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Abstract
Introduction: Patients with severe symptomatic aortic valve stenosis undergoing
transcatheter aortic valve implantation (TAVI) are subject to various protocols for risk
assessment and post-procedural care. This study aimed to enhance the TAVI pathway by
developing a risk prediction model and implementing fast-track protocols combined with
ambulatory monitoring for post-procedural care.

Methods and Results: The study consisted of 3 studies:

• Next-Day Discharge: This study evaluated a next-day discharge protocol in a cohort of
131 TAVI patients, divided into NDD+ (56 patients eligible for next-day discharge)
and NDD- (95 patients ineligible). No significant differences were observed in
complications, rehospitalizations, mortality, change in NYHA class, or change in
quality of life. However, a significant difference in the composite endpoint favored
the NDD+ arm, suggesting that next-day discharge is safe and effective.

• Ambulatory Monitoring: A review of monitoring systems identified Senselink, Zenicor
ECG, and Kardia Mobile-HartWacht as promising options for post-procedural TAVI
care.

• Risk prediction model: A risk prediction model was developed using the CENTER2
database (24,322 patients) with a logistic regression and feature selection through
wrapper-backward elimination using decision trees. The model showed a suboptimal
performance, with an AUROC of 0.59 on the validation set, indicating limited
predictive accuracy.

Conclusion: The risk prediction model demonstrated limited clinical utility, with an
AUROC of 0.59 for 30-day mortality prediction. Despite the lack of improvement in
risk assessment, significant advancements were made in streamlining post-procedural
care. The next-day discharge study successfully facilitated the discharge of 50% of
eligible patients within 24 hours, thereby improving patient comfort by enabling home
recovery. No disadvantages of next-day discharge were found, as the only significant
statistical difference favored the NDD+ arm. Additionally, various options for ambulatory
monitoring have been explored, with the potential implementation of HartWacht allowing
for same-day discharge and enhanced patient safety.

Keywords: Transcatheter aortic valve implantation, Next-day Discharge, clinical pathway,
length of stay, hospital volume. Ambulatory monitoring, Telemonitoring, Devices, Kardia
Mobile, Zenicor ECG, Senselink, Risk score, prediction model.
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Abbreviation Meaning
AS Aortic valve Stenosis
SAVR Surgical Aortic Valve Replacement
TAVI Transcatheter Aortic Valve Implantation
CCD Cardiac Conduction Defects
ECG Electrocardiogram
RBBB Right Bundle Branch Block
STS Society of Thoracic Surgeons
AUROC Area Under the Receiver Operating Characteristic
LV Left Ventricle
LCC Left Coronary Cusp
RCC Right Coronary Cusp
NCC Non-Coronary Cusp
TTE Transthoracic Echocardiography
EF Ejection Fraction
SA node Sinoatrial node
AV node Atrioventricular node
AVB Atrioventricular Block
LBBB Left Bundle Branch Block
LAHB Left Anterior Hemiblock
PPI Permanent Pacemaker Implantation
KNN K-Nearest Neighbors
RMSE Root Mean Squared Error
ROS RandomOverSampler
LASSO Least Absolute Shrinkage and Selection Operator
LR Logistic regression
NDD Next-day discharge
NYHA New York Heart Association
QoL Quality of Life
NHR Netherlands Heart Registration
BMI Body Mass Index
CVA / TIA Cerebral Vascular Accident / Transient Ischaemic Attack
MI Myocardial Infarction
LVEF Left Ventricular Ejection Fraction
AVA Aortic Valve Area
NSTEMI Non-ST-elevation Myocardial Infarction
AF Atrial Fibrillation
PPG Photoplethysmography
HR Heart Rate
MAD Mean Absolute Deviation
MAPE Mean Absolute Percentage Error
MACE Major Adverse Cardiac Events
NaN Not a Number
CABG Coronary Artery Bypass Graft
PCI Percutaneous Coronary Intervention
PVD Peripheral Vascular Disease
CAD Coronary Artery Disease
LFLG Low Flow Low Gradient
DM Diabetes Mellitus
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1 Introduction
Aortic valve stenosis (AS) is the most common valvular disease in Europe and the United
States of America, especially in the elderly population [1]. About 12.4% of elderly people
(>75 years) have moderate or severe AS [2][3]. The degree of stenosis varies, and it results in
asymptomatic to very severe conditions. Asymptomatic cases of AS can be treated medically
with careful patient observation. In more severe aortic stenosis, an aortic valve replacement
may be required, either via surgical or percutaneous approach [1][3].

Transcatheter aortic valve implantation
For a long time, surgical aortic valve replacement (SAVR) was the only treatment for severe
aortic valve stenosis. Patients with high mortality risk were considered ineligible for SAVR
and were treated with medication. Since 2007 transcatheter aortic valve implantation (TAVI)
has emerged as an alternative procedure [4]. TAVI is proven to reduce disease burden
by improving quality of life and survival in patients with AS for patients with high or
intermediate operative risk [5]. One of the most common complications after TAVI is the
development of cardiac conduction defects (CDD) or arrhythmias [6]. Post-procedural care,
such as neurological evaluation, and administration of postoperative medication is only
protocol for the first 4 hours. The need for up to 72-hour stay in the hospital is for continuous
monitoring of new-onset CCD for the purposes of pacemaker-dependency identification [7].
Early hospital dismissal enables early resumption of the daily life routine of patients
improving patients’ comfort and supporting re-establishment of a stable condition. The
reduction of length of stay minimizes the proneness of hospital-acquired complications,
minimizes the burden of hospital capacity, and is cost-effective. Driven by these advantages
and that in most cases new-onset CCDs develop within 24 hours, fast-track protocols aiming
for early discharge are currently being developed for the TAVI population [8].

One of the possibilities in these fast-track protocols is to evaluate the additional value of
telemonitoring in an elderly population. M.Z.H. Kolk et al. evaluated the patient-reported
outcomes of a telemonitoring program, which showed that monitoring did not seem to affect
the sense of safety and the health-related quality of life, whereas the perceived physical
limitations tended to improve [9]. This introduces the possibility of integrating telemonitoring
into fast-track protocols, providing monitoring beyond the hospital setting.

Risk assessment TAVI
The development of prediction models can empower doctors to identify patients who are at an
elevated risk of experiencing adverse outcomes related to the procedure. The models serve as
a valuable tool for healthcare providers and patients as they offer objective evaluation of the
risk of outcomes, like mortality. Ultimately, they aim to reduce undesired subjectivity inherent
in clinical decision-making and enhance personalized care [3].
At present, the risk assessment for TAVI relies mostly on the STS and EuroSCORE II [10][11].
These scores are not specifically tailored for TAVI, evidenced by their area under the receiver
operating characteristic (AUROC) curve values for TAVI patients of 0.61 and 0.62, respectively.
Therefore, in practice, cardiologists don’t rely much on the two risk scores as they have a
relatively low AUROC for TAVI patients. Ideally, cardiologists would use a risk assessment
model generated specifically for TAVI patients for patients selection, risk stratification, and
benchmarking [4].
Other risk assessment methodologies, such as machine learning methods, have emerged
as powerful tools for refining predictive models. Models that are created and evaluated
using machine learning are EuroSCORE II, ACC-TAVI, FRANCE-2, OBSERVANT, German AV,
TAVI2-SCORe, TVT-score, CoreValve program, TARIS, and PPO. The risk score that has the
best AUROC and is externally validated is the ACC-TAVI score, with an AUROC of 0.64 [4].
These models are not used in practice because of the low AUROC or are not validated in an



external population. According to existing literature, echographic parameters, CT parameters,
and frailty represent promising features that have not been previously incorporated into any
risk model [3].

2 Research question
The main goal of this study is to improve objective decision making in the TAVI pathway which
is done by evaluating:

1. What is the impact of next-day discharge on patient outcomes following TAVI?

2. Which ambulatory monitoring systems are most optimal for implementation at
AmsterdamUMC?

3. Can a machine-learning-based model be developed to anticipate 30-day mortality, stroke,
MI, and pacemaker implantation following TAVI, with an AUROC comparable to or
better than the existing ACC-TAVI model?

To answer research questions 2 and 3, two sub-research questions need to be evaluated.

1. Which ambulatory monitoring systems are commercially available and what are their
strengths and weaknesses?

2. How do current developed risk prediction models for TAVI work and what input features
do they use?



3 Clinical Background
In this section, a comprehensive exploration of the study’s clinical background will be
undertaken. The clinical background encompasses the anatomy and function of the aortic
valve, the pathophysiology of aortic stenosis (AS), the diagnosis of AS, and possible treatments.

3.1 Aortic valve stenosis
The aortic valve prevents the backflow of oxygenated blood from the left ventricle (LV) to the
aorta. Its semilunar shape consists of three collagen-based leaflets or cusps, named left coronary
cusp (LCC), right coronary cusp (RCC), and non-coronary cusp (NCC) - corresponding to the
coronary arteries. These leaflets connect the aortic root via the aortic annulus, as illustrated in
Figure 1 [12][13].

Figure 1: Illustration of the aortic valve. A) The aortic valve has three semilunar-shaped cusps: right coronary cusp,
posterior or non-coronary cusp, and left coronary cusp. B) Ejection of blood from the LV forces the cusps apart. C)
Closing of the valve due to backflow of blood leads to closure of the valve and filling of the coronary arteries. The
cups meet in the center during closure [13]

Aortic stenosis (AS) refers to the narrowing of the aortic valve, obstructing blood flow from
the left ventricle to the ascending aorta during systole and possibly causing backflow [13][14].
Possible causes encompass congenital bicuspid valve, idiopathic degenerative sclerosis with
calcification, and rheumatic fever. In this study, the focus is on AS in elderly patients caused by
the narrowing of the aortic valve because of calcification. Untreated AS may lead to symptoms
such as syncope, angina, and exertional dyspnea. Symptoms related to heart failure and
arrhythmias may develop, as aortic stenosis can also cause heart failure and arrhythmias
caused by calcification in the conduction system [14]. AS is characterized as mild, moderate,
severe, and very severe. Aortic stenosis is frequently asymptomatic until individuals have it
10 to 20 years, after which symptoms tend to develop gradually [14].

The diagnosis of aortic stenosis involves clinical suspicion caused by physical examination
followed by confirmation through echocardiography, which plays a pivotal role in the accurate
quantification necessary for patient management and clinical decision-making.
During auscultation, characteristic crescendo-decrescendo ejection murmur and a systolic
ejection click may be present. If there is a delayed closure of the aortic valve, it can result in
a single S2 sound. This occurs when the aortic valve closure merges with the pulmonic (P2)
component of S2 [15].

Two-dimensional transthoracic echocardiography (TTE) is a primary tool, employed to identify
a stenotic aortic valve and its potential causes, quantify left ventricular (LV) hypertrophy and
systolic dysfunction, and detect coexisting valvular heart disorders (such as aortic regurgitation
and mitral valve disorders) and complications like endocarditis. Additionally, Doppler ECG
is utilized to measure the degree of stenosis by assessing jet velocity, transvalvular systolic
pressure gradient, and aortic valve area [14][16].



3.2 Transoartic valve implantation

The severity of AS is characterized as follows [14]:

• Mild: peak aortic jet velocity > 2.5-2.9 m/s or mean gradient 10-20 mmHg, or valve area
1.5-2.0 cm2.

• Moderate: peak aortic jet velocity > 3-4 m/s or mean gradient 20-40 mmHg, or valve area
1.0-1.5 cm2.

• Severe: peak aortic jet velocity > 4 m/s or mean gradient > 40 mmHg, or valve area < 1.0
cm2.

• Very severe: peak aortic jet velocity > 5 m/s or mean gradient >60 mmHg.

3.2 Transoartic valve implantation
The management of aortic stenosis involves a careful balance between intervention benefits
and associated risks, with decisions guided by symptoms and specific echocardiographic
criteria. Periodic clinical evaluations, including ECG and exercise testing, aid in determining
the optimal time for valve replacement. Valve replacement is recommended when aortic
stenosis is severe and accompanied by symptoms, reduced effort tolerance, or other critical
indicators such as a fall in blood pressure ≥ 10 mmHg below baseline or LV ejection fraction
(EF) <50%. The benefits of interventions do not outweigh the risks if the patients do not reach
these criteria [14].

Various interventions exist, including medicinal approaches, balloon valvotomy, SAVR, or
TAVI [14]. This study focuses on the TAVI procedure.
TAVI is a less invasive alternative than SAVR and involves the percutaneous implantation
of valves through an artery. The new valve is inserted through an artery, mostly the femoral
artery, in a collapsed configuration to the aortic valve site and is then deployed to replace the
stenotic aortic valve. Different routes of TAVI admission, including transfemoral, transaortic,
transapical, and transsubclavic, are considered based on factors like CT scans for vessel and
valve diameter, ultrasound for quantifying stenosis severity, and blood and ECG assessments
[14][17].

The choice between SAVR and TAVI considers factors such as age, suitability for the
transfemoral approach, and life expectancy. Guidelines recommend SAVR for patients < 65
years, while TAVI is favored for those > 75 years or with a life expectancy of < 10 years. For
patients aged 65 to 80 years, the decision is based on individual characteristics [14].
Patients with a life expectancy of < 1 year are not recommended for intervention. TAVI presents
advantages such as lower short-term mortality, reduced risk of stroke, major bleeding, and
atrial fibrillation compared to SAVR. However, it is associated with increased vascular
complications, paravalvular regurgitation, the need for pacemaker implantation, and early
repeat valve intervention [14].

Possible complications of TAVI include severe bleeding requiring intervention, hematomas,
conduction disorders in the heart necessitating permanent pacemaker placement, stroke or
heart attack, damage to blood vessels, poor functioning of the new valve, and the need for
new interventions due to misplaced valves. The incidence of these complications varies, with
mortality around TAVI at 0.7% and within 30 days at 2.6% [19].
Conduction disorders are not uncommon after cardiac surgery. Figure 2 displays the heart’s
conduction system. The electrical impulse originates in the sinoatrial node (SA node), which
serves as the heart’s pacemaker. The signal then travels to the atrioventricular node (AV node),
where the signal is momentarily delayed allowing the atria to empty the block before the
contraction ends. Subsequently, the electrical signal moves to the bundle of His, which splits
into the left and right bundle branches, and then proceeds to the Purkinje fibers, prompting
the ventricles to contract. One of the main complications that arise post-TAVI is conduction
disorders, which include complete atrioventricular block (AVB), left bundle branch block



3.2 Transoartic valve implantation

Figure 2: The conduction system of the heart showing the signal starting in the sinoatrial node, progressing to the
atrioventricular node to the Bundle of His to the bundle branches ending in the Purkinje fibers.[18]

(LBBB), left anterior hemiblock (LAHB), and right bundle branch block (RBBB). The incidence
of post-procedural conduction disturbances varies among studies, with rates of 20% in
complete AVB, 7% to 83% in LBBB, 2% in RBBB, and 2% in LAHB. Notably, 37.7% of new LBBB
cases were resolved before hospital discharge, with an additional 57% resolving within the
6-12-month follow-up period [20].

