
DIY Adaptive Gaming

Game Control for People with Upper Limb
Disabilities

Dominic Matthews

A thesis presented for the degree of
Bachelor of Creative Technology

Supervisor: Edwin Dertien
Critical Observer: Pep Canyelles Pèricas

University of Twente
Netherlands
10/02/2024

Abstract

People with upper-limb disabilities have limited access to gaming as a hobby, as they are
unable to make use of conventional game controllers. While there are existing solutions,
they have do not make use of a “menu switching” system and as such, still require a user
to actuate all the inputs of a conventional controller. This is often not possible for users
suffering from the aforementioned upper-limb disabilities. Additionally, these solutions
often do not allow users to easily customise the inputs used, so that they can adapt them
for different games.
This project is a continuation of the work of C. Omtzigt and E. Dertien, and focuses
on the creation of a “menu switching” system that allows users to bind all the standard
inputs of a conventional controller to two buttons and a joystick. Additionally, this in-
cludes the creation of tooling to allow users to quickly and easily rebind inputs, in order
to allow them to play different games, or adapt play styles.
Based on the research, the use of an Arduino Leonardo in combination with the XInput
library allows the simple creation of a spoofed, HID-compliant Xbox controller. Further-
more, it can be concluded that the use of .csv file to contain the settings for each layer
of the menu systems effectively allows user to adapt the inputs as needed.

1

Acknowledgements

I would like to thank both Edwin Dertien and the larger Ability Tech team of the Uni-
versity of Twente for their support and feedback throughout the thesis.

2

Contents

Abstract 1

Acknowledgments 2

List of Acronyms 5

1 Introduction 6
1.1 Context and Relevance . 6
1.2 Research Questions . 7
1.3 Outline . 7

2 Background Research 8
2.1 Methodology . 8
2.2 Relevance of this review . 8
2.3 Modification of Existing Hardware . 8
2.4 Proprietary Solutions . 9
2.5 Conclusion . 10

3 Design & Implementation 12
3.1 Design Concept . 12
3.2 Menu Layer Switching . 12
3.3 Button Remapping Tooling . 14

3.3.1 Iteration 1 . 14
3.3.2 Iteration 2 . 14
3.3.3 Iteration 3 . 15
3.3.4 Approach . 16
3.3.5 Microcontroller . 16
3.3.6 SD Card Reader . 16

3.4 Requirements . 16
3.4.1 System Pipeline . 16
3.4.2 Functional Requirements . 16

3.5 Hardware . 17
3.5.1 Microcontroller . 17
3.5.2 Other Electrical Components . 17

3.6 Software . 18
3.6.1 Arduino IDE . 18

3.7 Libraries . 18

3

3.8 Design Process . 18
3.8.1 XInput . 19
3.8.2 HID Library . 19
3.8.3 Adafruit NeoPixel . 20
3.8.4 SD Library . 20
3.8.5 CSV Parser . 20

3.9 Prototype Setup . 20

4 Evaluation Method & Results 23
4.1 Methodology . 23
4.2 Validation Interview . 24
4.3 Results . 25

5 Discussion 28
5.1 Limitations . 29

6 Conclusion 30
6.0.1 Future Research . 31

APPENDIX A - Prototype Code 32

APPENDIX B - CSV Editing Instructions 39

APPENDIX C - Information Letter 40

APPENDIX D - User Instructions 41

APPENDIX E - User Test Interviews 42
6.1 User 1 . 42

6.1.1 Pre-Test Interview . 42
6.1.2 Post-Test Interview . 42

6.2 User 2 . 43
6.2.1 Pre-Test Interview . 43
6.2.2 Post-Test Interview . 44

6.3 User 3 . 45
6.3.1 Pre-Test Interview . 45
6.3.2 Post-Test Interview . 45

APPENDIX F - User Test Interviews 47

APPENDIX G - Arduino Leonardo Pinout 48

Bibliography 50

4

List of Acronyms

DMD Duchenne Muscular Dystrophy

GP Graduation Project

LED Light Emitting Diode

USB Universal Serial Bus

D-Pad Directional Pad

IDE Integrated Development Environment

HID Human Interface Device

IMU Inertial Measurement Unit

sEMG Surface Electromyography

GADF Game Accessability Development Framework

MLS Menu Layer Switching

BRT Button Remapping Tooling

CSV Comma Separated Values

CAD Computer Assisted Design

GUI Graphical User Interface

PCB Printed Circuit Board

5

Chapter 1

Introduction

People suffering from upper limb disabilities such as Duchenne Muscular Dystrophy
(DMD)[1][2] are unable to participate in the hobby of gaming. They are unable to
use conventional controllers for a variety of reasons, which effectively excludes them from
participating in a widespread hobby. In order to enable them, as well as people in a
similar situation, to pursue the hobby of gaming an adaptive controller system is needed.
Once this system is fully realised, both the hardware and software components will be
made available on an open-source platform.
Due to the end goal of the project, the button-mapping layout of the controller system
needs to be flexible. To this end, a “menu switching” software system is required, as well
as the creation of an HID compliant controller utilising an Arduino Leonardo in addition
to joysticks and buttons.

1.1 Context and Relevance

User experience while gaming is of the utmost importance, given that gaming is, at its
core, a recreational activity. The problem is that many people suffering from disabilities
cannot engage in this activity, particularly when they are suffering from diseases such as
DMD. This is due to the fact that they often struggle to move their hands into position
to hold the controller, as well as being unable to move their fingers to comfortably hold
the controller while being able to actuate all necessary buttons.
Given that game consoles require the use of specific chips within controllers to verify
them, the focus of this project is gaming on PC, specifically Windows. This focus allows
more flexibility, as the controller needs only be HID compliant in order to work, as well
as providing a platform to edit the key configuration.
Additionally, in working on the thesis, a new partner in the development of accessible
technology emerged, namely the Ability Tech team at the university. Their proposal was
to also include the option for the control pad of a wheelchair to be usable as the input
for the controller.

6

1.2 Research Questions

The aim of this project is to design an adaptive controller that consists of only 3 physical
buttons and a joystick, but which has the functionality of a conventional game controller
through a menu switching system. The button menu’s must also be able to be configured
by people with limited technical knowledge. Therefore the goal of this research is to
answer the following main question:

RQ: How can a modular adaptive controller system for people with disabilities be de-
signed and realised?

As well as the sub research questions:

SubRQ1: How can this system be made available online as open source hardware and
software?
SubRQ2: Does a fixed button to switch menus work best?

1.3 Outline

This report will begin with a review of existing literature, as well as an evaluation of
the solutions provided therein. This will be followed by an explanation of the method-
ological approach taken in order to answer the research questions and test the prototype.
Accordingly, it will be followed by a description and evaluation of the user test results.
Finally, the report will end in a conclusion which contains an evaluation of the approach
taken, as well as recommendations for future research.

7

Chapter 2

Background Research

The aim of the literature review is to determine the state of the art of adaptive game
controllers. The literature review consists of two equally important parts. The first part is
an analysis of solutions based on the modification of existing hardware, while the second
part analyses the development of proprietary solutions. Finally, the review ends with a
conclusion.

2.1 Methodology

The presented literature was found using mainly Google Scholar, but also Science Di-
rect. The literature was selected based on relevancy to the subject matter, as well as
the research question. Keywords for the found literature include: Adaptive Controller,
Gaming, Disability, Duchenne Muscular Dystrophy, Control System, Accessibility, and
Custom.

2.2 Relevance of this review

Gaming is a widespread hobby that is enjoyed by people worldwide. However, people
suffering from muscular diseases such as Duchenne Muscular Dystrophy (DMD), upper
body weakness, or upper limb deficiencies have no access to this form of recreation [3].
This injustice is not perpetuated through any form of active exclusion, but rather a lack
of accessability to tools that aid inclusion. It is important not only to raise awareness of
this injustice, but to effectively remedy it through the development of an adaptive game
controller.

2.3 Modification of Existing Hardware

The creation of a proprietary adaptive game controller is a extensive and time consuming
process [4], and as such, an alternative has been found in modifying existing hardware.
Iacopetti et al. [5] have argued that game controllers adapted for individual users are
often modified commercialised controllers. Additionally, Hamadeh et al. from Colorado
State University [6] found that existing adaptive controllers were “very expensive, and
often specialised for those with no movement below the neck”. While both working with

8

clients suffering from muscular dystrophy, Hamadeh et al. [6], as well as Dertien of the
University of Twente [7] took this approach. Modifying the existing hardware allowed
them to make use of technology that the clients were familiar with, while also allowing
ease-of-interfacing with the client’s consoles.

