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Abstract

Research into Visual Place Recognition (VPR) is useful in fields such as robotics, where a robot
needs to navigate an environment and assess if it has seen a place before. To do this, we can use a
sequence of image frames to be able to better assess the location where they were taken. However,
research in this direction suffers from a lack of training data, poor performance when trained on small
datasets, poor cross-dataset performance and limited research into the use of temporal information.
Recently, research into image to image visual place recognition has shown convincingly the ability
of foundation vision models to have high same-dataset and cross-dataset performance, even when
fine-tuned with limited data. This work focuses on bringing the benefits of foundation vision models
from the field of image to image VPR to the field of sequence to sequence VPR and expands on
the existing methods of generating spatio-temporal image sequence descriptors and shows that our
methods outperform all previous state of the art methods in sequence to sequence VPR on 3 major
datasets: MSLS, Nordland and Oxford RobotCar. We expand the MLP Mixer model architecture
to generate spatio-temporal descriptors and we perform novel research into the use of the DINOv2
foundation model as a backbone in visual place recognition for the goal of matching image sequences.
Consequently, we show that our model performs well with limited training data, we show the highest
same-dataset and cross-dataset performance in all our experiments, compared to previous state of
the art in sequence to sequence VPR, thus solving the problems of the current state of the art. As
a result of this research, simultaneous localization and mapping (SLAM) systems [10], such as robot
navigation, will be able to better navigate their environment since our models output the correct
result more often than previous methods.
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1 Introduction

Visual place recognition (VPR) is the task of match-
ing an image or a sequence of images of a place
with a different image or sequence of images of the
same place, taken at a different time, based on a
set of discriminative visual cues. Research in this
field plays a pivotal role in robot navigation, aug-
mented reality, indoor localization, and any local-
ization task where geo-location via satellites (e.g.
GPS) is not possible.

Research in this area generally tries to generate
a vector of features (descriptor) from images to be
used for image retrieval. The goal is to have a de-
scriptor that is as compact as possible and captures
as much discriminative visual information from the
images as possible. After that, we try to find in
our database of image descriptors the vector that
is closest to our query image descriptor. This is
typically done with a nearest neighbor search.

The main challenges in VPR are

• Variability in environmental conditions.
Pictures taken in outdoor environments can
vary significantly due to changes in lighting
conditions (day vs. night, shadows, weather
conditions), seasonal changes (foliage, snow
cover), and occlusions (obstacles, moving ob-
jects). See Figure 4.

• Viewpoint and Scale Changes. Images of
the same place can look very different when
captured from different viewpoints or scales.
Recognizing a place despite these variations
requires the algorithm to be invariant or ro-
bust to such transformations. See Figure 1.

• Appearance Changes Over Time. Places
can undergo significant changes over time due
to factors such as construction, renovation, or
natural alterations. Maintaining recognition
accuracy over long periods requires the abil-
ity to handle temporal variations.

To overcome these challenges, a VPR system
should be able to only pay attention to visual ele-
ments which are relevant for scene recognition and
unlikely to change over time, such as landmarks,
structural patterns (in architecture, urban or nat-
ural layouts) and texture and material (like the use
of bricks, concrete, wood, etc.). This is the reason
why visual transformers (ViTs) [19, 20, 43, 22, 29,
46] have shown significant performance recently in
visual place recognition, due to their weaker induc-
tive bias, which allows them to understand more

complex relationships in the data than traditional
CNN architectures [9]. One particular example is
the use of pre-trained vision foundation models,
such as the DINOv2 [33] model [22, 19, 20], with or
without finetuning, which has several notable ben-
efits.

The DINOv2 model was pre-trained on a large
dataset (142M images), which means that it learned
to identify general features like lines, edges, con-
tours and shapes, as well as the attention maps
to identify objects. Using it as a feature extractor
helps us leverage the information it has gathered
without having to train our own system on such
a large dataset. Consequently, it is likely to per-
form better at feature extraction than most models
trained only on VPR datasets, due to the amount
of data and computational resources that went into
the training phase and it is also likely that it gen-
eralizes better to unseen VPR datasets.

Furthermore, the DINOv2 model has been trained
using knowledge distillation to transfer knowledge
from a more complex teacher model, which means
that it is also efficient in terms of model size and
thus computational cost.

One could also consider other foundation vision
models, such as CLIP [36], however, this work fo-
cuses on the DINOv2 model, since it is the most
promising model holding the current state of the
art results in image to image VPR. Therefore, we
can provide a more detailed view of its performance
compared to if multiple foundation models are in-
vestigated.

Traditionally, approaches to visual place recog-
nition have often relied on static image descriptors
[5, 6, 40, 43] which may fall short in capturing the
dynamic nature of real world environments, such as
changing lighting conditions and viewpoint varia-
tion. Modeling the temporal relationship between
image features in a visual sequence may help ex-
tract more information about how a scene evolves
and lead to a more robust system and lessen the
impact of lighting variation, occlusion and tempo-
rary visual components such as pedestrians, cars,
etc.

To address this, research has been done into se-
quence to sequence (seq2seq) VPR [7, 30, 16, 15,
31], where the goal is to match a given query image
sequence to another image sequence of the same
place, somewhere in the database. Therefore, in
this work, we primarily focus on sequence to se-
quence VPR.
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Figure 1: A query and positive pair showcasing viewpoint variation between sequences taken
in the same place. A VPR system should be robust to these types of changes.

2 Related work

2.1 Image to image visual place recog-
nition

The task of visual place recognition has tradition-
ally been approached as an image to image (im2im)
retrieval problem, where the goal is to find the
nearest database image given a query image. This
is done by extracting visual information from an
image and encoding that data into a vector that
represents that image (image descriptor) and which
can be used for retrieval of other visually similar
images. In the retrieval step, given a query image
descriptor, nearest-neighbor search is performed on
the database of image descriptors and the top clos-
est matches are found.

Popular examples of image to image visual place
recognition include NetVLAD [2], which uses a con-
volutional neural network (CNN) to extract im-
age features and a trainable generalized VLAD [21]
layer to generate the final image descriptor, Cos-
Place [5] which treats the training phase as a clas-
sification problem, thus doing away with expen-
sive pair mining, AnyLoc which showed the ability
of foundation vision models to have high perfor-
mance across VPR datasets with varied environ-
ments (aquatic, aerial, urban, etc.), even without
fine-tuning [22], the paper [24], which introduced
Generalized Contrastive Loss (GCL) to leverage
the amount of visual overlap between images dur-
ing training, and finally, [25], which casts place
recognition as a regression problem etc.

