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Abstract M. Martínez Pinedo

Abstract

Currently, chronic pain treatment is hindered by a lack of understanding and subjective measurement tools.
To address this, a method at the University of Twente seeks to evaluate perceptual thresholds through intra-
epidermal electrical stimulation, selectively targeting nociceptive fibers. The experimental procedures are
based on psychophysical concepts, specifically the Go/No-Go (GN) and two-interval forced choice (2IFC)
tasks. In the GN procedure, participants receive stimuli of varying amplitudes and press a button to record
their perception. This feedback helps control the amplitude of subsequent stimuli, ensuring stimulation
around threshold levels. Conversely, the 2IFC task involves presenting two intervals, with stimulation occur-
ring in only one. The subject must identify the interval containing the stimulation.

The GN procedure is typically used but poses challenges as participants may lose focus, fail to report perceived
stimuli, or be unable to communicate their perception. To overcome these issues, automatic classification
of perceptual thresholds is proposed. A previous study successfully achieved reliable threshold estimates by
using a convolutional neural network to perform the 2IFC task by classifing EEG activity recorded from
a 32-electrode setup. However, this setup is time-consuming and uncomfortable for patients, limiting its
clinical application. This study aims to explore the feasibility of real-time nociceptive threshold tracking
using eight EEG-electrodes located at C3, Cz, C4, T7, T8, F3, Fz, and F4; which corresponds to the area
where the largest changes in electrical activity are seen.

First, improving the performance of the previously used network was explored by comparing different ar-
chitectures and performance-enhancing strategies. Various architectures from the literature were tested
using data obtained from subsampling eight electrodes out of a 32-electrode dataset. Three strategies were
employed to obtain the best-performing classifier: hyperparameter optimization algorithms (Bayesian op-
timization - Hyperband and Bayesian optimization), transfer learning, and an ensemble model. The best
model resulted from the use of the EEG-Inception architecture with hyperparameter tuning, the evaluation
of its performance in a separate testing set resulted in a 6% increase in accuracy.

Simulations were conducted to optimize parameters related to the GN and 2IFC tasks and to determine the
minimum neural network accuracy required for reliable threshold estimates. These simulations explored the
parameters that resulted in the greatest agreement between GN and 2IFC tasks and examined the effects of
varying accuracies. It was determined that a neural network accuracy of 70% is the theoretical minimum for
reliable threshold estimates. Experimental validation involved 15 healthy participants, each performing two
tasks in random order: Task 1 involved tracking the perceptual threshold using the GN procedure while the
neural network independently performed the 2IFC task; Task 2 involved tracking two independent thresholds
using the neural network alone, without concurrent physical tasks.

In Task 1, despite no significant difference in the calculated thresholds, there was high variability (as shown by
limits of agreement in a Bland-Altman plot) and low correlation (ICC=0.06) between the GN and 2IFC tasks.
Additionally, amplitudes from the evoked potentials (EPs) were lower than expected, with no significant
difference between average responses marked as correct by the network and those marked as incorrect in
the 2IFC task. This suggests the presence of many false positives and poor classification ability. In Task
2, even greater variability and worse correlation (ICC=-0.009) between estimated thresholds were observed.
The presence of clear EPs in the average responses when the network classified the EPs as incorrect suggests
that the classifier may depend on the concurrent button press.

Although reliable real-time nociceptive threshold tracking was not achieved, this study provides valuable
insights for future research. Key areas for improvement include electrode selection, the influence of button
presses on EPs during the GN procedure, the potential impact of additional electrodes, and the use of
different EEG recording references.
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1 Introduction

Pain is a vital but subjective experience that depends on the dynamic integration of sensory and contextual
processes, including biological, psychological, and social factors. It is defined by the International Associa-
tion for the Study of Pain (IASP) as "an unpleasant sensory and emotional experience associated with, or
resembling that associated with, actual or potential tissue damage" [1, 2, 3]. Pain is one of the leading causes
of disability and, if left untreated, can lead to undesirable personal and social outcomes, such as depression,
work absence, and increased costs for families and caregivers. Inaccuracies in pain assessment can result
in suboptimal or inadequate treatment, potentially causing further clinical complications [4]. Chronic pain
often arises from progressively disturbed processes in the central nervous system, which are poorly recognized
in patients and insufficiently targeted by conventional pain management protocols.

Pain assessment is crucial for chronic pain classification and treatment guidance. However, current measure-
ment options are limited, often relying on self-reports such as the Visual Analog Scale (VAS) and Numeric
Rating Scales. These assessments may not be feasible for many vulnerable populations, including non-
communicative patients, those with speech disorders, and individuals with impaired consciousness. Even
with patients with none of the mentioned limitations, self-report techniques can lead to miscommunication
or misjudgment [4].

Due to these limitations, alternative approaches, such as the evaluation of perceptual thresholds, have been
explored. Perceptual threshold evaluation plays a crucial role in assessing various sensory systems, including
vision, hearing, and touch, and can also be applied to nociception. In pain research, evaluating perceptual
thresholds can help to assess altered nociceptive processing and sensitivity of ascending pathways in the
nociceptive system [5]. These measured thresholds are of particular interest since it has been shown that
events such as disease, clinical interventions, and experimental conditioning stimuli can activate endogenous
mechanisms that lead to an increase in nociceptive thresholds [6].

Intra-epidermal electrical stimulation has been used to selectively stimulate nociceptive fibers with currents
lower than twice the detection thresholds [7]. Recent experiments at the University of Twente utilized a
needle electrode on the right hand to administer electrical stimuli, generated by a custom-built stimulator
(NociTRACK AmbuStim) with a randomized interstimulus interval of 3.5-4.5 seconds during this threshold
tracking experiments. In addition to selective stimulation, participants must remain focused and consistently
respond to the stimulation to accurately assess perceptual thresholds. However, perception reports are not
always accurate. Participants may lose focus during long or boring procedures, fail to report perceived stimuli
(lapsing), or report stimulus perception without actual perception (guessing). Additionally, some subjects
might have disabilities that hinder perception report [5].

Measurement tools used to obtain more objectives markers of pain include Electroenephalography (EEG),
which due to its high temporal resolution, clinical convenience, non-invasiveness, and low cost, has been
used to study pain-related cortical activity [8, 3]. Nociceptive activity can be quantified by recording and
analyzing EEG signals time-locked to the stimuli, this averaged time-locked signal, known as the Evoked
potential (EP), describes transient synchronized activity of large neural networks within the cortex.

In [5], researchers explored a fully automated method that used nociceptive-induced EPs to produce pre-
cise and objective assessment of perceptual thresholds across various patient populations. A deep learning
classifier built upon a 32-channel EEG set-up was used to reliably analyze brain activity in response to no-
ciceptive stimuli. The neural network successfully provided accurate estimates of the perceptual threshold,
highlighting the potential of deep learning classification to control the adaptive stimulus sequence used in
threshold tracking procedures. This approach could enhance accuracy and objectivity by eliminating the
need for subject responses and minimizing the effects of poor task performance.

The next step in developing this method is reducing the number of EEG electrodes required. Fewer electrodes
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would make the setup process quicker, making studies and clinical applications more time-efficient and
scalable. Therefore, this study aims to explore the feasibility of real-time nociceptive threshold tracking
using eight electrodes (C3, Cz, C4, T6, T8, F3, Fz, and F4) chosen based on EPs observed with a 32-
electrode setup using a 10-20 montage.