Aortic valve stenosis has been linked to prolonged atrioventricular (AV) conduction times and
higher degrees of AV conduction disorders. Surgical trauma during open-heart surgery can
result in complications, such as complete AV block and new left bundle branch block.
Similarly, TAVI, a less invasive alternative to surgery, poses a risk of damaging the conduction
system. Incidences of atrioventricular block, new-onset LBBB, and the need for permanent
pacemaker implantation (PPI) are notable concerns during TAVI.
The susceptibility to AV block in TAVI is partly device-specific, with varying incidences
reported in different valve types. However, TAVI is a complex procedure involving the
manipulation of guide wires and catheter systems in the left ventricular outflow tract,
potentially causing conduction system injury beyond the valve itself.
Conduction disturbances in TAVI patients occur early in the procedure, with more than half
happening before valve implantation. QRS widening is observed in nearly 50% of patients,
often after device implantation or during aortic valve preparation.
Studies highlight a significant increase in the frequency of LBBB after TAVI, suggesting
direct injury during valve implantation. New-onset LBBB is common, with varying clinical
significance. Mortality data are conflicting, with some studies linking persistent LBBB to an
increased risk of all-cause mortality, pacemaker insertion, and syncopal events [21].



4 Technical background
In this section, a comprehensive exploration of the study’s technical background will be
undertaken. The technical background encompasses the (machine learning) models used for
preprocessing, feature selection and risk prediction.
Machine learning, a subset of artificial intelligence, employs algorithms that learn from data,
discern patterns, and autonomously construct decision analysis models [22]. In healthcare,
transparent machine learning models are preferred, as they allow for comprehensible
explanations of their predictions. The models can be used for preprocessing, feature selection,
and the risk prediction itself.

4.1 Data preparation
K-nearest neighbors
K-Nearest Neighbors (KNN) is a supervised learning method utilized for the imputation
of missing values. It operates on the principle of identifying clusters within data points
and assigning a class to unclassified points based on the classes of their nearest neighbors.
The algorithm accommodates both linear and non-linear data patterns [23]. The value of
’k’, determining the number of nearest neighbors, was selected through cross-validation to
optimize performance on the dataset.

The KNN algorithm classifies unknown samples based on their distance to the K-nearest
samples in the training set [23]. The algorithm in this model employs the Euclidean distance:

D(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + ...+ pn − qn)2 (1)

where:

• D(p, q) is the distance between points p and q,
• p1, p2, . . . , pn and q1, q2, . . . , qn and are the coordinates of the points p and q in the

n-dimensional space [24].

In categorical features, class labels are assigned through a majority voting process. The class
that appears most frequently among the nearest neighbors determines the predicted class for
the target data point. An illustrative example of KNN’s application to categorical features is
presented in Figure 3. For continuous features, the class label is determined by computing the
average of the target values of the nearest neighbors. This calculated average value serves as
the predicted output for the target data point [25].

Figure 3: K-Nearest Neighbors diagram for categorical features where the majority vote determines the class of the
target point. In this case, the target point will be assigned to class 2 [26].

Iterative Imputer
The IterativeImputer is a multivariate imputation method that estimates each missing value in
a feature using the other features in the dataset. Each feature with missing values is modeled in
a round-robin fashion, where each missing entry is treated as a function of the other features.
In a study by O. Altukhova et al., various imputation methods were evaluated, and both the
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IterativeImputer and Fast-KNN exhibited the smallest root mean squared error (RMSE) [27].
This result underscores the efficacy of the IterativeImputer in handling missing data.
A critical aspect of this risk prediction model is its ability to account for the relationships
between features when imputing missing values, a capability inherent to the IterativeImputer.
Specifically, the IterativeImputer employs Bayesian Ridge regression to predict missing values,
ensuring that the interdependencies among features are appropriately leveraged during the
imputation process [27].

Mathematically, the objective of the Iterative Imputer can be expressed as follows:

X̂ = arg min
X

p∑
j=1

∑
i∈Oj

(xij − fj(X−j,i))
2 +

∑
i∈Mj

(xij − fj(X−j,i))
2

 (2)

where:

• X complete dataset including the missing data,
• X̂ is the imputed dataset,
• p the number of features,
• Oj are the indexes of observed values in column j ,
• Mj are the indexes of missing values in column j ,
• fj the regression function that is trained on the observed values in column j and the other

columns (X−j).

RandomOverSampler
RandomOverSampler (ROS) is a resampling method that randomly selects minority examples,
replicates them, and adds them to the original dataset so that the minority set becomes a
comparable size to the majority set. In the study of J. Liu et al. the ROS outperforms other
oversampling techniques. An explanation is that it maintains the characteristics of the original
data [28].

Mathematically, the objective of ROS can be expressed as follows:

X̂, ŷ = (X,y)∪
⋃
c∈C

(Xnew
c ,ynew

c ) , where Xnew
c ,ynew

c are random duplicates so |Xnew
c | = nmax−nc

where:

• X is the original dataset,
• y are corresponding labels,
• C is the unique class labels,
• nmax is the maximum number of observations in one class,
• Xc and yc are the data and labels of class c,
• Xnew

c and ynew
c are the random selected duplicates of class c, so that every class has nmax

observations.

4.2 Feature selection methods
LASSO regression
Least Absolute Shrinkage and Selection Operator (LASSO) regression is a technique within
linear regression that can be used for feature selection. Rather than solely focusing on
predicting the target variable, LASSO regression actively identifies and selects the most
influential features for the model [29].

In LASSO regression, the model minimizes the residual sum of squares, just like ordinary
least squares regression, but with an additional penalty term. This penalty term, denoted by
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λ (lambda), is multiplied by the sum of the absolute values of the coefficients. As a result,
LASSO regression simultaneously minimizes the error between observed and predicted values
(residual sum of squares) and the sum of the absolute values of the coefficients [29].

The key feature of LASSO regression is its ability to enforce sparsity in the coefficient estimates.
By setting certain coefficients to precisely zero, LASSO conducts variable selection, effectively
eliminating irrelevant predictors from the model. This property makes LASSO particularly
useful when dealing with high-dimensional data where the number of predictors exceeds the
number of observations [29].

Mathematically, the objective function of LASSO regression is expressed as:

βLASSO = arg min
β0,β1,...,βp

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

|βj | (3)

where:

• yi represents the dependent variable for observation i,
• β0 is the intercept term,
• βj are the regression coefficients corresponding to predictor variables xj .
• xij denotes the value of the j-th predictor variable for observation i.
• The regularization parameter λ controls the strength of the penalty applied to the sum of

the absolute values of the coefficients.

Overall, LASSO regression strikes a balance between prediction accuracy and model
interpretability by shrinking coefficient estimates and performing variable selection. It proves
particularly effective when dealing with correlated predictors, as it tends to select one predictor
from a group of highly correlated variables while shrinking others to zero. This property
results in simpler and more interpretable models, making LASSO regression a valuable tool
in statistical modeling and machine learning applications [29].

Wrapper -backward elimination
The wrapper method backward elimination employs a learning algorithm to evaluate the
goodness of the selected features, where a specific classifier is trained for each feature
subset. The wrapper method backward elimination initially employs a comprehensive model
containing all variables. Subsequently, variables are systematically eliminated from the model,
one by one, until only those with a significant impact on the outcome remain. The variable
with the lowest test statistic or the highest p-value exceeding a predetermined cutoff value
is iteratively removed from the model. This process continues until all remaining variables
demonstrate statistical significance at the cutoff value [30].

Wrapper methods such as backward elimination are often computationally intensive.
However, they yield promising subsets of features tailored to specific classification algorithms.
These methods systematically explore feature space to identify the most informative variables
for predictive modeling tasks [31].

4.3 Machine learning models in healthcare
Logistic regression
Logistic regression (LR) estimates the probability of an event occurring based on a given
data set of independent variables. The logistic regression will take the covariance among
variables into account which are subjected to confounding effects [32][33]. LR uses a log odds
ratio and an iterative maximum likelihood method to fit the final model, making it suitable
for non-normally distributed data or situations with unequal covariance matrices. Logistic
regression assumes independence among variables, which is not always met [34].
The logistic regression model is defined by the sigmoid function:

p(x) =
1

1 + e−(β0+β1x1+...+βpxp)
(4)



4.4 Cross-validation

where:

• p(x) is the probability of the outcome x belonging to the positive class,
• β0, β1, . . . , βp are the regression coefficients,
• x1, x2, . . . , xp are the predictor variables,
• e is the base of the natural logarithm.

XGBoost
XGBoost is a decision-tree-based supervised learning technique. Decision trees do not have a
single equation but consist of a series of if-else conditions. Each node in the tree represents
a decision based on the specific features [35]. XGBoost uses a set of weak prediction
models (e.g., decision trees) to yield predictions and to optimize the loss function while
employing regularization parameters to mitigate overfitting concerns [35]. The core objective
of XGBoost is to minimize the combined objective function, encompassing the loss function
and regularization terms [36]:

L(t) =

n∑
i=1

ℓ(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (5)

where:

• ℓ is the loss function that represents the error between observed data yi and predicted
data ŷi,

• ft is the model of the t-th tree,
• t is the iteration index during the optimization process

The detail of regularisation term Ω can be expressed as:

Ω(f) = γT +
1

2
λ||wj ||2 (6)

where:

• T indicates the total number of tree leaves,
• γ and λ are penalty coefficients,
• wj is a vector containing each leaf’s score.

During the training process, parameter tuning is imperative. While some parameters like
γ in Eq. 6 are determined during training, others such as learning rate (η), maximum
tree depth (max_depth), and minimum child weight (min_child_weight) must be defined
before the training process can begin. Optimal hyperparameters, which may be found by
hyperparameter tuning, are required. Among the prevalent methods for hyperparameter
optimization—grid search, random search, and Bayesian optimization—we opt for grid search
in this study due to its simplicity.

Random Forest
A random forest is an aggregate learning approach for classification and regression analysis
[35]. It is a collection of classification and regression trees trained on datasets of the same size
as a training set, called bootstraps, created from a random resampling on the training itself.
Once a tree is constructed, a random order set of bootstraps is used as a test set. Random forest
is prone to over-fitting, compared to conventional decision trees by averaging predicted values
from individual trees [37].

4.4 Cross-validation
K-fold cross-validation
Cross-validation is a robust statistical method used to evaluate and compare learning
algorithms by partitioning data into training and validation segments. This technique ensures
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that each data point has the opportunity to be used for validation in successive rounds, thus
providing a comprehensive assessment of the model’s performance. The most common form
of cross-validation is k-fold cross-validation [38].

In k-fold cross-validation, the dataset is divided into k equally sized segments, known as folds.
The process involves k iterations of training and validation. In each iteration, a different fold is
held out for validation, while the remaining k − 1 folds are used for training the model. This
method ensures that each fold is used exactly once for validation [38].

Formally, the k-fold cross-validation procedure can be described as follows:

CV (k) =
1

k

k∑
i=1

ei (7)

where:

• CV (k) represents the cross-validation error for k folds,
• ei is the error for the i-th fold

During each iteration, the learning algorithm uses k − 1 folds to train the model and
subsequently makes predictions on the held-out validation fold. The performance of the
learning algorithm on each fold is measured using a pre-determined metric such as accuracy.
After completing the process, k samples of the performance metric are obtained for each
algorithm. These samples can be averaged to obtain an aggregate measure or used in statistical
hypothesis tests to compare the effectiveness of different algorithms [38].



5 Next-day discharge
5.1 Abstract
Introduction: Implementing fast-track protocols can potentially enhance hospital capacity,
reduce costs, decrease the risk of hospital-acquired complications, and improve patient
comfort. The aim of this study was to study the impact of next-day discharge on patient
outcomes following Transcatheter Aortic Valve Implantation (TAVI).
Methods and Results: Patients were selected pre-TAVI for eligibility of next-day discharge,
including 158 patients. After the procedure patients who were still eligible for discharge
after 24 hours were in the NDD+ arm (56 patients), patients not eligible anymore were in
NDD- arm (95 patients). The primary endpoint defined as the composite endpoint showed a
significant difference (3.6% vs 17.0%, p=0.018). Other endpoints were late complications (1.8%
vs 8.5%, p=0.15), rehospitalizations (1.8% vs 6.4%, p=0.26), and mortality (0%, vs 2.1%, p=0.53).
Secondary endpoints were the change in NYHA class (-1.0 vs -1.0, p=0.46) and the change in
Quality of Life by EQ-5D-Y (-1.0vs. -1.0, p=0.39).
Conclusion: Next-day discharge following TAVI is a viable alternative to the traditional
72-hour discharge protocol. The benefits of next-day discharge included reduced hospital
stays, increased hospital capacity, cost savings, and fewer hospital-acquired complications.
Patients had also reported a positive experience with earlier return to their home environment.
However, due to the small sample size, these findings should be interpreted with caution.

Keywords: Transcatheter aortic valve implantation, Next-day Discharge, clinical pathway,
length of stay, hospital volume.
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5.2 Introduction
Transcatheter aortic valve implantation (TAVI) is commonly utilized in high and
intermediate-risk patients with severe aortic valve stenosis. One of the benefits of this
percutaneous approach is the faster post-procedural recovery. Protocols for post-procedural
care and duration of hospital stay vary across institutions [39]. Until August 2023,
AmsterdamUMC followed a protocol of monitoring patients for 72 hours post-TAVI.
Different trials, such as the FAST TAVI trial, Vancouver 3M trial, and the Tasmanian Experience,
have demonstrated positive outcomes with a 24-hour monitoring period for selected patients
who meet specific criteria [40][41][42]. The primary purpose of post-TAVI monitoring is to
detect new-onset cardiac conduction disorders (CCDs), conduct neurological evaluations,
and manage postoperative medication. The neurological evaluation and the management of
postoperative medication are completed 4 hours after the procedure [7], which allows patients
to mobilize after 4 hours.
Notably, 60-80% of new-onset CCDs after TAVI develop during the procedure or within 24
hours after the procedure [3]. Monitoring CCDs is crucial for monitoring a total atrioventricular
(AV) block possibly causing collapse. Patients who develop a total AV-block are indicated for
permanent pacemaker implantation (PPI) [43]. Some patients are at higher risk for needing
a PPI, for example, a pre-existing right bundle branch block (RBBB). RBBB is a risk factor
for developing a complete AV-block and therefore needing a permanent pacemaker [44]. At
AmsterdamUMC, 8.3% of the patients are indicated for a PPI over the last 5 years (2018-2023)
[19].

Implementing fast-track protocols can potentially enhance hospital capacity, reduce
costs, decrease the risk of hospital-acquired complications, and improve patient comfort.
Consequently, AmsterdamUMC aims to study the impact of next-day discharge on patient
outcomes following TAVI.

Figure 4: Flowchart of the performed method to analyze next-day discharge. Colors indicate different steps in the
method distinguishing the research question, data collection & analysis, and statistical analysis.

5.3 Methods
In Figure 4, an overview of the method to analyze next-day discharge is displayed in a
flowchart. The first step in answering the research question regarding next-day discharge
was collecting the data. Data was collected from August 2023 to May 2024, with the follow
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up extending to June 2024. The primary endpoints were 30-day mortality, rehospitalization,
complication, and the composite endpoint. Secondary endpoints were change in NYHA
class and change in quality of life (QoL). Statistical analysis consisted of the Chi-square test,
Fisher’s Exact Test, independent T-test, or Wilcoxon rank sum test. Normality was tested by
Kolmogorov-Smirnov.