The physical properties of an adaptive controller are of great importance to their
effectiveness. Hamadeh et al. [6] found that when working with users suffering from
muscular dystrophy, it was vital to lower the physical resistance of the inputs as much
as possible, as the atrophied hand muscles of the client would not allow them to actuate
switches and buttons. Dertien [7] found that splitting a controller into two halves proved
effective at allowing his client to comfortably hold the controller comfortably, and make
use of the inputs on either side more effectively. An issue with the modification of existing
hardware is that no such solution could be brought to market at a commercial scale, as
this would violate intellectual property laws [5]. Additionally, given that each potential
user has different needs, an ideal adaptive controller would need to be easily modifiable to
incorporate different inputs, which would clash with the technical challenge of modifying
a device that was not designed to be modified.

2.4 Proprietary Solutions

Proprietary solutions can be brought to market at a commercial scale, while these designs
are often more widely adaptable than modified preexisting hardware. Furthermore, there
is a larger diversity of proposed solutions compared to controllers made of modified ex-
isiting hardware. One solution from Villar et al. [8] consisted of a custom fabric-adjacent
PCB which allowed the simple connection of off-the-shelf sensors. It was however limited
by its connection method to the computer, as well as the usage of proprietary software
and emulators. Iacopetti et al. [5] proposed a more elegant solution consisting of a piece
of middleware connected between a Playstation 2 and the controller. This solution al-
lowed for the connection of sensors via 3.5mm jacks, and allowed for input customisation
using some proprietary software. Omtzigt [4] also created a system designed around the
use off-the-shelf sensors combined with middleware as an continuation of Dertien’s [7]
design. All three of these approaches demonstrate that in order for a controller to be
maximally customisable, and reach the largest user base, it must allow easy connection
of off-the-shelf sensors. Additionally, their research indicates that a controller’s housing
and button layout should be as customisable as possible.

Unconventional input methods feature heavily in proprietary controller designs, as
they cater to users suffering from extensive physical disabilities. Fall et al. [9], Hassan
et al. [10], and Muguro et al. [11] all propose the use of surface electromyography
(sEMG) to read user input, as this input method relies solely on nerve signals. This
makes sEMG applicable to a wide demographic of users who have little to no control of
their muscles. All found sEMG to be useful in combination with other technology, such as
a “Multimodal Body-Machine Interface” (BoMI) [9], Inertial Measurement Unit (IMU)
[10], or an “equation estimation and a machine learning model” [11]. While undoubtedly
effective, sEMG is comparatively more complex and costly to implement, as well as
requiring a higher level of technical skill from the user to connect properly. Additionally,
the need for sEMG to be coupled with other components hampers its effectiveness in a

9

highly customisable controller. The final issue with sEMG inclusive designs is that they
tend to be designed for people suffering from a specific disability, which determines the
secondary system that is used in combinatiuon with sEMG.

Eye and facial trackers are more niche inputs for proprietary controllers, given that
they cater to a smaller subset of users. Vickers et al. [12] propose the use of an eye
tracker for in-game locomotion, while Wang et al. [13] designed a system that uses both
eye movement and facial expressions as inputs. While both systems proved effective,
their high upfront costs, as well as the complexity of setup make them undesirable for
this particular application. Further compounding this issue, eye and face trackers are
more complicated to integrate into a controller than off-the-shelf sensors. Body trackers
are more widely used for proprietary controllers, but are still somewhat niche. Scardovelli
and Frère [14] designed a software framework that used limb position as an input for in-
game actions. Similarly, Lin et al. [15] proposed the use of an eye tracker in combination
with a data glove which translated measured position and grip strength into game inputs.
Both systems proved effective at allowing users to play games without discomfort or
embarrassment. However, despite the merits of both solutions, they are markedly more
complicated and costly to integrate than standard sensors. Once again, the use of such
inputs would require a high degree of technical knowledge from the user to implement.
These issues raise the barrier of entry to these input methods to the point where they
are no longer viable options. Large corporations have also begun to develop proprietary
adaptive game controllers. Microsoft [16] and Sony [17] have both released more accessible
controller designs, although with radically different approaches. Microsoft focuses on
having inputs for every button on a normal controller, which can then be connected
to a variety of proprietary sensors. Sony on the other hand developed a system which
uses a joystick to select which button is currently in use. Both systems are effective for
certain users, however the fact that both are expensive and only usable with their specific
console is disheartening. Additionally, their limited customisability showcases that this
is more about driving profit than helping people. There is not enough data on either
system to truly gauge their effectiveness either. Entirely software based solutions are
rare in proprietary controller design. They have been shown to be effective however, such
as Vickers et al. [18] proposed “Game Accessibility Development Framework” (GADF).
The idea of creating a library which adjusts game tasks, interaction techniques, and input
device configuration is novel, but hobbled by the fact that it does not address a core issue.
The users still need a game controller that they can use to interact with the game. It
is clear that the software component of a controller is of vital importance, as it must be
robust and adaptable enough to fit a variety of use cases. However, it is equally clear
that a software only approach is ineffective.

2.5 Conclusion

In conclusion, a great deal of development into adaptive game controller design has al-
ready taken place, with the majority of published literature centring on the development
of proprietary controllers.
Through analysis of the literature it has become clear that a readily available, cost-
effective microcontroller such as an Arduino Leonardo should form the core of the design.

10

This microcontroller is vital not only to make the controller HID compliant, and therefore
usable with PC’s, but also in order to allow users to easily modify the configuration of
both menus and button layouts.
Additionally, a controller consisting of at least one joystick and dedicated menu switch,
and an input button is necessary. Ideally however, the controller would consist of a joy-
stick and 3 buttons, as this would allow not only for the use of a dedicated menu switch,
but also the use of macro-keys. The layout of buttons, as well as the general form factor
of the controller should be left up to the user.
It has also become quite clear that the core values of the design should be ease-of-use, cost
effectiveness , and adaptability. Following these core values should allow the final con-
troller not only to be brought to market at a commercial scale, but also to find purchase
in the community. The controller should prioritise the needs of the community, whilst
also allowing the community to adapt it as needed. Additionally, following these values
would make gaming accessible to a larger audience, and improve the user’s quality-of-life.
An adaptive game controller should consist of a software component programmed into
a microcontroller. This software should enable the flexible use of the controller, as well
as customisation of menus, buttons layouts, macro keys, and auto inputs. Through this
customisability, the controller should be able to be used effectively by a wide variety of
users. Furthermore, the hardware components should be 3D printable and require no
tools for assembly. The files for the 3D printed parts should also be made available in an
easily-edited format so that users can adjust the controller shape as needed using open
source tools such as OpenSCAD or Blender.
Finally, the use of off-the-shelf sensors should not only be supported, but encouraged,
with sensors having “Plug & Play” functionality. This should allow for as many people
as possible to use the controller.

11

Chapter 3

Design & Implementation

3.1 Design Concept

The goal of this project is to build on the adaptive control system designed by C.E.S.
Omtzigt for his bachelor’s thesis, and by extension the work of Dr. Ir. E.C. Dertien.
Omtzigt’s prototype worked by sending a signal to the inputs of a torn-down PlaySta-
tion DualShock 4 controller, which then acted as an intermediary between the Arduino
Leonardo and the PlayStation.
By building on this previous work, the aim is to design a standalone arduino adaptive
controller which uses an XBox control scheme. The inputs used for the controller are
listed in Table 1.
There are two aspects that form the core of this project, each serving a different role in
aiding controller adaptability. The first is Menu Layer Switching (MLS), and the second,
but no less important, is Button Remapping Tooling(BRT).

3.2 Menu Layer Switching

Menu Layer switching allows the user to access all 12 different inputs using only 2 but-
tons and a joystick. This is possible through assigning different inputs to different menu
layers. The process of assigning inputs to these layers is expanded upon in Section 3.3.
Once inputs have been assigned, the user needs only to actuate the menu switching but-
ton located on the front on the controller to cycle between layers. Each layer is able to
support 6 different inputs: 1 for each cardinal direction of the joystick, and 1 for each
button.
The reason using so few physical inputs is that many people suffering from upper limb
disabilities are unable to effectively actuate more than three buttons and a joystick. An-
other reason is that a common set of wheelchair controls also consist of three buttons and
a joystick, meaning that it would be possible for wheelchair-bound users to make use of
existing and familiar inputs for the controller.
Additionally, having buttons bound to customisable layers, users are able to group com-
monly used inputs together, allowing them to more comfortably use the controller.

