective QUBO           | Quantum-enhance       | of leftover        |
| Zurich)       | Optimization         | function) (to optimize v* means to get better results      | simulation based      | newspapers and     |
| ,             | Algorithm (QSBO),    | for the eventual calculation of the QUBO function)         | optimization          | the lost income    |
| (Gacon J et   | where it is applied  | - Apply the algorithm to small instances of practically    | (OSBO)                | from unmet         |
| al., 2020)    | towards a PO problem | relevant problems, from inventory management and           |                       | demand. The goal   |
| , ,           | with Value-at-Risk   | finance to PO with VaR based objective function.           | Methodology:          | is to minimize the |
|               | constraint and       |                                                            |                       | expected cost      |
|               | inventory            | Dataset specifications for PO problem:                     | Use case:             | function, which    |
|               | management           | - A two-asset portfolio, where 13 qubits are used for      |                       | accounts for both  |
|               | C                    | the VaR estimation, and 12 gubits for the expectation      |                       | overage and        |
|               | The algorithm is     | value x, with a risk appetite of 0.09, and $\alpha = 0.05$ |                       | opportunity costs. |
|               | proposed for         | (simply put, precision level of the parameters)            |                       |                    |
|               | continuous and       |                                                            |                       |                    |
|               | discrete decision    | Results (objective function is to minimize risk):          |                       |                    |
|               | variables            | Newsvendor problem:                                        |                       |                    |
|               |                      | - The most optimal solution was found accurately,          |                       |                    |
|               |                      | looking at the graph depicting the given solutions, it     |                       |                    |
|               |                      | can clearly be seen that all results are estimated         |                       |                    |
|               |                      | accurately, and the optimal solution is found.             |                       |                    |
|               |                      | Portfolio optimization:                                    |                       |                    |
|               |                      | - The algorithm identified he optimal solution with a      |                       |                    |
|               |                      | 90% probability, showing that with 90% certainty,          |                       |                    |
|               |                      | the first out of the two possible assets maximizes the     |                       |                    |
|               |                      | portfolio.                                                 |                       |                    |
|               |                      | - The results show that the proposed algorithm is able     |                       |                    |
|               |                      | to compute PO problems accurately.                         |                       |                    |
|               |                      | Overall:                                                   |                       |                    |
|               |                      | - Increasing the number of repetitions of the algorithm    |                       |                    |
|               |                      | leads to more parameters, thereby more search space,       |                       |                    |

|                       |                         | <ul> <li>but at the expense of computational resources needed as the problem becomes more complex.</li> <li>"Quantum Amplitude Estimation (QAE) is a quantum algorithm that provides a quadratic speedup over classical Monte Carlo simulation, i.e., its estimation error scales as O(M-1)." (p. 1)</li> <li>For all experiments, the optimal solution was found with high probabilities.</li> <li>The algorithm shoed great capabilities in solving</li> </ul> |                   |  |
|-----------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
|                       |                         | <ul> <li>inventory management and PO problems with both continuous and discrete variables</li> <li>"The algorithm offers a quadratic speedup for the evaluation of the objective function compared to classical Monte Carlo simulation." (p. 7)</li> </ul>                                                                                                                                                                                                       |                   |  |
|                       |                         | <ul> <li>Important notes:</li> <li>QAE is commonly used for estimating parameters<br/>and optimizing them (ultimately reducing circuit<br/>complexity and depth), in the case of this paper it is<br/>used to estimate expected values of functions related<br/>to the chirching function. This paper size to use QAE</li> </ul>                                                                                                                                 |                   |  |
|                       |                         | to the objective function. This paper aims to use QAE                                                                                                                                                                                                                                                                                                                                                                                                            |                   |  |
| [49]                  | In this paper a         | Points to determine the practicality of a quantum algorithm:                                                                                                                                                                                                                                                                                                                                                                                                     | Quantum system:   |  |
| A detailed            | detailed explanation is | - The quantum algorithm produces a classical output                                                                                                                                                                                                                                                                                                                                                                                                              | Amazon Braket     |  |
| end-to-end            | given towards the use   | that allows for benchmarking via classical methods                                                                                                                                                                                                                                                                                                                                                                                                               |                   |  |
| assessment            | of a quantum            | - The quantum algorithm relies on a reasonable input                                                                                                                                                                                                                                                                                                                                                                                                             | Algorithms/method |  |
| of quantum            | algorithm for           | model, as some models (mostly for QML) were                                                                                                                                                                                                                                                                                                                                                                                                                      | used:             |  |
| algorithm             | portfolio               | thought to offer significant advantages over classical                                                                                                                                                                                                                                                                                                                                                                                                           | Quantum Interior  |  |
| for                   | optimization. This      | methods until it was pointed out that they did not                                                                                                                                                                                                                                                                                                                                                                                                               | Point Method      |  |
| portfolio             | paper is inspired by    | because they used unreasonable assumptions about                                                                                                                                                                                                                                                                                                                                                                                                                 | (QIPM)            |  |
| optimizatio           | the "End-To-End         | the input model.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |  |
| n                     | Resource Analysis for   | - The quantum algorithm has a plausible case for                                                                                                                                                                                                                                                                                                                                                                                                                 | Methodology:      |  |
| (Coldman)             | Quantum Interior-       | asymptotic speedup, meaning that it is used on a case                                                                                                                                                                                                                                                                                                                                                                                                            | Optimization      |  |
| (Goldman<br>Sachs and | Point Methods and       | classical counterpart on a sufficiently large size                                                                                                                                                                                                                                                                                                                                                                                                               | Use cose:         |  |
| AWS)                  | Ontimization"           | instance as that is where quantum advantage is                                                                                                                                                                                                                                                                                                                                                                                                                   | Portfolio         |  |
| 1                     | - Pullization           | found.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | optimization      |  |
| (Alexander            | Issues addressed are:   | - The instance size, or the tipping point where the                                                                                                                                                                                                                                                                                                                                                                                                              | -1                |  |
| Dalzell et            | 1: to determine the     | quantum algorithm outperforms the classical one                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |  |
| al., 2023)            | practicality of a       | must be of commercial use, if it outperforms a                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |  |
|                       | quantum algorithm       | classical algorithm at a point where it is of no                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |  |
|                       | 2: the PO model itself  | commercial use, the quantum algorithm may as well                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
|                       | 3: Quantum interior     | not be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |  |
|                       | 4. Resource estimate    | OIPM for PO model                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
|                       | for OIPM                | - PO aims to maximize returns while minimizing risk                                                                                                                                                                                                                                                                                                                                                                                                              |                   |  |
|                       | 101 XII 111             | of a fixed investment budget. QIPM tries to achieve                                                                                                                                                                                                                                                                                                                                                                                                              |                   |  |
|                       |                         | this by using quantum computing methods to specific                                                                                                                                                                                                                                                                                                                                                                                                              |                   |  |
|                       |                         | computational processes in the classical algorithm. In                                                                                                                                                                                                                                                                                                                                                                                                           |                   |  |
|                       |                         | particular, QIPM improves on classical interior point                                                                                                                                                                                                                                                                                                                                                                                                            |                   |  |
|                       |                         | techniques by employing quantum algorithms to                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |  |
|                       |                         | solve linear problems, quantum random access                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |  |

|   |            |                          | memory (QRAM) to rapidly access data, and<br>quantum state tomography to transform quantum |                  |                     |
|---|------------|--------------------------|--------------------------------------------------------------------------------------------|------------------|---------------------|
|   |            |                          | states into classical information.                                                         |                  |                     |
|   |            |                          | Challenges for OIPM:                                                                       |                  |                     |
|   |            |                          |                                                                                            |                  |                     |
|   |            |                          | - Error management: errors can affect accuracy,                                            |                  |                     |
|   |            |                          | however, the IPM's design allows for self-error                                            |                  |                     |
|   |            |                          | correction.                                                                                |                  |                     |
|   |            |                          | - Limitation of current NISQ hardware: e.g. limited                                        |                  |                     |
|   |            |                          | qubits and frequency of errors and noise                                                   |                  |                     |
|   |            |                          | interferences.                                                                             |                  |                     |
|   |            |                          | - Dependency on parameters                                                                 |                  |                     |
|   |            |                          | Passange estimation for the OIDM.                                                          |                  |                     |
|   |            |                          | Resource estimation for the QIPM:                                                          |                  |                     |
|   |            |                          | - The estimate to encode a PO problem with 100 assets                                      |                  |                     |
|   |            |                          | is around 8 million qubits, far from what is currently                                     |                  |                     |
|   |            |                          | feasible on quantum hardware.                                                              |                  |                     |
|   |            |                          | - Quantum gates needed for n = 100 (or more                                                |                  |                     |
|   |            |                          | specifically T-gates for QIPM) is approximately 7 x                                        |                  |                     |
|   |            |                          | 10 <sup>29</sup> , far from currently feasible                                             |                  |                     |
|   |            |                          | - T-Depth (or depth of the circuit / number of layers of                                   |                  |                     |
|   |            |                          | T-gates in parallel) for $n = 100$ is 2 x 10 <sup>2</sup> 4, which is                      |                  |                     |
|   |            |                          | very computationally demanding and currently not                                           |                  |                     |
|   |            |                          | realizable.                                                                                |                  |                     |
|   |            |                          | - Currently, the estimation for OIPM runtime is in the                                     |                  |                     |
|   |            |                          | millions of years for bigger PO problems.                                                  |                  |                     |
|   |            |                          |                                                                                            |                  |                     |
|   |            |                          | Results/findings:                                                                          |                  |                     |
|   |            |                          | - Simulations suggest that QIPM may theoretically                                          |                  |                     |
|   |            |                          | offer speedups, but current implementation do not                                          |                  |                     |
|   |            |                          | show a clear advantage over classical algorithms for                                       |                  |                     |
|   |            |                          | problem size between $n = 10$ and $n = 120$                                                |                  |                     |
|   |            |                          | provident size between in 10 and in 120.,                                                  |                  |                     |
|   |            |                          | - Even when algorithms present promising advantages                                        |                  |                     |
|   |            |                          | further increation on it can reveal a drastically                                          |                  |                     |
|   |            |                          | different mistered has to multiple factors (a.c.                                           |                  |                     |
|   |            |                          | different picture due to multiple factors (e.g.                                            |                  |                     |
|   |            |                          | assumptions made for the algorithm are not realistic)                                      |                  |                     |
|   |            |                          | - QIPM showed great data cost and computation time,                                        |                  |                     |
|   |            |                          | needing significant QRAM to operate.                                                       |                  |                     |
|   |            |                          | - Currently, QRAM is not practical, it is suggested that                                   |                  |                     |
|   |            |                          | to improve its practicality, dedicated QRAM                                                |                  |                     |
|   |            |                          | hardware ought to be made that can leverage the                                            |                  |                     |
|   |            |                          | special aspects of QRAM more efficiently. And this                                         |                  |                     |
|   |            |                          | applies to all algorithms making use of QRAM.                                              |                  |                     |
| ľ | [50]       | In this paper, a digital | Objective(s):                                                                              | Quantum system:  | Impulse regime =    |
|   | Efficient  | quantum algorithm is     | - Form a fast, purely-quantum digitized-                                                   | IonQ trapped-ion | an approach that    |
|   | DCQO       | proposed for portfolio   | counterdiabatic quantum optimization protocol                                              | quantum computer | reduces circuit     |
|   | Algorithm  | optimization using the   | (DCQO) relying on the concept of the impulse                                               |                  | depth and           |
|   | within the | digitized-               | regime, along with a hybrid version (H-DCQO)                                               | Algorithms/model | enhances solution   |
|   | Impulse    | counterdiabetic          | - Experiment with these models on a 20-asset PO                                            | used:            | accuracy. In this   |
|   | Regime for | quantum optimization     | problem on the IonQ quantum computers.                                                     | DCQO             | paper it is sued as |
|   | Portfolio  | (DCQO) algorithm.        |                                                                                            | <u>`</u>         | an alternative to   |
|   |            |                          |                                                                                            | Methodology:     |                     |
| 1 |            |                          |                                                                                            | 0,               | 1                   |

| Optimizati  | The DCQO is applied     | -        | Integrate adiabatic quantum optimization and counter     | Optimization | suing methods       |
|-------------|-------------------------|----------|----------------------------------------------------------|--------------|---------------------|
| on          | to a real-case scenario |          | diabetic protocols in DCQO to address the PO             |              | like QAOA.          |
|             | of PO with 20 assets,   |          | problem more efficiently                                 | Use case:    |                     |
| (Kipu       | using purely quantum    | -        | Convert proposed Markowitz PO model in this paper        | Portfolio    | Single time-step    |
| Quantum     | and hybrid-quantum      |          | (reformulated with single-time step modality of this     | optimization | modality = means    |
| and         | paradigms. It is        |          | problem with Boolean asset investment) (this is          |              | solving the         |
| University  | performed using up to   |          | mainly to simplify the problem and make it more          |              | problem in a        |
| of the      | 20 qubits on the IonQ   |          | efficient to solve) to a Hamiltonian formulation to be   |              | single point in     |
| Basque      | trapped-ion quantum     |          | able to make it solvable via DCQO                        |              | time, as opposed    |
| Country     | computer.               | -        | Test the DCQO and h-DCQO to each other, QAOA,            |              | to multiple time    |
| Departmen   |                         |          | and other digitized adiabatic protocols.                 |              | steps or stages.    |
| tof         | The DCQO is             | -        | Results are put into perspective via the approximation   |              | Basically,          |
| Physics)    | benchmarked against     |          | ratio of the average energy needed for a solution        |              | meaning that the    |
|             | the standard Ouantum    |          | compared to the actual energy used.                      |              | proposed model      |
| (Aleiandro  | Approximate             |          | 1 65                                                     |              | only has to solve   |
| Gomez       | Optimization            | Data spe | cifics:                                                  |              | the formulation     |
| Cadavid et  | Algorithm (OAOA)        |          | 20 assets, with historical data from 06/06/2022 to       |              | once and give       |
| al., 2023)  | and finite-time         |          | 01/01/2023, budget is number of asset / 2.               |              | asset allocation in |
| , = • = • ) | digitized-adiabetic     |          |                                                          |              | a portfolio one     |
|             | algorithms              | Results  |                                                          |              | time                |
|             | argoritimis.            |          |                                                          |              | time.               |
|             | Note: this namer        | -        | Implementing CD protocols in the DCOO improved           |              | Boolean asset       |
|             | mostly compares the     |          | nerformances 2x in terms of approximation ratio          |              | investment = a      |
|             | proposed quantum        |          | compared to non-CD usage                                 |              | way of              |
|             | algorithms to each      | _        | For the 20-asset problem on a simulator, the DCOO        |              | simplifying the     |
|             | other not directly      |          | proved to be more efficient than compared methods        |              | inclusion or        |
|             | mentioned any           |          | showing an average approximation ratio of $0.54$         |              | exclusion of an     |
|             | classical algorithms    | _        | Implementing DCOO on JonO's 25-aubit device              |              | asset to a binary   |
|             | (only for the hybrid    |          | showed that the AR ratio could be 0.50 with error        |              | format thereby      |
|             | model for               |          | mitigation methods, similar to the simulated results     |              | simplifying the     |
|             | ontimization) but it    |          |                                                          |              | ontimization        |
|             | can generally be        | II-DCQ0  | A five-layer (more compley, thus accurate results)       |              | problem to a        |
|             | deducted by the         | -        | A net formed similarly to a one layer h DCOO             |              | series of yes/po    |
|             | results that promising  |          | showing that h DCOO is more efficient                    |              | decisions for each  |
|             | results are shown       |          | For the PO problem h DCOO achieved on AP ratio           |              | accest              |
|             | from the events         | -        | of 0.72 showing the algost likeness to the desired       |              | asset               |
|             | from the experiments.   |          | aslution out of all the tests                            |              | Countandiahatia     |
|             |                         |          | When executed on Len O's device with emer                |              | counterchabelic     |
|             |                         | -        | when executed on long's device with error                |              | protocols (CD) -    |
|             |                         |          | mitigation techniques, n-DCQO showed an                  |              | a set of techniques |
|             |                         |          | approximation ratio of 0.58, which is lower than the     |              | used in quantum     |
|             |                         | 0 11     | simulated test.                                          |              | computing to        |
|             |                         | Overall: |                                                          |              | enhance the         |
|             |                         | -        | The two methods are effective for both portfolio         |              | performance of      |
|             |                         |          | optimization and other combinatorial problems,           |              |                     |
|             |                         |          | demonstrating their general utility.                     |              | algorithms,         |
|             |                         | -        | we achieved a substantial reduction in the circuit       |              | particularly those  |
|             |                         |          | complexity while maintaining a similar solution $(7, 7)$ |              | involving           |
|             |                         |          | accuracy" (p. /), reterring to the methods used to       |              | quantum             |
|             |                         |          | lower circuit complexity such as CD protocols.           |              | optimization and    |
|             |                         | -        | "We obtain a significant reduction in the circuit depth  |              | quantum             |
|             |                         |          | by factors of 2.5 to 40, while minimizing the            |              | annealing.          |
|             |                         |          | dependence on the classical optimization subroutine."    |              |                     |
|             |                         |          | (P. 1)                                                   |              |                     |

|            |                        | - "Besides portfolio optimization the proposed method     |                    |  |
|------------|------------------------|-----------------------------------------------------------|--------------------|--|
|            |                        | is applicable to a large class of combinatorial           |                    |  |
|            |                        | entimization problems "(n 1)                              |                    |  |
|            |                        | optimization problems. (p. 1)                             |                    |  |
|            |                        | Important ration                                          |                    |  |
|            |                        | Classical antimization for the bolt aid also with measure |                    |  |
|            |                        | - Classical optimization for the hybrid algorithms was    |                    |  |
|            |                        | done via COBYLA.                                          |                    |  |
|            |                        | - Multiple additional methods are used on DCQO and        |                    |  |
|            |                        | h-DCQO to optimize its efficiency and performance,        |                    |  |
|            |                        | these methods are not relevant to be explained but the    |                    |  |
|            |                        | following are employed:                                   |                    |  |
|            |                        | 1. On DCQO: impulse regime, selective trotter             |                    |  |
|            |                        | steps, gate reduction strategy, threshold                 |                    |  |
|            |                        | alignment, and critical point focus                       |                    |  |
|            |                        | 2. H-DCQO: simplified ansatz method, parameter            |                    |  |
|            |                        | reduction, variational optimization following             |                    |  |
|            |                        | variation quantum algorithms (as these are also           |                    |  |
|            |                        | hybrid quantum-classical), and layer count                |                    |  |
|            |                        | optimization.                                             |                    |  |
|            |                        | - The DCQO is a purely quantum optimizer, and h-          |                    |  |
|            |                        | DCQO is a hybrid version employing classical              |                    |  |
|            |                        | methods also.                                             |                    |  |
|            |                        | - The paper leverages adiabatic quantum optimization      |                    |  |
|            |                        | and counterdiabatic protocols to address the portfolio    |                    |  |
|            |                        | optimization problem more efficiently, thereby            |                    |  |
|            |                        | reducing circuit depth and increasing accuracy            |                    |  |
| [59]       | In this paper, a       | Objective(s):                                             | Quantum system:    |  |
| A          | selector algorithm is  | - Form a unsupervised representative selector             | D-Wave QBSOLV      |  |
| Quantum-   | proposed: a method     | system/algorithm for selecting them sot                   | for NASDAQ 100     |  |
| Inspired   | for selecting the most | representative subset of data from a data pool, where     | problem            |  |
| Binary     | representative subset  | the algorithm meets two requirements:                     |                    |  |
| Optimizati | of data from a larger  | 1: The data is maximally close to neighboring data        | D-Wave Advantage   |  |
| on         | dataset.               | 2: The data is maximally far from more distant data       | (over 5000 qubits) |  |
| Algorithm  |                        | points                                                    | and D-Wave 2000Q   |  |
| for        | The proposed dataset   | - Formulate the cost function as a QUBO problem           | (2048 qubits) for  |  |
| Representa | includes datapoints    | aimed to be solved via multiple metaheuristics, where     | crypto problem.    |  |
| tive       | that meet two          | the selector algorithms pick out unique and               |                    |  |
| Selection  | requirements:          | representative data points by finding low-cost            | Algorithms used:   |  |
|            | 1: The data is         | solutions to this OUBO function on quantum                | Selector algorithm |  |
| (Agnostia  | maximally close to     | annealer.                                                 |                    |  |
| Inc)       | neighboring data       | - Show two use cases for the selector algorithm           | Methodology:       |  |
|            | 2: The data is         | 1: approximately reconstructing the NASDAO 100            | Optimization       |  |
| (Anna G    | maximally far from     | index using a subset of stocks, comparing how close       | - Pullinguion      |  |
| Hughes et  | more distant data      | the return of the selected stocks are to those to the     | Use case:          |  |
| al. 2023)  | noints                 | NASDAO 100                                                | Portfolio          |  |
|            | This is timake sure    | 2. diversifying a portfolio of cryptocurrencies           | ontimization       |  |
|            | data selected is as    | - For case 2 compare the performance of the algorithm     | opunization        |  |
|            | diversified as         | using two quantum appealers provided by D Wave            |                    |  |
|            | nossible               | - Also do experiments with synthetic data                 |                    |  |
|            | possible.              | - Also do experiments with synthetic data                 |                    |  |
|            |                        | Dataset specifications (Synthetic data):                  |                    |  |
|            |                        | - One dataset containing simple and obviously             |                    |  |
|            |                        | clustered data and another dataset containing time        |                    |  |
|            | 1                      | i crustered data, and another dataset containing tille    |                    |  |
| series data; data ordered in a chronologically ordered             |
|--------------------------------------------------------------------|
| sequence.                                                          |
| Dataset specifications (use cases):                                |
| Reconstructing NASDAQ 100 with a classical QUBO solver:            |
| - 102 stocks, performed on D-Wave QBSOLV, daily                    |
| returns of each stock are considered, historical data              |
| from 2021/02/01 to 2022/02/01 (253 days), stocks are               |
| equally weighted.                                                  |
| Diversifying crypto portfolios with quantum annealers:             |
| - Input data from daily returns of cryptos from                    |
| Crescent Crypto Market Index in the period                         |
| 2021/04/01 to 2021/11/11 (seven months), annealing                 |
| times were changed to find different solutions,                    |
| constraint satisfaction was tested, and solution                   |
| quality is compared. D-Wave Advantage and D-                       |
| Wave 2000Q were used.                                              |
| Constraint tested: whether the selector keeps to the               |
| max of 3 cryptos.                                                  |
|                                                                    |
| Results:                                                           |
| For synthetic data:                                                |
| - The selector algorithm successfully selected                     |
| representative points from the clustered data points               |
| - The selector algorithm was able to select                        |
| representative data even as noise increased.                       |
| - The algorithm demonstrated robustness in selecting               |
| representative points of data from both clearly and                |
| loosely clustered data, showcasing its practical                   |
| application.                                                       |
| - he algorithm maintained high accuracy in                         |
| distinguishing between clusters at low noise levels,               |
| with 100% accuracy. As noise increased, accuracy                   |
| dropped, but was still better than random picking.                 |
| For use cases:                                                     |
| Reconstructing NASDAQ 100 with a classical QUBO solver             |
| (objective: use the selector algorithm to find assets that closely |
| relate to the returns from the NASDAQ 100 index):                  |
| - The selector algorithm found two stocks that                     |
| approximated NASDAQ 100 closely, and the stock                     |
| chosen proved to be competitive, meaning they                      |
| performed well compared to other possible choices.                 |
| - As more stocks were selected, e.g. 40, the selector              |
| achieved a reproduction of the NASDAQ 100                          |
| (concluded from mean-square-error score)                           |
| - Accuracy increased with increased number of stocks.              |
| Diversitying crypto portfolios with quantum annealers              |
| (objective: Use the selector algorithm to choose a subset of       |
| cryptocurrencies, optimizing the cost function on each quantum     |
| annealer):                                                         |
| D-wave 2000Q:                                                      |
| - Succeeded in selecting exactly 3 cryptocurrencies in             |
| only 10% of the trials                                             |

|                                                                                                                                                                       |                                                                                                                                                                                                                                   | <ul> <li>Average cost function value of 4.02, within the lowest 4% of possible values, meaning that it can find good performing cryptos, but with room for improvement.</li> <li>D-Wave Advantage:         <ul> <li>Achieved a success rate of over 85% in selecting 3 cryptocurrencies.</li> <li>Average cost function value of 0.32, within the lowest 0.03% of values, meaning that it can find cryptos that are among the very best compared to all possible solutions, suggesting significantly better performance in PO.</li> </ul> </li> <li>Overall findings:         <ul> <li>Average annealing times were between 20-990 microseconds, but annealing times were significantly better for D-Wave advantage than for 1000Q</li> <li>Longer annealing times improved the percentage of solutions meeting the constraints.</li> <li>D-Wave 2000Q falls short of D-Wave Advantage</li> <li>Both devices are able to select solutions with lower cost function values compared to the average of all possible solutions, however, D-Wave Advantage finds better solutions.</li> </ul> </li> <li>Overall conclusions from all tests:         <ul> <li>"Overall, we saw clear improvement between the newer Advantage QPU and the earlier 2000Q QPU, providing meaningful solutions to the combinatorial optimization problem." (p. 9)</li> </ul> </li> </ul> |                                                                                                                                                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [83]<br>Improved<br>and large-<br>scale<br>portfolio<br>optimizatio<br>n using<br>vector<br>annealing<br>(Icosa<br>Computing<br>; NEC M)<br>(Esencan et<br>al., 2023) | In this paper form<br>Icosa computing and<br>NEC, a quantative<br>comparison between<br>NEC's Vector<br>Annealing (VA)<br>solution against the<br>simulated annealing<br>algorithm is<br>performed via a<br>financial PO problem. | <ul> <li>Objective(s): <ul> <li>Propose a SA algorithm, solving a QUBO formulation of Markowitz's Modern Portfolio Theory.</li> <li>Tune the parameterization of both VA and SA, and compare results with non-optimized parameterization for SA and VA.</li> <li>Compare VA and SA performance via subtracting both performances from each other to give perspective in the difference between both.</li> <li>Employ a four-step process in testing SA approaches: <ul> <li>l: obtain stock data from IEQ's platform, or from Yahoo Finance</li> <li>2: using a tunable finance model, deconstruct and formulate the original problem in a discrete problem suitable for SA and VA</li> <li>use both SA and VA for finding a candidate solution to the formulated problem</li> <li>consider the candidate with the lowest energy state as the optimal solution.</li> </ul> </li> </ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quantum system:<br>N/A<br>Algorithms used:<br>Simulated annealing<br>(SA) and NEC's<br>vector annealing<br>(VA)<br>Methodology:<br>Optimization<br>Use case:<br>Portfolio<br>optimization |  |

| P          |                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                    |
|------------|------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
|            |                        | -                                 | A problem with differing numbers of linear variables,<br>markets, stock numbers, granularity, with historical<br>data as training periods from the used markets. (see<br>figure X)<br>S&P 500 period was between 3/12/2018 and<br>8/1/2019 with 486 stocks due to some missing data<br>US test was from the stock period between 3/18/2022<br>and 3.2.2023, and second test for data between<br>3/18/2022 and 5/16/2022.<br>For international test one, the period was 3/18/2022<br>and 5/4/2022 (with 17,833 equities traded in France,<br>Germany, U.K., and U.S.), and second test period<br>being 3/17/2022 and 4/1/2022 (for 25,034 equities<br>traded in Canada, France, Germany, Japan, Turkey,<br>U.K., and the U.S.)                                                                                                                                                                                                                          |                    |                    |
|            |                        | Results:<br>-<br>-<br>-<br>-<br>- | Va constantly performed better than SA, producing<br>better quality solutions<br>the energy gap between SA and VA grew as number<br>of variables grew, showing that VA has a scaling<br>advantage.<br>Looking at the results, and the graph in figure 1, it<br>can be said that both SA and VA perform better after<br>tuning the parameters.<br>"We found that Vector Annealing generally<br>outperformed Simulated Annealing in terms of<br>solution quality and that its advantage over SA scales<br>with problem size." (P. 1)<br>NEC's VA is able to compute very large numbers of<br>variables with complex, real-world constraints.<br>"NEC Vector Annealing greatly reduces the<br>computational complexity associated with traditional<br>Simulated Annealers and accelerates the narrowing<br>down of the candidate solutions by a factor of up to<br>300 times at problem sizes beyond the capabilities of<br>conventional methods." (p. 1) |                    |                    |
|            |                        | Importor                          | t notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                    |
|            |                        | -                                 | Actual financial returns are disregarded as this paper<br>is only interested in performance difference between<br>VA and SA.<br>It is mentioned that the SA and VA need finetuning<br>for it to perform to a certain standard, but 'this is out<br>of the scope of this paper' (p. 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                    |
| [73]       | This paper mentions it | Objectiv                          | e(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quantum system:    | Second Order       |
| Quantum    | to develop the first   | -                                 | Design and analyze a quantum algorithm for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                | Cone Programs      |
| Algorithms | quantum algorithm      |                                   | general constrained portfolio optimization problem,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | (SOCPs) = a        |
| for        | for constrained PO     |                                   | making it applicable to a PO problem with an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Algorithms used:   | convex             |
| Portfolio  | and test it on a PO    |                                   | arbitrary number of positivity and budget constraints.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quantum version of | optimization       |
| Optimizati | instance               | -                                 | Reduce the objective PO problem to a second order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | interior point     | problem that       |
| on         |                        |                                   | cone program (SOCP) for broader applicability (to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | methods.           | generalizes linear |
|            |                        |                                   | classical interior point methods (IPM) and certain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | and quadratic      |

| CNDS        | Eventh company, games  | quantum algorithma) officionary companyization             | Math a dala aru     | ano onomino         |
|-------------|------------------------|------------------------------------------------------------|---------------------|---------------------|
| (CNKS,      | Furthermore, some      | <i>quantum algorunms)</i> , efficiency, generalization,    | Ontinuination       | programming,        |
|             | experiments are done   | Can best an annaniment with the menaged menture            | Optimization        | it                  |
| Universite  | to bound the problem-  | - Conduct an experiment with the proposed quantum          | TT                  |                     |
| Paris       | dependent factors      | model on dataset, compare the results with classical       | Use case:           | optimize multiple   |
| Diderot)    | arising in the running | IPM.                                                       | Portfolio           | objective           |
|             | time of the quantum    |                                                            | optimization        | problems better as  |
| (Anupam     | computer, comparing    | Dataset specifications:                                    |                     | it is flexible      |
| Prakash et  | computing times with   | - Historical data from the S&P 500 stock for a period      |                     | (meaning it can be  |
| al., 2019)  | classical algorithms   | of 9 years (2007-2016), 50 companies are sampled           |                     | formulated          |
|             |                        | for their stock performance in the first 100 days.         |                     | towards many        |
|             |                        |                                                            |                     | types of problems,  |
|             |                        | Results:                                                   |                     | e.g. max return,    |
|             |                        | - The quantum algorithm shows similar performance to       |                     | min risk), and it   |
|             |                        | the classical algorithms in terms of convergence.          |                     | can handle          |
|             |                        | - The quantum algorithm offers significant speedup         |                     | complex             |
|             |                        | compared to the classical methods                          |                     | constraints (also   |
|             |                        | - Running time of the algorithm scale more favorably       |                     | common in           |
|             |                        | than that of its classical counterparts, indication        |                     | portfolio           |
|             |                        | quadratic speedup over classical algorithms.               |                     | optimization)       |
|             |                        | - The quantum advantage showed to be more                  |                     |                     |
|             |                        | pronounced when the number of assets is large, and         |                     |                     |
|             |                        | constraint numbers are low.                                |                     |                     |
|             |                        | - "We obtain a polynomial speedup over the classical       |                     |                     |
|             |                        | algorithms, and we provide experimental results to         |                     |                     |
|             |                        | demonstrate the potential of these advantages in           |                     |                     |
|             |                        | practice" (p. 1)                                           |                     |                     |
|             |                        | - "The experiments suggest that this parameter $\kappa$ in |                     |                     |
|             |                        | indeed bounded and that our algorithm achieves a           |                     |                     |
|             |                        | speedup over the corresponding classical algorithm"        |                     |                     |
|             |                        | (p. 4)                                                     |                     |                     |
|             |                        |                                                            |                     |                     |
|             |                        | Important notes:                                           |                     |                     |
|             |                        | - The goal of the quantum IPM is to significantly          |                     |                     |
|             |                        | outperform classical approaches, especially for big        |                     |                     |
|             |                        | matrices and high-dimensional problems, by utilizing       |                     |                     |
|             |                        | quantum linear systems solvers and QRAM.                   |                     |                     |
| [121]       | As multiple            | Objective(s):                                              | Quantum system:     | Fidelity = a        |
| NISQ-HHL    | components of current  | - Propose the NISQ-HHL formulation, where HHL is           | Real quantum        | measure of how      |
| Portfolio   | HHL are unsuitable to  | improved via mid-circuit measurements, Quantum             | hardware (Trapped-  | close probability   |
| optimizatio | be applied to NISQ     | Conditional Logic (QCL) enhanced QPE (which is             | Ion Honeywell       | distributions are   |
| n for near- | hardware, this paper   | the standard method used in HHL), and qubit reset          | H1system), and for  | to each other,      |
| term        | introduces the NISQ-   | and reuse (which ensure fewer qubit needs for              | certain comparison  | thereby signifying  |
| quantum     | HHL, which is the      | calculations, and reduced requirements for qubit           | simulated hardware. | degree of           |
| hardware    | first hybrid           | connectivity, thereby making it more efficient)            |                     | accuracy.           |
|             | formulation of HHL     | - Furthermore, make use of a new efficient procedure       | Algorithms used:    |                     |
| (JP         | suitable for small-    | to scale the matrixes used (e.g. covariance matrix) for    | NISQ-HHL            | Ancillary qubits =  |
| Morgan      | scale PO instances.    | better accuracy of end results.                            |                     | qubits that are not |
| Chase)      |                        | - Experiment with the NISQ-HHL on a real quantum           | Methodology:        | mpart of the main   |
|             | The NISQ-HHL is        | computer with a 2-asset PO problem form the S&P            | Optimization        | computational       |
| (Dylan      | used in an experiment  | 500.                                                       |                     | qubits that         |
| Herman et   | on a real quantum      | - Formulate the Markowitz's mean-variance model as         | Use case:           | directly represent  |
| al., 2021)  | device to show its     | a Quantum Linear Systsems Problem (QLSP). As the           | Portfolio           | the problem's       |
|             | effectiveness          | HHL algorithm is designed to solve such a problem.         | optimization        | fdata, but rather   |

|                     | - Test the difference between the use of QCL enhance                            | qubits that are    |
|---------------------|---------------------------------------------------------------------------------|--------------------|
| This paper proposes | QPE, and standalone QPE for estimating eigenvalues.                             | used in quantum    |
| to make HHL more    | - Experiment with NISQ-HHL on two further 6-asset                               | computation to     |
| scalable.           | and 14-asset PO problems with a simulator and                                   | facilitate         |
|                     | decipher its performance against uniformly controlled                           | efficiency and     |
|                     | rotations (which are employed in the traditional HHL                            | reliability of the |
|                     | algorithm for eigenvalue estimation)                                            | quantum            |
|                     |                                                                                 | algorithm, which   |
|                     | Dataset specifications:                                                         | they are also used |
|                     | - Two PO problems with 6 and 14 assets from the S&P                             | for in this paper. |
|                     | 500 index formed as a QLSP problem. 6 ancillary                                 |                    |
|                     | qubits used in both cases to increase efficiency.                               |                    |
|                     | Results:                                                                        |                    |
|                     | QCL-QPE method compared to standalone QPE:                                      |                    |
|                     | - QCL enhanced QPE uses less qubits for the same                                |                    |
|                     | problem instance than standalone QPE, thereby                                   |                    |
|                     | showing increased efficiency. Furthermore, as                                   |                    |
|                     | number of bits increase (complexity), the number of                             |                    |
|                     | qubits stays the same for QCL-QPE as opposed to                                 |                    |
|                     | standalone QPE.                                                                 |                    |
|                     | - Results on the real quantum hardware shows that the                           |                    |
|                     | fidelity of QCL-QPE is better than standalone QPE.                              |                    |
|                     | NISQ-HHL performance (For the 6-asset and 14-asset PO                           |                    |
|                     | problem it was found that the circuits were very deep, making                   |                    |
|                     | real hardware execution injedsible, inerejore simulation was                    |                    |
|                     | used for analysis)(for the 2-asset problem, the Honeywell                       |                    |
|                     | yuunium computer was usea).<br>NISO HHL circuits demonstrated reduced depth and |                    |
|                     | improved precision in rotations leading to better                               |                    |
|                     | nerformance                                                                     |                    |
|                     | - 14 gubits total were needed for the 6 asset problem.                          |                    |
|                     | and 16 qubits total for the 14 asset problem.                                   |                    |
|                     | - For the experiment, the results showed high inner                             |                    |
|                     | product values being found (close to 1), meaning that                           |                    |
|                     | the algorithm is accurately solving the problems.                               |                    |
|                     | - The algorithm showed better performance for the                               |                    |
|                     | larger 14-asset problem, thereby showing its                                    |                    |
|                     | increased performance as complexity increases.                                  |                    |
|                     | - Compared to the uniformly controlled rotation in the                          |                    |
|                     | normal HHL algorithm, NISQ-HHL performed better                                 |                    |
|                     | in terms of efficiency, using less rotations (4 instead                         |                    |
|                     | of 64 for 6-asset PO, and 5 compared to 64 in the 14-                           |                    |
|                     | asset PO), and having lower circuit depth (1,877 for                            |                    |
|                     | the 6-asset PO instead of 12,911, and 6,514 for the                             |                    |
|                     | 14-asset PO instead of 11.786 for the uniformly                                 |                    |
|                     | controlled rotations), thereby showcasing that the                              |                    |
|                     | NISQ-HHL can facilitate a lessening in the                                      |                    |
|                     | computational resources needed for HHL.                                         |                    |
|                     | - Accuracy of NISQ-HHL was also perceived to be                                 |                    |
|                     | higher than with the uniformly controlled rotations.                            |                    |
|                     | - NISQ-HHL demonstrated superior performance in                                 |                    |
|                     | terms of fewer controlled rotations and reduced                                 |                    |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>circuit depth while maintaining high accuracy in the inner product values.</li> <li>NISQ-HHL was successfully implemented on the Honeywell System Model H1 to solve a portfolio optimization problem involving two S&amp;P 500 assets.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [98]In this paper, it isFinancialIn this paper, it isGenomedemonstrated howIndexnon-linear cardinalityTrackingconstraints can beviaapplied in real-worldQuantumasset management toComputingquantum PO.withFurthermore, theConstraintsmethodology is(Multiverseapplied to a practicalComputingproblem of enhancedindex trading.ComputingServices;AdvancedAdvancedAnalytics;DonostiaInternational PhysicsCenter;IkerbasqueFoundationfor Science)(SamuelPalmer etal., 2022) | <ul> <li>Objective(s): <ul> <li>Propose a quantum model based on quantum annealing for solving of a cardinality-constrained Markowitz PO problem.</li> <li>Form the PO problem as a QUBO formulation to be solved via the model.</li> <li>Experiment with the model on a proposed PO problem with different problem sizes and qubit numbers used (400 – 3000), where the objective is to replicate the behaviors of a larger financial index of assets using a smaller sub-set of assets (index tracking), where error is tracked by measuring, he deviation of the solution forms the index.</li> </ul> </li> <li>Dataset specifications: <ul> <li>Historical data consist of the daily returns from the Nasdaq 100 and S&amp;P 500, the period form when this data is taken covers the period JUN/01/2021 to MAY/28/2022. A single asset may have a max holding of 20% in the portfolio. Tests are performed using different problem sizes and differing numbers of qubits.</li> </ul> </li> <li>Results: <ul> <li>It is observed that the success rate of finding feasible portfolios is very high, close to 100% for the model, indicating that the cardinality-constraint dincreased, the distribution of errors improved, meaning more accurate results.</li> <li>The most optimal portfolio found had extremely low tracking error, almost completely tracking the given indexes, this was done for both a cardinality constraint of 25 and 75.</li> <li>Smaller portfolios showed less ability to track the index to a high degree, but still performed well</li> <li>As for the S&amp;P 500 index, the model yielded good</li> </ul> </li> </ul> | Quantum system:<br>Quantum Annealer<br>(D-Wave LEAP<br>Hybrid solver)<br>Algorithms used:<br>Quantum Annealing<br>Methodology:<br>Optimization<br>Use case:<br>Optimizing a<br>portfolio for index<br>tracking. | Reason for<br>cardinality-<br>constraints: the<br>decision to use<br>these constraints<br>can be driven by<br>reducing<br>management<br>costs, transaction<br>costs, or portfolio<br>complexity, or by<br>other investor<br>preferences. |

| [97]<br>A<br>Quantum<br>Computing<br>-based<br>System for<br>Portfolio<br>Optimizati<br>on using<br>Future<br>Asset                                                            | This paper entails a<br>quantum computing-<br>based system for<br>portfolio optimization<br>with future asset<br>values and automatic<br>universe reduction<br>(Q4FuturePOP)<br>This system proposes<br>the following                                                                                                                                                         | <ul> <li>low median relative error, indicating good overall tracking performance.</li> <li>For the experiment, using a cardinality-constraint of 50 assets, the proposed model performed</li> <li>For enhanced index trading, the method was able to "construct smaller portfolios that significantly outperform the risk profile of the target index whilst retaining high degrees of tracking" (p. 1)</li> <li>Overall, the model showed that it is possible to successfully use quantum optimization in the tracking of financial indexes.</li> <li>Important notes: <ul> <li>Introducing the cardinality-constraint makes the PO problem a non-convex problem.</li> <li>Cardinality constrained PO problems are very complex to solve, as it limits the number of assets a portfolio can use to solve the target objective.</li> <li>"Previous work involving cardinality-constraint optimization has primarily relied on the use of heuristic algorithms such as genetic algorithms, or classical approximations, which do not scale well for large portfolios and are not practically reliable" (p. 2)</li> </ul> </li> <li>Objective(s): <ul> <li>Develop a Quantum Computing-based system (Q4FuturePOP) that optimizes asset-allocation with the objectives of maximizing expected returns and minimizing the financial risk. This system follows the Markowitz POP formulation</li> <li>Using future projected values (meaning that calculations are made via projected values of assets instead of historical data, and weights chosen for the assets are based on future predictions of the stock), and automatic universe reduction (where a</li> </ul></li></ul> | Quantum system:<br>D-Wave Advantage<br>6.2 (5610 qubits)<br>Algorithms/system<br>used:<br>Q4FuturePOP<br>Methodology:<br>Optimization |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| on using<br>Future<br>Asset<br>Values and<br>Automatic<br>Reduction<br>of the<br>Investment<br>Universe<br>(TECNALI<br>A BRTA;<br>Serikat)<br>(Eneko<br>Osaba et<br>al., 2023) | This system proposes<br>the following<br>innovations:<br>1: the tool is<br>developed for<br>working with future<br>prediction of assets,<br>instead of historical<br>values<br>2: The tool includes<br>an automatic universe<br>reduction module to<br>improve efficiency.<br>Lastly, a brief<br>preliminary<br>performance review is<br>discussed considering<br>the system. | <ul> <li>instead of historical data, and weights chosen for the assets are based on future predictions of the stock), and automatic universe reduction (where a representative good sub-group of the initial pool of assets is chosen and further improved upon to find the optimal asset allocation), reduce the complexity of the problem.</li> <li>Then use the model on an experiment from the dataset below, where results are benchmarked against a historical set of portfolios obtained from Welzia Management company to serve as a baseline.</li> <li>The experiment includes the data below, however, the data is split up into 6 different use cases that are 12 to 28 months long</li> <li>Dataset specifications: <ul> <li>53 daily values of different assets from the period 01/01/2010 to 13/12/2022, this dataset is ultimately split up into 6 instances ranging from 12 to 28 months (with respectively 45, 43, 35, 38, 40, and 53 assets)</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Methodology:<br>Optimization<br>Use case:<br>Portfolio<br>optimization                                                                |  |

|                      |                      | <ul> <li>Results: <ul> <li>Results from the experiment proved to be promising, where they have been approved by experts from Welzia Management Company, thereby giving an indication as to how the industry looks at the problem (as it is usually the case that only academic results are compared with each other, giving no validation from the industry it ought to be used by)</li> <li>The portfolios made by the model offered better solutions than the portfolios from the experts at Welzia Management in some cases.</li> <li>Looking at table 1 that shows the results for the 6 instances in the experiment, it can be seen that for 4/6 instances the model performed better in finding higher expected returns than the experts, and 3/6 times it had better volatility or risk results.</li> <li>This work shows promising results regarding the use of the Q4FuturePOP model with future value prediction and universe reduction strategy for PO optimization.</li> </ul> </li> <li>Important notes: <ul> <li>The model consists of 3 parts, 1: A dedicated 'predicted dataset generation model' (PDG), which is used to simulate future asset prices, the PDG comes a step before the AUG, which uses the information from the PDG to find an optimal subset of candidates.</li> <li>The quantum computing solver module (QCS), consisting of a QUBO problem builder and a Quantum Annealer solver to solve the QUBO formulated PO problem.</li> </ul> </li> </ul> |                  |                           |
|----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|
|                      |                      | formulated PO problem.<br>3: the Assets Universe Reduction module AUR, with<br>the main objective to decrease the complexity of the<br>problem by finding a representatively good sub-set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                           |
|                      | <b>.</b>             | assets to use in the PO solving.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                           |
| [99]<br>Quantum      | In this paper it is  | Ubjective(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quantum system:  | Investment band =         |
| Quantum<br>Portfolio | complex real-life    | - FIRST. EXPLAIN NOW to target optimal investment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (hybrid)         | an imposed<br>maximum and |
| Optimizati           | constraints can be   | - Second, show how to impose investment hands in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (inyona).        | minimum                   |
| on with              | incorporated into PO | computed portfolios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Algorithms used: | investment for            |
| Investment           | problem, where it is | - Form the PO problem based on Markowitz's Modern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A              | each asset.               |
| Bands and            | formulated as a      | Portfolio Theory with investment band constraints.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                           |
| Target               | QUBO problem and     | where the aim is to find the optimal return for a given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methodology:     |                           |
| Volatility           | subsequently solved  | volatility %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Optimization     |                           |
| (Multiverse          | the D-Wave Hybrid    | - Form the problem as a QUBO formulation to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                           |
| Computing            | and D-Wave           | solved via a quantum annealer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Use case:        |                           |
| ; Donostia           | Advantage.           | - Prove the validity of the model via an experiment by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Portfolio        |                           |
| Internation          |                      | finding an optimal portfolio investment for the S&P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | optimization     |                           |
| al Physics           |                      | 100 and S&P 500 with the D-Wave Advantage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                           |
| Center;              |                      | quantum annealer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                           |
| икегразque           |                      | - Constraints used: investment band constraint, target volatility constraint, and a budget constraint.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                           |

| Foundation   |                                                                                                       |
|--------------|-------------------------------------------------------------------------------------------------------|
| for Science) | Dataset specifications:                                                                               |
| ior science) | closing prices are taken from $23/01/2021$ to                                                         |
| (Samuel      | - closing prices are taken noin $23/04/2021$ to<br>22/04/2021 and accurring an matrix for values of 2 |
| (Samuel      | 25/04/2021, and covariance matrix for values of 5                                                     |
| Paimer et    | months before 23/04/2021, max 10% of the portfolio                                                    |
| al., 2021)   | may consist of one asset. Lastly, data is experimented                                                |
|              | on using different target volatilities (0.5%, 0.75%,                                                  |
|              | and 1.00%)                                                                                            |
|              |                                                                                                       |
|              | Results:                                                                                              |
|              | S%P 100 results:                                                                                      |
|              | - Sometimes, local minima were found, however, it is                                                  |
|              | mentioned that this could be handled easily through                                                   |
|              | various methods.                                                                                      |
|              | - The S&P 100 example successfully followed                                                           |
|              | volatility constraints.                                                                               |
|              | - As for the different target volatilities with investment                                            |
|              | bands, the found portfolios adhered to these                                                          |
|              | constraints                                                                                           |
|              | - The model demonstrated lower risks for the same                                                     |
|              | return compared to random portfolios with the same                                                    |
|              | return                                                                                                |
|              | - The model demonstrated higher returns for the same                                                  |
|              | level of risk as compared to random portfolios.                                                       |
|              | S%P 500 results:                                                                                      |
|              | - Target volatility constraints were met, indicating that                                             |
|              | the method is able to follow provided volatility                                                      |
|              | constraints                                                                                           |
|              | - For the different target volatility, the optimization                                               |
|              | method adhered to the specified investment bands                                                      |
|              | and volatility constraints                                                                            |
|              | - The proposed portfolios achieved lower risk                                                         |
|              | compared to random portfolios with the same levels                                                    |
|              | of return                                                                                             |
|              | - The proposed portfolios found higher returns for the                                                |
|              | same level of risk.                                                                                   |
|              | - Compared to the S&P equally weighted index (which                                                   |
|              | is also used as a benchmark), the proposed model                                                      |
|              | outperformed the S&P 500 EWI, especially through                                                      |
|              | favoring high-return sectors during COVID.                                                            |
|              |                                                                                                       |
|              | Overall:                                                                                              |
|              | - Both S&P500 and S&P100 quantum-optimized                                                            |
|              | portfolios demonstrated improved performance over                                                     |
|              | random portfolios and traditional indices, efficiently                                                |
|              | managing constraints and achieving better returns for                                                 |
|              | the same or lower levels of risk.                                                                     |
|              | - This paper showcases the feasibility of a quantum PO                                                |
|              | model with realistic conditions on quantum                                                            |
|              | computers, showing it to handle investment band and                                                   |
|              | volatility constraints well, and optimize portfolios in                                               |
|              | a real-world scenario.                                                                                |