To conduct this study, the background information is first presentedN. The methods section addresses the
application of tools to enhance machine learning performance and details the experiments conducted to test
the obtained classifier. Subsequently, the results and their analysis are presented, followed by a discussion
on the study’s limitations and potential future work.
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2 Background

2.1 Nociceptive system

The perception of pain, called nociception, depends on specifically dedicated receptors and pathways. Since
alerting the brain to the dangers implied by noxious stimuli differs substantially from informing it about
innocuous sensory stimuli, the existence of a specialized subsystem for the perception of potentially threat-
ening circumstances is necessary. The importance of pain in clinical practice, as well as the many aspects of
it that remain poorly understood, continue to make nociception an extremely active area of research. [9]

2.1.1 Pain

Pain is a complex and subjective experience that signals impending or actual tissue damage, allowing indi-
viduals to avoid further injury. Similarly, it can also prevent harmful movement, as seen in injuries, where
reduced mobility contributes to healing [10]. However, pain can also be pathological, for instance, in the
case of nerve misfiring or damage, and its prolongation can lead to adverse outcomes [11]. The challenges
of treating pain often stem from a limited understanding of the nervous system mechanisms underlying the
pain experience [12].

Until the 1960s, pain was considered an inevitable sensory response to tissue damage. Relevant factors
such as genetic differences, past experience, anxiety, or expectations were largely disregarded [13]. In 1965,
Melzack and Wall proposed the gate control theory, suggesting the existence of endogenous modulatory
mechanisms. This theory contrasted with the previous belief that pain was merely transmitted by the
Peripheral Nervous System (PNS) to the Central Nervous System (CNS). According to the theory, pain
transmission is modulated by a gating mechanism in the dorsal horn fibers can close (inhibit) or open
(facilitate) the pain gate [14, 15].

Later, in 1999, the neuromatrix theory expanded on the understanding of pain by proposing that pain
modulation occurs not only at the spinal level but also involves cerebral mechanisms of pain processing and
transmission [15, 16]. Studies have corroborated the role of cognitive and limbic systems in pain processing,
including patients’ beliefs, understanding of their pain syndrome, pain sensitivity, and catastrophic thinking.
Today, the IASP defines pain as “an unpleasant sensory and emotional experience associated with actual or
potential tissue damage, or described in terms of such damage" [4, 2]

Pain perception is often termed nociception, which specifically refers to the detection of noxious stimuli, such
as tissue damage or extreme temperatures. These stimuli activate nociceptors and their pathways through
CNS and PNS processing. This perception depends on factors such as action potential frequency and the
time interval between each action potential [11]. However, pain does not necessarily imply nociception.
While pain is frequently triggered by noxious stimuli, it can also result from lesions in the nervous system,
as seen pathologies such as diabetes mellitus, multiple sclerosis, stroke or post-amputation. In these cases,
the intensity of pain often has little or no relation to the degree of tissue injury or other pathology [13].

2.1.2 Nociceptors

Nociceptors are relatively unspecialized nerve cell endings that typically initiate the sensation of pain. These
receptors originate from cell bodies in the dorsal root ganglia or the trigeminal ganglion, sending one axonal
process to the periphery and another into the spinal cord or brainstem [11]. They are located mainly in the
epidermis, in contrast to non-nociceptive fibers that terminate more deeply, in the dermis [7]. Peripheral
nociceptive axons terminate in unspecialized "free endings," which convey pain information. In the skin,
nociceptors are classified into three major types: Aδ mechanosensitive nociceptors, Aδ mechanothermal
nociceptors, and polymodal nociceptors associated with C fibers. Aδ fibers are myelinated, have small
receptive fields, and conduct signals at about 20 m/s, while C fibers are small-diameter, unmyelinated axons
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with large receptive fields, conducting at velocities less than 2 m/s. These differences result in both fast
and slow pain pathways, contrasting with the faster conduction of somatic sensory receptors associated
with mechanical stimuli. The receptive fields of pain-sensitive neurons are relatively large, especially at the
thalamus and cortex levels, emphasizing the importance of detecting pain over a precise localization[9, 11].

Pain perception is generally categorized into two types: a sharp first pain and a longer-lasting, diffuse
sensation called second pain. Activation of Aδ fibers is responsible for the initial tingling sensation or sharp
pain, alerting the body to the presence of a noxious stimulus. In contrast, C fibers mediate the "second pain,"
which occurs at higher stimulus intensities and results in a duller, longer-lasting pain sensation associated
with the intensity of the pain [9, 11].

Nociceptors relay information about noxious stimuli from various body parts, including the skin, joints,
viscera, and muscles. They are activated by a wide variety of chemical substances such as globulin, protein
kinases, arachidonic acid, histamine, nerve growth factor, substance P, calcitonin gene-related peptide, potas-
sium, serotonin, acetylcholine, low-pH solutions, adenosine triphosphate, and lactic acid. Additionally, no-
ciceptors respond to temperature extremes, high pressures, and tissue damage causing inflammation. Based
on the type of stimuli they detect, nociceptors can be further subdivided into high-threshold mechanorecep-
tors for intense mechanical stimulation, thermal receptors for thermal and mechanical stimulation, chemical
receptors, and polymodal receptors for high-intensity mechanical, thermal, and chemical stimulation [11].

2.1.3 Nociceptive pathway

Once a nociceptor is activated, the action potential is transmitted through primary afferent nociceptors,
which terminate near second-order nerve cells in the dorsal horn of the gray matter. Synaptic connections
are made in laminae I and/or II. The second-order cells then cross the midline and project to the brainstem
and thalamus via the anterolateral (ventrolateral) quadrant of the contralateral side of the spinal cord. These
fibers form the spinothalamic tract, the major ascending pathway for pain and temperature information [9,
17]

The spinothalamic tract, located in the white matter of the spinal cord, consists of two parts: the lateral
spinothalamic tract and the anterior spinothalamic tract. The lateral spinothalamic tract primarily transmits
pain and temperature sensations, while the anterior spinothalamic tract carries information related to touch
and firm pressure sensations towards the thalamus [18].

The principal target of these pathways is the ventral posterior nucleus of the thalamus, which sends axons
to the primary and secondary somatosensory cortices. The nociceptive information transmitted to these
cortical areas is responsible for the discriminative component of pain, such as identifying the location, in-
tensity, and quality of the stimulus. Electrophysiological recordings from nociceptive neurons in the primary
somatosensory cortex show that these neurons have small receptive fields that relate to pain localization.
Projections from the anterolateral system to the medial thalamic nuclei provide nociceptive signals to areas
in the frontal lobe, the insula, and the cingulate cortex [9].The full experience of pain engages a complex
network of interacting brain regions, a simplified version of which is illustrated in figure 1.
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Figure 1: Diagram with the anatomical levels involved in pain processing from detection to mod-
ulation. The process begins with the detection of a noxious stimulus on the skin by nociceptors.
These nociceptors with cell bodies in the dorsal root ganglia, relay the stimulus to the spinal cord via
their axons. The signal then ascends to the brain (pink), where it is interpreted as pain. Descending
pathways (blue) subsequently activate to modulate and limit nociceptive input at the spinal cord
level. Figure adapted from [19]

2.2 Assessment of Pain

The foundation of an effective pain treatment is reliable patient assessment [20]. However, measuring pain
is a complex task given its subjective and multidimensional nature. Pain can be modulated at peripheral,
spinal, and supra-spinal levels, and the nature and number of these processes can change over time [21,
22]. The current gold standard pain assessment tool relies on self-reporting [4, 23]. While pain scores are
considered an accurate and reliable measure for assessing a patient’s pain and response to pain treatment,
they have significant limitations. Primarily, they measure only intensity, ignoring factors such as time
dependency and pain type [22]. Additionally, self-reports are not feasible for many vulnerable populations
or non-communicative patients, such as those with speech disorders or consciousness impairments [4]. These
limitations underscore the need for mechanism-based pain assessments that provide more comprehensive
information and that are able to give insight into the mechanisms underlying an individual’s pain experience
[24].