12

Reference Number Icon Name Signal Description

1 A Digital Signal, Button

2 B Digital Signal, Button

3 X Digital Signal, Button

4 Y Digital Signal, Button

5 Left Bumper Digital Signal, Button/Bumper

6 Right Bumper Digital Signal, Button/Bumper

7 Menu Digital Signal, Button

8 View Digital Signal, Button

9 Left Trigger Digital Signal, Trigger

10 Right Trigger Digital Signal, Trigger

11 Left Joystick Analogue Signal, Joystick

12 Right Joystick Analogue Signal, Joystick

Table 3.1: List of Adaptive Controller inputs with name and signal type [19]

13

Figure 3.1: Menu Layer Switching Example

3.3 Button Remapping Tooling

Button remapping is vital to the functioning of the controller. As users may wish to
play many different games where certain inputs are used more or less, it is important
they are able to adapt the controller easily themselves. To this end some tooling was
developed to make this adaptation process as simple and straightforward as possible. It
was determined early on that a modifiable settings file should be stored on an SD card
which the Arduino would use to determine button mappings.

3.3.1 Iteration 1

In the first iteration, the settings file consisted of a simple .txt file which was structured
so that users would bind inputs to specific menus. This was found to be rather clunky
and unintuitive, as well as lacking any meaningful robustness. As it is imperative that
users are able to intuitively understand the mapping tools, it was decided to create a
different structure for the settings file.

3.3.2 Iteration 2

In this iteration, a .txt was still used as the base file, but the tooling was organised hor-
izontally rather than vertically. While it was felt that this format improved readability
and intuitive understanding, it was still perceived as being too clunky. Compounding
this, this version was even less robust than the last and often created parsing issues with
the Arduino. With all of these problems it was determined that a different file type was
needed to improve both user experience and Arduino compatability.

14

Figure 3.2: Settings Example - Iteration 1

Figure 3.3: Settings Example - Iteration 2

3.3.3 Iteration 3

The current, and final, iteration makes use of the .csv file type, as it is very structured,
and easy to use. Users are expected to use software such as Microsoft Excel or Google
Sheets to create a table of their desired mapping, and then save that mapping as a .csv on
the SD card that the Arduino reads from. By using this format, it was felt that both rea-
diability and intuitive understanding improved immensely. Additionally, the CSV Parser
library for Arduino allows this format to be used very robustly, as the values from the
table are easily stored in arrays that are initialised anew every time the Arduino starts.

Figure 3.4: Settings Example - Iteration 3

15

3.3.4 Approach

3.3.5 Microcontroller

An Arduino Leonardo was selected as the microcontroller for this project, as they are
powerful enough to run the software and act as a controller, whilst still being affordable
and easily available. Additionally, in contrast to a Raspberry Pi, no specialised operating
system needs to be loaded onto the microcontroller, and it can be easily programmed
from the free Arduino IDE. All of these qualities make the Arduino highly accessible,
and therefore ideal for the aims of this project.

3.3.6 SD Card Reader

A Sparkfun MicroSD shield was selected as the SD card reader, as it doesn’t need to
be connected directly as a shield, but rather can have leads attached to function as a
semi-detached SD card reader. This is important because the SD pins on the Arduino
Leonardo aren’t located where they are on other boards, but rather are in the centre of
the board.

3.4 Requirements

The controller should fulfil various requirements surrounding both functions, both real
world and digital, as well as achieve qualitative requirements concerning the button
remapping tooling.

3.4.1 System Pipeline

The controller is connected via Ethernet cable to the Arduino, which parses physical
inputs and matches them to outputs as determined by the settings file. From here,
the Arduino then transmits these as HID-compliant output to the Windows PC it is
connected to via micro-usb cable. The menu layers can be changed at any time, given
that the Arduino is restarted once this has been done. Additionally, an LED ring provides
visual feedback on both the menu layer as well as the joystick position. The menu layer
is represented by a solid colour which lights up the whole ring, and the joystick position
is displayed by a single white LED. This visual feedback is important to allow intuitive
understanding of which menu layer the user is on, to show when the menu has successfully
been switched, and to show which input should be actuated via the joystick.

3.4.2 Functional Requirements

The controller must be able to:

• Take joystick or button input from the user and accurately reflect this in the digital
domain.

• Read menu layer mapping from an SD card and use this to configure the controller’s
outputs.

16

Figure 3.5: Adaptive Controller Pipeline [20][21][22]

• Be modular, so that users may implement most off-the-shelf sensors to use as inputs,
and quickly replace parts when necessary.

• Make use of a configuration file that is both easy to change and intuitive to under-
stand.

• Display the menu layer and joystick position using an LED ring.

3.5 Hardware

3.5.1 Microcontroller

An Arduino Leonardo.

3.5.2 Other Electrical Components

Computer
A computer with at least 1‘USB 2.0+ port.
OS: Windows 11. Build: 22621.3007 Monitor
A monitor with either an HDMI or DisplayPort slot to connect to the PC.
Basic Electronic Components
Appropriate wires
Breadboard
3 Tactile pushbutton switches

17

1 Joystick
USB-A to micro-USB cable
LED ring

3.6 Software

3.6.1 Arduino IDE

Version: 2.2.1

The open-source Arduino IDE is used to upload the source code to the Arduino Leonardo,
as well as make any adjustments to the code the user would like. It is lightweight and
simple to use. It is advised to create a C:/ Drive installation of the IDE with a short
PATH. Other than that it is advised to simply follow Arduino’s own setup guide.

3.7 Libraries

1. CSV Parser by Michal Borowski, Version: 1.2.2[23]
This library is instrumental for allowing the simple use of .csv files for the purpose of
configuration. The library has plenty of clear, high quality documentation, and is easy to
use. This library was specifically used to parse the settings file into arrays, which would
then be used to inputs and determine outputs.

2. XInput by David Madison, Version: 1.2.6[24]
This library is able to emulate an Xbox controller over controller, with the caveat that
it can only run on AVR boards such as the Arduino Leonardo, Sparkfun AVR series, or
Teensy boards.

3. Adafruit NeoPixel by Adafruit, Version: 1.12[25]
A library that allows easy control of Adafruit LED devices, specifically used in this case
to control the LED ring.

4. SD Library by Arduino, Version 1.2.4[26]
A simple Arduino library that allows the reading of SD cards.

3.8 Design Process

The goal of the project is to design a HID compliant adaptive game controller, which reads
user settings from an SD card. The major challenge is that this project is somewhat
unique in its aims, and takes an unconventional approach to solving the problem of
adaptive game control.
Therefore the first step was to investigate what existing technology is usable for this
application.

18

3.8.1 XInput

XInput is able to effectively emulate an Xbox controller using the Arduino. However, due
to the limited storage capacity of the Arduino Leonardo as opposed to, for example, and
Arduino Due, it is important to keep the code as concise and clean as possible. As can be
seen by the joy.cpl output in Figure 3.6 below, XInput emaulates all inputs of a standard
controller, including the D-Pad. It is simple to implement and use, and works well with
all the other libraries of the project. Another benefit of this library over MHiernomous’
Joystick Library is that it uses the actual input names, as opposed to the numerical values
assigned to inputs by Windows. This makes it more easily understandable.

Figure 3.6: joy.cpl Output of the Controller

3.8.2 HID Library

Arduino’s HID library was the easiest to implement and use. After including it in the
sketch, all that was required was to allow the Arduino to automatically transfer HID data
using the AutoSend function. Once this was done, Windows recognised the Arduino as
a game controller, and testing could be carried out with the joy.cpl program, as seen in
Figure 3.6.

19

3.8.3 Adafruit NeoPixel

Once the controller had been successfully set up, the Adafruit library was used to control
the LED ring.
First, the joystick x and y information was calculated into degrees in order to be able
to display joystick direction. Then it was a simple case of allocating each menu layer a
colour and using the library to control when the LEDs assumed these colours.

3.8.4 SD Library

Another simple library to use, the SD library along with the test code by D.A. Mellis
allowed for SD reading implementation. It was only a case of creating a checker to make
sure the SD card was actually read and throwing an error if not in order to make sure
the users have usable feedback.

3.8.5 CSV Parser

Finally, it came time to actually make use of the settings file for control customisation.
This took a great deal of trial and error, not because of a lack of documentation or library
functionality, but because the controller was not a use case the CSV parser was really
designed for. It became clear after a while that the values parsed by the CSV library had
to be stored in individual arrays determined by input type in order to optimise how the
program ran. This was because Arduino does not allow on the calling of variables from
other methods, and the CSV parser relies on local variables in its method to function
properly.