|                      |                            | 1                                                       | 1                | 1                 |
|----------------------|----------------------------|---------------------------------------------------------|------------------|-------------------|
|                      |                            | - "Our results show how practical daily constraints     |                  |                   |
|                      |                            | found in quantitative finance can be implemented in a   |                  |                   |
|                      |                            | simple way in current NISQ quantum processors,          |                  |                   |
|                      |                            | with real data, and under realistic market conditions." |                  |                   |
|                      |                            | (p. 1)                                                  |                  |                   |
|                      |                            | - "In combination with clustering algorithms, our       |                  |                   |
|                      |                            | methods would allow to replicate the behavior of        |                  |                   |
|                      |                            | more complex indexes, such as Nasdaq Composite or       |                  |                   |
|                      |                            | others, in turn being particularly useful to build and  |                  |                   |
|                      |                            | replicate Exchange Traded Funds (ETF)," (p. 1)          |                  |                   |
|                      |                            |                                                         |                  |                   |
|                      |                            | Important notes:                                        |                  |                   |
|                      |                            | - It is also assumed that shares can only be sold in    |                  |                   |
|                      |                            | large bundles.                                          |                  |                   |
|                      |                            | - Short selling is not allowed.                         |                  |                   |
|                      |                            | - The proposed model also allows for investment         |                  |                   |
|                      |                            | bands for specific sectors.                             |                  |                   |
|                      |                            | - "To the best of our knowledge, these are the largest  |                  |                   |
|                      |                            | portfolio optimizations carried on a quantum            |                  |                   |
|                      |                            | computer and under real market conditions" (n 4)        |                  |                   |
| [58]                 | In this paper, the         | Objective(s):                                           | Quantum system:  | Portfolio         |
| Portfoli             | n performance of a         | - Describe the application of $OAOA$ and $OAOAz$ to a   | Gate-based       | rebalancing = "a  |
| robalan              | cing discrete PO problem   | PO problem with the named aspects below 1 to 6          | simulator        | neriodic asset    |
| ovnorim              | ant on a gate model of     | Experiment with the proposed OAOA and OAOAZ             | Sinulator        | management        |
| experim<br>s using t | the quantum computing is   | - Experiment with the proposed QAOA and QAOAZ           | Algorithms used  | management        |
| s using t            | ine quantum computing is   | via an experiment for PO including 1: a one-portiono    | Algorithms used: | process in which  |
| Quantui              | investigated.              | listance, and 2: portiono rebalancing, both under       | QAOAZ, and       | traders maintain  |
| Alternat             |                            | different number of iteration (P) per constraint        | QAOA             | an institutional  |
| Operato              | Furthermore, the           | method, furthermore, compare both methods against       |                  | portfolio's net   |
| Ansatz               | model includes a           | brute-force algorithm (classical)(baseline)             | Methodology:     | value, adjusting  |
| (Rigetti             | novel problem              | - Compare the use of soft, and hard investment          | Optimization     | asset mix based   |
| Comput               | ing encoding and hard      | constrained PO on the mentioned QAOA algorithms.        |                  | on institutional  |
| ;                    | constraint mixers for      | - Incorporate the following in the model:               | Use case:        | advice and        |
| Commo                | <b>nw</b> the Quantum      | 1: Trading in discrete lots                             | Portfolio        | hedging risk as   |
| ealth Ba             | Alternating Operator       | 2: Model uncertainty into the model (thereby            | optimization     | market conditions |
| of Autra             | alia) Ansatz (QAOAz)       | addressing this limitation in the traditional           |                  | change." (p. 2)   |
|                      | "In this paper we have     | Markowitz model)                                        |                  |                   |
| (Mark                | brought together           | 3: Use an investment constraint that ensures the        |                  |                   |
| Hodson               | et financial services and  | portfolio to maintain portfolio value during            |                  |                   |
| al., 2019            | <b>9)</b> quantum software | rebalancing.                                            |                  |                   |
|                      | technologists to           | 4: The model incorporates trading costs, assuming       |                  |                   |
|                      | select, implement, and     | fixed costs for each trade (thereby reflecting a real   |                  |                   |
|                      | test a portfolio           | trading scenario)                                       |                  |                   |
|                      | rebalancing use case       | 5: Representation of short, long, no position, long     |                  |                   |
|                      | using $QAOA(z)$ " (p.      | and short positions into the spin states (simply put,   |                  |                   |
|                      |                            | different types of positions for an asset are included  |                  |                   |
|                      |                            | into the portfolio to maximize the optimization.        |                  |                   |
|                      | The characteristics of     | however, it does increase complexity)                   |                  |                   |
|                      | the proposed model in      | 6: Other constraints such as max asset holdings and     |                  |                   |
|                      | this paper are trading     | min allocation sizes are used but not detailed upon in  |                  |                   |
|                      | in discrete lots non-      | the namer                                               |                  |                   |
|                      | linear trading costs       | Overall the model aims to improve trading strategies    |                  |                   |
|                      | and investment             | hv integrating discrete trading practices market        |                  |                   |
|                      | and investment             | by integrating discrete trading practices, market       |                  |                   |
| 1                    | Constraints (all to        | 1                                                       | 1                | 1                 |

| achieve be   | tter       | uncertainty, and trading costs into the optimization                     |  |
|--------------|------------|--------------------------------------------------------------------------|--|
| accuracy to  | owards     | process.                                                                 |  |
| practical us | se and     |                                                                          |  |
| accuracy)    | Data spe   | cifics:                                                                  |  |
|              | -          | Australian ASX.20 is used in the period 2017, the                        |  |
|              |            | data covered 20 stocks and 252 trading days, daily                       |  |
|              |            | returns are presented for the algorithms to work with                    |  |
|              |            | Data for $N = 8$ stocks were used in the experiments                     |  |
|              |            | Number of iterations for both hard and soft                              |  |
|              | -          | Number of iterations for both hard and soft                              |  |
|              |            | constrained: $p = 2,3,4$ . 20 runs of the algorithm are                  |  |
|              |            | used for each instance.                                                  |  |
|              |            |                                                                          |  |
|              | Results:   |                                                                          |  |
|              | Evaluation | on of QAOA, QAOAz, and brute-force for a single                          |  |
|              | portfolio  | :                                                                        |  |
|              | -          | Looking at the given figure 8 (Which shows the                           |  |
|              |            | performance of the algorithms in solving the                             |  |
|              |            | soft/hard constrained problems compared to brute-                        |  |
|              |            | <i>force</i> ), QAOA with hard constraints outperforms                   |  |
|              |            | brute-force and soft-constrained OAOA in finding                         |  |
|              |            | feasible solutions to the problem Furthermore                            |  |
|              |            | $\Omega$ A $\Omega$ Az finds more low-cost feasible solutions than       |  |
|              |            | QAQA it can also be said that $QAQA$ shows                               |  |
|              |            | QAOA, it can also be said that QAOAZ shows                               |  |
|              |            | salastism of foosible solutions                                          |  |
|              |            | selection of feasible solutions. $(1000)$                                |  |
|              | -          | QAOAZ consistently returns feasible solutions (100%                      |  |
|              |            | of the time)                                                             |  |
|              | -          | Both QAOA and QAOAz show significant                                     |  |
|              |            | improvement in results compared to a random draw                         |  |
|              |            | from the solution space.                                                 |  |
|              | -          | Both variants of QAOA show a significant                                 |  |
|              |            | improvement over brute force methods, which                              |  |
|              |            | validates the efficiency and effectiveness of quantum                    |  |
|              |            | algorithms in navigating large combinatorial spaces.                     |  |
|              | -          | Incorporating hard constraints directly into the                         |  |
|              |            | optimization process shows better optimization                           |  |
|              |            | results than soft constraints as penalty terms.                          |  |
|              | For portf  | olio rebalancing with QAOA. OAOAz. and brute-                            |  |
|              | force:     |                                                                          |  |
|              | -          | The OAOAz demonstrates superior performance in                           |  |
|              |            | both maximizing returns and minimizing risk                              |  |
|              |            | compared to the original $\Omega \Lambda \Omega \Lambda$ and brute force |  |
|              |            | mathada                                                                  |  |
|              |            | Deth QAQA consists concertly nonforme class to                           |  |
|              | -          | boun QAUA variants generally perform close to                            |  |
|              |            | optimal, but the Quantum Alternating Operator                            |  |
|              |            | Ansatz shows more consistent and reliable results                        |  |
|              | -          | "Experimental analysis demonstrates the potential                        |  |
|              |            | tractability of this application on Noisy Intermediate                   |  |
|              |            | Scale Quantum (NISQ) hardware, identifying                               |  |
|              |            | portfolios within 5% of the optimal adjusted returns                     |  |
|              |            | and with the optimal risk for a small eight-stock                        |  |
|              |            | portfolio." (p. 1)                                                       |  |
|              | Overall:   |                                                                          |  |

|                       |                         | <ul> <li>QAOAz performed best among QAOA and brute-force</li> <li>Hard-constrained problems, and the subsequent method used in this paper to better incorporate hard constraints, showed to garner better results using the algorithms than soft constraints.</li> <li>QAOA and QAOAz show better results than the classical counterpart, navigating larger search spaces</li> <li>This study highlights the potential that quantum algorithms on NISQ hardware have, achieving portfolios within 5% of optimal adjusted return and optimal risk for an 8-asset portfolio</li> </ul> |  |
|-----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                       |                         | Important notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                       |                         | - Scaling the problem might prove difficult due to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                       |                         | Statement: "The potential for OAOA to provide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                       |                         | guarantees on performance for problems such as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                       |                         | MaxCUT has been demonstrated" (p. 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| [106]                 | In this paper, an       | Objective(s): Quantum system:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Quantum               | algorithm is presented  | - develop a quantum method to estimate the intrinsic Real trapped-ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| portfolio             | that efficiently        | long-term value of a portfolio of assets, and computers (IonQ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| value                 | estimates the intrinsic | implement it with real-life data and AQTION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| forecasting           | long-term value of a    | - The intrinsic-value of a portfolio is given by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| <b>AF</b> 10          | portfolio of asset      | Gorden-Shapiro model; therefore it is used in this Algorithms used:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| (Multiverse           | using quantum           | paper in a modified fashion to account for both short-<br>tarm and lang tarm growth by incomparating comings. Carls (OMC)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| · Institut            | computer, relying on    | ner share and stochastic variables to better                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| , institut<br>Für     | estimation              | approximate asset values over a two-year period <i>(it is</i> Methodology)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Experiment            | estimation.             | basically used for improved accuracy, creating a Optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| alphysik;             | Two trapped ion-        | greater picture asset value over time horizons,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| AQT;                  | computers are used to   | flexibility, and a more precise calculation of portfolio Use case:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Ikerbasque            | experiment upon with    | value) Portfolio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Foundation            | a 5-asset portfolio PO  | - Compare results of the QMC on an IonQ device, optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| for Science;          | problem.                | AQTION device, and classical Monte Carlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Donostia              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| internation           |                         | Dataset specifications:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| al Physics<br>Centor) |                         | - 5 asset portionos, with 1000 euros invested in each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Center)               |                         | with 3 scenarios (stable hearish and bullish which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| (Cristina             |                         | are accounted for using higher/lower volatility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Sanz-                 |                         | values)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Fernández             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| et al., 2021)         |                         | Results:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                       |                         | - Looking at the given figures, figure 1 shows how                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                       |                         | quantum results align closely with classical results,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                       |                         | but with lower errors. Furthermore figure 2 shows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                       |                         | that QMU achieved a decrease in error with increased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                       |                         | amounts of queries, outperforming classical Monte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                       |                         | - Both classical and guantum methods showed that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                       |                         | given portfolio was a worthwhile investment, as the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                       |                         | intrinsic value of it was higher than the market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

|                                                                                                                                                            |                                                                                                                                                                                                                                                                                     | <ul> <li>In the bearish market, the quantum method provided<br/>a more accurate estimation of the portfolio, as the<br/>classical portfolio overestimated the intrinsic value of<br/>the portfolio.</li> <li>Quantum Monte Carlo methods demonstrated smaller<br/>estimation errors compared to classical methods,<br/>achieving a quadratic speedup in error reduction</li> <li>Quantum Monte Carlo methods provide a more<br/>efficient and accurate means of estimating asset<br/>values, especially under stable or bullish market<br/>conditions.</li> <li>results are consistent with classical benchmarks but<br/>result in smaller statistical errors for the same<br/>computational cost.</li> </ul>                                                                                              |                                                                                                                                                                                                |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                            |                                                                                                                                                                                                                                                                                     | <ul> <li>Important notes: <ul> <li>Classical Monte Carlo methods in finance often take long running times to solve certain complex problems.</li> <li>Furthermore, this paper gives examples of existing literature on quantum computers having similar or better results to classical algorithms.</li> <li>"We choose to work with trapped ions because they provide a natural all-to-all connectivity among the qubits." (p. 1) making it simpler to implement the quantum circuit.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |  |
| [114]<br>Solving the<br>optimal<br>trading<br>trajectory<br>using<br>simulated<br>bifurcation<br>(AlpacaJap<br>an)<br>(Kyle<br>Steinhauer<br>et al., 2020) | In this paper, an<br>optimization<br>procedure based on<br>simulated bifurcation<br>(SB) is used to solve<br>integer PO and<br>optimal trading<br>trajectory problems.<br>SB is then applied to<br>an integer PO<br>problem, showing<br>numerical results for<br>up to 1000 assets. | <ul> <li>Objective(s):</li> <li>Following the mean-variance portfolio description, solve a PO problem using Simulated Bifurcation</li> <li>Form the PO problem into an Ising problem to be solved via SB</li> <li>Experiment with the SB on a data pool consisting of up to 1000 assets, where the objective is to find the optimal trading trajectory for a portfolio. In total, 2 experiments take place: <ol> <li>Optimal trading trajectory finding with the SB-Algorithm in different risk aversion levels (<i>low</i>, <i>moderate</i>, <i>and high</i>)</li> <li>Optimal portfolio with the SB-Algorithm, thereby comparing results with randomly generated portfolios.</li> <li>Finding close-to-optimal solutions for a PO instance, and the challenges that come with it.</li> </ol> </li> </ul> | Quantum system:<br>Simulator<br>Algorithms used:<br>Simulated<br>Bifurcation (SB)<br>Methodology:<br>Optimization<br>Use case:<br>Finding the optimal<br>trading trajectory<br>for a portfolio |  |
|                                                                                                                                                            |                                                                                                                                                                                                                                                                                     | <ul> <li>Data specifications (for the second problem): <ul> <li>An artificial market is created with N different assets, up to 1000.</li> </ul> </li> <li>Results: <ul> <li>Portfolio optimization problem: <ul> <li>For a small portfolio of 5 assets, the SB algorithm optimized the portfolio correctly, finding 5 assets are close to optimal.</li> </ul> </li> </ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                |  |

|  | - In an instance with added risk-free asset, the SB      |  |
|--|----------------------------------------------------------|--|
|  | algorithm correctly find the optimal portfolios          |  |
|  | including the risk-free asset.                           |  |
|  | - In a third scenario, where the number of assets are n  |  |
|  | =400, the SB                                             |  |
|  | - For an $N = 1000$ assets case, the SB found the        |  |
|  | optimal solution in roughly 1 second.                    |  |
|  | Optimal trading trajectory:                              |  |
|  | - Looking at figure 11, it can be concluded that as max  |  |
|  | investment per asset, and asset size increased, the      |  |
|  | computational time also increased for the SB.            |  |
|  | However, when the max investment per asset was           |  |
|  | kept low (e.g. 1, 2, 4), it can be seen that there is    |  |
|  | no/minimal increase in computing time for increasing     |  |
|  | number of assets in the data pool                        |  |
|  | - For a low risk aversion instance, the Sb-algorithm     |  |
|  | mainly focused on maximizing returns, ignoring risk      |  |
|  | - For moderate risk aversion, the SB-Algorithm only      |  |
|  | takes risk when returns are high, and the portfolio      |  |
|  | value was maximized.                                     |  |
|  | - On a small, less complex, system, the SB-Algorithm     |  |
|  | found the optimum among all 2 <sup>18</sup> possible     |  |
|  | trajectories. For larger systems, the Sb-Algorithm       |  |
|  | found optimal or close-to-optimal results.               |  |
|  | - For high risk-aversion, the SB-Algorithm minimizes     |  |
|  | risk completely by suggesting no investment and          |  |
|  | return levels are ignored due to the risk aversion       |  |
|  | level.                                                   |  |
|  | - The SB-algorithm effectively finds optimal or close-   |  |
|  | to-optimal asset allocation trajectories under different |  |
|  | market conditions and risk preferences                   |  |
|  | Finding close-to-optimal solutions:                      |  |
|  | - Finding close-to-optimal solutions requires a lot of   |  |
|  | finetuning of parameters and other parts of the          |  |
|  | system, where ultimately the fine tuning showed          |  |
|  | increased accuracy in finding close-to-optimal           |  |
|  | solutions.                                               |  |
|  | - Furthermore, the proper-finetuning techniques          |  |
|  | resulted in the avoidance of finding sub-optimal         |  |
|  | solutions, and the SB-algorithm demonstrated             |  |
|  | significant computational efficiency and robustness.     |  |
|  | Overall performance findings:                            |  |
|  | - In terms of scalability, the computation time          |  |
|  | increased exponentially with system size, the            |  |
|  | performance still is significantly faster than previous  |  |
|  | methods suc has branch-and-bound (classical), which      |  |
|  | took up to 4800 seconds for a 200 asset optimization,    |  |
|  | with SB performing a 256 asset Po in 4 seconds.          |  |
|  | - Performance was dependent on the parameters used       |  |
|  | in the algorithm, if incorrect parameters were used,     |  |
|  | the                                                      |  |
|  | - The results indicate significant improvements over     |  |
|  | existing methods, however, there is still room for       |  |

|                                                                                                                                                        | optimized way for                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                    |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                        | portiolio optimization                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                    |                   |
| [34]<br>Portfolio<br>Optimizati<br>on of 40<br>Stocks<br>Using the<br>D-Wave<br>Quantum<br>Annealer<br>(Chicago<br>Quantum)<br>(Cohen et<br>al., 2020) | In this paper, the use<br>of quantum annealing<br>for portfolio<br>optimization in a US<br>stock environment of<br>40 liquid equities.<br>Furthermore, this<br>problem is first<br>addressed in a<br>multitude of classical<br>approaches | <ul> <li>Objective(s): <ul> <li>Find the best relationship between risk and return for a portfolio in a dataset of 40 US liquid equities.</li> <li>Approach the same problem using classical methods (brute force, genetic algorithm, random sampling, heuristic approaches, simulated annealer as a Monte Carlo)</li> </ul> </li> <li>Results: <ul> <li>Classical approaches:</li> <li>On average, classical approaches performed worse than the quantum annealer, however, the genetic algorithms showed</li> </ul> </li> <li>Quantum annealing: In the case of quantum annealing, a couple of things stick out: <ul> <li>First, The D-Wave quantum annealer approaches the efficient frontier in a few cases. Next to that, sometimes lower performing portfolios are suggested. Furthermore, due to the CQNS, more low-risk portfolios are chosen on the efficient frontier, making the results more conservative.</li> <li>The D-Wave annealer performs well, even better that the simulated Monte Carlo methods, however, it underperforms related to the classical genetic algorithms.</li> <li>The D-Wave annealer outperforms random sampling on average (showing that it is not picking randomly but better performing ones),</li> <li>The completion times were fastest in the genetic (and D-Wave seeded) algorithms (3,18 ~ 3,47 seconds), followed by the D-Wave quantum annealer (3,40 seconds), however, the quantum annealer beat all other classical approaches.</li> </ul> </li> </ul> | Quantum hardware:<br>D-Wave 2000Q<br>annealer<br>Quantum algorithm:<br>Quantum annealing<br>Methodology:<br>optimization<br>Use case:<br>Portfolio<br>optimization |                   |
|                                                                                                                                                        |                                                                                                                                                                                                                                           | <ul> <li>Important notes:</li> <li>For the quantum annealing process, an optimal portfolio is seen as one which optimizes the Sharpe ratio. However, computing this in a quadratic from gives some issues in a QUBO format, therefore the Chicago Quantum Net Score (CQNS) solves this problem and can therefore be used to formulate the problem in a QUBO formulation.</li> <li>Genetic D-Wave seeded algorithm is the genetic algorithm that uses more optimal results acquired from the D-Wave quantum annealer as an initial starting point to achieve better end results.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |                   |
| [35]                                                                                                                                                   | This paper builds                                                                                                                                                                                                                         | Objective(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quantum hardware:                                                                                                                                                  | As this study was |
| Portfolio                                                                                                                                              | upon the work of the                                                                                                                                                                                                                      | - Find the best relationship between risk and return for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D-Wave 2000Q                                                                                                                                                       | the follow up of  |
| Optimizati                                                                                                                                             | optimization with 40                                                                                                                                                                                                                      | a portfolio in a dataset of 40 US liquid equities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | annealer                                                                                                                                                           | the 40 stock      |
| on of 60                                                                                                                                               | stocks. In this paper,                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                    | version, it had   |

| Stocks     | the use of quantum       | - Approach the same problem using classical and Quantum algo        | rithm: considerable     |
|------------|--------------------------|---------------------------------------------------------------------|-------------------------|
| Using      | annealing for            | hybrid classical/quantum methods (Fat tailed Monte Quantum anne     | ealing improvements and |
| Classical  | portfolio optimization   | Carlo, genetic algorithm, Simulated annealer, D-                    | material to learn       |
| and        | in a US stock            | Wave Tabu Multistart MST2 samples, D-Wave Methodology:              | from, as shown in       |
| Quantum    | environment of 60        | hybrid sampler) optimization                                        | the results tab.        |
| Algorithms | liquid equities. The     |                                                                     |                         |
|            | main objective is to     | Results/stats: Use case:                                            |                         |
| (Chicago   | find an optimal risk     | - Classical solutions: Portfolio                                    |                         |
| Quantum)   | and return portfolio     | 1. Fat tailed Monte Carlo analysis: optimization                    |                         |
|            |                          | 221,660 samples, the 'ideal' portfolio was found, will              |                         |
| (Cohen et  | It is investigated       | perform well under either large/small solution spaces,              |                         |
| al., 2020) | whether quantum          | it was run twice on the sampling distribution of                    |                         |
|            | annealing can scale up   | assets; generating the best and 2 <sup>nd</sup> best answer in both |                         |
|            | and find a grouping of   | 24 seconds                                                          |                         |
|            | attractive portfolios as | 2. Genetic algorithm: brought out the best attributes               |                         |
|            | opposed to one.          | among combining two portfolios (this is done over                   |                         |
|            |                          | and over to keep generating better portfolio                        |                         |
|            | Furthermore, this        | combinations), to find the 'most optimized' portfolio               |                         |
|            | problem is first         | in 7 seconds, and on a D-Wave simulator 48 seconds.                 |                         |
|            | addressed in a           | 3. Simulated annealer: It either finds the 'most optimal            |                         |
|            | multitude of classical   | solutions' or 'good solutions' no bad portfolios,                   |                         |
|            | approaches               | portfolio quality increased as the simulator ran                    |                         |
|            |                          | longer, it found the optimal portfolio in 15 seconds                |                         |
|            |                          | on the simulator of the company where this paper is                 |                         |
|            |                          | from (Chicago quantum), and the D-Wave simulator                    |                         |
|            |                          | annealer did it in 11 seconds.                                      |                         |
|            |                          | 4. D-Wave Tabu Multistart MST2 sampler: this                        |                         |
|            |                          | simulated annealer was ran on the QUBO                              |                         |
|            |                          | formulation and showed the least attractive portfolios              |                         |
|            |                          | from the QUBO method, the final run took 267                        |                         |
|            |                          | seconds                                                             |                         |
|            |                          | 5. D-Wave hybrid sampler: no valid results from this                |                         |
|            |                          | sampler using the same QUBO formulation of the                      |                         |
|            |                          | problem, it does find 'good' portfolios but CQNS                    |                         |
|            |                          | score attributed to it are incorrect due to applied                 |                         |
|            |                          | penalties (penalties are applied to at least get some               |                         |
|            |                          | good results)                                                       |                         |
|            |                          | - D-Wave Quantum Annealer:                                          |                         |
|            |                          | The quantum annealer was run repeatedly on the                      |                         |
|            |                          | QUBO formulation to accumulate more valid                           |                         |
|            |                          | portfolios. 3725 valid portfolios were found within                 |                         |
|            |                          | the parameters, better results came from larger                     |                         |
|            |                          | portfolios.                                                         |                         |
|            |                          | - It was consistently found that the D-Wave annealer                |                         |
|            |                          | picks portfolios ahead of the efficient frontier.                   |                         |
|            |                          | Against 40.000 random portfolios (to show that the                  |                         |
|            |                          | annealer does not just randomly pick out portfolios),               |                         |
|            |                          | the D-Wave annealer outperforms at higher risk                      |                         |
|            |                          | levels. Furthermore, Portfolios tend to be more risky               |                         |
|            |                          | than classical methods, but still efficient                         |                         |
|            |                          | - "D-Wave (annealer) appears to be picking efficient                |                         |
|            |                          | portfolios, even out of a population of average                     |                         |

|             |                         |                                        | results" (p. 14), the efficient frontier is constantly |                    |                      |
|-------------|-------------------------|----------------------------------------|--------------------------------------------------------|--------------------|----------------------|
|             |                         |                                        | Tound                                                  |                    |                      |
|             |                         | 0 11                                   |                                                        |                    |                      |
|             |                         | Overall:                               |                                                        |                    |                      |
|             |                         | -                                      | Comparative analysis show the best method (again),     |                    |                      |
|             |                         |                                        | was the genetic algorithm, it found the ideal CQNS     |                    |                      |
|             |                         |                                        | score in the least amount of time, followed by the D-  |                    |                      |
|             |                         |                                        | Wave simulated annealer, Bespoke simulated             |                    |                      |
|             |                         |                                        | annealer, D-Wave quantum annealer, Fat tailed          |                    |                      |
|             |                         |                                        | Monte Carlo, and the D-Wave genetic algorithm          |                    |                      |
|             |                         | -                                      | The D-wave Tabu Sampler, and D-wave Hybrid             |                    |                      |
|             |                         |                                        | sampler were dead last due to them not finding ideal   |                    |                      |
|             |                         |                                        | CQNS scores, bad portionos, and long run times.        |                    |                      |
|             |                         | -                                      | The quantum annealer comes close to the best           |                    |                      |
|             |                         |                                        | classical algorithms used, as shown above.             |                    |                      |
|             |                         | Importor                               | at notes:                                              |                    |                      |
|             |                         | mporta                                 | The difference with the paper considering 40 stock     |                    |                      |
|             |                         | -                                      | indexes is that this paper.                            |                    |                      |
|             |                         | a)                                     | Considers 60 stock indexes from the US market          |                    |                      |
|             |                         | $\begin{pmatrix} a \\ b \end{pmatrix}$ | Quantum annealing is benchmarked against more          |                    |                      |
|             |                         |                                        | advanced classical methods                             |                    |                      |
|             |                         | ()                                     | It is investigated whether quantum annealing can find  |                    |                      |
|             |                         |                                        | groups of attractive portfolios as opposed to one      |                    |                      |
|             |                         | б                                      | Prior formulations of the Chicago Quantum Net          |                    |                      |
|             |                         |                                        | Score are kept                                         |                    |                      |
|             |                         | -                                      | "We performed our research during a time of market     |                    |                      |
|             |                         |                                        | increases for the largest companies, and a relatively  |                    |                      |
|             |                         |                                        | low interest rate environment. Our analysis used a     |                    |                      |
|             |                         |                                        | risk-free rate of 1%." (p. 2)                          |                    |                      |
|             |                         | "Our mo                                | del does use prior year trading history to pick its    |                    |                      |
|             |                         | portfolio                              | s." (p. 2)                                             |                    |                      |
| [33]        | In this paper, 3.171    | Objectiv                               | e(s):                                                  | Quantum hardware:  | The CQNS is a        |
| Picking     | United States           | -                                      | Create an optimal portfolio in 3.171 United States     | Simulated          | measure/computat     |
| Efficient   | common stocks are       |                                        | common stocks using quantum annealing via              | Bifurcator and the | ional technique      |
| Portfolios  | analyzed to create an   |                                        | simulated bifurcation                                  | physical D-Wave    | that evaluates the   |
| from 3,171  | optimal portfolio       | -                                      | Create an optimal portfolio in 3.171 United States     | Advantage quantum  | attractiveness of a  |
| US          | based upon the          |                                        | common stocks using quantum annealing on the           | annealing computer | portfolio, where     |
| Common      | Chicago Quantum Net     |                                        | physical D-Wave Advantage quantum annealing            | (5.760 qubits)     | the closer the       |
| Stocks with | Score (CQNS), which     |                                        | computer                                               |                    | value is from zero   |
| New         | is used to quantify the | -                                      | Compare results of both methods using CQNS             | Quantum algorithm: | (negatively), the    |
| Quantum     | desirability of the     |                                        |                                                        | Quantum annealing  | better or more       |
| and         | portfolio generated     | Results:                               |                                                        | (and results are   | attractive the       |
| Classical   |                         | -                                      | The classical solvers (e.g. Monte Carlo, Genetic       | benchmarked by     | portfolio is (at     |
| Solvers     | "We begin with          |                                        | algorithms, simulated annealers) used to find          | CQNS)              | least in the case of |
|             | classical solvers, then |                                        | attractive portfolios found multiple good portfolios,  |                    | this paper, this     |
| (Chicago    | incorporate quantum     |                                        | including the best one consisting of 134 stocks with a | Methodology:       | could change in      |
| Quantum)    | annealing." (p. 1)      |                                        | CQNS score of $-3.14 \times 10^{-3}$ , which suggest a | Optimization       | accordance with      |
|             |                         |                                        | relatively high attractiveness of the portfolio among  |                    | other                |
| (Cohen,     | In this work, the pool  |                                        | the datasets                                           | Use case:          | functions/objectiv   |
| Jeffrey &   | of stocks is run        | -                                      | The simulated bifurcation machine showed 'good'        | Portfolio          | es from other        |
| Alexander,  | through a classical     |                                        | solutions, however, it struggled with larger problem   | optimization       | studies), where      |
|             | solver to find the most |                                        | sizes.                                                 |                    | the portfolio        |

| Clark.<br>2020)  | attractive portfolios<br>that can be run on<br>quantum annealers,<br>then the best stock<br>portfolios are taken<br>and ran through<br>additional solvers to<br>find the most<br>attractive portfolios<br>out of the bunch | <ul> <li>There were some challenges with the D-Wave quantum annealer, mainly; long waiting times between runs, high chai break rates, and difficulty embedding large problem sizes</li> <li>The best run with the quantum annealer had a CQNS score of -1.69 x 10^-3</li> <li>In the case of this paper, classical solver demonstrated; quicker results, better results, indicating that at the time this paper was made, classic/simulated methods outperform those run on physical ones. Still, simulated bifurcation showed the best results, thereby showing that there is great potential in real quantum hardware.</li> <li>Important notes:         <ul> <li>This paper does not claim to have found the most optimal solution, rather it mentions that all solution found are 'good' solutions which measure better empirically by their stock performance than other similar methods.</li> <li>Lower CQNS scores indicate better portfolios in this paper</li> </ul> </li> </ul> |                   | having a negative<br>CQNS score<br>indicates it not<br>being optimized,<br>but still better<br>than most<br>alternative<br>portfolios.<br>Furthermore, in<br>the next paper it is<br>used as a way to<br>compensate for<br>the shortcoming<br>of the QUBO<br>model in<br>translating the<br>Sharpe ratio into<br>its format.<br>Chain break rates<br>= disruptions or<br>failures in the<br>chain of qubits<br>that are<br>connected, thus<br>meaning that the<br>D-Wave quantum<br>annealer was less<br>reliable when it<br>comes to<br>performance<br>Embedding large<br>problem sizes =<br>the process of |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | Embedding large<br>problem sizes =<br>the process of<br>transferring a<br>large and complex<br>optimization<br>problem into a<br>physical system                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [36]             | "We study quantum                                                                                                                                                                                                          | Objective(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quantum hardware: | (Quantum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| End-fo-<br>End   | (QIPMs) for second-                                                                                                                                                                                                        | - Develop the QIPMs for the use case of portfolio optimization (max return, min risk)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IN/A              | interior point<br>methods = finding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Resource         | order cone                                                                                                                                                                                                                 | - Estimate the exact resource cost of QIPM for a given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quantum algorithm | optimal solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Analysis         | programming                                                                                                                                                                                                                | PO problem with up to 120 assets, which would need                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | / method:         | to an objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| for              | (SOCP), guided by                                                                                                                                                                                                          | up to 8 x $10^{6}$ qubits (which is far beyond what                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quantum Interior  | problem by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Quantum          | the example use case                                                                                                                                                                                                       | current quantum hardware is possible of)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Point Method      | slowly moving to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Interior-        | of portfolio                                                                                                                                                                                                               | - Put into perspective the practical quantum advantage,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (QIPM) with       | the optimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| roint            | wa provide a                                                                                                                                                                                                               | and the current bottlenecks, that the QIPM could                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quantum Linear    | solution through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| and              | complete quantum                                                                                                                                                                                                           | have by apprying it to a PO use case and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (OLSS)            | within set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| anu<br>Portfolio | complete quantum                                                                                                                                                                                                           | ochemiarking it against classical solvers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | narameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| rortiolio        | circuit-ievei                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Optimizati  | description of the    | - Convert the PO problem as an SOCP so that it can be                 | Methodology:      |                    |
|-------------|-----------------------|-----------------------------------------------------------------------|-------------------|--------------------|
| on          | algorithm from        | solved by the QIPM                                                    | Optimization, and | Second Order       |
|             | problem input to      | - Use the QLSS algorithm on QIPM to solve the SOCF                    | solving of Second | Cone Programs      |
| (AWS,       | problem output,       | converted PO problem (QLSS = Quantum Linear                           | Order Cone        | (SOCPs) = a        |
| Golman      | making several        | System Solver, it is used because IPM (interior point                 | programs          | convex             |
| Sachs)      | improvements to the   | methods) make use of a linear system of equation,                     |                   | optimization       |
|             | implementation of the | therefore QLSS is needed to perform the step of                       | Use case:         | problem that       |
| (Dalzell et | QIPM" (p. 1)          | solving linear equations in the QIPM. The linear part                 | Portfolio         | generalizes linear |
| al., 2023)  |                       | of the QIPM is a subroutine of the greater problem                    | optimization      | and quadratic      |
|             |                       | that is better solved using QLSS)                                     |                   | programming,       |
|             |                       |                                                                       |                   | basically making   |
|             |                       | Results:                                                              |                   | it useful to       |
|             |                       | - QIPM could theoretically offer quantum advantage,                   |                   | optimize multiple  |
|             |                       | however, practical implications yet do not show clear                 |                   | objective          |
|             |                       | improvements over classical methods, significant                      |                   | problems better as |
|             |                       | improvements still need to be made                                    |                   | it is flexible     |
|             |                       | - Current challenges are high variability in tomography               |                   | (meaning it can be |
|             |                       | precision and the computational resources needed for                  |                   | formulated         |
|             |                       | problems to be solved efficiently on real quantum                     |                   | towards many       |
|             |                       | computers.                                                            |                   | types of problems, |
|             |                       | - In the example experiment, $n = 30$ stocks were used,               |                   | e.g. max return,   |
|             |                       | and it showed that the duality gap (between risk and                  |                   | min risk), and it  |
|             |                       | return) increased exponentially for more iterations,                  |                   | can nandle         |
|             |                       | inteasibility increased exponentially. And for scaling                |                   | complex            |
|             |                       | the singuit becomes more consistive to more whether                   |                   | constraints (also  |
|             |                       | The amount of Quentum <b>BAM</b> model to nonform the                 |                   | common in          |
|             |                       | - The amount of Quantum RAM needed to perform the                     |                   | portiono           |
|             |                       | the moment                                                            |                   | optimization)      |
|             |                       | - Classical methods outperformed the OIPM mainly                      |                   | Tomography =       |
|             |                       | due to current OR AM limitations and large constant                   |                   | used for           |
|             |                       | factors.                                                              |                   | calibrating        |
|             |                       | <ul> <li>Furthermore, compared to classical methods, OIPMs</li> </ul> |                   | quantum gates      |
|             |                       | showed to be constrained in their quantum advantage                   |                   | and circuits       |
|             |                       | by practical challenges and resource demands                          |                   |                    |
|             |                       |                                                                       |                   | Infeasibility =    |
|             |                       | Important notes:                                                      |                   | degree to how      |
|             |                       | - Most current quantum algorithms are hard to test                    |                   | much the given     |
|             |                       | whether they are practically useful, as they are mere                 |                   | solution violates  |
|             |                       | heuristic and can only be tested on actual quantum                    |                   | given parameters   |
|             |                       | hardware                                                              |                   | or constraints     |
|             |                       | - "QIPMs structurally mirror CIPMs, and seek                          |                   |                    |
|             |                       | improvements by replacing certain subroutines with                    |                   | Duality gap = in   |
|             |                       | quantum primitives" (p. 2)                                            |                   | essence a gap that |
|             |                       | - "The QIPM is a complex algorithm that delicately                    |                   | shows how          |
|             |                       | combines some purely classical steps with multiple                    |                   | optimal the        |
|             |                       | distinct quantum subroutines" (p. 2)                                  |                   | solution is, the   |
|             |                       | - Regarding the QIPM, multiple improvements are                       |                   | less this gap, the |
|             |                       | made to it before applying it towards the PO                          |                   | more optimal the   |
|             |                       | problem, for more optimal results. These                              |                   | solution           |
|             |                       | improvements made are inspired by previous works                      |                   |                    |
|             |                       | from other authors.                                                   |                   |                    |

|  | The quantum component of QIPM was simulated, as           |  |
|--|-----------------------------------------------------------|--|
|  | mentioned, current quantum hardware cannot facilitate the |  |
|  | problem mentioned.                                        |  |

| Table 7.  | Insight into | literature synthetization process  |
|-----------|--------------|------------------------------------|
| 1 4010 19 | insigne meo  | neer acar e synthetization process |

| Paper (57)                  | Challenge addressed /    | Main findings/purpose                    | Quantum hardware,      | Additional           |
|-----------------------------|--------------------------|------------------------------------------|------------------------|----------------------|
| (Authors)                   | introduction             |                                          | Quantum algorithm,     | specifics /          |
| (Year)                      |                          |                                          | Methodology, Use case  | Explanations         |
| [1]                         | "In this work we         | Findings:                                | Quantum hardware:      | N/A                  |
| Quantum                     | address the potential of | - Complexity theory is useful, but may   | N/A                    |                      |
| Optimization:               | quantum optimization     | not always be useful for quantum         |                        |                      |
| Potential,                  | from various angles,     | advantage, therefore underscoring the    | Quantum algorithm:     |                      |
| Challenges, and the         | namely, complexity       | need to develop and analyze quantum      | N/A                    |                      |
| Path Forward                | theory, problem classes  | optimization (p.50)                      |                        |                      |
| (Abbas Et AL., 2023)        | and algorithmic design,  | - The paper emphasizes the fact that     | Methodology:           |                      |
|                             | execution on noisy       | there is a strong need to continue       | N/A                    |                      |
|                             | hardware at scale, and   | discovering new algorithms and           |                        |                      |
|                             | fair benchmarking,       | development, as intuition gained from    | Use case:              |                      |
|                             | while outlining          | practical tests and new algorithms       | N/A                    |                      |
|                             | illustrative examples    | provides validation and technical        |                        |                      |
|                             | form real-world cases"   | advances important to optimization       |                        |                      |
|                             | (p. 2)                   | problems (p.50)                          |                        |                      |
|                             |                          | - There should be a need to establish    |                        |                      |
|                             |                          | clear benchmarks, for a reliable         |                        |                      |
|                             |                          | interpretation of scientific insight for |                        |                      |
|                             |                          | the broader audience (p.50)              |                        |                      |
|                             |                          |                                          |                        |                      |
|                             |                          | Purpose:                                 |                        |                      |
|                             |                          | - The purpose of this paper is mainly to |                        |                      |
|                             |                          | give a comprehensive overview of         |                        |                      |
|                             |                          | potential challenges, and emerging       |                        |                      |
|                             |                          | research in quantum optimization.        |                        |                      |
|                             |                          | - Next to that, this paper ought to be   |                        |                      |
|                             |                          | used in this paper as a way to explain   |                        |                      |
|                             |                          | general subjects and limitations for     |                        |                      |
|                             |                          | quantum optimization                     |                        |                      |
|                             | The main problem         | Findings:                                | Quantum hardware:      | "In order to         |
| FUKEUASTING<br>STOCK MADVET | addressed in this study  | - "The methods of Quantum Support        | N/A                    | improve the          |
| CRASHES VIA                 | is the inefficiency and  | Vector Regression, Quantum               |                        | accuracy of          |
| REAL-TIME                   | inaccuracy of models     | Boltzmann Machines (QBMs), and           | Quantum                | forecasting stock    |
| RECESSION                   | that predict stock       | Quantum Neural Networks (QNNs)           | algorithm/models:      | market crashes       |
| PROBABILITIES:              | market crashes, where    | have been used, and the QBMs used        | Support vector         | models, a            |
| A QUANTUM                   | existing models, despite | have obtained the highest levels of      | regression Quantum Bat | comparison of        |
|                             | their high explanatory   | accuracy" (p-3). To test the algorithm   | algorithm (svrQBA),    | methodologies        |
| AFFKUAUH<br>(Alaminos at al | power, fail to account   | made, the above methods have been        | Quantum Boltzman       | has been carried     |
| 2022)                       | for time-varying risk    | used and adapted upon to fit the         | Machine (QBM),         | out in this study to |
|                             | premium and is often     | solution.                                |                        | predict stock        |
|                             | focused on developed     |                                          | Methodology:           | market crashes via   |

|                                                                                                                                                    | economies, this leads to<br>less accurate forecasts<br>(p. 2-3)<br>"The literature calls for<br>a different recession<br>prediction model, in<br>particular new ones that<br>offer a more accurate to<br>global scenes, and that<br>make comparisons<br>between approaches to<br>obtain better and more<br>accurate results." (p.2)                                                                                                                                                                                                                                 | <ul> <li>Usage of the svrQBA and QBM<br/>models showed respectively an<br/>increase of 94.59% and 96.22% on<br/>average over other models (p.8), and<br/>it showed superior results over other<br/>studies, therefore optimizing the<br/>accuracy of the named quantum<br/>algorithms for predicting stock<br/>market crashes (p.13)</li> <li>Purpose:         <ul> <li>This study gives new insights into a<br/>potential new model that can<br/>optimize the prediction of stock<br/>market crashes, whereby three<br/>quantum algorithms are each used to<br/>test the proposed model</li> </ul> </li> </ul> | Optimization<br>Use case:<br>Predicting stock market<br>crashes                                                                                                                                                           | real-time<br>recession<br>probabilities and,<br>as a result, a new<br>model that will<br>lead to better<br>estimates on the<br>likelihood of a<br>down-turn and,<br>therefore, a stock<br>market crash, will<br>occur in the<br>future." (p.3)                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [4]<br>Quantum Monte<br>Carlo simulations<br>for estimating<br>FOREX markets: a<br>speculative attacks<br>experience<br>(Alaminos et al.,<br>2023) | "In this study, we<br>propose to apply<br>Auxiliary-Field<br>Quantum Monte Carlo<br>to increase the precision<br>of the FOREX markets<br>models from different<br>sample sizes to test<br>simulations in different<br>stress contexts." (p.1)<br>"Our paper analyses<br>USD/EUR and<br>USD/JPY exchange<br>rates in the period<br>2013–2021. This work<br>compares three Monte<br>Carlo techniques,<br>Markov Chain Monte<br>Carlo, Sequential Monte<br>Carlo, Sequential Monte<br>Carlo (AFQMC), with<br>the AFQMC technique<br>being the best<br>performer" (p.2) | <ul> <li>Findings:</li> <li>The AFQMC has increased the accuracy of the FOREX market model over the Markov Chain Monte Carlo and Sequential Monte Carlo (classical methods) (p.3)</li> <li>Through Quantum Monte Carlo Simulation, the study is able to identify possible currency movements in the foreign exchange market (p.3)</li> <li>The AFQMC model is compared towards two traditional methods, specifically Markov Chain Monte Carlo, where the AFQMC technique outperforms other methods (p.19)</li> </ul>                                                                                            | Quantum hardware:<br>Simulated hardware<br>Quantum algorithm:<br>Auxiliary-Field<br>Quantum Monte Carlo<br>(AFQMC)<br>Methodology:<br>Quantum Monte Carlo<br>Use case:<br>Increase the accuracy of<br>FOREX market models | "The present<br>research differs<br>from others in that<br>it compares<br>various Monte<br>Carlo techniques<br>in FOREX<br>markets<br>prediction. Most<br>of the models in<br>previous studies<br>have been<br>dominated by<br>statistical<br>techniques such as<br>ordinary least<br>squares, quantile<br>regression, and<br>recently neural<br>network<br>techniques" (p.3) |
| [5]<br>A Structured Survey<br>of Quantum<br>Computing for the<br>Financial Industry<br>(Alabereti et al.,<br>2022)                                 | "This survey reviews<br>platforms, algorithms,<br>methodologies, and use<br>cases of quantum<br>computing for various<br>applications in finance<br>in a structured way."<br>(p.1)<br>"We conducted an<br>extensive literature<br>search and designed a<br>multi-layered<br>framework to enable a<br>structured analysis of                                                                                                                                                                                                                                         | <ul> <li>Findings: <ul> <li>A morphological box showing exactly how quantum hardware, quantum algorithms, methodologies, and use cases are related.</li> <li>Furthermore, each use case for certain algorithms and methodologies is elaborated upon to give insight into actual use of quantum computing for finance (e.g. Variational Quantum Eigensolver used for optimization of transaction settlement)</li> </ul> </li> </ul>                                                                                                                                                                              | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>N/A<br>Methodology:<br>N/A<br>Use case:<br>N/A                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                           |

|                                                                                                                                       | the available literature<br>and the use cases<br>described." (p.13)                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>This paper serves as inspiration for figure 5.</li> <li>Specific relation of quantum computing to portfolio optimization is given, and therefore helps to give further insight into quantum computing for portfolio optimization.</li> <li>The paper highlights that in their literature research, NO paper was found that describes a use case for Quantum Machine Learning (p.13), which is peculiar as other papers do mention use cases for Quantum Machine Learning.</li> </ul>                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                              | Purpose:<br>- This paper gives a great overview and<br>visualization through e.g. a<br>morphological box of how quantum<br>computing can be used in the<br>financial industry, from the current<br>state of quantum computing to a<br>framework for a systematic analysis<br>of proposals for the use of quantum<br>computing in finance. (p.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                         |
| [6]<br>Classical versus<br>quantum models in<br>machine learning:<br>insights from a<br>finance application<br>(Alcazar et al., 2020) | "a direct comparison of<br>the expressive power<br>and efficiency of<br>classical versus<br>quantum models for<br>datasets originating<br>from real-world<br>applications is one of<br>the key milestones<br>towards a quantum<br>ready era. Here, we take<br>a first step towards<br>addressing this<br>challenge" (p.1)<br>In this paper Restricted<br>Boltzmann Machines<br>(RBMs) (classical) are<br>compared to Quantum | of proposals for the use of quantum<br>computing in finance. (p.1)<br>Objective of the test between QCBMs and<br>RBMs = select optimal investment portfolios<br>whilst either maximizing returns with minimal<br>risk, or maximizing return for a given level of<br>risk, following the optimization goal of<br>Markowitz. This can be done whilst imposing<br>constraints, such as a cardinality constraint in<br>the number of assets (p. 3)<br>Findings:<br>- The quantum model clearly imposed<br>outperformance the classical machine<br>learning model. (p. 5-6)<br>- A scatterplot was made to better<br>visualize the results between the<br>QCBM and RBM models. The<br>scatterplot shows superior<br>performance of the QCBM model,<br>where it wins in close to 100% of the<br>instances (p. 5-6) | Quantum hardware:<br>Simulated on ion-trap<br>quantum computers<br>Quantum<br>algorithm/model:<br>Differentiable Quantum<br>Circuit Learning<br>(DDQCL) used on the<br>Quantum Circuit Born<br>Machines model<br>(QCBMs model)<br>Methodology:<br>Optimization / machine<br>learning<br>Use case:<br>Portfolio optimization | "To date,<br>experimental<br>implementations<br>of QCBMs via<br>DDQCL have<br>been implemented<br>in ion trap and<br>superconducting<br>devices." (p.1) |
|                                                                                                                                       | Circuit Born Machines<br>(QCBMs) (quantum)<br>To assess the<br>performance of the<br>QCBMs on real-world<br>data sets, probabilistic<br>scenarios from portfolio<br>optimization are taken,                                                                                                                                                                                                                                  | <ul> <li>As problem size increased, the<br/>QCBM model performed increasingly<br/>better compared to the RBM model<br/>(p.5-6)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                         |

|                    | specifically data from  |                                                                           |                        |     |
|--------------------|-------------------------|---------------------------------------------------------------------------|------------------------|-----|
|                    | asset subsets of the    |                                                                           |                        |     |
|                    | S&P500 stock market     |                                                                           |                        |     |
|                    | index (p.1)             |                                                                           |                        |     |
| [7]                | The focus in this paper | Objective: The text highlights the need for a                             | Quantum hardware:      | N/A |
| Enhancing          | is on Generator         | quantum optimization strategy that can work                               | Simulated hardware     |     |
| combinatorial      | Enhanced Optimization   | directly on arbitrary objective functions,                                |                        |     |
| optimization with  | (GEO), which is a       | thereby bypassing the translation and overhead                            | Quantum (inspired)     |     |
| classical and      | framework that          | limitations, meaning that the process of difficult                        | algorithm:             |     |
| quantum generative | leverages any           | optimization problems Would become more                                   | TN-GEO                 |     |
| models (Alcazar et | generative model (e.g.  | efficient and applicable to more real-world                               |                        |     |
| al., 2024)         | classical, quantum, or  | problems as, for example, the number of                                   | Methodology:           |     |
|                    | quantum-inspired),      | variables used in these calculations give current                         | Optimization           |     |
|                    | where in this paper is  | computational methods a hard time.                                        | 1                      |     |
|                    | mainly focused on a     |                                                                           | Use case:              |     |
|                    | quantum-inspired        | In the experiment for cardinality-constrained                             | (cardinality-          |     |
|                    | version of GEO named    | portfolio optimization to compare results of                              | constrained) Portfolio |     |
|                    | TN-GEO (p. 1)           | TN-GEO with classical approaches, the TN-                                 | optimization           |     |
|                    |                         | GEO is used as a standalone-solver, and as a                              |                        |     |
|                    | With this TN-GEO        | booster to enhance existing solvers:                                      |                        |     |
|                    | strategy, benchmarks    | - TN-GEO standalone: Portfolio                                            |                        |     |
|                    | are made in the context | optimization without relying on                                           |                        |     |
|                    | of the canonical        | intermediate results from classical                                       |                        |     |
|                    | cardinality-constrained | solvers using S&P 500 portfolio, with                                     |                        |     |
|                    | portfolio optimization  | the aim to reduce risk and increase                                       |                        |     |
|                    | problem through         | expected returns.                                                         |                        |     |
|                    | constructing situations | - TN-GEO booster: use intermediate                                        |                        |     |
|                    | based on S&P 500 and    | results from simulated annealing                                          |                        |     |
|                    | other financial stock   | (SA)(or combined results from SA                                          |                        |     |
|                    | indexes. (p. 1)         | and previous algorithms) as training                                      |                        |     |
|                    |                         | data for the TN-GEO, and then                                             |                        |     |
|                    | The aim is to show the  | compare performance between                                               |                        |     |
|                    | real value that these   | classical algorithm results and TN-                                       |                        |     |
|                    | quantum-inspired        | GEO booster                                                               |                        |     |
|                    | models have on          |                                                                           |                        |     |
|                    | industrial application. | Findings:                                                                 |                        |     |
|                    | Lastly, a comparison is | - TN-GEO as booster: on average, the                                      |                        |     |
|                    | made between TN-GEO     | TN-GEO booster outperformed                                               |                        |     |
|                    | and state-of-the-art    | classical-only algorithms, and the the                                    |                        |     |
|                    | algorithms (p. 1)       | performance of the TN-GEO booster                                         |                        |     |
|                    |                         | (compared to classical-only)                                              |                        |     |
|                    |                         | increased as the number of variables                                      |                        |     |
|                    |                         | increased with tests performed in the                                     |                        |     |
|                    |                         | ranges of $N=30 - N=100$ variables.                                       |                        |     |
|                    |                         | Furthermore, "The observed                                                |                        |     |
|                    |                         | performance enhancement compared                                          |                        |     |
|                    |                         | with the classical-only strategy must                                     |                        |     |
|                    |                         | be coming from a better exploration                                       |                        |     |
|                    |                         | of the relevant search space" (p. 4)                                      |                        |     |
|                    |                         | - IN-GEO as standalone: the IN-GEO                                        |                        |     |
|                    |                         | snows performance compared to the                                         |                        |     |
|                    |                         | classical solvers across all scenarios $(mmhar = 6 = 1 + 20.50, 90, 100)$ |                        |     |
|                    |                         | (number of assets: 30;50;80;100)                                          |                        |     |