Recent improvements in image to image place
recognition have demonstrated significant results
on datasets such as MSLS, for example, EffoVPR
[42] managing to achieve a recall at 1 of 92.8 (on the
MSLS val test) and establishing a new state of the

art by leveraging the use of foundation vision mod-
els. Similar works include DinoSALAD [20], which
developed a novel way to aggregate visual informa-
tion, using concepts from the mathematical field of
optimal transport, using the DINOv2 foundation
model [33] as a backbone, SelaVPR [26], which in-
troduced a new method of fine-tuning foundation
models based on sequential and parallel adapters
added to each transformer block, DinoMix [19],
which first used the MLP mixer model to gener-
ate frame-level descriptors from the output of the
DINOv2 foundation model and ProGeo [28], which
demonstrated how to effectively leverage the CLIP
[36] multi-modal foundation model, which not only
achieves competitive results on major benchmarks
such as Pittsburgh-30k-test [41], but also exploits
textual descriptions of places, which provides added
explainability to the model’s performance, since it
makes it easier to ascertain if the model correctly
learned to describe the visual information in the
image.

Despite these impressive results, little research
has been done into the use of pre-trained foun-
dation vision models specifically for sequence to
sequence VPR, with most methods in this sub-
field relying on the use of Convolutional neural
networks (CNNs), VGG [38], ResNet-50 [18], etc.
These backbone networks have shown inferior per-
formance to pre-trained foundational models in im-
age to image VPR. Besides performance reasons,
previous sequence to sequence VPR methods suf-
fer from limited training data. The paper JIST [7],
tries to solve this problem by training their feature
extractor also on image to image VPR datasets,
however training then takes longer than just train-
ing on sequence to sequence datasets, since in this
case the training has to be done on multiple datasets
(image to image and sequence to sequence) and re-
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quires more data and resources than normal. Foun-
dation vision models solve this problem, since they
have been pre-trained on a large dataset of images.
Therefore, the aim of this work is to solve these
problems and take the first steps towards the use of
pre-trained foundation vision models, for the task
of sequence to sequence VPR. We chose to focus
on DINOv2 specifically, which is single-modal and
thus easier to train, requiring only image data.

Additionally, another focus will be to address
one major drawback of traditional image to image
VPR, which is that it doesn’t make use of temporal
information present in general VPR tasks, such as
when a car is driving down a road, with a camera
than can record image sequences (videos), which
could provide useful information for retrieval. Ad-
ditionally, matching single images is sensitive to
noise, because perturbations in the image, such as
occlusion, lens flare, etc. can lead to the wrong
prediction being made if too much of the visual in-
formation in the query image is occluded. Conse-
quently, this work focuses on sequence to sequence
(seq2seq) VPR to address these limitaions.

2.2 Sequence to sequence methods

Sequence to sequence VPR generally splits into two
approaches: sequence matching and using se-
quence descriptors [7]. The first approach takes
two image sequences, and compares each image in
the first sequence with the corresponding image in
the second sequence, to create a similarity matrix.
If there is a high degree of similarity, the sequences
are considered to be from the same place. This
is usually done under assumptions such as con-
stant velocity [29]. One of the first examples of
this is SeqSLAM [31]. In recent literature, Seq-
MatchNet [16] has addressed the issue of previous
works relying on trained image descriptors without
considering the later score aggregation. However,
the sequence matching approach still has intrin-
sic drawbacks, including the issue of potential false
positives due to erroneous single-image descriptor
matches and the fact that the matching time in-
creases linearly with the sequence length [29].

For these reasons, the aim of this work is focus
on the second type of seq2seq VPR, which is that of
aggregating frame-level descriptors into a sequence-
level descriptors, with an aggregation layer, and
using that sequence descriptor for matching. The
main benefits of this method are i) allowing us to
integrate temporal information (i.e. learning how

spatial features evolve over time) and ii) using an
aggregation layer which could compress the infor-
mation from the individual images into a compact
sequence descriptor (implementation described in
the methodology).

In this direction, notable examples include [12],
which first introduced this idea, using three meth-
ods: fusion of the frame-level features with a fully
connected layer, concatenation of single image de-
scriptors and integration over time of the single
image features via an LSTM network. Further re-
search has explored applying non-learned discrete
convolutions on single frame descriptors in the work
of Garg et al. [14]. Recently, SeqNet [15] explored
learned descriptors using a 1-D temporal convolu-
tion as a learned pooling of frame level features into
a sequence descriptor, however it uses a two-step
approach, commonly seen in image to image VPR
[43, 46], which can be computationally expensive.

Improving on the mentioned methods, the work
of [45] leverages advancements in video action recog-
nition based on spatio-temporal fusion to provide a
novel approach in VPR that combines spatial and
temporal information using transformers. How-
ever, it is computationally expensive since it relies
on one backbone network (a CNN) and two sepa-
rate vision transformers: one for the temporal and
one for the spatial dimension. Additionally, the
spatial and temporal dimension are computed sep-
arately and simply added together at the end. This
may fail to capture dependencies between these two
dimensions.

To address these issues, this work introduces
modifications to the traditional MLP mixer to ag-
gregate image-descriptors from a sequence of im-
ages to perform feature mixing on both the spatial
and the temporal dimension. Research exists into
the use of MLP mixers for image to image VPR,
one notable example being DinoMix [19], which
aggregates image features using the mixer model,
achieving impressive results on the Pittsburgh-30k-
test dataset [41]. However, that method only works
for image to image VPR and no research has yet
been done into the use of the MLP mixer model
for sequence to sequence VPR. Novel research has,
however, been done into the field of time-series fore-
casting, demonstrating the use of an MLP mixer [8]
for mixing operations on both the time and feature
dimensions to extract information. This indicates
an opportunity for the use of the MLP mixer model
for aggregating single frame descriptors to generate
a sequence descriptor, since we are dealing with
time series data and we want to mix the temporal
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and spatial information.

3 Contributions

This work focuses on the two main limitations of
the current state of the art.

Firstly, the problems of lack of research into
the use of foundation vision models for sequence
to sequence visual place recognition are addressed
by using the DINOv2 model as a feature extrac-
tor, and measuring its performance with different
aggregation methods and comparing it to previous
systems. This also solves the problems of lack of
training data, poor same dataset and cross-dataset
performance and long training times of having to
teach a model from scratch

Secondly, the limited research into spatio-temporal
descriptors is addressed by leveraging the MLP-
mixer model methodology of feature mixing to ex-
tract both spatial and temporal information from
image sequences.

Consequently, to address these two limitations
in field of sequence to sequence visual place recog-
nition, we put forward the following contributions:

• Researching the use of a visual foundation
model (DINOv2) as a backbone network in
the field of sequence to sequence visual place
recognition, to extract visual information from
each image in a sequence.

• Adapting the MLP mixer model [40] as seen
in [40, 19, 8], to work with image-level de-
scriptors across the time domain to produce
spatio-temporal descriptors, which makes it
a novel aggregation layer in the specific field
of sequence to sequence visual place recogni-
tion.

