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Abstract—Morphing attacks pose a substantial threat to
Automated Border Control (ABC) systems by enabling the
creation of identity documents used by multiple individuals,
thereby compromising border security. Face demorphing has
emerged as a crucial technique to counteract these attacks,
aiming to disentangle and reconstruct the concealed identities
within a morph. This paper introduces a novel face demorphing
framework leveraging StyleGAN2’s latent space. The framework
includes an advanced encoder, ReStyle-ID, designed to embed
identities into StyleGAN2’s latent space with high accuracy, and
StyleDemorpher, a specialized face demorphing network trained
on the newly created DemorphDB dataset. DemorphDB features
high-quality morph images, providing a challenging and realistic
training environment for the StyleDemorpher.

The ReStyle-ID encoder and StyleDemorpher frameworks
collectively enhance the accuracy and quality of face demorphing,
addressing the limitations of previous approaches such as low
resolution and poor generalizability. The ReStyle-ID encoder
utilizes improved loss functions and training data, achieving
improvements in identity reconstruction when compared to other
encoding methods. StyleDemorpher excels in reconstructing high-
quality demorphed images, demonstrating high generalizability
across various morphing methods and unseen identities. This
work introduces a robust solution for face demorphing and sets
the stage for future advancements by developing a comprehensive
dataset and a scalable framework for continued research and
development in biometric security.

Index Terms—Face Demorphing, GAN, Deep Learning, Face
Recognition

I. INTRODUCTION

Morphing attacks present a significant threat to Automated

Border Control (ABC) systems [1], as they enable the creation

of identity documents that can be used by multiple individuals

whose features are blended in the morph. This vulnerability

can potentially allow two identities to share a single document,

undermining the integrity of border security measures [2], [3].

First introduced by [4], face demorphing has emerged as a

prominent research topic in biometrics due to its potential to

counteract morphing attacks. The primary objective of face

demorphing is to disentangle the two identities embedded

within a morph. This often involves reconstructing the second

identity, which is not physically present at the ABC gate but

is concealed within the morph.

Face demorphing faces several significant challenges, pri-

marily due to the lack of prior information about the morphing

method and the blending factor used to combine the two

identities. Additionally, the live image capture at the ABC

gate often differs from the one used to generate the morph

in terms of illumination, pose, and expression. These factors

make the exact reconstruction of the second identity through

facial landmarks complex and prone to noticeable artifacts [4].

To overcome these challenges, researchers have increasingly

explored deep learning-based approaches for face demorphing.

Techniques utilizing Convolutional Neural Networks (CNNs)

and Generative Adversarial Networks (GANs) have shown

promise [5], [6], [7], [8]. However, these networks often re-

construct low-resolution images with artifacts and distortions.

Moreover, their training on limited datasets can lead to poor

generalizability when applied to previously unseen morphing

methods and identities.

This paper addresses the limitations of current deep

learning-based methods for face demorphing by introducing a

novel approach leveraging the StyleGAN2’s [9] latent space.

To overcome the challenge of low-resolution reconstructions,

StyleGAN2 is utilized, which is capable of generating images

at a resolution of 1024×1024 pixels. A newly developed

encoder framework, ReStyle-ID, is designed to accurately

embed existing identities into the latent space of StyleGAN2.

The ReStyle-ID encoder network is trained on over 100,000

different identities to ensure its generalizability. Using transfer

learning [10], a specialized StyleDemorpher network is further

trained specifically for the demorphing task. This training is

conducted on a newly created dataset, DemorphDB, introduced

in this paper. The morph images in DemorphDB are of high

quality, providing a complex and realistic challenge for the

StyleDemorpher to learn from.

Overall, the proposed framework simulates realistic mor-

phing attack scenarios and aims to reconstruct accurate and

high-quality demorphed images. This method demonstrates

high generalizability across unseen identities and morphing

methods, effectively addressing the shortcomings of previous

approaches.

Thus, the contributions of this paper are threefold:

• A Novel Demorphing Database: Introducing Demor-

phDB, a new demorphing database featuring high-quality,

passport-like images of 1653 identities from five public

datasets, including 643 identities with multiple images.

For each identity, both traditional and deep learning-

based high-quality morphs, chosen from the ten closest

identities, are provided. The database is designed for

extensibility, allowing for additional morphing methods.

• Improved StyleGAN2 Encoder: Presenting ReStyle-ID,

an enhanced StyleGAN2 [9] encoder network that better

retains identity information in input face images. Using an

iterative encoder based on the ReStyle [11] architecture,

with improved loss functions and training data, this en-

coder surpasses the original ReStyle in preserving identity

information and places encodings more favorably within

the latent space. It is also three orders of magnitude

faster than optimization-based methods [9], making it

significantly more efficient.

• High-Quality Demorphing Network: Introducing

StyleDemorpher, a demorphing network that produces

high-quality and accurate demorphs without needing

prior knowledge of the morphing method, relying solely

on training examples. The network generalizes well to

unseen datasets and morphing techniques, trained on

high-quality morphs with minimal artifacts. It utilizes the

ReStyle-ID encoder, retrained to use a morph image and

a live capture to reconstruct the second identity within

the morph, offering a practical solution without requiring

access to the original images used for morphing.



II. RELATED WORK

A. Face Demorphing

Face morphing combines features from two distinct iden-

tities into a single image that shares attributes of both. This

process is defined as follows for images IA and IB of two

different identities:

IAB = M (IA, IB) , (1)

where M (.) denotes the face morphing technique.

There are primarily two approaches to generating morphs:

landmark-based and deep learning-based. Landmark-based

methods often involve using facial landmarks to create tri-

angular meshes. These meshes are then warped to produce

a morph [12]. These methods often lead to ghosting artifacts

that typically require manual retouching to achieve convincing

results. Various landmark-based morphing techniques have

been proposed in literature [13], [14], [15], with most au-

tomatic methods employing a splicing technique to integrate

the morphed facial region seamlessly into one of the original

identity images [16].

Deep learning-based methods [17], [18], [19], in contrast,

eliminate the need for landmarks by leveraging neural network

architectures for end-to-end morph generation. While these

methods generally reduce the need for manual adjustments,

they can sometimes yield lower quality results [20].

Face demorphing, first introduced in [4] and building on

prior research [2], [21], aims to reconstruct the image of an

accomplice, IB , from a forged document featuring a morphed

image IAB . This task becomes challenging when the criminal

identity A attempts to use the document, particularly because

the exact method of morph generation is often unknown.

Complications are further amplified since the image of identity

A captured at the ABC gate differs from the image used to

generate the morph, introducing potential artifacts during the

demorphing process as highlighted in [4]. To address one of

these challenges, [22] explores using a deep learning network

to first estimate the morphing factor before performing face

demorphing. However, both of these methods apply only to

conventional landmark-based morphs and rely on the minimal

error of landmark detection algorithms.

For this reason, deep learning-based face demorphing meth-

ods could address this challenge by training on morphs gen-

erated by various morphing methods. Several deep learning-

based face demorphing methods have been proposed in lit-

erature. For instance, [5] describes a Convolutional Neural

Network (CNN) that processes both the document and live

capture images to output the demorphed image. Another

approach, FD-GAN [7], employs a Generative Adversarial

Network (GAN) framework consisting of an encoder network,

an identity separation network for disentangling the encoded

images to recover features of the accomplice, and a restoration

network to reconstruct the image based on these features. The

discriminator network then evaluates the authenticity of the

generated image compared to the target image. MorphGAN-

Former [8] utilizes the GANformer [23] architecture, embed-

ding real images into the latent space using an optimization

method driven by identity-related loss functions. Following the

embedding, a simple linear interpolation of the latent codes is

used to generate the accomplice’s identity.

While landmark-based demorphing methods are effective

only under specific conditions, when a landmark-based morph-

ing method is used and landmarks are precisely extracted, they

often generate artifacts and are ill-suited for handling attacks

using deep learning-based morphing techniques. Conversely,

while deep learning-based demorphing methods could be

trained to handle various morph types, they often suffer from

limitations such as training on a limited number of identities,

using low-resolution images, and producing distorted images

due to insufficient training data. An exception is MorphGAN-

Former [8], which uses a pre-trained GANformer [23] capa-

ble of generating high-quality, high-resolution facial images.

However, its effectiveness is limited and currently only proven

on GANformer-based morphs, suggesting that its simple in-

terpolation method may not be effective with other morphing

techniques due to potential lack of disentanglement of features

in the latent space with respect to the morphing method.