5.3.1 Study population
Patients were enrolled in the next-day discharge program between Augustus 2023 and May
2024. The follow-up period lasted until June 2024. All patients undergoing transfemoral TAVI
over 18 years of age in the AmsterdamUMC were included. Patients were excluded if they had
a pre-existing right bundle branch block, it was not an elective procedure, or if no informal
caregiver could be present the first night after discharge. The included patients were divided
into two groups based on next-day discharge criteria. The criteria were that when patients
did not have an increase in PQ-time for 20 ms or more and did not have an eventful procedure
limiting patients from mobilizing, they could go with next-day discharge (NDD+ arm). Patients
not meeting these requirements were not discharged after 24 hours (NDD- arm). The criteria
changed from December 2023. Prior to this modification, criteria included the exclusion of
patients with permanent atrial fibrillation (AF) and those with any new-onset conduction
disturbances (CCDs) following TAVI or any eventful procedures. After December 2023, these
criteria were adjusted or removed. Consequently, there is a subset of patients who met the
exclusion criteria between August 2023 and November 2023 but would have been eligible for
next-day discharge had the procedure been performed after December 2023. These patients
remain in the NDD- group. The different next-day discharge criteria for the two time frames
are detailed in Table 1.

Table 1: Next-day discharge criteria in the two phases of the study.

Old next-day discharge criteria New next-day discharge criteria

Pre-existent RBBB Pre-existent RBBB
Permanent atrial fibrillation
Urgent procedure Urgent procedure
Eventful procedure Eventful procedure limiting patients from mobilizing
New-onset CCDs post-TAVI Increase in PQ-time ≥ 20 ms
No informal caregiver No informal caregiver

The old and new next-day discharge criteria are depicted. The old criteria were used from August 2023 to November
2023. From December 2023 the new criteria were used. The differences in criteria were the deletion of permanent
AF, and other CCDs besides the increase in PQ-time ≥ 20 ms and eventful procedures not preventing patients from
mobilizing.
RBBB: Right Bundle Branch Block, AF: Atrial Fibrillation, CCDs: Cardiac Conduction Disorders.

5.3.2 Study design and setting
This was a single-center, retrospective analysis obtained from a prospective TAVI registry. Data
was collected for patients who were discharged after 24 hours and was compared to patients
who were not discharged after 24 hours.

5.3.3 Data collection and study endpoints
Patient information was registered 30 days after the TAVI procedure to compare the outcomes
of next-day discharge to standard care. The primary endpoints are the composite endpoint, late
complications (>24 hours after TAVI), rehospitalization, and mortality. Late complications are
categorized as permanent pacemaker implantation, stroke with residual symptoms, vascular
complications, conduction disorders, and others. Normally, complications after the first 72
hours are considered late, however, the NDD+ group is discharged after 24 hours, necessitating
consideration of complications or rehospitalizations occurring between 24 and 72 hours [45].
To ensure a balanced comparison, late complications in the NDD- group are also classified
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based on the >24 hours criterion. QoL was measured by EQ-5D-Y, described in Appendix 9.1.
Scores go from 5 to 15, with higher scores indicating a poorer quality of life.

5.3.4 Data analysis
Descriptive statistics are reported as mean ± SD for normally distributed continuous variables,
or as median and 25th – 75th percentile (IQR) otherwise. Normality of distribution was
tested by means of Kolmogorov-Smirnov test. Absolute and relative frequencies are reported
for categorical variables. Continuous variables were analyzed with the student’s t-test or
Wilcoxon rank sum test depending on variable distribution. Differences in proportions were
compared by applying the Chi2-test or Fisher’s exact test. For all analyses, a 2-sided p <0.05
was considered statistically significant.

5.4 Results

Figure 5: A flowchart of the inclusions of patients in both time periods for the NDD+ arm and NDD- arm. The
blue color represents the NDD+ arm, and the purple color represents the NDD- arm. The white color represents the
excluded patients.

A total of 265 patients underwent TAVI procedures at AmsterdamUMC between August 2023
and May 2024. Of these, 158 patients (60%) met the pre-TAVI criteria for next-day discharge
(NDD) at the screening before the procedure. Patients suitable for NDD were divided into the
NDD+ and NDD- arms. The NDD+ arm comprised 56 patients (35% of the patients that were
deemed suitable pre-TAVI), 7 patients (4% of the patients that were deemed suitable pre-TAVI)
were excluded due to inability to reach for follow-up while the remaining 95 patients (60% of
the patients that were deemed suitable pre-TAVI) were categorized into the NDD- arm. Figure
5 displays the inclusions of this study. The factors contributing to a patient’s failure to meet
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the criteria for NDD despite initially qualifying, are illustrated. The blue color represents the
NDD+ group, and the purple color represents the NDD- group. Patients without an informal
caregiver present or with ’Other’ reasons besides the ’collapse’ should have been eligible for
Next-Day Discharge. However, the majority of these patients were included based on outdated
criteria or due to the untimely provision of information regarding the informal caregiver. If
these patients had been discharged the next-day and all patients were available for follow-up,
the NDD+ group would have contained twice as many patients causing the NDD+ arm to
have comprised 67% of the total patients that met the pre-TAVI criteria.

5.4.1 Demographic characteristics
Baseline characteristics are listed in Table 2 and were broadly comparable across the NDD+
and NDD- arms. The demographic features demonstrated significant differences in the female
gender, the QoL, and the presence of a permanent pacemaker pre-TAVI and (respectively
32.1% vs 62.1%, p=<0.001, and 6.0 vs. 6.0, p=0.048, and 24.4% vs 5.3 %, p=0.003). ECG and
echographic parameters were comparable across the two groups.

Table 2: Demographic characteristics of patients selected for NDD pre-procedural (n=131)

Features NDD+ arm (N=56) NDD- arm (N=95) p-value

Clinical

Age (years) 80 (76.2 - 81.3) 82 (80.0-82.4) 0.27
Female gender 18 (32.1%) 59 (62.1%) <0.001
BMI (kg/m2) 25.7 (25.1-27.7) 25 (25.2-27.3) 0.40
NYHA class 2.0 (1.9-2.3) 2.0 (2.1-2.4) 0.21

QoL 6.0 (6.1-6.7) 6.0 (6.4-6.8) 0.048
Frailty 3.0 (2.2-3.4) 3.0 (2.9-3.8) 0.10

Diabetes 8 (14.3%) 18 (18.9%) 0.45
Prior CVA/TIA 9 (16.1%) 16 (16.8%) 0.88

Prior MI 8 (14.3%) 11 (11.6%) 0.65
Peripheral artery disease 3 (5.4%) 4 (4.2%) 1.0

Permanent pacemaker 12 (21.4%) 5 (5.3%) 0.003
eGFR (mL/min) 62.5 ± 15.5 60.3 ± 17.8 0.45

Syncope 4 (7.1%) 4 (4.2%) 0.47

Baseline ECG

AV-Block (1st, 2nd, total) 9 (16.1%) 12 (12.6%) 0.57
LBBB 3 (5.4%) 5 (5.3%) 1.0

Permanent AF 10 (17.9%) 25 (26.3%) 0.22

Baseline TTE

LVEF <50% 12 (21.4%) 24 (25.3%) 0.57
Aortic valve regurgitation 22 (39.3%) 36 (37.9%) 0.94

AV mean PG (mmHg) 39.2 ± 14.4 40.6 ± 15.7 0.59
AVA (cm2/m2) 0.81 ± 0.16 0.76 ± 0.20 0.12

Statistical difference between demographic features that are described by mean + std for normally distributed
continuous variables, median (IQR) for not normally distributed variables, and n (%) for frequencies for the NDD+
arm and the NDD- arm.
BMI: Body Mass index, NYHA: New York Heart Association, CVA: Cerebro Vascular Accident, TIA: Transient
Ischemic Attack, ECG: electrocardiogram, AV: atrioventricular, AF: Atrial Fibrillation, AV mean PG: Aortic Valve
mean Pressure gradient, AVA: Aortic Valve Area.

Figure 6 illustrates the reasons why women and men were selected for the NDD- group,



5.4 Results

providing insight into the statistical difference in the demographic characteristics between
both groups. Notably, more than twice as many females experienced eventful procedures that
impeded their mobilization, and six times as many females exhibited an increase in PQ-time
of more than 20 ms. These two factors largely explain why the NDD- group has a significantly
higher proportion of females compared to males.

Figure 6: Reasons for the inclusion of women and men in the NDD- group.

5.4.2 Impact new criteria on patient inclusions

Figure 7: The percentage of the inclusions in the NDD+ arm compared to the percentage of events in each quartile.
The blue line represents the percentage of inclusions in the NDD+ arm. The green line represents the percentage of
events in that quartile, where the red dotted line represents the NDD- arm and the red striped line represents the
NDD+ arm.

Figure 7 illustrates the percentage of inclusions compared to the percentage of events per
quartile. The blue line depicts the distribution of the NDD+ inclusions across quartiles.
Following the implementation of new criteria in December 2023, there is an evident rise in the
percentage of inclusions in the NDD+ arm. Subsequently, although the percentage of NDD+
inclusions decreases slightly beyond this initial quartile, it remains elevated compared to the
old criteria.



5.4 Results

The green line represents the incidence of events per quartile. Notably, a slight increase is
observed in Q1-2024 aligning precisely with the increase in NDD+ inclusions. However,
upon examining the events within the NDD+ arm, it becomes apparent that these events
predominantly occur in the NDD- arm. Thus, there appears to be no direct correlation between
the increase in the size of the NDD+ group and the occurrence of events.

Figure 8 depicts the temporal distribution of the events following TAVI. It shows that 3 events
took place in the first two days after the first 24 hours. The other events occurred after the old
discharge limit of 72 hours. Of the three events that took place in the first 72 hours, two took
place during hospital stay in the NDD- arm: One new-onset atrial fibrillation, and one groin
bleeding. One rehospitalization was necessary in the NDD+ arm on day two caused by a total
AV-block and a collapse.

Figure 8: The number of events that took place on days post-TAVI. Three events took place in the first 72 hours after
the procedure. The days are counted as the days after the first 24 hours.

Primary Endpoints
Table 3 outlines the incidence of primary endpoints between the NDD+ and NDD- arms. In the
NDD+ arm, 2 patients had a composite endpoint, compared to 16 in the NDD- arm showing
a significant difference (3.6% vs 17.0%, p=0.018). Late complications arose 1 time in the NDD+
arm, and 9 times in the NDD- arm (1.8% vs 8.5%, p=0.15). The complication in the NDD+
arm was a pacemaker implantation. The complications in the NDD- arm consisted of four
pacemaker implantations, one non-ST-elevation myocardial infarction (NSTEMI), two major
bleedings, and one new-onset atrial fibrillation (AF). One rehospitalization was reported in the
NDD+ arm, while in the NDD- arm 6 rehospitalizations were reported (1.8% vs 6.4%, p=0.26).
The reported rehospitalization in the NDD+ arm was a patient admitted for observation in
the Emergency Cardiac Care, because of dizziness, headache, and seeing light flashes. The
rehospitalizations in the NDD- arm consisted of one for a pre-existent rhythm disorder, one
for positional dizziness, one for pericardial effusion combined with atrial fibrillation, one for
hypoglycemia after not being able to eat well after a peri-procedural stroke, one for cardiac
monitoring and one for a fever following TAVI. Two cases of mortality were reported in the
NDD- arm (0.0% vs 2.1 %, p=0.53). One was attributed to a neurological cause involving a
pre-existing subdural hematoma. The other was attributed to ventricular fibrillation due to a
bad LVEF. The only significant difference between the two arms was in the composite endpoint.
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Table 3: Comparison of Primary Endpoints between NDD+ and NDD- arms.

Endpoint NDD+ arm (N=56) NDD- arm (N=95) P-value
n (%) n (%)

Composite endpoint 2 (3.6%) 16 (17.0%) 0.018
Late complications 1 (1.8%) 8 (8.5%) 0.15
Stroke with residual symptoms 0 (0.0%) 0 (0.0%) 1.0

Permanent pacemaker implantation (PPI) 1 (1.8%) 4 (4.3%) 0.65

Vascular complications 0 (0.0%) 3 (3.2%) 0.29

Conduction/rhythm disorders 0 (0.0%) 1 (1.1%) 1.0

Rehospitalization 1 (1.8%) 6 (6.4%) 0.26
Mortality 0 (0.0%) 2 (2.1%) 0.53

Secondary Endpoints
Table 4 outlines the secondary endpoints. Both endpoints are not normally distributed. The
median change of NYHA class of NDD+ and NDD- arms are -1.0 with respectively the
interquartile range of -0.88 to -0.48 vs. -0.96 to -0.67. The median change in quality of life of
both NDD+ and NDD- arms was -1.0, with respectively the interquartile range of -1.09 to -0.64
and -0.87 to -0.45. Neither secondary endpoint showed statistically significant differences.

Table 4: Comparison of Secondary Endpoints >24 hours post-TAVI between NDD+ arm and NDD- arm

Endpoint NDD+ arm (N=56) NDD- arm (N=95) P-value
Median (IQR) Median (IQR)

Change in NYHA class -1.0 (-0.90 - -0.51) -1.0 (-0.95 - -0.68) 0.46
Change in quality of life -1.0 (-1.2 - -0.68) -1.0 (-0.87 - -0.47) 0.39

5.5 Discussion
This study aimed to evaluate the effects of the next-day discharge following TAVI compared
to extended hospital stay. The findings indicate a statistically significant difference in the
composite endpoint of the primary endpoints, and no statistical advantages to the 72-hour
protocol, suggesting that extended in-hospital monitoring may not be necessary. Similar
results have been reported in previous studies, where early discharge protocols did not lead
to increased complications or re-admissions [41][42]. Next-day discharge has been associated
with several benefits, including reduced hospital stays, increased capacity, cost savings, and
fewer hospital-acquired complications. Additionally, patients also have reported a positive
experience with faster return to their home environment. Nonetheless, the small sample sizes
in both patient groups necessitate a cautious interpretation of these results.

Only the composite endpoints show significant differences in favor of the NDD+ arm, the
other endpoints are not significant. Besides the significant difference in composite endpoints,
Figure 7 shows that the easing of criteria did not increase the number of events, indicating the
current criteria to be safe. Furthermore, only 3 of the 18 events (17%) occurred between 24- and
72 hours post-procedure. All these outcomes indicate that current next-day discharge criteria
can be considered safe.

The statistical difference in baseline demographic regarding the permanent pacemaker can be
explained by that patients who have a permanent pacemaker before the procedure, can be sent
with discharge safely after 4 hours. The significant difference in QoL can be explained by the
inherent bias in the NDD- arm, which will be further explained in the limitations. There was
a significant difference between the female gender of both arms, which could not be directly



5.6 Further research

explained. The reason the groups differed was that females had twice as many periprocedural
complications and four times as often a delay in PQ-time, as can be found in Figure 6.
According to C. Ziou et al., previous retrospective studies have shown that women experience
higher in-hospital mortality rates and a greater likelihood of perioperative complications than
men, although women tend to have better long-term survival rates [46].
According to J.M Ravoux et al. the female gender is associated with a 14.9% less chance on a
PPI after TAVI than males. The increase in PQ time is not directly related to PPI, however, an
increase in PQ time does indicate an AV conduction disorder. The reason why four times as
many females had an increase in PQ-time can not be explained by literature [47].

A critical limitation of this study is the current sample size, which is significantly small. With a
small sample size achieved, the statistical power to detect the meaningful differences between
the next-day discharge and 72-hour protocol is limited.
Efforts are underway to extend the data collection across multiple healthcare centers in
the Netherlands, including collaborations with ErasmusMC and St. Antonius Hospital
Nieuwegein. These collaborations will facilitate the rapid accumulation of patient data,
augmenting sample sizes, and improving the statistical power of our analysis. Additionally,
the inclusion of diverse patient populations from these centers will enhance the generalizability
of our findings.