|                       |                          | Comparison with state-of-the-art                   |                           |                     |
|-----------------------|--------------------------|----------------------------------------------------|---------------------------|---------------------|
|                       |                          | algorithms (SOTA): TN-GEO was                      |                           |                     |
|                       |                          | compared to SOTA algorithms and                    |                           |                     |
|                       |                          | showed.                                            |                           |                     |
|                       |                          | - In 67% of the instances TN-GEO                   |                           |                     |
|                       |                          | either draws or outperforms the                    |                           |                     |
|                       |                          | SOTAs                                              |                           |                     |
|                       |                          | - In all pairwise comparisons with                 |                           |                     |
|                       |                          | SOAT algorithms and the TN-GEO.                    |                           |                     |
|                       |                          | TN-GEO wins more than 50% of the                   |                           |                     |
|                       |                          | time, every time <i>(null hypothesis</i>           |                           |                     |
|                       |                          | ("there is no difference between                   |                           |                     |
|                       |                          | results of SOTA and TN-GEO")                       |                           |                     |
|                       |                          | rejected every time with Wilcoxon                  |                           |                     |
|                       |                          | signed-rank sum tests to validate                  |                           |                     |
|                       |                          | results)                                           |                           |                     |
| [8]                   | Quantum optimizers       | Objective: Reformulating QUBO problems for         | Quantum hardware:         | Spectral gap = the  |
| Alleviating the       | often need to            | quantum solvers so that they can operate more      | IonQ (company)            | energy difference   |
| quantum Big-          | reformulate constraints  | efficiently and effectively. This is mainly done   | trapped-ion device        | between optimal     |
| \$M\$ problem         | to fit the well-know     | by addressing "the big-M problem", which is        | Aria-1                    | and suboptimal      |
| (Alessandroni et al., | QUBU format,             | the weights that penalties have in this            |                           | solutions, a lesser |
| 2023)                 | however, current         | algorithm, something which should be carefully     | Quantum algorithm:        | spectral gap is     |
|                       | QUBO translators often   | optimized for optimal and efficient results        | QUBO (reformulation       | better as it leads  |
|                       | fail to acknowledge the  | according to the paper. However, the main          | method), where            | to more effective   |
|                       | weight M of penalty      | focus for this paper on portfolio optimization is  | formulation of            | and efficient       |
|                       | terms (p. 1)             | the results it has on quantum portfolio            | optimizing penalty        | results             |
|                       |                          | optimization                                       | weight is called MSDP     |                     |
|                       | Therefore, in this paper |                                                    | (Minimum Spectral Gap     |                     |
|                       | a new practical          | Results for quantum portfolio optimization:        | Differential), all in all |                     |
|                       | translation algorithm is | The improved QUBO translator formulation           | we can call it QUBO-      |                     |
|                       | proposed to outperform   | was tested upon the Markowitz model for            | MSDP                      |                     |
|                       | previous methods (p. 1)  | maximizing returns and minimizing risk, results    |                           |                     |
|                       |                          | showed:                                            | Methodology:              |                     |
|                       | After presenting the     | - Using MSDP when translating                      | (Penalty) Optimization    |                     |
|                       | algorithm, it is then    | problems to a QUBO format shows a                  |                           |                     |
|                       | used in portfolio        | significant advantage over traditional             | Use case:                 |                     |
|                       | optimization instances   | penalty optimization approaches                    | Portfolio optimization    |                     |
|                       | to show significant      | - As the complexity of the problem                 | 1                         |                     |
|                       | advantages in time to    | grows, using MSDP to reformulate                   |                           |                     |
|                       | solution and solution    | problems to a QUBO format shows                    |                           |                     |
|                       | quality (p.1)            | increasing efficiency and quality of               |                           |                     |
|                       |                          | results compared to traditional                    |                           |                     |
|                       |                          | penalty optimization approaches                    |                           |                     |
|                       |                          | - Using a 6-qubit trapped ion quantum              |                           |                     |
|                       |                          | computer from IonQ showed that                     |                           |                     |
|                       |                          | MSDP formulations give out a                       |                           |                     |
|                       |                          | superior probability of measuring the              |                           |                     |
|                       |                          | optimal solution                                   |                           |                     |
| [9]                   | "This study develops a   | Objective: presenting a novel technique that       | Quantum hardware:         | Fuzzy = a           |
| Quantum               | Quantum Chameleon        | tries to optimize financial risk management,       | N/A                       | decision making     |
| Chameleon Swarm       | Swarm Optimization       | especially predicting financial distress in firms, |                           | criteria that is    |
| with Fuzzy Decision   | with Fuzzy Decision      | the proposed tool (QCSO-FDMT is then               | Quantum algorithm:        | used when data is   |
| Making Tool for       | Making Tool (QCSO-       | benchmarked using two datasets; Australian         | QCSO-FDMT                 | uncertain or        |

| Financial Risk        | FDMT) for Financial      | credit dataset, and Analecta dataset, both of | (Quantum Chameleon     | incomplete, it                                   |
|-----------------------|--------------------------|-----------------------------------------------|------------------------|--------------------------------------------------|
| Management            | Risk Management. The     | which are used to test the algorithm/tool to  | Swarm Optimization     | tries to                                         |
| (Alkhafaji et al.,    | purpose of the           | detect financial distress/risk)               | (which is the          | compensate for                                   |
| 2023)                 | QCSOFDMT system is       |                                               | algorithmic part) with | this lack of                                     |
|                       | to determine if the      | Results:                                      | Fuzzy Decision-Making  | certainty or                                     |
|                       | financial firm           | - Australian credit dataset: QCSO-            | Tool)                  | completeness                                     |
|                       | undergoes distress or    | FDMT outperformed other classical             |                        |                                                  |
|                       | not."(p. 1)              | and modern machine learning                   | Methodology:           | The algorithm                                    |
|                       |                          | models, having the highest accuracy           | Optimization           | utilizes swarm-                                  |
|                       |                          | of predicting financial distress, with a      |                        | intelligence based                               |
|                       |                          | 98.98% accuracy. All other methods            | Use case:              | optimization                                     |
|                       |                          | showed results below at least 97.10%,         | Fuzzy financial risk   | inspired by the                                  |
|                       |                          | - Analecta dataset: QCSO-FDMT                 | management             | behavior of                                      |
|                       |                          | outperformed other classical and              |                        | chameleons,                                      |
|                       |                          | machine learning algorithms,                  |                        | thereby stating                                  |
|                       |                          | showing a 94.44% accuracy of                  |                        | that the algorithm                               |
|                       |                          | predicting financial distress, all other      |                        | can take account                                 |
|                       |                          | methods showed results below                  |                        | of many things at                                |
|                       |                          | 93.60%                                        |                        | one time, like a                                 |
|                       |                          |                                               |                        | chameleon.                                       |
|                       |                          | To conclude, the QCSO-FDMT technique is a     |                        |                                                  |
|                       |                          | highly effective method to detect financial   |                        |                                                  |
|                       |                          | distress in companies as compared to current  |                        |                                                  |
|                       |                          | methods already being used.                   |                        |                                                  |
| [11]                  | "We study the practical  | Results of Quantum-inspired Algorithms        | Quantum hardware:      | Asymptotic                                       |
| Ouantum-inspired      | performance of           | benchmarked against portfolio optimization    | N/A                    | speedup = an                                     |
| algorithms in         | quantum-inspired         | with stocks from the S&P 500:                 |                        | increase in                                      |
| practice (Arrazola et | algorithms for           | - The quantum-inspired algorithm              | Quantum algorithm:     | performance of                                   |
| al., 2020)            | recommendation           | required substantial time to estimate         | Quantum-inspired       | usually an                                       |
|                       | systems and linear       | coefficients and sampling, using              | algorithms             | algorithm as the                                 |
|                       | systems of equations.    | 114.15 seconds to run the full                |                        | size of the input                                |
|                       | These algorithms were    | calculation. In comparison, direct            | Methodology:           | grows larger                                     |
|                       | shown to have an         | calculation methods using for                 | optimization           |                                                  |
|                       | exponential asymptotic   | instance the Frieze-Kannan-Vempala            |                        | Recommendation                                   |
|                       | speedup compared to      | Algorithm (which is the equivalent of         | Use case:              | systems =                                        |
|                       | previously known         | a classical solving method)                   | Portfolio optimization | software                                         |
|                       | classical methods for    | performed these tasks much faster             |                        | algorithms and                                   |
|                       | problems involving       | (0.15 seconds). Increased running             |                        | techniques                                       |
|                       | low-rank matrices, but   | time for the quantum-inspired                 |                        | designed to                                      |
|                       | with complexity bounds   | algorithm was due to coefficient              |                        | suggest items                                    |
|                       | that exhibit a hefty     | estimation and sampling, as opposed           |                        | worth of notice to                               |
|                       | polynomial overhead      | to the direct calculation method of the       |                        | users, it provides                               |
|                       | compared to quantum      | FKV algorithm                                 |                        | personalized                                     |
|                       | algorithms" (p. 1), with | - The quantum-inspired algorithm              |                        | recommendations                                  |
|                       | the last part meaning    | showed multiple errors in                     |                        | (L) D 1 (1                                       |
|                       | algorithms of the set    | approximating the solution, showing           |                        | (Low) $\operatorname{Kank} = \operatorname{the}$ |
|                       | regults then classical   | multiple dis-promising statistics             |                        | independent record                               |
|                       | ontions but correct      | between approximate and real                  |                        | or columns in a                                  |
|                       | considerable additional  | solutions. As the quantum inspired            |                        | matrix which is                                  |
|                       | computational costs      | algorithm used sampling it was                |                        | calculated from                                  |
|                       |                          | argorium used sampling, it was                |                        | low ronk moons a                                 |
|                       | e.g. energy usage,       | prone to more error due to sampling           |                        | 10w rank means a                                 |

| Image: stand s                       |                        | time) than real quantum   | noise and more estimation that                      |                          | matrix which is       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------|-----------------------------------------------------|--------------------------|-----------------------|
| <ul> <li>"Quantum-inspired quantum-inspired quantum-i</li></ul> |                        | algorithms                | needed to be done                                   |                          | characterized by it   |
| Image: stand s                       |                        |                           | - "Quantum-inspired techniques only                 |                          | having less           |
| Image: Instruction of extremely large dimension" (p. 18)<br>algorithms are<br>benchmarked using, but<br>not included to,<br>portfolio optimization<br>increase<br>reasonable low enrors and short computational<br>times in general, but in the case of this paper<br>(with increased rank and condition numbers),<br>the quantum-inspired algorithms har ownight being<br>errors and computation times, mainly due to the<br>way the algorithms computed the problems<br>(which is stated above). Furthermore, direct<br>calculation methods such as the Fricze-Kannan-<br>Vempala (FXV) algorithm used, operated<br>efficiently without the need for extensive<br>sampling or coefficient estimation,Quantum hardware:<br>Digital annealer (from<br>policital annealer (from<br>policital annealer (from<br>policital as objective solvers).Cardinality<br>constrained = a<br>intainizing risk). Normally, these multi-<br>objective problems do by corpore the compole motion or bolic store (cg. the Cardinality<br>constrained method sate has the solution weights when<br>or bies to single-<br>objective problems and<br>multi-objective<br>or this story, we<br>comstrained method sate has the solution the covernation or bole covers of the protofolici or<br>optication problems have<br>more efficient at solving<br>problems to single-<br>objective problems need<br>individue assets that both maximize returns while<br>multi-objective<br>problems to single-<br>objective problems need<br>individue efficient problems dories of the protofolici or<br>optication or bolems with multiple<br>discrition problems dories of the protofolici or<br>optication or bolems with multiple<br>objective problems need<br>individue discrition for<br>carabic as that the algorithm sub comparison being the<br>objective problems need<br>individue discrition or discritic efficient via quantum<br>individue discritic explored parts of the protofolici or<br>optication or<br>initiation for<br>carabic explored parts o                                                                                           |                        | Furthermore, these        | become advantageous for problems                    |                          | columns or rows       |
| Isolation"QUBO solvers are<br>single objective solves.""OutputOutputQuantum hardware:<br>to more than one objective (cg, the Cardinality<br>Constrained Pagorithm, single algorithm, shore<br>efficient solving<br>boyent solves<br>asset that both maximize returns while<br>multiple<br>objective problems to sigle<br>objective problems to sigle objective problems solution<br>on how to convert such<br>multiple<br>objective problems to sigle objective problems solution<br>on how to convert such<br>multiple<br>objective problems solution in this sub as a lasset that both maximize returns while<br>multiple<br>objective problems noigle<br>objective problems to sigle objective problems solution on how to convert such<br>multiple<br>objective problems to sigle objective problems solution on how to convert such<br>multiple<br>objective problems to sigle objective problems and to any<br>profilion to single objective problems solution on how to convert such<br>multiple objective problems to sigle objective problems solution on how to convert such<br>multiple objective problems to sigle objective problems to sigle objective problems note and be explored which normally cannot, or are<br>usually undesirable due to certain factors (eg,<br>due to increased complexity, hase multiple<br>of this spars to the active scale complexity, hase multiple<br>of this spars to the active caning to the cardinality to a cardinality<br>objective problems note objective problems of the pareot formic<br>objective problems of the active scale cardinality to a cardinality constrained<br>multiple<br>objective problems noted to be retain factors (eg,<br>due to increased complexity, hase multiple<br>objective problems noted to be retain factors (eg,<br>due to increased complexity, hase multiple<br>objective problems need to be retain factors (eg,<br>due to                                                                                                  |                        | quantum-inspired          | of extremely large dimension" (p. 18)               |                          | than the minimum      |
| Image: here the set of the s                       |                        | algorithms are            |                                                     |                          | that is allowed       |
| Is a partition of included to portion of included to portion of included to portion of portfolio optimizationquantum-inspired algorithms provide<br>reasonable low errors and short computational<br>times in general, but in the case of this paper<br>(with increased rank and condition numbers),<br>the quantum-inspired algorithms bad more<br>errors and computation times, mainly due to the<br>way the algorithms computed the problems<br>(which is stated above). Furthermore, direct<br>calculation methods such as the Frizze-Kannan-<br>Vempala (FKV) algorithm used, operated<br>efficiently visitout the nucle for extensive<br>sampling or coefficient estimation,Quantum hardware:<br>Digital amender (from<br>Fujisu) (Ising machine)Cardinality<br>constrained = a<br>to exploit the low-rank structure of the dataset,<br>it will be faster than the quantum-inspired<br>model as the quantum-inspired<br>opticities olivers.<br>To make them more<br>efficient at solving<br>problems to single-<br>opticitive problem solpcitive (e.g. the Cardinality<br>Constrained Man-Variance Portfolio<br>objective problems ought to be compiled into a<br>multi-objective<br>problems to single-<br>objective problems ought to be compiled into a<br>multi-objective problems are sling Machines. The objection<br>to the mader" (p. 1)Quantum algorithm:<br>model in a portfolio<br>of this paper is to derive scalarization weights<br>so that less explored which normally cannot, or ar<br>usa be explored which normally cannot, or a                                                                                                       |                        | benchmarked using, but    | To conclude, overall, the paper showed that         |                          | (mostly to            |
| portfolio optimizationreasonable low errors and short computational<br>times in general, but in the case of his paper<br>(with increased rank and condition numbers),<br>the quantum-inspired algorithms had more<br>errors and computation fines, mainly due to the<br>way the algorithms computed the problems<br>(which is stated above). Furthermore, direct<br>calculation methods such as the Frieze-Kannan-<br>Vempala (FKV) algorithm used, operated<br>efficiently without the need for extensive<br>sampling or coefficient estimation,Quantum hardware:<br>Digital annealer (from<br>to make the provide the problems have<br>model as the quantum-inspired<br>model as the quantum due of<br>optimization Problem, which entails selecting<br>as signed objective solvers.Cardinality<br>constrained #<br>mark situationQuantum hardware:<br>Digital annealer (from<br>optimization Problem, which entails selecting<br>apportionCardinality<br>constrained #<br>mark situation[13]"QUBO solvers are<br>single objective problems kee<br>more than one objective problems kee<br>optimization Problem, which e                                                                                                                                                  |                        | not included to,          | quantum-inspired algorithms provide                 |                          | increase              |
| Idealtimes in general, but in the case of this paper<br>(with increased rank and condition numbers),<br>the quantum-inspired algorithms had more<br>errors and computation times, mainly due to the<br>way the algorithm sconputated the problems<br>(which is stated above). Furthermore, direct<br>calculation methods such as the Fizer-Kannan-<br>Vempala (FKV) algorithm used, operated<br>efficiently without the need for extensive<br>sampling or coefficient estimation,Just Stated above).Purthermore, direct<br>calculation methods such as the FiX are tailored<br>to exploit the low-rank structure of the dataset,<br>it will be faster than the quantum-inspired<br>model as the quantum-inspired model<br>calculates differently and is tailored to this low-<br>rank situation.Quantum hardware:<br>Digital annealer (from<br>Fullis) (Jsing machine)Cardinality<br>constrained 4= a<br>constrained 4= a<br>constrained 4= a<br>to objective: problems with<br>optimization Problem, which entails selecting<br>aset ath at both maximize returns while<br>objective problems solpt to be compiled into a<br>on how to convert such<br>multi-objective<br>problems to single-<br>objective problems before solving them,<br>unit-objective problems need<br>to be made" (p. 1)Cardinality<br>constrained 4= a<br>constrained 4= a<br>constrained 4= a<br>constrained 4= a<br>constrained 4= a<br>constrained 4= a<br>objective problems ought to be compiled into a<br>portfolioQuantum algorithm:<br>galarization<br>(weights) =<br>to be made" (p. 1)Cardinality<br>constrained<br>multi-objective<br>actor of this aper is to derive scalarization weights<br>so that less explored parts of the pareto from<br>to discust due to eratin factors (c.g.<br>the quantum-inspired<br>multi-objective problems need<br>to the made" (p. 1)Cardinality Constrained<br>multi-objective problems as a lsing Machines. The objective<br>to quantum algorithm)<                                                                                                                                                           |                        | portfolio optimization    | reasonable low errors and short computational       |                          | efficiency)           |
| Is a subscription of the quantum-inspired algorithms had more<br>errors and computation times, mainly due to the<br>way the algorithms computed the problems<br>(which is stated above). Furthermore, direct<br>calculation methods such as the Freze-Kannan-<br>Vempala (FKV) algorithm used, operated<br>efficiently without the need for extensive<br>sampling or coefficient estimation,SubscriptionCardinality113As direct methods such as the Freze-Kannan-<br>Vempala (FKV) algorithm used, operated<br>to exploit the low-rank structure of the dataset,<br>it will be faster than the quantum-inspired<br>model as the quantum-inspired model<br>calculates differently without the need for this low-<br>rank situation.Quantum hardware:<br>Digital annealer (from<br>Fujitsu) (Ising machine)Cardinality<br>constrained = a<br>restriction/constra<br>int on the number113"QUBO solvers are<br>single objective solves."<br>To make them more<br>efficient at solving<br>Optimization Problems have<br>optication froblem, which entails selecting<br>optication problems to a solpe objective solves.<br>To make them more<br>efficient at solving<br>optication problems out the objective problems ought to be compiled into a<br>objective problems out objective problems ought to be compiled into a<br>objective problems ought to be compiled into a<br>objective problems ought to be compiled into a<br>objective problems as a lising Machines. The objective<br>compare methods of<br>deriving scalarization<br>weights when<br>eugistus when                                                                                                                                                                          |                        |                           | times in general, but in the case of this paper     |                          |                       |
| Image: state s                       |                        |                           | (with increased rank and condition numbers),        |                          |                       |
| Image: stand s                       |                        |                           | the quantum-inspired algorithms had more            |                          |                       |
| Image: space s                       |                        |                           | errors and computation times, mainly due to the     |                          |                       |
| Image: state s                       |                        |                           | way the algorithms computed the problems            |                          |                       |
| Image: state is a                       |                        |                           | (which is stated above). Furthermore, direct        |                          |                       |
| Image: stand s                       |                        |                           | calculation methods such as the Frieze-Kannan-      |                          |                       |
| Image: stand s                       |                        |                           | Vempala (FKV) algorithm used, operated              |                          |                       |
| Image: stand s                       |                        |                           | efficiently without the need for extensive          |                          |                       |
| As direct methods such as the FKV are tailored<br>to exploit the low-rank structure of the dataset,<br>it will be faster than the quantum-inspired<br>model as the quantum-inspired<br>model as the quantum-inspired model<br>calculates differently and is tailored to this low-<br>rank situation.Quantum hardware:Cardinality<br>constrained = a[13]<br>A Study of<br>Scalarization<br>Techniques for<br>Multi-Objective<br>OUBO Solving<br>(Ayodele et al., 2022)"QUBO solvers are<br>efficient at solving<br>or box convert such<br>objectives and ecision<br>on how to convert such<br>objective problems need<br>to be made" (p. 1)Objective Many optimization problems while<br>objective problems before solvers.<br>To make them more<br>efficient at solving<br>objective problems with multiple<br>objectives a decision<br>on how to convert such<br>objective problems need<br>to be made" (p. 1)Optimization Problem, which entails selecting<br>objective problems before solving them,<br>so that they are pareto efficient, via quantum<br>hardware such as lsing Machines. The objective<br>so that they are pareto efficient, via quantum<br>hardware such as lsing Machines. The objective<br>so that they are pareto efficient, via quantum<br>hardware such as lsing Machines. The objective<br>so that they are pareto efficient, via quantum<br>hardware such as lsing Machines. The objective<br>cardinality Constrained<br>optimization for<br>cardinality Constrained<br>weights when<br>eombining two<br>objectives of the<br>algorithm, or objective dependency of the<br>cardinality Constrained<br>(CMVPOP)Scalarization<br>solution<br>scalarization<br>scalarization<br>single function,<br>restruction of<br>cardinality Constrained<br>single function,<br>restruction or care assigned to<br>acab                                                                                                                                                        |                        |                           | sampling or coefficient estimation,                 |                          |                       |
| As direct methods such as the FKV are tailored<br>to exploit the low-rank structure of the dataset,<br>it will be faster than the quantum-inspired<br>model as the quantum-inspired model<br>calculates differently and is tailored to this low-<br>rank situation.Quantum hardware:<br>Digital annealer (from<br>Fujitsu) (Ising machine)Cardinality<br>constrained = a<br>restriction/constra<br>int on the number[13]<br>A Study of<br>Scalarization<br>To make them more<br>objective solvers.<br>To make them more<br>objectives solvers.<br>To make them more<br>objective problem.<br>objective problems ough to be compiled into a<br>multi-objective<br>so that they are pareto efficient, via quantum<br>objective problems need<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto fromtier<br>''In this study, we<br>compare methods of<br>deriving scalarization<br>weights when<br>combining two<br>algorithm, or objective dependency of the<br>algorithm, or objective dependency of                                                                                                                              |                        |                           |                                                     |                          |                       |
| Image: second                        |                        |                           | As direct methods such as the FKV are tailored      |                          |                       |
| it will be faster than the quantum-inspired<br>model as the quantum-inspired model<br>calculates differently and is tailored to this low-<br>rank situation.Image: Cardinality<br>calculates differently and is tailored to this low-<br>rank situation.[13]"QUBO solvers are<br>single objective solvers.Objective: Many optimization problems have<br>more than one objective (e.g. the Cardinality<br>Digital annealer (from<br>Fujitsu) (Ising machine)Cardinality<br>constrained = aImage: Scalarization<br>Techniques for<br>Multi-Objective<br>OUBO Solving<br>(Ayodele et al., 2022)To make them more<br>optients at solving<br>optients or single-<br>objective problems are<br>single objective problem sole<br>single objective problems helf-<br>objective problems to single-<br>objective problems to single-<br>objective problems helf-<br>objective problems helf-<br>objective problems to single-<br>objective problems are and they are pareto efficient, via quantum<br>objective problems for the bardware such as Ising Machines. The objective<br>to be made" (p. 1)Methodology:<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>so that less explored parts of the pareto frontier<br>so that less explored parts of the pareto frontier<br>multipleScalarization<br>scalarization<br>scalarization is the<br>so that less explored parts of the pareto frontier<br>so that less explored parts of the pareto frontier<br>multi-bective<br>so that less explored parts of the pareto frontier<br>so that less explored parts of the pareto frontier<br>algorithm, or objective dependency of the<br>deriving scalarization<br>deriving scalarization<br>weights when<br>algorithm, or objective depe                                                                                                                                                                         |                        |                           | to exploit the low-rank structure of the dataset,   |                          |                       |
| Image: Interpret to be made"model as the quantum-inspired model<br>calculates differently and is tailored to this low-<br>rank situation.model as the quantum-inspired model<br>calculates differently and is tailored to this low-<br>rank situation.[13]"QUBO solvers are<br>single objective solvers.Objective: Many optimization problems have<br>more than one objective (e.g. the Cardinality<br>Constrained Mean-Variance PortfolioQuantum hardware:<br>Digital annealer (from<br>Fujitsu) (Ising machine)Cardinality<br>constrained = aScalarizationTo make them more<br>efficient at solving<br>objectives, a decisionOptimization Problem, which entails selecting<br>assets that both maximize returns while<br>objective problems with multiple<br>objective problems ought to be compiled into a<br>multi-objective<br>problems to single-<br>objective problems led<br>to be made" (p. 1)Outinization Problem, before solving them,<br>so that they are pareto efficient, via quantum<br>so that they are pareto efficient, via quantum<br>so that less explored parts of the pareto frontier<br>so that less explored parts of the pareto frontier<br>(multiple<br>compare methods of<br>deriving scalarization<br>weights when<br>algorithm, or objective dependency of the<br>algorithm, or objective dependency of the<br>algorithm, or objective dependency of the<br>combining two<br>algorithm, or objective dependency of the<br>combining two<br>objectives of theIntervent of the pareto frontier                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           | it will be faster than the quantum-inspired         |                          |                       |
| Image: calculates differently and is tailored to this low-rank situation.calculates differently and is tailored to this low-rank situation.Cardinality[13]"QUBO solvers are single objective solvers.Objective: Many optimization problems have more than one objective (e.g. the CardinalityQuantum hardware:CardinalityScalarizationTo make them more efficient at solving problems with multiple objectives, a decisionOptimization Problem, which entails selectingDigital annealer (from to not not not not not not not not not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                           | model as the quantum-inspired model                 |                          |                       |
| Image: constraint of the state of the sta                       |                        |                           | calculates differently and is tailored to this low- |                          |                       |
| [13]"QUBO solvers are<br>single objective solvers.Objective: Many optimization problems have<br>more than one objective (e.g. the Cardinality<br>Constrained Mean-Variance PortfolioQuantum hardware:<br>Digital annealer (from<br>Fujitsu) (Ising machine)Cardinality<br>restriction/constraScalarizationTo make them more<br>efficient at solving<br>objectives, a decisionOptimization Problem, which entails selecting<br>assets that both maximize returns while<br>objective problems ought to be compiled into a<br>multi-objectiveDigital annealer (from<br>Fujitsu) (Ising machine)Cardinality<br>restriction/constra(Ayodele et al., 2022)on how to convert such<br>on how to convert such<br>objective problems to single-<br>objective problems need<br>to be made" (p. 1)objective problem before solving the<br>hardware such as Ising Machines. The objective<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>"In this study, we<br>compare methods of<br>deriving scalarization<br>weights when<br>combining two<br>objective and algorithm, or objective dependency of the<br>combining two<br>objectives for theMethodology:<br>optimization problems for multipleScalarization<br>optimization for<br>multipleScalarization<br>single function,<br>hereby weights<br>are assigned to<br>each element of<br>objectives of theobjective problems or algorithm,<br>optimization problems have<br>optimization problem,<br>hardware such as Ising Machines. The objective<br>of this paper is to derive scalarization weights<br>are assigned to<br>each element of<br>combining two<br>objectives of theCardinality constrained<br>combining two<br>objectives of the<br>algorithm, or objective dependency of the<br>algorithm,<br>objectives of theCardinality constrained<br>combining t                                                                                                                                                                                                                                                             |                        |                           | rank situation.                                     |                          |                       |
| A Study ofsingle objective solvers.more than one objective (e.g. the CardinalityDigital annealer (fromconstrained = aScalarizationTo make them moreConstrained Mean-Variance PortfolioFujisu) (Ising machine)restriction/constraMulti-Objectiveproblems with multipleobjectives, a decisionOptimization Problem, which entails selectingQuantum algorithm:Qauntum algorithm:of assets that canQUBO Solvingobjectives, a decisionminimizing risk). Normally, these multi-Outinot to be compiled into aportfolio(Ayodele et al., 2022)on how to convert suchobjective problems ought to be compiled into aMethodology:Scalarization(weights) =so that they are pareto efficient, via quantumOptimization is the so that less explored parts of the pareto frontierScalarizationScalarization is the(weights) =of this paper is to derive scalarization weightsto increased complexity, bias from theMean-Variancesingle function,(Combining twoalgorithm, or objective dependency of thealgorithm, or objective dependency of theMean-Variancesingle function,(Combining twoalgorithm, or objective to the hardware such as lang dot the pareto frontierMean-Variancesingle function,(Combining twoalgorithm, or objective dependency of theMean-Variancesingle function,(Combining twoalgorithm, or objective dependency of theMean-Variancesingle function,(Combining twoalgorithm)objective to the hardware such as lange to the hardware such as lange to the hardwarede                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [13]                   | "QUBO solvers are         | Objective: Many optimization problems have          | Quantum hardware:        | Cardinality           |
| ScalarizationTo make them more<br>efficient at solving<br>problems with multiple<br>objectives, a decisionConstrained Mean-Variance PortfolioFujitsu) (Ising machine)restriction/constra<br>int on the numberMulti-Objective<br>QUBO Solving<br>(Ayodele et al., 2022)problems with multiple<br>objectives, a decisionGonstrained Mean-Variance PortfolioFujitsu) (Ising machine)restriction/constra<br>int on the numberQUBO Solving<br>(Ayodele et al., 2022)on how to convert such<br>multi-objectiveobjective problems ought to be compiled into a<br>multi-objectiveobjective problems ought to be compiled into a<br>multi-objective problems ought to be compiled into a<br>multi-objectiveQUBOMethodology:problems to single-<br>objective problems need<br>to be made" (p. 1)so that they are pareto efficient, via quantum<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>compare methods of<br>deriving scalarizationso that less explored parts of the pareto frontier<br>algorithm, or objective dependency of the<br>algorithm, or objective dependency of the<br>algorithm)Use case:<br>Cardinality Constrained<br>Mean-Variancescalarization<br>single function,<br>hereby weights<br>are assigned to<br>each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A Study of             | single objective solvers. | more than one objective (e.g. the Cardinality       | Digital annealer (from   | constrained = a       |
| Techniques for<br>Multi-Objective<br>QUBO Solving<br>(Ayodele et al., 2022)efficient at solving<br>problems with multiple<br>objectives, a decision<br>on how to convert such<br>multi-objective<br>problems to single-<br>objective problems need<br>to be made" (p. 1)Optimization Problem, which entails selecting<br>assets that both maximize returns while<br>objective problems ought to be compiled into a<br>single objective problem before solving them,<br>hardware such as Ising Machines. The objective<br>to be made" (p. 1)Quantum algorithm:<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>can be explored which normally cannot, or are<br>usually undesirable due to certain factors (e.g.<br>deriving scalarization<br>weights when<br>combining two<br>objectives of theOptimization for<br>objective dependency of the<br>algorithm)int on the number<br>of sasets that can<br>included into a<br>portfolioTechniques for<br>QUBO Solving<br>(Ayodele et al., 2022)efficient at solving<br>on how to convert such<br>multi-objective<br>problems to single-<br>objective problems need<br>to be made" (p. 1)optimization<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>can be explored which normally cannot, or are<br>usually undesirable due to certain factors (e.g.<br>due to increased complexity, bias from the<br>algorithm, or objective dependency of the<br>algorithm)Methodology:<br>Optimization<br>optimization<br>Methodology:CMUBO Solving<br>(CCMVPOP)erce here to the<br>each element of<br>each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Scalarization          | To make them more         | Constrained Mean-Variance Portfolio                 | Fujitsu) (Ising machine) | restriction/constra   |
| Multi-Objective<br>QUBO Solving<br>(Ayodele et al., 2022)problems with multiple<br>objectives, a decision<br>on how to convert such<br>multi-objectiveassets that both maximize returns while<br>minimizing risk). Normally, these multi-<br>objective problems ought to be compiled into a<br>single objective problem before solving them,<br>problems to single-<br>objective problems need<br>to be made" (p. 1)Quantum algorithm:<br>objective problems ought to be compiled into a<br>single objective problem before solving them,<br>hardware such as Ising Machines. The objective<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>can be explored which normally cannot, or are<br>compare methods of<br>deriving scalarization<br>weights when<br>combining two<br>objectives of the<br>combining two<br>objectives of theQuantum algorithm:<br>QUBOQuantum algorithm:<br>of assets that can<br>uncluded into a<br>portfolioMulti-Objective<br>problems to single-<br>objective problems need<br>to be made" (p. 1)assets that both maximize returns while<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>can be explored which normally cannot, or are<br>usually undesirable due to certain factors (e.g.<br>deriving scalarization<br>algorithm, or objective dependency of the<br>algorithm, or objective dependency of the<br>objectives of the<br>objectives of theQuantum algorithm:<br>QUBOof assets that can<br>included into a<br>portfolioMulti-objective<br>problems to single-<br>objective problems need<br>to be made" (p. 1)assets that both maximize returns while<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>can be explored which normally cannot, or are<br>algorithm, or objective dependency of the<br>a                                                                                                                                                                                               | Techniques for         | efficient at solving      | Optimization Problem, which entails selecting       |                          | int on the number     |
| QUBO Solving<br>(Ayodele et al., 2022)objectives, a decision<br>on how to convert such<br>multi-objective<br>problems to single-<br>objective problems need<br>to be made" (p. 1)minimizing risk). Normally, these multi-<br>objective problems ought to be compiled into a<br>single objective problem before solving them,<br>hardware such as Ising Machines. The objective<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>compare methods of<br>deriving scalarization<br>weights when<br>combining two<br>objectives of theMethodology:<br>OptimizationScalarization<br>(weights) =Use case:<br>so that less explored parts of the pareto frontier<br>compare methods of<br>deriving scalarizationobjective dependency of the<br>algorithm, or objective dependency of the<br>algorithm)Use case:<br>optimization for<br>Optimizationscalarization<br>multipleUse compare methods of<br>objectives of the<br>combining two<br>objectives of theusually undesirable due to certain factors (e.g.<br>algorithm, or objective dependency of the<br>algorithm)Mean-Variance<br>Portfolio optimization<br>to the method be complexed to the pareto frontier<br>optimization for<br>to the rest of the pareto increased complexity, bias from the<br>algorithm, or objective dependency of the<br>algorithm, or objective dependency of the<br>objectives of the<br>objectives of theMean-Variance<br>to portion to a<br>single function,<br>hereby weights<br>are assigned to<br>each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Multi-Objective        | problems with multiple    | assets that both maximize returns while             | Quantum algorithm:       | of assets that can    |
| (Ayodele et al., 2022)on how to convert such<br>multi-objectiveobjective problems ought to be compiled into a<br>single objective problem before solving them,<br>problems to single-<br>objective problems need<br>to be made" (p. 1)objective problem before solving them,<br>hardware such as Ising Machines. The objective<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>compare methods of<br>deriving scalarization<br>weights when<br>combining two<br>objectives of theMethodology:<br>OptimizationScalarization<br>(weights) =(Weights) =<br>so that less explored parts of the pareto frontier<br>compare methods of<br>deriving scalarizationof this paper is to derive scalarization weights<br>usually undesirable due to certain factors (e.g.<br>due to increased complexity, bias from the<br>algorithm, or objective dependency of the<br>algorithm)Use case:<br>Cardinality Constrained<br>Mean-Variancesingle function,<br>hereby weights<br>are assigned to<br>each element of<br>each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QUBO Solving           | objectives, a decision    | minimizing risk). Normally, these multi-            | QUBO                     | included into a       |
| multi-objective<br>problems to single-<br>objective problems need<br>to be made" (p. 1)so that they are pareto efficient, via quantum<br>hardware such as Ising Machines. The objective<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>compare methods of<br>deriving scalarization<br>weights when<br>combining two<br>objectives of theMethodology:<br>OptimizationScalarization<br>(weights) =<br>scalarization is the<br>Scalarization for<br>optimization forweights when<br>combining two<br>objectives of the<br>objectives of thealgorithm, or objective dependency of the<br>algorithm)Methodology:<br>OptimizationScalarization<br>(weights) =<br>scalarization is the<br>scalarizationweights when<br>combining two<br>objectives of thealgorithm, or objective dependency of the<br>algorithm)Methodology:<br>OptimizationScalarization<br>(CCMVPOP)weights when<br>combining two<br>objectives of theAlgorithm, or objective dependency of the<br>algorithm, or objective dependency of the<br>are assigned to<br>each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Ayodele et al., 2022) | on how to convert such    | objective problems ought to be compiled into a      |                          | portfolio             |
| problems to single-<br>objective problems need<br>to be made" (p. 1)so that they are pareto efficient, via quantum<br>hardware such as Ising Machines. The objective<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>compare methods of<br>deriving scalarization<br>usually undesirable due to certain factors (e.g.<br>deriving scalarization<br>weights when<br>combining two<br>objectives of theOptimization<br>(weights) =<br>scalarization<br>optimization<br>optimization<br>optimization<br>frontierScalarization<br>(weights) =<br>scalarization<br>optimization<br>optimization for<br>Mean-VarianceScalarization<br>(weights) =<br>scalarization<br>objectives of the<br>algorithm)objectives of the<br>objectives of the<br>objectives of thealgorithm)Judie to increased complexity<br>objective dependency of the<br>algorithm)Optimization<br>optimization<br>(CCMVPOP)Scalarization<br>are assigned to<br>each element of<br>each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | multi-objective           | single objective problem before solving them,       | Methodology:             |                       |
| objective problems need<br>to be made" (p. 1)hardware such as Ising Machines. The objective<br>of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>compare methods of<br>deriving scalarization(weights) =<br>scalarization is the<br>act of combining<br>multiple"In this study, we<br>compare methods of<br>deriving scalarizationcan be explored which normally cannot, or are<br>usually undesirable due to certain factors (e.g.<br>due to increased complexity, bias from the<br>algorithm, or objective dependency of the<br>objectives of theUse case:<br>Scalarization<br>optimization for<br>Mean-Variancescalarization<br>objectives into a<br>single function,<br>hereby weights<br>are assigned to<br>each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | problems to single-       | so that they are pareto efficient, via quantum      | Optimization             | Scalarization         |
| to be made" (p. 1)of this paper is to derive scalarization weights<br>so that less explored parts of the pareto frontier<br>compare methods of<br>deriving scalarizationUse case:scalarization<br>act of combining<br>multiple"In this study, we<br>compare methods of<br>deriving scalarizationcan be explored which normally cannot, or are<br>usually undesirable due to certain factors (e.g.<br>due to increased complexity, bias from the<br>algorithm, or objective dependency of the<br>objectives of theScalarization<br>optimization for<br>Mean-Varianceact of combining<br>multipleweights when<br>combining two<br>objectives of the<br>objectives of thealgorithm)gorithm<br>objective dependency of the<br>algorithm)Portfolio optimization<br>(CCMVPOP)hereby weights<br>are assigned to<br>each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | objective problems need   | hardware such as Ising Machines. The objective      | TT                       | (weights) =           |
| "In this study, we<br>compare methods of<br>deriving scalarizationcan be explored parts of the pareto frontierScalarizationact of combining<br>multiple"In this study, we<br>compare methods of<br>deriving scalarizationcan be explored which normally cannot, or are<br>usually undesirable due to certain factors (e.g.<br>due to increased complexity, bias from the<br>algorithm, or objective dependency of the<br>objectives of theOptimization<br>Mean-Varianceobjectives into a<br>single function,<br>hereby weights<br>are assigned to<br>each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | to be made" (p. 1)        | of this paper is to derive scalarization weights    | Use case:                | scalarization is the  |
| In this study, wecan be explored which normally cannot, or areoptimization formultiplecompare methods of<br>deriving scalarization<br>weights when<br>combining two<br>objectives of theusually undesirable due to certain factors (e.g.<br>algorithm, or objective dependency of the<br>algorithm)Cardinality Constrained<br>Mean-Varianceobjectives into a<br>single function,<br>hereby weights<br>are assigned to<br>each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | "In this study we         | so that less explored parts of the pareto frontier  | Scalarization            | act of combining      |
| compare memors of<br>deriving scalarization<br>weights when<br>objectives of thedue to increased complexity, bias from the<br>algorithm, or objective dependency of the<br>algorithm)Cardinanty Constrained<br>Mean-Varianceobjectives mito a<br>single function,<br>hereby weights<br>are assigned to<br>each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | an uns study, we          | usually undesirable due to cortain factors (a c     | Cardinality Constrained  | objectives into s     |
| weights when<br>combining two<br>objectives of the     algorithm, or objective dependency of the<br>algorithm)     Portfolio optimization<br>(CCMVPOP)     hereby weights<br>are assigned to<br>each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | deriving scalarization    | due to increased complexity bias from the           | Mean-Variance            | single function       |
| combining two     algorithm)     objectives of the     rothono optimization     nereby weights       are assigned to     each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | weights when              | algorithm or objective dependency of the            | Portfolio ontimization   | hereby weights        |
| objectives of the each element of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | combining two             | algorithm)                                          | (CCMVPOP)                | are assigned to       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | objectives of the         |                                                     |                          | each element of       |
| cardinality constrained I in this study, three methods of generating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | cardinality constrained   | In this study, three methods of generating          |                          | the combined          |
| mean-variance nortfolio scalarization weights within the given objective objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | mean-variance nortfolio   | scalarization weights within the given objective    |                          | objective             |
| ontimization problem for OUBO (minimizing risk and maximizing function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | optimization problem      | for OUBO (minimizing risk and maximizing            |                          | function.             |
| into one" (p. 1), returns) are explored, these three methods were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | into one" (n. 1)          | returns) are explored, these three methods were     |                          |                       |
| applied to a OUBO formulation of CCMVPOP:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | (p. 1),                   | applied to a OUBO formulation of CCMVPOP            |                          | Pareto frontier = $a$ |
| iterative, random, and uniform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                           | iterative, random, and uniform                      |                          | set of all optimal    |
| solutions where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                           | -,,,                                                |                          | solutions where       |
| Results: no solution can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                           | Results:                                            |                          | no solution can be    |
| improved without                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                           |                                                     |                          | improved without      |

|                          |                           | - The 'iterative' approach showed           |                          | negatively          |
|--------------------------|---------------------------|---------------------------------------------|--------------------------|---------------------|
|                          |                           | advantages over random and uniform          |                          | influencing         |
|                          |                           | methods in terms if finding diverse         |                          | another             |
|                          |                           | and high-quality solutions                  |                          | Uniform             |
|                          |                           | - The 'iterative' methods ability to        |                          | scalarization =     |
|                          |                           | explore certain regions of the pareto       |                          | distributes         |
|                          |                           | front not normally explored showed          |                          | weights evenly      |
|                          |                           | better trade-off solution in multi-         |                          | across the          |
|                          |                           | objective scenarios (max return, min        |                          | objective           |
|                          |                           | risk)                                       |                          | 5                   |
|                          |                           | - Uniform scalarization showed the          |                          | Random              |
|                          |                           | most consistent and highest number          |                          | scalarization =     |
|                          |                           | of non-dominated results in multi-          |                          | distributes eights  |
|                          |                           | objective problems                          |                          | randomly            |
|                          |                           | - "Quadratic Unconstrained Binary           |                          |                     |
|                          |                           | Optimization (QUBO) formulations            |                          | Iterative =         |
|                          |                           | of optimization problems. This is a         |                          | distributes/adjusts |
|                          |                           | common formulation used by                  |                          | weights according   |
|                          |                           | hardware solvers classified as              |                          | to desired pareto   |
|                          |                           | quantum or quantum-inspired                 |                          | front, thereby      |
|                          |                           | machines. They have been shown to           |                          | exploring less      |
|                          |                           | achieve a speed up compared to              |                          | explored regions    |
|                          |                           | classical optimization algorithms           |                          |                     |
|                          |                           | implemented on general purpose              |                          |                     |
|                          |                           | computers"(p. 1)                            |                          |                     |
|                          |                           | Ultimately, this study shows that attention |                          |                     |
|                          |                           | given on scalarization methods can improve  |                          |                     |
|                          |                           | results regarding certain multi-objective   |                          |                     |
|                          |                           | problems such as portfolio optimization     |                          |                     |
| [14]                     | Quantum Processing        | Objective: Assess the quality of            | Quantum hardware:        | OPUs = quantum      |
| Wasserstein Solution     | Units (OPU can be very    | results/performance of the OAOA algorithm   | Gate-model quantum       | processing units.   |
| Ouality and the          | suitable for optimizing a | using OPUs by solving the Mean-Variance     | processing units         | which are           |
| Ouantum                  | portfolio of financial    | Portfolio Optimization problem from         | simulated on IBM.        | advanced            |
| Approximate              | assets (p. 1)             | Markowitz. These results are then to be     | IonO, Rigetti, and using | computers using     |
| Optimization             | "We benchmark the         | compared to eachother.                      | real hardware Ouantum    | quantum             |
| Algorithm: A             | success of this approach  |                                             | GPU hardware             | mechanics to        |
| Portfolio                | using the Quantum         | Results:                                    | (QULACS, ASPEN 10,       | perform             |
| <b>Optimization</b> Case | Approximate               | - Hard constrained optimizers are           | IBMQ Manila,             | calculations        |
| Study (Baker, Jack       | Optimization Algorithm    | easier to optimize as their landscape       | IBMQ Bogota,             |                     |
| S. & Radha, Santosh      | (QAOA); an algorithm      | is easier to quantify and has more          | IBMQ Quito,              |                     |
| Kumar, 2022)             | targeting gate-model      | direct parameters, therefore creating a     | IBMQ Belem, and          |                     |
|                          | QPUs."                    | straighter road to the solution so to       | IBMQ Lima)               |                     |
|                          |                           | say, whilst soft constrained                |                          |                     |
|                          | In this paper, the aim is | optimizers have a more challenging          | Quantum algorithm:       |                     |
|                          | to find the highest       | landscape due to their increased            | QAOA                     |                     |
|                          | quality of solutions      | flexibility, allowing for a broader         | -                        |                     |
|                          | using the QAOA            | range of possible solutions,                | Methodology:             |                     |
|                          | algorithm on the          | - The main conclusion from the paper        | Optimization             |                     |
|                          | optimization of           | is that QAOA algorithms show                |                          |                     |
|                          | financial asset           | promising performance for solving           | Use case:                |                     |
|                          | portfolios using QPUs     | MVPO problems, especially when              | Portfolio optimization   |                     |
|                          |                           | applied to gate-model Quantum               | _                        |                     |