B. Latent Space of StyleGAN2

Introduced in [9], StyleGAN2 is an advanced iteration of

the StyleGAN network [24]. StyleGAN employs a novel GAN

generator architecture capable of producing high-resolution

images. Unlike traditional generator networks that start from a

latent code [25], [26], StyleGAN initiates from a constant input

and incorporates one or multiple different latent codes (also

referred to as “styles”) at the input of each convolutional layer.

Furthermore, each layer is enhanced with independently scaled

noise inputs to introduce fine-grained stochastic details. This

architecture facilitates the generation of high-resolution, realis-

tic images that can be finely controlled via the styles. Overall,

the StyleGAN architecture consists of 18 convolutional blocks,

each receiving latent codes corresponding to individual styles.

Moreover, StyleGAN features a mapping network that trans-

forms the latent codes, sampled from a multivariate standard

normal distribution Z , into an intermediate latent space W .

This transformation achieves a higher disentanglement of

the latent variables associated with various image attributes.

StyleGAN2 [9] refines this generator architecture to eliminate

artifacts observed in some generated images and to enhance

training stability.

Given the high quality and disentanglement of the Style-

GAN2 latent space, numerous studies have explored mapping

real images into this space for editing purposes. For instance,

starting with a neutral facial expression, StyleGAN2 can be

used to identify and modify the corresponding latent code

to reflect a smiling expression in the resulting image. This

process begins with the embedding of the real image into

the StyleGAN2 latent space, a technique known as GAN

inversion [27]. Two primary methods are often employed for

this embedding: optimization-based and encoder-based.

Optimization-based methods, as discussed in [9], [28], [29],

iteratively refine the latent codes to minimize the disparity be-



tween the target and generated images, using gradient descent

combined with various loss functions. Although this method

yields high resemblance, it is computationally intensive, often

requiring several minutes to embed a single image. Conversely,

encoder-based methods, such as those found in [30], [31],

and [11], utilize trained encoder networks to map images into

the latent space more quickly, typically within a single or a

few forward passes, despite generally achieving lower fidelity

compared to optimization-based methods.

Following embedding, the attributes of the image can be

altered using the StyleGAN2 latent space. For facial images,

several studies [32], [33], [34] have demonstrated the ability

to modify features such as expression, pose, or illumination

by editing the latent codes. However, these methods are not

directly applicable to the face demorphing task, which requires

identifying a novel facial identity within the latent space

that corresponds to an identity hidden in a morphed image.

Therefore, although embedding is still necessary for face

demorphing to project real faces into the StyleGAN2 latent

space, this paper introduces a novel approach tailored to the

face demorphing task.

III. METHODOLOGY

In this section, the methodology behind the proposed

frameworks is detailed. The core component, the ReStyle-

ID encoder framework, is first introduced, highlighting its

role in identity-preserving inversion necessary for the face

demorphing task in the StyleGAN2 [9] latent space. Next,

the StyleDemorpher face demorphing framework is presented,

demonstrating how it modifies the pre-trained ReStyle-ID en-

coder to achieve high-quality face demorphing results. Finally,

the formulation of the loss functions for both frameworks is

discussed.

A. ReStyle-ID: Identity-Preserving Inversion Framework

The architecture and operation of the proposed ReStyle-ID

framework are largely similar to ReStyle [11]. Unlike con-

ventional StyleGAN2 encoders such as e4e [31] or pSp [30],

which encode the input image in a single pass, ReStyle uses

several iterative forward passes, each improving the encoding.

The proposed ReStyle-ID framework enhances the ReStyle

encoder specifically for identity information preservation, cru-

cial for face demorphing where the morphed image is highly

similar to the identity to be recovered. These improvements

were achieved through the following modifications:

• Utilization of a larger dataset and the inclusion of syn-

thetic images of passport-like quality, further described

in Section V-A1.

• Enhancement of the identity loss by using the MTCNN

[35] model for face detection and cropping instead of

a fixed center crop, and adding the MS-SSIM [36] loss

function, further described in Section III-C3.

• Complete removal of background information in the im-

ages to be encoded, ignoring out-of-domain background

information that can lead encodings outside the well-

defined regions of the StyleGAN2 latent space.

The operation of the ReStyle-ID framework is illustrated

in Figure 1. Given an input image Ix, the objective of the

ReStyle-ID framework is to find a latent code w that best

represents the input. The expanded latent space of StyleGAN2,

denoted as W+, is utilized for this task. Unlike the conven-

tional latent space W of StyleGAN2, which uses a single

512-dimensional latent code (style) w for all 18 layers, the

W+ space allows for 18 different w vectors, significantly

improving the inversion quality [28].

Initially, the latent code wŷ0
is set to the average latent code

of StyleGAN2, w, with its corresponding image Iŷ0
. At each

iteration t, where 0 f t f N and N is the total number of

iteration steps, the target image Ix and the current prediction

Iŷt
are concatenated and passed to the encoder network E. The

architecture of the encoder network is visualized in Figure 2.

This network generates a residual code ∆
E
t :

∆
E
t = E (Ix ∥ Iŷt

) . (2)

The residual code is then combined with the current latent

code prediction wŷt
, resulting in an improved latent code:

wŷt+1
= ∆

E
t +wŷt

. (3)

The StyleGAN2 generator G then generates the image Iŷt+1

corresponding to the improved latent code:

Iŷt+1
= G

(

wŷt+1

)

. (4)

This process continues iteratively, updating current latent

code and corresponding image until the final iteration N .

During training, an additional step is performed using a

pre-trained face segmentation network [37] to identify and

remove background pixels in both Ix and Iŷt+1
, setting their

values to zero. This effectively eliminates the background from

the images, allowing the encoder network to focus solely on

the identity within the image. After this operation, the loss

function described in Section III-C6 is calculated, and the

back-propagation algorithm is applied. It is important to note

that the StyleGAN2 generator G remains frozen, and only the

weights of the encoder network E are updated.

B. StyleDemorpher: Face Demorphing Framework

The StyleDemorpher framework excels in face demorphing

by leveraging the latent space capabilities of StyleGAN2 [9].

It adopts the ReStyle-ID encoder architecture, as shown in

Figure 2. The pre-trained weights of the ReStyle-ID encoder

are used as the starting point for training StyleDemorpher. This

strategic use of pre-trained weights equips StyleDemorpher

with a robust initial understanding of the correlation between

image representations and the latent space of StyleGAN2, built

from a substantial dataset used with the ReStyle-ID encoder.

The ReStyle-ID encoder’s ability to train with single images

of varying expressions and poses enables the use of extensive

image datasets such as FFHQ [9] and CelebA-HQ [40]. How-

ever, modeling face morphing attacks requires high-quality,

passport-like images. Additionally, authorities typically only



Figure 1: ReStyle-ID inversion framework. This framework builds upon ReStyle [11] with enhancements to better encode

identity information during the training process. The input image, Ix, begins with wŷ0
and Iŷ0

initialized to the mean StyleGAN2

latent code and its corresponding image, respectively. At each iteration step t, Ix and Iŷt
are concatenated along the channel

dimension and fed into the encoder network E. The encoder’s task is to find the residual code ∆
E
t , which is added to the

current latent code wŷt
. This adjustment aims to produce a new latent code wŷt+1

that more closely resembles Ix when

forwarded through StyleGAN2. These updates are iteratively refined at each step. Note that all latent codes w ∈ W+. During

training, a segmentation model removes the backgrounds of Ix and the generated Iŷt+1
to compute the similarity-based loss

functions, ensuring the inversion process focuses on the subject rather than the background.

Figure 2: Simplified architecture of the ReStyle-ID encoder

and StyleDemorpher network, following [11]. The two input

images are concatenated along the channel dimension, and fea-

ture maps are extracted using the feature pyramid network [38]

based on the ResNet-IR [39] backbone. The feature maps are

passed through 18 map2style networks [30], transforming them

into 18 512-dimensional vectors corresponding to w ∈ W+.

have access to the morphed images in documents and live

captures of individuals using these documents, not the original

images used to create the morphs. To simulate this scenario

for training StyleDemorpher, a dataset must include at least

two distinct images of the same individual - one to generate

the morph and another representing the person’s live capture

at the ABC gate. This requirement limits the data available

for training the face demorphing network. By initializing

StyleDemorpher with weights from the encoder network,

which already establishes a connection between image and

latent space, overfitting on the smaller dataset can be mitigated.

This strategy enhances the generalizability to unseen identities

and various morphing methods.

Before detailing the StyleDemorpher framework’s design,

it is essential to define several terms related to the dataset

used in training. This dataset comprises quadruplets of im-

ages, denoted as (IA, IA′ , IB , IAB) and further described in

Section IV. The definitions of these images are as follows:

• IA - An image of a criminal, A, used to create the morph.