Several approaches and stimuli are used to assess pain, including thermal (cold and heat), tactile, ischemic,
reactions to pain mediators (e.g., capsaicin or hypertonic saline injection), electrical, among others. The
choice of stimulus depends on factors such as the target sensory pathway, desired specificity, equipment
availability, and ease of use. Monofilaments (von Frey hairs) or small brushes are commonly used to assess
tactile sensation threshold due to their simplicity and cost-effectiveness. These tools are suitable for diag-
nosing condition like allodynia (pain from typically non-painful stimuli) or hyperalgesia (increased response
to painful stimuli) [21, 25]. However, inconsistencies in using monofilaments for sensory detection thresholds
have been described, including the subjective judgment required by the examiner to determine if there was
pain or not and the subjective pain scores reported by subjects [26, 27]. Other tactile stimulation method

10



2. Background M. Martínez Pinedo

is pressure threshold, which can be assessed using an algometer probe. This probe is pressed against a
predefined skin area with ascending stimulus intensities until pain is reported. While reliable, this method’s
results can be affected by protocol variations such as instrument size and material, application rate, angle,
etc [28, 29].

Thermal testing can range from simple tools such as cold water buckets to specialized thermodes or laser
stimulators These stimuli provide information about factors like temporal summation of pain or conditioned
pain modulation due to their broad range of pain responses. However, specialized equipment is often needed
for accurate stimulation and there is a higher risk of skin overheating or tissue damage compared to other
methods. Accuracy may also be limited by the skin’s biothermal properties [7, 25, 30]. Electrical stimuli
are valued for their precision and control over stimulus intensity, directly targeting nerve fibers specific to
pain reception by selectively activating Aδ axons. These stimuli are useful for studying nerve conduction,
temporal summation of pain, and conditioned pain modulation, although responses may not always correlate
with natural stimuli like heat or cold [7, 21, 30].

The described methods can be employed in Quantitative Sensory Testing (QST) to get more comprehensive
results. This method determines thresholds or stimulus response curves for sensory processing under normal
and pathological conditions. In this type of test, the stimulus is quantified and used to measure percep-
tion. The protocol and interpretation can focus on different characteristics such as the minimum threshold
perceived, localization, threshold perceived as painful, tolerance, among others [24, 30].

2.3 Psychophysics

Psychophysics is the scientific study of the relation between a physical stimuli to the sensation or perception
they produce. This field aims to quantitatively investigate how physical events relate to sensory experiences.
The utility of its application lies on its ability to provide a framework to quantify and describe sensory
systems. Psychophysics can be applied to any sensory system such as hearing, touch taste and even pain.
Following this framework, potential methods to characterize human nociceptive processing involve measuring
psychophysical responses to well defined stimuli [31, 32, 33].

2.3.1 Experimental set-ups

For describing the pain system, one of the main variables is threshold. Several psychophysical paradigms
are available to estimate this measure. A common method to classify the different paradigms is based on
the number of stimulus presented on each trial. In case of one stimulus per trial, the term "yes/no" or
Go/No-Go (GN) is commonly used, while if two or more stimulus alternatives are presented (one of which
is the "target") it is usually talked about a "forced choice" task [32].

In the case of GN procedure, the taget is normally presented on half of the trials, and the observer responds
yes or no on each trial depending on whether or not they perceive the target. These experiments are
prominent in signal detection literature [32].

Forced-choice tasks can be sub-classified into Interval Forced Choice (IFC) to specify procedures in which the
stimulus alternatives are presented in temporal order. The number of response choices, m is an important
parameter as it determines a guessing rate (1/m). Thus the guessing rate of both a yes/no procedure and a
2IFC tends to be considered 0.5 [32].

Another classification is based on the subject’s internal criteria before they respond yes. This phenomena is
mostly seen in GN procedures where based on only one stimulus the subject has to determine whether there
was a perception or not, while 2IFC procedures are considered criterion free. However, 2IFC tasks can also
be prone to a different bias, for instance towards selecting the first interval or the second. Nonetheless, this
sort of biases are observed less frequently [32].
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Figure 2: Representation of the two experimental procedures described. Adapted from [34].

2.3.2 Psychometric function

Psychometric Function (PF) relate the probability of detecting a certain stimulus to its magnitude and give
a description of the subject’s behaviour during a psychophysical task. The shape of the PF is similar across
a wide variety of tasks and is typically well described by a sigmoidal function. Its estimation allows to
determine parameters that summarize behavior, such as the threshold. The sensory or perceptual threshold
corresponds to the point in which the subject perceives the stimulus 50% [32, 35].

In addition to the threshold and slope, other parameters necessary to describe the PF are γ (guessing
rate) and λ (lapsing rate). The guessing rate is typically determined by the psychometric procedure, in a
forced choice task it is usually assumed to be the reciprocal of the number of alternatives. The lapse rate
corresponds to the probability of responding incorrectly when a stimulus level is high enough to be felt, it
relates to alertness or motivation of the subject. As a result of these lapses the PF will have a asymptote to
a value slightly less than one (1− λ) [32]. Taking a guessing rate of 0.5 in the case of no actual perception
and an unknown lapsing rate, a expected confusion matrix for a 2IFC would look like the one presented in
Figure 3.

Figure 3: Values expected for a confusion matrix in a 2IFC task, assuming a guessing rate of 0.5
and a lapsing rate of λ.

Different theories provide a framework to interpret and describe the results from a psychophysical task. Under
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the High Theshold Theory (HTT), the detection of a stimulus depends on the amount of sensory evidence
accumulated by the system, which can fluctuate randomly due to external and internal noise. Detection
occurs when this evidence exceeds a fixed internal threshold. This threshold is set high enough that when
a stimulus of amplitude zero is presented, the probability of exceeding it is also zero. The decision process
relies on binary information: whether the evidence surpasses the threshold or not. The PF under HTT
represents the cumulative normal distribution, indicating the probability that the stimulus intensity exceeds
the threshold [32, 35]. This theory is illustrated in Figure 4.

Figure 4: Probability density with which a stimulus at a given intensity, k, generates different levels
of sensory evidence, following the HTT. In this representation it is assumed that the amount of
sensory evidence is a linear (π + ρx) dependent on the stimulus intensity (x) . Figure adapted from
[32].