Another limitation is the inherent bias in the NDD- arm, which consists of patients generally
in poorer health compared to those eligible for next-day discharge. This group includes
patients with prolonged PQ intervals or those who underwent more complicated procedures.
Although the bias was mitigated by considering only complications occurring after 24 hours,
this approach does not entirely eliminate the inherent bias.

Despite these limitations, preliminary trends suggest potential advantages associated with
next-day discharge following TAVI. Specifically, the next-day discharge arm exhibited a lower
incidence of complications, rehospitalization, and mortality compared to the NDD- arm.
Notably, two patients in the NDD- arm acquired pneumonia during their stay, highlighting the
increased risk of hospital-acquired complications with longer hospital stays. These observed
trends suggest that next-day discharge could be a safe and effective effective post-procedural
management strategy. This is also confirmed by studies performed in Vancouver and Tasmania
[41][42]. Both of the studies proved next-day discharge to be safe.

Patients have also reported a positive experience with faster return to their home environment
and recovery there. However, some patients expressed insecurity and desire for an additional
check-up one week after discharge to ensure everything progressed well. An ambulatory
monitoring device could be a potential solution to address this concern, as discussed in section
5.6.

5.6 Further research
As our study progresses, additional data collection and analysis will be essential to draw
definitive conclusions. A comprehensive analysis of patient outcomes, including one-year
follow-up data, will provide deeper insights into the comparative effectiveness of next-day
discharge versus traditional discharge protocols. Furthermore, subgroup analyses based on
patient characteristics such as age, comorbidities, and procedural complexities will help
identify individuals who may derive the greatest benefit from next-day discharge strategies.
Additionally, ongoing evaluation of healthcare resource utilization and cost-effectiveness will
inform healthcare decision-making and resource allocation in the context of TAVI procedures.

Implementing ambulatory monitoring techniques at AmsterdamUMC can enhance the safety
of patients in their home environment post-discharge. The successful integration of such
monitoring systems could pave the way for same-day discharge following TAVI procedures.
An overview of potential ambulatory monitoring systems suitable for implementation at
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AmsterdamUMC is provided in section 6.

5.7 Conclusion
In conclusion, this study suggests that next-day discharge following TAVI is a viable alternative
to the traditional 72-hour discharge protocol, with statistically significant composite endpoints
in favor of the NDD+ arm. The benefits of next-day discharge include reduced hospital
stays, increased hospital capacity, cost savings, and fewer hospital-acquired complications.
Patients have also reported a positive experience with earlier return to their home environment.
However, due to the small sample size, these findings should be interpreted with caution.
Further research with larger sample sizes and extended follow-up is necessary to confirm these
preliminary results and fully establish the safety and efficacy of next-day discharge protocols.



6 Ambulatory monitoring
6.1 Abstract
Introduction: The aim of this overview is to provide insights that aid in the selection of the most
suitable monitoring systems for TAVI patients in AmsterdamUMC, considering performance
metrics, compatibility with established criteria, and what the associated challenges are for the
implementation.
Methods and Results: PubMed and Google Scholar were utilized to include articles
for searches on ’Ambulatory Monitoring ECG’, ’Telemetry Cardiac Monitoring’, ’Home
Monitoring Devices cardiology’, ’Ambulatory Monitoring Overview’, ’Mobile Cardiac
Telemetry’, ’Handheld ECG’, ’Wearable ECG’, and ’Patch ECG’. Included articles were
classified on the type of monitoring or the number of ECG leads they provided, an ideal
scenario was outlined and the performance of the included devices was outlined. Based on the
combination of alignment with the ideal situation and the performance of the devices the best
devices appeared to be Senselink, Zenicor ECG, and Kardia Mobile- HartWacht. Conclusion:
Presently, no ambulatory monitoring system comprehensively meets the criteria developed by
M. Hermens et al. for an optimal home monitoring platform targeting the detection of CCDs,
particularly atrioventricular block [7]. Nonetheless, various potential scenarios have been
considered to enhance conformity with these standards. Of notable significance are Kardia
Mobile- HartWacht, Senselink, and Zenicor ECG, identified as the foremost contenders for
potential integration within AmsterdamUMC’s framework for post-transcatheter aortic valve
implantation (TAVI) surveillance

Keywords: Transcatheter aortic valve implantation, Ambulatory monitoring, Telemonitoring,
Devices, Kardia Mobile, Zenicor ECG, Senselink.
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6.2 Introduction
Transcatheter aortic valve implantation (TAVI) is a relatively new therapy for severe aortic
valve stenosis. The number of patients undergoing TAVI is rapidly increasing, indicating the
need for optimization of patient outcomes and the procedural trajectory [7].

As discussed in Chapter 5, continuous monitoring of patients is essential for identifying
conditions such as a total atrioventricular block (AV-block), which can lead to sudden collapse.
The occurrence of AV-block, and the requirement for permanent pacemaker implantation (PPI)
are significant concerns in the TAVI aftercare. Specifically for the SAPIEN valve, the incidences
of AV block range from 5.9% to 6.5%, and PPI is indicated in 8.3% of the patients over the last
5 years in the AmsterdamUMC [21] [48][19].

While next-day discharge offers numerous advantages, such as reduced hospital stay, cost,
hospital-acquired complications, and increased hospital capacity, some patients expressed
concern about safety in their home environment. Ambulatory monitoring presents a potential
solution by facilitating the detection of conduction disorders and enhancing patient safety,
allowing for recovery in their home environment [8].

The subsequent sections of this thesis provide a comparative analysis of clinically validated
ambulatory monitoring systems. This analysis aims to identify the most suitable monitoring
systems for TAVI patients at AmsterdamUMC, in alignment with the overarching goal of
improving patient outcomes and optimizing the TAVI procedure.

6.3 Methods
PubMed and Google Scholar were utilized to conduct searches on topics including
’Ambulatory Monitoring ECG’, ’Telemetry Cardiac Monitoring’, ’Home Monitoring Devices
cardiology’, ’Ambulatory Monitoring Overview’, ’Mobile Cardiac Telemetry’, ’Handheld
ECG’, ’Wearable ECG’, and ’Patch ECG’. Subsequently, devices identified through these initial
search terms underwent further investigation via searches for the specific device names and
’device name clinical validation’ to acquire additional information. Only devices with clinically
validated ECG measurements were included in the study. The classification of devices was
based on the type of monitoring or the number of ECG leads they provided. Devices were
excluded if they were not commercially available on the market, if they were solely clinically
validated for detecting QRS complex or RR interval without analysis of the ECG, or if they
could only be operated by a physician rather than the patient themselves.

Subsequently, to the selection of the ambulatory monitoring systems, the performance metrics
of each device is outlined. Furthermore, the devices are compared to align with the ideal
scenario of telemetry created by M. Hermens et al. [7].

M. Hermens et al. created a framework for postprocedural telemonitoring of patients who
underwent a TAVI procedure [7]. Figure 9 displays the pathway of the ideal ambulatory
monitoring scenario. Patients are equipped with a mobile sensor system that automatically
provides continuous registration of the ECG in any ambulant setting. The system should
also facilitate continuous registration and analysis of the respiratory rate and type or level
of activity. Incorporating a digital application with an interactive interface to allow symptom
registration by the patient would be beneficial. Ideally, possible events are categorized as
severe, moderate, and mild. The patient should get feedback if an event is happening and what
action should be undertaken [7].

Several criteria have been selected from the framework proposed by M. Hermens et al.
Additionally, two additional criteria, not included in the aforementioned framework, have
been incorporated. These criteria are that the system should be validated for atrioventricular
block (AV-block) and the system should be implementable in EPIC. The ambulatory monitoring
systems in this review are assessed based on these criteria [7].
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Figure 9: Overview of the ideal telemonitoring scenario based on the framework of M. Hermens et al [7].

1. Continuous monitoring of ECG

2. External specialists evaluate the ECG. Including an increase in PQ-time and width of
QRS-complex.

3. Validated for AV-block

4. Enter symptoms

5. Feedback to the patient of the ECG

6. When using an app, this app should be usable on all smartphones

7. User-friendly and comfortable

8. Privacy and security of patient data

9. Invisible under clothes

10. Insurance companies declare the system

11. Legal responsibilities lie with the company

12. Implementable in EPIC (the patient system of AmsterdamUMC)

Devices were categorized based on their performance or alignment. The cumulative scores
of performance and alignment were then aggregated to identify the top three devices. It is
notable that more than one device could occupy the same ranking position and that criteria
related to insurance coverage, compatibility with EPIC implantation, and legal responsibility
are not directly assessed in the evaluation table but are considered in the determination of the
best-performing systems. Subsequently, the devices occupying the top three positions were
evaluated for practical considerations such as legal responsibility, insurance declaration or
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cost, and compatibility with EPIC.

6.4 Results

Figure 10 shows that of the 11949 hits, 107 records were assessed for eligibility. Fifty of those
records were excluded, leaving 48 records included.

Figure 10: Overview flowchart of included records. Exclusion criteria were if a device was not commercially
available, if the device was solely clinically validated for detecting QRS complex or RR interval without analyzing
the ECG, or if the device could only be operated by a physician.

A total of sixteen distinct devices were identified from the 48 included records. Among these,
Kardia Mobile, Omron, Zenicor ECG, Kardio screen, Nabz Hooshmand-1, and ECG Check are
categorized as portable ECG devices featuring electrodes positioned on the fingers and/or
chest. Senselink, ZIO XT Patch, and Body Guardian Heart, on the other hand, represent
patch holter monitors, offering continuous cardiac electrical activity monitoring capabilities.
Withings scanwatch, Fitbit Charge 2, Polar OH, Apple Watch, Garmin, Samsung Gear 2, and
Everion are categorized as smartwatches. Details about the types of telemetry each device
is (Holter monitor, patch monitor, handheld ECG monitoring device, or smartwatch) are
described in Appendix 9.3.

6.4.1 Evaluation performance

Table 5 provides an overview of the performance metrics for each device included in the
study. The asterisk (*) denotes that the performance metrics represent a weighted average
based on data extracted from various sources. The two asterisks (**) denote different values for
firstly PR-interval and secondly QRS-duration. The ’Detection’ column is intended to indicate
whether a system has been validated for AF or AV-block detection. Among the evaluated
devices, Nabz Hoosmand-1 demonstrates the highest sensitivity for both PR-interval and QRS
duration, indicating its ability to accurately detect true positive cases. Conversely, Omron
exhibits the highest specificity, suggesting its proficiency in identifying true negative cases.
Notably, certain devices, predominantly wearable watches, were not assessed for sensitivity
and specificity. Instead, their performance was evaluated based on other metrics such as Mean
Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), and correlation with a
reference measurement method considered to be accurate, such as a 12-lead ECG. The Cohen’s
kappa and the diagnostic yield are displayed for ZIO XT Patch iRhythm.
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Table 5: Summary of device performance.

Device Name Detection Sensitivity
(%)

Specificity
(%)

MAD
(bpm)-
MAPE
(%)

Correlation
(r=)

Other

Kardia Mobile [49] AF 85.5* 95.5
Omron [49] AV 79 99
Zenicor ECG [49] AF 94.7* 92.7*
Withings Scanwatch [50] AF 79.7* 89.1*
Fitbit Charge 2 [51] AF 66 79 0.807
Polar OH1 [51] AF 0.957
Apple Watch [52] AF 85 75
Garmin [52] AF 2.0<x<5.1

3.1<x<5.4
Samsung Gear 2 [52] AF 85 75
Everion [53] AF 1.5 - 5.9 0.53
Senselink [54] AV 0.988
Kardio Screen [55] AV 92 93 0.76/0.82**
ZIO XT Patch iRhythm AV 0.99 κ=0.36,
[56] [57] [58] (AF) γ=63.2%
Nabz Hooshmand-1 [59] AV 100/98** 0.40/0.85**
ECG Check [60] AF 74 97
Body Guardian system [61] AF 96.3

* weighted number.
** respectively for PR-interval and QRS duration.

6.4.2 Evaluation alignment with criteria
The criteria for selecting the optimal device are detailed in Section ??.

The evaluated criteria, along with their corresponding numbers, are as follows:

1. Continuous monitoring of ECG

2. External specialists evaluate the ECG. Including increase in PQ-time and width of
QRS-complex.

3. Validated for AV-block

4. Enter symptoms

5. Feedback to the patient of the ECG

6. When using an app, this app should be usable on all smartphones

7. User friendly and comfortable

8. Privacy and security of patient data

9. Invisible under clothes

Each criterion is numerically labeled according to the specifications outlined in Table 6, where
device adherence is indicated by ’yes’ or ’no’ responses. Table 6 demonstrates that not all
devices offer continuous monitoring; however, those lacking this feature allow for 30-second
ECG recordings when symptoms occur. ECG evaluations are primarily algorithm-based, with
exceptions such as the Kardia Mobile, which involves evaluation by HartWacht specialists,
and Zenicor, which offers access to external specialists. Few devices are specifically validated
for AV-block detection, including Omron, Senselink, Kardio Screen, and Nabz Hooshmand-1.
Symptom input is supported by five devices: Omron, Kardia Mobile, Senselink, ZIO XT
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Patch, and ECG Check. Feedback to patients regarding ECG results is provided by Kardia
Mobile, Omron, Zenicor ECG, and ECG Check. Additionally, all smartphone applications are
user-friendly and compatible with smartphones, besides from Samsung Gear 2 and Apple
Watch. Devices ensure the privacy and security of patient data, and all are discreet when worn
under clothing or not directly attached to the body.

Table 6: Overview of devices and them meeting the requirements described in Methods.

Device name Requirements
1 2 3 4 5 6 7 8 9

Kardia Mobile [62] No Yes* No Yes Yes Yes Yes Yes Yes
Omron [63] No No Yes No Yes Yes Yes Yes Yes

Zenicor ECG [64] [65] No Yes* No Yes Yes Yes Yes Yes Yes
Withings Scanwatch [66] No No No No No Yes Yes Yes Yes

Fitbit Charge 2 [67] No No No No No Yes Yes Yes Yes
Polar OH1 [68] No No No No No Yes Yes Yes Yes

Apple Watch [69] No No No No No No Yes Yes Yes
Garmin [70] No No No No No Yes Yes Yes Yes

Samsung Gear 2 [71] No No No No No No Yes Yes Yes
Everion [53] No No No No No Yes Yes Yes Yes

Senselink [72] Yes Yes** Yes Yes No - Yes Yes Yes
Kardio Screen [73] Yes Yes** Yes No No Yes Yes Yes Yes

ZIO XT Patch iRhythm [74] Yes No No Yes No - Yes Yes Yes
Nabz Hooshmand-1 [75] No Yes** Yes No No Yes Yes Yes Yes

ECG Check [76] No No No Yes Yes Yes Yes Yes Yes
Body Guardian heart [77] Yes No No No No Yes Yes Yes Yes

* external specialists do review the ECG, but not specifically on conduction times.
** the ECG is reviewed by an algorithm specifically for conduction times.