3.9 Prototype Setup

The controller will be preliminarily tested using joy.cpl to make sure that all inputs
function as intended, whereupon it will be tested by users playing a level of the game
Neon Abyss. The Hardware used is depicted in the following table:

20

Component Count Image

Arduino Leonardo 1

SD Card Shield 1

Tactile Push Button Switch 3

Female-Male Jumper Wires 6

Male-Male Jumper Wires 14

Breadboard (64 rows) 1

Potentiometer Joystick 2

330 Ohm Resistor 1

LED Ring 1

USB-A to Micro USB Cable (Data Transfer Capable) 1

Table 3.2: List of Prototype Components

21

The resulting prototype can be seen below in Figure 3.7. Additionally, the wiring
diagram can be seen in Figure 3.8. The preliminary code for this prototype can be found
in Appendix A. To determine if the controller was working correctly, it was checked using
joy.cpl.

(a) Prototype Overview (b) Controller Closeup

Figure 3.7: Adaptive Game Controller

Figure 3.8: Prototype Wiring Diagram

22

Chapter 4

Evaluation Method & Results

4.1 Methodology

The aim of this graduation project (GP) is to create an adaptive game controller. Specif-
ically, to create an adaptive game controller that is able to emulate a conventional con-
troller with a greatly reduced number of inputs. To this end a controller, as well as a
“menu” switching system with integrated tooling was designed and realised. This is the
continuation of a graduation project by Cedric Omtzigt titled ”Developing a modular
gaming handheld for gamers with muscular dystrophy” [4]. As this GP is in the proto-
typing phase, the testing for the adaptive controller is user-centred.

The goal of this testing is to establish the on-boarding, set-up, and fluency times, as
well as the efficacy of the tooling language and instruction materials. The instruction
materials can be seen in Appendix D - User Instructions.

The user testing were conducted with a group of three able bodied users. Due to var-
ious reasons, it was not feasible to test with a user suffering from upper-body disabilities.
These tests focused on the collection of qualitative data gathered from observation, as
well as quantitative data from measuring level progress, on-boarding, set-up, and fluency
times.

The on-boarding time was defined as the time it took the users to get from entering
the level to leaving the first room, as the first room is always empty of enemies and traps.
This allowed them to get comfortable and experiment with the controls.
The set-up time was defined as the time it took the users to modify the configuration file.
The fluency time was defined as the time it took the users to clear a combat room without
taking damage.

The testing was conducted in the living area of a student house in order to do testing
in situ. The exact setup can be seen below in Figure 4.1. The users were selected due to
their differing levels of experience with video games. None of the users had played the
game before, and only one user was familiar with the game used for testing. The tests
were conducted during the afternoon on the weekend in order to ensure that the users
were not overly tired or drained from a workday.

23

Figure 4.1: Photo of the User Testing Setup

An issue with this methodology is that the test group consists of user who fall outside
of the target demographic. While this is not preferable, it is believed that the data pro-
vided from these tests can still provide valuable insights into the efficacy of the controller.

Each user only had 1 iteration with the menu remapping due to time constraints.
This means that there was no data to evaluate regarding how users’ adapted their menu
mappings over time.

4.2 Validation Interview

In order to gauge the effectiveness of the controller, a group of users familiar with video
games was asked to play a single level of the game Neon Abyss before modifying the
control scheme to their liking and playing the level again. Users played the game “Neon
Abyss”, as it has a non-trivial amount of inputs, and being a roguelite game, has many
high-intensity situations. Thus, it was selected as a good “stress test” for the system.
There were interviews both before and after the tests, with the former serving to establish
gaming experience, comfort with controllers, and comfort with control customisation.
The latter focused on gathering qualitative data regarding the user’s experience with the
controller as well as the Button Mapping Tooling. A short guide for the tooling can be
found in Appendix B, and was given to each user before they make use of the remapping
functionality.

24

User Experience
Level

1st Attempt
Progress

Remapping
Time (in Min-
utes)

2nd Attempt
Progress

1 Medium ∼50% 3 Final Boss
(∼95%)

2 High 100% 2 100%
3 High Final Boss

(∼95%)
3 100%

Table 4.1: User Testing Results

User On-Boarding Time Set-Up Time Fluency Time
1 2.5 4 10 (3 Rooms on the 2nd Attempt)
2 1 2 2 (2 Rooms)
3 2 3 5 (6 Rooms)

Table 4.2: Quantitative Data from User Testing (All Times in Minutes)

4.3 Results

The user testing began with a short explanation of the project, covering the premise of
the research, as well as the functions of the controller.
Following this, the users were shown a table showing which inputs were bound to each
layer. After familiarising themselves with the controls, the users were asked to start the
game, and test out the controls in the first room. By allowing the user to familiarise
themselves with the controls in this way, two things were achieved: the users were able
to understand the controls in a low pressure, and it allowed the on-boarding time to be
easily established.
The users were encouraged to move on through the level once they felt sufficiently ready.
From there on out they were given no more guidance and allowed to proceed through the
level at their own pace, with the goal of beating the boss at the end of the level.
Once the users had either beaten the boss or lost the game, their progress was recorded.
They were then given the instruction manual (as depicted in Appendix D), and asked to
reconfigure the menu layers to their liking. An example of a user changing the configu-
ration can be seen below in Figure 4.2. The time it took them to configure the file from
opening it to saving it as a .csv was recorded as the set-up time. The users were then
asked to once again attempt the first level on the game.

As can be seen in Table 4.1, all three users were able to change the mapping of the menus
within 3 minutes. As an aide to ease cognitive load they were allowed to use a “cheat
sheet” which contained simple instructions and a table which showed what CSV codes
corresponded to which inputs. Additionally, all users reported an improved gameplay ex-
perience once they had remapped the controller to their liking. This improved gameplay
experience also strongly correlated to an improvement in game progress.

25

Figure 4.2: A User Changes the Menu Configuration

User testing results be seen in Tables 4.1 and 4.2. As previously mentioned, users
were only allowed a single iteration of remapping due to time constraints. Additionally,
the base menu configuration can be seen in Table 4.3, while the changes made by users
can be seen in Tables 4.4, 4.5, and 4.6.
All users were able to make remap the menus within 3 minutes, and become accustomed
to the controller within 4 minutes, as can be seen above.
User 1 showed the largest improvement after remapping, but User 3 also improved.

Menu Up Down Left Right Button 1 Button 2
0 Up Down Left Right A B
1 Aim Up Aim Down Aim Left Aim Right LR RT
2 Up Down Left Right Menu View

Table 4.3: Default CSV Configuration

26

Menu Up Down Left Right Button 1 Button 2
0 Up Down Left Right A B
1 Aim Up Aim Down Aim Left Aim Right LR RT
2 Aim Up Aim Down Aim Left Aim Right A View

Table 4.4: User 1 CSV Configuration

Menu Up Down Left Right Button 1 Button 2
0 Up Down Left Right A B
1 Aim Up Aim Down Aim Left Aim Right LR RT

Table 4.5: User 2 CSV Configuration

Menu Up Down Left Right Button 1 Button 2
0 Up Down Left Right A B
1 Aim Up Aim Down Aim Left Aim Right LR RT
2 Up Down Left Right X RT

Table 4.6: User 3 CSV Configuration

27

Chapter 5

Discussion

In this discussion, the results as well as the interviews will be analysed in order to draw
conclusions which will be used to answer the research questions posed at the beginning
of this GP.
From the post-test interviews it quickly became clear that the users initially struggled to
make use of the controller due to their familiarity with traditional controllers. Thus, at
first they had challenges grasping the menu switching system, as well as dealing with the
limited amount of inputs at their disposal. After a few minutes of playtime however, they
began to understand the system and became more comfortable with switching between
menus.
It is notable that while the users adapted quickly, they noted that they found the menu
switching system initially challenging, as although they were made aware of the inputs on
each menu layer, it wasn’t intuitive for each of them. It has become clear that the limited
number of inputs can prove challenging in high intensity situations, as users attempting
to perform complex actions or multiple actions in rapid succession have to keep track of
the game and the menu layer at the same time.

Another suggestion by the users was to have the menus in the .csv file be coloured
the same as the LEDs for that menu layer. This would aid intuitive understanding of the
menu remapping tool. The challenge with this however, lies within the functionalities of
the .csv file type itself, as .csv files are not capable of saving or displaying colour infor-
mation, as the file only contains characters.

It was noted that during stressful sections of the game, users had a tendency to lose
their position in the menu layers, or need to actuate inputs on different layers rapidly,
resulting in “panic switching”. During this state of “panic switching” users would switch
so rapidly between menus that they would get even more lost, and as a result actuate the
wrong inputs. It is possible that this phenomenon could be avoided if a user is sufficiently
used to the system and the game, however testing that lies outside of the scope of this
project.