4 Research questions

To find the best configuration and hyperparameters
of the Mixer aggregator and DINOv2 foundation
vision model, and to compare our contributions to
other methods and, two main research questions
are put forward.

The main metric for performance we will use to
answer the research questions is explained in the
evaluation criteria section.

• RQ1: How does using the MLP mixer aggre-
gation layer compare with other aggregation
methods namely, NetVLAD, SeqGeM, and a
Fully Connected (FC) layer in terms of per-
formance, when used with DINOv2?

– RQ1.1 How does the performance of
the MLP mixer aggregator change when
using different number of mixer blocks?

– RQ1.2 How does the performance of
the MLP mixer aggregator change by
using different sequence lengths?

• RQ2: How do other backbone networks such
as Convolutional Neural Networks (CNNs),
as seen in previous SOTA sequence to se-
quence VPR, compare to using the pre-trained
foundation model, DINOv2, when used with
the same aggregation layers?

– RQ2.1 What is the effect of fine-tuning
the DINOv2 feature extractor on the per-
formance of the proposed system?

5 Methodology

5.1 Architecture

Following the choice of using sequence-level descrip-
tors, the goal of the models used in this work is to
receive an image sequence of length L containing
images of size H × W × 3 and to produce a se-
quence descriptor of length K, where K depends
on the method used. This sequence descriptor is
then used in k-nearest neighbor search to find the
top candidates for image retrieval. The process of
generating the sequence descriptor is done in two
steps: Feature extraction and Feature aggre-
gation. The overall two-step process is the same
as in all the papers we compare to which generate
sequence descriptors (e.g. [7, 29, 45], etc.).

5.1.1 Step 1: Feature extraction

The goal of this step is to extract visual informa-
tion from each image in the sequence, obtaining
one frame-level tensor per image. Internally, ev-
ery image of size H × W × 3 is passed into DI-
NOv2, which splits the image into patches of size
P × P , where P = 14. Then these patches are
passed through a number of ViT blocks (outlined
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Figure 2: The system architecture diagram of the DINOv2 + Mixer method showing the two-
step process of generating the sequence descriptor. In Step 1, each image in the input sequence
is passed through the feature extractor to produce a frame descriptor. In Step 2, the frame
descriptors are joined to produce a 2D array of features. The columns are the temporal features
and the rows are the spatial features. The array passes through N Mixer layers then gets
projected down to a compact spatio-temporal (sequence) descriptor of size K.

in Table 1) to produce a single tensor x, per im-
age. Where x ∈ RD when we extract only the CLS
token, when using the FC, Mixer or SeqGeM aggre-
gator, and x ∈ RY×D when the aggregation layer
is SeqVLAD, where Y is the number of patches in
the input image and D depends on the size of the
DINOv2 model according to Table 1. The conse-
quence of this is that, in the second case, when
x ∈ RY×D, we extract more local visual informa-
tion (one descriptor per patch), however, in the
other case, we extract the global image-level de-
scriptor.

Fine-tuning
Since the DINOv2 model has been trained on non-
VPR-specific data, fine-tuning allows us to preserve
the representational power of the DINOv2 model
while improving task-specific performance. To do
this, only the last encoder blocks are retrained,
while the blocks up to the last ones are frozen. This
is because we are interested in preserving the model
weights used in recognizing low level features (e.g.
lines, curves, etc.) but teach the model the high
level features relevant to our task (e.g. background
information, texture etc.).

5.1.2 Step 2: Feature aggregation

The aim of this step is to take the output from step
one, and to generate a single descriptor that repre-
sents the visual information in the image sequence,

and which can be used for retrieval.

The encoder in this work is fixed (i.e. we use
DINOv2), however, we experiment with 4 aggrega-
tion layers, namely, a fully connected (FC) layer,
our implementation of the MLP-mixer, adapted for
seq2seq VPR, SeqVLAD [30] and SeqGeM [7].

MLP-mixer
The aggregation step when using the Mixer aggre-
gator starts with joining the image descriptors into
one matrix of size L×D. This matrix is fed sequen-
tially into N identical Mixer layers (as shown in
Figure 2), since the MLP Mixer model is isotropic.
The Mixer layers are composed of 2 MLP blocks:
one responsible for spatial features and one for tem-
poral features, same as in [8]. The consequence of
this arrangement is that the model learns how to
mix the features of the temporal and spatial di-
mensions, instead of features from these dimen-
sions simply being added together as in [45]. Inside
these MLP blocks, there are two fully connected
layers and an activation layer (see Figure 2), as in
[19]. These MLP blocks use weight sharing so they
are efficient in terms of model size. The activation
layer, which in this cases uses the ReLU function,
provides non-linearity, which allows the model to
learn non-linear functions. We chose ReLU [13] for
its simplicity, computational efficiency and since in
deep networks it deals with the vanishing gradient
problem [17].
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After that, the L ×D matrix needs to be pro-
jected to a fixed dimension, using 2 projections
layers (one for each dimension). The reason for
choosing two projections instead of one is because
it significantly reduces the number of parameters
needed, thus reducing the risk of overfitting.
Lastly, the output is flattened to obtain a K di-
mensional vector, where K = M × N , M is the
dimension of the projection along the vertical di-
mension (formerly the temporal dimension) and N
is the dimension of the projection along the hori-
zontal dimension (formerly the spatial dimension).
For this work, we set M = 8 (for sequence length 5)
and N = 512 which results in K = 4096. It’s worth
noting that the value of M is adjusted dynamically
based on sequence length, to result in a fixed value
for K, same as in [19]. With a backbone output
dimension of 768 and higher (for DINOv2 size B
and higher, see Table 1), the projection happens
from a higher dimension to a lower dimension (N).
The result of this is that information gets com-
pressed, so the model can generalize better. The
value of N is also not significantly different from
D, so we don’t lose too much information in the
process. If we increase the backbone output di-
mension, we would also need to increase the value
of N , so we don’t lose significant resolution on the
encoder descriptors.

The value of K has been set to 4096, since it
is a popular output dimension [19, 7, 29], and it
makes results easier to compare. The consequence
of having a fixed output dimension is that it makes
it possible to easily compare sequence descriptors
extracted with different sequence lengths.

To aggregate image-level descriptors into a sin-
gle sequence descriptor, we chose to look into the
MLP Mixer model since it is able to model both
the relationships between the features inside the
frame, as well as the evolution of a single feature
over time, possibly extracting dependencies and
long-range interactions within the image and en-
coding discriminative information. Furthermore,
it takes as input a 2d array and it fits naturally
with the output of the feature extractor. Lastly,
the mixer model is efficient in the number of pa-
rameters, since it uses weight sharing.

It’s worth noting, however, that it requires im-
age sequences to be of fixed length, since the fully
connected blocks inside of it that handle the tem-
poral information need to have the same number of

neurons as the sequence length. This can be seen in
Figure 2, under MLP1 and is a consequence of the
way the MLP mixer handles input values. There-
fore, the number of parameters grows linearly with
the image sequence length, requiring the model to
be retrained on for each different sequence length.