|                                                                                                                      | "We illustrate the                                                                                                                                                                                         | -                                            | furthermore, the GM-QAOAz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Use case:                                                                                                                                                                   | tries to imitate                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                      | potential of GM-OAOA                                                                                                                                                                                       |                                              | algorithm is then compared towards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Discrete portfolio                                                                                                                                                          | such a real                                                                                                                                                                     |
|                                                                                                                      | on several optimization                                                                                                                                                                                    |                                              | the $\Omega A \Omega A z$ algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rebalancing                                                                                                                                                                 | system basically                                                                                                                                                                |
|                                                                                                                      | problem classes" (p. 1)                                                                                                                                                                                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             | meaning in this                                                                                                                                                                 |
|                                                                                                                      | problem classes (p. 1)                                                                                                                                                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Results:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             | paper that the                                                                                                                                                                  |
|                                                                                                                      |                                                                                                                                                                                                            | -                                            | Following the discrete portfolio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             | simulated system                                                                                                                                                                |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | rebalancing problem, both algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             | is alike to a real                                                                                                                                                              |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | show some similarities, however,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             | system when it                                                                                                                                                                  |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | GM-QAOA was able to better focus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             | comes to the                                                                                                                                                                    |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | on creating an equal superposition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             | change it                                                                                                                                                                       |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | all feasible states meaning can more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             | nerceives over                                                                                                                                                                  |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | affectively explore the solution space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                             | time in its                                                                                                                                                                     |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | and areats many antimal solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             | quantum state                                                                                                                                                                   |
|                                                                                                                      |                                                                                                                                                                                                            | -                                            | Furthermore, resulting from other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | tests, GM-QAOAz showed multiple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | strengths: it can reduce circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | complexity compared to existing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | mixers, and it can even, as a first in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | the industry, stay in the feasible space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | of solutions and provide transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | between all states in this space whilst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | mixing unitaries (mixing unitaries =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | onerators that intend to change the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | amplitudes of different quantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | states, with the purpose of creating a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              | larger solution space.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | T I                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importa                                      | it notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-                                | nt notes:<br>"GM-QAOAz works on any NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-                                | nt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importai<br>-                                | nt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-                                | nt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-                                | t notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-                                | tt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-                                | tt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importai<br>-                                | nt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-                                | tt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions " (n 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-                                | th notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAQAz is not susceptible to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-<br>-                           | th notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-                                | th notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-                                | "GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-                                | "GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for<br>QAOAz, and solutions with the same                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-                                | th notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for<br>QAOAz, and solutions with the same<br>objective value are always sampled                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                             |                                                                                                                                                                                 |
|                                                                                                                      |                                                                                                                                                                                                            | Importar<br>-<br>-                           | tt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for<br>QAOAz, and solutions with the same<br>objective value are always sampled<br>with the same amplitude                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                 |
| [17]                                                                                                                 | "This paper presents the                                                                                                                                                                                   | Importar<br>-<br>-<br>Objectiv               | tt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for<br>QAOAz, and solutions with the same<br>objective value are always sampled<br>with the same amplitude<br>e(s):                                                                                                                                                                                                                                                                                                                                                           | Quantum hardware:                                                                                                                                                           | Maximally                                                                                                                                                                       |
| [17]<br>Quantum                                                                                                      | "This paper presents the<br>'Maximum                                                                                                                                                                       | Importar<br>-<br>-<br>Objectiv<br>I.         | tt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for<br>QAOAz, and solutions with the same<br>objective value are always sampled<br>with the same amplitude<br>e(s):<br>Formulate MAOA mainly by using                                                                                                                                                                                                                                                                                                                         | Quantum hardware:<br>Simulated hardware                                                                                                                                     | Maximally<br>amplified state = a                                                                                                                                                |
| [17]<br>Quantum<br>optimization via                                                                                  | "This paper presents the<br>'Maximum<br>Amplification                                                                                                                                                      | Importar<br>-<br>-<br>Objectiv<br><i>1</i> . | tt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for<br>QAOAz, and solutions with the same<br>objective value are always sampled<br>with the same amplitude<br>e(s):<br>Formulate MAOA mainly by using<br>the Quantum Walk Optimization                                                                                                                                                                                                                                                                                        | Quantum hardware:<br>Simulated hardware                                                                                                                                     | Maximally<br>amplified state = a<br>state in a quantum                                                                                                                          |
| [17]<br>Quantum<br>optimization via<br>maximally amplified<br>states (Report                                         | "This paper presents the<br>'Maximum<br>Amplification<br>Optimisation                                                                                                                                      | Importar<br>-<br>-<br>Objectiv<br>I.         | tt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for<br>QAOAz, and solutions with the same<br>objective value are always sampled<br>with the same amplitude<br>e(s):<br>Formulate MAOA mainly by using<br>the Quantum Walk Optimization<br>Algorithm as a way to achieve                                                                                                                                                                                                                                                       | Quantum hardware:<br>Simulated hardware<br>Quantum algorithm:                                                                                                               | Maximally<br>amplified state = a<br>state in a quantum<br>system that can be                                                                                                    |
| [17]<br>Quantum<br>optimization via<br>maximally amplified<br>states (Bennett,<br>Tavis                              | "This paper presents the<br>'Maximum<br>Amplification<br>Optimisation<br>Algorithm' (MAOA), a                                                                                                              | Importar<br>-<br>-<br>Objectiv<br><i>1</i> . | nt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for<br>QAOAz, and solutions with the same<br>objective value are always sampled<br>with the same amplitude<br>e(s):<br>Formulate MAOA mainly by using<br>the Quantum Walk Optimization<br>Algorithm as a way to achieve<br>maximally amplified states in a low-                                                                                                                                                                                                               | Quantum hardware:<br>Simulated hardware<br>Quantum algorithm:<br>RGAS and MAOA                                                                                              | Maximally<br>amplified state = a<br>state in a quantum<br>system that can be<br>achieved through                                                                                |
| [17]<br>Quantum<br>optimization via<br>maximally amplified<br>states (Bennett,<br>Tavis<br>Wang, Jingbo B.           | "This paper presents the<br>'Maximum<br>Amplification<br>Optimisation<br>Algorithm' (MAOA), a<br>novel quantum                                                                                             | Importar<br>-<br>-<br>Objectiv<br><i>I</i> . | nt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for<br>QAOAz, and solutions with the same<br>objective value are always sampled<br>with the same amplitude<br>e(s):<br>Formulate MAOA mainly by using<br>the Quantum Walk Optimization<br>Algorithm as a way to achieve<br>maximally amplified states in a low-<br>convergence regime. <i>(basically, we</i>                                                                                                                                                                  | Quantum hardware:<br>Simulated hardware<br>Quantum algorithm:<br>RGAS and MAOA<br>(compared to each                                                                         | Maximally<br>amplified state = a<br>state in a quantum<br>system that can be<br>achieved through<br>some methods (in                                                            |
| [17]<br>Quantum<br>optimization via<br>maximally amplified<br>states (Bennett,<br>Tavis<br>Wang, Jingbo B.,<br>2021) | "This paper presents the<br>'Maximum<br>Amplification<br>Optimisation<br>Algorithm' (MAOA), a<br>novel quantum<br>algorithm designed for                                                                   | Importar<br>-<br>-<br>Objectiv<br>1.         | nt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for<br>QAOAz, and solutions with the same<br>objective value are always sampled<br>with the same amplitude<br>e(s):<br>Formulate MAOA mainly by using<br>the Quantum Walk Optimization<br>Algorithm as a way to achieve<br>maximally amplified states in a low-<br>convergence regime. (basically, we<br>want the (possibly) best solutions                                                                                                                                   | Quantum hardware:<br>Simulated hardware<br>Quantum algorithm:<br>RGAS and MAOA<br>(compared to each<br>other, classical                                                     | Maximally<br>amplified state = a<br>state in a quantum<br>system that can be<br>achieved through<br>some methods (in<br>the case of this                                        |
| [17]<br>Quantum<br>optimization via<br>maximally amplified<br>states (Bennett,<br>Tavis<br>Wang, Jingbo B.,<br>2021) | "This paper presents the<br>'Maximum<br>Amplification<br>Optimisation<br>Algorithm' (MAOA), a<br>novel quantum<br>algorithm designed for<br>combinatorial                                                  | Importar<br>-<br>-<br>Objectiv<br><i>1.</i>  | at notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for<br>QAOAz, and solutions with the same<br>objective value are always sampled<br>with the same amplitude<br>e(s):<br>Formulate MAOA mainly by using<br>the Quantum Walk Optimization<br>Algorithm as a way to achieve<br>maximally amplified states in a low-<br>convergence regime. (basically, we<br>want the (possibly) best solutions<br>grouped together in a place where                                                                                              | Quantum hardware:<br>Simulated hardware<br>Quantum algorithm:<br>RGAS and MAOA<br>(compared to each<br>other, classical<br>algorithms and Grovers                           | Maximally<br>amplified state = a<br>state in a quantum<br>system that can be<br>achieved through<br>some methods (in<br>the case of this<br>paper by using the                  |
| [17]<br>Quantum<br>optimization via<br>maximally amplified<br>states (Bennett,<br>Tavis<br>Wang, Jingbo B.,<br>2021) | "This paper presents the<br>'Maximum<br>Amplification<br>Optimisation<br>Algorithm' (MAOA), a<br>novel quantum<br>algorithm designed for<br>combinatorial<br>optimization in the                           | Importar<br>-<br>-<br>Objectiv<br>I.         | nt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for<br>QAOAz, and solutions with the same<br>objective value are always sampled<br>with the same amplitude<br>e(s):<br>Formulate MAOA mainly by using<br>the Quantum Walk Optimization<br>Algorithm as a way to achieve<br>maximally amplified states in a low-<br>convergence regime. <i>(basically, we<br/>want the (possibly) best solutions</i><br>grouped together in a place where<br>finding these solutions is imaximized                                             | Quantum hardware:<br>Simulated hardware<br>Quantum algorithm:<br>RGAS and MAOA<br>(compared to each<br>other, classical<br>algorithms, and Grovers<br>Adantive Search (GAS) | Maximally<br>amplified state = a<br>state in a quantum<br>system that can be<br>achieved through<br>some methods (in<br>the case of this<br>paper by using the<br>Quantum Wally |
| [17]<br>Quantum<br>optimization via<br>maximally amplified<br>states (Bennett,<br>Tavis<br>Wang, Jingbo B.,<br>2021) | "This paper presents the<br>'Maximum<br>Amplification<br>Optimisation<br>Algorithm' (MAOA), a<br>novel quantum<br>algorithm designed for<br>combinatorial<br>optimization in the<br>materiated aiswit durt | Importar<br>-<br>-<br>Objectiv<br>I.         | nt notes:<br>"GM-QAOAz works on any NP<br>optimization problem for which it is<br>possible to efficiently prepare an<br>equal superposition of all feasible<br>solutions; it is designed to perform<br>particularly well for constraint<br>optimization problems, where not all<br>possible variable assignments are<br>feasible solutions." (p. 1)<br>GM-QAOAz is not susceptible to<br>Hamiltonian simulation error<br>compared to standard mixers for<br>QAOAz, and solutions with the same<br>objective value are always sampled<br>with the same amplitude<br>e(s):<br>Formulate MAOA mainly by using<br>the Quantum Walk Optimization<br>Algorithm as a way to achieve<br>maximally amplified states in a low-<br>convergence regime. <i>(basically, we<br/>want the (possibly) best solutions<br/>grouped together in a place where<br/>finding these solutions is maximized,<br/>this means that the one wayten wayten</i> | Quantum hardware:<br>Simulated hardware<br>Quantum algorithm:<br>RGAS and MAOA<br>(compared to each<br>other, classical<br>algorithms, and Grovers<br>Adaptive Search (GAS) | Maximally<br>amplified state = a<br>state in a quantum<br>system that can be<br>achieved through<br>some methods (in<br>the case of this<br>paper by using the<br>Quantum Walk  |

| [18]                   | In this paper, a novel    | Objectiv | e:                                      | Ouantum hardware:     | "Ouantum neural     |
|------------------------|---------------------------|----------|-----------------------------------------|-----------------------|---------------------|
| Forecasting financial  | Quantum Neural            | -        | Develop a QNN model with features       | Simulated hardware    | networks have       |
| risk using quantum     | Networks are              |          | that fit toward forecasting financial   |                       | been proposed       |
| neural networks        | introduced for machine    |          | risk in companies whilst at the same    | Ouantum algorithm:    | [1]. but verv few   |
| (Bouchti et al., 2018) | learning in forecasting   |          | time having features that make it as    | ONNs                  | of these proposals  |
|                        | potential financial risks |          | easy as possible to model. A ONN is     | \`                    | have attempted to   |
|                        | in a company              |          | proposed that operates much like an     | Methodology:          | provide an          |
|                        |                           |          | ANN, however, the ONN has its           | Forecasting           | indepth method of   |
|                        | Furthermore, a method     |          | functions grounded in quantum           |                       | training them.      |
|                        | of training these ONNs    |          | mechanics. The ONN is subsequently      | Use case:             | Most either do not  |
|                        | is introduced             |          | trained using genetic algorithms to     | Financial risk        | mention how the     |
|                        |                           |          | avoid getting into local minima.        | forecasting           | network will be     |
|                        | Lastly, a new financial   |          | 0 0                                     |                       | trained or simply   |
|                        | risk forecasting model    | Results: |                                         |                       | state that they use |
|                        | in introduced which will  | -        | The proposed QNN improved               |                       | a standard          |
|                        | be applied to             |          | prediction efficiency of financial risk |                       | gradient descent    |
|                        | forecasting risk in       |          | in the chosen Moroccan companies        |                       | algorithm." (p. 1)  |
|                        | Moroccan companies.       |          | compared to classical methods           |                       |                     |
|                        | Afterwards, these         |          | (ANN)                                   |                       | Local minima = a    |
|                        | results are then          | -        | The QNN algorithm provided good         |                       | value that is low   |
|                        | compared with             |          | approximation results, reduced          |                       | considering its     |
|                        | Artificial Neural         |          | computing time, and maintained          |                       | neighbors (other    |
|                        | Networks (ANN)            |          | prediction accuracy over classical      |                       | groups of values),  |
|                        | (classical approach)      |          | methods (ANN)                           |                       | but is considered   |
|                        |                           |          |                                         |                       | high in its own     |
|                        | "In this work, we         | Importai | nt notes:                               |                       | group, thereby      |
|                        | introduce the quantum     | -        | The study faced limitations due to a    |                       | making it an        |
|                        | neural networks: a        |          | small sample size and the exclusion     |                       | undesirable value   |
|                        | hybrid quantum-           |          | of non-financial factors                |                       | to find with the    |
|                        | classical framework       |          |                                         |                       | algorithm, giving   |
|                        | with the potential of     |          |                                         |                       | the algorithm the   |
|                        | tackling high-            |          |                                         |                       | probability to      |
|                        | dimensional real-world    |          |                                         |                       | settle for a        |
|                        | machine learning          |          |                                         |                       | solution that is    |
|                        | datasets on continuous    |          |                                         |                       | suboptimal          |
|                        | variables." (p. 1)        |          |                                         |                       |                     |
| [22]                   | In this paper, QUBO       | Objectiv | e:                                      | Quantum hardware:     | Ansatz = the        |
| Best practices for     | formulated portfolio      | -        | Benchmark the VQE against classical     | Different simulated   | proposed form of    |
| portfolio              | optimization is solved    |          | algorithms                              | (IBM QASM simulator)  | the state in which  |
| optimization by        | using the Variational     | -        | Benchmark the performance of VQE        | and real quantum      | an objective        |
| quantum computing,     | Quantum Eigensolver       |          | on real and simulator quantum           | computers (IBM        | function is solved  |
| experimented on        | (VQE) Algorithm           |          | hardware                                | Toronto, IBM Kolkata, | on a quantum        |
| real quantum           |                           | -        | Find the optimal investment portfolio   | IBM Auckland, IBMQ    | computer, this      |
| devices (Buonaiuto     | The main outcome of       |          | by balancing risk and return using      | Toronto, IBM Geneva,  | state or Ansatz     |
| et al., 2023)          | this work consists of     |          | certain constraints such as budgets     | IBMQ Guadalupe, IBM   | structure is then   |
|                        | tinding the best          |          | and risk aversion                       | Hanoi, IBM Cairo,     | adjusted to         |
|                        | hyperparameters (part     | -        | Formulate the PO problem in a           | IBMQ Montreal, IBMQ   | optimize the        |
|                        | of the ansatz) to set in  |          | QUBO format, and then approximate       | Mumbai)               | solution, which is  |
|                        | order to find the most    |          | the minimum eigenvalue (most            |                       | also tested for and |
|                        | optimal solution using    |          | optimal solution in this case) by using | Quantum algorithm:    | used in the case of |
|                        | VQE, however, in this     |          | VQE                                     | QUBO formulated PO    | this paper.         |
|                        | paper for portfolio       |          |                                         | optimized by VQE      |                     |
|                        | optimization, only the    |          |                                         |                       |                     |

| results using VOE on a<br>portfolio optimization<br>problem are considered<br>Optimization problems<br>are solved in this paper<br>by using simulated and<br>real quantum computers<br>obtained on different<br>solutions to the problem<br>obtained on different<br>quantum computers<br>with different<br>hyperparameters<br>settings, to find the best<br>predices real for an and problem,<br>during the optimal<br>solution on to filterent<br>predices real for an and problem,<br>of different sizes and<br>anong these obtained<br>on simulations random profile<br>solutions of the problem.<br>Trially, the optimal<br>solutions of the problem<br>of different<br>solutions of the problem<br>of different<br>solutions of the problem.<br>Trially, the optimal<br>solutions of the problem<br>of different sizes and<br>anong these obtained<br>on first sizes and<br>of different sizes and<br>anong these obtained<br>of different sizes and<br>anong these obtained<br>of different sizes and<br>of different sizes and<br>anong these obtained<br>of different sizes and<br>anong these obtained<br>of different sizes and<br>anong these obtained<br>on simulators and ort<br>the beachmark,<br>solution, "[p, 2]<br>Timportant notes:<br>Timportant notes:<br>Timportant notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                                  |                        |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------|------------------------|--------------------|
| problem are considered<br>problem are considered<br>impoblem are considered<br>impoblem are considered<br>of mizization problems<br>are solved in this paper<br>tract quantum computers<br>obtained on different<br>quantum computers<br>obtained on different<br>quantum computers<br>obtained on different<br>quantum devices." (p.<br>2)Optimizzation<br>the optimal solution,<br>IBM Ackata: found the optimal<br>solution on different<br>quantum computers<br>optimization and on<br>real quantum devices." (p.<br>2)Optimizzation= a single number<br>the Ackata-<br>to optimization"Finally, the optimal<br>solution are compared<br>among these obtained<br>on simultars and on<br>real quantum computers<br>of different sizes and<br>architectures sad with<br>the benchmark<br>solution."(p. 2)Important action the optimal<br>solution are compared<br>optimization of afferent<br>quantum computers<br>optimization accompared and<br>optimization optimizes for a real quantum<br>computery and noiseless<br>environments using three possible<br>optimizers for a first, STA) showed that Cotypi<br>persistently provided table and rapid<br>convergence to finding optimal<br>solution."(p. 2)Optimization fund<br>the active process<br>importing solution, particularly in<br>noisy solution fund and<br>oscillatory benchmark, the<br>branch-und-bound method in algorithm convergence<br>with increased variability.Optimization fund<br>to benchmark, the<br>branch-und-bound method is used<br>which is analgorithm convergence and<br>particularly sackili in diacrete and<br>hange soluti                                                                                                                                                                                                                                                                                                                        | results using VQE on a     | Results (results shown in the paper are based on | Methodology:           | Quantum volume     |
| Implement on considered<br>problem are considered<br>optimization problems<br>are solved in this paper<br>by using simulated and<br>real quantum computersImplement of a computation optimal<br>solutions in a graph with the efficient<br>optimal solution,<br>IBM Toronto: found the optimal solution,<br>IBM Coldat: found the optimal solution,<br>implement on different<br>optimal found in computers<br>optimal solution,<br>implementersImplementers<br>implementersImplementers<br>optimal solution,<br>implementers"This work presents<br>solutions on the poblem<br>obtained on different<br>quantum computers and<br>with different<br>typequences;" (p.<br>2)Implementers<br>implementers<br>optimal solution (Interch-and-<br>being good enough in terms of<br>limited quantum volumes and circuit<br>dept to compute the source<br>optimal solution are compared<br>anong these obtained<br>on simulator and on<br>real quantum computers<br>of different sizes and<br>architectures and with<br>the bench-mark, such and solution, are solution solution, particularly in<br>onsisted solution are compared<br>a solutions, T(p. 2)Convergence is<br>solutions are compared<br>and the solution are compared<br>and the coptimal solution are compared<br>a solution, are compared<br>a solution, are compared<br>a solution, "(p. 2)Convergence is<br>solution are compared<br>a solution, are compared<br>a solution, "(p. 2)Convergence is<br>solution, are compared<br>a solution, are compared<br>a solution, "(p. 2)Convergence<br>intervent solution (Interch-and-<br>a solution, are compared<br>a solution, are compared<br>a solution, "(p. 2)Convergence<br>intervent quantum hardware, not<br>was able to solve up to 120 asset<br>optimal solution are quantum computers<br>a diment box is off three possible<br>optimizers from Optimal solution, PT exhibited unstable and<br>oscillator, particularly was half i                                                                                                                                                                                                                                                                                                                                                 | portfolio optimization     | quality of the optimal solution found and        | Optimization           | = a single number  |
| - For Keal quantum devices (results are<br>solved in this paper<br>by using simulated and<br>real quantum computers<br>solutions to the problem<br>obtained on affirerat<br>quantum computers<br>solutions on different<br>quantum computers<br>settings, for fut be best<br>solutions to the problem<br>obtained on affirerat<br>quantum computers<br>restrings, for fut best<br>solutions are compared<br>among these obtained<br>on simulators and or<br>real quantum computers<br>of different sizes and<br>solutions are compared<br>among these obtained<br>on simulators and or<br>real quantum computers<br>of different sizes and<br>solutions are compared<br>among these obtained<br>on simulators and or<br>real quantum computers<br>of different sizes and<br>architectures and with<br>the benchmark<br>solutions.     - For Keal quantum devices, (feaults are<br>problem<br>solutions.     Convergence =<br>stability and<br>solution on cificient fromtier<br>- Less than optimal results were mainly<br>caused by the quantum hardware, and<br>of timal solution as the cOUBO - VQE<br>on different quantum hardware,<br>different quantum hardware,<br>different quantum computers<br>of different sizes and<br>architectures and with<br>the benchmark<br>solution, "(p. 2)     - The classical solution (Haranch-and-<br>being good enough in teres of<br>limited quantum hardware,<br>different quantum hardware,<br>different quantum hardware,<br>different quantum hardware,<br>different goos and and print<br>convergence to funding offinit<br>solutions are compared<br>anong these obtained<br>on simulator, solution solution solution solution solution<br>real quantum computers<br>of different sizes and<br>architectures and with<br>the benchmark<br>solution."(p. 2)     - For the classical here possible<br>optimizers from Qiskit (Cobyla, NFT,<br>SPSA) downed that Cobyla<br>inporting advergence techning<br>particularly useful in discret and<br>particularly useful in discret and<br>pand other methods is solowers the<br>dimensin solution spacc | problem are considered     | algorithm convergence                            |                        | that encapsulates  |
| Image: construction problems<br>are solved in this paper<br>by using simulated and<br>real quantum computers<br>and quantum simulated and<br>real quantum computersSolution and we volatility, and y =<br>expected return);<br>EMM Trontst. Gound the optimal solution,<br>HBM Koltats: found the optimal solution,<br>HBM Koltats: found the optimal solution,<br>HBM Koltats: found the optimal solution,<br>HBM Contact. Found the optimal solution,<br>HBM Contact. Found the optimal<br>solutions to the problem<br>obtained on different<br>Hanoi, IBM Contact, IBMQ Guadalape, IBM<br>quantum computers<br>and with different<br>by perparameters<br>settings, for find the best<br>settings, for find the best<br>settings, for find the best<br>optimal solution on clificant formite<br>quantum devices." (p.<br>2)<br>The classical solution (Brunch-and-<br>Round method) diff find the same<br>solutions are compared<br>anong these obtained<br>on simulators and on<br>real quantum computers<br>and encode diff from the same<br>solutions." (p. 2)The classical solution (Brunch-and-<br>Round method) diff find the same<br>optimal solution are the QLBO -VQE<br>on different sizes and<br>quantum simulator from IBM on<br>consistency portfoliosThe classical solution (Brunch-<br>and Round method) diff find the same<br>optimal solution are compared<br>quantum simulator from IBM on<br>consistency portfoliosShift the same<br>computer quantum simulator from IBM on<br>convergenceof different sizes and<br>robition."(p. 2)Important notes:<br>- For the classical bounds in digner to possible<br>optimizes from QSkit (Cobyla, NTT,<br>SPSA) Abweed that CAbyla<br>persistenty povided stab and rapid<br>convergence to finding political sizes for<br>optimizes, and STSA<br>demonstrated lower convergence<br>with is an algorithmic technique<br>particularly useful in discrete and<br>harge solution spuces<br>- The classical benchmark, the<br>b                                                                                                                                                                                                                                                                                                           |                            | - For Real quantum devices (results are          | Use case:              | how well a         |
| fontifer and x = volatility, and y = computer can handle quantum computers an volations to the problem obtimed on different quantum computers and with different hyperparameters settings, to find the best solution on efficient frontier and the optimal solution and the optimal solution on the problem of the optimal solution and the optimal solution and the optimal solution and the optimal solution and the optimal solution. IBM Kolkard, IBM (Cairo,                                                                                                                                                                     | Optimization problems      | shown in a graph with the efficient              | Portfolio optimization | quantum            |
| by using simulated and<br>real quantum computers<br>obtained on different<br>quantum computers and<br>with different<br>hyperparameters<br>settings, to find the best<br>practices to perform PO<br>by VyC or real<br>quantum devices," (p.<br>2)handle quantum<br>to the problem<br>ensuremeters<br>solutions are compared<br>among flose obtained<br>on simulators and with<br>the benchmark<br>with different to<br>solutions are compared<br>among flose obtained<br>on simulators and with<br>the benchmark<br>solutions are compared<br>among flose obtained<br>on simulators and with<br>the benchmark<br>solutions are compared<br>among flose obtained<br>on simulators and with<br>the benchmark<br>solutions."(p. 2)handle quantum<br>to make the solution of the optimal<br>solution are compared<br>among flose obtained<br>on simulators and with<br>the benchmark<br>solution."(p. 2)handle quantum hardware,<br>active process<br>to make the province in the OASN<br>term noisy (which is done by<br>timporting noise from are al quantum<br>computers in the OASN<br>term noisy (which is done by<br>timporting noise from are al quantum<br>computers in the OASN<br>term noisy (which is done by<br>timporting noise from are al quantum<br>solutions, NFT, SYSA) showed that Cobyla<br>persistently provided stable and rapid<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | are solved in this paper   | frontier and $x =$ volatility, and $y =$         |                        | computer can       |
| Image: Solution of the problem       IBM Toronto: found the optimal solution, IBM Ackland: found the optimal solution, IBM Ackland: found the optimal solution of the problem       Convergence = stability and solutions, IBM Ackland: found the optimal solution of the problem         obtained on different quantum computers and with different practices to perform PO by VQC in real quantum devices." (p. 2)       IBM Quantum solution as the hoptimal results were mainly caused by the quantum hardware not being good enough in terms of limited quantum volume and circuit depth to compute the given problem.       Immediate and the optimal solution as the QIBD - VQE on different sizes and architectures and with the benchmark solution." (p. 2)         Image: Primal solution as the optimal results were mainly cancel quantum computers of different sizes and architectures and with the benchmark solution." (p. 2)       Immediate and method jid find the sume optimal solutions. The QIBD - VQE on different sizes and architectures and with the benchmark solution." (p. 2)       As for simulated quantum hardware, and on circle rol (Soby 10 to 120 asset or portfolios - Coby 10 to 20 asset or portfolios. The periment sue dis the QASM quantum simulator from IBM on circle rol (Soby 10 to Coby 10 to                                                                                                                                                                                                                                                                                                              | by using simulated and     | expected return):                                |                        | handle quantum     |
| "This work presents<br>solutions to the problem<br>obtained on different<br>quantum computers and<br>with different<br>quantum computers and<br>with different<br>quantum computers and<br>practices to perform PO<br>by VQE on real<br>quantum devices." (p.<br>2)       IBM Geneva, IBMQ Guadalupe, IBM<br>Hanoi, IBM Cairo, IBMQ Montreal,<br>IBMQ Mumbai: did not find the optimal<br>solution on efficient frombie<br>- Less than optimal results were mainly<br>caused by the quantum hardware not<br>being good enough in terms of<br>limited quantum volume and circuit<br>of different sizes and<br>architectures and with<br>the beachmark<br>solution."(p. 2)       - I the classical solution (Branch-And-<br>Bound method) diff find the same<br>optimal solutions are compared<br>among those obtained<br>on simulators and on<br>architectures and with<br>the beachmark<br>solution."(p. 2)       - A for simulated quantum hardware,<br>the experiments using three possible<br>optimal solution on sitels       - A for simulated quantum<br>computer) and noiseless<br>environments using three possible<br>optimary solution, SPSA , showed that Cobyla<br>persistently provided value and mpid<br>convergence to finding optimal<br>solutions, NT e chibited unstable and<br>ooscillatory behavior, particularly i<br>noisy settings, and SPSA<br>demonstrated slower convergence<br>with increased variability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | real quantum computers     | IBM Toronto: found the optimal solution,         |                        | computations.      |
| "This work presents       IBM Aukkland: found the optimal       Convergence =         solution       solution.       BBM Genera, IBMQ Ginadalupe, IBM         quantum computers and       With different       IBM Genera, IBMQ Ginadalupe, IBM       consistency of the         hyperparameters       solution on efficient frontier       IBM Genera, IBMQ Ginadalupe, IBM       consistency of the         iterative process       terative process       IBM Genera, IBMQ Ginadalupe, IBM       consistency of the         iterative process       terative process       IBM Genera, IBMQ Ginadalupe, IBM       consistency of the         iterative process       terative process       IBM Genera, IBMQ Ginadalupe, IBM       consistency of the         iterative process       terative process       IBM Genera, IBMQ Ginadalupe, IBM       consistency of the         iterative process       terative process       terative process       iterative process         iterative process       terative process       terative process       iterative process         iterative process       terative dynamic disting terms of       iterative process       iterative process         on simulators and on       real quantum computers       of different isso obtained       optimal solution as the QUBO -VQE         on simulators and on       real quantum simulated quantum hardware,       the experiments us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | IBM Kolkata: found the optimal solution,         |                        |                    |
| solutions to the problem<br>obtained on different<br>quantum computers and<br>with different<br>hyperparameters<br>settings, to find the best<br>practices to perform PO<br>by VQE or real<br>quantum devices." (p.<br>2)<br>"Finally, the optimal<br>solutions are compared<br>among those obtained<br>on simulators and on<br>real quantum dives and on<br>real quantum settings<br>of different sizes and<br>architectures and with<br>the benchmark<br>solution."(p. 2)<br>"Interferent sizes and<br>architectures and with<br>the benchmark solution spece<br>are architectures and<br>arge solution spece<br>. The thatset used to henchmark, the<br>the tranch-and-bound method is used<br>with increased variability."<br>"Interferent and<br>arge solution spaces<br>. The dataset used to benchmark VQE<br>and other methods is an follows: the<br>dataset is collected from 'Nhool<br>Finance, using Yfrance (which is an "Enterferent size and<br>arge solution spaces                                                                                                           | "This work presents        | IBM Auckland: found the optimal                  |                        | Convergence =      |
| obtained on different       IBM Geneva, IBMQ Guadalupe, IBM       consistency of the iterative process         quantum computers and with different       IBM Geneva, IBMQ (Mantcal, iterative process)       iterative process         hyperparameters       solution on efficient frontier       -       iterative process         yearset       -       Less than optimal results were mainly caused by the quantum hardware not being good enough in terms of quantum devices." (p. 1       -       Iterative process         "Finally, the optimal solution as recompared anong those obtained on simulators and on real quantum computers of different sizes and anot architectures and with the benchmark solution."(p. 2)       -       A So for simulated quantum hardware, and the periments used in the QASM etc. VQE asset of different sizes and architectures and with the benchmark solution."(p. 2)       -       A So for simulated quantum hardware, and the periments used in the QASM etc. VQE asset or protion assolution."(p. 2)       -       A So for simulated quantum hardware, and the periments used in the QASM etc. VQE asset or protion assolution."(p. 2)       -       A So for simulated quantum hardware, and the periments used in the QASM etc. VQE asset or with increased variability.       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>solutions to the problem</td> <td>solution,</td> <td></td> <td>stability and</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | solutions to the problem   | solution,                                        |                        | stability and      |
| Image: Instruction computers and with differentHanoi, IBM Cairo, IBMQ Montreal,<br>IBMQ Mombai: did not find the optimal<br>solution on efficient frontieriterative processsettings, to find the bet-Less than optimal results were mainly<br>encased by the quantum hardware not<br>being good enough in terms of<br>depth to compute the given problem.<br>-<br>-<br>The classical solution R are UDBO - VQE<br>among these obtained<br>on simulators and on<br>real quantum computers<br>of different sizes and with<br>the benchmark<br>solution."(p. 2)-Less than optimal results were mainly<br>encased by the quantum hardware,<br>and method) did find the same<br>optimal solutions are compared<br>a solution are compared<br>a solution are compared<br>a solution are compared<br>a solution."(p. 2)-New Solution<br>the experiments used in the QASM<br>quantum simulator from IBM on<br>solution."(p. 2)Important notes:<br>Computers<br>optimizers from Qiskit (Cobyla, NPT,<br>SPSA) showed that Cobyla<br>persistently provided stable and rapid<br>convergence to finding optimal<br>solutions. NPT exhibited unstable and<br>oscillatory behavior, particularly given in a also SPSA<br>demonstrated slower onovergence<br>with increased variability.Important notes:<br>Description and solution as the follows:<br>the case of the cobring optimal<br>solution."(P. 2)Important notes:<br>Description and solutions. NPT exhibited unstable and<br>oscillatory behavior, particularly given in all SPSA<br>demonstrated slower enovergence<br>with increased variability.Important notes:<br>Description divide in discrete and<br>large solution spaces<br>and other methods is as follows: the<br>dataset is collected from Yuhoot<br>Finance, using Vifnance (which is an<br>distribution spaces)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | obtained on different      | IBM Geneva, IBMQ Guadalupe, IBM                  |                        | consistency of the |
| with different       IBMQ Mumbai: did not find the optimal         hyperparameters       solution on efficient frontier         settings, to find the best       -         practices to perform PO       by QC on real         quantum devices." (p.       Imited quantum volume and circuit         2)       -         "Finally, the optimal       Bound method) did find the same         solutions are compared       on fifteent quantum hardware, and         on simulators and on       real quantum computers         of different sizes and       -         architectures and with       the experiments used in the QASM         solution, "(p. 2)       ator simulators in the QASM         with increased variability.       -         Solution, "(p. 2)       importing noise from a real quantum         "Important notes:       -         Presting solution, "(p. 2)       importing noise from a real quantum         "Important notes:       -         Presting solution, "(p. 2)       importing noise from a real quantum         "Important notes:       -         Presting solution, "(p. 2)       importing noise from a real quantum         "Important notes:       -         Presting solution, "(p. 2)       importing noise from a real quantum         "Important                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | quantum computers and      | Hanoi, IBM Cairo, IBMQ Montreal,                 |                        | iterative process  |
| hyperparameterssolution on efficient fontiersettings, to find the best- Less than optimal results were mainly<br>caused by the quantum hardware not<br>being good enough in terms of<br>quantum devices." (p.quantum devices." (p Iimited quantum volume and circuit<br>depth to compute the given problem.<br>- The classical solution (Branch-and-<br>going these obtained) did find the same<br>optimal solution as the QUBO -VQE<br>among these obtained<br>on simulators and on<br>real quantum computers<br>of different sizes and<br>solution."(p. 2)of different sizes and<br>solution."(p. 2)- As for simulated quantum hardware,<br>architectures and with<br>the benchmark<br>solution."(p. 2)solution."(p. 2)- As for simulated quantum shardware,<br>erther noisy (which is done by<br>importing noise from a real quantum<br>computer) and noiseless<br>environments using three possible<br>convergence to finding optimal<br>solutions, NFT exhibited unstable and<br>oscillatory behavior, particularly in<br>noisy settings, and SPSA<br>demonstrated slower onvergence<br>with increased variability.Important notes:- For the classical benchmark, the<br>branch-and-bound method is as follows; the<br>dataset is collected from Yahool<br>Finance, using Yfinance (which is an<br>and other methods is as follows; the<br>dataset is collected from Yahool<br>Finance, using Yfinance (which is an<br>and other methods is as follows; the<br>dataset is collected from Yahool<br>Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | with different             | IBMQ Mumbai: did not find the optimal            |                        |                    |
| settings, to find the best<br>practices to perform PO<br>by VQE on real<br>quantum devices." (p.<br>2)       - Less than optimal results were mainly<br>caused by the quantum hardware not<br>being good enough in terms of<br>limited quantum volume and circuit         2)       - The classical solution (Branch-and-<br>Bound method) did find the same<br>optimal solutions are compared<br>among those obtained<br>on simulators and on<br>real quantum computers<br>of different sizes and<br>architectures and with<br>the benchmark<br>solution."(p. 2)       - The classical solution (Branch-and-<br>Bound method) did find the same<br>optimal solution as the QUBO -VQE<br>among those obtained<br>on simulators and on<br>was able to solve up to 120 asset<br>portfolios         of different sizes and<br>architectures and with<br>the benchmark<br>solution."(p. 2)       - As for simulated quantum hardware,<br>optimizers from a real quantum<br>computer) and noiseless<br>environments using three possible<br>optimizers from Qiskit (Cobyla, NFT,<br>SPSA) showed that Cobyla<br>persistently provided stable and rapid<br>convergence to finding optimal<br>solutions, NFT exhibited unstable and<br>oscillatory behavior, particularly in<br>noisy settings, and SPSA<br>demonstrated slower convergence<br>with increased variability.         Important notes:       - For the classical benchmark, the<br>branch-and-bound method is used<br>which is an algorithmic technique<br>particularly useful in discrete and<br>large solution spaces         - The dataset used to benchmark XQE<br>and other methods is as follows: the<br>dataset is collected from Yahoo!<br>Finance, using Yfinance ((which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hyperparameters            | solution on efficient frontier                   |                        |                    |
| practices to perform PO<br>by VQE on real<br>quantum devices." (p.<br>2)caused by the quantum hardware not<br>being good enough in terms of<br>quantum devices." (p.<br>2)"Finally, the optimal<br>solutions are compared<br>among those obtained<br>on simulators and on<br>real quantum computers<br>of different sizes and<br>architeentures and with<br>the benchmark- The classical solution (Branch-and-<br>DOI of the same<br>optimal solution as the QUBO -VQE<br>and the experiments used in the QASM<br>the same dynamic solution ("for 12) asset<br>previsently provide stable of the same<br>optimal solution, "for 2.1)Important notes:<br>- For the classical benchmark, the<br>branch-and-bound method is used<br>which is and gorithmic technique<br>particularly useful in discrete and<br>large solution spaces<br>- The dataset used to benchmark AQE<br>and other methods is as follows: the<br>dataset is collected from Yahoo!<br>Hinance, which is an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | settings, to find the best | - Less than optimal results were mainly          |                        |                    |
| by VQE on real<br>quantum devices." (p.<br>2)     being good enough in terms of<br>limited quantum volume and circuit<br>depth to compute the given problem.       "Finally, the optimal<br>solutions are compared<br>among those obtained<br>on simulators and on<br>was able to solve up to 120 asset     - The classical solution (Branch-and-<br>Bound method) did find the same<br>optimal solution as the QUBO -VQE<br>among those obtained<br>of different sizes and<br>architectures and with<br>the benchmark     - As for simulated quantum hardware,<br>the experiments used in the QASM<br>quantum simulator from IBM on<br>environments using three possible<br>optimizers from Qiskit (Cobyla, NFT,<br>SPSA) showed that Cobyla<br>persistently provided stabile and<br>oscillatory provided stabile and<br>oscillatory provided stabile and<br>oscillatory behavior, particularly in<br>noisy settings, and SPSA<br>demonstrated slower convergence<br>with increased variability.       Important notes:     - For the classical benchmark, the<br>branch-and-bound method is used<br>which is an algorithmic technique<br>particularly useful in discrete and<br>large solution spaces       - For the classical benchmark VQE<br>and other methods is as follows: the<br>dataset is collected from Yahoo!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | practices to perform PO    | caused by the quantum hardware not               |                        |                    |
| quantum devices." (p.       Imited quantum volume and circuit         2)       - The classical solution (Brunch-and-<br>Brund method) did find the same         wFinally, the optimal<br>solutions are compared<br>among those obtained<br>on simulators and on<br>real quantum computers<br>of different sizes and<br>architectures and with<br>the benchmark       - As for simulated quantum hardware,<br>at here experiments used in the QASM<br>the experiments used in the QASM<br>the experiments used in the QASM<br>the benchmark         solution."(p. 2)       - As for simulated quantum simulator from IBM on<br>either noisy (which is done by<br>importing noise from a real quantum<br>computer) and noiseless<br>environments using three possible<br>optimizers from Qiskit (Cobyla, NFT,<br>SPSA) showed that Cobyla         System       - For the classical benchmark, the<br>branch-and-bound method is used<br>with increased source convergence<br>with increased source convergence<br>with increased source and<br>large solution spaces         - For the classical benchmark, the<br>branch-and-bound method is used<br>which is an algorithmic technique<br>particularly useful in discrete and<br>large solution spaces         - The dataset is collected from Yahoo:<br>Finance, using Yfmance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | by VQE on real             | being good enough in terms of                    |                        |                    |
| 2)       depth to compute the given problem.         "Finally, the optimal<br>solutions are compared<br>among those obtained<br>on simulators and on<br>real quantum computers<br>of different sizes and<br>architectures and with<br>the benchmark<br>solution."(p. 2)       - The classical solution (Branch-and-<br>ord Solve up to 120 asset         -       As for simulated quantum hardware, and<br>quantum computers<br>of different sizes and<br>architectures and with<br>the benchmark<br>solution."(p. 2)       - As for simulated quantum hardware,<br>the experiments used in the OASM<br>quantum simulator from IBM on<br>solution."(p. 2)         -       Stor simulate quantum computers<br>optimizers from Qiskit (Cobyla, NFT,<br>SPSA) showed that Cobyla<br>persistently provided stable and rapid<br>convergence to finding optimal<br>solutions, NFT exhibited unstable and<br>oscillatory behavior, particularly in<br>noisy settings, and SPSA<br>demonstrated slower convergence<br>with increased variability.         Important notes:       -       For the classical benchmark, the<br>branch-and-bound method is used<br>which is an algorithmic technique<br>particularly useful in discrete and<br>large solution spaces         -       The dataset used to benchmark VQE<br>and other methods is as follows: the<br>dataset is collected from Yahoo!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | quantum devices." (p.      | limited quantum volume and circuit               |                        |                    |
| -       The classical solution (Branch-and-<br>Winnelly, the optimal<br>solutions are compared<br>anong those obtained<br>on simulators and on<br>real quantum computers<br>of different sizes and<br>architectures and with<br>the benchmark<br>solution."(p. 2)       -       As for simulated quantum hardware,<br>at so for simulator from IBM on<br>either noisy (which is done by<br>importing noise from a real quantum<br>computer) and noiseless<br>environments using three possible<br>optimizers from Qiskit (Cobyla, NFT,<br>SPSA) showed that Cobyla<br>persistently provided stable and rapid<br>convergence to finding optimal<br>solutions. NFT exhibited unstable and<br>oscillatory behavior, particularly in<br>noisy settings, and SPSA<br>demonstrated slower convergence<br>with increased variability.         Important notes:       -       For the classical benchmark, the<br>branch-and-bound method is used<br>which is an algorithmic technique<br>particularly used in discrete and<br>large solution spaces         -       The dataset used to benchmark VQE<br>and other methods is as follows: the<br>dataset is collected from Yahoo!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2)                         | depth to compute the given problem.              |                        |                    |
| "Finally, the optimal<br>solutions are compared<br>among those obtained<br>on simulators and on<br>simulators and on<br>mainulators and on<br>mainulators and on<br>mainulators and on<br>mainulators and on<br>mainulators and on<br>architectures and with<br>the benchmark<br>solution."(p. 2)       - A s for simulated quantum hardware,<br>architectures and with<br>the experiments used in the QASM<br>quantum simulator from IBM on<br>either noisy (which is done by<br>importing noise from a real quantum<br>computer) and noiseless<br>environments using three possible<br>optimizers from Qiskit (Cobyla, NFT,<br>SPSA) showed that Cobyla<br>persistently provided stable and rapid<br>convergence to finding optimal<br>solutions, NFT exhibited unstable and<br>oscillatory behavior, particularly in<br>noisy settings, and SPSA<br>demonstrated slower convergence<br>with increased variability.         Important notes:       - For the classical benchmark, the<br>branch-and-bound method is used<br>which is an algorithmic technique<br>particularly users (in gli in and<br>arge solution spaces         - The dataset used to benchmark VQE<br>and other methods is as follows: the<br>dataset is collected from Yahoo!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | - The classical solution (Branch-and-            |                        |                    |
| solutions are compared       optimal solution as the QUBO -VQE         among those obtained       on different quantum hardware, ad         on simulators and on       was able to solve up to 120 asset         real quantum computers       portfolios         of different sizes and       -         architectures and with       the experiments used in the QASM         the benchmark       quantum simulator from IBM on         solution."(p. 2)       either noisy (which is done by         importing noise from a real quantum       compartments         optimizers from Qiskit (Cobyla, NFT,       SPSA) showed that Cobyla         persistently provided stable and rapid       convergence to finding optimal         solutions, View Debavior, particularly in       noisy settings, and SPSA         demonstrated slower convergence       with increased variability.         Important notes:       -         -       For the classical benchmark, the         branch-and-bound method is used       which is an algorithmic technique         particularly useful in discrete and       large solutions paces         -       The dataset used to benchmark VQE         and other methods is as follows: the       dataset is collected from Yahoo!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | "Finally, the optimal      | Bound method) did find the same                  |                        |                    |
| among those obtained       on different quantum hardware, and         on simulators and on       was able to solve up to 120 asset         real quantum computers       portfolios         of different sizes and       -         architectures and with       the experiments used in the QASM         updation."(p. 2)       either noisy (which is done by         importing noise from a real quantum       computers         optimizers from Qiskit (Cobyla, NFT,         SPSA) showed that Cobyla         persistently provided stable and rapid         convergence to finding optimal         solution, with increased variability.         Important notes:         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | solutions are compared     | optimal solution as the QUBO -VQE                |                        |                    |
| on simulators and on       was able to solve up to 120 asset         of different sizes and       - As for simulated quantum hardware,         architectures and with       the experiments used in the QASM         the benchmark       quantum simulator from IBM on         solution."(p. 2)       either noisy (which is done by         importing noise from a real quantum       computer) and noiseless         environments using three possible       optimizers from Qiskit (Cobyla, NFT,         optimizers from Qiskit (Cobyla, NFT,       SPSA) showed that Cobyla         persistently provided stable and rapid       convergence to finding optimal         solution, NFT exhibited unstable and       oscillatory behavior, particularly in         noisy settings, and SPSA       demonstrated slower convergence         with increased variability.       Important notes:         -       For the classical benchmark, the         branch-and-bound method is used       which is an algorithmic technique         particularly useful in discrete and       large solution spaces         -       The dataset used to benchmark VQE         and other methods is as follows: the       dataset is collected from Yahoo!         Finance, using Y finance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | among those obtained       | on different quantum hardware, and               |                        |                    |
| real quantum computers       portfolios         of different sizes and       -       As for simulated quantum hardware,         architectures and with       the experiments used in the QASM         the benchmark       quantum simulator from IBM on         solution."(p. 2)       either noisy (which is done by         importing noise from a real quantum       computer) and noiseless         environments using three possible       optimizers from Qiskit (Cobyla, NFT,         SPSA) showed that Cobyla       persistently provided stable and rapid         convergence to finding optimal       solutions, NFT exhibited unstable and         oscillatory behavior, particularly in       noisy settings, and SPSA         demonstrated slower convergence       with increased variability.         Important notes:       -         -       For the classical benchmark, the         branch-and-bound method is used       which is an algorithmic technique         and other methods is used       which is an algorithmic technique         -       The dataset used to benchmark with         and other methods is and follows: the       dataset is collected from Yahoo!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on simulators and on       | was able to solve up to 120 asset                |                        |                    |
| <ul> <li>of different sizes and architectures and with the experiments used in the QASM quantum simulator from IBM on solution."(p. 2)</li> <li>either noisy (which is done by importing noise from a real quantum computer) and noiseless environments using three possible optimizers from Qiskit (Cobyla, NFT, SPSA) showed that Cobyla persistently provided stable and rapid convergence to finding optimal solutions, NFT exhibited unstable and oscillatory behavior, particularly in noisy settings, and SPSA demonstrated Slower convergence with increased variability.</li> <li>Important notes:         <ul> <li>For the classical benchmark, the branch-and-bound method is used which is an algorithmic technique particularly useful in discrete and large solution spaces</li> <li>The dataset used to benchmark VQE and other methods is an follows: the dataset is collected from Yahoo!</li> <li>Finance, using Yinance (which is an</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | real quantum computers     | portfolios                                       |                        |                    |
| architectures and with       the experiments used in the QASM         the benchmark       quantum simulator from IBM on         solution."(p. 2)       either noisy (which is done by         importing noise from a real quantum       computer) and noiseless         environments using three possible       optimizers from Qiskit (Cobyla, NFT, SPSA) showed that Cobyla         persistently provided stable and rapid       convergence to finding optimal         solutions, NFT exhibited unstable and       oscillatory behavior, particularly in         noisy settings, and SPSA       demonstrated slower convergence         with increased variability.       Important notes:         -       For the classical benchmark, the         branch-and-bound method is used       which is an algorithmic technique         particularly useful in discrete and       large solution spaces         -       The dataset used to benchmark VQE         and other methods is used       which is an algorithmic technique         particularly useful in discrete and       large solution spaces         -       The dataset used to benchmark VQE         and other methods is used       which is an algorithmic technique         particularly useful in discrete and       large solution spaces         -       The dataset used to benchmark VQE         and other methods is usel <td>of different sizes and</td> <td>- As for simulated quantum hardware,</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of different sizes and     | - As for simulated quantum hardware,             |                        |                    |
| the benchmark       quantum simulator from IBM on         solution."(p. 2)       either noisy (which is done by         importing noise from a real quantum       computer) and noiseless         environments using three possible       optimizers from Qiskit (Cobyla, NFT,         SPSA) showed that Cobyla       persistently provided stable and rapid         convergence to finding optimal       solutions, NFT exhibited unstable and         oscillatory behavior, particularly in       noisy settings, and SPSA         demonstrated slower convergence       with increased variability.         Important notes:       -         -       For the classical benchmark, the         branch-and-bound method is used       which is an algorithmic technique         particularly useful in discrete and       large solution spaces         -       The dataset used to benchmark VQE         and other methods is as follows: the       dataset is collected from Yahoo!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | architectures and with     | the experiments used in the QASM                 |                        |                    |
| solution."(p. 2)       either noisy (which is done by<br>importing noise form a real quantum<br>computer) and noiseless<br>environments using three possible<br>optimizers from Qiskit (Cobyla, NFT,<br>SPSA) showed that Cobyla<br>persistently provided stable and rapid<br>convergence to finding optimal<br>solutions, NFT exhibited unstable and<br>oscillatory behavior, particularly in<br>noisy settings, and SPSA<br>demonstrated slower convergence<br>with increased variability.         Important notes:       -         -       For the classical benchmark, the<br>branch-and-bound method is used<br>which is an algorithmic technique<br>particularly useful in discrete and<br>large solution spaces         -       The dataset used to benchmark VQE<br>and other methods is as follows: the<br>dataset is collected from Yahoo!<br>Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the benchmark              | quantum simulator from IBM on                    |                        |                    |
| importing noise from a real quantum         computer) and noiseless         environments using three possible         optimizers from Qiskit (Cobyla, NFT,         SPSA) showed that Cobyla         persistently provided stable and rapid         convergence to finding optimal         solutions, NFT exhibited unstable and         oscillatory behavior, particularly in         noisy settings, and SPSA         demonstrated slower convergence         with increased variability.         Important notes:         -         For the classical benchmark, the         branch-and-bound method is used         which is an algorithmic technique         particularly useful in discrete and         large solution spaces         -       The dataset used to benchmark VQE         and other methods is as follows: the         dataset is collected from Yahoo!         Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | solution."(p. 2)           | either noisy (which is done by                   |                        |                    |
| computer) and noiseless         environments using three possible         optimizers from Qiskit (Cobyla, NFT,         SPSA) showed that Cobyla         persistently provided stable and rapid         convergence to finding optimal         solutions, NFT exhibited unstable and         oscillatory behavior, particularly in         noisy settings, and SPSA         demonstrated slower convergence         with increased variability.         Important notes:         -       For the classical benchmark, the         branch-and-bound method is used         which is an algorithmic technique         particularly useful in discrete and         large solution spaces         -       The dataset used to benchmark VQE         and other methods is as follows: the         dataset is collected from Yahoo!         Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | importing noise from a real quantum              |                        |                    |
| environments using three possible         optimizers from Qiskit (Cobyla, NFT,         SPSA) showed that Cobyla         persistently provided stable and rapid         convergence to finding optimal         solutions, NFT exhibited unstable and         oscillatory behavior, particularly in         noisy settings, and SPSA         demonstrated slower convergence         with increased variability.         Important notes:         -         For the classical benchmark, the         branch-and-bound method is used         which is an algorithmic technique         particularly useful in discrete and         large solution spaces         -       The dataset used to benchmark VQE         and other methods is as follows: the         dataset is collected from Yahoo!         Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | computer) and noiseless                          |                        |                    |
| optimizers from Qiskit (Cobyla, NFT,         SPSA) showed that Cobyla         persistently provided stable and rapid         convergence to finding optimal         solutions, NFT exhibited unstable and         oscillatory behavior, particularly in         noisy settings, and SPSA         demonstrated slower convergence         with increased variability.         Important notes:         -       For the classical benchmark, the         branch-and-bound method is used         which is an algorithmic technique         particularly useful in discrete and         large solution spaces         -         -         The dataset used to benchmark VQE         and other methods is as follows: the         dataset is collected from Yahoo!         Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | environments using three possible                |                        |                    |
| SPSA) showed that Cobyla         persistently provided stable and rapid         convergence to finding optimal         solutions, NFT exhibited unstable and         oscillatory behavior, particularly in         noisy settings, and SPSA         demonstrated slower convergence         with increased variability.         Important notes:         -       For the classical benchmark, the         branch-and-bound method is used         which is an algorithmic technique         particularly useful in discrete and         large solution spaces         -       The dataset used to benchmark VQE         and other methods is as follows: the         dataset is collected from Yahoo!         Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | optimizers from Qiskit (Cobyla, NFT,             |                        |                    |
| persistently provided stable and rapid         convergence to finding optimal         solutions, NFT exhibited unstable and         oscillatory behavior, particularly in         noisy settings, and SPSA         demonstrated slower convergence         with increased variability.         Important notes:         -       For the classical benchmark, the         branch-and-bound method is used         which is an algorithmic technique         particularly useful in discrete and         large solution spaces         -       The dataset used to benchmark VQE         and other methods is as follows: the         dataset is collected from Yahoo!         Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | SPSA) showed that Cobyla                         |                        |                    |
| convergence to finding optimal         solutions, NFT exhibited unstable and         oscillatory behavior, particularly in         noisy settings, and SPSA         demonstrated slower convergence         with increased variability.         Important notes:         -       For the classical benchmark, the         branch-and-bound method is used         which is an algorithmic technique         particularly useful in discrete and         large solution spaces         -       The dataset used to benchmark VQE         and other methods is as follows: the         dataset is collected from Yahoo!         Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | persistently provided stable and rapid           |                        |                    |
| solutions, NFT exhibited unstable and<br>oscillatory behavior, particularly in<br>noisy settings, and SPSA<br>demonstrated slower convergence<br>with increased variability.<br>Important notes:<br>- For the classical benchmark, the<br>branch-and-bound method is used<br>which is an algorithmic technique<br>particularly useful in discrete and<br>large solution spaces<br>- The dataset used to benchmark VQE<br>and other methods is as follows: the<br>dataset is collected from Yahoo!<br>Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | convergence to finding optimal                   |                        |                    |
| oscillatory behavior, particularly in         noisy settings, and SPSA         demonstrated slower convergence         with increased variability.         Important notes:         -         For the classical benchmark, the         branch-and-bound method is used         which is an algorithmic technique         particularly useful in discrete and         large solution spaces         -         The dataset used to benchmark VQE         and other methods is as follows: the         dataset is collected from Yahoo!         Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | solutions, NFT exhibited unstable and            |                        |                    |
| noisy settings, and SPSA         demonstrated slower convergence         with increased variability.         Important notes:         -       For the classical benchmark, the         branch-and-bound method is used         which is an algorithmic technique         particularly useful in discrete and         large solution spaces         -       The dataset used to benchmark VQE         and other methods is as follows: the         dataset is collected from Yahoo!         Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | oscillatory behavior, particularly in            |                        |                    |
| demonstrated slower convergence         with increased variability.         Important notes:         -       For the classical benchmark, the         branch-and-bound method is used         which is an algorithmic technique         particularly useful in discrete and         large solution spaces         -       The dataset used to benchmark VQE         and other methods is as follows: the         dataset is collected from Yahoo!         Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | noisy settings, and SPSA                         |                        |                    |
| with increased variability.         Important notes:         -       For the classical benchmark, the<br>branch-and-bound method is used<br>which is an algorithmic technique<br>particularly useful in discrete and<br>large solution spaces         -       The dataset used to benchmark VQE<br>and other methods is as follows: the<br>dataset is collected from Yahoo!<br>Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | demonstrated slower convergence                  |                        |                    |
| Important notes:         -       For the classical benchmark, the         branch-and-bound method is used         which is an algorithmic technique         particularly useful in discrete and         large solution spaces         -       The dataset used to benchmark VQE         and other methods is as follows: the         dataset is collected from Yahoo!         Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | with increased variability.                      |                        |                    |
| Important notes:         -       For the classical benchmark, the         branch-and-bound method is used         which is an algorithmic technique         particularly useful in discrete and         large solution spaces         -       The dataset used to benchmark VQE         and other methods is as follows: the         dataset is collected from Yahoo!         Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                  |                        |                    |
| <ul> <li>For the classical benchmark, the<br/>branch-and-bound method is used<br/>which is an algorithmic technique<br/>particularly useful in discrete and<br/>large solution spaces</li> <li>The dataset used to benchmark VQE<br/>and other methods is as follows: the<br/>dataset is collected from Yahoo!<br/>Finance, using Yfinance (which is an</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Important notes:                                 |                        |                    |
| branch-and-bound method is used<br>which is an algorithmic technique<br>particularly useful in discrete and<br>large solution spaces<br>- The dataset used to benchmark VQE<br>and other methods is as follows: the<br>dataset is collected from Yahoo!<br>Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | - For the classical benchmark, the               |                        |                    |
| <ul> <li>which is an algorithmic technique<br/>particularly useful in discrete and<br/>large solution spaces</li> <li>The dataset used to benchmark VQE<br/>and other methods is as follows: the<br/>dataset is collected from Yahoo!<br/>Finance, using Yfinance (which is an</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | branch-and-bound method is used                  |                        |                    |
| <ul> <li>particularly useful in discrete and<br/>large solution spaces</li> <li>The dataset used to benchmark VQE<br/>and other methods is as follows: the<br/>dataset is collected from Yahoo!<br/>Finance, using Yfinance (which is an</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | which is an algorithmic technique                |                        |                    |
| Iarge solution spaces         -       The dataset used to benchmark VQE         and other methods is as follows: the         dataset is collected from Yahoo!         Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | particularly useful in discrete and              |                        |                    |
| - The dataset used to benchmark VQE<br>and other methods is as follows: the<br>dataset is collected from Yahoo!<br>Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | large solution spaces                            |                        |                    |
| and other methods is as follows: the<br>dataset is collected from Yahoo!<br>Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | - The dataset used to benchmark VQE              |                        |                    |
| dataset is collected from Yahoo!<br>Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | and other methods is as follows: the             |                        |                    |
| Finance, using Yfinance (which is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | dataset is collected from Yahoo!                 |                        |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | Finance, using Yfinance (which is an             |                        |                    |