As can be seen in the Tables from Section 4.3, the users didn’t make sweeping changes
to the menu layers, preferring to switch around a few inputs rather than enact sweeping
changes. It is notable however, that they all mentioned how much more comfortable they

28

were with the system once they had tweaked it to their liking. Notably, User 2 chose to
remove the third menu layer, as seen in Table 4.5. This allowed them to quickly go from
shooting to moving and vice versa.
As can be seen in Table 4.1, there was no room for User 2 to improve in terms of level
progress, but they still reported better performance after modifying the menu layer to
their liking.
User 1 had the most difficulty, which might have to do with their lack of recent experience
playing video games. They did, however, improve remarkably after remapping the inputs,
and did so in a similar time to Users 1 and 2.
It is additionally notable that Users 1 and 3 took longer to achieve fluency than User 2.
Upon observation, this could be attributed to the fact that they were not able to move
and shoot at the same time. This technique is ubiquitous when playing on a normal
controller, and the inability to use it often left the Users in vulnerable positions. They
had to learn to pace themselves and prioritise being in a safe position before shooting.
This was not always possible however, as some rooms require the User to dodge incoming
attack whilst simultaneously retaliating.

5.1 Limitations

A limitation of the prototype is the lack of integration for less standard input types such
as eye trackers. While these should be implementable given the versatility, this once
again lies outside of the scope of this project.

A further limitation, albeit minimal, is the case being 3D printed, as the User will
need access to 3D printing facilities in order to create the casing, as well as an under-
standing of 3D or computer assisted design (CAD) software if they wish to modify it. In
order to mitigate this it would be ideal if users had access to university facilities or maker
spaces, as well as experienced helpers in either location.

Continuing on, there is a limitation in the Arduino itself, as only boards with AVR
chips are usable. As mentioned previously, boards without this chip will not be able to
make use of the XInput library, rendering the controller non-functional.

A final limitation is that this prototype cannot be used with consoles such as the
Nintendo Switch, Xbox Series X, or PlayStation 5, as the Arduino lacks the necessary
proprietary chip which the consoles require for controller verification.

29

Chapter 6

Conclusion

To conclude, the design and realisation of an adaptive game controller is a time inten-
sive process, especially when many revisions are required in order to allow for easier use.
While a working prototype was created, it has been shown that the system still requires
development in order to fulfil its potential.

Next, the main research question will be answered: “How can a modular adaptive
controller system for people with disabilities be designed and realised?” As well as the
sub research questions: “How can this system be made available online as open source
hardware and software?” And: “Does a fixed button to switch menus work best?”

RQ: How can a modular adaptive controller system for people with disabilities be de-
signed and realised?
In order for the controller to be effective, all three buttons as well as the joystick must
be easily usable with only the index finger and thumb. Thus, the controller should have
two buttons situated behind the joystick and one button in front of the joystick. Ad-
ditionally, as there is only a limited number of inputs available, the system needs to be
able to switch layers in order to allow the actuation of all standard inputs. This requires
the development of a layer switching software within the interpreter that connects the
controller to the PC, as well as a tool to assign the standard inputs to different layers.
Furthermore, the system needs to make use of easily accessible, off-the-shelf components
and a cheap, 3D-printed casing. The controller itself must also be modular in order to
allow the connection of various inputs.

Sub-RQ1: How can this system be made available online as open source hardware and
software?
The system’s software can be uploaded to a GitHub page in order to allow easy open-
source development and forking branches. The files for the 3D printed case can also be
published on the same GitHub in order to allow users to modify the case files and create
new designs, as well as print their own cases.

Sub-RQ2: Does a fixed button to switch menus work best?
A fixed button works best, as in a high stress scenario, “panic switching” would be
exacerbated by the menu button not being a set input. This would lead to a degradation

30

of the user experience, and increase the mental workload of using the controller, further
hindering its implementation and use.

6.0.1 Future Research

In the future, it is important that new input types are integrated into the system in
order to allow more people to make use of the controller. Such input types could be eye
trackers, inertial measurement units (IMU), or surface electromyography (sEMG). The
implementation of these inputs should be fairly straightforward as they are fundamentally
compatible with the Arduino.

There should be investigation into either a graphical user interface (GUI) or changing
the settings file format in order to allow users to more easily use the menu switching
tool. Such a GUI could take the form of an app or web-app, depending on the further
development of the controller.

It would also be of interest to find a way to spoof the authentication chips of console
controllers in order to allow the system to work with consoles. This would allow a great
deal more people to make use of the adaptive controller, as well as allowing access to a
greater variety of games.

Furthermore, in the interest of increasing accessability, it would be interesting for a
researcher to get into contact with Arduino in order to develop a PCB, shield, or even a
whole kit that allows for users to more easily realise their own controllers.

31

APPENDIX A - Prototype Code

1 // Project: Bachelor ’s Thesis BSc Creative Technology: "DIY Adaptive

Gaming"

2 // Written by Dominic Matthews 01/01/2024

3 // Adapted from Beginners Guide by Daniel Cantore

4 //Also adapted from SimulateAll example of the XInput Library by David

Madison

5

6 // Library Inclusion

7 #include <SD.h>

8 #include <LiquidCrystal.h>

9 #include <Adafruit_NeoPixel.h>

10 #include <CSV_Parser.h>

11 #include <XInput.h>

12

13 //Pin Definitions

14 #define PIN_SD 4

15 #define PIN_NEO_PIXEL 3 //Data pin for the LED ring

16 #define NUM_PIXELS 12 // Defining the number of LEDs in the ring

17 #define BUTTON_1 13 //The red button by default

18 #define BUTTON_Left 12 //The blue button by default

19 #define BUTTON_Right 11 //The yellow button by default

20 #define JOYSTICK_X A0 // Joystick X-axis pin

21 #define JOYSTICK_Y A1 // Joystick Y-axis pin

22 #define menu_count 3 // Defining the number of menus used

23

24 // Integer Initialisation

25 int x_axis = 0;

26 int y_axis = 0;

27 int menu_delay = 50;

28 int unif_delay = 50;

29 float joystick_angle;

30 // Arrays to store settings values

31 String up_values[menu_count];

32 String down_values[menu_count];

33 String left_values[menu_count];

34 String right_values[menu_count];

35 String button_1_values[menu_count];

36 String button_2_values[menu_count];

37 // Xinput Setup

38 const boolean UseLeftJoystick = true; // enables the left joystick

39 const boolean UseRightJoystick = true; // enables the right joystick

40 const boolean UseTriggerButtons = true; //sets the triggers as digital

buttons

41 //Menu integer to track current menu

32

42 int menu = 0;

43 // Settings File Initialisation

44 File settings;

45 String settings_string;

46 const char *settings_chars;

47

48 // Initialise joystick maximum value

49 const int joystick_max = 32767;

50

51 // Initialising LED Ring

52 Adafruit_NeoPixel led_ring(NUM_PIXELS , PIN_NEO_PIXEL , NEO_GRB +

NEO_KHZ800);

53

54 void setup() {

55 // Begin Serial Communication

56 Serial.begin (9600);

57 // Setting up controller config from the "options" file on the SD card

58 sd_setup ();

59 // Parse the Settings CSV file

60 csv_parsing ();

61 // Initialise Buttons

62 // Buttons set up between Digital Pin and Ground

63 pinMode(BUTTON_1 , INPUT_PULLUP);

64 pinMode(BUTTON_Left , INPUT_PULLUP);

65 pinMode(BUTTON_Right , INPUT_PULLUP);

66 // Controller Initialisation

67 XInput.setAutoSend(false); //Wait for input before sending

68 XInput.begin ();

69 // Adjust LED Brightness

70 led_ring.setBrightness (12);

71 }

72

73 void loop() {

74 joystick ();

75 inputs ();

76 button_state_reset ();

77 led_control ();

78 menu_switch ();

79 //Pole Delay/Debounce

80 delay(unif_delay);

81 }

82

83 void joystick () {

84 // Initialise joystick axis values by reading from joystick pins

85 int joystick_x = analogRead(JOYSTICK_X);

86 int joystick_y = analogRead(JOYSTICK_Y);

87

88 // Determine joystick angle using algebra

89 joystick_angle = atan2(joystick_y , joystick_x) * (180 / M_PI) + 180;

90 }

91

92 void inputs () {

93 // Check if joystick is tilted up and then use button_check method

using saved settings inputs

94 if (analogRead(JOYSTICK_Y) <= 250) {

33

95 button_check(up_values[menu]);

96 }

97 // Check if joystick is tilted down and then use button_check method

using saved settings inputs

98 if (analogRead(JOYSTICK_Y) >= 750) {

99 button_check(down_values[menu]);

100 }

101 // Check if joystick is tilted left and then use button_check method

using saved settings inputs

102 if (analogRead(JOYSTICK_X) <= 250) {

103 button_check(left_values[menu]);