Compared with traditional methods used in se-
quence to sequence VPR, such as NetVLAD [2] or
SeqGeM [7], it has the advantages of being able to
model more complex relationships of the image fea-
tures as well as having an inherent ability to use the
temporal information present in image sequences.

Other aggregators
In this work, other aggregators are also being used.
The simplest one of those is a fully connected (FC)
layer that takes the L image descriptors of length
D from Step 1 and flattens them to a descriptor
of dimension L × D and is fed through a multi-
layer perceptron with output dimension K, where
K = 4096. No activation function is used here,
which makes it a simple linear transformation. Its
purpose is to serve as a baseline to compare other
aggregators against, which is the reason we chose
to use it.

The next aggregator is SeqVLAD which has
shown state of the art results recently [29]. It’s
input is an array of patch-level descriptors of di-
mension D. Its output is a sequence descriptor of
dimension D × C, where C is the number of out-
put clusters, which in this case is 64. It is based
on VLAD [21], which aggregates local features into
a global image descriptor, and has shown remark-
able performance over the years in VPR and still
remains performant, hence why we also use it in
this work, and because it is the only aggregator,
from the ones we experiment with, that aggregates
patch-level descriptors.

Lastly, this work also uses the SeqGeM aggre-
gator, proposed in [7], which is a pooling layer that
takes as input a matrix of size L×D (same as in the
Mixer case) and outputs a descriptor of dimension
D. It has shown state-of-the art results recently
[7], hence why it is used here.
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Model Descriptor size Num. blocks Num. parameters

S 384 12 21M
B 768 12 86M
L 1024 24 300M
g 1536 40 1100M

Table 1: The different sizes of DINOv2 models.

Figure 3: MSLS dataset sequence examples. This collection highlights the variation in locations
and environments present in the dataset.

5.2 Experimental setup

5.3 Dataset

For this work, 3 datasets containing image sequences
are used: MSLS, Oxford RobotCar and Nordland.
Additionally, a subset of MSLS, which we will call
MSLS cities in this work, uses image sequences
from the city Melbourne for training and sequences
from the cities Amman, Boston, San Francisco,
Copenhagen for testing. We created this subset to
comply with the training and testing conditions of
[45] in order to be able to compare the performance
of our methods to the methods tested in that paper.

There are a few configurations that we will use
in our experiments, namely

5.3.1 Configuration 1: Same dataset + cross
dataset testing

This is the configuration shown in Tables 6, 4 and
3. The goal of this testing configuration is to mea-
sure the performance of a given method trained on
the MSLS dataset, since it contains the largest va-
riety of environments, and tested on MSLS, Nord-
land and Oxford RobotCar, to measure the same-
dataset and cross-dataset performances. This likely
shows how good a model is at learning general fea-
tures of image sequences from a variety of envi-
ronments and weather conditions and how well it
performs in environments it has not been trained
with. This configuration is similar to how the pa-
per [29] does it, however, we additionally test on
Nordland.

In the ablation studies, comparing different con-
figurations of the DINOv2 + Mixer method (Tables
4, 3), we resize the images to 224x224 to speed up
training, however, for the other experiments, we re-
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size to 392x392, so we can effectively compare our
methods to previously researched methods.

Additionally, for the ablation on different input
sequence lengths (Figure 6), we resize input images
to 224x224, to speed up training and to avoid out-
of-memory errors during training.

• Training: MSLS train set

• Validation: MSLS validation set

• Testing: MSLS test set, Nordland test set,
Oxford RobotCar test set

5.3.2 Configuration 2: Same dataset test-
ing

In this configuration, we train and test on the same
dataset (Nordland, Oxford RobotCar and MSLS
cities), using the validation set of the respective
datasets. The Table 5 shows the results of this
configuration. This way of testing allows us to di-
rectly compare our with the paper [45].

We resize input images to 392x392 in this con-
figuration, so the results are comparable with meth-
ods that use images of dimensions 384x384.

5.3.3 Mapillary Street Level Sequences

MSLS [44] is a large dataset containing street-level
dashcam footage from 30 major cities across six
continents. The 1.6 million images in this dataset
contain metadata related to sequence information,
GPS coordinates and compass angles. Further-
more, the images capture times spanning all sea-
sons over a nine year period and contain different
weather, cameras, daylight conditions and struc-
tural settings.

In Figure 3, we can see that the MSLS datasets
captures a breadth of environments, weather and
lighting conditions from 6 continents. This should
help the model generalize better and learn features
which are shared across environments.

The dataset is split into three subsets, contain-
ing the following cities (same as in [29]):

• Testing: Copenaghen and San Francisco (for-
mer validation set)

• Validation: Amsterdam, Manila

• Train: The remaining cities

Since the MSLS dataset doesn’t contain ground
truth data for the images in their test set (82 299
images), the original test set was excluded from the
resulting dataset, and instead the former validation
set was used for testing, following the procedure of
[29].

Detailed information about the dataset includ-
ing weather, lighting variation, occlusion, seasons,
coverage, etc. can be found in the original paper
for the dataset [44].

5.3.4 MSLS cities

In order to be able to compare our methods under
the same conditions as those in [45, 15], we also
perform experiments while training on Melbourne,
a subset of MSLS, and test on the cities Amman,
Boston, San Francisco and Copenhagen. The vali-
dation set for these experiments is the same as the
one we use with the full MSLS set, since it’s from
the same dataset. We also truncate the training
set to contain around 5000 images, to comply with
the methods we are comparing with. This has the
consequence of showing which models perform well
even with few training samples.

Figure 4: Oxford Robotcar dataset im-
ages. Here we can see that the same place
is shown over a longer period of time, featur-
ing large variations in lighting and weather.

5.3.5 Oxford RobotCar

This dataset [27] consists of images taken by an au-
tonomous car around central Oxford. It contains
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Table 2: Number of sequences contained in the datasets.

Dataset Name Image Resolution Seq. Length # db/queries
# train # validation # test

MSLS 574×480
5 733k / 393k 8.1k / 5.8k 13.6k / 8k
10 568k / 309k 5.4k / 4.2k 8.5k / 4.6k
15 478k / 259k 4k / 3.3k 6.1k / 3.3k

Melbourne 574×480 5 5.1k / 4.1k - / - - / -
Amman 574×480 5 - / - - / - 0.7k / 0.6k
Boston 574×480 5 - / - - / - 11.1k / 5.4k

San Francisco 574×480 5 - / - - / - 4.7k / 3.6k
Copenhagen 574×480 5 - / - - / - 8.9k / 4.5k
Nordland 640×360 5 15k / 15k 3k / 3k 3k / 3k

Oxford RobotCar 1280×960 5 3.6k / 3.3k 3.9k / 3.7k 3.6k / 3.9k

around 20 million images collected over the period
of 1 year and a total distance traversed of 1000km
by 6 cameras mounted to the vehicle, along with
GPS ground truth. The images were recorded over
the period of one year and capture different com-
binations of traffic, weather and road conditions.