6.4.3 Ranking of systems
Performance-Based Ranking of Systems
The performance-based ranking of the systems primarily considers if the system is validated
for AF or AV-block. Next it evaluates the sensitivity and specificity, supplemented by metrics
such as mean absolute difference (MAD), mean absolute percentage error (MAPE), correlation
coefficient, AUROC, Cohen’s kappa, and diagnostic yield. The ranking of the systems is as
follows:
1. Nabz Hooshmand-1, Kardio screen, Senselink, Zenicor ECG, Body Guardian heart
2. Kardia Mobile, Omron, Polar OH1
3. ECG Check, Apple Watch, Samsung gear 2, Withings Scanwatch
4. Everion, Garmin, VitalPatch, Fitbit Charge 2, Zio XT Patch

Alignment-Based Prioritization of Systems with Ideal Criteria
Devices are ranked based on their alignment with the specified criteria, with higher rankings
indicating better alignment.
1. Kardia Mobile, Zenicor ECG, Senselink, Kardio screen
2. ZIO XT Patch, Nabz Hooshmand-1, ECG check, Omron, VitalPatch, Body Guardian Heart
3. Withings Scanwatch, Fitbit Charge 2, Polar OH1, Garmin, Everion
4. Apple Watch, Samsung Gear 2

Final ranking of systems
The final ranking is based on adding the category numbers of performance and alignment with
criteria. The top 3 devices are Kardio Screen, Senselink, Zenicor ECG, Nabz Hooshmand-1,
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Body Guardian heart, Kardia Mobile, and Omron. The final ranking is as follows:
1. Kardio Screen, Senselink, Zenicor (score 2)
2. Nabz Hooshmand-1, Body Guardian heart, Kardia Mobile (score 3)
3. Omron (score 4)
4. Polar OH1, ECG check (score 5)
5. Withings Scanwatch, VitalPatch, Zio XT patch (score 6)
6. Apple watch, Samsung gear 2, Everion, Garmin, Fitbit Charge 2 (score 7)

6.5 Discussion
6.5.1 Clinical implementation and suitability
The top three devices were assessed for their clinical applicability and suitability, with
a primary focus on evaluating criteria that have not been previously considered: EPIC
implementation, legal responsibility allocated to the manufacturer, and declaration by
insurance providers.

Kardio Screen
Kardio Screen utilizes either 6-lead or 12-lead electrodes, requiring precise attachment to the
chest by a trained professional. Unlike patches, these electrodes are not designed for prolonged
skin adhesion, thus posing challenges in patient usability. The device does not offer continuous
ECG monitoring, necessitating cardiologist review and assuming final legal responsibility.
However, its algorithm provides real-time user feedback and has been validated for AV-block
detection, demonstrating category 1 performance. Insurance companies have yet to endorse
this system, and it remains unimplemented in Dutch patient systems.

Senselink
Senselink is a patch-based device offering continuous ECG monitoring interpreted by a
validated algorithm for AV-block detection, achieving category 1 performance. Users can mark
events via an event button. However, a cardiologist review is required for ECG analysis,
with legal responsibility falling on them. While operational in three Dutch medical facilities
utilizing the HiX patient system, its integration with EPIC remains unexplored, although the
HiX implementation hints at the feasibility. Insurance companies endorse this system.

Zenicor ECG
Zenicor ECG, a handheld device, exhibits category 1 performance and undergoes expert
review, with legal responsibility shouldered by the manufacturer. Validated for AV-block
detection, it lacks patient symptom reporting capabilities, however ensures events can be
indicated. Insurance companies have not endorsed this device, and it remains unimplemented
in Dutch patient systems.

Nabz Hoosmand-1
Nabz Hooshmand-1, another handheld device, demonstrates category 1 performance and
measures QRS length, PQ interval, and RR interval. Its AV-block detection efficacy has
been validated. However, symptoms and events can not be indicated by the patient. Details
regarding legal responsibilities are scarce, and insurance companies have not declared their
support. This device is not yet integrated into Dutch patient systems.

Body Guardian Heart
The Body Guardian Heart patch places the legal responsibility for ECG interpretation and
diagnosis with the physician but lacks validation for AV-block detection. Symptom logging
is available via the app, and the device exhibits category 1 performance. However, insurance
companies do not endorse this device, and it remains unimplemented in Dutch patient systems.

Kardia Mobile
Kardia Mobile, particularly the HartWacht variant, has been successfully integrated into
the EPIC system at AmsterdamUMC, with legal responsibility assumed by HartWacht and
corresponding insurance coverage. Symptoms can be logged via an application. However, the
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system lacks validation for AV-block detection and exhibits category 2 performance.

Omron
Omron’s device, which measures both ECG data and blood pressure concurrently, utilizes
sensors and algorithms from Kardia Mobile. Symptoms can be logged via an application.
However, Omron lacks validation for AV-block detection, and it demonstrates category 2
performance. Notably, expert ECG review is absent, legal responsibility rests with cardiologists,
and insurance companies do not endorse this device.

6.5.2 Comparative Analysis of Ambulatory Monitoring Systems
Kardia Mobile meets the most criteria for legal responsibility, insurance coverage, and
implementation in EPIC. Furthermore, experts review the ECGs, taking away workload
from the cardiologists, and giving feedback to the patient. Patients can furthermore send in
symptoms. Unfortunately, Kardia Mobile - HartWacht is not validated for AV-block and shows
category 2 performance.

Senselink meets the criteria of insurance coverage and implementation in a patient system in
the Netherlands, but not EPIC. Senselink is validated for AV, shows category 1 performance,
and measures continuous ECGs. Patients can not send in symptoms but can press the event
button. Unfortunately, cardiologists need to review the ECGs themselves and take legal
responsibility for this.

Zenicor ECG is reviewed by experts, who take legal responsibility for this. Subsequently, the
device is validated for AV-block and shows a category 1 performance. Patients can not send in
symptoms but can trigger an event button. However, this device is not covered by insurance
companies and is not implemented in EPIC or another patient system in the Netherlands.

While Kardia Mobile, Senselink, and Zenicor ECG present varying degrees of alignment with
the specified criteria, Kardio Screen, Nabz Hooshmand-1, Body Guardian Heart, and Omron
fall short of meeting any of the three criteria: legal responsibility, insurance declaration, or
EPIC implementation. As a result, these devices are excluded from consideration in future
scenarios.

6.5.3 Future scenarios
In conclusion, none of the presented devices align perfectly with the ideal scenario.
Nevertheless, Kardia Mobile, Senselink, and Zenicor ECG demonstrate considerable promise.
Three prospective scenarios are delineated for evaluation.

The first scenario entails the adoption of Senselink’s continuous measurement approach,
wherein patients transmit a new ECG every eight hours for specialist review. This
methodology offers several advantages, including pre-existing validation for AV-block and
other conduction disorders, direct assessment of ECGs by the Cardiologs algorithm, and
continuous ECG monitoring. However, its implementation within AmsterdamUMC and EPIC
is a time-intensive endeavor, with legal responsibility for timely ECG review and patient
feedback resting upon AmsterdamUMC. Additionally, individual setup for each patient within
the hospital necessitates the procurement of an adequate number of devices. The setup of each
patient and the evaluation of the ECGs by physicians increases the workload.

Alternatively, the integration of Zenicor ECG into EPIC and insurance can be negotiated.
However, it is not sure in what time frame this can be fixed.

The third and most promising scenario involves the validation of HartWacht for AV-block
detection. Despite the convenience of HartWacht’s existing integration into AmsterdamUMC
and the streamlined patient setup process, this approach requires the initiation of a validation
study, which may be resource-intensive and time-consuming. However, this may be worth the
investment, as the other advantages can outweigh this disadvantage. It saves time that experts
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review the ECGs, and it the patient gets direct feedback about their ECG. AmsterdamUMC
does not need to invest in multiple devices, as HartWacht rents out the devices for a certain
time period. The ECG is not monitored continuously, however, an AV-block does not disappear
in the time frame of an hour. Therefore, it is not necessary for continuous monitoring, if patients
send ECGs regularly.

6.6 Conclusion
Presently, no ambulatory monitoring system comprehensively meets all prescribed criteria
for an optimal home monitoring platform targeting the detection of CCDs, particularly
atrioventricular block. Nonetheless, various potential scenarios have been considered to
enhance conformity with these standards. Of notable significance are Kardia Mobile-
HartWacht, Senselink, and Zenicor ECG, identified as the foremost contenders for
potential integration within AmsterdamUMC’s framework for post-transcatheter aortic valve
implantation (TAVI) surveillance.

Senselink necessitates seamless integration into EPIC, engendering deliberations concerning
legal obligations and routine scrutiny of patient records by cardiologists. Conversely, although
HartWacht is presently integrated and facilitates external specialist evaluation of ECGs, it
lacks continuous monitoring capabilities and remains not validated for atrioventricular block
detection, despite the prospect of future validation studies. Conversely, Zenicor ECG boasts
validation for AV-block detection and undergoes assessment by external specialists, yet it
remains unincorporated within EPIC and lacks endorsement by insurance entities.

In light of the aforementioned considerations, this review recommends initiating dialogue with
Kardia Mobile- HartWacht to explore avenues for potential validation for AV-block. However,
given the divergent strengths and weaknesses exhibited by each device, AmsterdamUMC is
urged to engage in internal deliberations to assess the option that best aligns with their specific
requirements.



7 Risk prediction model
7.1 Abstract
Introduction: The development of prediction models can empower doctors to identify patients
at an elevated risk of experiencing adverse outcomes related to the procedure. Therefore, this
study seeks to identify if a machine-learning-based model can be developed to anticipate
30-day mortality, stroke, MI, and pacemaker implantation following TAVI, with an AUROC
comparable to or better than the existing ACC-TAVI model.
Methods and Results: The CENTER2 database is used comprising 24322 patients and 74
features that contained less than 50% missing data. Data was preprocessed by K-nearest
neighbors and IterativeImputer, after which feature selection was performed using LASSO
regression and Wrapper-backward elimination. Wrapper-backward elimination showed a
better performance, therefore those features were selected. Logistic regression, XGBoost, and
random forest were compared, for which logistic regression performed best with an AUROC
of 0.59 on the validation set.
Conclusion: The model demonstrated suboptimal performance across both training-test and
validation sets, with an AUROC of 0.59 for predicting 30-day mortality. The suboptimal
performance can be explained by the imbalanced dataset and limited predictive value of
demographic features of TAVI patients.

Keywords: Transcatheter aortic valve implantation, Risk score, prediction model.
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7.2 Introduction
The development of prediction models can empower doctors to identify patients at an elevated
risk of experiencing adverse outcomes related to the procedure. Ultimately, they aim to reduce
undesired subjectivity inherent in clinical decision-making and enhance personalized care [3].
At present, the risk assessment for Transcatheter Aortic Valve Implantation (TAVI) relies mostly
on the Society Thoracic Surgeons score (STS score) and EuroSCORE II. However, it’s important
to note that these risk assessment tools are not specifically intended nor verified for evaluating
mortality risk associated with TAVI procedures [78].

A thorough risk assessment is necessary for predicting the chances of post-operative major
adverse cardiac events (MACE) including mortality, the necessity for permanent pacemaker
implantation (PPI), major vascular bleeding (MVB), rehospitalization, and stroke within the
initial 30-day period [3]. Several risk scores have emerged for specifically the TAVI populations,
however, these are not used in practice because of the low area under the receiver operating
characteristic (AUROC) curve or because the scores are not externally validated. Ideally,
cardiologists would use risk scores for patients’ selection, risk stratification, and benchmarking
[4]. Therefore, this study seeks to create a machine-learning-based risk prediction model
for mortality, stroke, MI, and pacemaker implantation following TAVI, with an AUROC
comparable to or better than the existing models.

7.3 Methods
The methodology for developing and evaluating the risk prediction model is outlined in Figure
11.

Figure 11: Flowchart of the method used to create and evaluate the risk prediction model. Colors indicate different
steps distinguishing the research question, data collection, preprocessing, feature selection, model creation, and
statistical analysis.

The study population comprised patients enrolled in the CENTER2 database. The CENTER2
database is a pooled patient-level database from 10 clinical studies including patients who
underwent TAVI between 2007 and 2022, which includes data from 25.772 patients [79].
Participating cities/studies were: Amsterdam, Milan, Rabin, Verona, FRANCE2, BRAZIL,
Observant, Padova, BRAVO3, WINTAVI, SPANISH, and RadboudUMC between 2007 and
2022. Eligibility criteria for this study required patients to be over 18 years old and to have
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undergone a transfemoral TAVI procedure. Patients were selected for TAVI based on the
presence of severe, symptomatic aortic stenosis and the determination by a multidisciplinary
heart team that surgical intervention was either contraindicated or posed high risk.

The risk prediction model was developed using a case-control study design. This study
compared patients who had adverse outcomes within 30 days following -TAVI - such as
mortality, stroke, permanent pacemaker implantation, or myocardial infarction- with those
who did not experience these outcomes.

7.3.1 Preprocessing
The percentage of missing data for each feature was individually assessed. Features with more
than 50% missing data and patients that had missing feature data for more than 50% of the
features were excluded from further analysis. Prior to filling in missing data or resampling, the
dataset was partitioned into a training set and a validation set. The validation set is a dataset
consisting of 20% of the data. The validation set remained untouched, with no resampling
applied. The subsequent preprocessing procedures applied exclusively to the training set.

Missing data
For features with less than 50% missing data, imputation was performed using K-nearest
Neighbors (KNN) or Iterative Imputer. The KNN algorithm was employed to impute missing
values for both categorical and continuous features, leveraging information from other
features. Since KNN cannot handle binary features, the IterativeImputer was utilized for these
cases. IterativeImputer is a multivariate imputer that estimates missing values based on all
available data, incorporating information from other features. The R2 metric was used to
evaluate the predictive performance of the imputation. This was done by overlaying a mask of
missing values on known values and comparing the predicted values to the original values.
The imputation of the validation set was necessary for the evaluation of the logistic regression
model. The NaNs were imputed using SingleImputer because this method changes the dataset
the least.

Resampling
The CENTER2 dataset exhibits a class imbalance, with 85% of patients classified as alive
and 15% as deceased. Machine learning models typically assume a balanced dataset; hence,
resampling the training set is necessary to address this issue [80]. Moreover, evaluation metrics
such as the AUROC do not function optimally with imbalanced datasets [81].

The data is resampled using the RandomOverSampler (ROS) technique. This method
randomly duplicates instances of the minority class until their number equals that of
the majority class. ROS increases the likelihood of overfitting, therefore, cross-validation
techniques are employed, ensuring the model’s robustness and generalizability [82].

7.3.2 Feature selection
To construct an effective risk prediction model, a comprehensive analysis of methodologies
from existing models was conducted. This comparative assessment, in Appendix 9.4, included
reviewing various feature selection techniques employed in previous risk prediction models
and identifying additional methods from pertinent literature. Notably, features such as frailty
and echographic parameters were identified as promising based on their recurrent appearance
in literature.

Methods for Feature Selection
LASSO regression and the wrapper method-backward elimination were chosen for feature
selection. Both methods were implemented using K-fold cross-validation (K=10) and
evaluated using performance metrics such as AUROC, accuracy, precision, recall, and
F1-score. The feature selection method that demonstrated superior performance was adopted
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for subsequent model refinement.