• IA′ - A different image of the same criminal, A, modeled

as the live capture at the ABC gate.

• IB - An image of an accomplice, B, assisting criminal A

in the morph creation. This image is targeted for recovery

by the face demorphing algorithm.

• IAB - The morph image, used in the identity document

that criminal A attempts to utilize.

Although all four images can be employed during the

StyleDemorpher’s training phase, only IAB and IA′ are avail-

able during inference, as the images used to create the morph

are not accessible.

The operation of the StyleDemorpher framework is depicted

in Figure 3. The framework processes an input morph image,

IAB , and a live capture image, IA′ . While Figure 3 visualizes

the morph image generated using StyleGAN2, any morphing

method can be used for generating morph images. IAB and

IA′ are concatenated along the channel dimension and fed into



Figure 3: StyleDemorpher face demorphing framework. This framework utilizes the transfer learning mechanism [10] by

initializing the weights of the StyleDemorpher network, which has the same architecture as the ReStyle-ID encoder, with the

weights of ReStyle-ID. The ReStyle-ID encoder framework is also used with frozen weights to encode the input image IAB

into the latent code wAB , corresponding to the latent code generated in the final iteration of ReStyle-ID. In the forward pass

procedure, the morph image IAB and the live capture image IA′ are concatenated and used as input for the StyleDemorpher

network, SD. The network calculates the residual code ∆
SD, which, when added to wAB , generates the latent code wB̂ that

aims to recover the identity of B present within the morph AB. StyleGAN2 is then used to generate the image IB̂ from wB̂ .

During the training, the target image IB is first inverted into the StyleGAN2 latent space using ReStyle-ID framework, i.e.,

ĨB = G(E(IB)). Following this, the backgrounds of IB̂ , ĨB and IA′ are removed, and the similarity-based loss functions are

computed between IB̂ and ĨB , while inverse identity loss is computed between IB̂ and IA′ .

the StyleDemorpher network, denoted as SD. This network

outputs a residual code, ∆SD:

∆
SD = SD (IAB ∥ IA′) . (5)

Concurrently, the morph image IAB is input to the frozen,

pre-trained ReStyle-ID framework. Although simplified in the

figure, the “Frozen Encoder Framework” block represents

the complete encoding framework shown in Figure 1. The

encoding is iteratively refined over N steps, and the final

latent code wAB at t = N is saved. This latent code is

then combined with ∆
SD to estimate the latent code for

reconstructing identity B, wB̂ :

wB̂ = ∆
SD +wAB . (6)

This approach leverages the morph’s latent code to navigate

to the latent space location of identity B. Using this latent

code, the frozen StyleGAN2 generator, G, reconstructs the

image of identity B:

IB̂ = G
(

wB̂

)

. (7)

During training, the target image of identity B guides

the StyleDemorpher’s learning process. Instead of using IB

directly, ReStyle-ID encodes it into the latent space, and

StyleGAN2 reconstructs it as ĨB = G(E(IB)), promot-

ing demorphing within StyleGAN2’s latent space. Following

this, the backgrounds of IB̂ , ĨB , and IA′ are removed, and

similarity-based loss functions are computed between ĨB and

IB̂ . Additionally, inverse identity loss, aimed at removing

the presence of identity IA′ in IB̂ , is computed. The loss

computation is further discussed in Section III-C7.

During the initial development stages, the demorphing pro-

cess fully conducted within the latent space of StyleGAN2 was

explored. In this approach, the inputs for StyleDemorpher net-

work were latent codes instead of images. While this method

proved effective for editing attributes in StyleGAN2, such as

changing a neutral expression to a smile, as demonstrated in

previous work [33], it resulted in only minimal changes when

applied to face demorphing. A detailed explanation of this

behavior is provided in Appendix A.

C. Loss Function Formulation

This section introduces the individual loss functions used

in training the ReStyle-ID and StyleDemorpher frameworks.

Since most of the individual loss functions are utilized by both

frameworks, a simpler notation is adopted using variables x



and y, representing two different images used in the compu-

tation of a specific loss. The final training objectives for both

frameworks are then presented, utilizing framework-specific

notations.

1) L2 loss: Pixel-wise L2 Loss, also known as Mean

Squared Error (MSE) loss, is a fundamental and widely-used

loss function when it comes to training deep learning models.

It is defined as follows:

LL2 (x, y) = ∥x− y∥
2
. (8)

2) Perceptual loss: Perceptual loss is widely used in train-

ing Convolutional Neural Networks (CNNs) and Generative

Adversarial Networks (GANs) [41], [42], [43] as it helps

these networks learn perceptual similarities between images.

In this work, LPIPS [44] loss, based on the AlexNet [45]

backbone, is utilized over the standard perceptual loss [46].

Early experiments and previous research [47] have shown that

LPIPS loss better preserves image quality and sharpness. The

LPIPS loss is defined as:

LLPIPS (x, y) = ∥F (x)− F (y)∥
2
, (9)

where F represents the AlexNet perceptual feature extraction

network.

3) Identity loss: Identity loss is crucial during the training

of both ReStyle-ID and StyleDemorpher frameworks. This

loss helps preserve identity-related features within the image,

which is essential for the face demorphing procedure. The

identity loss is defined as:

LID (x, y) = 1− Sc

(

R
(

M(x)
)

, R
(

M(y)
))

, (10)

where Sc represents the cosine similarity metric, R is the pre-

trained ArcFace [39] network specialized in facial recognition

and verification, and M is the pre-trained MTCNN [35]

network used for automatic face detection and cropping.

An improvement introduced in this work, compared to [30]

and [11], is the use of automatic face detection. Instead of

performing a simple center crop of the face image before

passing it to the ArcFace network, the MTCNN network

detects the bounding box around the face. The cropping and

resizing are then performed, and the resulting image is passed

to the ArcFace network. This makes the loss implementation

more robust, allowing it to handle images with varying poses

or facial structures more accurately.

4) Inverse identity loss: Inverse identity loss is introduced

to achieve the opposite effect compared to identity loss, as it

attempts to maximize the dissimilarity between two identities.

It is defined as follows:

LInvID (x, y) = max
(

0, Sc

(

R
(

M(x)
)

, R
(

M(y)
)))

, (11)

5) MS-SSIM loss: MS-SSIM evaluates the structural simi-

larity between images at multiple scales, incorporating vari-

ations in image content at different resolutions [36]. This

multi-scale approach enables MS-SSIM to capture structural

information associated with facial images more robustly and

accurately. It has a positive impact on identity reconstruction

results for both ReStyle-ID and StyleDemorpher frameworks.

The MS-SSIM loss is defined as follows:

LMS-SSIM (x, y) = 1− MS-SSIM (x, y) . (12)

6) ReStyle-ID Training Objective: The combined ReStyle-

ID training objective consists of four individual loss terms

aimed at maximizing the identity similarity between input

images and reconstructions. L2, LPIPS, and identity losses

are utilized, following the design choices of the ReStyle [11]

framework, with an improvement in identity loss through

automatic face detection. An additional MS-SSIM loss term

is included to further improve identity similarity scores by

considering the structural similarity of facial images. The

training objective for ReStyle-ID is defined as follows:

LReStyle-ID

(

Ix, Iŷt+1

)

= λL2LL2

(

Ix, Iŷt+1

)

+ λLPIPSLLPIPS

(

Ix, Iŷt+1

)

+ λIDLID

(

Ix, Iŷt+1

)

+ λMS-SSIMLMS-SSIM

(

Ix, Iŷt+1

)

,

(13)

where, Ix is the target image being encoded, Iŷt+1
is the

reconstructed image at iteration t, and λL2 = 1.0, λLPIPS = 0.8,

λID = 0.1, λMS-SSIM = 0.4 are the weights scaling the

contributions of individual loss functions. These weights have

been selected empirically based on identity similarity scores

obtained from validation data.