The dataset contains images from May 2014 un-
til December 2015 therefore it contains images from
all four seasons of a 10km rides of the same route in
central Oxford, resulting in more that 100 traver-
sals. In the original paper [27], we can find the
breakdown of weather and other conditions that
are present in the entire dataset.

In Figure 4, we observe that the Oxford Robot-
car dataset focuses on capturing the same route
over an extended period of time, allowing us to
see the same place in many different weather and
lighting conditions. This can help our model better
learn to be invariant to weather and lighting con-
ditions.

To be consistent with [29, 45], we split the dataset
in the following 3 subsets

• Train set:
queries: lap 2014-12-17-18-18-43 (winter night,
rain);
database: lap 2014-12-16-09-14-09 (winter day,
sun);

• Validation set:
queries: lap 2015-02-03-08-45-10 (winter day,
snow);
database: lap 2015-11-13-10-28-08 (fall day,
overcast).

• Test set: queries: lap 2014-12-16-18-44-24

(winter night);
database: lap 2014-11-18-13-20-12 (fall day).

The dataset is pre-processed to select only frames
that are at least 2m apart, same as in [45]. The
number of resulting sequences is shown in Table 2.

5.3.6 Nordland

A dataset containing 40 hours of full-HD video of a
rail journey over all four seasons [39], with various
combinations of weather and lighting conditions.
It is a challenging dataset, because it contains sig-
nificant seasonal variation, since its composed of
images of the same place in all 4 seasons (see Fig-
ure 5), as well as generally unstructured environ-
ments. The advantage of this dataset is that it is
able to show that the model is able to perform well
in conditions of seasonal variation in unstructured
environments, since the previous datasets capture
mostly structured environments (urban areas)

In the dataset we are using, the image frames
are approximately 20 meters apart [16].

Following [45, 16], we use Summer/Winter for
training and Spring/Fall for testing.

Although weather variation exists in the dataset,
the original dataset paper [39] does not provide this
information.

5.4 Evaluation criteria

A sequence is said to be correctly classified if any of
its images are within 25 meters of any other image
of the predicted sequence. During training, this
distance is set to 10 meters. These values were
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Figure 5: Nordland dataset images. The
same location is shown during each of the
four seasons.

chosen to be in line with other papers are using
[29]. The consequence of these values is that, dur-
ing training, we force as much distance as possible
between positive and negative samples. We con-
sider the GPS information from our datasets as
ground truth and don’t account for GPS errors,
although there might be some since expect these
errors to be in the minority of training and testing
cases.

To measure the performance of the system, we
use the recall at k, since it is a popular evalua-
tion metric and allows us to more easily compare
with other methods. It measures the proportion of
query images for which the correct database image
was found in the top k candidates for retrieval. A
high recall at 1, for example, means that the im-
age sequence that the model retrieves as the closest
match is correct most of the time. This measure
is useful, since we are dealing with an image (se-
quence) retrieval problem, and thus it shows how
often we retrieve the right image sequence.

We chose to display the recall values in all our
figures and tables as the number of percent recall
(e.g. 80 means 80% recall). This way of showing
recall was chosen, since it can also be seen in other
papers such as [29, 7] and it is easier to read. For
example a recall of 60 means that, on average, for
60 query images out of 100, the correct match was
found in the top k results.

Table 3: Ablation on DINOv2 fine-tuning
for sequence length 5, mixer depth 4, de-
scriptor dimension 4096, image size 224x224
trained on MSLS with patience 5. Bold are
the highest recalls for that column, under-
lined are the second best.

#Finetuned DINOv2 blocks R@1 (MSLS) R@1 (Oxford) R@1 (Nordland)
Model size S

0 61.7 36.0 58.0
2 86.5 77.0 85.3
4 86.0 77.2 80.6
6 80.8 59.4 68.1
8 77.4 45.9 72.7
10 74.1 14.8 73.5

12 (all) 72.2 23.0 61.1
Model size B

0 64.9 54.4 63.6
2 86.7 85.4 88.2
4 86.4 86.5 85.6
6 82.5 58.2 60.3
8 78.8 61.2 76.5
10 75.2 41.4 76.8

12 (all) 75.1 41.5 64.4

5.5 Implementation details

5.5.1 Training

For training, triplet margin loss (first introduced
in FaceNet [37]) is used (see Equation 5.5.1). It is
a popular loss function in the field of visual place
recognition, which makes it easier to compare with
other works. The fundamental idea behind triplet
loss is to learn a feature space where similar in-
stances are closer together and dissimilar instances
are farther apart, based on the margin α, which
separates the negative and positive pairs. For the
margin α, we chose a value of 0.1, like in [29, 45],
in order to comply with related research methodol-
ogy and train under the same conditions. Setting
a higher margin enforces a larger distance between
anchor-positive pair and anchor-negative pair in
descriptor space, which is usually a good thing,
however if the value of the margin is too high, it
might make the model struggle to satisfy the loss
condition for all triplets and risking underfitting.

L(A, N, P) = max(∥f(A)− f(P )∥2 − ∥f(A)−
f(N)∥2 + α, 0)

where:
A, N, P = Anchor, Negative and Positive inputs
f = model
α = margin

Regarding optimizer, ADAM [23], an extension
to traditional stochastic gradient descent, was used,
since it computes adaptive learning rates, which is

13



(a) Recall at 1. (b) Recall at 5. (c) Recall at 10.

Figure 6: Ablation study on the impact on recall of using different sequence lengths as input
on our methods. This figure shows how well DINOv2 performs for different sequence lengths
with the 4 aggregators used in this work.

well suited for the problem we are trying to solve,
since we are dealing with large models and rela-
tively large quantities of data. The learning rate
was set to 0.00001 (same as [7]) and the weight de-
cay to 0. Consequently, the chosen learning rate
makes sure the training is stable, since having a
learning rate too high can prevent the model from
converging, since it could forget previously learned
features, in this case. The weight decay set to 0
has the consequence of potentially preserving use-
ful features that are captured by higher weights,
although in some cases a weight decay of 0 runs
the risk of overfitting.

To find hard negative training sample we use
a hard mining strategy, where we cache 1000 ran-
domly chosen negative samples to avoid caching
the entire database. This cache is recomputed ev-
ery 1000 triples. During one epoch, we go through
5000 queries. [29]. These triplets could be split
into multiple training batches, however, to reduce
GPU resource requirements, we had the batch size
set to 1.