|   | open-source tool) where a small         |  |
|---|-----------------------------------------|--|
|   | selection of representative global      |  |
|   | assets are used (e.g. Apple, Netflix,   |  |
|   | Tesla)                                  |  |
|   | - "Results show that both the mapping   |  |
|   | of the ansatz structure on the          |  |
|   | hardware topology and the quantum       |  |
|   | volume is of pivotal importance for     |  |
|   | reaching the desired convergence.       |  |
|   | The topology of a quantum computer      |  |
|   | refers to the physical arrangement of   |  |
|   | qubits: while ansatzes connecting       |  |
|   | only the nearest qubits can be          |  |
|   | mapped efficiently, those entailing     |  |
|   | long-range connections require an       |  |
|   | overhead of gates that ultimately       |  |
|   | increases the depth of the circuit and  |  |
|   | hence foster an increase of the overall |  |
|   | error rate during computation" (p. 11)  |  |
|   | - The VQE is a hybrid quantum-          |  |
|   | classical algorithm, whereby the        |  |
|   | quantum component is the hardware       |  |
|   | it operates on, the circuits and the    |  |
|   | ansatz it employs, and the classical    |  |
|   | component is the optimization of        |  |
|   | parameters in the quantum circuit to    |  |
|   | find more optimal solutions             |  |
| · | ·                                       |  |

| [24]               | "By backtesting          | Objective:                                | Quantum hardware:        | Back testing = a  |
|--------------------|--------------------------|-------------------------------------------|--------------------------|-------------------|
| Backtesting        | classical and quantum    | - Formulate a reliable and reusable       | Real quantum hardware    | method to         |
| Quantum            | computing algorithms,    | method of back testing classical and      | (IBM Athens), and        | evaluate          |
| Computing          | we can get a sense of    | quantum algorithms for portfolio          | some simulated results   | performance of a  |
| Algorithms for     | how these algorithms     | optimization                              | via IBM simulators       | financial model   |
| Portfolio          | might perform in the     | - Cite the drawbacks of > 100 qubits in   |                          | by applying it to |
| Optimization       | real world. This work    | a quantum system                          | Quantum algorithm:       | historical data   |
| (Carrascal et al., | establishes a            | - Compare different quantum and           | Specifically VQE, but    |                   |
| 2024)              | methodology for          | classical optimizer against each other,   | also: VQE_CvaR, GAS,     |                   |
|                    | backtesting classical    | whilst specifically taking a look at      | QAOA. Which are          |                   |
|                    | and quantum algorithms   | VQE, this is executed on 27 and 127-      | benchmarked against      |                   |
|                    | in equivalent            | qubit machines                            | each other and classical |                   |
|                    | conditions, and uses it  |                                           | algorithms: Moving       |                   |
|                    | to explore four quantum  | Results:                                  | Average Strategy         |                   |
|                    | and three classical      | - "Results show quantum algorithms        | (SMA), Sharpe Ratio      |                   |
|                    | computing algorithms     | can be competitive with classical         | Optimization (SRO),      |                   |
|                    | for portfolio            | ones, with the advantage of being         | Risk-Rentability         |                   |
|                    | optimization and         | able to handle a large number of          | Optimization (MVO)       |                   |
|                    | compares the results"    | assets in a reasonable time on a future   |                          |                   |
|                    | (p. 1)                   | larger quantum computer." (p. 1)          | Methodology:             |                   |
|                    |                          | - First a test of VQE on IBM Athens (5    | Optimization             |                   |
|                    | Furthermore, 10.000      | qubits) real hardware is performed on     |                          |                   |
|                    | experiments are          | 3 assets. Herein the VQE did not find     | Use case:                |                   |
|                    | performed under          | the optimal result, mainly due to it      | Portfolio optimization   |                   |
|                    | conditions that were     | being restricted in the number of         | and back testing         |                   |
|                    | found where quantum      | iterations it can perform, more           | methodologies            |                   |
|                    | methods outperform       | iteration would probably mean an          |                          |                   |
|                    | classical methods.       | optimal result                            |                          |                   |
|                    |                          | - Next the execution time on a real       |                          |                   |
|                    | Furthermore, the         | quantum computer (IBM Brisbane,           |                          |                   |
|                    | Variational Quantum      | IBM Cusco, and IBM Nazca which            |                          |                   |
|                    | Eigensolver (VQE)        | are all 127 qubit) vs classical           |                          |                   |
|                    | algorithm is analyzed in | computer was tested using VQE and,        |                          |                   |
|                    | detail. It is mainly     | this showed that:                         |                          |                   |
|                    | tested on simulators and | each iteration of VQE took approximately  |                          |                   |
|                    | real quantum hardware    | 2 hours, newer quantum computers          |                          |                   |
|                    | from IBM                 | showed better times, classical computing  |                          |                   |
|                    |                          | time grew exponentially with increasing   |                          |                   |
|                    | "The main contribution   | number of assets whilst quantum methods   |                          |                   |
|                    | of this work is to       | computing times increased on a linear     |                          |                   |
|                    | establish a reusable     | scale, also the IBM QASM simulator was    |                          |                   |
|                    | methodology for          | used and showed optimal results after 100 |                          |                   |
|                    | backtesting of quantum   | qubits                                    |                          |                   |
|                    | and classical computing  | - Furthermore, VQE was used to colve      |                          |                   |
|                    | algorithms for portfolio | a Cvar PO problem on a 27 qubit           |                          |                   |
|                    | optimization" (p. 2)     | IBM Cairo machine, this showed            |                          |                   |
|                    | Leather the challenge    | similar results to classical methods of   |                          |                   |
|                    | Lastry, the challenges   | solving, nowever the quantum              |                          |                   |
|                    | auontum computers for    | I astly hook tosting was not formed       |                          |                   |
|                    | more than 100 cubits     | - Lasuy, back testing was performed       |                          |                   |
|                    | are discussed            | 2016-2020 where 2016 is used for          |                          |                   |
|                    | are unscussed            | calculations going forward in year        |                          |                   |
|                    |                          | calculations going forward in year        |                          |                   |

| 1                                                                                                                 | I                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                   |                                                                                                                                                | <ul> <li>2017 (results were plotted monthly<br/>and strategies were allowed to change<br/>monthly), classical algorithms used:<br/>(SMA, SRO, MVO), quantum (VQE,<br/>QAOA, VQE_CVaR, and GAS)<br/>results showed: SMA performed<br/>poorly, QAOA and VQE_CvaR had a<br/>better strategy than the rest 20%-30%<br/>of the time, QAOA and VQE_CvaR<br/>showed to be competitive algorithms<br/>with the classical ones, the main<br/>advantage perceived was that<br/>quantum algorithm perform<br/>exponentially better using a larger<br/>number of assets, where classical<br/>algorithms become unfeasible</li> <li>Important notes: <ul> <li>"It is important to make it clear that<br/>today, quantum computers do not<br/>solve the portfolio optimization<br/>problem in a novel way, and they do<br/>not reformulate the problem to make<br/>them easier to solve, instead, they<br/>solve the same optimization problem<br/>with different variable types, but in a<br/>different method." (p. 2)</li> <li>The VQE is a hybrid quantum-<br/>classical algorithm, whereby the<br/>quantum component is the hardware<br/>it operates on, the circuits and the<br/>ansatz it employs, and the classical<br/>component is the optimization of<br/>parameters in the quantum circuit to<br/>find more optimal solutions</li> <li>"QAOA circuits have inherently<br/>more depth, making them more prone<br/>to noise disturbances on real<br/>computers. For this reason we have<br/>chosen VQE as the main algorithm<br/>for testing on real devices during this<br/>study."(p. 8)</li> </ul> </li> </ul> |                                                                                                      |                                                                                                                                                |
| [29]<br>An Application of<br>Quantum<br>Optimization with<br>Fuzzy Inference<br>System for Stock<br>Index Futures | "In this study, we<br>propose using a novel<br>hybrid Wavelet<br>Transformation-<br>Quantum-behaved<br>Particle Swarm<br>Optimization-Adaptive | Objective:         -       Develop an new model (WT-QPSO-ANFIS) to optimize the forecasting if stock index futures in a fuzzy environment         -       Benchmark the WT-QPSO-ANFIS against classical methods (ANFIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quantum hardware:<br>Simulated hardware<br>Quantum algorithm<br>model:<br>Wavelet<br>Transformation- | Stock index<br>futures = contracts<br>that obligate the<br>buyer to purchase<br>(or the seller to<br>sell) a stock index<br>at a predetermined |
| Forecasting                                                                                                       | NeuroFuzzy Inference                                                                                                                           | against classical methods (ANFIS model, ANN model and ARIMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quantum-behaved                                                                                      | price in the future                                                                                                                            |
| (Chrimprang, N.<br>Tansuchat, R. 2022)                                                                                                         | System (WT-QPSO-<br>ANFIS) model to<br>forecast stock index<br>futures." (p. 1)                                                                                                                        | model) using 10 major daily stock<br>index futures from 2009 - 2020Results:-Compared to classical methods, WT-<br>QPSO-ANFIS consistently shows<br>better: root means square error<br>values, mean absolute percentage<br>error, mean absolute error, standard<br>error of the mean, basically meaning<br>that the WT-QPSO-ANFIS results are<br>more optimized and precise-"The result reveals that the hybrid<br>WT-QPSO-ANFIS model provides<br>higher efficiency and accuracy in<br>predicting all 11 stock index futures<br>considered in this study compared to<br>                                                                                                                                                                                                                                                                                                                                                 | Particle Swarm<br>Optimization-Adaptive<br>NeuroFuzzy Inference<br>System (WT-QPSO-<br>ANFIS)<br>Methodology:<br>optimization<br>Use case:<br>Stock index futures            |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [67]<br>An Investigation on<br>Quantum-Inspired<br>Algorithms for<br>Portfolio<br>Optimization Across<br>Global Markets<br>(Chou et al., 2024) | "This article introduces<br>a portfolio<br>recommendation system<br>based on trend ratio and<br>quantum-inspired<br>optimization<br>specifically designed<br>for global cross stock<br>markets" (p. 1) | <ul> <li>unintenigible rules as well as a complicated network structure. In addition, the machine learning model itself did not guarantee a global optimum solution. It easily falls to the local optimum answer that directly affects the model's predicted value accuracy."(p. 1)</li> <li>Objective:         <ul> <li>Develop a transparent and interpretable portfolio recommendation system based on a quantum-inspired algorithm fitted towards the trend-ratio model (trend ratio = daily expected return / daily risk) and quantum inspired optimization algorithm (ELSA-QTS) forming ELSA-QNQTS</li> <li>The proposed system is used in a group of the G7 markets</li> </ul> </li> <li>Results:         <ul> <li>The first experiment using the ELSA-QNQTS compared performances between G7 markets to gather the best market, results showed great perspective into the performance and</li> </ul> </li> </ul> | Quantum hardware:         Simulator         Quantum algorithm:         ELSA-QNQTS         Methodology:         Optimization         Use case:         Portfolio optimization |

|                                                                                                                                           |                                                                                                                                                                                                                                                                                                | <ul> <li>risk levels of portfolios in the G7 markets.</li> <li>Furthermore, a cross-market analysis is done, where the fluctuation of stock markets in each country is put into perspective, and it shows that cross-market investments generate superior portfolios based on the ELSA-QNQTS model.</li> <li>"The proposed intelligent portfolio optimization model excels at identifying strong, stable uptrends within individual markets and extends its effectiveness to cross-market analysis. Furthermore, this financial application prioritizes explainability and transparency, empowering investors to comprehend ai-generated results" (p. 1)</li> <li>"Experimental results show that the proposed model has excellent capability to explore portfolios with stable uptrends within a single market and extend its effectiveness to cross market." (p. 7)</li> </ul> |                                                                                                                                                                                    |                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [30]<br>A Weighted<br>Portfolio<br>Optimization Model<br>Based on the Trend<br>Ratio, Emotion<br>Index, and ANGQTS<br>(Chou et al., 2022) | "This paper proposes a<br>novel weighted<br>portfolio optimization<br>model based on the<br>trend ratio and emotion<br>index to<br>comprehensively<br>consider the volatility of<br>the portfolio and more                                                                                     | Objective:       •         -       Develop a novel weighted portfolio         optimization model based on the       •         trend-ratio and emotion index to       •         consider the volatility (risk) of a       •         portfolio more accurately, thereby       •         optimizing it       •         -       This model ought to have three main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>global-best guided<br>quantum-inspired tabu<br>search with a self-<br>adaptive strategy and<br>quantum NOT gata                  | Emotion index = a<br>way of<br>quantifying<br>emotional<br>responses (e.g.<br>investor<br>sentiment) into a<br>value that can be                                                                             |
|                                                                                                                                           | ine portfolio and more<br>accurately evaluate the<br>performance of<br>portfolios than the<br>classical indicator, the<br>Sharpe ratio" (p. 1)<br>Furthermore, this<br>proposed model is<br>applied towards the US<br>stock market, where it is<br>benchmarked against<br>traditional methods. | contributions; it utilizes trend ratio         and emotion index, it makes use of         ANGQTS, and the sliding window         mechanism is adopted.         -         Test the proposed model in the US         market with Dow Jones 30, and         during the covid-19 pandemic         Results:         -         The trend ratio can better evaluate         portfolios than the Sharpe ratio         -         ANGQTS can effectively and         efficiently construct near-optimal         solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | quantum-NOT gate<br>(ANGQTS)<br>Methodology:<br>Optimization<br>Use case:<br>Portfolio optimization,<br>specifically in short and<br>long selling trading<br>using the trend ratio | used wnen<br>computing certain<br>problems.<br>Sliding window<br>mechanism = a<br>versatile and<br>efficient method<br>of processing data<br>allowing for<br>constant<br>evaluation of<br>subsets of data in |
|                                                                                                                                           |                                                                                                                                                                                                                                                                                                | <ul> <li>The sliding window mitigates under<br/>and overfitting in the proposed model</li> <li>Statistical tests show that ANGQTS<br/>outperforms GNQTS in weighted<br/>portfolio optimization</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                    | arger pools,<br>which supposedly<br>benefits the<br>introduced novel<br>portfolio                                                                                                                            |

|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>The proposed model was applied to<br/>the US stock market Dow Jones 30<br/>and showed better stability than the<br/>Dow Jones industry average and the<br/>Sharpe ratio during economic<br/>fluctuations</li> <li>So all in all, the proposed model is<br/>more precise and stable than<br/>comparable traditional methods.</li> <li>Important notes:         <ul> <li>The classical method in this paper is<br/>seen as the 'Sharpe-ratio'</li> <li>The difference between ANGQTS<br/>and GNQTS is that QNQTS is more</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | optimization<br>model                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | static than ANGQTS, furthermore,<br>ANGQTS outperforms GNQTS in<br>larger solution spaces, lastly,<br>ANGQTS demonstrates better<br>searchability and higher trend ratios.<br>Thus ANGQTS has better<br>performance and is more efficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |
| [31]<br>Portfolio<br>Optimization in<br>Both Long and Short<br>Selling Trading<br>Using Trend Ratios<br>and Quantum-<br>Inspired<br>Evolutionary<br>Algorithms (Chou et<br>al., 2021) | "This paper utilizes the<br>global quantum-inspired<br>tabu search algorithm<br>with a quantum NOT-<br>gate (GNQTS) to<br>effectively find the best<br>combination of stocks.<br>To avoid the overfitting<br>problem, this paper<br>employs a sliding<br>window. Specifically,<br>this paper combines the<br>trend ratio, GNQTS,<br>short selling with<br>certificates of deposit,<br>and sliding windows to<br>perform the stock<br>selection" (p. 1)<br>"This paper uses the<br>global-best guided<br>quantum inspired tabu<br>search algorithm with a<br>quantum NOT-gate,<br>called GNQTS" (p. 2)<br>"This paper proposes<br>investing<br>simultaneously in<br>normal trading and | Objective:       Quantum I         -       Synthesize a model incorporating; the sliding window mechanism, the trend ratio (as it is better than the Sharpe ratio), GNQTS, long and short selling positions to outperform existing models       Quantum a         -       Compare the proposed method against the Sharpe ratio and       Quantum a         -       Compare the proposed method against the Sharpe ratio and       Methodold         -       Benchmark the proposed model on Taiwan's 50 largest market capitalization stocks from the period 2010 – 2017, where funds are distributed in the portfolio for both long- and short-term selling.       Use case:         Portfolios selected by the trend ratio have a lower risk than portfolios selected by the Sharpe ratio, and a higher average return.       Iong selling improves performance compared to using a single trading method         -       Overall, the GNQTS method effectively finds stable portfolios long and short-term selling, it outperforms the Sharpe ratio in risk management and average returns. Thereby, the experiment validates the       Iong selling improves performance compared to in the portfolios selected by the stable portfolios selected b | ardware:<br>llgorithm:<br>nspired tabu<br>prithm with<br>pgy:<br>on<br>ptimization,<br>y in short and<br>g trading<br>rend ratio |

|                                                                                                                                      | short selling by a trend<br>ratio, which can further<br>increase investment<br>profits and spread<br>risks." (p. 1)                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>fact that a broader solution space will positively influence portfolio return and risk</li> <li>"The experimental results show that the trend ratio can truly derive better performance than the Sharpe ratio" (p. 15)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Important notes:<br>- This paper differentiates between<br>long and short selling, the GNQTS is<br>used in both of these instances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |
| [32]<br>A Novel Portfolio<br>Optimization Model<br>Based on Trend<br>Ratio and<br>Evolutionary<br>Computation (Chou<br>et al., 2019) | "This paper makes use<br>of the quantum inspired<br>tabu search algorithm,<br>which is improved by<br>an adaptive strategy, the<br>current best-known<br>solution, and the<br>quantum not gate<br>(ANQTS) to find the<br>best portfolio in a large<br>solution space." (p. 1)<br>"This paper employs the<br>sliding window to avoid<br>the over-fitting<br>problem." (p. 1)<br>"In summary, this paper<br>combines the trend<br>ratio, ANQTS, and the<br>sliding window to solve<br>the problem of stock<br>selection."(p. 1) | <ul> <li>used in both of these instances.</li> <li>Objective: <ul> <li>Synthesize a model incorporating; the sliding window mechanism, the trend ratio (as it is better than the Sharpe ratio), ANQTS, to solve the problem of stock selection for a portfolio</li> <li>Benchmark the given model on Taiwan's 50 largest market cap stocks between 2010 and 2016 and compare them to the Sharpe ratio</li> <li>Benchmark trend ratio usage against the Sharpe ratio</li> <li>Benchmark trend ratio usage against the Sharpe ratio</li> </ul> </li> <li>Results: <ul> <li>The trend ratio is more effective than the Sharpe ratio in finding optimal portfolios and single stock uptrends</li> <li>Compared to to other similar quantum algorithms, ANQTS outperforms GA, GQTS, and NQTS in the same experiments in finding the portfolio solution efficiently and achieving better stability</li> <li>"The experiment results show that the proposed method can find the better portfolio, and the performance is better than Taiwan 50 ETF which is recommended by the government." (p. 13)</li> <li>Results from the model also showed that risk can be spread better through effective fund allocation</li> </ul> </li> </ul> | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>Quantum inspired tabu<br>search algorithm<br>(optimized by GNQTS,<br>adaptive strategy,<br>current best-know<br>solution)<br>Methodology:<br>Optimization<br>Use case:<br>Portfolio optimization<br>(specifically stock<br>selection) |
|                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | synthesized, to show that trend ratio<br>is a better method to include rather<br>than the similar Sharpe ratio, certain<br>experiments are done, concluding in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         |

|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                | all three papers that the trend ratio is<br>better and should thus be used for the<br>total of the model. Next to that, these<br>3 papers focus on generating certain<br>models including many different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              |  |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>aspects that will optimize a certain objective (e.g. finding an optimal portfolio including long and short selling positions), instead of fully focusing on one type of algorithm, making it so that the quantum aspect of these portfolio optimization papers is a bit toned down considering other papers. Nevertheless, what can be learned mostly from these three papers is that quantum mechanics can also aid in alleviating certain problems of lesser proportions (<i>e.g. giving the model the ability to handle larger amounts of data faster</i>).</li> <li>"The best portfolio may not include the best single stock and may include a stock which has negative return. As a result, the proposed method has the ability to select the portfolio, which is in a stable uptrend, and has outstanding performance in the experiments" (p. 13)</li> </ul> |                                                                                                                              |  |
| [37]<br>Quantum<br>algorithms: A survey<br>of applications and<br>end-to-end<br>complexities (Dalzell<br>et al., 2023) | As the title says, this<br>paper is a complete<br>survey of applications<br>and end-to end<br>complexities of<br>quantum computing,<br>337 pages of; areas of<br>application, quantum<br>algorithmic primitives,<br>and fault tolerant<br>quantum computation.<br>However, in this paper,<br>only the application<br>area of 'portfolio<br>optimization' will be<br>summarized | Objective(s):         -       Give an overview of; actual end-to-<br>end problems solved in PO, NISQ<br>implementations, outlook, speedup,<br>caveats.         Actual end-to-end problems solved (using the<br>Markowitz model):         -       Maximize return with fixed risk<br>parameters         -       Maximize return with fixed risk<br>parameters         -       Minimize risk with fixed return<br>parameters         -       Optimal risk-return tradeoffs with<br>'risk-aversion' parameter (or an<br>alternative formulation using the<br>square root of the risk)         In these models, certain constraints are<br>often used, the following are recognized:         -       Long asset position constraints                                                                                                                                             | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>N/A<br>Methodology:<br>Optimization<br>Use case:<br>Portfolio optimization |  |
|                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                | - Investment bands (the asset must be located between min or max bounds)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              |  |

| - Turnover constraints (constraint in        |
|----------------------------------------------|
| the degree of changing asset holding         |
| hetwaen portfolios)                          |
| Condinality constraints (restriction on      |
| - Calculative constraints (restriction on    |
| the number of assets included in a           |
| portfolio)                                   |
| - Sector constraints (specified min/max      |
| allocations to groups of assets)             |
| - Transaction costs (extra costs linked      |
| to changing asset holdings)                  |
|                                              |
| Caveats:                                     |
| - QLSS-based approaches are often            |
| dependent on multiple specific-              |
| instance parameters, resulting in            |
| computationally increased demands            |
| (e.g. high log-denth ORAM demands            |
| log-denth heing a measure of time for        |
| OPAM to find a niece of data simply          |
| QUARIE TO THE a piece of data, shipiy        |
| put)                                         |
| - Branch-and-bound approaches do not         |
| require log-depth QRAM to acquire            |
| quantum speedup                              |
|                                              |
| Speedup (only for QIPMs):                    |
| - Speedups for using QIPMS compared          |
| to classical methods will often come         |
| from optimizing the QLSS (used for a         |
| sub-routine of QIPMs including               |
| linearity) and tomography for a linear       |
| system (at least, until current              |
| hardware can better facilitate the           |
| QIPMs)                                       |
| NISO implementations (alternative approaches |
| for quantum PO solutions):                   |
| - NISO-HHL (generalizes OIPMs to             |
| hetter fit current hardware                  |
| specifications)                              |
|                                              |
| - Quantum annealing                          |
|                                              |
| Outlook:                                     |
| - OIPMS (and other OI SS, based              |
| - VII MIS (and onici VLSS-based              |
| formulations offer the notantial of          |
| Tormulations offer the potential of          |
| quantum speedup in the future                |
| - I ne branch-and-bound approach for         |
| discrete formulations has the                |
| possibility of a larger speedup than         |
| QIPMs                                        |
| - "In the context of Grover-like             |
| quadratic speedups in combinatorial          |
| optimization, it is unclear whether the      |

|                                           |                            | Importar<br>- | quadratic speedup is sufficient to<br>overcome the inherently slower<br>quantum clock speeds and overheads<br>due to fault tolerant quantum<br>computation for practical instance<br>sizes." (p. 121)<br>ht notes:<br>More constraint often means harder                                                                                            |                        |                   |
|-------------------------------------------|----------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
|                                           |                            | -             | problems and more computational<br>power needed.<br>Convex PO problems are easier to<br>solve than non-convex problems (a<br>PO problem often becomes non-<br>convex due to its imposed<br>constraints)<br>Non-convex PO problems (or its                                                                                                           |                        |                   |
|                                           |                            |               | constraints) can be converted to a<br>Mixed-Integer Program (MIP), which<br>in essence makes it easier to solve.<br>Furthermore, if these integer<br>variables are encoded in binary, then<br>it can be formulated as a QUBO<br>problem (which is widely used for<br>PO). Therefore, a multitude of papers<br>will make use of this, thereby making |                        |                   |
|                                           |                            |               | QUBO a often reoccurring                                                                                                                                                                                                                                                                                                                            |                        |                   |
|                                           |                            |               | formulation in these papers.                                                                                                                                                                                                                                                                                                                        |                        |                   |
| [38]                                      | "In this paper, we         | Objectiv      | e(s)                                                                                                                                                                                                                                                                                                                                                | Quantum hardware:      | This paper mainly |
| VaR Estimation with                       | present the development    | -             | Develop a quantum neural network to                                                                                                                                                                                                                                                                                                                 | IBM Qiskit (simulated  | considers         |
| Quantum<br>Computing Noise                | of a quantum computing     |               | extend conventional Monte Carlo for                                                                                                                                                                                                                                                                                                                 | hardware, 5 qubit)     | optimizing        |
| Computing Noise                           | the sector of visits (V-P) |               | Calculating value at Risk (VaR)                                                                                                                                                                                                                                                                                                                     | O                      | classical Monte   |
| Correction Using                          | the value at risk (VaR)    | -             | Compare the results of this work with                                                                                                                                                                                                                                                                                                               | Quantum algorithm:     | Carlo methods     |
| Neural Networks (de<br>Rodro et al. 2022) | for a portiolio of assets  |               | other works                                                                                                                                                                                                                                                                                                                                         | Quantum (and neural    | using, but not    |
| reuro et al., 2025)                       | institution" (n 1)         | Deculter      |                                                                                                                                                                                                                                                                                                                                                     | Monte Carlo            | augustum methods  |
|                                           | institution (p. 1)         | Results.      | The quantum simulation and actual                                                                                                                                                                                                                                                                                                                   | Wonte Carlo            | quantum methods.  |
|                                           | The classical Monte        | -             | quantum computer results had                                                                                                                                                                                                                                                                                                                        | Methodology            |                   |
|                                           | Carlo algorithm to         |               | discrepancies due to noise.                                                                                                                                                                                                                                                                                                                         | Monte Carlo            |                   |
|                                           | calculate VaR is           |               | highlighting the limitations of current                                                                                                                                                                                                                                                                                                             |                        |                   |
|                                           | extended upon in a         |               | quantum technology                                                                                                                                                                                                                                                                                                                                  | Use case:              |                   |
|                                           | quantum manner             | -             | "The results show that this approach                                                                                                                                                                                                                                                                                                                | Portfolio optimization |                   |
|                                           | -                          |               | is useful for estimating the VaR in                                                                                                                                                                                                                                                                                                                 | (VaR)                  |                   |
|                                           | "The resulting             |               | finance institutions, particularly when                                                                                                                                                                                                                                                                                                             |                        |                   |
|                                           | algorithm is suitable to   |               | dealing with a large number of                                                                                                                                                                                                                                                                                                                      |                        |                   |
|                                           | be executed on real        |               | assets." (p. 1)                                                                                                                                                                                                                                                                                                                                     |                        |                   |
|                                           | quantum computers,"        | -             | Neural networks were used to                                                                                                                                                                                                                                                                                                                        |                        |                   |
|                                           | (p. 1),                    |               | mitigate noise in the quantum circuit                                                                                                                                                                                                                                                                                                               |                        |                   |
|                                           |                            |               | by optimizing parameters.                                                                                                                                                                                                                                                                                                                           |                        |                   |
|                                           | Using feedback from        | -             | The authors compared their work                                                                                                                                                                                                                                                                                                                     |                        |                   |
|                                           | computers the reveal       |               | with other works, and it showed that:                                                                                                                                                                                                                                                                                                               |                        |                   |
|                                           | network processing is      |               | showed promising results however                                                                                                                                                                                                                                                                                                                    |                        |                   |
| L                                         | network processing is      |               | showed promising results, nowever,                                                                                                                                                                                                                                                                                                                  |                        |                   |

| finetuned, as the neural | are often faced with challenges         |  |
|--------------------------|-----------------------------------------|--|
| network is used to       | related to resource requirements and    |  |
| mitigate noise in the    | circuit depth. Comparing it to the      |  |
| quantum circuit.         | proposed method in this paper, their    |  |
|                          | approach of using neural networks for   |  |
|                          | quantum noise showed a promising        |  |
|                          | feasible solution effectively utilizing |  |
|                          | current quantum computing               |  |
|                          | resources.                              |  |
|                          |                                         |  |
|                          | Important notes:                        |  |
|                          | - The noise affecting current quantum   |  |
|                          | computers makes it almost useless to    |  |
|                          | perform the posed algorithm on real     |  |
|                          | quantum computers                       |  |
|                          | - Challenges: Grow a sufficient         |  |
|                          | number of samples needed for the        |  |
|                          | Quantum Monte Carlo method for          |  |
|                          | increased asset sizes in portfolios,    |  |
|                          | and find 'real' random generated        |  |
|                          | samples using quantum computing,        |  |
|                          | use neural networks to mitigate the     |  |
|                          | noise in the quantum circuit            |  |
|                          | - "A VaR estimation problem could be    |  |
|                          | divided into parts and simulated        |  |
|                          | partially by real quantum computers."   |  |
|                          | (p. 16)                                 |  |
|                          |                                         |  |

| [41]                  | This paper gives an      | Problems/segments recognized in financial    | Quantum hardware:     |
|-----------------------|--------------------------|----------------------------------------------|-----------------------|
| Quantum               | overview off the current | services for quantum computing:              | IBM Quantum back-     |
| Computing for         | (2020) state of quantum  | - Banking: balancing cash with interest      | ends                  |
| Finance: State of the | computing for finance,   | rates, while controlling threats (risks)     |                       |
| Art and Future        | thereby giving insight   | related to liquidity, fraud, money           | Quantum algorithm:    |
| Prospects (Egger et   | into; a survey on        | laundry, and non-performing loans            | N/A                   |
| al., 2020)            | problem classes that are | - Financial markets: manage                  |                       |
|                       | computationally          | geographic time-zones, immediacy             | Methodology:          |
|                       | challenging classically  | needs, counter-party risk                    | Optimization, Machine |
|                       | and show advantages on   | - Insurance: maximize premiums,              | learning, simulation  |
|                       | quantum systems, in      | manage threats it unplanned risks            |                       |
|                       | detail described         | - The main reoccurring problem is risk       | Use case:             |
|                       | quantum algorithms,      | management                                   | N/A                   |
|                       | specific applications of |                                              |                       |
|                       | these algorithms         | Problem classes for classical computing      |                       |
|                       | (simulation,             | methods where quantum methods may show       |                       |
|                       | optimization, Monte      | promising advantages:                        |                       |
|                       | Carlo), and lastly a     | - Simulation: customer identification,       |                       |
|                       | demonstrations of        | financial products (e.g. Value at Risk       |                       |
|                       | quantum algorithms on    | estimates), monitor transactions,            |                       |
|                       | IBM quantum back-        | Customer retention.                          |                       |
|                       | ends                     | Furthermore, in this section it is discussed |                       |
|                       |                          | now quantum amplitude estimation can         |                       |
|                       |                          | Monte Carles with suggest monte monte        |                       |
|                       |                          | monte Carlo; with current quantum            |                       |
|                       |                          | methods they estimated a 50-minute           |                       |
|                       |                          | million asset partfalia, showing a speedup   |                       |
|                       |                          | over elessical methods                       |                       |
|                       |                          | Optimization: Customer                       |                       |
|                       |                          | identification (and assessment)              |                       |
|                       |                          | financial products monitor                   |                       |
|                       |                          | transactions (e.g. re-balancing              |                       |
|                       |                          | portfolios), customer retention              |                       |
|                       |                          | Furthermore, for problem classes: convex     |                       |
|                       |                          | problems <i>(linear programming, convex</i>  |                       |
|                       |                          | programming, semidefinite programming).      |                       |
|                       |                          | quantum methods showed the potential of      |                       |
|                       |                          | significant speedups over classical          |                       |
|                       |                          | methods, however, practical effectiveness    |                       |
|                       |                          | is mainly determined by the specific         |                       |
|                       |                          | problem instance.                            |                       |
|                       |                          | For problem classes: combinatorial           |                       |
|                       |                          | problems (generally non-convex with          |                       |
|                       |                          | discrete decision variables). "We note that, |                       |
|                       |                          | currently, there is no theoretical guarantee |                       |
|                       |                          | that variational algorithms on quantum       |                       |
|                       |                          | devices can achieve significant speed-ups    |                       |
|                       |                          | for QUBOs" (p. 11), however, they are        |                       |
|                       |                          | appealing to study on NISQ devices as        |                       |
|                       |                          | they show provable guarantees for            |                       |
|                       |                          | performance. Tests performed with VQE        |                       |
|                       |                          | and QAOA showed that the quantum             |                       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <ul> <li>methods got the best results following the efficient frontier in a active investment management PO example. (however, it was mentioned that current quantum hardware cannot facilitate such results). And for a passive investment management PO problem, quantum algorithms showed performances just below classical methods, however it was mentioned that performance of quantum algorithms will increase with larger problem sizes.</li> <li>Machine learning: Prediction, classifying, finding patterns (all in customer scoring/evaluation, financial product usage, transaction monitoring, customer retention methods)</li> <li>Furthermore, two quantum Monte Carlo methods are mentioned Variational Quantum Classification (VWC), and Quantum Kernel Estimation (QKE). Compared to classical techniques, the quantum algorithms showed improved performances in machine learning tasks, particularly in advanced feature spaces and classifies.</li> </ul> |      |
| <ul> <li>Technical challenges in Quantum Computing: <ul> <li>Loading data in a quantum state is very complex compared to classical methods, increasing number of qubits in the system are cause for exponential effort increases in preparing the system</li> <li>Error correction, to protect the quantum system from error, multiple mitigation techniques are used that cost significant overhead</li> <li>Precision and sample complexity, many repetitions need to be made in quantum system to achieve accurate results, this has high computational costs</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                        |      |
| <ul> <li>Challenging problems for classical computers that are addressed are those in: asset management, investment banking, retail and corporate banking.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |

| [44]                           | "This review paper       | Findings:                               | Quantum hardware:      | Mutual funds $= a$  |
|--------------------------------|--------------------------|-----------------------------------------|------------------------|---------------------|
| A Systematic                   | examines literature on   | - "Ouantum Machine Learning (OML)       | N/A                    | portfolio of        |
| Literature Review of           | classical and quantum    | PO algorithms which are an              | 1011                   | stocks bonds or     |
| Classical and                  | machine learning         | intersection of OC and MI               | Quantum algorithm:     | other securities    |
| Quantum Machine                | approaches for Mutual    | techniques process large datasets       | Quantum machine        | overseen by a       |
| Learning                       | Fund PO analyzing 44     | more efficiently, revealing hidden      | learning               | professional fund   |
| Annroaches for                 | namers from 2003 to      | note efficiently, revealing inductional | learning               | manager 5 main      |
| Mutual Fund                    | $2023^{\circ}(n-1)$      | ML approaches may potentially not       | Methodology            | mutual fund         |
| Portfolio                      | 2025 (p. 1)              | be able to identify" $(p, 1)$           | Machine learning       | nortfolio           |
| Ontimization                   | "We provide an           | - Traditional ML approaches face the    | Waenine rearining      | ontimization        |
| (Formandos of al               | overview to the types of | - following problems: time constraints  | Lise case:             | nrohlems            |
| (1°C) fiandes et al.,<br>2023) | problems preferred       | high costs due to their inshility to    | Dortfolio ontimization | mentioned in the    |
| 2023)                          | approaches their         | consider risk calculations at various   |                        | naper are: asset    |
|                                | henchmarks deduced       | levels                                  |                        | allocation          |
|                                | conclusions and          | - Quantum (assisted) machine learning   |                        | nortfolio           |
|                                | research gans as a       | - Quantum (assisted) mathine rearing    |                        | diversification     |
|                                | comprehensive survey     | henefits: provide real time solutions   |                        | risk_management     |
|                                | for diverse readers "    | to market scenarios                     |                        | Minimizing          |
|                                | (n 1)                    | - Quantum algorithms have               |                        | transaction costs   |
|                                | (p. 1)                   | successfully been implemented for       |                        | tax efficiency      |
|                                |                          | nortfolio ontimization                  |                        | tux efficiency.     |
|                                |                          | - Main research gaps found were:        |                        | Curse of            |
|                                |                          | a) The validation of quantum            |                        | dimensionality =    |
|                                |                          | computer output is still a              |                        | common issues       |
|                                |                          | difficulty in the NISO era of           |                        | arising when        |
|                                |                          | quantum technology                      |                        | dimensions in a     |
|                                |                          | b) Quantum linear-algebra               |                        | problem             |
|                                |                          | techniques sometimes have               |                        | formulation or      |
|                                |                          | issues being applicable towards         |                        | system increase     |
|                                |                          | specific linear-algebra and             |                        | (e.g. amount of     |
|                                |                          | financial use cases due to certain      |                        | data, exponential   |
|                                |                          | constraints and prerequisites           |                        | growth of           |
|                                |                          | which bottleneck quantum                |                        | results/data etc,   |
|                                |                          | speedup                                 |                        | distinctions        |
|                                |                          | c) "No dynamic portfolio                |                        | between near and    |
|                                |                          | optimization framework can              |                        | far points blurring |
|                                |                          | outperform the covariance               |                        | in high-            |
|                                |                          | model. ML/DL approaches                 |                        | dimensional         |
|                                |                          | require more research due to the        |                        | spaces, increased   |
|                                |                          | curse of dimensionality and the         |                        | computational       |
|                                |                          | DL architectures inability to           |                        | complexity,         |
|                                |                          | improve performance of sample-          |                        | overfitting).       |
|                                |                          | based portfolios" (p. 4)                |                        |                     |
|                                |                          | - "With numerous variables and          |                        |                     |
|                                |                          | conditions that need to be considered   |                        |                     |
|                                |                          | for a Mutual Fund PO problem,           |                        |                     |
|                                |                          | up at the least active and affect       |                        |                     |
|                                |                          | up at the local optima and offer a      |                        |                     |
|                                |                          | non-optimal solution" $(p, 4)$          |                        |                     |
|                                |                          | - Currently (2023) quantum machine      |                        |                     |
|                                |                          | cases in terms of solution quality and  |                        |                     |
|                                |                          | computing speed. However                |                        |                     |
|                                |                          | computing speed. nowever,               |                        |                     |

|                                   |                           |          | generally, papers show that many         |                        |                     |
|-----------------------------------|---------------------------|----------|------------------------------------------|------------------------|---------------------|
|                                   |                           |          | fields of research (such as machine      |                        |                     |
|                                   |                           |          | learning) still need to experience real  |                        |                     |
|                                   |                           |          | benefit from quantum computing           |                        |                     |
|                                   |                           |          | conone nom quantam companing             |                        |                     |
|                                   |                           | Importar | nt notes:                                |                        |                     |
|                                   |                           | -        | "The existing breed of NISO (Noisy       |                        |                     |
|                                   |                           |          | Intermediate Scale Quantum)              |                        |                     |
|                                   |                           |          | quantum computers have a significant     |                        |                     |
|                                   |                           |          | potential to provide faster solutions to |                        |                     |
|                                   |                           |          | problems in various domains which        |                        |                     |
|                                   |                           |          | are not just relevant for the present    |                        |                     |
|                                   |                           |          | but also for the future" (p. 1)          |                        |                     |
|                                   |                           | -        | The current (2023) stage of quantum      |                        |                     |
|                                   |                           |          | technology with 50-1000 qubits that      |                        |                     |
|                                   |                           |          | are not-fault tolerant is called 'Noise  |                        |                     |
|                                   |                           |          | Intermediate-scale quantum               |                        |                     |
|                                   |                           |          | computing (NISQ)                         |                        |                     |
|                                   |                           | -        | "This paper focuses on Mutual Fund       |                        |                     |
|                                   |                           |          | (MF) because it has seen a rise in       |                        |                     |
|                                   |                           |          | investment in the past years and a low   |                        |                     |
|                                   |                           |          | rate of risk in comparison to the ever-  |                        |                     |
|                                   |                           |          | fluctuating stock market industry"       |                        |                     |
|                                   |                           | -        | (p. 2)                                   |                        |                     |
| [47]                              | "In this paper we         | Objectiv | e(s):                                    | Quantum hardware:      | Oracle = a          |
| Grover Adaptive                   | discuss Grover            | -        | Test the proposed GAS with QUBO          | Simulated hardware     | subroutine in an    |
| Search for                        | Adaptive Search (GAS)     |          | and efficient oracles on a PO problem    | (Qiskit), and real     | operation that      |
| Constrained                       | for Constrained           | -        | In the experiment: minimize the          | hardware (IBMQ         | provides            |
| Polynomial Binary<br>Ontimization | Polynomial Binary         |          | to areate an antimized nortfolio with    | Toronto)               | information on an   |
| (Cilliam at al. 2021)             | numbers and in            |          | budget constraints. The portfolio        | Quantum algorithm.     | nrohlom's           |
| (Gimain et al., 2021)             | problems, and m           |          | consist of 3 assets no more than 7       | Grover Adaptive Search | solution this       |
|                                   | Unconstrained Binary      |          | aubits were used and searching wads      | (on CPBO and OUBO)     | information is      |
|                                   | Ontimization (OUBO)       |          | stopped after 3 iterations each time     |                        | used to increase    |
|                                   | problems, as a special    |          | stopped after 5 fierations each time     | Methodology:           | the probability of  |
|                                   | case" (p. 1)              | Results: |                                          | Optimization           | finding the         |
|                                   |                           | -        | "GAS can provide a quadratic speed-      |                        | optimal solution    |
|                                   | "In this paper, we        |          | up for combinatorial optimization        | Use case:              | in the algorithm in |
|                                   | provide a framework for   |          | problems compared to brute force         | Portfolio optimization | quantum             |
|                                   | automatically             |          | search" (p. 1), however, this can only   | _                      | optimization cases  |
|                                   | generating efficient      |          | be performed under certain search        |                        |                     |
|                                   | oracles for solving       |          | criteria and efficient oracles           |                        |                     |
|                                   | Constrained Polynomial    | -        | The noise in current era NISQ            |                        |                     |
|                                   | Binary Optimization       |          | hardware impacted results, increasing    |                        |                     |
|                                   | (CPBO)— a                 |          | the probability of wrong results.        |                        |                     |
|                                   | generalization of         |          | When the noise was not too strong, it    |                        |                     |
|                                   | QUBO—with GAS."           |          | achieved good results                    |                        |                     |
|                                   | (p. 1)                    | -        | QUBO with GAS on real quantum            |                        |                     |
|                                   |                           |          | hardware consistently found the          |                        |                     |
|                                   | In the analysis of this   |          | optimal solution in the given            |                        |                     |
|                                   | paper, there will only be |          | environment                              |                        |                     |
|                                   | tocusses on the           |          |                                          |                        |                     |
|                                   | application towards       |          |                                          |                        |                     |

|                                                                                                                          | portfolio optimization<br>of the GAS for QUBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Besides the portfolio optimization problem, this paper managed to reduce the number of gates required for computation compared to standard quantum arithmetic approaches ("i.e. it lowers the requirements to apply GAS on real quantum hardware for practically relevant problems." (p. 7))</li> <li>Even though the quantum hardware showed promising results, it could still be said that it can not solve lager problem sizes, as the problem size used in this paper on the real hardware remains small, thereby it can also be said that the quantum hardware currently is not better than classical methods in bigger problem sizes. On the other hand, for simulations according to paper, it can be said that performances are good, but no definite conclusion can be made on the comparison with classical methods.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [48]<br>Approaching<br>Collateral<br>Optimization for<br>NISQ and Quantum-<br>Inspired Computing<br>(Giron et al., 2023) | "In this study, we<br>initially present a Mixed<br>Integer Linear<br>Programming (MILP)<br>formulation for the<br>collateral optimization<br>problem, followed by a<br>Quadratic<br>Unconstrained Binary<br>optimization (QUBO)<br>formulation in order to<br>pave the way towards<br>approaching the<br>problem in a hybrid<br>quantum and NISQ-<br>ready way" (p. 1)<br>"In summary, the main<br>objective of our paper is<br>to present a case study<br>on the formulation and<br>approach of the ColOpt<br>problem using quantum<br>computing techniques,<br>with the overarching<br>aim of advancing the<br>ongoing effort towards | Objective(s)       Qua         -       Study the ColOpt problem in detail       Sim         -       Provide a MILP formulation that is to<br>be used as a testbed for; a QUBO<br>and<br>version of ColOpt (making it so that<br>quantum and quantum-inspired<br>hardware can process it), perform       ann         quantum and quantum-inspired       prol         hardware can process it), perform       ann         small-scale experiments using that<br>QUBO version and benchmark it to<br>MILP       Qua         -       Investigate the QUBO formulations<br>for the KnapsackProb problem, and<br>use the best formulation for this to<br>apply to the collateral optimization<br>problem.       Quu         -       "We find that while the QUBO based<br>approaches fail to find the global<br>optima in the small-scale       Opt         -       "We find that while the quebal popt       Met<br>optima in the small-scale         -       "We find that while the global<br>optima in the small-scale       Opt         -       For the KnapsackProb, classical<br>approaches (MILP) managed to find<br>the known optimal solutions, and for<br>the OUBO formulation on simulated       Use | intum hardware:Collateraluulated annealingoptimization =. Fujitsu simulators,"the systematicD-Wave simulatedallocation ofealer) ColOptfinancial assets toblem, and simulatedsatisfy obligationsealing for theor secureupsackProb (ontransactions,QUBO.jl, Qiskit'swhileutaticProgramToQsimultaneouslyO, PyQubo, andminimizing costsital Annealer).and optimizingBO (with MILPresources." (p. 1)oped to it in thecollopt = anexamplecollateralthodology:collateralimizationproblem to solveon the givenlassical andquantum methods.KnacksackProb = |

| achieving "quentum     | annealing: ToOUPO il found the                             | nrohlom involving   |
|------------------------|------------------------------------------------------------|---------------------|
| achieving quantum      | annearing: ToQUBO.JI found the                             | the entire 1        |
| advantage in practical | optimal solution, Qiskit found the                         |                     |
| applications" (p. 3)   | optimal solution (through multiple                         | approach to filling |
|                        | runs), PyQUBO found the optimal                            | a knapsack (with    |
|                        | solution (and for larger instance sizes                    | capacity W) with    |
|                        | close to optimal) Neal and Fujitsu                         | the highest         |
|                        | machines consistently found optimal                        | possible value      |
|                        | solution, even under penalty regimes.                      | from a              |
|                        | - For the ColOpt problem, quantum                          | corresponding set   |
|                        | methods showed that they could not                         | of n items.         |
|                        | find the global optimal solution, each                     |                     |
|                        | run found different global minima.                         |                     |
|                        | The reason for this mentioned in the                       |                     |
|                        | paper is probably due to a lack of                         |                     |
|                        | runs performed in the annealing                            |                     |
|                        | process, making it so that it could not                    |                     |
|                        | explore sufficient search space.                           |                     |
|                        | - The paper did mention that the                           |                     |
|                        | solving of the problem was not fully                       |                     |
|                        | optimized, as certain improvements                         |                     |
|                        | can be made to obtain higher quality                       |                     |
|                        | solutions (e.g. optimizing the                             |                     |
|                        | annealing schedule. OUBO parameter                         |                     |
|                        | optimization)                                              |                     |
|                        | - Classical solver showed to find                          |                     |
|                        | optimal solution every time in the                         |                     |
|                        | experiments while quantum methods                          |                     |
|                        | often fell short, there are still certain                  |                     |
|                        | factors inhibiting it from working to                      |                     |
|                        | its full potential in this paper on the                    |                     |
|                        | given ColOnt and KnapsackProb                              |                     |
|                        | nrohlems                                                   |                     |
|                        | proteins.                                                  |                     |
|                        |                                                            |                     |
|                        | Important notes:                                           |                     |
|                        | - On the ColOpt problem for quantum                        |                     |
|                        | methods multiple penalty weights                           |                     |
|                        | were used to make the process more                         |                     |
|                        | efficient and give mote ontimized                          |                     |
|                        | results                                                    |                     |
|                        | - Using OUBO or Ising approaches                           |                     |
|                        | problem can be addressed as follows                        |                     |
|                        | in a quadratic way:                                        |                     |
|                        | III a quadratic way.<br>Using variation quantum algorithms |                     |
|                        | $(e \neq 0.000)$ on gote based quantum                     |                     |
|                        | (c.g. QAOA on gate-based quantum                           |                     |
|                        | on adiabatic quantum computers                             |                     |
|                        | (quantum engeland) using quantum                           |                     |
|                        | (quantum annearers), using quantum                         |                     |
|                        | understood under a OUDO model                              |                     |
|                        | formulation                                                |                     |
|                        | Tormulation                                                |                     |