7) StyleDemorpher Training Objective: The training ob-

jective of StyleDemorpher is similar to ReStyle-ID with the

addition of a new term corresponding to the inverse iden-

tity loss. While the L2, LPIPS, identity, and MS-SSIM loss

functions aim to maximize the similarity between the target

identity B and the predicted reconstruction IB̂ , the inverse

identity loss is computed between IB̂ and IA′ to maximize the

identity dissimilarity between these images, thereby removing

the presence of identity A from the prediction. The training

objective for StyleDemorpher is defined as follows:

LStyleDemorpher

(

IB̂ , ĨB , IA′

)

= λL2LL2

(

ĨB , IB̂

)

+ λLPIPSLLPIPS

(

ĨB , IB̂

)

+ λIDLID

(

ĨB , IB̂

)

+ λMS-SSIMLMS-SSIM

(

ĨB , IB̂

)

+ λInvIDLInvID

(

IA′ , IB̂
)

,

(14)

where, ĨB = G(E(IB)) corresponds to the image of the target

identity B, IA′ is the live capture image of the criminal, IB̂
is the predicted reconstruction of identity B, and λL2 = 1.0,

λLPIPS = 0.8, λID = 1.0, λMS-SSIM = 0.4, λInvID = 0.25 are the

weights scaling the contributions of individual loss functions.

These weights have been selected empirically based on identity



similarity and dissimilarity scores obtained from validation

data. Compared to ReStyle-ID, the weight of the identity loss,

λID, is increased from 0.1 to 1.0 to better emphasize identity

similarity when reconstructing the identity B.

IV. DEMORPHDB DATASET

This paper introduces the novel DemorphDB dataset, cre-

ated for training deep learning models to perform face de-

morphing. DemorphDB is constructed from five datasets com-

prised of full frontal facial images: FRGC [48], Eurecom-IST

Face Dataset [49], Utrecht ECVP Dataset [50], Chicago Face

Database [51], [52], [53], and Face Research Lab London

Dataset [54]. Images from these datasets have been manually

analyzed, retaining only high-quality, passport-like images,

excluding those with non-neutral expressions, closed eyes,

blurriness, or poor illumination. This resulted in DemorphDB

containing images of 1653 unique identities, 643 of which

have two or more images.

Apart from bona fide identity images, DemorphDB contains

morphs generated automatically for training the StyleDemor-

pher framework. The images for the morphs are generated

following the procedure in Algorithm 1, which uses the

notations introduced in Section III-B. This results in a dataset

structured into quadruplets of images: (IB , IA, IA′ , IAB).

Algorithm 1 DemorphDB Dataset Construction Procedure

Require: DemorphDB bona fide identity images, dlib [55]

face feature extractor

1: for each identity B in DemorpDB do

2: Find 10 closest identities A1, A2, . . . , A10 with at least

2 available images using dlib face feature extractor

3: for each closest identity Ai do

4: Randomly select one image as IAi

5: Randomly select another image as IA′

i
(IAi

̸= IA′

i
)

6: end for

7: Select up to 5 images of B (IB1
, IB2

, . . . , IBk
, where

k = min(5, # of existing images of B))

8: for each image IBj
of B do

9: for each closest identity Ai do

10: Create morph image IAiBj
using IAi

and IBj

11: end for

12: end for

13: end for

14: Construct dataset quadruplets (IBj
, IAi

, IA′

i
, IAiBj

) for

each Bj and Ai

Three types of morphs are available within DemorphDB:

UTW [14], UTW-NS, and StyleGAN2. UTW morphs, as

described in [14], introduce an automatic method for generat-

ing high-quality morphs using splicing [16] technique. This

method effectively crops the facial region of the morphed

image and pastes it into the image of one of the original

identities, removing ghosting artifacts outside the face region.

In this work, the cropped face region is pasted into the image

of accomplice B, as the accomplice aims to obtain the passport

with the morphed image. Additionally, this method warps

the geometry of facial parts and then swaps them, such as

including the eyes and nose of the criminal while having the

mouth of the accomplice.

Due to the swapping of facial parts, UTW morphs remove

information about the eyes and nose of the accomplice, which

needs to be reconstructed by face demorphing, leaving only

their geometry. Therefore, UTW-NS (UTW - No Swapping)

morphs are introduced, performed without swapping facial

regions, effectively preserving the identity information of both

individuals within the morphs.

Finally, StyleGAN2 morphs are also introduced and gener-

ated using the ReStyle-ID framework to obtain latent codes of

the two identities and then morphing them by averaging:

IAB = G

(

E (IA) + E (IB)

2

)

. (15)

Overall, DemorphDB contains 36,983 morph images for

each of the three discussed morphing methods. Appendix B

provides an evaluation of the quality of the morphs, with

some examples shown in Figure 7. Notably, all images within

this database (bona fide and morphs) have been automatically

white balance corrected by a pre-trained network described

in [56]. Additionally, all images have been aligned and cropped

using the FFHQ method [9].

V. EXPERIMENTS

A. Datasets

1) ReStyle-ID Framework Datasets: The original

ReStyle [11] framework was trained on the FFHQ [9] dataset,

which contains 70,000 images. For training ReStyle-ID, the

following datasets are used:

• FFHQ [9] - 70,000 images

• CelebA-HQ [40] train set - 24,000 images

• Synthetic passport-like dataset - 6,652 images

The CelebA-HQ dataset is added to increase the number

of unique identities, while the synthetic dataset, generated

using StyleGAN2, provides passport-like images for training

ReStyle-ID to handle similar images during the demorphing

process. To ensure the synthetic StyleGAN2 images have

frontal poses and neutral expressions, a pre-trained pSp [30]

network is used. This network receives input segmentation

masks and creates encodings of random identities in Style-

GAN2’s latent space. First, segmentation masks are automat-

ically generated using the pre-trained face parsing network

from [37] on passport-like images from the DemorphDB

dataset. Next, the pSp network generates encodings of ran-

dom identities with matching segmentation masks. Finally,

StyleGAN2 processes these encodings to generate the corre-

sponding images. Figure 8 illustrates some examples of these

synthetic images.

Evaluation of the ReStyle-ID framework is performed using

images from the DemorphDB dataset. One random image from

each of the 1,653 bona fide identities is selected, forming the

DemorphDB-Single evaluation dataset.



2) StyleDemorpher Framework Datasets: Training the

StyleDemorpher framework utilizes quadruplets of images

from the DemorphDB dataset. Only UTW-NS and StyleGAN2

morphs are used in training because UTW [14] morphs result

in information loss due to swapping of the face parts. However,

UTW morphs are included in the evaluation as an unseen

morphing method during training.

The subset of target images B from the Face Research Lab

London (FRLL) Dataset [54] is reserved for evaluation. Con-

sequently, all morphs with the target demorphing identity B

from the FRLL dataset are excluded from training. This results

in an evaluation dataset containing 102 unseen target identities.

Since the FRLL dataset includes only one neutral expression

image per individual, the images for the corresponding identity

A (IA, IA′ ) are still selected based on Algorithm 1.

Additionally, the FRLL-Morphs [57] dataset, based on

identities from the FRLL [54] dataset, is used for evalua-

tion to test StyleDemorpher on unseen morphing methods.

This dataset includes morphs generated using five different

morphing methods: OpenCV [58], FaceMorpher [59], Web-

Morph [60], AMSL [15], and StyleGAN2 [9], [61]. Since

the FRLL dataset lacks multiple images for each identity, IA′

images are unavailable. Instead, it is assumed that IA′ = IA,

meaning the same image used to generate the morph is also

used as the live capture image fed to StyleDemorpher.

B. Experimental Setup

The ReStyle-ID framework is trained and evaluated by

setting the number of iterations to 5 (N = 5), consistent with

the methodology described by [11]. Detailed training proce-

dures are provided in Appendix C. The evaluation primarily

focuses on the identity similarity between the input images

and their encoded reconstructions. Additionally, computational

times and the quality of embedding locations within the

StyleGAN2 latent space [9] are assessed. Comparative analysis

is performed against other state-of-the-art (SOTA) StyleGAN2

embedding methods, including pSp [30], ReStyle [11], and

optimization-based approach [9].

For the StyleDemorpher framework, two different versions

of the StyleDemorpher networks are trained: one with UTW-

NS morphs and the other with StyleGAN2 morphs as de-

scribed in Section IV. This approach is chosen because tra-

ditional and StyleGAN2 morphs differ significantly, with the

former using splicing techniques [16] and the latter creating

full morphs, including the outside face regions. Training

details for this framework are provided in Appendix C.

The primary evaluation of StyleDemorpher focuses on its

ability to reconstruct the image of identity B, as this is the

main objective of face demorphing. Additional experiments are

introduced to assess StyleDemorpher for Differential Morph

Attack Detection (DMAD) as illustrated in Figure 10. The

generalizability of the approach is also evaluated on previously

unseen morph types and various image corruptions that might

occur in deployment scenarios. Comparisons are made with

the use of no face demorphing and with the Face Demorphing

method introduced in [4]. To avoid confusion, the capitalized

“Face Demorphing” refers to the approach outlined in [4],

while “face demorphing” refers to the general procedure

of demorphing where the identity of the accomplice within

the morph is reconstructed. For all experiments with Face

Demorphing method, a demorphing factor of 0.3 is utilized,

following the recommendations in [4]. Additionally, the same

dlib [55] automatic face landmark detection model is used for

creating UTW [14] and UTW-NS morphs as well as for the

Face Demorphing method. This gives Face Demorphing an

additional advantage since, in a realistic scenario, it is likely

that a different landmark detection mechanism would be used

when creating morphs.