104 }

105 // Check if joystick is tilted right and then use button_check method

using saved settings inputs

106 if (analogRead(JOYSTICK_X) >= 750) {

107 button_check(right_values[menu]);

108 }

109 // Check if the left button was actuated and button_check method using

saved settings inputs

110 if (digitalRead(BUTTON_Left) == LOW) {

111 button_check(button_1_values[menu]);

112 Serial.print("Left");

113 }

114 // Check if the left button was actuated and button_check method using

saved settings inputs

115 if (digitalRead(BUTTON_Right) == LOW) {

116 button_check(button_2_values[menu]);

117 Serial.print("Right");

118 }

119 }

120

121 void led_control () {

122 // Determine LED by calculating joystick angle /(360/ number of LEDs)

123 int led_number = joystick_angle / 30;

124 // Setting LED colour according to menu

125 for (int i = 0; i < NUM_PIXELS; i++) {

126 if (menu == 0) {

127 led_ring.setPixelColor(i, led_ring.Color (255, 0, 0) //Sets

the LEDs to red on menu 0

128 } else if (menu == 1) {

129 led_ring.setPixelColor(i, led_ring.Color(0, 255, 0)); //Sets the

LEDs to green on menu 1

130 } else if (menu == 2) {

131 led_ring.setPixelColor(i, led_ring.Color(0, 0, 255)); //Sets the

LEDs to blue on menu 2

132 } else if (menu == 3) {

133 led_ring.setPixelColor(i, led_ring.Color(0, 255, 255)); //Sets

the LEDs to turquoise on menu 3

134 } else if (menu == 4) {

135 led_ring.setPixelColor(i, led_ring.Color (255, 255, 0)); //Sets

the LEDs to yellow on menu 4

136 }

137 }

138

139 // Setting position of the direction indicator LED using the joystick

34

angle

140 if (led_number >= 12) {

141 led_number = 0;

142 }

143 led_ring.setPixelColor(led_number , led_ring.Color (255, 255, 255));

//Set direction indicator LED to white regardless of menu

144

145 // Display the changes

146 led_ring.show();

147 }

148

149 void menu_switch () {

150 // Reading the Menu switching buttons

151 //Much simpler than other buttons , as it is not configurable and is

always ready to be read

152 // Reading the current Button digital pin to the Current Button State

for processing

153 // Checking for menu switching

154 if (digitalRead(BUTTON_1) == LOW) {

155 // Increment menu by 1

156 menu += 1;

157 // Overflow clause

158 if (menu > menu_count - 1) {

159 menu = 0;

160 }

161 // Delay to prevent over -switching

162 delay(menu_delay);

163 }

164 }

165

166 void sd_setup () {

167 // Adapted from SD_Test example code by David A. Mellis

168 Serial.print("Initializing SD card ...");

169

170 //If SD can’t be initialised , throw error

171 if (!SD.begin (4)) {

172 Serial.println("initialization failed!");

173 while (1)

174 ;

175 }

176 Serial.println("initialization done.");

177

178 // Reading settings file and storing values in strings

179 settings = SD.open("Settings.csv", FILE_READ);

180 settings_string = settings.readString ();

181 // Convert settings_string to C String , as the CSV parser needs a C

String

182 settings_chars = settings_string.c_str();

183 }

184

185 void button_check(String temp_string) {

186 if (temp_string.equals("A")) {

187 // Actuate A

188 XInput.press(BUTTON_A);

189 Serial.println("A");

35

190 } else if (temp_string.equals("B")) {

191 // Actuate B

192 XInput.press(BUTTON_B);

193 Serial.println("B");

194 } else if (temp_string.equals("X")) {

195 // Actuate X

196 XInput.press(BUTTON_X);

197 Serial.println("X");

198 } else if (temp_string.equals("Y")) {

199 // Actuate Y

200 XInput.press(BUTTON_Y);

201 Serial.println("Y");

202 } else if (temp_string.equals("Up")) {

203 //Set left joystick to up

204 XInput.setJoystickY(JOY_LEFT , joystick_max);

205 XInput.setJoystickX(JOY_LEFT , 0);

206 Serial.println("Up");

207 } else if (temp_string.equals("Down")) {

208 //Set left joystick to down

209 XInput.setJoystickY(JOY_LEFT , -joystick_max);

210 XInput.setJoystickX(JOY_LEFT , 0);

211 Serial.println("Down");

212 } else if (temp_string.equals("Left")) {

213 //Set left joystick to left

214 XInput.setJoystickX(JOY_LEFT , joystick_max);

215 XInput.setJoystickY(JOY_LEFT , 0);

216 Serial.println("Left");

217 } else if (temp_string.equals("Right")) {

218 //Set left joystick to right

219 XInput.setJoystickX(JOY_LEFT , -joystick_max);

220 XInput.setJoystickY(JOY_LEFT , 0);

221 Serial.println("Right");

222 } else if (temp_string.equals("LT")) {

223 // Actuate LT

224 XInput.press(TRIGGER_LEFT);

225 Serial.println("LT");

226 } else if (temp_string.equals("RT")) {

227 // Actuate RT

228 XInput.press(TRIGGER_RIGHT);

229 Serial.println("RT");

230 } else if (temp_string.equals("LB")) {

231 // Actuate LB

232 XInput.press(BUTTON_LB);

233 Serial.println("LB");

234 } else if (temp_string.equals("RB")) {

235 // Actuate RB

236 XInput.press(BUTTON_RB);

237 Serial.println("RB");

238 } else if (temp_string.equals("Aim Up")) {

239 //Set right joystick to up

240 XInput.setJoystickY(JOY_RIGHT , joystick_max);

241 XInput.setJoystickX(JOY_RIGHT , 0);

242 Serial.println("Aim Up");

243 } else if (temp_string.equals("Aim Down")) {

244 //Set right joystick to down

36

245 XInput.setJoystickY(JOY_RIGHT , -joystick_max);

246 XInput.setJoystickX(JOY_RIGHT , 0);

247 Serial.println("Aim Down");

248 } else if (temp_string.equals("Aim Left")) {

249 //Set right joystick to left

250 XInput.setJoystickX(JOY_RIGHT , joystick_max);

251 XInput.setJoystickY(JOY_RIGHT , 0);

252 Serial.println("Aim Left");

253 } else if (temp_string.equals("Aim Right")) {

254 //Set right joystick to right

255 XInput.setJoystickX(JOY_RIGHT , -joystick_max);

256 XInput.setJoystickY(JOY_RIGHT , 0);

257 Serial.println("Aim Right");

258 } else if (temp_string.equals("Menu")) {

259 // Actuate Menu button

260 XInput.press(BUTTON_START);

261 Serial.print("Menu");

262 } else if (temp_string.equals("View")) {

263 // Actuate View button

264 XInput.press(BUTTON_BACK);

265 Serial.print("View");

266 }

267 }

268

269 void button_state_reset () {

270 // Release all buttons neither button is pressed

271 if ((analogRead(BUTTON_Left) == HIGH) && (analogRead(BUTTON_Right) ==

HIGH)) {

272 XInput.release(BUTTON_A);

273 XInput.release(BUTTON_B);

274 XInput.release(BUTTON_X);

275 XInput.release(BUTTON_Y);

276 XInput.release(BUTTON_LB);

277 XInput.release(BUTTON_RB);

278 XInput.release(TRIGGER_LEFT);

279 XInput.release(TRIGGER_RIGHT);

280 }

281 }

282

283 void csv_parsing () {

284 // Initialise the parser

285 CSV_Parser cp(settings_chars , /* format */ "-ssssss -");

286 int8_t *menus = (int8_t *)cp["Menu"];

287 char **ups = (char **)cp["Up"];

288 char **downs = (char **)cp["Down"];

289 char **lefts = (char **)cp["Left"];

290 char ** rights = (char **)cp["Right"];

291 char ** button_1s = (char **)cp["Button 1"];

292 char ** button_2s = (char **)cp["Button 2"];

293 char ** macros = (char **)cp["Macro"];

294

295 // Parse all the csv values into individual arrays for easy use

296 for (int i = 0; i < cp.getRowsCount (); i++) {

297 up_values[i] = String(ups[i]);

298 down_values[i] = String(downs[i]);

37

299 left_values[i] = String(lefts[i]);

300 right_values[i] = String(rights[i]);

301 button_1_values[i] = String(button_1s[i]);

302 button_2_values[i] = String(button_2s[i]);