|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>"We would like to note that our paper<br/>does not aim to provide an empirical<br/>comparison between quantum and<br/>classical approaches for solving<br/>MILPs, given the limited<br/>computational resources available to<br/>us" (p. 3)</li> <li>"The QUBO model can be applied to<br/>a wide range of combinatorial<br/>optimization problems that are known<br/>to be NPhard," (p. 4)</li> <li>"we utilize simulated annealing (SA),<br/>which as a metaheuristic algorithm, is<br/>quite sensitive to the problem<br/>structure and its performance can<br/>vary significantly depending on the<br/>problem instance."(p. 12)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                  |                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| [51]<br>A brief review of<br>portfolio<br>optimization<br>techniques (Gunjan,<br>A. & Bhattacharyya,<br>S. 2023) | This paper lists a brief<br>review of portfolio<br>optimization<br>techniques, most<br>techniques mentioned<br>are non-quantum<br>techniques. The paper<br>makes a distinction<br>between classical<br>approaches and<br>intelligent approaches.<br>Under the list of<br>intelligent approaches<br>fall 'quantum-based<br>approaches'<br>In the summary of this<br>paper, a brief list of<br>non-quantum<br>approaches will be<br>mentioned (classical<br>and intelligent<br>approaches), after that<br>there will be elaborated<br>on the quantum PO part<br>of this paper. | List of non-quantum approaches (classical and<br>intelligent):<br>Classical:<br>- Markowitz mean-variance<br>optimization, Mean Absolute<br>Deviation, Minimax, Variance with<br>skewness, Lower partial moments,<br>Value-at-risk (VAR), Conditional<br>value-at-risk (CVar). Each of these<br>approaches will have their own<br>advantages, disadvantages, specific<br>uses but most notably, many of these<br>classical approaches make an<br>appearance in the mentioned papers<br>as adapted versions are used for<br>certain quantum algorithms,<br>specifically QUBO<br>Intelligent approaches (mostly referring to<br>machine learning based techniques):<br>- Bayesian approaches (e.g. Black-<br>Litterman approaches (e.g. Black-<br>Litterman approaches (SVR),<br>Neural network-based approaches,<br>reinforcement learning approaches,<br>and evolutionary approaches. Again,<br>most of these types of approaches can<br>be seen back in adapted versions for<br>quantum computing PO.<br>Quantum Computing for PO; the following is<br>mentioned:<br>- "On multiple experiments, QC is<br>shown to give better performance on<br>complex and NP-hard problems | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>N/A<br>Methodology:<br>N/A<br>Use case:<br>N/A | Metaheuristic =<br>procedures or<br>strategies<br>designed to<br>generate or find<br>god solutions to<br>an optimization<br>problem |

|                  |                           | 1 1 1 1 1                                      | I                 |  |
|------------------|---------------------------|------------------------------------------------|-------------------|--|
|                  |                           | which require large solution space."           |                   |  |
|                  |                           | (p. 23)                                        |                   |  |
|                  |                           | - Quantum-inspired metaheuristic               |                   |  |
|                  |                           | techniques are methods take                    |                   |  |
|                  |                           | advantage of the promising power               |                   |  |
|                  |                           | that quantum computing has and                 |                   |  |
|                  |                           | those of metaheuristics, "and have             |                   |  |
|                  |                           | shown to perform better than classical         |                   |  |
|                  |                           | counterparts" (p. 30). Furthermore,            |                   |  |
|                  |                           | these methods are widely used in               |                   |  |
|                  |                           | constrained and unconstrained                  |                   |  |
|                  |                           | method (e.g. constraints in PO)                |                   |  |
|                  |                           | - The following meta-heuristic                 |                   |  |
|                  |                           | approaches are mentioned that show             |                   |  |
|                  |                           | promising results (however, there are          |                   |  |
|                  |                           | more to be mentioned, as shown from            |                   |  |
|                  |                           | the above summarized papers):                  |                   |  |
|                  |                           | Quantum-inspired Tabu search                   |                   |  |
|                  |                           | (QTS), Multi-Objective Quantum-                |                   |  |
|                  |                           | Inspired Tabu Search (MOOTS.                   |                   |  |
|                  |                           | flexible, profitable, can optimize             |                   |  |
|                  |                           | multiple objectives, but needs further         |                   |  |
|                  |                           | evaluation). Quantum-Inspired                  |                   |  |
|                  |                           | Firefly algorithm with Particle                |                   |  |
|                  |                           | Swarm Optimization (OIFAPSO, no                |                   |  |
|                  |                           | experiments with this method to date           |                   |  |
|                  |                           | 2023) Quantum-Inspired Tensor                  |                   |  |
|                  |                           | Networks (TN) Quantum-Inspired                 |                   |  |
|                  |                           | Accomvie evolutionary algorithm                |                   |  |
|                  |                           | (OLAEA finds efficient global                  |                   |  |
|                  |                           | ontimization for complex systems               |                   |  |
|                  |                           | high accuracy low error but cannot             |                   |  |
|                  |                           | do multiple objective scenarios, and           |                   |  |
|                  |                           | that may be the reason it is not               |                   |  |
|                  |                           | frequent in <b>BO</b> literature). Variational |                   |  |
|                  |                           | Quantum Eigenselver (VOE) D                    |                   |  |
|                  |                           | Waya hybrid Overture Annealing                 |                   |  |
|                  |                           | A dvantage of QC annuashes                     |                   |  |
|                  |                           | - Advantage of QC approaches:                  |                   |  |
|                  |                           | storage exponentially and are useful           |                   |  |
|                  |                           | to solve your complex compute                  |                   |  |
|                  |                           | evtensive problems. Easter as                  |                   |  |
|                  |                           | extensive problems. Faster as                  |                   |  |
|                  |                           | compared to any other methods." (p.            |                   |  |
|                  |                           | $L_{initations} = f O C = 1 $ (T1)             |                   |  |
|                  |                           | - Limitations of QC approach: The              |                   |  |
|                  |                           | energy required by quantum                     |                   |  |
|                  |                           | computer is much larger than                   |                   |  |
|                  |                           | traditional computers. Still there is a        |                   |  |
|                  |                           | lot of unknowns as this is an ongoing          |                   |  |
|                  | (m1 )                     | area of research." (p. 25)                     |                   |  |
| [52]             | "This paper covers and    | Objective(s):                                  | Quantum hardware: |  |
| Quantum-inspired | compares quantum          |                                                | N/A               |  |
| approaches for a | inspired versions of four |                                                |                   |  |
|                  | 1                         | 1                                              |                   |  |

| constrained portfolio | popular evolutionary     | _        | Use a genetic algorithm (GA) to         | Ouantum algorithm:       |
|-----------------------|--------------------------|----------|-----------------------------------------|--------------------------|
| optimization          | techniques with three    |          | solve a PO problem for the given        | Quantum versions of      |
| problem               | benchmark datasets.      |          | datasets                                | the classical algorithms |
| (Gunjan, A. &         | Genetic algorithm.       | _        | Use Differential evolution (DE) to      | named                    |
| Bhattacharyya, S.     | differential evolution   |          | solve a PO problem for the given        |                          |
| 2024)                 | particle swarm           |          | dataset                                 | Methodology:             |
|                       | optimization, ant colony | _        | Use Particle swarm (PSO) to solve a     | Optimization             |
|                       | optimization, and their  |          | PO problem for the given dataset        | op ministration          |
|                       | quantum-inspired         | _        | Use ant colony optimization (ACO)       | Use case:                |
|                       | incarnations are         |          | to solve a PO problem for the given     | Portfolio optimization   |
|                       | implemented, and the     |          | dataset                                 |                          |
|                       | results are compared"    | _        | Use the quantum inspired version of     |                          |
|                       | (p. 1)                   |          | GA. DE. PSO. and ACO to solve a         |                          |
|                       | (F)                      |          | PO problem for the given dataset        |                          |
|                       | The experiment done on   | _        | Measure the performance of the          |                          |
|                       | the optimization         |          | mentioned techniques via mean error.    |                          |
|                       | approaches were done     |          | execution time, and fitness function    |                          |
|                       | using 10 years of stock  |          | (minimum risk)                          |                          |
|                       | price data from          |          | ()                                      |                          |
|                       | NASDAO, Dow Jones.       | Results: |                                         |                          |
|                       | and BSE                  | -        | Classical PSO showed to have lowest     |                          |
|                       |                          |          | mean square error, root mean square     |                          |
|                       |                          |          | error, mean absolute error, and mean    |                          |
|                       |                          |          | absolute percentage error, basically    |                          |
|                       |                          |          | indication that it can very closely     |                          |
|                       |                          |          | approximate optimal solutions.          |                          |
|                       |                          | -        | Quantum-inspired versions were          |                          |
|                       |                          |          | faster, and often had better quality of |                          |
|                       |                          |          | results                                 |                          |
|                       |                          | -        | "The experiments reveal that            |                          |
|                       |                          |          | quantum-inspired ant colony             |                          |
|                       |                          |          | optimization (QiACO) is more            |                          |
|                       |                          |          | effective and faster than the other     |                          |
|                       |                          |          | techniques chosen in both the           |                          |
|                       |                          |          | classical and quantum inspired          |                          |
|                       |                          |          | domains" (p. 23)                        |                          |
|                       |                          | -        | Further analysis of results showed:     |                          |
|                       |                          |          | quantum-inspired approaches             |                          |
|                       |                          |          | produce better risk values than         |                          |
|                       |                          |          | classical approaches, Quantum PSO       |                          |
|                       |                          |          | showed to generate the most optimal     |                          |
|                       |                          |          | risk compared to classical methods      |                          |
|                       |                          | -        | Results from the given tables for the   |                          |
|                       |                          |          | experiments confirm statements made     |                          |
|                       |                          |          | on fastness and quality of results.     |                          |
|                       |                          | -        | Further Wilcoxon tests (to show         |                          |
|                       |                          |          | whether made conclusion on the          |                          |
|                       |                          |          | differences between classical and       |                          |
|                       |                          |          | quantum methods are significant)        |                          |
|                       |                          |          | show that almost all comparisons        |                          |
|                       |                          |          | between classical and quantum           |                          |
|                       |                          |          | algorithms lead to the quantum          |                          |

|                                                                                                                       |                                                                                                                                                                                                                                                                                                                      | algorithm either performing on par<br>with classical ones, or better.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                       |                                                                                                                                                                                                                                                                                                                      | <ul> <li>"It is observed that the quantum-<br/>inspired techniques outperform the<br/>classical counterparts." (p. 1)</li> <li>"Experiments have demonstrated that<br/>these quantum-inspired versions are<br/>faster, and the results are comparable<br/>or even better than their classical<br/>counterparts "(p. 35)</li> <li>"Specifically, the quantum-inspired<br/>ACO surpasses all the selected<br/>techniques in terms of speed, and its<br/>optimization results closely match<br/>those of the other selected<br/>techniques" (p. 35)</li> </ul>                                                                                                                                                                                    |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                       |                                                                                                                                                                                                                                                                                                                      | <ul> <li>Important notes:</li> <li>benchmark datasets, NASDAQ (from 2012-06-23 to 2022-06-27), BSE (from 2011-05-13 to 2023-02-07), and Dow Jones (from 2009-08-06 to 2023-05-05).</li> <li>Four enhancements to the named techniques are given so that errors are minimized, they become more efficient, and quality of results are better:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                     |
| [53]<br>Portfolio<br>Optimization Using<br>Quantum-Inspired<br>Modified Genetic<br>Algorithm (Gunjan<br>et al., 2023) | "An effort is made to<br>implement two different<br>genetic versions along<br>with their extension in<br>the quantum-inspired<br>space. Improvements to<br>the popular crossover<br>techniques, viz. (i)<br>arithmetic and (ii)<br>heuristic crossover are<br>proposed to reduce<br>computational time." (p.<br>665) | <ul> <li>Objective(s): <ul> <li>Optimize risk and return in a PO problem for a proposed quantum genetic algorithm.</li> <li>Use the following proposed classical techniques to base the QiGA upon: Arithmetic crossover, Heuristic crossover</li> <li>Conduct the experiments on a dataset from the NASDAQ in the period 2012-06-28 to 2022-06-27, objective function is to find minimum risk, evaluation are done via mean square error (MAE), noot mean square error (MAE), mean absolute percentage error (MAPE). Lastly, execution times are measured for the QiGA.</li> </ul> </li> <li>Results: <ul> <li>'It is evident from the results that the quantum-inspired version outperforms the classical counterparts</li> </ul> </li> </ul> | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>Quantum genetic<br>algorithm (QiGA)<br>Methodology:<br>N/A<br>Use case:<br>N/A | Crossover =<br>create new<br>solutions to a<br>problem by<br>combining the<br>features of two<br>parent solutions,<br>generating<br>offspring that is<br>closer to the<br>optimal solution<br>Arithmetic<br>crossover =<br>continuous<br>optimization by<br>taking a parent<br>group of 2 and<br>then making<br>offspring<br>generations as a<br>weighted average<br>of the parents |

|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | as far as the minimization of portfolio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             | Heuristic                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | risk is concerned." (p. 671)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                             | crossover =                                                                                                                                                |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | - The OiGA with arithmetic crossover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             | choose two                                                                                                                                                 |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | performs best overall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                             | parents, out of                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | - The classical GA algorithm is worse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                             | which one is                                                                                                                                               |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | off on all evaluated parameters (Risk,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                             | superior, or when                                                                                                                                          |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | Return, MSE, MAE, RMSE, MAPE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             | combined creates                                                                                                                                           |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | Mean Execution Time (MET), Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                             | a solution more                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | Execution Time (TET))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                             | specific to the                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | - QiGA with arithmetic crossover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                             | objective problem                                                                                                                                          |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | performs best on MSE, MAE, RMSE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | MAPE, MET, TET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | - QiGA with heuristic crossover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | performs best on the lowest risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | - "It is also observed that quantum-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | inspired versions are faster and more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | efficient than their classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | counterparts." (p. 672)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | Important notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | - "Portfolio optimization, in other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | words, is an iterative and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | a near antimal solution is achieved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |                                                                                                                                                            |
|                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                        | through an iterative process " (n. 665)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |                                                                                                                                                            |
| [5(]                                                                                                                              |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                             | 0                                                                                                                                                          |
| 1301                                                                                                                              | $\perp$ " $\Delta_1$ mm or at the                                                                                                                                                                                                                                                                                                      | ()hieclives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ()uantum hardware                                                                                                                           | $\Box$ ( onvergency =                                                                                                                                      |
| [50]<br>An improved OPSO                                                                                                          | "Aiming at the<br>shortcomings of                                                                                                                                                                                                                                                                                                      | - Synthesize an improved OSPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quantum hardware:<br>N/A                                                                                                                    | the process where                                                                                                                                          |
| [50]<br>An improved QPSO<br>algorithm and its                                                                                     | *Aiming at the<br>shortcomings of<br>quantum-behaved                                                                                                                                                                                                                                                                                   | - Synthesize an improved QSPO<br>algorithm based on the shortcoming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quantum hardware:<br>N/A                                                                                                                    | the process where<br>an optimization                                                                                                                       |
| [50]<br>An improved QPSO<br>algorithm and its<br>application in fuzzy                                                             | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm                                                                                                                                                                                                                                                                 | - Synthesize an improved QSPO<br>algorithm based on the shortcoming<br>of the QSPO algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quantum hardware:<br>N/A<br>Ouantum algorithm:                                                                                              | the process where<br>an optimization<br>algorithm                                                                                                          |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with                                             | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm                                                                                                                                                                                                                                       | <ul> <li>Synthesize an improved QSPO<br/>algorithm based on the shortcoming<br/>of the QSPO algorithm</li> <li>Use the other three given algorithms</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)OSPO                                                                                   | convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the                                                                       |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.                      | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved                                                                                                                                                                                                                | <ul> <li>Synthesize an improved QSPO<br/>algorithm based on the shortcoming<br/>of the QSPO algorithm</li> <li>Use the other three given algorithms<br/>(QSPO, PSO-w, RQSPO) in the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO                                                                                   | convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl                                                |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved                                                                                                                                                                                             | <ul> <li>Synthesize an improved QSPO<br/>algorithm based on the shortcoming<br/>of the QSPO algorithm</li> <li>Use the other three given algorithms<br/>(QSPO, PSO-w, RQSPO) in the<br/>paper to benchmark against each</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:                                                                   | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution                             |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm                                                                                                                                                                           | <ul> <li>Synthesize an improved QSPO<br/>algorithm based on the shortcoming<br/>of the QSPO algorithm</li> <li>Use the other three given algorithms<br/>(QSPO, PSO-w, RQSPO) in the<br/>paper to benchmark against each<br/>other and similar metaheuristic</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization                                                   | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time                |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm                                                                                                                                                 | <ul> <li>Synthesize an improved QSPO<br/>algorithm based on the shortcoming<br/>of the QSPO algorithm</li> <li>Use the other three given algorithms<br/>(QSPO, PSO-w, RQSPO) in the<br/>paper to benchmark against each<br/>other and similar metaheuristic<br/>approaches to IQSPO. Benchmarking</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization                                                   | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,                                                                                                                      | <ul> <li>Synthesize an improved QSPO<br/>algorithm based on the shortcoming<br/>of the QSPO algorithm</li> <li>Use the other three given algorithms<br/>(QSPO, PSO-w, RQSPO) in the<br/>paper to benchmark against each<br/>other and similar metaheuristic<br/>approaches to IQSPO. Benchmarking<br/>is performed on a fuzzy PO problem</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:                                      | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved                                                                                                  | <ul> <li>Synthesize an improved QSPO<br/>algorithm based on the shortcoming<br/>of the QSPO algorithm</li> <li>Use the other three given algorithms<br/>(QSPO, PSO-w, RQSPO) in the<br/>paper to benchmark against each<br/>other and similar metaheuristic<br/>approaches to IQSPO. Benchmarking<br/>is performed on a fuzzy PO problem<br/>with 16 different benchmarks,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio                 | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in                                                                       | <ul> <li>Synthesize an improved QSPO<br/>algorithm based on the shortcoming<br/>of the QSPO algorithm</li> <li>Use the other three given algorithms<br/>(QSPO, PSO-w, RQSPO) in the<br/>paper to benchmark against each<br/>other and similar metaheuristic<br/>approaches to IQSPO. Benchmarking<br/>is performed on a fuzzy PO problem<br/>with 16 different benchmarks,<br/>number of iterations: 1000-1500-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                      | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in<br>solving a kind of fuzzy                                            | <ul> <li>Synthesize an improved QSPO<br/>algorithm based on the shortcoming<br/>of the QSPO algorithm</li> <li>Use the other three given algorithms<br/>(QSPO, PSO-w, RQSPO) in the<br/>paper to benchmark against each<br/>other and similar metaheuristic<br/>approaches to IQSPO. Benchmarking<br/>is performed on a fuzzy PO problem<br/>with 16 different benchmarks,<br/>number of iterations: 1000-1500-<br/>2000, algorithms were run 30 times</li> </ul>                                                                                                                                                                                                                                                                                                                                                                               | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in<br>solving a kind of fuzzy<br>portfolio selection                     | <ul> <li>Synthesize an improved QSPO<br/>algorithm based on the shortcoming<br/>of the QSPO algorithm</li> <li>Use the other three given algorithms<br/>(QSPO, PSO-w, RQSPO) in the<br/>paper to benchmark against each<br/>other and similar metaheuristic<br/>approaches to IQSPO. Benchmarking<br/>is performed on a fuzzy PO problem<br/>with 16 different benchmarks,<br/>number of iterations: 1000-1500-<br/>2000, algorithms were run 30 times<br/>for each instance.</li> </ul>                                                                                                                                                                                                                                                                                                                                                        | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in<br>solving a kind of fuzzy<br>portfolio selection<br>problems" (p. 1) | <ul> <li>Synthesize an improved QSPO algorithm based on the shortcoming of the QSPO algorithm</li> <li>Use the other three given algorithms (QSPO, PSO-w, RQSPO) in the paper to benchmark against each other and similar metaheuristic approaches to IQSPO. Benchmarking is performed on a fuzzy PO problem with 16 different benchmarks, number of iterations: 1000-1500-2000, algorithms were run 30 times for each instance.</li> <li>Compare the IQSPO with six well-</li> </ul>                                                                                                                                                                                                                                                                                                                                                           | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in<br>solving a kind of fuzzy<br>portfolio selection<br>problems" (p. 1) | <ul> <li>Synthesize an improved QSPO algorithm based on the shortcoming of the QSPO algorithm</li> <li>Use the other three given algorithms (QSPO, PSO-w, RQSPO) in the paper to benchmark against each other and similar metaheuristic approaches to IQSPO. Benchmarking is performed on a fuzzy PO problem with 16 different benchmarks, number of iterations: 1000-1500-2000, algorithms were run 30 times for each instance.</li> <li>Compare the IQSPO with six well-know metaheuristics (Genetic</li> </ul>                                                                                                                                                                                                                                                                                                                               | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in<br>solving a kind of fuzzy<br>portfolio selection<br>problems" (p. 1) | <ul> <li>Synthesize an improved QSPO<br/>algorithm based on the shortcoming<br/>of the QSPO algorithm</li> <li>Use the other three given algorithms<br/>(QSPO, PSO-w, RQSPO) in the<br/>paper to benchmark against each<br/>other and similar metaheuristic<br/>approaches to IQSPO. Benchmarking<br/>is performed on a fuzzy PO problem<br/>with 16 different benchmarks,<br/>number of iterations: 1000-1500-<br/>2000, algorithms were run 30 times<br/>for each instance.</li> <li>Compare the IQSPO with six well-<br/>know metaheuristics (Genetic<br/>algorithm, Differential evolution, bat</li> </ul>                                                                                                                                                                                                                                  | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in<br>solving a kind of fuzzy<br>portfolio selection<br>problems" (p. 1) | <ul> <li>Synthesize an improved QSPO algorithm based on the shortcoming of the QSPO algorithm</li> <li>Use the other three given algorithms (QSPO, PSO-w, RQSPO) in the paper to benchmark against each other and similar metaheuristic approaches to IQSPO. Benchmarking is performed on a fuzzy PO problem with 16 different benchmarks, number of iterations: 1000-1500-2000, algorithms were run 30 times for each instance.</li> <li>Compare the IQSPO with six well-know metaheuristics (Genetic algorithm, Differential evolution, bat algorithm, Cuckoo search, PSO, and</li> </ul>                                                                                                                                                                                                                                                     | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in<br>solving a kind of fuzzy<br>portfolio selection<br>problems" (p. 1) | <ul> <li>Synthesize an improved QSPO algorithm based on the shortcoming of the QSPO algorithm</li> <li>Use the other three given algorithms (QSPO, PSO-w, RQSPO) in the paper to benchmark against each other and similar metaheuristic approaches to IQSPO. Benchmarking is performed on a fuzzy PO problem with 16 different benchmarks, number of iterations: 1000-1500-2000, algorithms were run 30 times for each instance.</li> <li>Compare the IQSPO with six well-know metaheuristics (Genetic algorithm, Differential evolution, bat algorithm, Cuckoo search, PSO, and QSPO), with max number of</li> </ul>                                                                                                                                                                                                                           | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in<br>solving a kind of fuzzy<br>portfolio selection<br>problems" (p. 1) | <ul> <li>Synthesize an improved QSPO algorithm based on the shortcoming of the QSPO algorithm</li> <li>Use the other three given algorithms (QSPO, PSO-w, RQSPO) in the paper to benchmark against each other and similar metaheuristic approaches to IQSPO. Benchmarking is performed on a fuzzy PO problem with 16 different benchmarks, number of iterations: 1000-1500-2000, algorithms were run 30 times for each instance.</li> <li>Compare the IQSPO with six well-know metaheuristics (Genetic algorithm, Differential evolution, bat algorithm, Cuckoo search, PSO, and QSPO), with max number of iterations 1500, and population size</li> </ul>                                                                                                                                                                                      | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in<br>solving a kind of fuzzy<br>portfolio selection<br>problems" (p. 1) | <ul> <li>Synthesize an improved QSPO algorithm based on the shortcoming of the QSPO algorithm</li> <li>Use the other three given algorithms (QSPO, PSO-w, RQSPO) in the paper to benchmark against each other and similar metaheuristic approaches to IQSPO. Benchmarking is performed on a fuzzy PO problem with 16 different benchmarks, number of iterations: 1000-1500-2000, algorithms were run 30 times for each instance.</li> <li>Compare the IQSPO with six well-know metaheuristics (Genetic algorithm, Differential evolution, bat algorithm, Cuckoo search, PSO, and QSPO), with max number of iterations 1500, and population size (assets) of 50, run 30 times</li> </ul>                                                                                                                                                         | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in<br>solving a kind of fuzzy<br>portfolio selection<br>problems" (p. 1) | <ul> <li>Synthesize an improved QSPO algorithm based on the shortcoming of the QSPO algorithm</li> <li>Use the other three given algorithms (QSPO, PSO-w, RQSPO) in the paper to benchmark against each other and similar metaheuristic approaches to IQSPO. Benchmarking is performed on a fuzzy PO problem with 16 different benchmarks, number of iterations: 1000-1500-2000, algorithms were run 30 times for each instance.</li> <li>Compare the IQSPO with six well-know metaheuristics (Genetic algorithm, Differential evolution, bat algorithm, Cuckoo search, PSO, and QSPO), with max number of iterations 1500, and population size (assets) of 50, run 30 times</li> </ul>                                                                                                                                                         | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in<br>solving a kind of fuzzy<br>portfolio selection<br>problems" (p. 1) | <ul> <li>Synthesize an improved QSPO algorithm based on the shortcoming of the QSPO algorithm</li> <li>Use the other three given algorithms (QSPO, PSO-w, RQSPO) in the paper to benchmark against each other and similar metaheuristic approaches to IQSPO. Benchmarking is performed on a fuzzy PO problem with 16 different benchmarks, number of iterations: 1000-1500-2000, algorithms were run 30 times for each instance.</li> <li>Compare the IQSPO with six well-know metaheuristics (Genetic algorithm, Differential evolution, bat algorithm, Cuckoo search, PSO, and QSPO), with max number of iterations 1500, and population size (assets) of 50, run 30 times</li> </ul>                                                                                                                                                         | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in<br>solving a kind of fuzzy<br>portfolio selection<br>problems" (p. 1) | <ul> <li>Objectives:</li> <li>Synthesize an improved QSPO algorithm based on the shortcoming of the QSPO algorithm</li> <li>Use the other three given algorithms (QSPO, PSO-w, RQSPO) in the paper to benchmark against each other and similar metaheuristic approaches to IQSPO. Benchmarking is performed on a fuzzy PO problem with 16 different benchmarks, number of iterations: 1000-1500-2000, algorithms were run 30 times for each instance.</li> <li>Compare the IQSPO with six well-know metaheuristics (Genetic algorithm, Differential evolution, bat algorithm, Cuckoo search, PSO, and QSPO), with max number of iterations 1500, and population size (assets) of 50, run 30 times</li> <li>Results:</li> <li>For 14 of the 16 benchmarks, IQSPO was superior to the other tested</li> </ul>                                     | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |
| An improved QPSO<br>algorithm and its<br>application in fuzzy<br>portfolio model with<br>constraints (He, G.<br>& Lu, X, L. 2021) | "Aiming at the<br>shortcomings of<br>quantum-behaved<br>particle swarm<br>optimization algorithm<br>(QPSO), an improved<br>quantum behaved<br>particle swarm<br>optimization algorithm<br>(IQPSO) is put forward,<br>and the improved<br>algorithm is applied in<br>solving a kind of fuzzy<br>portfolio selection<br>problems" (p. 1) | <ul> <li>Objectives:</li> <li>Synthesize an improved QSPO algorithm based on the shortcoming of the QSPO algorithm</li> <li>Use the other three given algorithms (QSPO, PSO-w, RQSPO) in the paper to benchmark against each other and similar metaheuristic approaches to IQSPO. Benchmarking is performed on a fuzzy PO problem with 16 different benchmarks, number of iterations: 1000-1500-2000, algorithms were run 30 times for each instance.</li> <li>Compare the IQSPO with six well-know metaheuristics (Genetic algorithm, Differential evolution, bat algorithm, Cuckoo search, PSO, and QSPO), with max number of iterations 1500, and population size (assets) of 50, run 30 times</li> <li>Results:</li> <li>For 14 of the 16 benchmarks, IQSPO was superior to the other tested algorithms (including metaheuristic</li> </ul> | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>(I)QSPO<br>Methodology:<br>Optimization<br>Use case:<br>(Fuzzy) portfolio<br>optimization | Convergency =<br>the process where<br>an optimization<br>algorithm<br>approaches the<br>optimal/sufficientl<br>y good solution<br>over time<br>iteratively |

|                     |                        | <ul> <li>PSO-w), showing higher accuracy<br/>and less standard deviation</li> <li>Using a Wilcoxon rank-sum test, it<br/>shows that IQSPO significantly<br/>outperforms the rest of the algorithms<br/>on most of the 16 test functions.</li> <li>For the comparison with other<br/>metaheuristics, IQSPO showed a<br/>better ability to search for global<br/>optima, IQSPO gets better means,<br/>more promising standard deviation,<br/>indicating more robustness and<br/>effectiveness</li> <li>"IQPSO shows better calculation<br/>precision and robustness" (p. 6),<br/>"IQSPO has better mean and standard<br/>deviation across all algorithms" (p. 6)</li> <li>"The experimental results on 16<br/>benchmark functions show that<br/>IQPSO has better convergence and<br/>robustness than PSO with inertia<br/>weight, QPSO and QPSO with a<br/>hydrid argebability distribution in</li> </ul> |                        |
|---------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                     |                        | <ul> <li>hybrid probability distribution in<br/>most cases." (p. 1)</li> <li>"When solving a fuzzy portfolio<br/>model, IQPSO provides comparable<br/>and superior results compared with<br/>the other metaheuristics." (p. 1)</li> <li>The novel QSPO algorithm already</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|                     |                        | has some advantages over the<br>classical PSO algorithm, mainly<br>fewer parameters needed, faster<br>convergence speed, and strong search<br>capability for complex problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
|                     |                        | Important notes:<br>- Shortcomings of the QSPO algorithm<br>are addressed in the IQSPO<br>algorithm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| [60]                | "Herein, we proposed a | Objectives:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ouantum hardware:      |
| Empirical Analysis  | method that uses the   | - Construct the use of quantum walks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OASM simulator from    |
| of Quantum          | knapsack-based         | (QWS) with OAOA to enhance its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Qiskit to give insight |
| Approximate         | portfolio optimization | performance in searching for optimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | into the proposed      |
| Optimization        | problem and            | portfolio configuration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QAOA algorithm, then   |
| Algorithm for       | incorporates the       | - Use the proposed QAOA model on a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | afterwards IBM Cairo   |
| Knapsack-based      | quantum computing      | PO problem using 2-5 stocks from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (27 qubit) is used for |
| Financial Portfolio | capabilities of the    | well-known companies (e.g. Apple,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the given PO problem   |
| Optimization (Huot  | quantum walk mixer     | Amazon) from the timeframe 01-01-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
| et al., 2024)       | with the quantum       | 2018 to 01-01-2023. It was tested on:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quantum algorithm:     |
|                     | approximate            | a noiseless simulator, noisy fake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | QWM-QAOA               |
|                     | optimization algorithm | backend, noisy real device. Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |

|                                                                                                                                                                                       | (QAOA) to address the<br>challenges presented by<br>the NP-hard problem."<br>(p. 1)<br>Furthermore, the<br>proposed method of<br>using QAOA for a<br>knapsack-based PO<br>problem is then<br>experimented upon and<br>results are put into<br>perspective<br>"Our methodology is<br>based on the<br>fundamental principles<br>of mean–variance<br>optimization, focusing<br>on the Markowitz<br>model." (p. 6)                     | <ul> <li>qubits were different for certain stock counts but max qubits were 11 for 5 stocks, and min 7 for 2 stocks.</li> <li>Results: <ul> <li>The proposed QWM-QAOA model revealed a consistent enhancement in identifying optimal solution to the knapsack problem, approximating optimal solutions 100%-98% with 2-5 stocks.</li> <li>"Our proposed method achieves efficient results in noiseless and fake device settings, ranging from100% to 98% and 98% to 80%." (p. 11)</li> <li>For real devices the results showed an accuracy of 50% due to errors, indicating that there are still error performance enhancements to be made on real quantum devices.</li> </ul> </li> <li>Important notes: <ul> <li>The proposed model and knapsack problem is based upon the Markowitz model of max return/min risk</li> <li>During the optimization process, the QAOA model was optimized using a classical optimizer SHGO, and quantum walk was used to boost optimization by its ability to refine the process.</li> </ul> </li> </ul> | Methodology:<br>Optimization<br>Use case:<br>Portfolio optimization                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [63]<br>Exploring the<br>synergistic potential<br>of quantum<br>annealing and gate<br>model computing for<br>portfolio<br>optimization (Jain<br>Naman. & Girish<br>Chandra, M., 2023) | "In this work, we<br>extend upon a study to<br>use the best of both<br>quantum annealing and<br>gate-based quantum<br>computing systems to<br>enable solving large-<br>scale optimization<br>problems efficiently on<br>the available hardware."<br>(p. 1)<br>Test are conducted on<br>real-world dataset<br>derived from Indian<br>stock market, up to 64<br>assets are used.<br>"We also demonstrate<br>the effectiveness of our | Objective(s):         -       Form an Ising/QUBO problem<br>formulation (as the paper mention;<br>QUBO and ising formulations are<br>interchangeable) and use Large<br>System Sampling Approximation<br>(LSSA) to divide it into smaller sub-<br>systems. Determine the right assets<br>for creating these sub-systems by<br>finding the Maximum Independent<br>Set (MIS) on a quantum annealer.<br>Solve the smaller sub-systems<br>independently via LSSA on a<br>quantum annealer and then combine<br>their solutions using Variational<br>Quantum Eigensolver (VQE) on a<br>gate-based quantum computer to find<br>the optimal solution.         -       For the second model, change the<br>sampling method for the sub-systems                                                                                                                                                                                                                                                                                                      | Quantum hardware:<br>Quantum annealer and<br>gate-based system (D-<br>Wave Advantage<br>system 4.1) (VQE<br>amplitude optimization<br>is performed on Qiskit<br>simulator, and<br>parameter optimization<br>via a classical solver<br>COBYLA) (Python<br>library PyQUBO was<br>used to form the QUBO<br>problem)<br>Quantum algorithm:<br>N/A<br>Methodology:<br>Optimization | The proposed<br>method in the<br>paper that this<br>paper is based<br>upon works using<br>the Large System<br>Sampling<br>Approximation<br>(LSSA) method,<br>which entail<br>dividing a larger<br>problem in<br>subsets of<br>problems, to then<br>combine the<br>solution of those<br>to approximate a<br>solution to the<br>original problem. |

| approach on a range of   | to MIS and random-based sampling          |                        | This paper         |
|--------------------------|-------------------------------------------|------------------------|--------------------|
| portfolio optimization   | instead of only MIS.                      | Use case:              | modifies the       |
| problems of different    | - For the third model, use only random    | Portfolio optimization | LSSA by            |
| sizes." (p. 1)           | sampling                                  |                        | introducing a      |
|                          | - Benchmark the given model on a PO       |                        | modified sample    |
| A QUBO formulation is    | problem in the Indian stock market        |                        | step in the LSSA.  |
| made and tested on real- | with data from 2018-2023, with $n =$      |                        | This modified      |
| world stock datasets,    | 64 stocks, risk aversion constraints.     |                        | example is         |
| comparing                |                                           |                        | depicted as:       |
| performances with        | Results:                                  |                        | dividing a PO      |
| previous techniques for  | - Results from the experiment showed      |                        | problem into sub-  |
| varying numbers of       | that both the LSSA MIS and the            |                        | systems of smaller |
| assets and parameters.   | LSSA MIS RANDOM models                    |                        | sizes by selecting |
|                          | performed comparably to a classical       |                        | representative     |
| Lastly, the effects of   | D-Wave Tabu Solver, but with fewer        |                        | stocks of the      |
| different parameters on  | samples needed.                           |                        | entire market and  |
| the PO problem solution  | - Samples needed for near optimal         |                        | capture the        |
| quality are investigated | solution:                                 |                        | highest            |
| and benchmarked          | LSSA MIS: 12 samples                      |                        | correlation among  |
| against earlier works    | LSSA MIS RANDOM: 13 samples               |                        | them               |
|                          | LSSA_RANDOM: 32 samples                   |                        |                    |
|                          | - "Our experimentation shows that the     |                        | Maximum            |
|                          | hybrid approach performs at par with      |                        | Independent Set =  |
|                          | the traditional classical optimization    |                        | a way of ensuring  |
|                          | methods with a good approximation         |                        | that a subset of   |
|                          | ratio" (n 1)                              |                        | assets has no      |
|                          | - "Our findings suggest that hybrid       |                        | strongly           |
|                          | annealer-gate quantum computing           |                        | correlated assets  |
|                          | can be a valuable tool for portfolio      |                        | as correlation is  |
|                          | managers seeking to optimize their        |                        | an indicator of    |
|                          | investment portfolios in the near         |                        | redundancy or      |
|                          | future" (n 1)                             |                        | overlapping For    |
|                          | - Scatter plots reflect the findings made |                        | this namer MIS is  |
|                          | in the paper                              |                        | mainly used to     |
|                          | - "our findings suggest that a hybrid of  |                        | increase           |
|                          | annealing and gate-based quantum          |                        | efficiency and     |
|                          | computing can be a promising tool         |                        | effectiveness of   |
|                          | for portfolio optimization "(n. 10)       |                        | solving large-     |
|                          | for portiono optimization, (p. 10)        |                        | scale optimization |
|                          | Important notes:                          |                        | problems           |
|                          | - LSSA enables the solving of greater     |                        | Problems.          |
|                          | nrohlem sizes on available quantum        |                        |                    |
|                          | hardware                                  |                        |                    |
|                          | - "large-scale problems cannot be         |                        |                    |
|                          | solved on today's (2023) quantum          |                        |                    |
|                          | hardware" $(n, 1)$                        |                        |                    |
|                          | - Classical ontimization methods such     |                        |                    |
|                          | as Monte Carlo methods have               |                        |                    |
|                          | limitation dealing with large-scale       |                        |                    |
|                          | nrohlems                                  |                        |                    |
|                          | - "Quantum computing methods viz          |                        |                    |
|                          | quantum annealing [7 3] and gate-         |                        |                    |
|                          | hased quantum computing can               |                        |                    |
|                          | based quantum computing can               |                        |                    |

| potentially solve complex<br>optimization problems more<br>efficiently than classical methods and<br>may provide better solutions for<br>practical problems with many<br>variables and constraints." (p. 2)<br>- "several studies show remarkable<br>results in portfolio optimization using<br>the above-described common<br>methods (VQE, QAOA, QUBO, QE),<br>these approaches require an N-qubit<br>quantum computer to solve the<br>problem with N assets" (p. 2)<br>- "The proposed method is best suited<br>for problem instances where there are<br>grades of diversity, which is usually<br>true in a real setting." (p. 10)<br>- Th text mentioned that gorver<br>adaptive search might be better to<br>solve the sub-systems instead of the<br>imposed method.Quantum hardware:<br>D-Wave simulator[64]A two-stage approach<br>combining quantum-Objective(s)Quantum hardware:<br>D-Wave simulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Flexible Annealer-     annealing and gate-   problem (for only long positions in an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Gate Hybrid Model     based quantum     equal weighted portfolio, minimizing     Quantum algorithm:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| for Solving Large-computing for large-the objective function for variousHybrid quantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Scale Portfolioscale PO problemsproblem sizes) using a quantumannealing / gate-based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Optimization (Jain annealing and gate-based quantum approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| et al., 2023) LSSA is used and computing hybrid approach involving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| a more efficient and sustains using quantum parameterized Optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| effective framework for circuit (POC) (in the previous paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| he specific PO problem VQE was used for that) Use case:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| - Experiment on the given 128 asset Portfolio optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| MIS is used to divide PO problem with different increasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| the problem in sub- numbers of sub-problems (Ns) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| systems, using a sub-problem sizes (Ng), the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| parameterized quantum distributions are tested upon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| circuit to combine sub-<br>problem solutions $(32/32)(32/64)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| (52752), (52764)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Experiments are Results:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| performed on 128 asset - For the experiment with 128 asset the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| simulators. following could be noticed: number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| of calls made to the quantum annealer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| increased as number of sub-problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| increased, performance with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| imposed by by identify a straight of the strai |  |
| imposed hybrid method was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| imposed hybrid method was<br>increased by the imposed method<br>involving MIS, LSSA POC, and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Performance increased with the full-hybrid model as problem sizes increased to 128 assets.</li> <li>"Our results demonstrate that the proposed approach performs better with the same hardware resources" (p. 1)</li> <li>"The outcomes of our research suggest that hybrid annealer-gate quantum computing can provide a practical and scalable solution to large-scale portfolio optimization problems, bridging the gap between theoretical advancements in quantum computing and real-world applications in finance" (p. 1)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Important notes:</li> <li>"The hardware limitations of quantum computers prevent the direct application of quantum algorithms to large-scale problems." (p. 1)</li> <li>More qubits are needed as the application of the second second</li></ul> |                                                                                                                                                                                                                                              |
| [66]<br>A Novel Portfolio<br>Optimization with<br>Short Selling Using<br>GNQTS and Trend<br>Ratio (Jiang et al.,<br>2018) | "This paper proposes a<br>strategy to improve the<br>Sharpe ration denoted<br>the trend ratio where the<br>daily expected return is<br>the slope of the trend<br>line, and the risk is the<br>difference between the<br>trend line and the fund<br>standardization" (p. 1)<br>The proposed model<br>includes doing normal<br>trading and short selling<br>simultaneously to<br>increase profits and<br>spread risk. | <ul> <li>problem size increases</li> <li>Objective(s): <ul> <li>Formulate a novel quantum model involving QTS optimized by GNQTS, whilst utilizing sliding windows to overcome over-fitting problems, and trend ratio to identify stable uptrend portfolios for normal trading, and stable downtrends for short selling.</li> <li>Use the model on an experiment based upon the Taiwan top 50 ETF stocks from 2010-2017 as the training periods for the model, and 2011-2018 as the investment periods for the model. Parameters used were: initial fund of 10 million TWD, population of 10, 10000 generations with an execution number of 50.</li> <li>"Use the trend ratio and GNQTS to help investors to select a potential uptrend and a downtrend portfolio, using the sliding windows to train and test, and then evaluate and change a more potential portfolio suitable for a new investment period, hoping that we can make maximum remotive with leav wirk?" (a. 4)</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quantum hardware:         N/A         Quantum algorithm:         Quantum-inspired Tabu         Search algorithm (QTS)         (improved by GNQTS)         Methodology:         Optimization         Use case:         Portfolio optimization |

| - Utilizing the sliding window           |  |
|------------------------------------------|--|
| mechanism, find the best training and    |  |
| testing period                           |  |
|                                          |  |
| Results:                                 |  |
| - Using the sliding window on the        |  |
| experimental results from the model,     |  |
| it became clear that the best training   |  |
| and testing periods were month-to-       |  |
| month, and year-on-year month            |  |
| periods (comparing the same month        |  |
| Itilizing trend ratio and CNOTS the      |  |
| - Othizing trend ratio and ONQ15, the    |  |
| stable up and down trands. Showing       |  |
| that it is possible to short sell and    |  |
| trade normally simultaneously            |  |
| - Utilizing normal and short trading     |  |
| the model was successfully able to       |  |
| simultaneously increase returns and      |  |
| minimize risks.                          |  |
| - There were still some fluctuations in  |  |
| in the results of the experiments, but   |  |
| overall, the model showed promising      |  |
| results.                                 |  |
| - Differing period with higher/lower     |  |
| down/uptrends were also successfully     |  |
| recognized by them model.                |  |
| - "QTS can find the best portfolio in an |  |
| extremely complicated solution space     |  |
| while decreasing the computational       |  |
| complexity" (p. 6)                       |  |
| - "The experiment results show a         |  |
| promising result in which the risk is    |  |
| spread effectively, and the profit is    |  |
| maximized." (p. 1)                       |  |
| - "Using these methods, the              |  |
| experimental results show that we can    |  |
| Tind a portfolio that has better         |  |
| performance than the government-         |  |
| recommended raiwan 50 ETF (p. 0)         |  |
| Important notes:                         |  |
| - The sliding window mechanism is        |  |
| used to overcome any over-fitting        |  |
| problems                                 |  |
| - Trend ratio is used to identify stable |  |
| uptrend portfolios for normal trading,   |  |
| and stable downtrends for short          |  |
| selling.                                 |  |
| - The trend ratio can evaluate the risk  |  |
| of a portfolio more accurately than      |  |
| the Sharpe ratio                         |  |

| [67]<br>Quantum-inspired<br>Computing: | "This study proposes an<br>entanglement-based<br>QIO to optimize the                                                                                                                                                                                                                                                                | <ul> <li>QTS aims to move individuals away<br/>from the worst solution and towards<br/>best solution "in the other words,<br/>QTS finds the best solution more<br/>quickly and efficiently." (p. 1)</li> <li>"This paper uses the trend ratio,<br/>GNQTS, and sliding window to<br/>select potential stocks" (p. 2)</li> <li>The number of stocks in a portfolio is<br/>unrestricted in the case of this paper.</li> <li>GNQTS is used to make sure the<br/>QTS algorithm does not get stuck in a<br/>local optima (which may not be the<br/>best solution)</li> <li>Sliding window mechanism was also<br/>used to find the best training periods,<br/>these were proven to be month to<br/>month trading periods. And year-on-<br/>year month trading periods. Most of<br/>the 'results' part of this paper is based<br/>upon these two periods</li> <li>Objective(s):</li> <li>Form a GIO based model, utilizing<br/>trend ratio to identify stable</li> </ul> |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Entanglement-<br>enhanced Technique    | short-selling portfolio in<br>a group of seven (G7)                                                                                                                                                                                                                                                                                 | downtrend portfolios, to optimize a<br>for a short-selling portfolio.Quantum algorithm:<br>Quantum inspired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| for Short Portfolio in                 | industrialized nations"                                                                                                                                                                                                                                                                                                             | - Experiment with the proposed model optimization algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| (Jiang et al., 2023)                   | (p. 1)                                                                                                                                                                                                                                                                                                                              | period January 2013 to December GNQTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                        | "Trend-ratio is used to<br>precisely determine the<br>performance of a short-<br>selling portfolio during<br>a stable downward<br>trend" (p. 1), this is<br>mainly to recognize<br>portfolios for inclusion<br>in the model.<br>Sliding window is used<br>to select appropriate<br>training and test periods<br>for the experiment. | <ul> <li>2022, selecting the 30 largest</li> <li>capitalization stocks. Parameters of</li> <li>ELSA-GNQTS: 10 individuals,</li> <li>10.000 generations, 50 independent</li> <li>experiments, initial funds of 1 billion</li> <li>in local currency. Then take the best</li> <li>solution from the 50 experiments as</li> <li>benchmark.</li> <li>Propose a novel Entanglement local</li> <li>search-assisted (ELSA) mechanism,</li> <li>and quantum not gate techniques, to</li> <li>improve Quantum Tabu Search</li> <li>algorithm ((GN)QTS)</li> </ul> Results: <ul> <li>The best-found portfolio from the</li> <li>experiment can diversify risk better</li> <li>and achieve higher returns than other</li> <li>QIO algorithms.</li> <li>Portfolio risk of the experiment is</li> <li>lower than the single-stock risk</li> <li>Compared to a Sharpe ratio based</li> <li>ELSA-GNQTS model, the proposed</li> <li>trend ratio ELSA-GNQTS performed</li> </ul> |  |

| [68] "This paper uses<br>Portfolio trend ratio to acc<br>Optimization portfolio with a<br>considering upward trend. B                                                                                                                                                                                                                                                                                                                                                                                           | -<br>-<br>s the Objectiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "Quantum search algorithms are<br>among the applications, where the<br>quantum computer outperforms the<br>classical computer" (p. 1)<br>"Nevertheless, the current quantum<br>computer has lower fidelity,<br>coherence time, and fault tolerance"<br>(p. 1)<br>"The QIO proves to be more effective<br>in portfolio optimization than<br>traditional GA" (p. 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [68]"This paper usePortfoliotrend ratio to acOptimizationportfolio with aconsideringupward trend. B                                                                                                                                                                                                                                                                                                                                                                                                             | s the   Obiectiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>u</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Diversifiedportfolio trend li<br>initial funds"Investment Methodsinitial funds"using GNQTS andSliding windowtet al., 2018)Sliding windowet al., 2018)mechanism is us<br>select appropria<br>training and test<br>for the experime"This paper prov<br>time deposit cho<br>two investment<br>buying round lo<br>or additional od<br>and utilizes the<br>to find which<br>investment meth<br>better under the<br>investment period<br>2)The best portfol<br>among the slidin<br>window periods<br>found effectivel | cess the stable by the ine with ine wit | re(s):<br>Form a GNQTS model incorporating<br>trend ratio, 2-phase sliding window<br>mechanism, funds standardization,<br>time deposit, round lots and odd lots<br>Experiment with the proposed model<br>on a stock selection problem for the<br>Taiwan 50 ETF from 2010 to 2017<br>and 13 sliding window periods.,<br>without restrictions on the stocks (so<br>the algorithm can choose zero or only<br>one stock if it is the best option). The<br>experiment is analyzed by the values:<br>the trend ratio, daily expected return,<br>daily risk, round lots, and odd lots.<br>For the algorithm: execution number<br>is 50, 10.000 generations, and a<br>population of 10<br>The experiments showed that<br>different investment methods had<br>their own unique suitable portfolios.<br>Round lots had lower risk, but also<br>lower expected returns than odd lots,<br>with trend ratio helping to balance<br>return and risk for the best investment<br>method.<br>The most suitable investment method | Quantum hardware:<br>Simulator<br>Quantum algorithm:<br>GNQTS<br>Methodology:<br>Optimization<br>Use case:<br>Portfolio optimization | Funds<br>standardization =<br>Time deposit = a<br>bank account with<br>interest that has a<br>predetermined<br>maturity date.<br>Lot = number of<br>units of a<br>financial product<br>traded on a<br>financial product<br>traded on a<br>financial market<br>Round lots = the<br>general trading<br>unit on the<br>financial<br>exchange, which<br>on the Taiwan<br>stock market is<br>1000 shares<br>Odd lots = an<br>order amount less<br>than the normal<br>unit of trading for<br>that asset, in the |