Finally, three state-of-the-art face recognition systems (FRS)

are used to evaluate the identity similarity scores of both

frameworks. These systems are MobileFaceNet [62], Arc-

Face [39], and CurricularFace [63], offering a range of accu-

racy levels. The decision thresholds for the similarity scores

extracted by the FRS models are set according to Frontex

guidelines [64]. Specifically, the thresholds are set at values

where the False Acceptance Rate (FAR) is 0.1%, based on

the identities of the DemorphDB dataset. These thresholds are

specified in Table I.

FRS Decision Threshold

MobileFaceNet [62] 0.6396
ArcFace [39] 0.4894

CurricularFace [63] 0.2929

Table I: Cosine similarity decision thresholds of FRS models

for FAR@0.1% based on identities of the DemorphDB dataset.

C. Evaluation: ReStyle-ID Framework

1) Identity Reconstruction: To evaluate the identity re-

construction quality of the ReStyle-ID framework, Table II

displays the cosine similarity scores between input identities

from the DemorphDB-Single dataset and their reconstructions

based on three different FRS models. Across all FRS models,

ReStyle-ID similarity scores are higher compared to pSp [30],

the original ReStyle framework [11], and optimization-based

encoding [9], except for CurricularFace, where optimization-

based encoding scores the highest. This indicates that the

improvements in ReStyle-ID lead to better identity information

preservation, essential for the demorphing task. Figure 4

visualizes these results by plotting iteration-based similarity

scores against the average inference time for a single image.

While the ReStyle-ID framework takes slightly more time

to encode a facial image compared to pSp, it significantly

improves the results. In contrast, optimization-based encoding

takes about three orders of magnitude longer while resulting

in similar or worse identity similarity scores.

2) Quality of Encodings: To evaluate the quality of the

encodings within the latent space, often referred to as “ed-

itability,” a separate experiment is conducted. Unlike the

typical editability of latent codes for changing attributes such

as facial expressions [33], this work requires a different kind

of editability. The encodings used by StyleDemorpher need

to find a different identity within the latent space rather than



FSR

Encoding method
pSp [30] ReStyle [11] ReStyle-ID Optimization [9]

MobileFaceNet [62] 0.817 ± 0.073 0.855 ± 0.073 0.876 ± 0.071 0.845 ± 0.071
ArcFace [39] 0.820 ± 0.048 0.868 ± 0.049 0.889 ± 0.043 0.846 ± 0.048

CurricularFace [63] 0.684 ± 0.058 0.753 ± 0.051 0.783 ± 0.047 0.789 ± 0.049

Table II: Identity similarity scores between input identities and their StyleGAN2-encoded reconstructions. The results are

presented as mean ± standard deviation. Values in bold signify the best results.

(a) MobileFaceNet [62] (b) ArcFace [39] (c) CurricularFace [63]

Figure 4: Identity similarity scores plotted against average inference times for StyleGAN2 identity encoding.

editing the same identity. Therefore, the embeddings must be

located in well-defined regions of the StyleGAN2 latent space.

To measure this, the DemorphDB-Single dataset is used to

create pairs of the most similar identities. Both images are

then encoded into the latent space of StyleGAN2, and morphs

are created by averaging (see Equation (15)). The quality

of these morphs is evaluated by computing Mated Morph

Presentation Match Rate (MMPMR) [65] values between

the created morphs and the two original identities. Higher

MMPMR values indicate better placement of encodings within

the latent space, as the interpolated morphs effectively contain

information from both individuals.

Table III displays these MMPMR values. The ReStyle-ID

framework scores the highest due to its higher quality of en-

codings. Interestingly, optimization-based encodings perform

the worst, signifying that optimization-based embeddings do

not place the embeddings in well-defined regions within the

latent space compared to encoder-based methods. Therefore,

for the task of face demorphing, encoder architectures provide

a faster and more accurate method of finding a well-defined

embedding within the StyleGAN2 latent space.

3) Morphing Artifact Removal: When creating landmark-

based morphs, the ghosting artifacts can often occur in result-

ing morphs due to inaccuracies of landmark detection methods,

as well as the availability of only a limited number of land-

marks. It has been observed that when encoding morph images

with ghosting artifacts, these artifacts are largely suppressed,

as shown in Figure 9. This is advantageous for the demorphing

procedure because StyleDemorpher will not encounter these

artifacts, ensuring they do not have major impact on training.

D. Evaluation: StyleDemorpher Framework

1) Visual Comparison: The visual results of face demor-

phing are shown in Figure 13, which presents the demorphing

results of StyleDemorpher and Face Demorphing [4] based on

UTW, UTW-NS, and StyleGAN2 morphs. Due to licensing

restrictions on other datasets used in DemorphDB, only images

from the FRLL [54] dataset, which permits publication, are

displayed. As can be seen, StyleDemorpher generates accurate

reconstructions that closely resemble the accomplice B, while

having minimal traces of identity A. In contrast, the Face

Demorphing [4] method introduces image artifacts within the

facial region. StyleDemorpher, however, generates artifact-free

inner face regions, with some artifacts present in the hair,

which have minimal impact on identity similarity scores.

2) Demorphing Accuracy: In this paper, the restoration

accuracy from [7], referred to as demorphing accuracy, is used

to evaluate the performance of StyleDemorpher. Demorphing

accuracy is the percentage of successfully demorphed facial

images out of the total number of demorphing attempts.

Successful demorphing occurs when the demorphed image IB̂
matches IB but does not match IA′ using an FRS decision

threshold at FAR@0.1%. Since the decision threshold can vary

based on the dataset used for the computation of FAR@0.1%,

Figures 5, 14, and 15 plot the demorphing accuracy against

different threshold values.

Based on these results, it is evident that compared to the

baseline case with no demorphing, where images IAB are

used instead of IB̂ , StyleDemorpher significantly improves

results by having higher demorphing accuracy at FAR@0.1%

and across a wider range of threshold values. When compared

to the results of the Face Demorphing method, a clear im-

provement is observed with StyleGAN2 morphs. For UTW and

UTW-NS morphs, the improvements are less pronounced but

still present, as the demorphing accuracy at the FAR@0.1%

threshold and its surroundings is higher. The higher demor-

phing accuracy of StyleDemorpher at lower FRS thresholds

indicates that it can be effectively utilized with FRS decision



FSR

Encoding method
pSp [30] ReStyle [11] ReStyle-ID Optimization [9]

MobileFaceNet [62] 39.68% 54.20% 58.56% 18.39%
ArcFace [39] 91.53% 94.25% 95.09% 68.54%

CurricularFace [63] 96.13% 97.76% 99.21% 90.74%

Table III: MMPMR [65] values of the StyleGAN2 morphs generated by encoding two identities and averaging their latent

codes. Higher values correspond to higher quality morphs, effectively capturing both identities within a morph image. Values

in bold signify the best results.

thresholds calibrated solely on bona fide images. In contrast

to the Face Demorphing method, which achieves improved

demorphing accuracy at higher decision thresholds, StyleDe-

morpher performs well even at the FAR@0.1% threshold,

which is determined on bona fide images across all three

FRS models utilized in this study. This eliminates the need

for finding a different decision threshold to achieve better

demorphing accuracy for a specific morphing method.

3) Histograms: Demorphing accuracy does not directly

show the relationship between the demorphed images and

the two identities within the morphs. For this purpose, the

histograms displayed in Figures 6, 16, and 17 are utilized.

The histograms plot the identity similarity scores of four image

pairs.

• Pair (Â, A′) corresponds to the case when face demorph-

ing is applied to a bona fide image pair, i.e., the document

image and the live capture contain the same identity

A. Therefore, for this scenario, the demorphed image is

labelled as Â.

• Pairs (B̂, A′) and (B̂, B) represent the case when face

demorphing is applied to a morphed document image.

The resulting demorphed image B̂ should have a low

identity similarity score with A′ while having a high

identity similarity with B.

• Pair (B,A′) represents an impostor pair (no face demor-

phing) and is added for reference.

It should be noted that when no face demorphing is used,

Â and B̂ are replaced by A and AB, respectively.