303 // Print all the values to serial monitor for user to see

304 Serial.print(up_values[i]);

305 Serial.print(" - ");

306 Serial.print(down_values[i]);

307 Serial.print(" - ");

308 Serial.print(left_values[i]);

309 Serial.print(" - ");

310 Serial.print(right_values[i]);

311 Serial.print(" - ");

312 Serial.print(button_1_values[i]);

313 Serial.print(" - ");

314 Serial.print(button_2_values[i]);

315 Serial.println ();

316 }

317 }

38

APPENDIX B - CSV Editing
Instructions

1. Open the Settings.csv file using Excel or Google Sheets

2. Change Button positions, add menus, or remove menus as you wish

3. Make sure to FILL EVERY MENU, this is very important for the software to work

4. Save the file as .csv(UTF-8)

5. Upload the file to the SD card

6. Plug the SD card into the reader and turn on the Arduino

Legend (Case Sensitive):

Input CSV Code In-Game-Action
Up Up Jump

Down Down Drop Down
Left Left Move Left
Right Right Move Right

Aim Up Aim Up Move Cursor Up
Aim Down Aim Down Move Cursor Down
Aim Left Aim Left Move Cursor Left
Aim Right Aim Right Move Cursor Right

A A Interact
B B Cancel
X X Drop Bomb
Y Y Switch Item

Left Bumper LB N/A
Right Bumper RB Character Ability
Left Trigger LT Active Item
Right Trigger RT Shoot

View View Map
Menu Menu Menu

Table 6.1: CSV Input Legend

39

APPENDIX C - Information Letter

The research for the thesis “DIY Adaptive Gaming” centres on the design and realisa-
tion of an adaptive game controller for people with upper limb disabilities. To this end
research needs to be conducted on the effectiveness of the controller, which will take the
form of a user test which is pre-empted and followed by individual interviews. In the
scope of the test, users will be asked to complete a single stage of a video game (Neon
Abyss) using the adaptive controller. Following this they will be permitted to change the
key bindings of the controller to their preferences and asked to complete the stage again.
There are no known risks to the participants.
Participation is entirely voluntary, and consent may be withdrawn at any time without
negative consequences and without any explanation.
Participants have the right, in principle, to access, rectify, delete, restrict, or object to
the processing of personal data.
Interview responses will be recorded and deleted once transcribed (within 14 days).
The interview recordings will be locally stored (not uploaded to the cloud) on the re-
searcher’s phone and will only be accessible to him. Additionally, interview responses
will be anonymised.
The only other data which will be collected will be the completion times for the stages,
which will also be anonymised and randomised.
In case you have any additional questions or would like additional information, please
email d.s.matthews@student.utwente.nl. Alternatively, you can contact my supervisor
Edwin Dertien by emailing e.dertien@utwente.nl, or by contacting the ethics committee
itself by emailing ethicscommittee-CIS@utwente.nl.

40

APPENDIX D - User Instructions

1. Open the Settings.csv file using Excel or Google Sheets.

2. Change Button positions, add menus, or remove menus as you wish.

3. Make sure to FILL EVERY MENU, this is very important for the software to work.

4. Save the file as .csv(UTF-8).

5. Upload the file to the SD card.

6. Plug the SD card into the reader and turn on the Arduino.

Input CSV Code In-Game Action
Left Joystick Up Up Jump

Left Joystick Down Down Drop Down
Left Joystick Left Left Move Left
Left Joystick Right Right Move Right

A A Interact
B B Cancel
X X Use Bomb
Y Y Switch Item

Left Bumper LB
Right Bumper RB Character Skill
Left Trigger LT Active Ability
Right Trigger RT Shoot

Right Joystick Up Aim Up Move Cursor Up
Right Joystick Down Aim Down Move Cursor Down
Right Joystick Left Aim Left Move Cursor Left
Right Joystick Right Aim Right Move Cursor Right

Menu Menu Open Menu
View View Open Map

Table 6.2: Legend (Case Sensitive)

41

APPENDIX E - User Test
Interviews

6.1 User 1

6.1.1 Pre-Test Interview

This is a pre-testing interview for the adaptive game controller. Am I allowed to record
and transcribe your responses to use in my report?
That’s all right.
Thank you. Do you play video games regularly?
I haven’t played video games regularly in a few years.
What genre or what games did you play most often?
I used to play a lot of FIFA and [Tony Hawk’s] Pro Skater. But I also played some FPS
games like Call of Duty on PC.
Do you have experience with 2D roguelite games?
No, I don’t think I’ve ever played one of those, I’m not even sure what that is.
Imagine Super Mario but with guns and only one life
Ah ok ok.
Do you have experience using controllers to play games?
Yes, I would say I’m pretty comfortable with a controller. I played on the PlayStation
and on the PSP.
Do you have experience with customised or adaptive controllers?
No just regular controllers.
Do you have experience using tools to rebind keys in games?
No, I never really felt the need to change the controller layout.
Finally, have you played Neon Abyss before?
I have not.

6.1.2 Post-Test Interview

Did you feel that the controller was intuitive to use, and why?
For me yes, once I got used to the hand position. I liked that the menu button is further
away so you don’t trigger it accidentally.
Was it clear which menu layer you were on, and what did you think of using LEDs to
show the layer?
Yeah, it was very clear. The LED feedback was nice.
Were you able to actuate the right inputs with the joystick?

42

That worked just fine, but I did sometimes struggle to remember where each input was.
What was your experience with the remapping tool?
Yes, I had some difficulty when I was first starting, and had to really keep an eye on the
cheat sheet. But I pretty quickly figured it out.
How did your experience with the game change after you personalised the menu layers?
It felt a bit better, but I only made changes to one layer. If I used it for longer I feel it
would be better.
Was anything unclear about the controller or remapping tool?
No, for me it was quite intuitive.
What would you like to change about the controller to make it easier to use?
I think it’s fine. I think it takes time to get really used to it, and remember what layer
your inputs are on.
What would you like to change about the remapping tool to make it easier to use?
It would be nice to have it in game. It would also be easier if the individual layers were
coloured the same as the LEDs.
Do you have any questions about the system or my research?
No, I think it was all quite clear.
Well then, thank you for your time.
My pleasure.

6.2 User 2

6.2.1 Pre-Test Interview

This is a pre-testing interview for the adaptive game controller. Am I allowed to record
and transcribe your responses to use in my report?
Of course.
Thank you. Do you play video games regularly?
Yes, I play loads of games.
What genre or what games did you play most often?
Honestly I play a huge variety of games, I really like 4x style games like Victoria 3. I also
enjoy total war and Company of Heroes.
Do you have experience with 2D roguelite games?
I played a tiny bit of Ori and the Will of the Wisps, but that’s more of a metroidvania
than a roguelite. So I’d say overall no, but I do know what they are.
Do you have experience using controllers to play games?
I have a decent amount of experience, but I do play on mouse and keyboard most of the
time.
Do you have experience with customised or adaptive controllers?
No, I’ve only used PlayStation or Xbox controllers.
Do you have experience using tools to rebind keys in games?
Yes, I do it fairly often, but mostly in strategy games to make it more intuitive and faster
for me.
Finally, have you played Neon Abyss before?
Nope.

43

6.2.2 Post-Test Interview

Did you feel that the controller was intuitive to use, and why?
I really like the controller. Initially, I struggled with the menu switching, it didn’t really
feel intuitive with the menu switching. I feel like I could get much better if I had a second
controller, or time to master the current setup. But I really liked it, it felt like I didn’t
have to move as much. I would’ve enjoyed it more if the controller was a bit smaller so
it fits my hand better, also a place for my index finger to sit would’ve been nice.
Was it clear which menu layer you were on, and what did you think of using LEDs to
show the layer?
The second I had the lights figured out, I was locked in. But I did find that in the more
stressful situations I struggled to pay attention to the lights, and was switching menus
rapidly out of panic.
Were you able to actuate the right inputs with the joystick?
Towards the end yes, but I think with more time I would. I also feel like if the controller
was a bit smaller this wouldn’t be an issue.
What was your experience with the remapping tool?
Super simple. I feel like some more depth in the guide would be nice. It would’ve been
good to see that I can add or remove whole menus. An image would also be nice so that
I can tell which is button 1 or 2.
How did your experience with the game change after you personalised the menu layers?
My experience definitely changed for the better. I think getting rid of the third menu
made life much easier for me. Perhaps adding an extra button would be nice. Perhaps
also using the joystick hat as an input would be nice.
Was anything unclear about the controller or remapping tool?
Adding or removing menus was the only thing. A graphical interface instead of just a
csv would also be nice.
What would you like to change about the controller to make it easier to use?
I just think the extra button would be nice. Additionally, depending on the game it
might be nice to be able to use button combinations to trigger other effects.
What would you like to change about the remapping tool to make it easier to use?
Just a graphical interface.
Do you have any questions about the system or my research?
So the target group is wheelchair users and who else?
People with upper limb disabilities. So people who struggle to use their hands or can’t
hold a controller properly. Also people who can’t use certain fingers.
Ah ok gotcha. That clears everything up I think.
Was there anything else the controller made you realise?
I just had no idea how many buttons I could use on a normal controller until now.
I understand, I felt the same way initially. Well, that concludes our interview, thank you
for your time.
Not to worry, my pleasure.