Lastly, the training will be done under a pa-
tience of 5, meaning that models will stop training
if their recall at 5 did not improve in the last 5
epochs. This is done so the training conditions are
the same as in [29]. The consequence of this is that
we prevent overfitting if our model starts to fit the
training data too closely. This ensures the model is
general enough to capture relevant features in the
test and validation dataset, and since we are also
testing on different datasets, we make sure this way
that the performance is also good cross-dataset.
The upper limit for the number of maximum al-
lowed epochs is 100, however even the longest train-

Table 4: Ablation on Mixer aggregator
depth for sequence length 5, DINOv2 size
B, with the last 2 blocks fine-tuned, de-
scriptor dimension 4096, image size 224x224
trained on MSLS. Bold are the highest re-
calls for that column, underlined are the
second best.

#Mixer layers R@1 (MSLS) R@1 (Oxford) R@1 (Nordland)

1 86.3 84.0 90.6
2 87.8 78.0 89.5
4 86.7 85.4 88.2
6 84.4 69.3 83.0
8 86.1 72.0 79.6
10 85.6 74.6 81.1

ing models only reached around 20 epochs. Longer
than this, the model will likely overfit.

5.5.2 Hyperparameters

The shape of the input images for determining the
best DINOv2 + Mixer configuration and for the
ablation on input sequence length is 224x224, to
speed up training time. However, during experi-
ments comparing with other methods, the image
size is 392x392 so as to be comparable with other
methods, which use use an image size of 384x384
and to be divisible by 14 for DINOv2 to work. Each
image is normalized with a mean of 0.485, 0.456,
0.406 and standard deviation of 0.229, 0.224, 0.225,
for each channel, respectively, consistent with the
implementation of [29]. This is to ensure consis-
tency within the training and evaluation data.

Regarding the model architecture, the final (se-
quence) descriptor size is fixed to 4096. This is kept
small to encourage compact sequence representa-
tions, speed up matching time and reduce number
of parameters to reduce the risk of overfitting. The
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feature extractor uses a patch size of 14x14, with
a stride of 14, which are the default parameters of
the DINOv2 model.

6 Results

In this section we investigate the results of our ab-
lation studies and experiments to measure the im-
pact of our contributions and to be able to answer
the research questions. Firstly, we measure the im-
pact of various hyper-parameters, such as model
size, input sequence length, etc. After that, we
compare the methods we investigate in this work
with previous state of the art. While we do that,
we also try to investigate any patterns that emerge
out of the results and possible reasons for them.

6.1 Effect of DINOv2 feature extractor
fine-tuning depth

Table 3 shows the performance of increasing the
number of fine-tuned DINOv2 blocks under the
same conditions, for two different sizes of models.
The sizes S and B (see Table 1) were chosen be-
cause the latter sizes (L and g) were too large and
took too much time to train. From the results in
the table, we can observe that size B of the model
tends to have better performance across all used
datasets. Additionally, it has the best overall re-
sults from the table, namely, when having only the
last 2 layers fine-tuned, achieving a R@1 of 86.7.
This is explained by the fact that having no fine-
tuned layers doesn’t train the model to be suffi-
ciently task-specific, while fine-tuning all the blocks
means that the model loses the valuable data it
has been pre-trained with. Hence, after this ab-
lation study, the model size is to B and the fine-
tuning depth is set to 2. Similar papers that used
the DINOv2 foundation model also note that fine-
tuning brings significant performance improvement
over not fine-tuning [19, 20, 42].

6.2 Effect of MLP mixer aggregator depth

To establish the optimal number of mixer blocks for
descriptor aggregation, we look at Table 4, which
shows a mixer depth of 2 to be optimal, achiev-
ing the highest performance on the the dataset it’s
been trained with, and the second highest perfor-
mance when used with the Nordland dataset. It’s
worth noting that increasing the mixer depth after
2 shows lower performance: on the same dataset

(MSLS) and cross-dataset (Oxford and Nordland).
This is likely explained by over-fitting when the
aggregator has too many parameters. Looking at
[19], we observe that the same mixer depth was em-
pirically chosen there as well, likely indicating that
it is the correct configuration for the mixer model.

6.3 Effect of sequence length

Figure 6 shows how the recall values of our meth-
ods change with increasing input sequence length.
We can observe that in all three sub-figures, ex-
cept Figure 6c, for the DINOv2 + FC method,
as the input sequence increases, the recall also in-
creases. This is because more visual information
can be used when generating the sequence descrip-
tor. The model, in this case, has to learn to ignore
the irrelevant information and only encode the data
that is unique to the input image sequence and that
can be used in the retrieval step. The backbone
network, DINOv2, is also forced to learn features
that are more relevant across time (static features)
and ignore features that are only seen in a couple
of frames (lens flare, cars, pedestrians, etc.). Since
the backbone network is a visual transformer, it
has to tune its attention mechanism to focus on
the patches with static, discriminative visual fea-
tures. The aggregator then takes these informative
image-level and patch-level descriptors (depending
on the aggregator) and is able to compress this in-
formation into a compact representation of the im-
age sequence.

Looking at Figure 6a, we can observe that the
recalls for all our methods increase roughly at the
same rate, however, for the other two sub-figures,
the method DINOv2 + SeqVLAD, has the high-
est positive change in recall from sequence length
5 to sequence length 15, namely an increase in re-
call at 5 of 2.95%, compared with 0.43%, 2.25%
and 2.68% and an increase in recall at 10 of 2.59%
compared with -0.53%, 1.36% and 1.57% over the
methods that use the aggregators FC, Mixer and
SeqGeM, respectively. This is likely explained by
the fact that the SeqVLAD aggregator uses patch
level-descriptors, which offer more fine-grained in-
formation of the image sequence, leading to more
input data for the aggregation layer and thus, bet-
ter retrieval performance.

All the aggregators we use with DINOv2 also
have the advantage that their output dimension is
fixed, regardless of input sequence length, meaning
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Table 5: Quantitative results on MSLS cities, Nordland, and Oxford RobotCar. Following
testing configuration 2, described in experimental setup, the MSLS subsets Amman, Boston,
SF and Cph are used to test the models trained on Melbourne, while results for Nordland and
Oxford are obtained by training and testing on their respective train and test datasets.