|                                                                                                                                                |                                                                                                                                                                                    | <ul> <li>Using the proposed 2-phase, sliding window, GNQTS model a higher trend ratio could be found than in a single investment situation, indicating a performance increase achieved by the proposed model.</li> <li>"This paper finds that the different investment method suits the different situations and the different portfolios." (p. 6)</li> <li>"The experimental results show that the proposed method can find the well-performing portfolio with higher return and lower risk in both the training and testing periods." (p. 1)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                 | shares in the<br>Taiwan stock<br>market.                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                |                                                                                                                                                                                    | Important notes:<br>- "The trend ratio can simultaneously<br>consider the daily expected return,<br>daily risk and fairly compare with the<br>different portfolios and different<br>investment periods lengths" (p. 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                 |                                                                                                                                                                                |
| [71]<br>Financial Portfolio<br>Optimization: A<br>QAOA and VQE<br>Formulation for<br>Sharpe Ratio<br>Maximization<br>(Kaushik et al.,<br>2023) | This paper discusses the<br>application of QAOA<br>and VWE for PO<br>problems<br>Results from the<br>proposed approaches<br>are compared towards<br>each other in an<br>experiment | <ul> <li>investment periods lengths." (p. 1)</li> <li>Objective(s): <ul> <li>Transform the Markowitz model in a QUBO formulation for stocks traded on the Abu Dhabi Securities Exchange and then solved through VQE and QAOA</li> <li>For the classical method of benchmarking, use the Sequential Least Squares Programming (SLQP) to form a discrete programming problem of the objective PO function, and then solve it through the classical Branch-and-Bound method.</li> <li>The experiment for the quantum solvers includes 10 stocks on the Abu Dhabi Securities Exchange, which are subsequently either minimized in risk for a particular level of return for a portfolio, or maximized on returns with certain risk levels for a portfolio. Then do the same for a risk factor weight.</li> </ul> </li> <li>Results: <ul> <li>The highest achieved Sharpe ratio on the 10-stock example was1.14, indicating that the best portfolio should give a return of 1.14 times above the rick fore a rate</li> </ul> </li> </ul> | Quantum hardware:<br>D-Wave quantum<br>optimizer QBSOLV<br>(simulator)<br>Quantum algorithm:<br>QAOA, VQE<br>Methodology:<br>Optimization<br>Use case:<br>Portfolio optimization<br>(particularly Sharpe<br>ratio optimization) | Sharpe ratio = a<br>ratio for the<br>comparison<br>between the return<br>and risk of an<br>investment,<br>Sharpe-ratio is<br>used to determine<br>risk-adjusted<br>performance |

| The highest Sharpe ratio for the                                              |
|-------------------------------------------------------------------------------|
| - The ingrest sharpe ratio for the                                            |
| added fisk factor formulation                                                 |
| achieved a Sharpe ratio of 1.20, this                                         |
| Sharpe ratio was 60 base points more                                          |
| than the classical approach.                                                  |
| - "The Sharpe ratio obtained by VQE                                           |
| Model and QAOA Model is 1.20 and                                              |
| 1.21 respectively which is better than                                        |
| the one obtained from the classical                                           |
| model having a value of 1.11." (p. 6)                                         |
| - The paper mentioned the potential of                                        |
| real-life PO problems being solved by                                         |
| quantum hardware as the challenges                                            |
| of NISQ hardware are solved.                                                  |
| - Result of the classical method on the                                       |
| 10 asset portfolio: Expected returns =                                        |
| 34.48 expected risk = 31.15 Sharpe                                            |
| ratio = 1.11                                                                  |
| Pagulta of VOE: Expected returns =                                            |
| - Results of VQE. Expected returns – $45.27$ consistent with $= 27.00$ Sharma |
| 45.27, expected risk = 57.69, Snarpe                                          |
| ratio = $1.20$                                                                |
| - Results for QAOA: Expected returns                                          |
| = 40.11, expected risk $= 33.14$ ,                                            |
| Sharpe ratio = 1.21                                                           |
| - "We found that Quantum algorithms                                           |
| are giving better results than classical                                      |
| solver" (p. 7)                                                                |
|                                                                               |
| Challenges for the QUBO formulated PO                                         |
| problem solved via VQE and QAOA in this                                       |
| paper:                                                                        |
| - Restricted number of qubits available                                       |
| on NISQ devices. As more assets are                                           |
| brought into the mix, more qubits are                                         |
| needed to find the optimal solution.                                          |
| Current (2023) NISO devices have a                                            |
| max of 20 gubits.                                                             |
| - Oubit connectivity is restricted                                            |
| which makes the manning of complex                                            |
| nrohlems difficult                                                            |
| Provients unitedu                                                             |
| - Iteristoli ol iesuits is decreased by                                       |
| errors inrougn the noise of current                                           |
| NISQ devices. Quantum error                                                   |
| correction measures ought to be                                               |
| imposed for higher result quality.                                            |
| - The complexity of encoding bigger                                           |
| portfolio optimization problems into                                          |
| the quantum hardware.                                                         |
|                                                                               |
| Important notes:                                                              |
| - "Quantum computing helps in faster                                          |
| and more accurate calculations than                                           |
| the classical approach, therefore it                                          |

|                                                                                                                                                       |                                                                                                                                                                                                                                 | <ul> <li>can play an important role in finance<br/>and portfolio optimization." (p. 1)</li> <li>"Quantum Annealing systems have<br/>been able to achieve more dependable<br/>qubits, however, these qubits<br/>encounter challenges related to low<br/>connectivity" (p. 1)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [74]<br>Quantum beetle<br>antennae search: a<br>novel technique for<br>the constrained<br>portfolio<br>optimization<br>problem (Khan et<br>al., 2021) | A Quantum Beetle<br>Antennae Search<br>(QBAS) is formulated,<br>where it is applied to a<br>maximization PO<br>problem, whilst<br>comparing the solutions<br>it gives towards other<br>similar metaheuristics<br>(GA, PSO, BAS) | <ul> <li>Objective(s): <ul> <li>Formulate a quantum version of BAS named QBAS</li> <li>Find the set of optimal stock allocation in a portfolio with QBAs so that it minimizes risk and maximizes mean-return.</li> <li>Experiment with the proposed QBAS algorithm on different stacks of stock the Shanghai Stock Exchange 50 Index (SSE 50) to assess efficiency benchmarked on 4 given benchmark optimization functions with differing numbers of stocks (20, 50, 75, 100) obtained from the date 21March 2019 – 18 April 2019.</li> <li>Apply the QBAS to real-world stock data and compare results with other meta-heuristic optimization algorithms (BAS, PSO, GA).</li> </ul> </li> <li>Results: <ul> <li>Results:</li> <li>Results with 20 stocks for QBAS compared to BAS, GA, and PSA: highest Sharpe ratio, Equality constraint is almost achieved, the best result for F(e), fastest solution time with least iterations used.</li> <li>Results with 50 stocks for QBAS compared to BAS, GA, and PSA: highest Sharpe ratio, stock for QBAS compared to BAS, GA, and PSA: highest with 50 stocks for QBAS compared to BAS, GA, and PSA: F(e) was more optimized than the rest, Sharpe ratio was highest, equality constraint is almost followed (for all algorithms except PSO), faster computing times for finding the optimal solution.</li> <li>Results with 75 stocks for QBAS compared to BAS, GA, and PSA: Highest value for F(e), Sharpe ratio is highest and comparable with GA, fastest converging times, all algorithms obey equality constraints.</li> </ul> </li> </ul> | Quantum hardware:<br>Quantum-annealer D-<br>Wave system<br>Quantum algorithm:<br>QBAS<br>Methodology:<br>Optimization<br>Use case:<br>Portfolio Optimization | F(e) = the given<br>PO maximization<br>problem<br>Equality<br>constraint =<br>conditions that a<br>found solution<br>must satisfy, a<br>solution must be<br>equal to a given<br>value in an<br>equality constraint |

|                           |                      | - Results with 50 stocks for QBAS        |                   |  |
|---------------------------|----------------------|------------------------------------------|-------------------|--|
|                           |                      | compared to BAS, GA, and PSA:            |                   |  |
|                           |                      | QBAs outsmarted the other                |                   |  |
|                           |                      | algorithms and found the highest         |                   |  |
|                           |                      | value for maximization function $F(e)$ . |                   |  |
|                           |                      | highest Sharpe ratio, fulfilling the     |                   |  |
|                           |                      | equality constraint faster               |                   |  |
|                           |                      | convergence                              |                   |  |
|                           |                      |                                          |                   |  |
|                           |                      | - "Results how that OBAS outperforms     |                   |  |
|                           |                      | swarm algorithms such as Particle        |                   |  |
|                           |                      | Swarm Optimization (PSA) and the         |                   |  |
|                           |                      | genetic algorithm (GA)                   |                   |  |
|                           |                      | - "OBAS is powerful enough to            |                   |  |
|                           |                      | converge to the global solution even     |                   |  |
|                           |                      | with different initial conditions " (n   |                   |  |
|                           |                      | 9) and within 120 iterations the         |                   |  |
|                           |                      | OBAS algorithm found the ontima          |                   |  |
|                           |                      | value for the four given ontimization    |                   |  |
|                           |                      | functions                                |                   |  |
|                           |                      | - OBAS showed to have the ability to     |                   |  |
|                           |                      | avoid local minima, avoiding them al     |                   |  |
|                           |                      | in 20 consecutive simulations            |                   |  |
|                           |                      | In 20 consecutive simulations            |                   |  |
|                           |                      | Important information:                   |                   |  |
|                           |                      | - In a theoretical analysis the proposed |                   |  |
|                           |                      | QBAs formulation showed to be            |                   |  |
|                           |                      | stable and convergent.                   |                   |  |
|                           |                      | - Constraints in the OBAs are turned     |                   |  |
|                           |                      | into a penalty function in QBAS          |                   |  |
|                           |                      | algorithm.                               |                   |  |
|                           |                      | - QBAS is the first quantum version of   |                   |  |
|                           |                      | BAS                                      |                   |  |
|                           |                      | - The QBAS is a metaheuristic            |                   |  |
|                           |                      | - To the knowledge of the authors, no    |                   |  |
|                           |                      | metaheuristic to date (2020) has been    |                   |  |
|                           |                      | applied to address the PO problem of     |                   |  |
|                           |                      | min risk and max mean-return.            |                   |  |
|                           |                      | - The text mentioned that classical      |                   |  |
|                           |                      | algorithms have a hard time              |                   |  |
|                           |                      | considering real-world challenges in     |                   |  |
|                           |                      | PO such as: cardinality constraints,     |                   |  |
|                           |                      | lower/upper bounds, substantial stock    |                   |  |
|                           |                      | size, class constraint, round-lots of    |                   |  |
|                           |                      | constraint, computational power and      |                   |  |
|                           |                      | time, pre-assignment constraint, and     |                   |  |
|                           |                      | local-minima avoidance.                  |                   |  |
|                           |                      | - Current meta-heuristic approaches      |                   |  |
|                           |                      | achieve higher efficiency and            |                   |  |
|                           |                      | accuracy than classical approaches.      |                   |  |
| [76]                      | In the paper , the   | Objectives:                              | Quantum hardware: |  |
| Portfolio                 | adaptive quantum     | - Develop a ANQTS model                  | N/A               |  |
| <b>Optimization Model</b> | inspired tabu search | incorporating a 2-phase sliding          |                   |  |

| using ANQTS with   | (ANQTS) is used         | window, and a quadratic regression      | Quantum algorithm:     |
|--------------------|-------------------------|-----------------------------------------|------------------------|
| Trend Ratio on     | together with a         | trend line                              | ANQTS                  |
| Quadratic          | quadratic regression    | - Experiment with the ANQTS model       |                        |
| Regression (Kuo et | trend line, and 2-phase | on stock chosen from the Taiwan 50      | Methodology:           |
| al., 2019)         | sliding window to       | ETF with an investment period of        | Optimization           |
|                    | search for the most     | 2010-2018. Model specification: 13      |                        |
|                    | optimized portfolio.    | types of sliding window, initial fund   | Use case:              |
|                    |                         | is 10 million TQD, population is 10,    | Portiolio optimization |
|                    |                         | 10.000 generations, 50 executions.      |                        |
|                    |                         | Results:                                |                        |
|                    |                         | - Best sliding window periods were      |                        |
|                    |                         | month to month, and year-to-year        |                        |
|                    |                         | month (meaning analyzing the same       |                        |
|                    |                         | month only, for every year)             |                        |
|                    |                         | - The quadratic trend ratio showed to   |                        |
|                    |                         | give a more specific description of     |                        |
|                    |                         | the trend in the portfolio than the     |                        |
|                    |                         | normal trend line.                      |                        |
|                    |                         | - Portfolio formed using the quadratic  |                        |
|                    |                         | trend ratio show to have higher daily   |                        |
|                    |                         | expected returns per unit of risk than  |                        |
|                    |                         | the trend ratio, with daily risks also  |                        |
|                    |                         | being lower on average for the          |                        |
|                    |                         | quadratic trend ratio.                  |                        |
|                    |                         | - In 9 out of 15 sliding window         |                        |
|                    |                         | periods, the quadratic trend ratio      |                        |
|                    |                         | trend line, showing stronger unword     |                        |
|                    |                         | trend than the linear trend             |                        |
|                    |                         | Furthermore compared with the           |                        |
|                    |                         | Scharne ratio both the trend ratio and  |                        |
|                    |                         | quadratic trend ratio outperform it     |                        |
|                    |                         | based on upward trend.                  |                        |
|                    |                         | - "The experiment results show that the |                        |
|                    |                         | proposed portfolio optimization         |                        |
|                    |                         | model has better performance than       |                        |
|                    |                         | the Sharp ratio and trend ratio on      |                        |
|                    |                         | linear regression" (p.1)                |                        |
|                    |                         | - "The result shows that the proposed   |                        |
|                    |                         | method is able to obtain better         |                        |
|                    |                         | results." (p. 5)                        |                        |
|                    |                         | Important notes:                        |                        |
|                    |                         | - As many papers consider the           |                        |
|                    |                         | shortcomings of the Sharpe ratio for    |                        |
|                    |                         | PO problems, a trend line method is     |                        |
|                    |                         | often approaches. However, even the     |                        |
|                    |                         | trend line has some issues              |                        |
|                    |                         | considering portfolio up/down trends    |                        |
|                    |                         | precisely, so to achieve a precise      |                        |
|                    |                         | estimation of up/down trends, a         |                        |
|                    |                         | quadratic regression trend line.        |                        |

|                      |                           | <ul> <li>QTS has been proven to have beta<br/>search abilities than other<br/>metaheuristic algorithms.</li> <li>"When ANQTS is stuck in the local</li> </ul> |  |
|----------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                      |                           | optima, it can detect and jump out of<br>the local area; hence, ANQTS has                                                                                     |  |
|                      |                           | better search abilities than QTS." (p. 2)                                                                                                                     |  |
|                      |                           | - "The core concept of QTS is that                                                                                                                            |  |
|                      |                           | QTS moves the individuals toward                                                                                                                              |  |
|                      |                           | the best solution and away from the                                                                                                                           |  |
|                      |                           | worst solutions at the same time<br>while enabling OTS to outperform                                                                                          |  |
|                      |                           | other traditional ontimization                                                                                                                                |  |
|                      |                           | algorithms" (p. 3)                                                                                                                                            |  |
| [77]                 | In this paper, a quantum  | Objective(s)     Ouantum hardware:                                                                                                                            |  |
| Entanglement Local   | algorithm is proposed     | - Form a novel formulation of the QTS N/A                                                                                                                     |  |
| Search-Assisted      | for PO problems, the      | algorithm, employing ELSA to assist                                                                                                                           |  |
| Quantum-Inspired     | ELSA-GNQTS.               | QTS in searching more accurately in Quantum algorithm:                                                                                                        |  |
| Optimization for     |                           | the potential area with domain- QIO inspired ELSA-                                                                                                            |  |
| Portfolio            | The ELSA-GNQTS is         | dependent information where it is GNQTS                                                                                                                       |  |
| Optimization in G20  | used to search for stable | used.                                                                                                                                                         |  |
| Markets (Kuo et al., | uptrend portfolios in the | - Use the trend ratio-based improved Methodology:                                                                                                             |  |
| 2023)                | giobal g20 markets        | experiment where stable untrends are                                                                                                                          |  |
|                      | "This study discusses     | to be identified from the global G20 Use case:                                                                                                                |  |
|                      | the expanded markets to   | markets from January 2013 to Portfolio optimization                                                                                                           |  |
|                      | demonstrate the           | December 2022, selecting the top 30                                                                                                                           |  |
|                      | superior ability of the   | companies from the G20.                                                                                                                                       |  |
|                      | proposed QIO method       | Specifications of the setting: initial                                                                                                                        |  |
|                      | in a vast solution        | funds of 1 billion local currency, 50                                                                                                                         |  |
|                      | space." (p. 1)            | independent experiments, 10                                                                                                                                   |  |
|                      |                           | populations, 10.000 iterations,                                                                                                                               |  |
|                      | "This study aims to       | equally weighted stocks. The results                                                                                                                          |  |
|                      | OTS to solve a more       | the financial performance of the                                                                                                                              |  |
|                      | complicated PO and        | found 'ontimal portfolio' on different                                                                                                                        |  |
|                      | thus the quantum          | investment strategies, the robustness                                                                                                                         |  |
|                      | entanglement              | of results.                                                                                                                                                   |  |
|                      | mechanism is simulated    | - Use the trend ratio to evaluate a                                                                                                                           |  |
|                      | to propose a novel        | portfolio's utility and use it to further                                                                                                                     |  |
|                      | entanglement local        | construct portfolios with stable                                                                                                                              |  |
|                      | search-assisted (ELSA)    | uptrends.                                                                                                                                                     |  |
|                      | technique for PO" (p. 1)  | - Furthermore, use sliding window                                                                                                                             |  |
|                      | "This is the first -t 1   | mechanism to find optimal training                                                                                                                            |  |
|                      | to apply trend ratio      | windows were used                                                                                                                                             |  |
|                      | evaluation in an          | windows were used.                                                                                                                                            |  |
|                      | intermarket of G20        | Results:                                                                                                                                                      |  |
|                      | markets" (p. 2)           | - Resulting portfolio had better results                                                                                                                      |  |
|                      |                           | regarding risk than the single best                                                                                                                           |  |
|                      |                           | stock performance for risk, the                                                                                                                               |  |
|                      |                           | portfolio trend ratio was also higher                                                                                                                         |  |

|              | dian diata fali di 1 1 4 4 1                       |  |
|--------------|----------------------------------------------------|--|
|              | than that of the single best stock,                |  |
|              | indicating                                         |  |
|              | - The proposed QIO system                          |  |
|              | demonstrates outstanding                           |  |
|              | performance in managing risk and                   |  |
|              | maximizing returns, significantly                  |  |
|              | outperforming traditional strategies               |  |
|              | and market indexes in the G20                      |  |
|              | markets.                                           |  |
|              | - Considering the 13 chosen sliding                |  |
|              | windows, the ELSA-GNOTS                            |  |
|              | outperformed the GNOTS every time                  |  |
|              | hased upon the given trend ratios                  |  |
|              | - The proposed OIO can effectively                 |  |
|              | and efficiently find portfolios with               |  |
|              | and efficiently find portions with                 |  |
|              | stable trend ratios, and balance fisk              |  |
|              | and return                                         |  |
|              | - Furthermore, ELSA-GNQ1S                          |  |
|              | outperformed other algorithms                      |  |
|              | (GNQTS, GQTS, QTS, GA) based on                    |  |
|              | the trend ratio                                    |  |
|              | <ul> <li>Adding more markets to them ix</li> </ul> |  |
|              | proved to incrementally improve                    |  |
|              | performance of the ELSA-GNQTS in                   |  |
|              | efficiency, and balancing risk-return.             |  |
|              | - "Through trend ratio evaluation, a               |  |
|              | global asset management system that                |  |
|              | integrates G20 markets can facilitate              |  |
|              | more robust investment." (p. 5)                    |  |
|              | - "The ELSA-GNQTS demonstrates its                 |  |
|              | robustness by outperforming other                  |  |
|              | OIO algorithms and GA in an                        |  |
|              | integrated market analysis " (n 8)                 |  |
|              | integrated market diaryons. (p. 6)                 |  |
|              | Important notes:                                   |  |
|              | - "The entanglement relationship can               |  |
|              | decrease the degree of freedom                     |  |
|              | searched" (n. 1)                                   |  |
|              | "OIO algorithms can came as a                      |  |
|              | - QiO algorithinis call serve as a                 |  |
|              | bridge to realizing preliminary                    |  |
|              | quantum advantages by exploiting                   |  |
|              | classical computation abilities." (p. 1)           |  |
|              | - NISQ computers still have many                   |  |
|              | challenges considering error                       |  |
|              | correction and fault tolerance.                    |  |
|              | - QIO simulates quantum mechanics                  |  |
|              | on a classical computer to exploit                 |  |
|              | potential quantum benefits.                        |  |
| <br><u> </u> | potentiai quantum benenits.                        |  |

| [78]                | In this paper a new       | Objectiv | es:                                      | Quantum hardware:                    |  |
|---------------------|---------------------------|----------|------------------------------------------|--------------------------------------|--|
| Strategic Portfolio | workflow is introduced    | -        | Steps in the proposed workflow:          | Classical computer                   |  |
| Ontimization Using  | for quantum annealing     | 1        | Markowitz's theory on PO is used in      | (using simulated                     |  |
| Simulated Digital   | nlatforms to solve PO     | 1.       | a classical pre-processing step where    | annealing) Fujitsu's                 |  |
| and Quantum         | problems                  |          | the most promising assets are found      | digital annealing unit               |  |
| Annealing (I ang at | problems.                 |          | from an initial pool of assets           | and D-Wave advantage                 |  |
| al 2022)            | A classical pre-          | 2        | The OUBO is modified to fit models       | $(\sim 5000 \text{ qubits})$ as real |  |
| al., 2022)          | processing step is        | 2.       | for PO problems, it is modified such     | guantum hardware                     |  |
|                     | combined with a           |          | that there are no limitations on the     | quantum naraware.                    |  |
|                     | modified OUBO model       |          | number of stocks that he invested in     | Quantum algorithm:                   |  |
|                     | an evaluated using        |          | With optimization functions              | Quantum algorium.<br>QUBO model      |  |
|                     | simulated annealing       |          | including Sharpe ratio maximization      | QUDU model                           |  |
|                     | (classical computer)      |          | diversification through covariance       | Methodology:                         |  |
|                     | digital annealing         |          | minimization and budget constraints      | Ontimization                         |  |
|                     | (Enjiten's digital        | 2        | This OUBO formulation is then used       | Optimization                         |  |
|                     | (Tujiisu's uigitai        | 5.       | on the identified set of assets from the |                                      |  |
|                     | annearing unit), and      |          | New York Stock Exchange over a           | Dertfolio ontimization               |  |
|                     | the D wave advantage      |          | neriod of 5 years (31, 12, 2014, 31, 12) | (particularly how to                 |  |
|                     | the D-wave advantage      |          | 2010) to find the percentage of capital  | spread funds over a                  |  |
|                     | "In this paper, we focus  |          | that should be used on which asset       | portfolio)                           |  |
|                     | on the applicability of   |          | Specification of the experiment: 1000    |                                      |  |
|                     | annealing techniques to   |          | random portfolios as benchmark           |                                      |  |
|                     | the NP-hard problem of    |          | 10,000 samples for the annealing         |                                      |  |
|                     | nortfolio ontimization a  |          | process and the 10 best solutions        |                                      |  |
|                     | well-known tonic for      |          | each time are visualized in the paper    |                                      |  |
|                     | investment funds and      | 4        | As the OUBO formulation consists of      |                                      |  |
|                     | individual investors" (n. |          | three parts (a part for expected         |                                      |  |
|                     | 2)                        |          | returns, a part for risk, and the third  |                                      |  |
|                     |                           |          | part being a budget constraint), tests   |                                      |  |
|                     |                           |          | are done using different weights for     |                                      |  |
|                     |                           |          | each part.                               |                                      |  |
|                     |                           | -        | Perform the test for the OUBO            |                                      |  |
|                     |                           |          | formulation on real-world data from      |                                      |  |
|                     |                           |          | sets of stock in the New York Stock      |                                      |  |
|                     |                           |          | exchange as well as common ETFs.         |                                      |  |
|                     |                           | -        | Lastly, compare the results from the     |                                      |  |
|                     |                           |          | test against randomly generated          |                                      |  |
|                     |                           |          | portfolios using return, variance, and   |                                      |  |
|                     |                           |          | diversification measures.                |                                      |  |
|                     |                           |          |                                          |                                      |  |
|                     |                           | Results: |                                          |                                      |  |
|                     |                           | -        | Looking at the given graphs for the      |                                      |  |
|                     |                           |          | results of the experiment, it can be     |                                      |  |
|                     |                           |          | seen that Digital and simulated          |                                      |  |
|                     |                           |          | annealing yield almost the same          |                                      |  |
|                     |                           |          | results. With quantum annealing          |                                      |  |
|                     |                           |          | performing not as good as simulated      |                                      |  |
|                     |                           |          | and digital annealing (probable cause    |                                      |  |
|                     |                           |          | is inherent noise missing error          |                                      |  |
|                     |                           |          | correction, and scaling of parameters)   |                                      |  |
|                     |                           | -        | Simulated annealing showed that the      |                                      |  |
|                     |                           |          | QUBO model approach worked as            |                                      |  |
|                     |                           |          | intended, meaning that portfolios        |                                      |  |

|       | were generated that respected the        |
|-------|------------------------------------------|
|       | given preferences to either returns,     |
|       | risk, or budget constraint.              |
|       | - Changing the weights for either risk,  |
|       | return, and budget showed that results   |
|       | in the experiment gravitated             |
|       | accordingly and efficiently towards      |
|       | the objective weight distribution of     |
|       | the model (e.g. more weight              |
|       | relatively on expected returns yielded   |
|       | higher return portfolios)                |
|       | - Simulate and digital annealing both    |
|       | managed to use 100% of the budget        |
|       | every time, but for quantum              |
|       | annealing a bias of +- 9 percent was     |
|       | perceived in budget spending.            |
|       | - Sometimes over/underspending was       |
|       | needed for the optimal portfolio.        |
|       | - In part of the experiment, the         |
|       | differences between the different        |
|       | annealing approaches can be linked to    |
|       | better/worse diversification and         |
|       | different degrees of allocations of the  |
|       | budget to an asset.                      |
|       | - "The results show that our OUBO        |
|       | formulation is canable of creating       |
|       | well diversified portfolios that respect |
|       | certain criteria given by an investor    |
|       | such as maximizing return                |
|       | minimizing rick or sticking to a         |
|       | certain hudget " (n 1)                   |
|       | certain oudget. (p. 1)                   |
| I. I. | mnortant notes                           |
| 11    | - Heuristic methods such as simulated    |
|       | - Incuristic incurious such as simulated |
|       | intelligence have been found to not      |
|       | always fin the most entimel solution     |
|       | to a PO problem                          |
|       | to a FO problem.                         |
|       | - Current annealing solution for PO      |
|       | problems suffer from the following       |
|       | limitations: limited amount of assets    |
|       | to choose from, and use of naïve         |
|       | investment strategies for the            |
|       | calculation of future returns (meaning   |
|       | that the strategies rely mostly on       |
|       | basic assumptions and historical         |
|       | averages)                                |
|       | - PO has been solved by two other        |
|       | quantum methods according to the         |
|       | paper: 1. Quantum linear systems         |
|       | algorithm, 2. Quantum annealing          |
|       | (afterwards the paper gives an           |
|       |                                          |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | managed to use quantum annealing to<br>construct a portfolio with a budget of<br>100 dollars and turn it into 121.176<br>dollars, showing how advantageous<br>quantum annealing can be for PO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                      |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| [80]<br>Portfolio<br>Optimization Based<br>on Quantum HHL<br>Algorithm (Li et al.,<br>2022) | In this paper a quadratic<br>HHL algorithm is<br>proposed with equality<br>constraints to solve<br>combinatorial problems<br>in finance.<br>Results gathered from<br>the proposed quadratic<br>HHL algorithm design<br>are measured analyzed,<br>and compared with<br>classical solutions<br>"In this article, we<br>proved the feasibility of<br>the HHL algorithm to<br>solve this type of<br>portfolio problem (with<br>constraints, NP-hard<br>problem), and set up the<br>actual problem to solve<br>it" (p. 2) | <ul> <li>Objectives: <ul> <li>Form a quadratic HHL algorithm with equality constraints and benchmark it using an example PO problem. (the exact origin of the values given to calculate the PO model have not been given)</li> </ul> </li> <li>Results: <ul> <li>Compared to classical algorithms, the proposed HHL algorithm is able to solve combinatorial optimization problems, and the solution it gives is in good agreement with the exact optimal solution.</li> <li>Proving the feasibility of the HHL algorithm on a PO problem showed solutions very close to the exact solution, and minimal error of each component.</li> <li>Increasing then number of qubits (from 9) would likely increase the solution's accuracy, but it will also increase the circuit complexity and quantum gates used.</li> </ul> </li> <li>Important Notes: <ul> <li>The HHL algorithm was proposed by Harrow, Hassidim and Lloyd for solving linear systems with exponential acceleration compared to classical algorithms.</li> <li>"The high computational complexity of financial problems sometimes makes them difficult to be solved on classical computers." (p. 2)</li> <li>"Some quantum algorithms applying in financial problems have been proved to be better than classical methods, which can provide considerable acceleration, such as quantum Monte Carlo algorithm,</li> </ul> </li> </ul> | Quantum hardware:<br>N/A<br>Quantum algorithm:<br>Quantum HHL<br>Methodology:<br>Optimization<br>Use case:<br>Portfolio optimization |  |

|                   |                          | portfolio optimization algorithm" (n                   |                       |                       |
|-------------------|--------------------------|--------------------------------------------------------|-----------------------|-----------------------|
|                   |                          | 2)                                                     |                       |                       |
|                   |                          | 2)                                                     |                       |                       |
|                   |                          |                                                        |                       |                       |
|                   |                          |                                                        |                       |                       |
|                   |                          |                                                        |                       |                       |
|                   |                          |                                                        |                       |                       |
|                   |                          |                                                        |                       |                       |
|                   |                          |                                                        |                       |                       |
|                   |                          |                                                        |                       |                       |
|                   |                          |                                                        |                       |                       |
| 1011              | T d' 1 d T               |                                                        | 0 1 1                 | <b>A ·</b> · · ·      |
|                   | In this work the Large-  | Objective(s):                                          | Quantum nardware:     | Approximation         |
| Hybrid Gate-Based | System Sampling          | - Form the LSSA algorithm for large                    | Simulators (IBM       | ratio =               |
| and Annealing     | approximation (LSSA)     | size Ising problems,                                   | QASM Simulator), and  | Approximation         |
| Quantum           | algorithm is proposed to | - solve different PO and random Ising                  | real-quantum hardware | ratios are different  |
| Computing for     | solve large size Ising   | problems (both on simulated and real                   | (D-wave annealer      | for each problem      |
| Large-Size Ising  | problems with a hybrid   | hardware). Which are either:                           | advantage 4 with 5760 | in this paper, the    |
| Problems (Liu,    | quantum annealer /       | 1. fully connected random Ising                        | qubits, and IBM       | approximation         |
| Chen-Yu. & Goan,  | gate-based approach.     | problems with up to 160 variables on                   | Auckland, IBM Cairo   | ratio is a ratio that |
| his-Sheng. 2022)  |                          | a 5-qubit quantum computer, or a PO                    | and IBM Guadeloupe    | benchmarks            |
|                   | "By dividing the full-   | problem with up to 4096 variables on                   | gate-based computer)  | solutions from        |
|                   | system problem into      | 100 qubit quantum computer + a 7                       |                       | experiments           |
|                   | smaller subsystem        | qubit gate-based computer                              | Quantum algorithm:    | toward a given        |
|                   | problems, the LSSA       | 2. A PO problem with up to 5120                        | LSSA algorithm        | value obtained as     |
|                   | algorithm then solves    | variables.                                             | (model)               | an objective          |
|                   | the subsystem problems   | - Lastly, examine the effects that                     |                       | benchmark (so if      |
|                   | by either gate-based     | different sub-system sizes/numbers,                    | Methodology:          | approximation         |
|                   | quantum computers or     | and problem sizes have on the                          | Optimization          | ratio is 1, it        |
|                   | quantum annealers" (p.   | performance of LSSA on simulators                      | •                     | indicates             |
|                   | 1), and is then further  | and real hardware                                      | Use case:             | performance alike     |
|                   | optimized by VOE         |                                                        | Large-size Ising      | to the given          |
|                   |                          | Results:                                               | problem (portfolio    | denominator           |
|                   | Both random Ising        | For the simulated problems:                            | optimization          | (which changes        |
|                   | problems and PO          | For random Ising problems (using IBM Tabu              | narticularly)         | each time to one      |
|                   | problems are solved on   | for sub-system solving and IBM OASM for                | purce analy)          | of the two in this    |
|                   | simulators and real      | amplitude estimation):                                 |                       | naner: e g results    |
|                   | quantum hardware         | - For small size Ising problems with                   |                       | from the classical    |
|                   | quantaminaraware         | the OASM-simulator (simulated                          |                       | method Dwave          |
|                   |                          | quantum computer) high                                 |                       | Tabu or the exact     |
|                   |                          | annroximation ratios are found                         |                       | ground state          |
|                   |                          | indication good performance of the                     |                       | energy (which is a    |
|                   |                          | I SSA algorithm                                        |                       | measure of            |
|                   |                          | ESSA algoriulli<br>For larger size Joing problems with |                       | ontimality))) so      |
|                   |                          | - For larger size using problems with                  |                       | optimality))), so     |
|                   |                          | alver) a decreasing trend in the                       |                       | approximation         |
|                   |                          | solver), a decreasing trend in the                     |                       | fallow 1              |
|                   |                          | approximation ratio as problem size                    |                       | ionows: result        |
|                   |                          | increases, ultimately failing to 68%.                  |                       | obtained / result     |
|                   |                          | For PO problems (IBM QASM simulator):                  |                       | Irom dwave tabu,      |
|                   |                          | - The LSSA achieved approximation                      |                       | or result obtained    |
|                   |                          | ratio results close to 1, indicating                   |                       | / exact GSE           |
|                   |                          | similar performance to Dwave Tabu,                     |                       | (optimal solution).   |
|                   |                          | the simulator showed robustness in                     |                       | Overall if            |
|                   |                          | results.                                               |                       | approximation         |

| - As problem size increased                  | ratio is close to 1 |
|----------------------------------------------|---------------------|
| approximation ratio staved close to 1        | it is good          |
| approximation ratio stayed close to r        | n 13 good.          |
| Real-quantum hardware findings:              |                     |
| For random Ising problems (with D-Wave       |                     |
| advantage 1 and IBM gate-based computers):   |                     |
| - "The trend of the average                  |                     |
| - The dend of the average                    |                     |
| approximation ratio is similar to that       |                     |
| decreases considerably to a low value        |                     |
| when Nn (problem size) $> Ng$ (sub           |                     |
| sustem size) indicating a relatively         |                     |
| system size), indicating a relatively        |                     |
| For DO problems with simulated stock data    |                     |
| For PO problems with simulated stock data    |                     |
| (using D-wave advantage 4 and IBM            |                     |
|                                              |                     |
| - Approximation ratio for solving only       |                     |
| advantage 4 along a start and a              |                     |
| advantage 4 show good                        |                     |
| approximation ratios close to 1,             |                     |
| indicating good performance.                 |                     |
| - Simulations with different PO              |                     |
| problems on the IBM QASM                     |                     |
| Simulator showed similar results to a        |                     |
| classical solver such as Dwave Tabu.         |                     |
| - The impact sub-system size had was         |                     |
| positive with greater sub-system             |                     |
| sizes, and the fewer samples were            |                     |
| performed, the better the results.           |                     |
| For PO problems with real-world data over 47 |                     |
| months, and problem sizes (stock amounts) of |                     |
| 32 and 64 months from the US stock market to |                     |
| examine LSSA (using IBM Cairo):              |                     |
| - Sharpe ratio of the LSSA was slightly      |                     |
| lower than the classical solver for          |                     |
| both problem sizes, indicating still         |                     |
| good performance, but lower than the         |                     |
| classical method                             |                     |
|                                              |                     |
| - "Our proposed algorithm can solve          |                     |
| fully-connected random Ising                 |                     |
| problems that are $O(10^{0})$ and            |                     |
| portfolio optimization problems that         |                     |
| are $O(10^{1})$ larger in size than the      |                     |
| available quantum annealers and              |                     |
| gate-based quantum computers" (p.            |                     |
| 2), both with good performance from          |                     |
| simulated and real-hardware                  |                     |
| - For Random Ising problems,                 |                     |
| performance declined with increasing         |                     |
| problem size, which was not the case         |                     |
| for PO problems                              |                     |

|                        |                           | - This paper shows promising results    |                        |                      |
|------------------------|---------------------------|-----------------------------------------|------------------------|----------------------|
|                        |                           | from a hybrid quantum annealing         |                        |                      |
|                        |                           | asta hasad I SSA madal                  |                        |                      |
|                        |                           | gate-based LSSA model.                  |                        |                      |
|                        |                           | Important information                   |                        |                      |
|                        |                           | - The given problem function is         |                        |                      |
|                        |                           | divided into sub systems which are      |                        |                      |
|                        |                           | divided into sub-systems which are      |                        |                      |
|                        |                           | then solved first, after which an       |                        |                      |
|                        |                           | estimation of the full system is made.  |                        |                      |
|                        |                           | - "Even the largest gate-based quantum  |                        |                      |
|                        |                           | computer to date provided by IBM        |                        |                      |
|                        |                           | (IBM Washington) can only solve the     |                        |                      |
|                        |                           | problem with 127 variables if we use    |                        |                      |
|                        |                           | the original VQE and QAOA               |                        |                      |
|                        |                           | algorithms." (p. 1)                     |                        |                      |
| [82]                   | In this paper, an         | Objectives:                             | Quantum hardware:      | Lévy flight          |
| OPSO algorithm         | improvised quantum-       | - Form an improved quantum-behaved      | N/A                    | strategy = a         |
| based on Levy flight   | behaved particle swarm    | particle swarm optimization             |                        | particular tool that |
| and its application in | optimization algorithm    | algorithm (LOPSO), including Lévy       | Quantum algorithm:     | enhances             |
| fuzzy portfolio (Lu.   | (LOPSO) is proposed       | strategy and contraction expansion      | LOPSO                  | exploration          |
| X L & He G 2021        | based upon the (O)PSO     | coefficient with non-linear structure   | 24150                  | capabilities of      |
| A, L. & He, G. 2021)   |                           | to enhance particle exploration         | Methodology            | search algorithms    |
|                        | The LODSO is then         | Evaluate the improvised algorithm       | Ontimization           | to improve           |
|                        | used in an experimental   | - Evaluate the improvised algorithm     | Optimization           | officianay and       |
|                        |                           |                                         | TT                     |                      |
|                        | setting with fuzzy        | benchmark it against QPSO, PSO-w,       | Use case:              | effectiveness of     |
|                        | portfolio models with     | RQPSO. With parameter setting           | Portfolio optimization | the optimization     |
|                        | transaction costs and     | being: population size of 100 (assets), |                        | process.             |
|                        | background risk process   | search spaces of 10, 20, 30, with       |                        |                      |
|                        | to consider its           | corresponding max iterations of 500,    |                        | Contraction-         |
|                        | practicality              | 1000, 1500.                             |                        | expansion            |
|                        |                           |                                         |                        | coefficient with     |
|                        | To enhance particle       | Results:                                |                        | non-linear           |
|                        | exploration (searching    | - For the five uni-modal functions and  |                        | structure = a        |
|                        | for potential solutions), | seven multi-modal functions, LQPSO      |                        | parameter used in    |
|                        | Lévy flight strategy,     | was superior to PSO-w, QPSO and         |                        | optimization         |
|                        | premature prevention      | RQPSO, showing higher accuracy          |                        | algorithms to        |
|                        | mechanism and             | and less standard deviation.            |                        | control the          |
|                        | contraction-expansion     | - For the five uni-modal functions,     |                        | movement of          |
|                        | coefficient with non-     | LOPSO achieves theoretic optima         |                        | particles (possible  |
|                        | linear structure are      | each time                               |                        | solutions) in the    |
|                        | considered                | - For the seven multi-modal functions   |                        | search space. this   |
|                        |                           | LOPSO shows that optimization           |                        | helps balancing      |
|                        |                           | results are better than the other three |                        | the exploration      |
|                        |                           | algorithms                              |                        | and exploitation     |
|                        |                           | - LOSPO overcame finding                |                        | phase of the         |
|                        |                           | nremature/sub-ontimal solutions         |                        | algorithm It is      |
|                        |                           | hetter than the other algorithms        |                        | useful in complex    |
|                        |                           | iumping from local optime towards       |                        | search landscapes    |
|                        |                           | the global ontimum (whilst the other    |                        | searen ianuseapes.   |
|                        |                           | algorithms offen got stuck in local     |                        | Premature            |
|                        |                           | angoriumis onen got stuck m iocal       |                        | nevention            |
|                        |                           | Under high dimension and complex        |                        | mechanism = a        |
|                        |                           | - Under high-dimension and complex      |                        | mechanism = a        |
|                        |                           | situations (50 dimensions, 1500         |                        | mechanism that       |

|                        |                          | <ul> <li>generations, convergence accuracy<br/>10<sup>^</sup>-6), PSO-W successfully follows<br/>accuracy requirements in 2/30<br/>functions, and QPSO and RQPSO<br/>accomplish error requitements in<br/>seven 7/30 functions with success<br/>rates of 100%, thus demonstrating<br/>strong robustness.</li> <li>Wilcoxon rank sum test shows that<br/>LQPSO outperforms the rest of the<br/>algorithms.</li> <li>"LQPSO demonstrates better<br/>convergence and robustness than<br/>PSO with inertia weight, QPSO and<br/>QPSO with a hybrid probability<br/>distribution in 12 benchmark<br/>functions." (p. 1)</li> <li>"Experimental results indicate that<br/>LQPSO outperforms several<br/>metaheuristics when seeking optimal<br/>solution for the fuzzy portfolio model<br/>with constraints." (p. 1)</li> <li>Important notes:</li> <li>The paper mentioned that QPSO has<br/>better converging speeds and global<br/>search ability than PSO</li> <li>Investment proportions of each stock<br/>are constrained to a certain number.</li> </ul> |                         | ensures that the<br>algorithm does<br>not converge to a<br>suboptimal<br>solution by<br>getting stuck in a<br>local minima or<br>maxima (which is<br>often a problem<br>for PSO<br>algorithms)<br>Uni-modal<br>function =<br>function with one<br>local min/max<br>(e.g. min risk)<br>Multi-modal<br>function =<br>function with<br>multiple local<br>min/max (so it has<br>multiple good<br>solutions, but is<br>prone to<br>generating<br>suboptimal<br>solutions as there<br>are more peaks,<br>global best values<br>are more complex |
|------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [88]                   | As classical             | Objective(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quantum hardware:       | Log returns = a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Diversifying           | optimization of the      | - Propose a novel QUBO formulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "existing QUBO          | different measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Investments and        | Sharpe ratio becomes     | of a PO problem including                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | solvers" (classical     | to assess assets in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ratio: a novel         | additional needs such as | maximization of Sharpe ratio with a diversification measure to spread risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | leap hybrid classical-  | data pool which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| QUBO formulation       | new constraints or new   | - Benchmark the novel QUBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | quantum solver (which   | employes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (Mattesi et al., 2023) | objective function       | formulation on two main aspects of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | makes sub-systems that  | assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | terms, the problem may   | the QUBO formulation: 1. Report the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | are then solved via     | through the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | become non-convex and    | behavior of the complete model as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tabu-search algorithm)) | natural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | classical methods        | ratio and diversification terms are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quantum algorithm:      | return of an asset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | - instrum monous         | employed, evaluate the performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QUBO                    | thereby aiming to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | The proposed solution    | of the formulation for the sole Sharpe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | for this problem in this | ratio maximization compared to other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Methodology:            | efficiency of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | paper is a novel QUBO    | techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Optimization            | results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | ratio optimization with  | - Benchmark performances of the<br>OUBO model against classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Use case:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | a diversification term   | solvers on a real-world dataset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Portfolio optimization  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                          | including                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (maximizing Sharpe      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| <ul> <li>Specifications of the experiment: 460<br/>assets for simple returns, and 432<br/>assets for log-returns. As the D-Wave<br/>system restricts high precision<br/>measures, the precision value of p =<br/>12 bits.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ratio with a<br>diversification term) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| <ul> <li>Results:</li> <li>Results for Sharpe ratio maximization: more feasible optimal solutions are found as the diversification term is discarded, best Sharpe ratio values are observed when solving via the QBSOLV.</li> <li>Results for Sharpe ratio including diversification measures: risk is lower, but the optimization is significantly impacted and the Sharpe ratio tends to decrease as more funds are allocated to spread the investments over more assets, thereby making it so that there is less impact on the expected returns or covariance of the assets.</li> <li>For both formulations, the best performances are obtained by different solvers: D-Wave Hybrid and QBSOLV (which is mainly attributed to differing number of variables)</li> <li>Furthermore, for the QUBo formulation, the QBSOLV performed best, being able to handle 5184 binary variables.</li> <li>Constraints are fulfilled by several solvers, demonstrated by the proposed formulation. Competitive performance is shown by QUBO formulations when compared to PyPortfolioOpt, the classical solution.</li> <li>The QUBO formulations offer a viable alternative to classical solvers,</li> </ul> |                                       |
| optimization problems involving both<br>Sharpe Ratio and diversification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| Important notes:<br>- "We do not emphasize the<br>computational time required to obtain<br>the solutions as it is not the primary<br>focus of our study. Instead, we draw<br>attention to the quality of the results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |

|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in terms of objective function value"     |                        |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|--|
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (p. 14)                                   |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - "Portfolio optimization has been        |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | approached by different means.            |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | including linear programming.             |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | quadratic programming, semidefinite       |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | programming, meta-heuristics, deep        |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | learning, and reinforcement               |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | learning" (n 2)                           |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - "It is widely believed based on         |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | reasonable computational complexity       |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | assumptions [24] that neither             |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | classical nor Quantum Computers can       |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | efficiently solve NP-hard                 |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ontimization problems "(n 5) but          |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | significant speedup compared to           |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | aloggical algorithms is still proven      |                        |  |
| [00]                               | This non on constants (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Liass of Quantum Machine Learning for     | Overture her t         |  |
| [07]<br>Applications of            | This paper examines the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oses of Quantum Machine Learning for      | Quantum nardware:      |  |
| Applications of<br>Overtum Mechine | connection between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Most commonly the Sharma ratio is         | N/A                    |  |
| Quantum Machine                    | quantum computing and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Most commonly, the Sharpe ratio is      | Quantum algorithms     |  |
| Duantitativa Finance               | machine learning for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | taken as a measure of fisk-adjusted       |                        |  |
| Quantitative Finance               | applications in finance,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | return, this ratio is sought to be        | IN/A                   |  |
| (Mironowicz et al.,                | in the summary of this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | maximized in many of the quantum          | M - 41                 |  |
| 2024)                              | paper, there will mostly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The immediate of tabing emotion           | Outimization           |  |
|                                    | for a set for the set of the set | - The importance of taking crucial        | Optimization           |  |
|                                    | for portiolio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | elements in the PO problem                | TT                     |  |
|                                    | optimization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | formulation is considered, as PO          | Use case:              |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | problems are not as black and white       | Portfolio optimization |  |
|                                    | Further on in the paper,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | as max return and min risk, multiple      |                        |  |
|                                    | there is a specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | measures come into play when              |                        |  |
|                                    | section dedicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | achieving this (e.g. liquidity of assets, |                        |  |
|                                    | towards a review of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | transactions costs, constraints set by    |                        |  |
|                                    | current (2024)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the investor)                             |                        |  |
|                                    | literature, which gives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - Two main types of PO problems are       |                        |  |
|                                    | insight of Quantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | recognized: constrained and               |                        |  |
|                                    | Machine Learning from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | unconstrained, which respectively         |                        |  |
|                                    | mother perspectives.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | differ in the fact that one has certain   |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | set constraints (e.g. budget constraint   |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or weights) an the other has a lack of    |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | constraints, but can still have weights   |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | assigned to certain parts of the          |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | function (e.g. giving higher allocation   |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to expected return part of a formula).    |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - When solving PO problems, you           |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | want to achieve portfolios that are on    |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the line of the efficient frontier (see   |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | literature review for explanation)        |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - There are also factor-based PO          |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | models that incorporate other factors     |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | influencing outcomes such as value,       |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | size, momentum, and quality. These        |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | are often measures used to estimate       |                        |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | riskiness and relationship between        |                        |  |

| securities in a portfolio, thereby being |
|------------------------------------------|
| a good technique to form                 |
| (un)correlated portfolios if needed.     |
|                                          |
| PO and Quantum Machine Learning (QML):   |
| - An example QML case is taken in the    |
| paper to explain the benefits of it.     |
| The example showed how QML was           |
| used for a multi-period PO problem       |
| on D-Wave systems 'quantum               |
| annealer, showcasing high success        |
| rates in finding optimal portfolios      |
| with included transaction costs.         |
| - Furthermore, another study was taken   |
| where 63 securities listen on the Abu    |
| Dhabi Security Exchange were             |
| considered with certain budget and       |
| parameters to test whether the use of    |
| a D-Wave QPU could be beneficial         |
| for solving Markowitz portfolio.         |
| Results from this study showed that it   |
| could be sued to find optimal            |
| solutions                                |
| - Next, the authors of the paper used an |
| instance of another example paper        |
| where the importance of additional       |
| measures to optimize quantum             |
| models for efficiency is stressed.       |
| Even if a quantum model for a certain    |
| problem outperforms other                |
| benchmarked measures does not            |
| mean it cannot be significantly          |
| improved. In the case of the example     |
| paper, they discovered that certain      |
| measures such as seeding the             |
| algorithm with better data acquired      |
| from a quantum annealer and a            |
| reverse annealing protocol yielded       |
| 100 times faster time-to-solution as     |
| opposed to the corresponding forward     |
| quantum annealing process.               |
| - Furthermore, more examples are         |
| given to stress the notion that QML      |
| for PO problems are proven to be         |
| beneficial for efficiency and            |
| performances,                            |
| - Lastly, In a comparison with the D-    |
| Wave 2000Q system and classical          |
| commercial solvers, results showed       |
| promising performances, coming           |
| close to the performance of existing     |
| classical solvers for same instance      |
| sizes.                                   |
|                                          |

|                       |                          | <ul> <li>"Quantum technologies offer<br/>promising applications in portfolio<br/>optimization, leveraging quantum<br/>computing's potential to efficiently<br/>solve complex optimization<br/>problems." (p. 29)</li> <li>OML (Quantum Circuit Born Machines in this</li> </ul> |                         |                      |
|-----------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|
|                       |                          | case) compared to classical ML methods<br>(restricted Boltzmann machines<br>predominantly):                                                                                                                                                                                     |                         |                      |
|                       |                          | - "The quantum models demonstrated<br>superior performance compared to<br>RBMs when considering the same                                                                                                                                                                        |                         |                      |
|                       |                          | <ul> <li>number of parameters" (p. 21) that</li> <li>was under data from the S&amp;P500</li> <li>"The effectiveness of certain HHL</li> </ul>                                                                                                                                   |                         |                      |
|                       |                          | enhancements is empirically<br>demonstrated through the application<br>to small portfolio optimization                                                                                                                                                                          |                         |                      |
|                       |                          | <ul> <li>Another example was taken where<br/>the QML technique offered a</li> </ul>                                                                                                                                                                                             |                         |                      |
|                       |                          | quadratic speedup, along with<br>statements of the great practical use<br>of it.                                                                                                                                                                                                |                         |                      |
|                       |                          | - Another instance where VQE is used<br>on IBM 100 qubit simulators is<br>analyzed, and it showed a strong                                                                                                                                                                      |                         |                      |
|                       |                          | relation between solution quality and<br>quantum hardware size, VQE can<br>generate solutions close to                                                                                                                                                                          |                         |                      |
|                       |                          | optimal/exact ones (even without<br>error-mitigation)                                                                                                                                                                                                                           |                         |                      |
|                       |                          | Important notes:<br>- "As quantum computers continue to                                                                                                                                                                                                                         |                         |                      |
|                       |                          | evolve and become more accessible,                                                                                                                                                                                                                                              |                         |                      |
|                       |                          | the integration of QML into finance<br>applications is expected " (p. 1)                                                                                                                                                                                                        |                         |                      |
| [91]                  | A hybrid-quantum         | Objective(s):                                                                                                                                                                                                                                                                   | Quantum hardware        | Integer hundles =    |
| Hybrid quantum        | classical algorithm is   | - Form a hybrid-quantum classical                                                                                                                                                                                                                                               | Quantum annealing (D-   | the requirements     |
| investment            | proposed for dynamic     | algorithm for dynamic PO problems                                                                                                                                                                                                                                               | Wave 2000Q)             | that assets, in this |
| optimization with     | PO problems with         | with minimal holding periods                                                                                                                                                                                                                                                    | Quantum algorithm:      | case, must be sold   |
| period (Mugel et al., | periods.                 | diversification and reduce risk, and at                                                                                                                                                                                                                                         | A quantum-classical     | units.               |
| 2021)                 | -                        | the same time reduce required                                                                                                                                                                                                                                                   | hybrid algorithm (exact |                      |
|                       | The hybrid quantum-      | resources from the quantum system.                                                                                                                                                                                                                                              | name not specified)     | (minimum)            |
|                       | then experimented upon   | Do pre-processing of the assets on<br>their historic volatility to measure and                                                                                                                                                                                                  | Methodology             | the amount of        |
|                       | on a dataset consisting  | compare with a given risk                                                                                                                                                                                                                                                       | Optimization            | time elapsed         |
|                       | of 50 assets over a one- | threshold/category to form a pool of                                                                                                                                                                                                                                            |                         | between an           |
|                       |                          | assets with require volatility.                                                                                                                                                                                                                                                 | Use case:               | investment's         |