In cases where no demorphing is used, a large percentage

of pairs (AB,A′) (purple histograms) are located to the

right of the decision threshold, indicating that the criminal

could successfully use the morphed document. Conversely,

both Face Demorphing and StyleDemorpher methods shift

this histogram to the left, preventing the criminal from using

the morphed document. Notably, StyleDemorpher shifts this

histogram significantly more, regardless of the FRS model.

At the same time, the pairs (B̂, B) (blue histograms) are

often slightly shifted to the right by both demorphing methods,

indicating that the reconstructions increasingly represent iden-

tity B. However, in the case of UTW and UTW-NS morphs

with CurricularFace (Figures 6a and 6b), a slight leftward shift

can be observed with StyleDemorpher.

While StyleDemorpher effectively removes the presence of

identity A from reconstructions of morphed images, it tends

to shift the histogram of bona fide image pairs (Â, A′) (green

histograms) to the left compared to the no-demorphing case.

Although this shift is also present with the Face Demorphing

method, it is more pronounced with StyleDemorpher. This

indicates that StyleDemorpher negatively impacts bona fide

document images. This occurs because StyleDemorpher is

trained only with morphed images as inputs and learns to

remove the presence of the live capture identity.

Therefore, when operating under the assumption that the

input image is a morph, StyleDemorpher can accurately re-

construct the accomplice’s identity with minimal traces of the

criminal’s identity, effectively performing face demorphing.

However, if it is unknown whether the input image is a morph,

StyleDemorpher can cause false rejections of identities using

bona fide document images. A potential solution is to use

a different method for morph detection. If morph detection

is positive, StyleDemorpher can then provide accurate face

demorphing results.

4) DMAD Performance: To evaluate the Differential

Morph Attack Detection (DMAD) performance of StyleDe-

morpher, the setup described in Appendix F is utilized. Addi-

tionally, the following metrics are used:

• Attack Presentation Classification Error Rate (APCER):

reports the proportion of incorrectly classified morphing

attacks as bona fide representations.

• Bona Fide Presentation Classification Error Rate

(BPCER): reports the proportion of incorrectly classified

bona fide samples as morphing attacks.

• Detection Equal Error Rate (D-EER): reports the error

rate when APCER is equal to BPCER.

• Detection Error Tradeoff (DET) curves: plot APCER

values against BPCER values.

Table IV presents the D-EER values along with BPCER

values at fixed APCER values of 1%, 5%, and 10%. This table

compares the performance of StyleDemorpher with the case

of no demorphing and the use of the Face Demorphing [4]

method across three FRS models. Figures 18, 19, and 20 plot

the DET curves for further visualization.

Based on the results, StyleDemorpher offers the lowest D-

EER values when evaluated using MobileFaceNet [62] and

ArcFace [39] FRS models. However, the Face Demorphing

method performs best with the CurricularFace [63] FRS. This

can be explained by the fact that StyleDemorpher, as shown in

Section V-D3, has a negative impact when working with bona

fide document images. The shift of the bona fide histograms to

the left (green histograms in Figures 6, 16, and 17), which is

especially pronounced with CurricularFace, negatively impacts

the DMAD performance of StyleDemorpher.

Nevertheless, while not specifically designed for DMAD,

StyleDemorpher offers an improvement over the baseline when



(a) UTW-NS morphs (b) UTW [14] morphs (c) StyleGAN2 [9] morphs

Figure 5: Demorphing accuracy plotted against different FRS threshold values of CurricularFace [63]. The dotted red

line corresponds to the FAR@0.1% decision threshold. The results are presented for the cases of no demorphing, Face

Demorphing [4], and StyleDemorpher face demorphing methods. The values in the brackets correspond to the demorphing

accuracy at the FAR@0.1% decision threshold.

(a) UTW-NS morphs (b) UTW [14] morphs (c) StyleGAN2 [9] morphs

Figure 6: Histograms visualizing the distributions of the identity similarity scores for different image pairs. The identity scores

are computed based on the CurricularFace [63] FRS. The dotted red line corresponds to the FAR@0.1% decision threshold. The

results are presented for the cases of no demorphing, Face Demorphing [4], and StyleDemorpher face demorphing methods.

no demorphing is used and provides comparable or better

results compared to the Face Demorphing method.

5) Generalizability: To evaluate how well StyleDemorpher

performs on unseen morphing methods, the FRLL-morphs

dataset [57], described in Section V-A2, is utilized. Since

images IA′ corresponding to live capture images are not

present in this dataset, images IA, which were used to gen-

erate the morphs, are used instead as one of the inputs for

StyleDemorpher (see Figure 3). Due to this reason, the Face

Demorphing [4] method has an advantage, as it attempts to

invert the morphing process using facial landmarks that were

directly employed during the morphing process. Additionally,

performance on StyleGAN2 [9], [61] morphs of the FRLL-

Morphs dataset is not reported, as these morphs result in low

identity similarity scores and are almost always rejected by

the three FRS models without any demorphing needed.

Table V reports the demorphing accuracy values at

FAR@0.1% for four unseen morphing methods, while Fig-

ure 21 visualizes some examples of demorphed images. Based

on the results, it can be seen that StyleDemorpher achieves

similar or marginally worse demorphing accuracy results com-

pared to the previously seen during training UTW-NS morphs

(see Figures 5a, 14a, and 15a). Therefore, it can be concluded

that StyleDemorpher generalizes well to previously unseen

morphing methods. Moreover, StyleDemorpher outperforms

the Face Demorphing [4] method despite the latter’s advantage

of using images that were directly involved in the morph

creation process, and this is especially true for more robust

facial recognition systems such as ArcFace [39] and Curricu-

larFace [63].

Finally, Appendix G describes how robust StyleDemorpher

is when input images are subjected to different image corrup-

tions. StyleDemorpher displays its ability to generalize well to

unseen image corruptions, making it suitable for deployment



Morphing method FRS Demorphing method D-EER (%)
BPCER @ APCER (%)

1% 5% 10%

UTW-NS

MobileFaceNet

No Demorphing 8.73 22.55 11.08 8.43
Face Demorphing 6.18 19.31 6.86 4.51
StyleDemorpher 4.90 13.33 4.90 2.16

ArcFace

No Demorphing 2.45 3.14 1.77 1.18
Face Demorphing 1.57 2.16 0.29 0.29
StyleDemorpher 1.08 1.67 0.29 0.00

CurricularFace

No Demorphing 0.29 0.20 0.00 0.00

Face Demorphing 0.10 0.00 0.00 0.00

StyleDemorpher 0.29 0.20 0.00 0.00

UTW

MobileFaceNet

No Demorphing 9.51 23.14 13.04 9.12
Face Demorphing 6.57 18.33 6.86 4.71
StyleDemorpher 5.88 19.31 6.96 3.33

ArcFace

No Demorphing 2.45 4.51 2.16 1.37
Face Demorphing 1.86 2.75 0.69 0.29
StyleDemorpher 1.67 3.04 0.39 0.20

CurricularFace

No Demorphing 0.39 0.20 0.00 0.00

Face Demorphing 0.29 0.00 0.00 0.00

StyleDemorpher 0.69 0.69 0.10 0.10

StyleGAN2

MobileFaceNet

No Demorphing 15.78 40.98 27.35 20.59
Face Demorphing 11.67 34.51 20.20 14.80
StyleDemorpher 8.33 16.96 11.28 6.57

ArcFace

No Demorphing 7.26 17.94 9.12 5.00
Face Demorphing 4.22 9.41 3.92 2.45
StyleDemorpher 2.26 6.18 0.78 0.39

CurricularFace

No Demorphing 0.39 0.39 0.00 0.00

Face Demorphing 0.30 0.00 0.00 0.00

StyleDemorpher 0.69 0.69 0.20 0.20

Table IV: Detection performance of the DMAD methods on UTW-NS, UTW [14], and StyleGAN2 [9] morphs based on the

FRLL [54] evaluation subset of the DemorphDB dataset. The results are presented for the cases of no demorphing (using the

morphed images directly), Face Demorphing [4], and StyleDemorpher face demorphing methods across three FRS models:

MobileFaceNet [62], ArcFace [39], and CurricularFace [63]. Values in bold signify the best results.