44

6.3 User 3

6.3.1 Pre-Test Interview

This is a pre-testing interview for the adaptive game controller. Am I allowed to record
and transcribe your responses to use in my report?
Yes yes.
Thank you. Do you play video games regularly?
Yes, I play games pretty much every day.
What genre or what games did you play most often?
I play pretty much everything, at the moment it’s a lot of PUBG (Player Unkown’s
Battlegrounds) and some single player RPGs like Hogwarts Legacy.
Do you have experience with 2D roguelite games?
I played one or two, but it’s not really my kind of game.
Do you have experience using controllers to play games?
Yeah I play with controllers a lot, especially Rocket League.
Do you have experience with customised or adaptive controllers?
No, not at all.
Do you have experience using tools to rebind keys in games?
Yeah I rebind keys often.
Finally, have you played Neon Abyss before?
I don’t think I’ve even heard of it before, so no.

6.3.2 Post-Test Interview

Did you feel that the controller was intuitive to use, and why?
I felt that once I got the hang of it, and understood that I couldn’t do everything all at
the same time it was pretty good. I just struggle with the fact that I can normally do so
much at one time, like moving, aim, and shooting all together.
Was it clear which menu layer you were on, and what did you think of using LEDs to
show the layer?
Yeah when I was focusing it was pretty easy, but in like the boss fight it got a bit hard.
I was just switching really fast and then it became difficult to tell what layer I was on.
Were you able to actuate the right inputs with the joystick?
I had no problems with that.
What was your experience with the remapping tool?
I think because I’m used to doing it, I found it quite easy. I just had to adjust from not
having a table instead of a user interface.
How did your experience with the game change after you personalised the menu layers?
It felt so much easier once I put everything where I wanted it. Not that I changed a lot,
but I think being able to decide where everything was just made it click a bit more.
Was anything unclear about the controller or remapping tool?
No no, I think I understood it all.
What would you like to change about the controller to make it easier to use?
I think that having a second controller would make life easier, because then you can just
do more things, but I understand that’s not really feasible for these tests.

45

What would you like to change about the remapping tool to make it easier to use?
Yeah I think a GUI (graphical user interface) would be really nice, because then I don’t
have to feel like I’m editing a spreadsheet to play my game.
Do you have any questions about the system or my research?
No, I think you explained everything I was confused about.
Thank you for your time.
Of course.

46

APPENDIX F - Wiring Diagram

Figure 6.1: Prototype Wiring Diagram

47

APPENDIX G - Arduino Leonardo
Pinout

48

Figure 6.2: Arduino Leonardo Pinout [27]

49

Bibliography

[1] E. Yiu and A. Kornberg, “Duchenne muscular dystrophy,” Journal of paediatrics
and child health, vol. 51, no. 8, pp. 759–764, 2015.

[2] M. H. Brooke, G. M. Fenichel, R. C. Griggs, et al., “Duchenne muscular dystrophy,”
Neurology, vol. 39, no. 4, pp. 475–475, 1989, issn: 0028-3878. doi: 10.1212/WNL.
39.4.475. eprint: https://n.neurology.org/content/39/4/475.full.pdf.
[Online]. Available: https://n.neurology.org/content/39/4/475.

[3] E. Ellcessor, Restricted access: Media, disability, and the politics of participation.
NYU Press, 2016, vol. 6.

[4] C. Omtzigt, Developing a modular gaming handheld for gamers with muscular dys-
trophy, Jun. 2022. [Online]. Available: http://essay.utwente.nl/93471/.

[5] F. Iacopetti, L. Fanucci, R. Roncella, D. Giusti, and A. Scebba, “Game console
controller interface for people with disability,” 2008 International Conference on
Complex, Intelligent and Software Intensive Systems, pp. 757–762, 2008. doi: 10.
1109/CISIS.2008.77.

[6] J. Hamadeh, L. Lawrence, R. Hasslinger, and L. Fike, “Redesigning a gaming con-
troller,” 2008.

[7] We gaan het maken, 2021. [Online]. Available: https://www.uitzendinggemist.
net/aflevering/547717/We_Gaan_Het_Maken.html.

[8] N. Villar, K. M. Gilleade, D. Ramdunyellis, and H. Gellersen, “The voodooio gaming
kit: A real-time adaptable gaming controller,” Computers in Entertainment (CIE),
vol. 5, no. 3, p. 7, 2007.

[9] C. L. Fall, F. Quevillon, M. Blouin, et al., “A multimodal adaptive wireless control
interface for people with upper-body disabilities,” IEEE transactions on biomedical
circuits and systems, vol. 12, no. 3, pp. 564–575, 2018.

[10] M. Hassan, Y. Shimizu, Y. Hada, and K. Suzuki, “Joy-pros: A gaming prosthesis to
enable para-esports for persons with upper limb deficiencies,” IEEE Access, vol. 10,
pp. 18 933–18 943, 2022.

[11] J. K. Muguro, P. W. Laksono, W. Rahmaniar, et al., “Development of surface
emg game control interface for persons with upper limb functional impairments,”
Signals, vol. 2, no. 4, pp. 834–851, 2021.

[12] S. Vickers, H. Istance, and A. Hyrskykari, “Performing locomotion tasks in immer-
sive computer games with an adapted eye-tracking interface,” ACM Transactions
on Accessible Computing (TACCESS), vol. 5, no. 1, pp. 1–33, 2013.

50

[13] K.-J. Wang, Q. Liu, Y. Zhao, et al., “Intelligent wearable virtual reality (vr) gaming
controller for people with motor disabilities,” 2018 IEEE International Conference
on Artificial Intelligence and Virtual Reality (AIVR), pp. 161–164, 2018.

[14] T. A. Scardovelli and A. F. Frère, “The design and evaluation of a peripheral
device for use with a computer game intended for children with motor disabilities,”
Computer methods and programs in biomedicine, vol. 118, no. 1, pp. 44–58, 2015.

[15] Y. Lin, J. Breugelmans, M. Iversen, and D. Schmidt, “An adaptive interface design
(aid) for enhanced computer accessibility and rehabilitation,” International Journal
of Human-Computer Studies, vol. 98, pp. 14–23, 2017, issn: 1071-5819. doi: https:
//doi.org/10.1016/j.ijhcs.2016.09.012. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1071581916301264.

[16] C. Godineau, “The new xbox adaptive controller, another step towards digital in-
clusion,” Masters of Media, 2018.

[17] H. Nishino, Introducing project leonardo, 2023. [Online]. Available: https://blog.
playstation.com/2023/01/04/introducing-project-leonardo-for-playstation-

5-a-highly-customizable-accessibility-controller-kit/.

[18] S. Vickers, H. Istance, and M. J. Heron, “Accessible gaming for people with physical
and cognitive disabilities: A framework for dynamic adaptation,” pp. 19–24, 2013.

[19] ElDuderino, Controller input icons, 2020. [Online]. Available: https://opengameart.
org/content/controller-input-icons.

[20] Microsd card icon. [Online]. Available: https : / / nl . farnell . com / en - NL /

transcend/ts2gusdc/card-sd-micro-2gb/dp/2290242.

[21] Arduino leonardo icon. [Online]. Available: https://www.eitkw.com/product/
arduino-leonardo/.

[22] Desktop icon. [Online]. Available: https://www.bol.com/nl/nl/p/circular-
rgb-gaming-pc-intel-core-i7-10700f-geforce-rtx-3060-12-gb-gddr6-32-

gb-ddr4-1-tb-ssd-nvme-windows-11-pro/9300000122730616/.

[23] M. Borowski, Csv parser library for arduino. [Online]. Available: https://github.
com/michalmonday/CSV-Parser-for-Arduino.

[24] D. Madison, Xinput library for arduino. [Online]. Available: https://github.com/
dmadison/ArduinoXInput.

[25] Adafruit, Adafruit neopixel library for arduino. [Online]. Available: https : / /

github.com/adafruit/Adafruit_NeoPixel.

[26] A. Foundation, Sd library for arduino. [Online]. Available: https://www.arduino.
cc/reference/en/libraries/sd/.

[27] Arduino leonardo pinout. [Online]. Available: https://europe1.discourse-cdn.
com/arduino/original/4X/e/7/1/e7108daa6430b7f6a38fb122811ef990642d6449.

png.

51