LASSO regression
A K-fold cross-validation with 10 folds was employed. The dataset was then partitioned into
training and test sets based on the indices generated by the folds. The categorical features
were encoded using the Python Scikit package OneHotEncoder, and the continuous variables
were standardized using the Python Scikit package StandardScaler. The best-performing alpha
was selected by cross-validation of 5 folds, using the function LASSOCV, in which alphas
ranging from 10−4 to 104 were tested. The best alpha parameter was used for the LASSO
regression. The final LASSO regression was then fitted on training data using the best alpha
and used to predict outcomes on the test set. Predictions were binarized using a threshold of
0.5. The AUROC, accuracy, precision, recall, and F1-score were calculated for each fold and
features with non-zero coefficients were identified and saved in a data frame. The mean for all
performance metrics was computed across the 10 folds, and the frequency of selected features
across all folds was summarized.

Wrapper- backward elimination
In Figure 12, a visual representation of wrapper-backward elimination is presented. Every
feature combination was evaluated, and the best combination of features was selected.

Figure 12: Wrapper-backward elimination. Every combination of features is evaluated, and the best working
combination of features is selected. Figure based on [83].

To apply wrapper-based backward elimination effectively, three different models were tested
for the SequentialFeatureSelector (SFS). The SFS was employed for feature selection. To
determine which model should be used for SFS, the performances of three models were
compared. The models tested for SFS were K-nearest neighbors, Gradient Boosting, and
Decision Tree. Importantly, these models would not be used in the final prediction of the
outcomes to avoid overfitting. The optimized model model was then used for the feature
selection.

The selected model was further used to determine the optimal number of features. A K-fold
cross-validation with 10 folds was employed. For each number of features, ranging from 1 to
the maximum number available, subsets were selected. Cross-validation was performed on
each subset using the selected model. The model’s accuracy was recorded for each fold, and
the average accuracy was calculated for each number of features. The performance scores were
plotted against the number of features to visualize the relationship and the optimal number of
features was identified as the number with the highest average accuracy across folds.

The optimal number of features was subsequently used as input for the wrapper method. The
selected model was used in the wrapper-backward elimination in combination with a 10-fold
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cross-validation, where for each fold the dataset was split into training and testing sets. The
SFS settings included backward elimination, optimization for R2 score, and 5-fold internal
cross-validation. Features that were selected in more than 5 folds, with a maximum of the
optimal number of features were chosen for the final model.

Final feature selection
This structured approach to feature selection ensured that the risk prediction model
incorporated relevant features while mitigating the ’curse of dimensionality’ associated
with high-dimensional datasets [84]. By combining advanced statistical techniques with
clinical expertise, the model aimed to enhance predictive accuracy and clinical utility. Features
that were selected by 5 or more folds were included in the selection.

7.3.3 Risk prediction model
Following feature selection, the selected features were utilized for developing the risk
prediction model. A K-fold cross-validation approach with 10 folds was employed to both
train and evaluate the model. Each fold partitioned the dataset into distinct training and test
sets.
Initially, logistic regression served as the model for training and prediction. Performance
metrics were computed for each fold. Subsequently, based on the AUROC score on the
validation set, the model yielding the best performance was identified. Predictions on the
validation set were binarized, and additional performance metrics were calculated. Mean
values of these metrics across the 10 folds summarized the overall performance of the model
on both the training and validation datasets.
This process was repeated for XGBoost and random forest classifier models. Comparative
analysis of these three models facilitated the assessment of their respective performance.

7.3.4 Statistical analysis
The demographic features were analyzed and depicted for the dataset displaying the mean
and standard deviation of continuous variables, and the frequency for the categorical variables.
The LASSO regression and wrapper backward elimination were evaluated using the AUROC,
accuracy, precision, recall, and F1-score. Features were deemed statistically significant when
the feature was selected in ≥ 5 folds. The logistic regression, XGBoost, and random forest were
evaluated using the AUROC, accuracy, precision, recall, and F1-score.

7.3.5 Model implementation
The outcome probabilities derived from the best-performing risk prediction model were
integrated into an interactive dashboard using HTML. This dashboard enables users to input
various features such as the presence of permanent atrial fibrillation, NYHA class, and aortic
valve area. Upon selecting these features, the dashboard dynamically computes and displays
the corresponding predicted outcome probability.

7.4 Results
The outcomes of the risk prediction model for 30-day mortality are presented in this section.
Detailed findings regarding other adverse events such as stroke, permanent pacemaker
implantation, or myocardial infarction can be accessed in Appendix 9.5. The conclusive
performance metrics for these adverse outcomes derived from the top-performing model are
delineated in Tables 12 and 13.

7.4.1 Preprocessing
From an initial cohort comprising 25.772 patients, 1820 individuals were excluded due to
excessive missing data. Out of the initial 261 features, 187 were excluded either due to a high
proportion of missing values, because they were peri- or post-procedural features, or because
there were double features. The demographic features of the 24322 patients were that 13404
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(56%) were women, mean (std) age of 81.4(6.7) years. Other baseline characteristics of the
dataset are depicted in Table 7

Table 7: Demographic and clinical characteristics of the overall dataset

Variable Mean ± SD / n (%)

Age (yrs) 81.4 ± 6.7
Female gender 13404 (56.0%)

Length (cm) 160.6 ± 9.6
Weight (kg) 71.3 ± 14.2

BMI (kg/m2) 27.4 ± 4.9
NYHA 2.4 ± 0.9

DM 7804 (32.6%)
Creatine (µmol/L) 1.17 ± 0.68

eGFR (ml/min/1,73m2) 56.2 ± 25.4
History MI 2994 (12.51%)

History CABG 2062 (8.6%)
History PCI 4855 (20.28%)
History PVD 2853 (11.9%)
History CVA 2424 (10.12%)

Previous surgery 2241 (9.4%)
History Aortic valve intervention 597 (2.5%)

Valve-in-valve 593 (2.5%)
Significant CAD 8796 (36.7%)

Hypertension 19329 (80.7%)
LVEF 56.9 ± 13.1
LFLG 3920 (16.4%)

Baseline AF 6578 (27.47%)
Baseline pacemaker 1193 (5.0%)

Valve size (mm) 26.45 ± 2.7
AVA 0.67 ± 0.2

Mean gradient (mmHg) 49 ± 16.5
Peak gradient (mmHg) 77.8 ± 23.2

Balloon expandable valve 10267 (42.9%)
Patient and clinical characteristics for the dataset in mean ± SD or n (%).
BMI: Body Mass Index, NYHA: New York Heart Association, DM: Diabetes Mellitus, MI: Myocardial Infarction,
CABG: Coronary Artery Bypass Graft, PCI: Percutaneous Coronary Intervention, PVD: Peripheral Vascular Disease,
CVA:Cerebral Vascular Accident, CAD: Coronary Artery Disease, LVEF: Left Ventricular Ejection Fraction, LFLG:
Low Flow Low Gradient, AF: Atrial Fibrillation, AVA: Aortic Valve Area.

Missing data
The continuous and categorical missing data filled in by KNN showed an optimal result of 5
neighbors. The R2 & MSE were respectively 0.73 & 2391, giving a moderate to good fit between
the imputed and observed values.

The R2 & MSE of the IterativeImputer were respectively 0.65 & 0.05, suggesting a moderate
to good performance in capturing the variability of missing data.

7.4.2 Feature selection
LASSO regression
Features selected by LASSO regression consistently across all ten folds included age, length,
weight, eGFR, left ventricular ejection fraction (LVEF), aortic valve area (AVA), peak aortic
valve gradient (Pgrad), New York Heart Association (NYHA) class, valve size, history of aortic
valve intervention, CHADSVASC, early vs new generation valves, gender, diabetes mellitus
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(DM), history of myocardial infarction (MI), history of percutaneous coronary intervention
(PCI), history of peripheral vascular disease (PVD), history of cerebrovascular accident or
transient ischemic attack (CVA or TIA), hypertension, history of previous surgery, baseline
pacemaker, baseline atrial fibrillation, and balloon vs self-expandable valves. The feature aortic
valve-in-valve (viv) exhibited a non-zero LASSO coefficient in seven out of the ten folds. Since
all variables were selected in more than five folds, all features were retained for inclusion in the
subsequent analysis.

Wrapper- backward elimination
The performance of the K-nearest neighbors, gradient boosting, and decision tree are depicted
in Table 8.

Table 8: The performance metrics of the K-nearest neighbors, Gradient Boosting and Decision Tree.

Evaluation metric K-nearest neighbors Gradient Boosting Decision Tree

Accuracy 0.93 0.69 0.97
Precision 0.91 0.68 0.95
F1-score 0.94 0.69 0.98
Recall 0.97 0.70 1.0
AUROC 0.93 0.69 0.97

The best working model is the DecisionTreeClassifier. The curve for determining the optimal
number of features for the random forest is illustrated in Figure 13.

Figure 13: The accuracy of a decision trees wrapper for each number of features. The performance reaches a little
peak after including more than 4 features, fully stabilizing at 10 features.

Initially, the accuracy improved rapidly up to four features, after which it stabilized at a high
level. At 10 features the graph seemed to be fully stabilized. Therefore, 10 features are included
in the wrapper backward selection. Features wrapper selected in 5 or more folds included
history of aortic valve intervention, eGFR, age, length, AVA, weight, baseline AF, NYHA class,
and LVEF.

Comparison feature selection methods
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The results of the evaluation metrics for both LASSO regression and wrapper backward
elimination are presented in Table 9. The mean evaluation metrics across all 10 k-folds
were calculated, with the range of values across the folds indicated in square brackets. The
minimal range of these values suggested a low variability in the performance metrics across
the different folds, indicating a high degree of consistency and robustness in the model
performance. The wrapper method shows higher results in the evaluation metrics and was
therefore chosen as the feature selection method. The features that are selected are history
aortic valve intervention, eGFR, age, length, AVA, weight, baseline AF, NYHA class, and LVEF.

Table 9: The mean performance metrics of the 10 folds of LASSO regression and Wrapper backward elimination,
where the maximum and minimum values of the folds are represented in the square brackets.

Evaluation metric LASSO regression Wrapper backward elimination

Accuracy 0.618 [0.606-0.628] 0.974 [0.971-0.979]
Precision 0.624 [0.595-0.651] 0.950 [0.943-0.960]
F1-score 0.596 [0.593-0.627] 0.975 [0.971-0.976]
Recall 0.609 [0.585-0.612] 1.0 [1.0-1.0]
AUROC 0.618 [0.605-0.629] 0.974 [0.971-0.978]

7.4.3 Risk prediction model

Three risk prediction models - logistic regression, XGBoost, and random forest - were evaluated
and compared using input features selected through wrapper-based backward elimination. The
performance metrics for the training-test set are summarized in Table 10, where the random
forest model exhibits the highest performance, achieving an AUROC of 1.0.

The evaluation of these models on the validation dataset reveals notable differences in their
performance compared to the training set as shown in Table 11. The logistic regression
model demonstrated the lowest accuracy and precision, followed by XGBoost, with random
forest achieving the highest accuracy and precision. Despite RF’s superior precision and
accuracy, both LR and XGBoost yielded F1-scores approximately three times higher, and LR
outperformed both other models in the recall.

Given the importance of accurately identifying high-risk patients in clinical settings, the logistic
regression is considered the most effective, despite its tendency to produce false positives.
This trade-off is deemed acceptable due to the model’s superior recall, which is crucial for
the clinical application. Consequently, logistic regression was selected as the optimal model
for this task. The AUROCs for both training-testing and validation datasets are illustrated in
Figure 14b.

Table 10: Results of the three different risk prediction models on the training set with the input features of wrapper
backward elimination. The maximum and minimum values of the folds are represented in the square brackets.

Evaluation metric Logistic Regression XGBoost Random Forest

Accuracy 0.56 [0.556-0.575] 0.84 [0.833-0.853] 0.9997 [0.9992-1.0]
Precision 0.57 [0.548-0.589] 0.83 [0.813-0.846] 0.9994 [0.998-1.0]
F1-score 0.54 [0.528-0.555] 0.85 [0.837-0.856] 0.9997 [0.9992-1.0]
Recall 0.51 [0.485-0.542] 0.86 [0.844-0.873] 1.0 [1.0-1.0]
AUROC 0.59 [0.570-0.608] 0.92 [0.917-0.933] 1.0 [1.0- 1.0]
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Table 11: Results of the three different risk prediction models on the validation set with the input features of
wrapper backward elimination. The maximum and minimum values of the folds are represented in the square
brackets.

Evaluation metric Logistic Regression XGBoost Random Forest

Accuracy 0.56 [0.548-0.577] 0.79 [0.778-0.802] 0.96 [0.958-0.959]
Precision 0.053 [0.052-0.054] 0.057 [0.053-0.060] 0.52 [0.33-0.83]
F1-score 0.097 [0.095-0.099] 0.093 [0.087-0.010] 0.036 [0.029-0.049]
Recall 0.57 [0.54-0.59] 0.26 [0.25-0.29] 0.019 [0.015-0.025]
AUROC 0.59 [0.586-0.589] 0.55 [0.544-0.552] 0.59 [0.574-0.595]

(a) Training and test set showing an AUROC of 0.59 (b) Validation set showing an AUROC of 0.59

Figure 14: The area under the receiver operating curve of the training-test set and validation set.

The feature importance of the features in the logistic regression is depicted in Figure 15. Four
features contribute most to the outcome as the other features have marginal influence. The most
influential features are NYHA class, baseline AF, AVA, and history aortic valve intervention.

Figure 15: The mean feature importance of selected features in the best working logistic regression model.
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7.4.4 Performance metrics adverse events
The performance metrics of the prediction models targeting adverse events - mortality, stroke,
permanent pacemaker implantation, and myocardial infarction- for both the test data and
validation datasets are presented in Tables 12 and 13. Notably, for PPI prediction, the random
forest model demonstrated superior performance compared to LR and XGBoost and thus was
selected as the preferred model instead of logistic regression. For the other adverse outcomes,
the LR was selected as the prediction model.
The models predicting mortality, stroke, and MI exhibited similar performance levels on the
training-testing data. Among these, the model predicting MI emerged as the most effective,
achieving the highest metrics. The model’s performance in predicting PPI in the training set
was near-perfect.

The validation datasets showed consistent patterns with the training datasets for mortality,
stroke, and MI, except for deviations observed in precision and F1-score. However, the model’s
predictive capability for PPI in the validation set was significantly diminished compared to its
performance in the training set. For all four outcomes, the AUROCs of the validation datasets
ranged between 0.56 and 0.65, indicating performance levels consistent with those observed in
previous models.

Table 12: Performance of the random forest classifier on the training set, where input features were selected using
the wrapper. The maximum and minimum values of the folds are represented in the square brackets.

Evaluation metric Death Stroke MI PPI

Accuracy 0.56 0.57 0.60 0.98
Precision 0.57 0.58 0.60 0.96
F1-score 0.54 0.52 0.60 0.98
Recall 0.51 0.48 0.60 0.998
AUROC 0.59 0.59 0.63 0.998

Table 13: Performance of random forest classifier on the validation set, where input features were selected using
the wrapper. The maximum and minimum values of the folds are represented in the square brackets.

Evaluation metric Death Stroke MI PPI

Accuracy 0.56 0.66 0.64 0.84
Precision 0.053 0.032 0.025 0.43
F1-score 0.097 0.061 0.048 0.25
Recall 0.57 0.46 0.63 0.18
AUROC 0.59 0.56 0.65 0.62

7.5 Discussion
This study aimed to develop and evaluate a risk prediction model for anticipating adverse
patient outcomes following TAVI with a similar or better AUROC than ACC-TAVI. The model
demonstrated suboptimal performance across both training-test and validation sets, with
an AUROC of 0.59 for predicting 30-day mortality. The model’s performance in predicting
30-day myocardial infarction was marginally better, with an AUROC of 0.65 on the validation
set. However, given the suboptimal AUROCs, clinicians cannot reliably identify patients at
elevated risk of experiencing adverse outcomes, limiting the model’s clinical applicability for
risk assessment.