Morphing method Demorphing method
FRS

MobileFaceNet ArcFace CurricularFace

AMSL

No Demorphing 59.07% 22.79% 2.26%
Face Demorphing 97.28% 89.83% 68.19%
StyleDemorpher 95.95% 99.49% 96.78%

FaceMorpher

No Demorphing 23.16% 3.60% 0.49%
Face Demorphing 85.76% 65.55% 42.80%
StyleDemorpher 88.95% 95.42% 93.13%

OpenCV

No Demorphing 24.16% 3.77% 0.66%
Face Demorphing 86.16% 61.75% 40.95%
StyleDemorpher 88.12% 94.68% 91.81%

WebMorph

No Demorphing 21.54% 3.52% 0.33%
Face Demorphing 82.23% 57.66% 37.76%
StyleDemorpher 85.42% 95.66% 90.91%

Table V: Demorphing accuracy [7] on unseen landmark-based morphing methods from the FRLL-Morphs dataset [57], including

AMSL [15], FaceMorpher [59], OpenCV [58], and WebMorph [60]. The results are presented for the cases of no demorphing

(using the morphed images directly), Face Demorphing [4], and StyleDemorpher face demorphing methods across three FRS

models: MobileFaceNet [62], ArcFace [39], and CurricularFace [63]. Note: images IA are used instead of IA′ due to their

unavailability in the FRLL-Morphs dataset. Values in bold signify the best results.

in realistic scenarios where image corruptions could occur.

VI. CONCLUSION AND FUTURE WORK

This work introduces a novel deep learning-based face

demorphing framework to address limitations observed in

current landmark-based and deep learning-based solutions,

such as artifacts, low resolution, limited training identities,

and poor generalizability [4], [22], [5], [6], [7], [8]. Two

interconnected frameworks are presented, collectively aimed

at achieving accurate and high-quality face demorphing.

The first framework, ReStyle-ID, builds upon the concepts

in [11]. It encodes real facial images into the latent space

of StyleGAN2 [9] with minimal loss of identity information.

Innovations in the ReStyle-ID framework include removing

background distractions to focus the encoder model on identity

encoding, employing an automatic face cropping mechanism

using a pre-trained MTCNN [35] during identity loss com-

putation, and utilizing the MS-SSIM [36] loss function. The

dataset has also been expanded with a mix of real and

synthetic images. ReStyle-ID significantly improves identity



preservation, placing encodings in well-defined regions of the

StyleGAN2 latent space, achieving speeds three orders of

magnitude faster than optimization-based approach [9]. This

framework acts as the foundational step for face demorphing

using StyleGAN2’s latent space.

The second framework, StyleDemorpher, is tailored for

accurately recovering the identity of accomplices involved in

creating morphed document images. A novel dataset, Demor-

phDB, containing 1653 unique identities, was developed to

train this framework. To mitigate overfitting on this relatively

small dataset, transfer learning techniques [10] are employed,

initializing StyleDemorpher with weights from the pre-trained

ReStyle-ID encoder. By processing both the morph image and

a trusted live capture image, StyleDemorpher is trained to

maximize the resemblance to the target accomplice’s identity

while minimizing similarity to the criminal identity captured in

the live image. It accurately isolates the accomplice’s identity

from the morph, validating its efficacy in face demorphing.

This framework demonstrates high generalizability, perform-

ing effectively with novel morphing methods and under vari-

ous image corruptions.

However, it has been noted that StyleDemorpher adversely

affects the analysis of genuine, non-morphed document im-

ages. This issue stems from the framework being solely

trained on morphed images, presupposing that all processed

documents contain morphs. Hence, it is advisable to use

StyleDemorpher only after confirming the morphed nature of a

document using existing Differential Morph Attack Detection

(DMAD) techniques [66], [67], [68]. Future enhancements

could include integrating a new subset of genuine paired

images into the training process, which would enable StyleDe-

morpher to minimize its impact on authentic documents,

thereby improving overall DMAD performance.
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APPENDIX A

FACE DEMORPHING VIA STYLEGAN2 LATENT CODES

The initial design of the StyleDemorpher network aimed to

perform face demorphing solely using latent code information,

rather than image information. Therefore, in Figure 3, the

inputs to the StyleDemorpher network were not the images

IAB and IA′ , but rather their latent encodings wAB and

wA′ . Thus, the StyleDemorpher network was a multilayer

perceptron (MLP) network rather than a convolutional neural

network (CNN). This approach was similar to [33], where

the authors used an MLP to edit the latent codes and change

identity attributes such as adding facial hair, changing pose,

or altering expression.

However, the results of this approach were poor for two

reasons. The first and key reason was that the MLP network

had to be trained from scratch, resulting in overfitting due

to the limited number of unique identities within the Demor-

phDB dataset. Instead, the current StyleDemorpher framework

utilizes the pre-trained ReStyle-ID network’s weights as an

initial starting point, meaning there is already an established

relationship between image and latent spaces based on over

100,000 identities used to train ReStyle-ID.

Secondly, while in [33], the authors performed small edits

and largely kept the identity of the person the same, StyleDe-

morpher requires obtaining a completely different identity.

This requires the spatial awareness of CNNs for accurate

identity recovery, as the MLP struggles to learn the numerous

minute changes within the image space necessary for accurate

latent space transformations. Therefore, the MLP-based archi-

tecture for facial demorphing based on latent codes proved to

be unsuccessful.

APPENDIX B

DEMORPHDB MORPHS

To evaluate the quality of the morphs in the DemorphDB

dataset (see Figure 7 for examples of the morphing methods),

the Mated Morph Presentation Match Rate (MMPMR) [65]

metric is utilized with the decision threshold of facial recog-

nition systems (FRS) set to a False Acceptance Rate (FAR)

of 0.1%. Table VI shows the MMPMR values for the three

morphing methods used in the DemorphDB dataset across

three different facial recognition systems FRS models. Higher

percentage scores indicate higher quality morphs, as they more

effectively deceive facial recognition systems into accepting

both identities present within a morphed image. As shown,

the StyleGAN2 [9] morphs result in the highest scores. This

can be explained by StyleGAN2 creating morphs where the

region outside the face is also morphed, while UTW [14] and

UTW-NS morphs crop the morph and paste it into the image

of one of the identities. Thus, UTW and UTW-NS morphs

scored higher when accepting the identity whose outer face

region matches the morph, while the identity only captured

within the inner face part scored lower.

Additionally, different FRS models show varying effec-

tiveness. The simpler and less accurate MobileFaceNet [62]

rejects a larger proportion of the morphs, while the more

Person A Person B UTW [14] UTW-NS StyleGAN2

Figure 7: Examples of the morphing methods utilized in the

DemorphDB dataset. Person A and B model the identities

of the criminal and the accomplice, respectively. UTW [14]

and UTW-NS morphs use the splicing technique, while Style-

GAN2 [9] morphs also attempt to morph identities outside

the face region. Ghosting artifacts are more present in UTW-

NS morphs, as they do not swap different face parts between

identities like UTW morphs.

complex and accurate CurricularFace [63] model is often

deceived by the morphs. This occurs because, being a better

FRS, CurricularFace can detect the traces of both identities

used to generate the morph more effectively, making it more

susceptible to morphing attacks.

APPENDIX C

TRAINING DETAILS

Both the ReStyle-ID and StyleDemorpher frameworks are

trained on input images with 256× 256 resolution, while the

generated images at the output have 1024 × 1024 resolution.

During the computation of losses, the output images are

resized down to 256 × 256, with the exception of identity

(λID) and inverse identity (λInvID) losses, which require an

input resolution of 112 × 112 and further cropping around

the face region. The training is performed using the Ranger

optimizer, which integrates the Lookahead technique [69] with

the Rectified Adam [70] optimizer. A batch size of 6 is utilized,

and all experiments are executed on an NVIDIA RTX 4090

GPU.

The ReStyle-ID framework is trained for 18 epochs with

a learning rate of 0.0001, while the StyleDemorpher frame-

work (both UTW-NS and StyleGAN2 morph variants) is

trained for 20 epochs with a learning rate of 0.00001. Since

StyleDemorpher is trained on the DemorphDB dataset with a

limited number of target identities, regularization techniques

are utilized to prevent overfitting. Weight decay of 0.0001

is applied, and the map2style [30] networks (see Figure 2)

are modified to include dropout layers. Specifically, 4 dropout

layers with a dropout rate of 0.2 are added to each of the 18

map2style networks after each Convolution-LeakyReLU block.

Finally, it should be noted that only during the training of

StyleDemorpher, the input image of identity A is empirically



FRS

Morphing method
UTW [14] UTW-NS StyleGAN2 [9]

MobileFaceNet [62] 21.89% 21.25% 49.59%
ArcFace [39] 63.38% 59.02% 95.41%

CurricularFace [63] 94.37% 90.06% 99.47%

Table VI: MMPMR [65] values for different morphing methods and facial recognition systems. Higher values correspond to

higher quality morphs, effectively capturing both identities within a morph image.

set to have a 20% chance to be IA rather than IA′ . This

is done so that the demorphing network can have an easier

understanding of the direct impact of IA on IAB as well as

the indirect relationship between IA and IA′ .