Under the Signal Detection Theory (SDT), the critical difference is that there is not a fixed threshold.
Instead, it proposes that sensory mechanisms generate a graded signal for all stimulus intensities, available
to the decision process. This theory uses probability density function for both stimulus and noise and there
is an overlap between them. The subject’s decision is based on the relative amplitude of sensory evidence
from two intervals, where the interval with greater evidence is chosen, and the PF is built as the upper half
of the cumulative normal density function [32, 35].

In line with the assumption of HTT the expression for the PF, Ψ(x), is presented in equation 2.3.2. This
expression differs from the detection probability F (x) as it offers insight into the underlying mechanisms of
the sensory system. The PF thus accounts for task specific factors and performance-related variables, which
may influence the probability function derived directly from the response pairs in psychophysical procedures
[32]. In this equation, the threshold is denoted by α and the slope by β. Parameters related to the tasks
such as the lapse rate (λ) and guessing rate (γ) are also taken into account. From the application of the
formula, a figure similar to 5 can be obtained.

Ψ(x;α, β, γ, λ) = γ + (1− γ − λ)F (x;α, β) (1)

Despite HTT’s critical assumptions being largely discredited in favor of SDT, the expression derived for
HTT is preferred as it distinguishes the term that describe sensory mechanisms (threshold and slope) from
the terms that are determined by the task design and non-sensory characteristics. In HTT, the threshold is
the sensory evidence needed for detection, while in SDT, even though there is no fixed evidence amount for
detection, the term is still used refer to the PF’s location parameter [32, 35].

Additionally, a key requirement for fitting an adequate PF is selecting the appropriate range of stimulus
levels. Ideally, these levels should result in performance ranging from just above chance to nearly 100%
correct [32]. However, in certain sensory systems, such as nociception, a temporal drift can occur, where the
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Figure 5: Example of a PF with a threshold of 1, a guessing rate of 0.25 and a lapse rate of 0.05.
Figure adapted from [32].

threshold appears to increase over time. This drift may be due to factors such as loss of attention, fatigue,
changes in decision criteria, or underlying psychophysical functions. Such changes can affect the estimation
of threshold and slope, making the stimulus selection procedure particularly important [36].

Stimulus selection procedures can be classified into adaptive and non-adaptive methods. Non-adaptive pro-
cedures use a pre-defined set of amplitudes for all stimuli, while adaptive procedures adjust the new stimula-
tion amplitudes based on the preceding stimulus. Adaptive procedures, such as a simple up-down staircase
method, where the amplitude of the next stimulus is increased if the subject responds incorrectly or decreased
if the subject responds correctly, have demonstrated greater efficiency than non-adaptive procedures [32, 36].

2.3.3 Model fitting

To choose a function to estimate the PF, the decision can be based on an a priori theory of the internal
shape of the PF or a posteriori considerations, using the function that most accurately fits the data. The
most common method for fitting the data is Maximum Likelihood Estimation (MLE), which defines the best
fitting PF as the one most likely to replicate the experiment as performed by the subject [32].

MLE is a standard approach to parameter estimation and inference in statistics. It estimates the parameters
by defining the likelihood function, which represents the probability densities most likely to have produced
the observed data:

L(w|y) = f(y|w) (2)

Where f(y|w) denotes the Probability Density Function (PDF) specifying the probability of observing the
data vector y given the parameter w and L(w|y) represents the likelihood of the parameter w given the
observed data y, and is therefore a funcition of w. The value of interest is the parameter vector that
maximizes the likelihood function [37].

In practice, the application of the MLE criterion can be done through fitting a linear model or one of its
variants, such as a Generalized Linear Model (GLM). Linear models provide a way of describing a response
variable in terms of a linear combination of predictor variables. However, GLMs extend linear modeling to
accommodate different types of response variables, such as binary responses, which are particularly suitable
for GN experiments where the answers are yes/no [38, 39]. In these models, the effect of the predictors on
the response is expressed through a linear predictor:
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η = β0 + β1x1 + · · ·+ βqxq (3)

To adapt to different response types, a link function must be defined [38, 39]. The link function g describes
how the mean response, µ is linked to the covariates through the linear predictor:

η = g(µ) (4)

In the case of binary responses, a logit function is often used. This specific type of GLM is termed logistic
regression [38, 39]. In logistic regression, the model is presented as follows:

logit(π) = log

(
p

1− p

)
= β0 + β1x1 + · · ·+ βqxq (5)

A logit is the mathematically inverse of the standard logistic function, which in the case of a PF can be
written as:

FT,s(x) =
1

1 + e−s(x−T )
(6)

Where FT,s is the detection probability, x represents the stimulus intensity, T is the threshold and s is the
slope. Even though theoretically F is described by a cumulative normal distribution, a logistic regression is
a close approximation commonly used due to its easy implementation [32].

2.4 Cortical activity measurements

EEG is a valuable noninvasive tool for assessing pain responses due to its high temporal resolution, clinical
convenience, low cost, potential portability, and ease of maintenance, especially when compared to other
imaging tools such as Functional Magnetic Resonance Imaging (fMRI) [8]. A key characteristic derived from
EEG recordings are the EPs, often referred to as an Event Related Potential (ERP). These are structured,
time-locked responses induced by sensory, motor, or cognitive events. One of the most studied ERPs in the
field of Brain Computer Interface (BCI) is the P300, which presents an observable peak roughly 300 ms after
stimulus onset. The P300 is an induced potential, related not to the physical characteristics of the stimulus,
but to the task of recognizing or perceiving it [40].

EEG has been used in various ways to assess and study pain. In a review conducted my Mussigmann (2022)
different study types are identified, such as those using provoked pain protocols in healthy controls and those
related to resting-state EEG biomarkers associated with chronic pain [41]. In provoked pain tasks, EPs are
commonly described by peaks based on their polarity and are termed N1, N2, and P2 [42]. The temporal
onset of these peaks varies depending on the study, and their shape has proven to be dependent on the
choice of filtering. The first two negative peaks are mainly present in contralateral channels and are usually
reported at 150 to 230 ms after stimulation. P2 is typically a larger central peak occurring between 290 to
415 ms. An example of these peaks and their variation due to filtering is shown in Figure 6 [43].
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Figure 6: Example of nociceptive EP at EEG channel Cz with common average reference with
varying filtering properties. Figure adapted from [43].

Brain structures involved in the processing and perception of pain are termed the pain matrix and include
areas such as the anterior cingulate cortex, primary and secondary somatosensory cortices, insular cortex,
thalamus, and prefrontal cortex [4, 44]. The described peaks mainly originate from the somatosensory
cortices, and their amplitudes are sensitive to damage to nociceptive pathways, making them clinically
useful measures of the integrity of these pathways in the brain. Additionally, they are proportional with
stimulus intensity and can be modulated by factors such as attention or placebo effects [42].

2.5 Analysis of EEG data

EEG data is inherently noisy given that it can be easily contaminated with different artifacts. These artifacts
can be broadly classified into two categories: (1) physiological artifacts, which relate to sources in the human
body such as eye blinks, eye movement, muscle artifacts, electrocardiogram, among others; and (2) non-
physiological artifacts, which relate to external factors such as power line noise, electrode malfunction,
variation in impedances, etc [45]. Consequently, preprocessing is traditionally the first step in EEG analysis,
focusing primarily on artifact identification and removal. After preprocessing, feature extraction is performed
to select the most discriminative features from the data. This process can be highly complex and time-
consuming, often leading to a loss of important information. To address this, approaches using deep learning
have gained popularity to automatically extract discriminative features [46, 47]. The following subsections
will discuss topics related to the analysis and processing of EEG in more detail.