The model’s performance on the validation set revealed notably low precision and F1-scores
when using logistic regression and XGBoost, and a low F1-score and recall when employing
random forest. Given the objective of this prediction model - identifying patients at high risk
of adverse outcomes- accurately detecting true high-risk patients is most important, even if it
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means accepting a higher rate of false positives. The relatively higher recall of LR compared to
RF indicated that LR is more effective in correctly identifying true positives.

The observed decline in precision and F1-score may suggest overfitting within the model.
Although cross-validation was employed to mitigate overfitting, and different models were
used for feature selection and prediction, a more plausible explanation for the performance
drop could be the imbalanced dataset. Despite the large dataset size, the severe imbalance -
where 85% of patients survived, and 15% did not - posed significant challenges in training an
effective model.
Additionally, a considerable amount of missing data was present. While imputation was
performed considering relationships among the features, this process may have introduced
noise, potentially affecting the model’s performance.

TAVI mortality prediction models, including the newly developed model (AUMC), ACC-TAVI,
FRANCE-2, OBSERVANT, TAVI2-score, TVT-score, CoreValve, TARIS, PPO, and German-AV,
exhibit varying degrees of predictive accuracy as depicted in Table 14 [3][85]. The AUROC
of the newly developed model did not exceed those of the established models. Despite
using different datasets and exploring promising features, all these models - including
AUMC- struggled to achieve high performance, indicating that demographic features may
not be sufficiently predictive for the TAVI population. The homogeneity of TAVI patients,
characterized by high age and broad medical histories, may limit the effectiveness of
demographic features.

Table 14: Overview of performance for TAVI risk prediction models [86][87][88][15][78][85][89][90][91].

Study name AUROC
AUMC 1.0

(Validation: 0.66)
ACC-TAVI 0.66

(Validation: 0.64)
FRANCE-2 0.59

(Validation: 0.63)
OBSERVANT 0.71

(Validation: 0.58)
TAVI2-score 0.72
TVT-score 0.66
CoreValve 0.75
TARIS 0.71*
PPO 0.622
GERMAN-AV 0.81

(Validation: 0.60)

Literature suggests that incorporating features such as echographic parameters and frailty
could enhance model performance [85][87][89]. This study included echographic parameters
such as peak gradient and aortic valve area. However, only AVA was implemented in the
model. Frailty was temporarily added despite over 50% missing data, which ultimately led to
a decline in model performance, necessitating its removal. The results of the model with the
addition of frailty are described in Appendix 9.6. This frailty feature had 64% missing data
which was filled in with KNN. It could have influenced the performance of the prediction
model, however, it is more likely that it is not a promising feature as it does not only not
increase the performance, it declines it.

7.6 Future Studies
For future studies CT parameters could be added to the input features, giving information
about the calcium score and diameters of the arteria femoralis. Furthermore, a balanced dataset
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should be gathered to properly train the model.

7.7 Conclusion
In conclusion, this study highlights the challenges of developing a robust risk prediction
model for patient outcomes after TAVI. The model’s suboptimal performance on the validation
sets for all adverse outcomes was primarily attributable to imbalanced data and the limited
predictive value of demographic features. Comparison with established models such as
ACC-TAVI, OBSERVANT, and German-AV underscores the marginal improvements achieved,
emphasizing the need for more comprehensive feature sets. Although literature suggests that
incorporating echographic parameters and frailty could enhance model performance, our
findings indicate that these features did not significantly contribute, particularly when frailty
data were incomplete.
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The primary goal of this study was to improve the TAVI procedure by creating a more
streamlined pathway for post-procedural care and developing a risk prediction model to
predict adverse outcomes. This could have helped determine which patients would benefit
from TAVI, weighing the advantages against the risks. The three studies—Next-Day Discharge,
Ambulatory Monitoring, and Risk Prediction Model—each provided significant insights that
contribute to these objectives.

Next-Day discharge
The Next-Day Discharge study demonstrated that the current criteria used by AmsterdamUMC
create a safe environment for the next-day discharge of TAVI patients. The study showed no
statistically significant increase in complications, readmissions, or mortality compared to the
traditional discharge protocol. However, it showed a significant difference in the composite
endpoint. Despite the small dataset, the results are promising, indicating benefits such as
reduced hospital stays, increased hospital capacity, cost savings, and fewer hospital-acquired
complications. Additionally, patients reported positive experiences with earlier return to their
home environment. However, to enhance patient safety and comfort, especially for potential
same-day discharge, ambulatory monitoring systems were reviewed for their suitability.

Ambulatory monitoring
Presently, no ambulatory monitoring system fully meets the ideal criteria for an optimal
home monitoring platform targeting the detection of conduction disorders, particularly
atrioventricular block. Nevertheless, the Kardia Mobile-Hartwacht, Senselink, and Zenicor
ECG systems meet most requirements and are considered the foremost contenders for
integration within AmsterdamUMC’s framework created by M. Hermens [7], for post-TAVI
surveillance. HartWacht, in particular, appears to be the best fit if it is validated for AV-block.
These systems can help patients feel safer at home, potentially enabling same-day discharge.

Risk prediction model
The developed risk prediction model aimed to predict 30-day mortality, stroke, permanent
pacemaker implantation, and myocardial infarction. The model demonstrated a suboptimal
performance across both testing and validation sets, with an AUROC of 0.59. This indicates
that the model does not predict samples accurately, primarily due to imbalanced data and
possibly to the limited predictive value of demographic features. Literature suggests that
incorporating echographic features and frailty could enhance model performance; however,
this was not the case in this study.

General Findings
The three studies collectively enhance objective decision-making in selecting TAVI patients
and ensuring their safe discharge from the hospital. Accurate risk estimation is crucial for
informing patients and determining whether the benefits of the procedure outweigh the
risks. The risk prediction model does not work well enough for clinical implementation and
enhance objective decision making. The study of current next-day discharge criteria provide
valuable tools for caregivers, giving certain criteria that are proven to be safe. Ambulatory
monitoring complements the next-day discharge protocol, offering an additional layer of
safety for patients recovering at home.

The conclusions drawn from the next-day discharge study are also limited due to the small
sample size. Additionally, the usability and effectiveness of ambulatory monitoring systems
need to be validated in clinical settings, particularly for detecting first-degree AV-block.
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8.1 Clinical relevance and future directions
Despite the promising findings, the risk prediction model is not yet suitable for clinical practice,
as it only predicts correctly about 59% of the time. Other existing models also perform poorly,
suggesting that demographic features alone may not hold significant predictive value for
TAVI patients. The Next-day discharge and Ambulatory monitoring studies did however have
clinical relevance. These studies provide specific tools for healthcare professionals for next-day
discharge as well as for the implementation of ambulatory monitoring systems. Further studies
in implementing these devices and especially validating the Kardia Mobile- HartWacht for
AV-block can enhance post-procedural care. Furthermore, the implementation of Next-Day
discharge has already have impact on the hospital capacity, cost reduction, and reduction in
hospital-acquired complications.

For future studies more patients could be included for next-day discharge also from multiple
centers, to create a multicenter cohort, which gives more generalizable results. Moreover, the
PQ-time detection should be validated using Kardia Mobile- Hartwacht. Lastly, CT parameter
features could be included in the risk prediction model as well as gathering a more balanced
dataset, to try to train the model better.

8.2 Conclusion
The primary aim of this study was to enhance the TAVI procedure by developing a more
streamlined post-procedural care pathway and constructing a risk prediction model to predict
adverse outcomes. The risk prediction model, however, demonstrated limited clinical utility
with an AUROC of 0.59 for 30-day mortality. Nonetheless, significant progress has been made
in streamlining post-procedural care. The Next-Day discharge study successfully facilitated
the discharge of 50% of eligible patients within 24 hours, thereby improving patient comfort
by enabling recovery in a home environment. Additionally, various options for ambulatory
monitoring have been explored, with their implementation potentially allowing for same-day
discharge and enhancing patient safety.
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9 Appendices
9.1 Quality of Life Questionnaire : EQ-5D-Y
Mobility

1. I have no problems walking about

2. I have some problems walking about

3. I have a lot of problems walking about

Looking after myself

1. I have no problems washing or dressing myself

2. I have some problems washing or dressing myself

3. I have a lot of problems washing or dressing myself

Doing usual activities

1. I have no problems doing my usual activities

2. I have some problems doing my usual activities

3. I have a lot of problems doing my usual activities

Having pain or discomfort

1. I have no pain or discomfort

2. I have some pain or discomfort

3. I have a lot of pain or discomfort

Feeling worried, sad or unhappy

1. I am not worried, sad, unhappy

2. I am a bit worried, sad, unhappy

3. I am very worried, sad, unhappy

9.2 Abstract published in the Netherlands Heart Journal (NHJ) for the NVVC
conference

Advancing TAVI Outcomes: Assessing the Impact of Next-Day Discharge
L.A.N. Schepers (Universiteit Twente, Enschede); R. Delewi (Amsterdam UMC, Amsterdam); K.I.
Hemelrijk (Amsterdam UMC, Amsterdam); M.M. Vis (Amsterdam UMC, Amsterdam)

Purpose:
This study aims to assess the impact of next-day discharge (NDD) on patient outcomes,
including mortality, rehospitalization, and complications such as permanent pacemaker
implantations (PPIs), following transcatheter aortic valve implantation (TAVI).

Methods:
This prospective cohort study employs a two-arm design to investigate the impact of Next
Day Discharge (NDD) compared to a standard 72-hour in-hospital stay following transcatheter
aortic valve implantation (TAVI). Primary endpoints include the incidence of complications,
rehospitalization rates, and mortality 30 days post-TAVI. Secondary endpoints encompass
patient-reported experiences and a cost-effectiveness analysis.
Eligible participants meeting NDD-criteria are allocated to either the NDD-arm or
In-Hospitalarm. The NDD-criteria are the absence of pre-existing right bundle branch block
(RBBB), a PQtime increase of ≥ 20 ms compared to baseline electrocardiogram (ECG), the
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presence of an informal caregiver during the first night post-discharge, and the absence of
complications during the TAVI procedure. Patients in the NDD-arm are discharged 24 hours
post-TAVI upon meeting criteria. Follow-up assessments are conducted 30 days post-TAVI via
telephone interviews. The In-Hospital-arm comprises patients meeting NDD-criteria but with
a standard 72-hour in-hospital stay.

Results:
Since the start of the study, 57 patients are included. The NDD-arm consists of 23 patients
(40.3%). The In-Hospital-arm consists of 34 patients (59.6%). For this study, 74 patients
were excluded because they did not meet the NDD criteria, which is 56.5% of the patients
undergoing TAVI. The study is ongoing, with enrollment numbers subject to change. Not
all included patients can already be included in the analysis of the results. An example
of exclusion is that the TAVI procedure is performed within 30 days, or the patient is not
reachable. In the NDD-arm, 13 patients can be analyzed, while in the In-Hospital-Arm 16
patients can be analyzed. In the NDD-arm, 4 patients (30.7%) experienced complications
following TAVI, while in the In-Hospital arm, 9 patients (56.2%) experienced complications.
Complications included hypovolemia, dizziness symptoms, palpitations, stroke, ischemic
stroke, and urosepsis. In the NDD-arm 1 patient (7.6%) was rehospitalized, whereas 2 patients
(12.5%) in the InHospital-arm were rehospitalized. The reasons were urosepsis and stroke. One
patient from the In-Hospital-arm died within 6 months after TAVI due to complications arising
from urosepsis.

Conclusion:
The interim findings of this ongoing study suggest a potential advantage in favor of
the Next Day Discharge (NDD) arm, characterized by lower incidences of complications,
rehospitalization, and mortality post-transcatheter aortic valve implantation (TAVI). However,
it is essential to note that the current sample size may limit the robustness of these observations.

Keywords:
Trancatheter aortic valve implantation (TAVI), next-day discharge

9.3 Types of telemetry
Holter monitors
Holter monitors, a prevalent form of telemetry, enable the continuous recording of cardiac
electrical activity through electrocardiography (ECG) over a duration typically extending up to
48 hours. Configured in 2-, 3-, or 12-channel formats, these monitors rely on electrodes affixed
to the patient’s chest, transmitting data to a compact recording device. However, the discomfort
caused by the electrodes renders them unsuitable for prolonged wear exceeding 48 hours.
While effective in capturing intermittently present arrhythmias, the reliance on patient input
for symptom documentation and the absence of real-time data analysis are notable limitations.
Additionally, traditional Holter monitors necessitate specialized expertise by a physician for
comprehensive data interpretation and analysis [92].

Patch Monitors
In contrast, patch monitors merge Holter monitor characteristics with enhanced patient
comfort. Adhering securely to the skin with an adhesive backing, these monitors eliminate
cumbersome wires and electrodes. Patients can effortlessly annotate symptoms using a button
on the device, improving the correlation between symptoms and recorded events. Notably,
patch monitors boast extended monitoring durations, often worn for up to 14 days compared
to conventional 48-hour monitors [93].

For instance, the Senselink device, when paired with Cardiologs, operates as a full-disclosure
Holter device capable of recording 3-, 5-, or 12-lead ECG data. The recorded data is
promptly analyzed by the Cardiologs algorithm and transmitted to a system for direct review,
distinguishing it from traditional Holter devices. Patients can trigger an event button sending
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an ECG in real-time to a cardiologist. However, contrary to an event recorder, Senselink
measures an ECG continuously [72].

The ZIO XT Patch monitor continuously measures a single-lead ECG, automatically analyzing
the recorded data using a deep learning algorithm, with the report made available
post-recording [74].

Body Guardian heart is a patch monitor continuously measuring a single lead ECG. Events can
be separately recorded when feeling symptoms. More leads ECG can be requested. ECGs are
not reviewed by an algorithm or expert [77].

Handheld ECG monitoring devices
Handheld electrocardiogram (ECG) devices represent portable instruments that afford patients
the capability to record their cardiac activity using their fingers, legs, and/or chest. An
illustrative example of such a handheld monitoring device is depicted in Figure 16, featuring
the AliveCor Kardia Mobile.

The AliveCor Kardia Mobile serves as a compact, handheld device facilitating the capture of
either single-lead or 6-lead ECGs. Operationally, users place one finger from each hand on
the device’s electrode, as demonstrated in figure 16. For acquiring a 6-lead ECG, the device
is positioned on the knee instead of a stable surface. The recorded ECG data is subsequently
transmitted to a paired smartphone via a wireless communication protocol utilizing ultrasonic
audio. Additional contextual information such as symptoms, activities, or dietary details can
be appended to the Notes section for a specific ECG recording. The accompanying smartphone
application integrates an algorithm developed by HartWacht, which analyzes the captured
ECG data and provides feedback to the patient [62].

Figure 16: Measurement of ECG by laying two fingers for 30 seconds on the electrodes of the KM [94].

Omron offers another handheld device capable of recording ECGs concurrently with regular
blood pressure measurements. This device captures a single-lead ECG, with an embedded
detection algorithm identifying atrial fibrillation and presenting results on the device’s screen
and through a corresponding smartphone application. Blood pressure readings are displayed
directly on the device. Omron captures the ECG by placing two fingers on the sensors [63].