APPENDIX D

SYNTHETIC PASSPORT-LIKE STYLEGAN2 IMAGES

Figure 8: Examples of synthetic StyleGAN2 [9] images used

for training ReStyle-ID framework.

APPENDIX E

MORPHING ARTIFACT REMOVAL THROUGH STYLEGAN2

INVERSION

Ghosting artifacts often generated when creating landmark-

based morphs can pose a problem when performing face

demorphing within the latent space of StyleGAN2 [9]. How-

ever, since both the StyleGAN2 and ReStyle-ID networks are

trained to capture the underlying distribution of typical artifact-

free facial images, the encodings are optimized to generate

artifact-free images. Therefore, when mapping an image with

artifacts into this latent space, the projection is made onto the

closest point within the typical learned distribution, resulting

in an output without the artifacts.

Morph Image StyleGAN2 Reconstruction

Figure 9: Example of the removal of morphing artifacts when

encoding the image into the StyleGAN2 [9] latent space.

APPENDIX F

DIFFERENTIAL MORPH ATTACK DETECTION WITH

STYLEDEMORPHER

Figure 10: Illustration of the use of StyleDemorpher for

Differential Morph Attack Detection.

While the main goal of StyleDemorpher is to accurately

reconstruct the identity of the accomplice in the morphed doc-

ument image, it can also determine if the provided document

image is a morph. This capability allows StyleDemorpher to be

used for Differential Morph Attack Detection (DMAD). The

StyleDemorpher DMAD setup is shown in Figure 10, where

given the document image and a trusted live capture, face

demorphing is performed using the StyleDemorpher. To decide

whether the document image is a morph, the demorphed

image is compared to the live capture using a face verification

system. If the similarity score is above a certain threshold, the

document image is deemed genuine; if the score is low, the

document image is considered to be a morph.



No Corruption Brighness Change Resizing Gaussian Noise JPEG Compression

Figure 11: Examples of image corruptions applied to the images before passing them through the StyleDemorpher framework.

The brightness change, Gaussian noise, and JPEG compression image corruptions are generated at severity level 3 based on

the work of [71]. The resizing image corruption resizes the images from 256 × 256 down to 128 × 128, and then back to

256× 256, effectively blurring/pixelating the resulting image.

APPENDIX G

ROBUSTNESS OF STYLEDEMORPHER AGAINST UNSEEN

IMAGE CORRUPTIONS.

To assess the robustness of the StyleDemorpher against

various image distortions, four different types of corruptions

are artificially introduced to the input images:

• Brightness change

• Gaussian Noise

• JPEG Compression

• Resizing

The first three corruption types align with the benchmark

established by [71], which categorizes multiple artificial image

distortions, each with five levels of severity. For this study, a

severity level of 3 is selected to mirror more realistic con-

ditions. The remaining resizing corruption involved altering

the resolution of the StyleDemorpher’s input images from

256 × 256 to 128 × 128, and then reverting them back to

256× 256. Figure 11 presents visual examples of these image

corruptions.

When the corrupted images are generated, the demorphing

accuracy curve shown in Figure 12 is plotted to evaluate

how each individual image corruption type affects the face

demorphing results. It should be noted that to prevent the

impacts of FRS models on the evaluation of image corruption

robustness, only the input images of the StyleDemorpher

Framework were corrupted. This is because the demorphing

accuracy metric computes identity similarity scores between

the demorphed image IB̂ and IB as well as IA′ . Therefore,

when computing identity similarity scores, non-corrupted ver-

sions of IB and IA′ are used, effectively evaluating the quality

of the demorphed image IB̂ generated from corrupted input

images.

Based on the results shown in Figure 12, it can be seen

that the majority of image corruptions have minimal effects

on the demorphing accuracy, with only brightness change

and Gaussian noise image corruptions having any noticeable

impact. While the results are only shown for DemorphDB’s

StyleGAN2 [9] morphs with CurricularFace [63] FRS, similar

performance was observed across other morphing methods

and FRS models. Therefore, these results show that the

Figure 12: Demorphing accuracy plotted against different FRS

threshold values of CirrucularFace [63]. The dotted red line

corresponds to the FAR@0.1% decision threshold. The results

are presented for the cases of no demorphing, and the use

of StyleDemorpher on clean and corrupted by various image

corruption methods images. StyleGAN2 [9] morphs of the

DemorphDB dataset are utilized. The values in the brackets

correspond to the demorphing accuracy at the FAR@0.1%

decision threshold.

StyleDemorpher network is highly resilient to unknown image

corruption types.



APPENDIX H

ADDITIONAL FIGURES FOR STYLEDEMORPHER FRAMEWORK
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Figure 13: Visual results of face demorphing using the FRLL [54] dataset. Due to licensing restrictions, DemorphDB images

are not visualized. Since the FRLL dataset lacks trusted live capture images (A′), images directly used to create the morphs (A)

are visualized and utilized instead. The goal is to reconstruct image B, representing the accomplice’s identity in the morphed

image AB. Results from both the StyleDemorpher and Face Demorphing [4] methods are shown.



(a) UTW-NS morphs (b) UTW [14] morphs (c) StyleGAN2 [9] morphs

Figure 14: Demorphing accuracy plotted against different FRS threshold values of MobileFaceNet [62]. The dotted red

line corresponds to the FAR@0.1% decision threshold. The results are presented for the cases of no demorphing, Face

Demorphing [4], and StyleDemorpher face demorphing methods. The values in the brackets correspond to the demorphing

accuracy at the FAR@0.1% decision threshold.

(a) UTW-NS morphs (b) UTW [14] morphs (c) StyleGAN2 [9] morphs

Figure 15: Demorphing accuracy plotted against different FRS threshold values of ArcFace [39]. The dotted red line corresponds

to the FAR@0.1% decision threshold. The results are presented for the cases of no demorphing, Face Demorphing [4], and

StyleDemorpher face demorphing methods. The values in the brackets correspond to the demorphing accuracy at the FAR@0.1%

decision threshold.

(a) UTW-NS morphs (b) UTW [14] morphs (c) StyleGAN2 [9] morphs

Figure 16: Histograms visualizing the distributions of the identity similarity scores for different image pairs. The identity scores

are computed based on the MobileFaceNet [62] FRS. The dotted red line corresponds to the FAR@0.1% decision threshold.

The results are presented for the cases of no demorphing, Face Demorphing [4], and StyleDemorpher face demorphing methods.



(a) UTW-NS morphs (b) UTW [14] morphs (c) StyleGAN2 [9] morphs

Figure 17: Histograms visualizing the distributions of the identity similarity scores for different image pairs. The identity scores

are computed based on the ArcFace [39] FRS. The dotted red line corresponds to the FAR@0.1% decision threshold. The

results are presented for the cases of no demorphing, Face Demorphing [4], and StyleDemorpher face demorphing methods.

(a) UTW-NS morphs (b) UTW [14] morphs (c) StyleGAN2 [9] morphs

Figure 18: Detection Error Tradeoff (DET) curves based on MobileFaceNet [62] FRS. The results are presented for the cases

of no demorphing, Face Demorphing [4], and StyleDemorpher face demorphing methods.

(a) UTW-NS morphs (b) UTW [14] morphs (c) StyleGAN2 [9] morphs

Figure 19: Detection Error Tradeoff (DET) curves based on ArcFace [39] FRS. The results are presented for the cases of no

demorphing, Face Demorphing [4], and StyleDemorpher face demorphing methods.



(a) UTW-NS morphs (b) UTW [14] morphs (c) StyleGAN2 [9] morphs

Figure 20: Detection Error Tradeoff (DET) curves based on CurricularFace [63] FRS. The results are presented for the cases

of no demorphing, Face Demorphing [4], and StyleDemorpher face demorphing methods.
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Figure 21: Visual face demorphing results on the FRLL-Morphs [57] dataset. Due to the lack of IA′ images within this

dataset, images IA, which were used in the morph creation, are utilized directly. Results from both StyleDemorpher and the

Face Demorphing [4] method are presented. The four presented landmark-based morphing methods were not seen during the

training of StyleDemorpher. Note: some of the morph images contain image reflection artifacts introduced during alignment

with the FFHQ method [9]. These artifacts, which occur due to the original morphs being excessively zoomed in, are present

on the borders of the images as the outer regions of the faces are not captured.
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