Method Amman Boston SF Cph NordLand Oxford
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Our methods
DINOv2 + SeqVLAD 70.6 79.9 81.9 76.1 82.9 86.1 88.0 91.4 94.8 91.5 94.3 95.2 99.9 100.0 100.0 98.6 99.1 99.3
DINOv2 + Mixer 69.8 80.8 84.2 62.1 68.0 71.6 78.7 85.8 89.6 78.9 85.2 87.7 100.0 100.0 100.0 98.8 99.5 99.8
DINOv2 + SeqGeM 62.8 71.5 75.9 70.5 77.5 81.9 85.4 90.3 93.5 82.0 87.8 90.5 99.5 100.0 100.0 98.3 99.2 99.6
DINOv2 + fc 61.8 68.4 72.9 61.3 67.0 71.2 75.8 83.6 87.8 79.0 84.9 87.9 98.8 99.6 99.8 96.4 98.3 99.0
Previous methods*
NetVLAD [2] 18.9 25.1 27.7 17.9 23.8 26.7 28.9 39.8 45.5 40.5 53.4 59.4 37.7 54.3 61.5 - - -
NetVLAD+SeqMatch [15] 24.6 30.2 33.0 20.4 23.9 25.7 36.3 43.0 46.0 50.4 61.2 65.7 61.0 70.5 74.6 - - -
SeqNet [15] 26.9 37.6 40.8 27.4 35.4 39.0 55.6 67.1 72.8 46.2 58.1 63.7 79.7 90.5 93.0 - - -
SeqVLAD [29] 30.0 44.8 51.9 46.6 62.8 67.8 66.1 82.6 86.3 56.4 72.2 77.7 96.4 99.2 99.3 84.4 92.9 95.8
Spatio-Temporal-SeqVPR [45] 30.3 42.3 51.1 50.4 64.5 68.8 68.0 84.1 86.4 60.8 76.5 80.1 97.1 99.5 99.5 86.8 94.4 96.8
SeqVLAD w/ PCA 29.4 44.2 52.6 46.5 62.3 67.5 65.6 82.2 85.9 56.0 72.0 77.4 96.3 99.1 99.4 84.7 93.2 96.1
Spatio-Temporal-SeqVPR [45] w/ PCA 30.6 41.1 51.0 50.2 64.5 69.1 67.1 83.9 86.0 60.4 76.0 80.1 97.1 99.5 99.5 86.6 94.5 96.9

* Results taken from [45]

that the matching step takes the same amount of
time regardless of input length. Therefore, we can
conclude that it is advantageous to use the methods
in this work with as high input sequence length as
possible, to maximize perfromance, provided the
computational restraints allow it.

6.4 Comparison with state of the art

If we look at Tables 6 and 5, we observe that all
methods that use the DINOv2 vision foundation
model as backbone have better performance than
all previous methods on all proposed datasets.

When trained on MSLS (Table 6, we notice that
our methods are able to achieve not only better re-
sults on the dataset they have been trained on, but
also have significantly higher cross-dataset perfor-
mance. This is likely because the backbone model
is able to generalize better than previous backbone
models used.

Training on Melborune (Table 5), we can ob-
serve an even higher performance improvement as
compared to previous SOTA. For example, the R@1
for Amman is more than twice that of the previ-
ous methods. This is likely to do with the fact
that the training dataset is much smaller than in
other experiments and it allows us to leverage the
pre-trained knowledge that the DINOv2 backbone
comes with. From these experiments, we can see
that using SeqVLAD as aggregation offers the best
performance overall from our proposed methods,
which is also seen when trained on MSLS train-
ing set. This is likely because it is able to use
more visual information, since SeqVLAD aggre-

gates patch-level descriptors which is more data,
since the other methods only use the image-level
descriptor (CLS token). However, the downside is
the fact that the descriptors of SeqVLAD are much
larger (e.g. 49152 for DINOv2 + SeqVLAD), com-
pared to using SeqGeM, for example, which is the
same length as the length of the CLS token of DI-
NOv2 (768 for size B). This makes matching time
slower and requires more computational resources.

Lastly, when training and testing on Nordland
and Oxford (Table 5), our methods achieve near-
perfect (for Nordland DINOv2 + Mixer, perfect)
recall values. Although the previous SOTA also
have high recalls on these datasets, they are still
considerably lower than our methods, especially on
the Oxford dataset. For these datasets, we notice
that the Mixer model works better as an aggregator
than our other methods, although not by much. It
could be that the temporal information can be bet-
ter leveraged in these cases since the images from
these datasets are more homogeneous.

6.5 Choice of aggregation layer

Each of the 4 aggregators used in this work have
their distinct advantages and disadvantages. Just
using a fully connected layer (DINOv2 + FC) as
an aggregator is used in this work to serve as a
base-line for comparison. Its output dimension is
the same as the Mixer model, and it has the same
input dimension, however, although it has more pa-
rameters than the Mixer model (15.7M for FC vs
2.76M for Mixer), its performance is consistently
lower. This is because the mixer model is efficient
in terms of parameters and likely indicates that it
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Figure 7: Visualization of the attention map for the last layer of the encoder using the method
DINOv2 + SeqVLAD, for image sizes 392x392. The attentions for the 12 attention heads of the
CLS token are averaged and the attention map is overlayed on the original image using a red
hue. This figure shows that the model focuses on static visual features such as road markings
and buildings and ignores movable objects like cars.

extracts more information from the image descrip-
tors than a simple FC layer. However, when look-
ing at performance, SeqVLAD seems to be the best

aggregator in this work. Its performance is highest
in Tables 6 and 5. It also seems to have the best
cross-dataset performance (Table 6. However, its
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disadvantage is large descriptor size. When mem-
ory and matching speed are important, using DI-
NOv2 with SeqGeM seems to be the best option.
It uses the smallest descriptors and offers decent
performance (second best in Table 5.

7 Discussion

7.1 Research questions

In this section we answer the proposed research
questions, starting with RQ1.

RQ1 How does using the MLP mixer
aggregation layer compare with other
aggregation methods namely, NetVLAD,
SeqGeM, and a Fully Connected (FC)
layer in terms of performance, when used
with DINOv2?

The MLP mixer aggregator offers better per-
formance than the baseline aggregator (FC), with
fewer parameters. However, compared to SeqGeM
and SeqVLAD, its performance is lower when trained
on Melbourne, but better on Nordland and Oxford
datasets.

RQ1.1 How does the performance of
the MLP mixer aggregator change when
using different number of mixer blocks?

The depth of the mixer model affects the per-
formance slightly on the same dataset it’s trained
on and significantly across datasets, which is likely
explained by overfitting.

RQ1.2 How does the performance of
the MLP mixer aggregator change by
using different sequence lengths?

In Figure 6, we can see that increasing the input
sequence length always positively impacts the per-
formance of the MLP mixer aggregator. However,
for higher values of k in R@k, we notice that the
rate of positive change in recall is lower than when
we measure R@1. This is likely because if the cor-
rect prediction is not in the top 1 or top 5 of results,
it’s also unlikely to be in the top 10 of results, since
it’s likely caused by the model not being sufficiently
able to produce the correct match.

RQ2 How do other backbone networks
such as Convolutional Neural Networks

(CNNs), as seen in previous SOTA se-
quence to sequence VPR, compare to
using the pre-trained foundation model,
DINOv2, when used with the same ag-
gregation layers?

We can observe that the DINOv2 foundation
model outperforms all other backbone models that
we compare with, using the same aggregator. For
example, when using the SeqVLAD aggregator, it
has better performance than the CCT384 backbone
in Table 6. With the SeqGeM aggregator it’s the
same conclusion in the table.