The Zenicor ECG device, also handheld, features finger sensors for recording a single-lead
ECG. Notably, it includes an onboard display, obviating the need for a smartphone application.
Although it does not provide real-time ECG tracing on the device itself, recorded ECG data
can be transferred from the device to a centralized database for subsequent review. It boasts a
capacity for storing a considerable number of ECG recordings [64][65].

Kardio screen facilitates the recording of 6- and 12-lead ECGs. While the device primarily
measures signals from the fingers, limb patches can be affixed to generate 6- and 12-lead
recordings. Supporting a broad ECG bandwidth ranging from 0.05 to 75 Hz, this device is
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accompanied by a compatible application for measurement assistance. The sensors need to be
applied correctly and are not made for long-term attachment. Therefore, it is possible that a
caregiver needs to apply the electrodes [73].

The Nabz Hooshmand-1 incorporates electrode leads on both its front and back surfaces,
featuring two electrodes for the hand fingers and one electrode for the left leg. This
configuration enables the measurement of both 1-lead and 6-lead ECGs [75].

ECG Check operates by positioning two fingers on its surface, registering a 30-second, one-lead
ECG, and storing it on the device via Bluetooth. Subsequently, the device’s application employs
an algorithm to classify the ECG data [76].

SmartWatches
Smartwatch-based electrocardiogram monitoring devices employ integrated sensors and
algorithms to capture and analyze the user’s ECG signals directly from their wrist.
These devices are typically equipped with electrodes within the watch casing or utilize
photoplethysmography (PPG) sensors to detect subtle variations in blood volume, which
indirectly reflect the heart’s electrical activity. Users can initiate ECG recordings through
specialized applications or by activating dedicated ECG monitoring functions on their
smartwatches. The captured ECG data is subsequently processed either on the device itself or
transmitted to a paired smartphone for further interpretation and analysis. This technology
offers users the convenience of continuous monitoring of heart rhythm and the detection
of irregularities, facilitating real-time cardiovascular health assessment while on the move.
Prominent examples of such devices include the Withings Scanwatch, Fitbit Charge 2, Polar
OH, Apple Watch, Garmin, Samsung Gear 2, and Everion. Variations in performance among
these devices primarily stem from differences in the employed detection algorithms.

For instance, the Withings Scanwatch employs three dry electrodes to record a 30-second
single-lead ECG resembling lead I of a traditional 12-lead ECG. The real-time signal captured
by the watch is streamed to a smartphone application, where it is stored, exported, and
analyzed using a proprietary algorithm [66]. The Fitbit Charge 2 utilizes PurePulse wrist heart
rate (HR) technology for HR measurement [67]. The Polar OH1 utilizes six light-emitting
diode sensors to record data at one-second intervals, with live transmission via Bluetooth
to a smartphone equipped with the Polar Beat application [68]. Similarly, the Apple Watch,
Garmin, and Samsung Gear 2 employ a comparable operational framework, albeit with
differing classification algorithms. These watches record single-lead ECG data, which can be
stored and printed for further examination [69][70][71] . The Everion, a Conformité Européene
class IIa-certified wearable sensor worn on the upper arm, measures vital signs—including HR,
RR, and SpO2—via PPG and temperature using a negative temperature coefficient thermistor,
with data transmitted via Bluetooth to the HealthyChronos application on a bedside tablet [53].

9.4 Input features risk prediction models

Table 15 depicts the number of included patients, the AUROC of the model, the number of
input features, and which model it uses for the prediction. All models are used for predicting
the 30-day mortality, except for TARIS, this model predicts 1-year mortality. Feature analysis
was performed by univariate logistic regression, Fisher’s exact test, t-test, and chi2-test.
Suggestions for future studies were to add frailty. TAVI2-score, TVT-score, CoreValve, and
TARIS are not externally validated.

Table 16 gives an overview of which input features are included in which risk prediction model.
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Table 15: Overview of study details for TAVI risk prediction models[86][87][88][15][78][85][89][90][91].

Study name Number of Patients AUROC Input Features Risk prediction model
EUROSCORE II 14.799 0.66 18 Logistic regression

(Validation: 0.61)
FRANCE-2 3833 0.59 9 Logistic regression

(Validation: 0.63)
ACC-TAVI 13718 0.66 9 Logistic regression

(Validation: 0.64)
OBSERVANT 1878 0.71 7 Logistic regression

(Validation: 0.58)
GERMAN-AV 11147 0.81 15 Logistic regression

(Validation: 0.60)
TAVI2-score 511 0.72 10 Point system
TVT-score 3491 0.66 7 Logistic regression
CoreValve 3687 0.75 10 Cox regression
TARIS 845 0.71* 8 Cox regression
PPO 2137 0.622 21 Logistic regression

* AUROC of 1-year mortality instead of 30-day mortality

Table 16: Overview of input features for TAVI risk prediction models [86][87][88][15][78][85][89][90][91].

Study name Input features
EUROSCORE II Age, gender, chronic lung disease, extracardiac arteriopathy, poor mobility,

previous cardiac surgery, active endocarditis, critical preoperative state, renal impairment,
diabetes on insulin, CCS angina class 4, LV function, recent MI, pulmonary hypertension,
NYHA class, surgery on thoracic aorta, urgency of operation, weight of operation

FRANCE-2 Age, BMI, dialysis, pulmonary oedema, pulmonary hypertension, respiratory insufficiency,
critical state, NYHA class, and access site.

ACC-TAVI Age, chronic lung conditions, dialysis, NYHA class, cardiogenic shock, resuscitation < 1 h,
eGFR, urgency, and access site.

OBSERVANT Diabetes, pulmonary hypertension, critical state, LVEF, NYHA class,
previous balloon aortic valvuloplasty, and eGFR

GERMAN-AV Age, BMI, gender, COPD, dialysis, pulmonary hypertension, critical state,
impaired renal function, active endocarditis, LVEF, recent myocardial infarction, NYHA class,
no. diseased arterial vessels, no sinus rhythm, previous cardiac surgery, and urgency

TAVI2-score Age, gender, obstructive long conditions, LVEF, recent myocardial infarction, NYHA class,
hypertension, porcelain aorta, aortic valve mean gradient, hemoglobin, hematocrit,
and urgency

TVT-score Age, gender, COPD, dialysis, NYHA class, eGFR, urgency, and access site
CoreValve Age, home oxygen, preop. mechanic circulation support, and albumin
TARIS Age, BMI, gender, pulmonary hypertension, active endocarditis, hypertension, eGFR,

and hemoglobin
PPO Age, BMI, gender, chronic lung disease, diabetes, prior peripheral artery disease

pulmonary hypertension, hypertension, coronary artery disease, carotid disease,
cerebrovascular disease, aortic regurgitation, mitral regurgitation, atrial fibrillation,
atrial flutter, ventricular tachycardia/fibrillation, sick sinus syndrome, 2nd degree AV-block,
3rd degree AV-block, hemoglobin, and creatinine
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9.5 Results of risk prediction model predicting adverse outcomes
Stroke

Table 17: The mean performance metrics of the 10 folds of Wrapper backward elimination with the range of values
across the folds in the square brackets.

Evaluation metric Wrapper backward elimination

Accuracy 0.98 [0.98-0.99]
Precision 0.98 [0.97-0.98]
F1-score 0.99 [0.98-0.99]]
Recall 1.0 [1.0-1.0]
AUROC 0.99 [0.98-0.99]

Selected features
The selected features used as input for the risk prediction model were: Pgrad, history CVA,
LVEF, length, age, eGFR, NYHA, DM, and valve size.

Table 18: Results of risk prediction model for stroke with the input features of Wrapper backward elimination.

Evaluation metric Logistic Regression XGBoost Random Forest

Accuracy 0.57 [0.55-0.58] 0.88 [0.86-0.89] 0.9997 [0.999-1.0]
Precision 0.58 [0.56-0.61] 0.86 [0.85-0.88] 0.999 [0.998-1.0]
F1-score 0.52 [0.51-0.54] 0.88 [0.87-0.90] 0.9997 [0.999-1.0]
Recall 0.48 [0.46-0.50] 0.91 [0.88-0.93] 1.0 [1.0-1.0]
AUROC 0.59 [0.98-0.99] 0.95 [0.94-0.96] 1.0 [1.0-1.0]

Table 19: Results of validating risk prediction model for stroke with the input features of Wrapper backward
elimination.

Evaluation metric Logistic Regression XGBoost Random Forest

Accuracy 0.66 [0.65-0.67] 0.88 [0.87-0.89] 0.98 [0.86-0.89]
Precision 0.032 [0.031-0.034] 0.045 [0.033-0.053] 0.0 [0.0-0.0]
F1-score 0.061 [0.057-0.063] 0.073 [0.054-0.086] 0.0 [0.0-0.0]
Recall 0.46 [0.45-0.47] 0.20 [0.14-0.24] 0.0 [0.0-0.0]
AUROC 0.56 [0.56-0.56] 0.57 [0.55-0.59] 0.56 [0.55-0.59]

The logistic regression model showed the best performance on the validation set and is
therefore picked as the final prediction model.

Myocardial infarction

Table 20: The mean performance metrics of the 10 folds of Wrapper backward elimination with the range of values
across the folds in the square brackets.

Evaluation metric Wrapper backward elimination

Accuracy 0.99 [0.99-0.99]
Precision 0.99 [0.98-0.99]
F1-score 0.99 [0.99-0.99]
Recall 1.0 [1.0-1.0]
AUROC 0.99 [0.99-0.99]
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Selected features
The selected features used as input for the risk prediction model were: NYHA, length, eGFR,
history PCI, self-expandable vs balloon expandable valve, Pgrad, weight, CHADSVASC, and
LVEF.

Table 21: Results of the risk prediction model for MI with the input features of Wrapper backward elimination.

Evaluation metric Logistic Regression XGBoost Random Forest

Accuracy 0.60 [0.58-61] 0.97 [0.96-0.97] 0.9998 [0.999-1.0]
Precision 0.60 [0.58-0.61] 0.95 [0.95-0.96] 0.9996 [0.999-1.0]
F1-score 0.60 [0.57-0.61] 0.97 [0.96-0.98] 0.9998 [0.999-1.0]
Recall 0.60 [0.56-0.62] 0.99 [0.97-0.99] 1.0 [1.0-1.0]
AUROC 0.63 [0.62-0.64] 0.99 [0.99-0.997] 1.0 [1.0-1.0]

Table 22: Results of validating the risk prediction model for MI with the input features of Wrapper backward
elimination.

Evaluation metric Logistic Regression XGBoost Random Forest

Accuracy 0.64 [0.63-0.64] 0.94 [0.93-0.95] 0.98 [98]
Precision 0.025 [0.024-0.026] 0.051 [0.043-0.064] 0.0 [0.0-0.0]
F1-score 0.048 [0.047-0.050] 0.079 [0.069-0.098] 0.0 [0.0-0.0]
Recall 0.63 [0.61-0.66] 0.18 [0.16-0.21] 0.0 [0.0-0.0]
AUROC 0.65 [0.65-0.65] 0.56 [0.54-0.58] 0.59 [0.56-0.63]

The logistic regression model showed the best performance on the validation set and is
therefore picked as the final prediction model.

Permanent Pacemaker implantation

Table 23: The mean performance metrics of the 10 folds of Lasso regression and Wrapper backward elimination
with the range of values across the folds in the square brackets.

Evaluation metric Wrapper backward elimination

Accuracy 0.92 [0.92-0.93]
Precision 0.87 [0.86-0.88]
F1-score 0.93 [0.92-0.94]
Recall 0.997 [0.99-0.999]
AUROC 0.92 [0.92-0.93]

Selected features
The selected features used as input for the risk prediction model were: The selected features
used as input for the risk prediction model were: weight, balloon vs self-expandable valve,
age, Pgrad, baseline pacemaker, eGFR, gender, baseline AF.
(nyha)
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Table 24: Results of the risk prediction model for permanent pacemaker implantation with the input features of
Wrapper backward elimination.

Evaluation metric Logistic Regression XGBoost Random Forest

Accuracy 0.59 [0.57-0.61] 0.69 [0.67-0.70] 0.98 [0.98-0.98]
Precision 0.58 [0.55-0.60] 0.66 [0.64-0.68] 0.96 [0.96-0.97]
F1-score 0.62 [0.60- 0.64)] 0.71 [0.70-0.72] 0.98 [0.98-0.98]
Recall 0.67 [0.64-0.69] 0.78 [0.76-0.79] 0.998 [0.99-1.0]
AUROC 0.62 [0.60-0.64] 0.77 [0.75-0.78] 0.998 [0.996-0.9996]

Table 25: Results of validating the risk prediction model for permanent pacemaker implantation with the input
features of Wrapper backward elimination.

Evaluation metric Logistic Regression XGBoost Random Forest

Accuracy 0.51 [0.51-0.52] 0.58 [0.57-0.59] 0.84 [0.83-0.84]
Precision 0.19 [0.19-0.19] 0.20 [0.20-0.21] 0.43 [0.41-0.45]
F1-score 0.29 [0.29-0.29] 0.30 [0.29-0.31] 0.25 [0.24-0.26]
Recall 0.65 [0.65-0.66] 0.58 [0.56-0.58] 0.18 [0.17-0.18]
AUROC 0.60 [0.60-0.60] 0.61 [0.61-0.62] 0.62 [0.62-0.63]

The random forest model showed the best performance on the validation set and is therefore
picked as the final prediction model.

9.6 Results of risk prediction model adding frailty
To effectively compare the difference between frailty and no-frailty in the model, only the
variable frailty is added to the model, the other features are the same as the original risk
prediction model for 30-day mortality. The missing data is 64% for frailty, this data is filled
in using Iterative Imputer

The results of the Random Forest with the input features of the wrapper method including
frailty are depicted in Tables 26 and 27.

Table 26: Results of the risk prediction model for 30-day mortality with the input features of Wrapper backward
elimination including frailty.

Evaluation metric Logistic Regression XGBoost Random Forest

Accuracy 0.59 [0.58-0.61] 0.86 [0.85-0.87] 0.9998 [0.999-1.0]
Precision 0.59 [0.57-0.62] 0.83 [0.82-0.84] 0.9996 [0.9994-1.0]
F1-score 0.61 [0.59-0.63] 0.86 [0.85-0.88] 0.9998 [0.9994-1.0]
Recall 0.62 [0.61-0.64] 0.90 [0.89-0.92] 1.0[1.0-1.0]
AUROC 0.62 [0.61-0.64] 0.94 [0.93-0.95] 1.0 [1.0-1.0]

Table 27: Results of validating the risk prediction model for 30-day mortality with the input features of Wrapper
backward elimination including frailty.

Evaluation metric Logistic Regression XGBoost Random Forest

Accuracy 0.80 [0.80-0.80] 0.93 [0.93-0.93] 0.95 [0.95-0.95]
Precision 0.050 [0.050-0.050] 0.081 [0.063-0.094] 0.97 [0.67-1.0]
F1-score 0.078 [0.078-0.078] 0.059 [0.049-0.071] 0.018 [0.017-0.026]
Recall 0.17 [0.17-0.17] 0.046 [0.039-0.057] 0.0.0092 [0.0.0087-0.013]
AUROC 0.55 [0.55-0.56] 0.48 [0.46-0.50] 0.56 [0.54-0.58]