2.5.1 Preprocessing

Different approaches can be followed depending on the study. In the case of ERP analysis, one common
strategy to remove noise is the repeated presentation of stimuli and to average out the noise. A comple-
mentary strategy is to use digital signal processing to remove artifacts. Among these strategies filtering,
baseline correction and artifact identification and removal are common. Additionally, visual inspection of
the raw EEG data by expert EEG researchers continues to be widely used and recommended, however is
both time-consuming and imprecise as it relies on the observers subjective interpretation of artifact, specially
consider a large inter-subject variability inherent of EEG recordings [47, 48].

In ERP analysis, noise is commonly reduced by repeatedly presenting stimuli and averaging the potentials.
Digital signal processing techniques such as filtering, baseline correction, and artifact removal are also used.
Expert visual inspection of raw EEG data is common and usually considered the gold standard, however, it
is highly subjective due to inter-subject variability and time-consuming [47, 48].

In a study conducted by Delorme (2023), performance of different preprocessing techniques were compared
against the gold standard of visual inspection by several raters. It was found that high-pass filtering,
particularly above 0.1Hz, was the method with the best performance [48]. On the other hand, baseline
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correction tends to be considered standard in ERP research, however it has been found that subtracting the
pre-stimulus baseline from the entire epoch can introduce distortions and confounds, ultimately, impacting
negatively the quality of the signal. Nonetheless, filtering and baseline correction may aid in visualizing the
pre-stimulus interval and removing drifts that may obscure peaks of interest [48, 49].

Choosing an appropriate reference site is crucial since EEG signals represent the potential difference between
scalp locations and a reference. The Common Average Reference (CAR), which subtracts the average of all
electrode locations from each electrode, is widely used. Other strategies include using mastoids, earlobes,
nose, Cz, or rereferencing using a reference electrode standardization technique (REST), their selection will
depend on the location of the potential being studied [50].

For specific artifacts like eye blinks, regression can be used to remove them using Electrooculography (EOG)
channels. Independent Component Analysis (ICA) is more commonly used, assuming sources are independent
and non-Gaussian, but it requires a sufficient number of electrodes and manual intervention [51]. Automatic
pipelines are prefered, such as Autoreject, which estimates peak-to-peak thresholds to detect bad trials and
interpolate sensors if necessary. Comparisons with different datasets have shown that Autoreject effectively
detects and interpolates artifacts while maintaining data integrity [52]. However, some argue that rejecting
bad segments may reduce statistical power [48] and that minimal to no preprocessing could be beneficial,
specially in machine learning applications [47].

2.5.2 Machine learning

Machine learning algorithms, particularly artificial neural networks, have proven highly effective in the study
and classification of biomedical signals due to their ability to automatically learn complex features from large
datasets [4]. This is especially useful for large and structured data like EEG [47], where their application
consistently outperforms conventional pattern recognition methods [53].

Traditional preprocessing and feature extraction methods are often complex and time-consuming, leading
to potential loss of critical information. Automated feature extraction algorithms address this issue by
allowing deep learning models to analyze large datasets without the need for extensive preprocessing or
detailed feature extraction, thus preserving essential information. [54]. Consequently, various deep learning
strategies have been adopted in many studies. In EEG research, deep learning is particularly valuable for
single-trial classification tasks, such as P300 detection [53]. Detection is commonly performed by using a
Neural Network (NN), specifically, a Convolutional Neural Network (CNN) is one of the most popular types
of NN applied in this field [47, 55].

CNNs are powerful tools for feature extraction from data matrices [54]. They extract features by convolving
the input data with filters, passing these features through multiple layers for further convolution until reaching
the output layer, which provides the probability of belonging to each class [56]. CNNs can be designed to
operate convolutions along temporal and spatial dimensions separately to extract various types of features
[54]. Among these networks, the model proposed by Lawhern et al. (2018), called EEGNet, is one of the
most successful for single trial ERP detection [57]. Further improvements to EEGNet include integrating a
Recurrent Neural Network (RNN), as seen in [58]. Other research often uses EEGNet as a benchmark, such
as Santamaría-Vázquez et al. (2020), which applied inception modules to EEG analysis [59], and Zhang et
al. (2021), which utilized permutation layers to extract spatiotemporal features [54].

2.6 Improving machine learning models

A significant drawback of using deep learning methods, such as CNNs, is the large number of hyperparame-
ters that define their structure and learning process [56]. These hyperparameters are not learnable and must
be selected manually, often based on experience. However, systematic approaches for hyperparameter opti-
mization are available [60]. In addition to hyperparameter optimization, transfer learning, which leverages
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large available datasets similar to the target, and ensemble models, which combine different architectures,
are common strategies to improve model accuracy. These methods are discussed further below.

2.6.1 Hyper-parameter optimization

Hyperparameters define a model’s overall structure and learning process. Unlike model parameters, hyper-
parameters must be selected beforehand and cannot be learned during training[60]. For CNNs, these include
parameters related to network architecture (e.g., number of layers, kernel size, pooling type), training (e.g.,
epochs, batch size, learning rate), regularization (e.g., dropout probability, weight decay, number of train-
ing epochs), and others such as the loss function and activation function. Input parameters like sampling
frequency and post-stimulus interval length also influence CNN performance [60, 61, 62].

Selecting hyperparameters typically involves empirical evaluation of a few configurations, often resulting in
suboptimal models. Manual exploration of hyperparameter configurations requires significant expertise and is
time-consuming. Automated hyperparameter optimization algorithms offer a more systematic approach but
often have their own hyperparameters, which tend to be easier to choose given that an acceptable performance
can be usually obtained with different configurations. However, CNN training is resource-intensive, and the
large number of hyperparameters makes exhaustive search impractical. Current methods optimize only a
portion of the hyperparameters leading to shorter tuning time but still allowing for the quality of the results
an still be improved [60, 62].

Grid search and random search are common methods for hyperparameter optimization. Grid search evaluates
all possible combinations of predefined hyperparameter values but is impractical for more than three hyper-
parameters and can miss optimal values due to discretization. Random search, while faster and more flexible,
does not require discretization and can explore a larger set of hyperparameters. However, it can be inefficient
as it does not leverage information from previous evaluations and may require extensive computational time
[60, 62].

More advanced methods like Bayesian Optimization (BO) use conditional probability to learn from past eval-
uations and focus on promising hyperparameter regions, enhancing efficiency. BO is more effective because
it concentrates on regions of the hyperparameter space that are likely to yield better performance. However,
BO can struggle with the high computational demands of CNN training and lacks effective parallelization
[60].

Metaheuristic algorithms, inspired by biological theories, are also used for hyperparameter optimization.
Genetic algorithms and Particle Swarm Optimization (PSO) are notable examples. Genetic algorithms
apply evolutionary concepts to iteratively improve hyperparameters by simulating natural selection processes,
including mutation and crossover. PSO uses a swarm of particles that traverse the search space in a semi-
random manner, where the movement of the next iteration is guided by the best-found solutions of each
particle and the overall swarm. PSO is advantageous for parallel computing but is limited to continuous
hyperparameters and can be computationally expensive [60].