| vear period using the D- | -       | Experiment with the proposed hybrid                        | Portfolio optimization | purchase and its  |
|--------------------------|---------|------------------------------------------------------------|------------------------|-------------------|
| Wave 2000O system.       |         | algorithm on 50 international assets                       | optimization           | sale, and as      |
|                          |         | between May 31 <sup>st</sup> 2019 and May 31 <sup>st</sup> |                        | investments are   |
|                          |         | 2020 on a quantum annealer and                             |                        | often taxed       |
|                          |         | compare to a random asset chosen                           |                        | favorably in the  |
|                          |         | portfolio (within risk requirements)                       |                        | long-term a       |
|                          |         | Both portfolios are daily portfolios                       |                        | minimal holding   |
|                          |         | both portionos are dany portionos.                         |                        | neriod is imposed |
|                          | Results |                                                            |                        | (minimal holding  |
|                          | -       | During the given period of the                             |                        | neriod in this    |
|                          | _       | experiment the optimal investment                          |                        | paper is seven    |
|                          |         | trajectory was found for 50 assets on                      |                        | days investing    |
|                          |         | the D-Waye 20000 using five risk                           |                        | ontions that do   |
|                          |         | nackages (5% 10% 15% 20%)                                  |                        | not apply to the  |
|                          | _       | Comparing with a randomly chosen                           |                        | seven-day period  |
|                          |         | portfolio of assets within the risk                        |                        | are ruled out)    |
|                          |         | requirements the quantum annealing                         |                        |                   |
|                          |         | method based upon dimensional                              |                        |                   |
|                          |         | reduction and post-selection showed                        |                        |                   |
|                          |         | solutions closers to the efficient                         |                        |                   |
|                          |         | frontier                                                   |                        |                   |
|                          | -       | Computing time was "just a few                             |                        |                   |
|                          |         | minutes" on daily portfolios for 50                        |                        |                   |
|                          |         | assets with the proposed method.                           |                        |                   |
|                          |         | Compared to classical (brute force),                       |                        |                   |
|                          |         | the algorithm performed way faster,                        |                        |                   |
|                          |         | and with comparison to other                               |                        |                   |
|                          |         | quantum methods (VQE), the                                 |                        |                   |
|                          |         | proposed algorithm can compute                             |                        |                   |
|                          |         | greater problem sizes (as VQE could                        |                        |                   |
|                          |         | only perform this task with max 3                          |                        |                   |
|                          |         | assets).                                                   |                        |                   |
|                          | -       | D-Wave2000Q showed to be faster                            |                        |                   |
|                          |         | than other solvers such as Gekko.                          |                        |                   |
|                          |         |                                                            |                        |                   |
|                          | -       | "Our study shows that the method is                        |                        |                   |
|                          |         | remarkably efficient and produces in                       |                        |                   |
|                          |         | tew minutes results close to the                           |                        |                   |
|                          |         | optimal efficient frontier in portfolio                    |                        |                   |
|                          |         | space, much better than typical                            |                        |                   |
|                          |         | random portiollos." (p. 4)                                 |                        |                   |
|                          | -       | Furthermore, this study showed that                        |                        |                   |
|                          |         | the proposed algorithm can perform                         |                        |                   |
|                          |         | well in giving out optimal investing                       |                        |                   |
|                          |         | trajectories for differing risk profiles.                  |                        |                   |
|                          | -       | "Our method is remarkably efficient,                       |                        |                   |
|                          |         | and produces results much closer to                        |                        |                   |
|                          |         | the efficient frontier than typical                        |                        |                   |
|                          |         | portfolios" (p. 1)                                         |                        |                   |
|                          | -       | "Our results are a clear example of                        |                        |                   |
|                          |         | how the combination of quantum and                         |                        |                   |
|                          |         | classical techniques can offer novel                       |                        |                   |
|                          |         | valuable tools to deal with real-life                      |                        |                   |

|                     |                          | <ul> <li>problems, beyond simple toy models, in current NISQ quantum processors." (p. 1)</li> <li>Important notes: <ul> <li>The aim for the financial model is to maximize returns for a given level of risk considering the given constraints.</li> <li>The metric used for comparing investments is the Sharpe ratio.</li> <li>It is assumed that shares can only be sold in large bundles.</li> </ul> </li> </ul>                                                                                                                                         |                        |          |
|---------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|
|                     |                          | <ul> <li>Number of objective variables is<br/>proportional to the number of assets.</li> <li>NISQ devices are limited in their<br/>resources, therefore, dimensional<br/>reduction techniques are used to<br/>reduce required resources.</li> <li>This work is a successor of a previous<br/>work entailing a hybrid algorithm<br/>alike, the differences proposed in this<br/>paper is an efficient post-selection<br/>protocol to impose a minimal holding<br/>period constraint, and a proposition<br/>that investors should invest in integer</li> </ul> |                        |          |
|                     |                          | <ul> <li>bundles</li> <li>"There are many important<br/>optimization problems in finance<br/>which can be solved more efficiently<br/>using quantum computing," (p. 1)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            |                        |          |
| [92]                | In this paper a PO       | Objective(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quantum hardware       | <u> </u> |
| Dvnamic portfolio   | problem involving        | - Make use of D-Wave hybrid quantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gekko exhaustive       |          |
| ontimization with   | transaction costs and    | annealing IBM-O with VOE and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (classical) D-Wave     |          |
| real datasets using | other possible           | VOE-constrained and TN to solve a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hybrid quantum         |          |
| auantum processors  | constraints is tackled   | PO problem for a dataset of up to 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | annealing (D-Wave      |          |
| and quantum-        | using a number of        | assets over 8 years, with ultimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000O), two VOE        |          |
| inspired tensor     | quantum and quantum-     | datasets varying in size.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | approaches on IBM-O    |          |
| networks (Mugel et  | inspired algorithms on   | - Benchmark the solutions of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and a quantum-inspired |          |
| al., 2022)          | different hardware       | algorithms with results obtained by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | optimizer based on     |          |
|                     | platforms.               | classical methods (Gekko solver, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tensor networks,       |          |
|                     |                          | an exhaustive solver) via Sharpe ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |          |
|                     | The po problem data      | and computing times for different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |          |
|                     | consists of daily prices | problem sizes (XS, S, M, L, XL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quantum algorithms:    |          |
|                     | trom over 8 years of 52  | XXL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VQE, VQE-constrained,  |          |
|                     | assets                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quantum inspired       |          |
|                     | Methods used are:        | Results:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tensor network (1N)    |          |
|                     | Gekko exhaustive         | Results from Gekko Exhaustive DWave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methodology            |          |
|                     | (classical) D-Wave       | Hybrid VOF VOF-Constrained and TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ontimization           |          |
|                     | hybrid quantum           | solvers (results for problem sizes XS-XXI are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |          |
|                     | annealing. two VOE       | only shown for XS. M. and XXI. for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Use case:              |          |
|                     | approaches on IBM-O      | summarized overview, and N/A values for XS-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Portfolio optimization |          |
|                     | and a quantum-inspired   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |          |

| optimizer based on         | XXL are taken out as there were no values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| tensor networks,           | obtained for that):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                            | - Gekko: Sharpe ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| To be able to fit the data | Sharpe ratio (XS- 5.98, M- 8.39, XL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| on the platforms, pre-     | 20.76),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| processing with            | profits% (XS-5.8%, M-13.6%, XL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| clustering assets is       | 71.6%),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| performed.                 | time (XS-24s, M-21s, XL-261s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                            | - Exhaustive (brute-force search):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                            | Sharpe ratio (XS-6.31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                            | profits% (XS-5.1%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                            | time (XS-0.005s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                            | - <b>D-Wave Hybrid</b> : could solve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                            | problems up to 1272 fully connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                            | qubits in 172 seconds, which is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                            | REALLY fast according to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                            | authors. For the PO experiment,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                            | following results were obtained:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                            | Sharpe ratio (XS- 5.98, M-8.39, XL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                            | 12.16),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                            | profits% (XS-5.8%, M-13.6%, XL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                            | 67.6%),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                            | time (XS-8s, M-19s, XL-74s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                            | - VQE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                            | Sharpe ratio (XS-3.59)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                            | profits% (XS-2.4%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                            | time (XS-278)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                            | - VQE-constrained:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                            | Sharpe ratio (XS-6.31, M-4.81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                            | profits% (XS-5.1%, M-7.1%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                            | time (XS-123s, M-490s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                            | - TN solver:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                            | Sharpe ratio (XS-5.98, M-9.54, XL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                            | 15.83),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                            | profits% (XS-5.8%, M-15.4%, XL-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                            | 39.7%),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                            | time (XS-0.838, M-120s, XL-82698s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                            | Results showed that not all problem sizes could                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                            | be computed for some methods, only D-Wave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                            | hybrid and TN could solve XXL problems, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                            | vQE could not solve above XS problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                            | Computation times showed the increased.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                            | competition times that hybrid quantum-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                            | classical strategies can have over classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                            | then the close of which a feature in the close of the second seco |  |
|                            | nan me classical methods for increased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                            | prootent sizes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                            | The solutions were quite high in computational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                            | times but did have better solution quality in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                            | finding minime than D Wave by brid with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                            | different hyperparameters and fine tuning the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                            | annerent nyperparameters and fine-tuning the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

|  | authors propose that the solution quality and run-time of TN could be improved. |  |
|--|---------------------------------------------------------------------------------|--|
|  | the largest problem size XXL included 10^382                                    |  |
|  | candidates, which is more than the number of                                    |  |
|  | observable atoms in the universe, 2 algorithms                                  |  |
|  | could find a solution to this problem, TN and                                   |  |
|  | D-Wave hybrid, showcasing the potential of                                      |  |
|  | quantum computing to tackle extreme problem                                     |  |
|  | sizes.                                                                          |  |
|  | Lastly, the authors propose to add more                                         |  |
|  | constraints and improved hardware to make                                       |  |
|  | solution quality better as a future work.                                       |  |
|  | Quotes on solution quality, speed, and overall                                  |  |
|  | results:                                                                        |  |
|  | - "From our results we also conclude                                            |  |
|  | that there seems to be no clear answer                                          |  |
|  | as to which is the "best" algorithm                                             |  |
|  | and hardware platform to solve the                                              |  |
|  | dynamic portfolio optimization                                                  |  |
|  | problem for large systems. This is                                              |  |
|  | because there are several figures of                                            |  |
|  | merit at play: profits, Sharpe ratio,                                           |  |
|  | time cost, and also money cost. The                                             |  |
|  | performance of the algorithms is                                                |  |
|  | different depending on the figure of                                            |  |
|  | nierit, leading us to conclude that, in                                         |  |
|  | the better " (n 11)                                                             |  |
|  | - "We observed also that D-Wave                                                 |  |
|  | Hybrid is remarkably fast whereas                                               |  |
|  | Tensor Networks sometimes provide                                               |  |
|  | better portfolios at the expense of a                                           |  |
|  | longer calculation time" (p. 11)                                                |  |
|  | - "From our comparison, we conclude                                             |  |
|  | that D-Wave Hybrid and Tensor                                                   |  |
|  | Networks are able to handle the                                                 |  |
|  | largest systems, where we do                                                    |  |
|  | calculations up to 1272 fully                                                   |  |
|  | connected qubits for demonstrative                                              |  |
|  | purposes." (p. 1)                                                               |  |
|  | - D-Wave Hybrid performed better                                                |  |
|  | than normal D-Wave, indicating                                                  |  |
|  | classical-quantum to be better in this                                          |  |
|  | instance.                                                                       |  |
|  | - "We see that there is no clear answer                                         |  |
|  | as to which is the "best" algorithm                                             |  |
|  | large systems, as this depends                                                  |  |
|  | strongly on different figures of                                                |  |
|  | merit " (n 1)                                                                   |  |
|  | incin. (p. 1)                                                                   |  |

|                       |                         | - "In fact, the performance of Gekko is            |                        |
|-----------------------|-------------------------|----------------------------------------------------|------------------------|
|                       |                         | quite remarkable, sometimes even                   |                        |
|                       |                         | better than quantum and quantum-                   |                        |
|                       |                         | inspired solutions depending on the                |                        |
|                       |                         | metric, but unfortunately the method               |                        |
|                       |                         | hits a memory wall around 500                      |                        |
|                       |                         | aubits" (n. 8)                                     |                        |
| [02]                  | This namer gives on     | For the summers considering <b>DO</b> , this paper | Quantum hardwara       |
|                       | This paper gives an     | mostly makes use of the paper shows as an          | Califica exhaustive    |
| Use Cases of          | overview of some of the | mostry makes use of the paper above as an          | (1, 1) D W             |
| Quantum               | applications of quantum | example to show performances of IN, VQE,           | (classical), D-Wave    |
| Optimization for      | computing towards       | classical methods, and D-Wave Hybrid,              | hybrid quantum         |
| Finance (Mugel et     | finance, however, in    | therefore only the following can be said on this   | annealing (D-Wave      |
| al., 2022)            | this summary there will | paper for PO:                                      | 2000Q), two VQE        |
|                       | only be looked at       | - "Examples show that real business                | approaches on IBM-Q    |
|                       | quantum computing use   | value can be derived from present day              | and a quantum-inspired |
|                       | for PO.                 | quantum computers. This is                         | optimizer based on     |
|                       |                         | particularly true for the portfolio                | tensor networks,       |
|                       |                         | optimization case, where we found                  |                        |
|                       |                         | the best investment portfolio by                   |                        |
|                       |                         | optimizing over 52 assets and four                 | Quantum algorithm:     |
|                       |                         | years of data" (p. 224)                            | VQE, VQE-constrained,  |
|                       |                         | - Tensor networks use by simulating                | Quantum inspired       |
|                       |                         | quantum mechanics on classical                     | tensor network (TN)    |
|                       |                         | computers                                          |                        |
|                       |                         |                                                    | Methodology:           |
|                       |                         |                                                    | Ontimization           |
|                       |                         |                                                    |                        |
|                       |                         |                                                    |                        |
|                       |                         |                                                    | Bortfolio ontimization |
| 10.41                 |                         |                                                    |                        |
| [94]<br>E D (C.P.     | This paper gives a      | Intro:                                             | Quantum nardware:      |
| From Portiono         | detailed and great      | - In PO problems, assets are chosen                | N/A                    |
| Optimization to       | overview of current     | based upon factors like risk, return,              |                        |
| Quantum               | (2023) quantum          | liquidity, average return etcetera. PO             | Quantum algorithm:     |
| Blockchain and        | computing uses for PO,  | problems can be categorized in two                 | N/A                    |
| Security: A           | quantum blockchain      | categories based on their formulation:             |                        |
| Systematic Review     | and security.           | 1. Convex and 2. Combinatorial                     | Methodology:           |
| of Quantum            |                         | optimization, where approaches have                | Optimization           |
| Computing in          | In this summary there   | evolved from classical ways (e.g.                  |                        |
| Finance (Naik et al., | will only be focused on | mean-variance, variance with                       | Use case:              |
| 2023)                 | the PO part, which      | skewness, VaR, CVaR, mean                          | Portfolio optimization |
|                       | gives great detail into | absolute deviation, and minimax) to                |                        |
|                       | recent contributions    | heuristic and meta-heuristic approach              |                        |
|                       | from other works in a   | based methods.                                     |                        |
|                       | neat table, use cases,  | - Popular choices for these algorithms             |                        |
|                       | previous survey works   | are: evolutionary algorithms, and                  |                        |
|                       |                         | swarm intelligence                                 |                        |
|                       |                         | - Furthermore, some quantum                        |                        |
|                       |                         | approaches are also explored in the                |                        |
|                       |                         | industry: as data increases                        |                        |
|                       |                         | avponentially (due to the curren of                |                        |
|                       |                         | exponentially (due to the curse of                 |                        |
|                       |                         | dimongianality) and the content                    |                        |
|                       |                         | dimensionality), quantum computing                 |                        |

|           | - The two           | major computation models       |  |
|-----------|---------------------|--------------------------------|--|
|           | used for            | quantum PO problems are        |  |
|           | quantum             | annealing and gate-based       |  |
|           | models.             | Where quantum annealing is     |  |
|           | more sui            | table for certain optimization |  |
|           | problems            | s, gate-based annealing is     |  |
|           | more sui            | table for universal problems   |  |
|           | but have            | less stable qubits on average  |  |
|           | then que            | ntum oppositing                |  |
|           | tilali qua          | intuin anneanng.               |  |
| <b>T</b>  | 11 1 1 14           |                                |  |
|           | able snowing lite   | rature review results from     |  |
|           | is paper, the follo | owing table contains an        |  |
| OV        | verview of works    | that were cited in the         |  |
| lite      | terature review of  | t the author that my paper has |  |
| no        | ot covered, this g  | ives a great overview of       |  |
| SOI       | ome literature eva  | luated in quantum              |  |
| <u>co</u> | omputing applica    | tion for PO:                   |  |
| V         | Work                | Contribution                   |  |
|           | Surveyed            |                                |  |
| F         | Financial           | "Portfolio Optimization        |  |
| p         | portfolio           | problem for stocks from        |  |
| n         | management          | the Abu Dhabi Securities       |  |
| u         | using d-            | Exchange formulated as a       |  |
| v         | wave's              | QUBO, solved using             |  |
| q         | quantum             | DWave's simulator" (p.         |  |
|           | optimizer: The      | 16)                            |  |
| c         | case of Abu         |                                |  |
|           | Dhahi               |                                |  |
|           | securities          |                                |  |
| ۵<br>م    | exchange            |                                |  |
|           | Improving           | "Proposed a method to          |  |
|           | mproving            | improve the regults by         |  |
|           | variational         | improve the results by         |  |
| q         |                     | i CV D(C) 111                  |  |
| 0         | optimization        | using CVaR(Conditional         |  |
| u         | using CVaR          | Value at Risk)" (p. 17,        |  |
|           |                     | where promising results        |  |
|           |                     | were found                     |  |
|           | A variational       | Layer-VQE was proposed         |  |
| a         | approach for        | in this paper, where it        |  |
| с         | combinatorial       | served the purpose of          |  |
| 0         | optimization        | optimizing VQE that helps      |  |
| 0         | on noisy            | avoid local minima and         |  |
| q         | quantum             | improve chances of             |  |
| c         | computers           | finding optimal solution       |  |
|           | -                   |                                |  |
|           |                     | Comapred to QAOA its           |  |
|           |                     | gate count increased           |  |
|           |                     | linearly, while that of        |  |
|           |                     | OAOA increased                 |  |
|           |                     | quadratically furthermore      |  |
|           |                     | lover VOE had finite           |  |
|           |                     | layer-vQE nad linite           |  |
|           |                     | sampling errors, it was        |  |

|   |   |                | also simpler to implement    |   |   |
|---|---|----------------|------------------------------|---|---|
|   |   |                | than QAOA                    |   |   |
|   |   |                | ~                            |   |   |
|   |   |                | Overlite of a sulta          |   |   |
|   |   |                | Quality of results           |   |   |
|   |   |                | improves with each           |   |   |
|   |   |                | additional layer in layer-   |   |   |
|   |   |                | VOE, unlike VOE.             |   |   |
|   |   | Quantum        | "Developed an open           |   |   |
|   |   | Quantum        |                              |   |   |
|   |   | metropolis     | software solution that used  |   |   |
|   |   | solver: A      | the Quantum Metropolis       |   |   |
|   |   | quantum        | Hasting algorithm to         |   |   |
|   |   | walks          | provide a solution to        |   |   |
|   |   | approach to    | ontimization problems"       |   |   |
|   |   |                |                              |   |   |
|   |   | optimization   | (p. 17)                      |   |   |
|   |   | problems       |                              |   |   |
|   |   |                | It achieved a speedup over   |   |   |
|   |   |                | its classical counterpart,   |   |   |
|   |   |                | and as the problem scales    |   |   |
|   |   |                | the quantum classiftem       |   |   |
|   |   |                |                              |   |   |
|   |   |                | performed better than        |   |   |
|   |   |                | classical Metropolis         |   |   |
|   |   |                | Hasting algorithm, mostly    |   |   |
|   |   |                | with regard to time to       |   |   |
|   |   |                | solution                     |   |   |
|   |   | <b>T</b> ' ' 1 |                              |   |   |
|   |   | Financial      | "I ackled the problem of     |   |   |
|   |   | index tracking | Financial Index Tracking     |   |   |
|   |   | via quantum    | by using discretized         |   |   |
|   |   | computing      | portfolio optimization to    |   |   |
|   |   | with           | directly implement           |   |   |
|   |   | cordinality    | cardinality constraints in a |   |   |
|   |   | calumanty      |                              |   |   |
|   |   | constraints    | single optimization          |   |   |
|   |   |                | procedure" (p. 17)           |   |   |
|   |   |                |                              |   |   |
|   |   |                | The approach was             |   |   |
|   |   |                | successful in generating     |   |   |
|   |   |                | smaller nortfoliosthat       |   |   |
|   |   |                |                              |   |   |
|   |   |                | could track S&P 100 and      |   |   |
|   |   |                | S&P 500 indexes              |   |   |
|   |   | Benchmarking   | "Benchmarked the various     |   |   |
|   |   | the            | versions of QAOA             |   |   |
|   |   | performance    | concerning its suitability   |   |   |
|   |   | of portfolio   | to the ourrant hardware"     |   |   |
|   |   |                | ( 10)                        |   |   |
|   |   | optimization   | (p. 18)                      |   |   |
|   |   | with QAOA      |                              |   |   |
|   |   |                | They imply that it is        |   |   |
|   |   |                | simpler to optimize          |   |   |
|   |   |                | examples with widely         |   |   |
|   |   |                | scattered correlations and   |   |   |
|   |   |                | returns as opposed to        |   |   |
|   |   |                | those with comparable        |   |   |
|   |   |                | correlations. This is        |   |   |
|   |   |                | because increased            |   |   |
|   |   |                | diversity in correlations    |   |   |
|   |   |                | and returns creates a more   |   |   |
|   |   |                | recognizable energy          |   |   |
| L | 1 | L              | - 887                        | 1 | 1 |

|                       |                        |                 | · · · ·                                                                                                                                                                                                                       | 1                      | 1 |
|-----------------------|------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---|
|                       |                        |                 | landscape, which makes<br>portfolios easier to<br>identify and improve.<br>Basically, it gives<br>perspective into the<br>different aspects of<br>problems and how they<br>affect solution quality,<br>time etcetera for QAOA |                        |   |
|                       |                        | Portfolio       | "Digitized counter                                                                                                                                                                                                            |                        |   |
|                       |                        | optimization    | adiabatic quantum                                                                                                                                                                                                             |                        |   |
|                       |                        | with digitized  | computing (DCQC) and                                                                                                                                                                                                          |                        |   |
|                       |                        | counterdiabati  | digitized counter adiabatic $OAOA$ (DC $OAOA$ ) were                                                                                                                                                                          |                        |   |
|                       |                        | algorithms      | studied " (n 12)                                                                                                                                                                                                              |                        |   |
|                       |                        | argoritimis     | studied. (p. 12)                                                                                                                                                                                                              |                        |   |
|                       |                        |                 | Higher success rates of                                                                                                                                                                                                       |                        |   |
|                       |                        |                 | finding the optimal                                                                                                                                                                                                           |                        |   |
|                       |                        |                 | portfolio are achieved by                                                                                                                                                                                                     |                        |   |
|                       |                        |                 | optimizing the success                                                                                                                                                                                                        |                        |   |
|                       |                        |                 | state energy of the                                                                                                                                                                                                           |                        |   |
|                       |                        |                 | problem Hamiltonian                                                                                                                                                                                                           |                        |   |
|                       |                        |                 | (optimal solution)                                                                                                                                                                                                            |                        |   |
|                       |                        | Financial       | "Proposed an                                                                                                                                                                                                                  |                        |   |
|                       |                        | portfolio       | improvement in the                                                                                                                                                                                                            |                        |   |
|                       |                        | optimization: a | QUBO formulations of                                                                                                                                                                                                          |                        |   |
|                       |                        | QUBO            | allowing the investor to                                                                                                                                                                                                      |                        |   |
|                       |                        | for Sharpe      | allocation in each asset"                                                                                                                                                                                                     |                        |   |
|                       |                        | ratio           | (p. 18), which was                                                                                                                                                                                                            |                        |   |
|                       |                        | maximization    | achieved                                                                                                                                                                                                                      |                        |   |
|                       |                        |                 |                                                                                                                                                                                                                               |                        |   |
| [102]                 | In this area -         | Objections()    |                                                                                                                                                                                                                               | Ouentum 1 1-           |   |
| [103]<br>Experimental | in this paper, a       | - Form a        | OWOA model for a                                                                                                                                                                                                              | Quantum nardware:      |   |
| implementation of     | optimization algorithm | combina         | atorial optimization problem                                                                                                                                                                                                  |                        |   |
| quantum-walk-         | experimented upon to   | for PO,         | 1                                                                                                                                                                                                                             | Quantum algorithm:     |   |
| based portfolio       | show evidence for      | - For the       | experiment on a PO problem,                                                                                                                                                                                                   | QWOA                   |   |
| optimization (Qu et   | practical              | there are       | e three positions taken for the                                                                                                                                                                                               |                        |   |
| al., 2024)            | implementation of      | investor        | : 1. Short position, 2. Long                                                                                                                                                                                                  | Methodology:           |   |
|                       | quantum-walk based     | position        | . 5. INO POSITION. The PO                                                                                                                                                                                                     | Optimization           |   |
|                       | argoriumis.            | Markow          | vitz model for a cost function                                                                                                                                                                                                | Use case:              |   |
|                       | "We realize the first  | that con        | siders historical behavior of                                                                                                                                                                                                 | Portfolio optimization |   |
|                       | experimental           | the asse        | ts, it is expressed as a                                                                                                                                                                                                      |                        |   |
|                       | implementation of the  | minimiz         | zation problem.                                                                                                                                                                                                               |                        |   |
|                       | QWOA mixing unitary    | - The exp       | erimental Po problem                                                                                                                                                                                                          |                        |   |
|                       | and demonstrate its    | specific        | ations are: 3 stocks (Google,                                                                                                                                                                                                 |                        |   |
|                       | high-quality solutions | IBM, an         | tu with zero $1/1/2010_{-}$                                                                                                                                                                                                   |                        |   |
|                       | over a wide range of   | 12/31/20        | 020, on QuOp MPI software.                                                                                                                                                                                                    |                        |   |
|                       |                        | 1               |                                                                                                                                                                                                                               | 1                      | 1 |

| quantum circuit denths" | test are done with 1 through 6                   |  |
|-------------------------|--------------------------------------------------|--|
| (n, 3)                  | iterations of the algorithm \                    |  |
|                         | - "Our experimental approach is direct           |  |
|                         | - Our experimental approach is direct,           |  |
|                         | 1 1 11 w ( 7)                                    |  |
|                         | scalability" (p. /)                              |  |
|                         |                                                  |  |
|                         | Results:                                         |  |
|                         | - After comparing the results from the           |  |
|                         | experiment with the known optimal                |  |
|                         | solutions, it an be said that the                |  |
|                         | experiment found the highest-quality             |  |
|                         | portfolio with a probability of finding          |  |
|                         | it to be 100% over 1 to 6 iterations.            |  |
|                         | <ul> <li>Previous works on simulators</li> </ul> |  |
|                         | compared QWOA with WAOA and it                   |  |
|                         | showed that QWAO was advantages                  |  |
|                         | over QAOA as it needed significantly             |  |
|                         | less search space in achieving high-             |  |
|                         | quality portfolios with fewer                    |  |
|                         | iterations. QWOA also showed great               |  |
|                         | promise in solving heavily                       |  |
|                         | constrained formulations.                        |  |
|                         | - "Our work provides strong evidence             |  |
|                         | for the potential of quantum-walk-               |  |
|                         | based algorithms to solve complex                |  |
|                         | optimization problems of practical               |  |
|                         | significance" (p. 3) (complexity of              |  |
|                         | setup is independent of number of                |  |
|                         | iterations and only depends on                   |  |
|                         | number of dimensions which is                    |  |
|                         | always 7)                                        |  |
|                         |                                                  |  |
|                         | Important notes:                                 |  |
|                         | - This experiment was performed                  |  |
|                         | under a noise-free system                        |  |
|                         | - "The exploration of quantum                    |  |
|                         | algorithms in practical applications is          |  |
|                         | gaining momentum [53_55] even                    |  |
|                         | though they are currently in a                   |  |
|                         | nreliminary stage With the dedicated             |  |
|                         | efforts of scientific researchers we             |  |
|                         | anticipate that quantum technology               |  |
|                         | will soon be leveraged to tack lo                |  |
|                         | will soon be revelaged to tackle                 |  |
|                         | challenging real-life problems" (P. /)           |  |

| [104] In this paper, a novel Objective(s): Ouantum hardware: Se                                    | Sortino ratio $= a$ |
|----------------------------------------------------------------------------------------------------|---------------------|
| A constrained multi- guantum-inspired whale - Form a model based upon multi- Classical computer ra | atio that           |
| neriod portfolio optimization (OWOA) constrained (boundary constraint                              | valuates risk       |
| antimization model is proposed to tackle budget constraint diversification Quantum algorithm:      | diusted return of   |
| based on quantum multi- measure high order constraints OWOA                                        | in investment       |
| inspired constrained portfolio (kurtosis skawness)) OWOA for                                       | in mvestment        |
| antimization ontimization problems multi-period portfolio optimization Methodology: S'             | STARR ratio =       |
| ( <b>Bamajah K</b>                                                                                 | ame as Sortino      |
| Soundarabai P B Next to that factors GWO FOA PSO and FA based                                      | atio but it also    |
| <b>2024</b> ) such as skewness upon excess mean return (EMP) net Use case:                         | allo but it also    |
| Lurtosis transaction return and transaction costs Portfalio entimization C                         | WoP for tail rick   |
| acets diversification Detect gradifications monthly return                                         | boroby making it    |
| boundary and hudget from 1963-2021 of the New York                                                 | nore useful for     |
| appetraints are Stock Evolutions are                                                               | nore userui ioi     |
| considered for essets 100 input size 22 initial nonulation                                         | ignificant          |
| 100, mpti size 52, mital population                                                                |                     |
| The algorithm is then rotio Sertino rotio STADD rotio                                              | IOWIISIUC IISK      |
| approximation ratio Sharese entropy                                                                | nformation ratio    |
| compared with water information ratio, Shannon entropy,                                            |                     |
| opumization (wOA), downside deviation.                                                             | - neips to identify |
| Ordy Woll III                                                                                      | isk consistent      |
| Experiment Results:                                                                                | eturns              |
| Algorithm (EQA)                                                                                    | Thomas on thomas    |
| Algorithm (FOA), to find the optimial results under                                                |                     |
| Optimization (DSO)                                                                                 | - a measure or      |
| and Fruit fly Algorithm OWOA ashieved the highest mean                                             | andomnoss in        |
| (EA) (MPO) (ESO) Sharpe ratio (4.101048) indicating it                                             | his area used to    |
| (CSO) to be the best algorithm under the                                                           | waluate to what     |
| (CSO) to be the best algorithm under the                                                           | legree a portfolio  |
| nrohlem                                                                                            | s diversified       |
| - OWOA also achieved the best mean                                                                 | s diversified.      |
| Sortino ratio and thus provides the                                                                | lownside            |
| best risk-adjusted returns                                                                         | leviation $= a$     |
| - OWOA also achieved the best mean                                                                 | neasure that nuts   |
| STARR ratio                                                                                        | nto perspective     |
| - OWOA also achieved the best mean                                                                 | now well the        |
| information ratio                                                                                  | formulated          |
| - OWOA also obtained the best mean                                                                 | ortfolios keen      |
| Shannon entropy th                                                                                 | he volatility of    |
| - The OWOA algorithm achieved                                                                      | eturns below a      |
| better downward deviation than other                                                               | pecific threshold.  |
| classical models of                                                                                | often the           |
| - Furthermore, the QWOA achieved m                                                                 | ninimum             |
| higher net return rates, lower loss ac                                                             | cceptable return    |
| rates, and global optimal solutions                                                                | ine.                |
| were achieved more accurately and                                                                  |                     |
| efficiently than traditional algorithms,                                                           |                     |
| - "QWOA provided an optimal                                                                        |                     |
| portfolio with high return rates. The                                                              |                     |
| returns provided by the QWOA are                                                                   |                     |
| high compared to the portfolios                                                                    |                     |
| chosen by the other algorithms" (p.                                                                |                     |
| 21)                                                                                                |                     |

|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>"Results suggested that the proposed model provided beneficial outcomes as compared with other algorithms" (p. 1)</li> <li>Net return rate of the proposed model is always above 0.85%, Sharpe ratio is 5.016254 according to the experimental test.</li> <li>Statistical test results (to show strength of the proposed model): <ul> <li>QWOA had lowest standard deviation, lowest p-value (meaning high statistical significance of the results obtained in the test), and lowest t-statistic</li> </ul> </li> </ul>                                                                                                                                                                               |                                                                                                                                                                                                                                                           |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [111]<br>Quantum walk-<br>based portfolio<br>optimisation (Slate<br>et al., 2021) | In this paper, a quantum<br>algorithm for PO on<br>NISQ devices is<br>proposed. A Quantum<br>Walk Optimization<br>algorithm (QWOA) is<br>proposed for high-<br>quality solutions to PO<br>problems<br>Furthermore, QWOA,<br>Quantum Approximate<br>Optimization Algorithm<br>(QAOA), and Quantum<br>Alternating Operator<br>Ansatz (QAOAz) are<br>compared against<br>eachother | <ul> <li>Objective(s): <ul> <li>Based on the mean-variance<br/>Markowitz model, form a PO<br/>problem that ought to be solved by<br/>QWOA, QAOA, QAOAz</li> <li>Compare the results obtained from a<br/>PO experiment with two datasets<br/>(with long-position, short-position,<br/>and no-position) with the named<br/>algorithms to show which one<br/>performs better.</li> <li>Dataset A specifications: 8 stocks<br/>with adjusted close price form the<br/>ASX20 index, period 01/01/2017 to<br/>31/12/2018</li> <li>Dataset B specifications: 8 stocks<br/>with adjusted close price from<br/>ASX20 index, period 24/03/2020 to<br/>06/09/2020</li> </ul> </li> <li>Results:<br/>Dataset A:</li> </ul> | Quantum hardware:<br>Classical computer<br>(QUOP_MPI software)<br>Quantum algorithm:<br>QWOA, QAOA,<br>QAOAz (all hybrid-<br>quantum classical)<br>Methodology:<br>Optimization<br>Use case:<br>Portfolio Optimization<br>(and periodic re-<br>balancing) |  |

|      | - QAOA performs poorly compared to                                   |  |
|------|----------------------------------------------------------------------|--|
|      | the other algorithms, has large                                      |  |
|      | standard deviation (with max 12.96),                                 |  |
|      | these results may be due to the                                      |  |
|      | classical solver part for the QAOA to                                |  |
|      | have a higher likelihood of getting                                  |  |
|      | stuck in local minima than the other                                 |  |
|      | algorithms                                                           |  |
|      | - OAOAz shows diminishing                                            |  |
|      | improvements after 8 iterations.                                     |  |
|      | - OWAO has superior performance at                                   |  |
|      | low iteration values, needing less                                   |  |
|      | search space for good results.                                       |  |
|      | Furthermore, OWAO performs                                           |  |
|      | significantly better considering                                     |  |
|      | annual return                                                        |  |
|      | Dataset B:                                                           |  |
|      | - Dataset B is consistent with the                                   |  |
|      | findings of dataset A                                                |  |
|      | - OWOA consistently finds the best                                   |  |
|      | expected solution quality followed                                   |  |
|      | by $\Omega \Delta \Omega \Delta z$ and $\Omega \Delta \Omega \Delta$ |  |
|      | - OWAO had the best value for                                        |  |
|      | standard deviation 0404z in them                                     |  |
|      | idle and then $\Omega \Lambda \Omega \Lambda$                        |  |
|      | - OWOA shows significant advantage                                   |  |
|      | - QWOA shows significant advantage                                   |  |
|      | - OWAO converges to the optimal                                      |  |
|      | solution efficiently                                                 |  |
|      | OWA a yields the best expected                                       |  |
|      | = QWA0 yields the best expected returns after iterations >2 (max 10) |  |
|      | returns after relations >2 (max 19)                                  |  |
|      | Overall results from the paper:                                      |  |
|      | - "Our earlier work indicated that                                   |  |
|      | OWOA offers significant advantages                                   |  |
|      | over pre-existing methods through a                                  |  |
|      | reduction in the search space and an                                 |  |
|      | unbiased encoding of optimization                                    |  |
|      | constraints" (P. 2)                                                  |  |
|      | - QWOA outperforms QAOAz and                                         |  |
|      | QAOA in terms of amplifying                                          |  |
|      | optimal solutions and achieving                                      |  |
|      | higher expected returns with                                         |  |
|      | acceptable risk levels. The QWOA                                     |  |
|      | algorithm demonstrates robust                                        |  |
|      | performance in both convergence and                                  |  |
|      | optimization across different data                                   |  |
|      | sets.                                                                |  |
|      | - QWAO also showed better                                            |  |
|      | performance in convergence,                                          |  |
|      | stability, and applicability to multiple                             |  |
|      | combinatorial problems.                                              |  |
| <br> |                                                                      |  |

| [118]                                | In this paper, the                      | <ul> <li>Important notes: <ul> <li>"QAOA and QAOAz are hindered by bias in the mixing operator over nontrivial feasible solution spaces." (p. 15)</li> <li>For each dataset problem, the algorithms had different search space sizes (2^16 for QAOA, 1820 for QAOAz, and 266 for QWOA)</li> <li>Each local optimal minimum for the algorithms is different (dataset A: -0.318 for QAOA and QWOA, and -0.305 for QAOAz), (dataset B: -1.25 for all three algorithms)</li> <li>Highest returns did not mean lowest risk in the case of this paper as with the mean variance Markowitz model, a best combination of risk and return is to be found, therefore the highest return portfolio will not necessarily have the lowest risk.</li> </ul> </li> </ul> | Quantum hardware                   |
|--------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Comparative Study<br>between Ouantum | difference in overall<br>efficiency and | - Compare classical and quantum<br>methodologies in an example PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (simulator):<br>Gate model quantum |
| and Classical                        | execution speed                         | problem to show the advantages of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | computer (on Oiskit                |
| Mothods: Fow                         | between classical and                   | quantum computing compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SDK) followed by D                 |
| Observations from                    |                                         | quantum computing compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Waya COM (annealar                 |
| Descriptions from                    | quantum computing for                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wave CQM (annealer,                |
| Portiolio                            | optimization problems                   | - Overcome the qubit limitation (max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | can handle up to 5000              |
| Optimization                         | is explored, where a                    | 12) of the simulator by piling 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | variables and 100.000              |
| Problem (Tripathy                    | Markowitz mean-                         | stocks in 4 buckets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | constraints)                       |
| et al., 2022)                        | variance PO problem is                  | - Formulate the quadratic program as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
|                                      | used to benchmark both                  | QUBO formulation and optimize the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quantum algorithm:                 |
|                                      | methods.                                | parameters using optimizers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quantum: VQE, QAOA                 |
|                                      |                                         | - Data specifications: 48 NSE stocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on Qiskit and                      |
|                                      | han almost in the                       | $\frac{1}{11} \frac{1}{2021} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | madala (COM) an D                  |
|                                      | bistorical data from 49                 | U1/11/2021, with 2011 till 2016 being 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weye enneeler                      |
|                                      | NSE stocks                              | investing A 16 asset portfolio ought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|                                      | TIGE SIDERS                             | to be made by the algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methodology:                       |
|                                      | Ouantum methods used                    | to be made by the digorithms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Optimization                       |
|                                      | are VOE and OAOA                        | Results:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |
|                                      |                                         | - Execution times were respectively:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Use case:                          |
|                                      | Classical method used                   | 11 minutes for VQE on Qiskit, 3.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Portfolio optimization             |
|                                      | is Monte Carlo,                         | minutes for QAOA on Qiskit, 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |
|                                      |                                         | seconds for D-Wave CQM quantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |
|                                      |                                         | annealing, and 16 hours for classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
|                                      |                                         | Monte Carlo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |
|                                      |                                         | - Results achieved are comparable with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
|                                      |                                         | classical approaches, however,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |
|                                      |                                         | calculation times were significantly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
|                                      |                                         | less,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |

|                    |                         | <ul> <li>Gate-based quantum computers on average provide smaller numbers of qubits</li> <li>"From the above CAGR plot, we observe that both classical and quantum approach are providing equally good and comparable results. From our experimentation performed on D-wave annealers and gate-model simulators, we observed that implementations using quantum methods were faster than the corresponding implementation of classical methods" (P. 5)</li> <li>"We observed that implementations using quantum methods were faster than the corresponding implementations using quantum methods were faster than the corresponding implementations</li> <li>There was a qubit limitation in using the quantum simulator (max 12 qubits).</li> <li>The paper stresses the importance of comparing classical and quantum computing methods through realworld tests to substantiate the difference.</li> <li>An example is shown in the paper where a classical computer tires to solve a NP-hard PO problem, as can be seen, the total time to compute the ideal portfolio increases dramatically as assets increase along with required assets per portfolio. For a portfolio of 4 assets under 8 stocks to choose from, the computation time was 9 minutes, but for a portfolio of 10 stock with 50 stocks to choose from, the computation time was 9</li> </ul> |                        |          |
|--------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|
|                    |                         | the computation times is 11000 years.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |          |
| [119]              | In this paper, a hybrid | Objective(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quantum hardware:      |          |
| Reverse quantum    | quantum-classical       | - Form a hybrid quantum annealing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D-Wave quantum         |          |
| annealing approach | solution method is      | solver along with a specific setup to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | annealer 2000Q         |          |
| to portfolio       | proposed, where the     | solve a mean-variance PO model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |          |
| optimization       | mean-variance PO        | casted into a QUBO formulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quantum algorithm:     |          |
| problems           | problem from            | - Benchmark the proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                    |          |
| (Venturelli, D. &  | Markowitz is taken as   | model/algorithm along with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |          |
| Kondratyev, A.,    | the objective problem.  | classical Genetic Algorithm (GA) on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methodology:           |          |
| 2019)              | Savaral astrong for 4   | a dataset where the objective is to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Optimization           |          |
|                    | Several solvers for the | maximize risk-adjusted returns or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Line encor             |          |
|                    | Were used: Gready       | problem set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Portfolio ontimization |          |
|                    | were used: Greedy       | problem set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r ornono opumization   | <u> </u> |

| · · ·                 |                                         |
|-----------------------|-----------------------------------------|
| search, genetic       | - Benchmarking was done with            |
| algorithm (GA),       | different problem sizes, parameters,    |
| forward quantum       | and solvers to evaluate the             |
| annealing, and revers | performance of the D-Wave 2000Q         |
| quantum annealing.    | against classical heuristic methods     |
|                       | (GA)                                    |
|                       | - The test was performed on sets of     |
|                       | assets: 24, 30, 36, 42, 48, 54, 60, and |
|                       | for reverse QA, pause times before      |
|                       | resuming the process to mitigate        |
|                       | errors                                  |
|                       |                                         |
|                       | Results:                                |
|                       | - Looking at the graphs depicting       |
|                       | various information on time-to-         |
|                       | solution (TTS), and effects of          |
|                       | parameter settings, it can be said that |
|                       | as problem size increased: 1. Reverse   |
|                       | OA with greedy search had best          |
|                       | nerformances in TTS 2 GA (from          |
|                       | random starting point) performed        |
|                       | worse in TTS than GA starting with      |
|                       | Gready Search but both increased in     |
|                       | TTS quite stably 2 Forward QA           |
|                       | in exceed more in TTS as much lam       |
|                       | nicreased more in 115 as problem        |
|                       | size increased, but was still laster    |
|                       | than GA but not QA with Greedy          |
|                       | Search.                                 |
|                       | - Optimal results for Reverse QA were   |
|                       | found using shorter annealing times.    |
|                       | - Reverse QA with shorter pause times   |
|                       | had less TTS                            |
|                       | - The performance of the greedy and     |
|                       | classical approaches decreased as       |
|                       | problem sizes increased, not taking     |
|                       | away that the results obtained from     |
|                       | the Greedy approaches were better, it   |
|                       | still suggests that increased problem   |
|                       | sizes may be difficult for them.        |
|                       | - The best results in terms of time-to- |
|                       | solution for the hardest set instance   |
|                       | were obtained by seeding the            |
|                       | quantum annealer with better solution   |
|                       | candidates found by greedy local        |
|                       | search and then performing reverse      |
|                       | annealing                               |
|                       | - "The optimized reverse annealing      |
|                       | protocol is found to be more than 100   |
|                       | times faster than the corresponding     |
|                       | forward quantum annealing on            |
|                       | average." (p. 1)                        |
|                       |                                         |
|                       | Important notes:                        |
|                       |                                         |

|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Greedy search was used as a benchmark, and to initialize the state for reverse quantum annealing, giving it a head start as it starts with a reasonably good approximation.</li> <li>The D-Wave system has a maximum controllable energy, making it challenging to program accurately.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [120]<br>Dynamic Asset<br>Allocation with<br>Expected Shortfall<br>via Quantum<br>Annealing (Xu et al.,<br>2023) | In this paper, a hybrid<br>quantum-classical<br>algorithm is proposed to<br>solve dynamic asset<br>allocation with target<br>return and target risk<br>metric (expected<br>shortfall)<br>The proposed algorithm<br>is benchmarked using<br>D-Wave 2000Q and D-<br>Wave Advantage<br>annealers against<br>classical approaches.<br>Contributions of this<br>paper:<br>1: a demonstration of<br>how NP constraints<br>such as expected<br>shortfall in an<br>optimization problem<br>can be solved using a<br>hybrid quantum-<br>classical approach<br>2: This paper serves as a<br>first case employment<br>in the industry of<br>solving expected<br>shortfall based dynamic<br>asset allocation<br>problems<br>3: this is one of the first<br>papers to introduce the<br>problem solving on a<br>real quantum computer<br>using real financial data<br>5 datasets are used and<br>tested upon, the exact | <ul> <li>Objective(s): <ul> <li>Form a hybrid quantum-classical algorithm for a PO problem with dynamic asset allocation, target risk and target return</li> <li>Compare the algorithms of classical and quantum kind against each other on D-Wave 2000Q and D-Wave Advantage with each other and simulated annealing on real-world financial data.</li> <li>Form a modified Markowitz framework (to fit specifications of the objective problem) into a QUBO format</li> <li>Objective problem = computing portfolios with minimum variance for a given target return</li> <li>Data specifications overall: top-six ETFs by trading volumes, and six major Currencies exchange rates, respectively 12 and 23 assets in the experiments, expected shortfall of 5%, 30000 samples are taken on the QUBO formulation for more specific results. Ultimately, 5 datasets are made with different starting dates between 2010 and 2020 and each method has 100 days of data to work with.</li> </ul> </li> <li>Results: <ul> <li>Simulated annealing followed the optimal solution in most tests</li> <li>For test 4 of the currency tests, the real quantum annealers were able to find a portfolio with higher returns than simulated annealing (with a still acceptable but slightly increased risk)</li> <li>It is observed that currency tests perform better on real quantum</li> </ul> </li> </ul> | Quantum hardware:<br>D-Wave 2000Q (2048<br>qubits, up to 68 logical<br>variables), D-Wave<br>Advantage (5760<br>qubits, up to 180 logical<br>variables) quantum<br>annealers.<br>Both simulated and<br>physical quantum<br>annealing are used. The<br>simulator is not<br>specified<br>Quantum algorithm:<br>N/A<br>Methodology:<br>Optimization<br>Use case:<br>Portfolio optimization |
|                                                                                                                  | specifications of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |

| datasets are NOT | hardware than ETF tests on the same                                                |  |
|------------------|------------------------------------------------------------------------------------|--|
| mentioned        | hardware.                                                                          |  |
|                  | - "ealing. Both 2000Q and Advantage                                                |  |
|                  | processors are able to compute                                                     |  |
|                  | returns that are consistently more                                                 |  |
|                  | than 80% of the optimal, except the                                                |  |
|                  | two currency test cases where the                                                  |  |
|                  | algorithm fails to converge on the                                                 |  |
|                  | 2000Q" (p. 15)                                                                     |  |
|                  | - "Both quantum annealers are able to                                              |  |
|                  | generate portfolios with more than                                                 |  |
|                  | 80% of the return of the classical                                                 |  |
|                  | optimal solutions, while satisfying the                                            |  |
|                  | expected shortfall" (P. 1)                                                         |  |
|                  | - "We observe that experiments on                                                  |  |
|                  | assets with higher correlations tend to                                            |  |
|                  | perform better, which may help to                                                  |  |
|                  | design practical quantum applications                                              |  |
|                  | in the near term." (p. 1)                                                          |  |
|                  |                                                                                    |  |
|                  | Remarks on the real quantum hardware:                                              |  |
|                  | - 2000Q processor: can natively handle                                             |  |
|                  | up to 12 assets                                                                    |  |
|                  | - Advantage processor: can handle up                                               |  |
|                  | to 23 assets, nowever due to detective                                             |  |
|                  | quotis and connectors, only 119<br>aubits can be used surrently (2022)             |  |
|                  | The Advantage processor fails to find                                              |  |
|                  | - The Advantage processor fails to find<br>the ground state effectively, with high |  |
|                  | chain lengths (up to 17) leading to                                                |  |
|                  | noor performance. This indicates                                                   |  |
|                  | limitations in handling larger                                                     |  |
|                  | problems due to current hardware                                                   |  |
|                  | constraints.                                                                       |  |
|                  | - The 2000Q processor struggles with                                               |  |
|                  | embedding chain lengths of 16 and                                                  |  |
|                  | has difficulty finding the optimal                                                 |  |
|                  | solution.                                                                          |  |
|                  |                                                                                    |  |
|                  | Important notes:                                                                   |  |
|                  | - "Although we acknowledge there                                                   |  |
|                  | may be other factors contributing to                                               |  |
|                  | our observations that currency tests                                               |  |
|                  | do better than ETF tests on for                                                    |  |
|                  | quantum annealers, Figure 7 implies                                                |  |
|                  | that more correlated assets tend to"                                               |  |
|                  | (P. 15)                                                                            |  |

 Table 7, overview of articles used for literature synthetization