RQ2.1 What is the effect of fine-tuning
the DINOv2 feature extractor on the
performance of the proposed system?

We notice in Table 3, that fine-tuning greatly
affects performance, but the number of fine-tuned
blocks should be kept small.

7.2 Limitations and future work

7.2.1 Model convergence

In this work we used a patience parameter of 5,
so it’s the same as in the papers we are comparing
with, such as [29], however, some experiments have
shown that our models stop training before conver-
gence. With a patience of 5, models train usually
for 6-15 epochs, however, with a patience of 10,
they train up to 30 epochs. This indicates that the
model can still train, but it is stopped prematurely.
It might be worth exploring what is the peak per-
formance that can be obtained with the models in
this work, which is likely to push the state of the
art performance even further.

7.2.2 Patch-level descriptors

This work considers only one case when patch-level
descriptors are used: together with SeqVLAD ag-
gregator. This allows it to use much more visual
information than only the CLS token. In the fu-
ture, it might be worth exploring other aggregators
that use patch descriptors such as the SALAD ag-
gregator in [20], since in that paper it serves as a
replacement for SeqVLAD.

7.2.3 Other foundation vision models

Due to the success of the DINOv2 vision founda-
tion model in im2im VPR ([19, 20, 26, 42, 22] and
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Table 6: Quantitative results obtained by training our models on MSLS and testing on MSLS,
Nordland, and Oxford RobotCar (as per configuration 1 described in the experimental setup).
We compare with the current state of the art in sequence to sequence VPR that train on MSLS.

Method Backbone Aggregator Image Size Descriptor dimension R@1 (MSLS) Train on MSLS R@1 (Oxford)Train on MSLS R@1 (Nordland) Train on MSLS
Our methods
DINOv2 + SeqVLAD DINOv2 SeqVLAD 392x392 49152 93.0 93.0 95.9
DINOv2 + Mixer DINOv2 Mixer 392x392 4096 90.6 90.4 95.3
DINOv2 + SeqGeM DINOv2 SeqGeM 392x392 768 89.9 93.8 96.2
DINO + FC DINOv2 fc 392x392 4096 88.5 84.1 95.0
Previous methods*
JIST* [7] ResNet-18 SeqGeM 384x384 512 90.6 79.0 -
SeqVLAD [29] CCT384 SeqVLAD 384x384 24576 88 75.4 -
SeqVLAD [29] CCT224 SeqVLAD 224x224 24576 86.7 68.4 -

* Results taken from referenced paper

seq2seq VPR (in this work), it might be worth ex-
ploring other foundation models. For im2im VPR,
work has already been done into using the CLIP
[36] foundation model [22, 28], however it might
also be worth exploring using it for seq2seq VPR,
as has been done for DINOv2 in this work.

7.3 Addressing main challenges in VPR

By using the DINOv2 foundation vision model and
training it in the way we mention, we achieve a
system that solve the challenges mentioned in the
introductory parts of this work, namely, variability
in environmental conditions is handled by the fact
that our models are robust to environmental condi-
tions since they have been trained on datasets with
high environmental variability (seasonal variation,
different lighting conditions, movable objects, etc.).

Viewpoint and Scale Changes is handled by the
fact that the DINOv2 backbone was initially trained
in a self-supervised manner, since in self-supervised
learning, the model is trained on tasks where the
input data is transformed in various ways, and the
model is tasked with predicting certain properties
of these transformations. This is how it is able to
be robust to viewpoint and scale changes. This
reasoning also applies to the problem of appear-
ance changes over time, since the model is able to
become invariant to those changes.

The problem of movable objects is solved by
training the attention map to ignore uninformative
visual features, as shown in Figure 7.

The problem of occlusion/lens flare is solved by
the fact that we are dealing with image sequences,
so even if an image in the sequence is occluded, the
model can still make the right prediction using the
other images.

Lastly, we are also solving the problems of lim-
ited number of available sequence datasets, train-

ing with limited data, slow convergeance and lim-
ited cross-dataset performance by using a founda-
tion vision model.

8 Conclusion

In conclusion, this work has addressed the current
gaps in research, namely the fact that foundation
vision models, although highly performant in im-
age to image visual place recognition, have made
no appearance in sequence to sequence place recog-
nition and the fact that limited research has been
done into generating spatio-temporal sequence de-
scriptors.

The results in this work establish a new state-
of-the art and show convincingly that the DINOv2
foundation model used with state of the art aggre-
gators has significantly better performance, com-
pared with previous methods, when tested on the
same dataset it’s been trained on, on datasets it’s
not been trained on and when trained with little
data.

We also showed that the Mixer model is a pa-
rameter efficient way to obtain good performance
combining spatial and temporal information, and
we made the case for exploring foundation visual
models further in this area of research. These re-
sults should hopefully encourage research into ways
to better leverage foundation vision models and
ways to better combine visual and temporal infor-
mation present in image sequences which can prove
useful not only in visual place recognition but in
general video-retrieval tasks.

In conclusion, this work shows how our meth-
ods tackle the major problems of visual place recog-
nition and achieves superior results, establishing a
new state of the art in sequence to sequence vi-
sual place recognition due to the use of the DI-
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NOv2 foundation model. This work also proposed
a method to generate spatio-temporal descriptors
by adapting the MLP mixer model to work with
sequence data, and in some cases achieved better
results than the current state of the art aggregators
(see Table 5).

A Appendix A: Code

To speed up the implementation of the system,
code is reused from similar work on sequence to se-
quence visual place recognition. The starting point
is forking the public repository of [29], located at
https://github.com/vandal-vpr/vg-transformers.
It has been chosen for the following reasons:

• Contains all the code necessary for pre-processing
and loading the MSLS and Oxford Robotcar
datasets, as well as the logic to generate the
train/test/val splits

• Contains logic for performing hard mining of
anchor, positive and negative sequence triplets
used for learning

• Already has all the logic for training the model,
caching, evaluation, validation, saving model
checkpoints and finding the best performing
model

• Contains the implementation of VPR meth-
ods such as pooling layers (GeM [35], SPoC
[3], NetVLAD [2], etc.) and feature extrac-
tors (Google’s ViT [11], VGG16 [38], ResNet
[18], TimeSFormer [4] etc.). These can be
used to compare SeqDinoMix against

The models in this work are written, like the
other models in the repository, using PyTorch’s
API [34], in python. For dependencies and virtual
environment management, Anaconda [1] together
with python’s version manager, pip, was used. As
for training the model, NVIDIA’s CUDA toolkit
[32] was used to take advantage of GPUs to reduce
training time. The GPUs used are from UTwente’s
HPC cluster, where the experiments run. Regard-
ing version management and to easily transfer the
code to the cluster, Github is used.
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