For limited time and resources, multifidelity optimization algorithms like successive halving and Hyperband
are preferable. Successive halving, an improvement over random search, starts with a large set of hyper-
parameter configurations evaluated with small budgets. Poor-performing configurations are progressively
discarded, and resources are reallocated to better-performing ones. However, successive halving struggles
with balancing the number of configurations and budget allocations. Hyperband addresses this by divid-
ing the total budget into smaller pieces allocated to configurations in rounds of increasing fidelity. This
method uses successive halving as a subroutine to efficiently allocate computational resources. Despite its ef-
ficiency, Hyperband’s random initial configurations may limit effectiveness, as it does not consider parameter
correlations and can prematurely discard promising solutions if the initial budget is too small [60, 63].

Combining Bayesian Optimization with Hyperband (BOHB) addresses these limitations by guiding the
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selection of configurations in Hyperband with BO. This hybrid approach leverages BO’s efficiency in selecting
promising configurations and Hyperband’s ability to parallelize computations, making it particularly suitable
for CNNs. BOHB’s systematic configuration selection enhances its effectiveness, and its ability to scale well
to handle various hyperparameter types makes it an excellent choice for complex optimization tasks [60, 63].

2.6.2 Transfer learning

In deep neural networks, an interesting behavior is observed when training on images: the first-layer features
often resemble Gabor filters or color blobs. These features are consistent across various tasks, regardless of
the cost function and dataset [64]. Conversely, the features computed by the last layer of a trained network
are highly dependent on the specific dataset and task. Transfer learning leverages this by training a base
network on a base dataset and task, then repurposing the learned features for a second target network on a
target dataset and task. This approach is effective if the features are general enough to be applicable to both
the base and target tasks. Transfer learning is particularly useful when the target dataset is significantly
smaller than the base dataset, as it enables training a large target network without overfitting [65].

The standard transfer learning method involves training a base network and copying its first n layers to
the target network’s first n layers. The remaining layers of the target network are randomly initialized and
trained on the target task. The next step often involves fine-tuning the network for the new task. Depending
on the target dataset’s size, a smaller learning rate and fewer epochs can be used to avoid overfitting. The
decision to fine-tune the first n layers depends on the target dataset’s size and the number of parameters
in those layers. If the target dataset is small and the first n layers have many parameters, fine-tuning may
cause overfitting, so the features are typically left frozen. Conversely, if the target dataset is large or the first
n layers have few parameters, fine-tuning can enhance performance [64, 65].

Transferability is negatively affected by two main issues: where the networks are split and the specialization of
higher-layer features to the original task, which can reduce performance on the target dataset. Additionally,
the effectiveness of feature transfer diminishes as the similarity between target tasks decreases [64].

In a P300 detection study, transfer learning showed slight overall performance improvement in the CNN used,
but significant benefits for disabled subjects. It is hypothesized that subjects with pathological conditions
may struggle with protocol compliance, making pre-training the network on a larger, distinct dataset bene-
ficial [66]. Transfer learning features are especially useful for small target datasets. Furthermore, initializing
with transferred features can improve generalization performance even after extensive fine-tuning on a new
task, suggesting this technique could generally enhance deep neural network performance [64].

2.6.3 Ensembles

Ensemble methods in machine learning involve combining multiple models to improve overall performance.
By aggregating predictions from several individual models, the ensemble can often outperform the best single
model within the group. This technique is based on the idea that while individual models might have different
types of errors, their combined decision-making can lead to more accurate predictions. A classic example is
Random Forest, which combines multiple Decision Trees to achieve better performance than any individual
tree [61].

There are several types of ensemble methods, such as voting classifiers, bagging, boosting, and stacking.
Voting classifiers aggregate predictions from different models, predicting the class with the most votes in
the case of hard voting. A "soft" voting can also be implemented by averaging the outputs of each model.
Bagging involves training the same algorithm on different subsets of the training data, either with replace-
ment (bagging) or without replacement (pasting). Boosting trains models sequentially, each one attempting
to correct the errors of its predecessor, effectively creating a strong learner from multiple weak learners.
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Stacking, or stacked generalization, involves training model to aggregate the predictions of base learners by
learning the best way to combine these predictions [61].

Ensemble methods are particularly useful when individual models are diverse and have different strengths
and weaknesses. They are effective in improving model accuracy, reducing variance, and handling overfitting
issues, especially when the individual models are weak learners or when the training dataset is limited.
By using techniques like bagging, boosting, or stacking, ensembles can enhance predictive performance and
robustness, making them suitable for a wide range of applications where model reliability and accuracy are
critical [61].

2.7 NDT-EP set up

Research at the University relies on intra-epidermal electric stimulation to selectively target nociceptive fibers
[7]. This is accomplished using a custom-made electrode consisting of five 0.2 mm microneedles embedded
in a flexible silicone layer (Figure 7), placed on the hand for stimulation. The electrical stimuli are delivered
as square wave pulses via a one-channel constant current cathode stimulator (NociTRACK AmbuStim) with
a uniformly randomized interstimulus interval of 3.5 to 4.5 seconds. The stimulus amplitudes are selected
using an adaptive randomized procedure developed by Doll et al. (2015) [36].

Figure 7: Custom made electrode used for intra-epidermal electric stimulation. Figure adapted
from [43]

The adaptive procedure for selecting stimulus amplitudes improves upon the classic staircase method. In
a traditional staircase procedure, the subject is presented with a series of stimuli of increasing or decreas-
ing magnitude, uniformly spaced out (temporally or spatially). However, this method can lead to subjects
becoming accustomed to reporting that they perceived or did not perceived the stimuli or developing an-
ticipation or expectation biases due to the predictability of the stimulation. Despite these drawbacks, the
staircase procedure is still useful in the familiarization phase and for obtaining an initial estimate of the
stimulation range [36].

The adaptive randomized procedure by Doll et al. begins by defining a vector of k amplitudes, each separated
by a distance s (in mA). For each stimulation, one amplitude is randomly chosen from the vector. Based on
the subject’s response, the next vector of amplitudes shifts towards smaller values if the stimulus is perceived
(by a dcorrect amount) or towards larger values if it is not perceived (by a dincorrect amount). The values
for dcorrect and dincorrect are set such that dincorrect/(dcorrect + dincorrect) = pthreshold. In a GN procedure,
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where the perceptual threshold is defined as the value at which 50% of stimuli are correctly classified, dcorrect
and dincorrect are equal. In contrast, in a 2IFC task, where the threshold is set at 75% correct classification,
dincorrect = 3 ∗ dcorrect [5, 36, 43].

This approach allows for the estimation of the psychometric curve and the associated parameters such as
the Nociceptive Detection Threshold (NDT) by analyzing stimulus-response pairs, minimizing biases due to
expectation, and ensuring stimulation around the perceptual threshold. The method is illustrated in figure
8.

Figure 8: Adaptive staircase procedure proposed by [36] used for selecting stimuli during the thresh-
old tracking experiments.

The simulator is controlled via Bluetooth using a LabView application on a computer, which sends the
stimulus sequences to the stimulator. This program also supports Multiple Threshold Tracking (MTT),
which allows for the simultaneous tracking of perceptual thresholds using different stimulation characteristics.
Multiple stimulus settings are defined, and the stimulus type is randomly alternated to reduce predictability.
The use of MTT aims to avoid differences in values due to non-stationarities of the nociceptive system [36].

Currently, perception reports rely on a button press, requiring patients to remain focused, to keep the
provided button pressed during the experiment and to release when they perceive the stimulation. However,
this approach is dependent on the subject’s internal criterion and attention. A fully automated approach was
created to facilitate an objective and accurate assessment of thresholds, particularly in patient populations
where perception report may be challenging. A deep neural network was implemented to detect stimulus
perception based on EEG, replacing manual perception responses. The network performs a 2IFC task using
pre- and post-stimulus intervals, instead of the GN procedure conducted by the subject. This difference
addresses non-stationarities in the EEG and reduces calibration bias introduced by cross-subject application
of the neural network (since the classification score is not calibrated per subject). The method was tested
using 32 electrodes in a proof-of-concept study and it was demonstrated that neural networks can accurately
estimate perceptual thresholds and control adaptive stimulus sequences [5].

2.8 Implications and Objectives

The automatic classification of nociceptive detection thresholds, while promising, has so far been tested only
in a small patient group (n=8) using 32 EEG-electrodes. However, fitting this many EEG-electrodes and
ensuring good impedance values for each is both time-consuming and uncomfortable for subjects, limiting its
practicality for clinical applications [5]. To enhance feasibility and patient comfort, future research should
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focus on adapting this automated method so that it relies on fewer electrodes while maintaining a sufficient
accuracy. Studies in P300 detection for various BCI applications have successfully employed as few as 8
electrodes, achieving strong classification metrics [59, 58]. It is hypothesized that reducing the number of
electrodes further could still maintain signal detection accuracy under certain conditions [66].

Considering this, the feasibility of tracking the nociceptive threshold in real-time with the information from
only 8 channels of interest is explored. The channels were selected based on the known distribution of the
nociceptive EPs, channels F3, Fz, F4, T7, C3, Cz, C4, and T8 were used given that the potentials are more
pronounced on these areas. The objectives treated through this report are:

1. To improve the performance of the previously used CNN by exploring different archi-
tectures and performance-increasing strategies. This is done in order to obtain an optimized
classifier which will be used in further testing.

2. To explore the accuracy of the neural network model in estimating nociceptive thresholds
by comparing the thresholds reported by subjects to those predicted by the model using
new experimental data from 8 EEG electrodes. This objective is guided by the following
questions:

a Is the network able to reliably distinguish between perceived and non-perceived stimuli when
compared against subject responses?

b How do NDT estimates from subjects’ GN task and network’s 2IFC task compare in terms of
reliability across subjects and general values?

c As an additional measure of the network’s classification ability, Is it possible to obtain the expected
EP shape under both threshold tracking procedures and how do they compare?

3. To explore the performance of the neural network model in real-time nociceptive threshold
tracking without the performance of concurrent physical tasks. This objective is set given
that a question that may arise is whether the network’s ability to perform is primarily reliant on the
behavior related to the GN task. Questions related to this objective are the following:

a When the two networks are used concurrently, is it possible to obtain coherent NDT values?

b How does the overall performance of the two networks relate to each other in terms of agreement
and differences in the estimated parameters?

c How do the EPs compare between the two networks’ estimations?

Finally, a secondary objective is to explore additional relevant descriptors, such as the psychophys-
ical curve and its related slope, to gain insights into the neural network’s capability to estimate
these parameters accurately. By addressing the previously stated objectives and questions, the overar-
ching question this study aims to answer is:

Is it possible to automatically and in real-time track the nociceptive detection probability using
only the eight selected EEG electrodes?
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3 Methods

To conduct this study, three main stages were performed: (1) exploration of neural networks and meth-
ods to improve their performance, (2) selection of parameters through simulations, and (3) application of
the network in real-time during experiments conducted at the university. This chapter details the specific
methodologies followed during each stage.

3.1 Selection of a neural network

3.1.1 Datasets

During the initial stage of selecting an optimal NN, two datasets were available:

• DS1(training dataset): This training dataset comprised EEG measurements from 32 electrodes ob-
tained from 64 healthy participants at St. Antonius Hospital in Nieuwegein. Each participant per-
formed two NDT-EP measurements, one on each hand. Each experiment consisted in approximately
460 stimuli. MTT was performed using three configurations: two with double pulses at a 10 ms in-
terpulse interval and one with a 40 ms interval. The mean age of the subjects was 45.9 years (SD =
16.9), with 35 females. The EEG recordings followed the standard 10-20 montage.

• DS2(testing dataset): This dataset was exclusively used for testing, it included 32 EEG-electrode
measurements from 10 healthy participants recorded at the University of Twente. Each participant
completed a NDT-EP measurement consisting of a total of 150 stimuli, with double-pulse stimuli at a
10ms interpulse interval. The mean age of subjects was 24.4 years (SD = 1.85), with 2 females.

For both testing and most of the training phases, the eight channels of interest were subsampled from the
32 available electrodes.

3.1.2 Architectures

In order to select an architecture fitted for the classification of the noceceptive EPs, various neural network
architectures from literature were selected and tested, focusing on those used for P300 response detection
and compared against EEGNet. These architectures were tested using 10-fold cross-validation with 9 epochs
on DS1. All hyperparameters were set according to van den Berg (2022)[5], except for the frequency rate
after downsampling and dropout rate, which used the values specified by each architecture. The following
architectures were tested:

EEGNet [57]

EEGNet is a compact, robust CNN designed for BCI classification tasks. In the study were it was propossed,
the input data is first preprocessed with a 1-40 Hz band-pass filter, downsampled to 128 Hz, and the signals
are extracted from 0 to 1 second post-stimulus. The architecture includes two main blocks: sequential 2D and
depthwise convolutions for spatial filtering, followed by separable convolution. It uses the Adam optimizer,
categorical cross-entropy loss function, 500 epochs of training, and a 0.25 dropout rate to prevent overfitting
in cross-subject applications. This architecture has successfully been applied to nociceptive EPs in [5] with
minor changes, such as a 0.1-40 Hz band-pass filter, 512 Hz downsampling, a depthwise convolution depth of
4, 9 training epochs, a batch size of 128, and a learning rate of 0.1 reduced by a factor of 0.2 every 3 epochs.

EEG-Inception [59]

EEG-Inception is a novel CNN tailored for EEG signal and ERP processing, incorporating inception modules
inspired by image classification networks to capture dependencies between features at different scales. In
the original study, the raw EEG data is first downsampled to 128 Hz, band-pass filtered between 0.5 and 45
Hz, rereferenced to CAR and processed with a spatial filter to improve the Signal-to-Noise Ratio (SNR) of
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ERPs. Epochs are extracted from 0 to 1000 ms after stimulus onset, using eight electrodes. The architecture
of EEG-Inception leverages inception modules to adapt to the EEG data context. It employs concurrent
convolutions with different kernel sizes, which are then concatenated and pooled. EEG-Inception is trained
using the Adam optimizer, categorical cross-entropy loss function, with a batch size of 1024 and a learning
rate of 0.001. To prevent overfitting the netwrok is trained over a maximum of 500 epochs with early stopping
using a patience of 10 and a dropout rate of 0.25. EEG-Inception showed an improvement of about 5.1% in
performance over EEGNet, demonstrating its superior ability to handle complex EEG signal patterns.

P3Cnet [66]

P3CNet focuses on optimizing ERP classification using a dataset of signals preprocessed with a 50 Hz notch-
filter and a band-pass filter between 2-30 Hz, downsampled to 140 Hz. The architecture comprises three
convolutional layers with different kernel sizes, designed to capture a broad range of features. The model
uses the Adam optimizer with a learning rate of 0.0005, and early stopping with a patience of 45, training
for up to 1000 epochs with a batch size of 128 and dropout probabilities ranging from 0.2 to 0.4 in different
layers. P3CNet outperformed the BCIAUT CNN model (an adaptation of EEGNet) on both the dataset it
was optimized for and on their newly recorded dataset.

P3Net [67]

P3Net adopts a systematic approach to model selection, examining a wide range of deep learning architectures
to identify the best-performing model for P300 ERP classification. This comprehensive method evaluated
232 CNNs, 36 Long short-term memory (LSTM)s, and 320 hybrid CNN-LSTM models across four datasets,
ultimately selecting P3Net. The chosen architecture features two convolutional layers with 32 and 16 filters of
7x7 kernel size, followed by two fully connected layers. The EEG data is downsampled to 128 Hz, with training
set to 100 epochs, a batch size of 64, and a dropout rate of 0.1. P3Net demonstrated significant performance
improvements over EEGNet for most subjects in the dataset, with statistically significant accuracy gains
according to the Wilcoxon signed-rank test.

RNN-EEGNet [58]

RNN-EEGNet integrates a RNN with CNNs to leverage RNNs’ ability to incorporate temporal information,
enhancing the detection of ERP features with time-related sequences of peaks and patterns. The dataset
is preprocessed with a band-pass filter of 2-30 Hz and downsampled to 250 Hz, focusing on the 0-600 ms
post-stimulus period. The model uses the Adam optimizer with a learning rate of 0.0005, categorical cross-
entropy loss, and a dropout rate of 0.25. Training is set for 1000 epochs with early stopping and a patience
of 100. RNN-EEGNet showed a slight overall improvement in accuracy compared to EEGNet, indicating
some benefits of incorporating temporal dynamics into EEG signal processing.

PLNet [54]

PLNet aims to enhance accuracy by considering the phase-locked characteristics of ERPs, often overlooked
by conventional CNNs. EEG data is sampled at 1000 Hz, band-pass filtered between 0.3-28 Hz, and down-
sampled to 128 Hz. The architecture consists of three main modules: two for temporal feature extraction,
one for spatial features, and a classification module. The use of permutation layers and vector kernels allows
PLNet to focus on domain-specific characteristics. PLNet achieved superior performance compared to ex-
isting deep learning models like EEGNet, demonstrating its effectiveness in capturing phase-locked features
for improved ERP classification.

A summary of the information of the selected architectures is presented in table 1. Complementary infor-
mation about the architectures is found in Appendix A.
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Network Preprocessing Architecture Training Details Remarks

EEGnet [57]

- 1-40 Hz band-pass filter
- Downsampled to 128 Hz
- Signals from 0 to 1s post-stimulus.
- 32 EEG electrodes

Two main blocks: sequential 2D
and depthwise convolutions for

spatial filtering, followed by
separable convolution.

- Optimizer: Adam
- Loss: Categorical Cross-Entropy
- Epochs: 500
- Early stopping
- Batch Size: 128
- Dropout Rate: 0.25

Wide applicability in different
BCI tasks.

EEGnet for
nociceptive EPs[5]

- 0.1-40 Hz band-pass filter
- Downsampled to 512 Hz
- Rereferenced to CAR
- Epochs: 0.05 to 1.05s post-stimulus.
- 32 EEG electrodes

EEGnet architecture with a
depthwise convolution of

depth 4

- Optimizer: Adam
- Loss: Categorical Cross-Entropy
- Epochs: 9
- Batch Size: 128
- Learning Rate: 0.1, reduced by
0.2 every 3 epochs

Accurately identified
nociceptive EPs

EEG-Inception [59]

- 0.5-45Hz band-pass filter
- Downsampled to 128 Hz
- Rereferenced to CAR
- Spatial filtering for improved SNR
- Epochs from 0 to 1s post-stimulus
- 8 EEG electrodes (F7,Cz,Pz,P3,P4,
PO7, PO8, Oz, ground at Fp)

Application of inception modules:
concurrent convolutions with

different kernel sizes, which are
then concatenated and pooled

- Optimizer: Adam
- Loss: Categorical Cross-Entropy
- Epochs: 500
- Early stopping (patience = 10)
- Batch Size: 1024
- Learning Rate: 0.001
- Dropout Rate: 0.25

5.1% improvement over
EEGNet

P3CNet [66]

- 2-30 Hz band-pass filter
- 50 Hz notch-filter
- Downsampled to 140 Hz
- Epochs: -200 to 1200ms-post stimulus
- 8 EEG electrodes (C3, Cz,C4, CPz,
P3, Pz, P4, Poz, groud at Afz)

Three convolutional layers with
different kernel sizes for feature

extraction

- Optimizer: Adam
- Loss: Categorical Cross-Entropy
- Epochs:1000
- Early stopping (patience = 45)
- Batch Size: 128
- Learning Rate: 0.0005
- Dropout: 0.2 to 0.4

Outperformed BCIAUT CNN
(an adaptation of EEGNet) on

original and new datasets.

P3Net [67]

- 0.1-15Hz band-pass filter
- Downsampled to 128 Hz
- Epochs from 0-600 ms post-stimulus
- 16 EEG electrodes

Two convolutional layers with
32 and 16 filters (7x7 kernel
size), followed by two fully

connected layers.

- Optimizer: Adam
- Loss: Categorical Cross-Entropy
- Epochs:1000
- Early stopping (patience = 100)
- Batch size: 64
- Learning Rate: 0.0005
- Dropout Rate: 0.25

Significant performance
improvement over EEGNet

RNN-EEGNet [58]

- 2-30 Hz band-pass filter
- Downsampled to 250 Hz-
- Epochs from 0-600 ms post-stimulus
- 8 EEG electrodes ( C3, Cz, C4, CPz,
P3, Pz, P4, POz)

Combination of RNN and CNN
layers to leverage temporal

and spatial feature extraction.

- Optimizer: Adam
- Loss: Categorical Cross-Entropy
- Learning Rate: 0.0005
- Early stopping (patience=100)
- Dropout Rate: 0.25

Benefits from temporal
dynamics in EEG signal

processing

PLNet [54]

- 0.3-28 Hz band-pass filter
- Downsampled to 128 Hz
- Signals from 0 to 1s post-stimulus.
- 60 EEG electrodes

Permutation layers and vector
kernels for domain-specific

feature capture.

- Optimizer: Adam
- Loss: Categorical Cross-Entropy
- Early stopping (patience=20)
- Dropout Rate: 0.25 to 0.5

Effective in capturing phase-
locked features for ERP

classification.

Table 1: Summary of the used architectures with the hyperparameters used in each study.

3.1.3 Performance tuning strategy

Hyperparameter tuning focused on the parameters that significantly impact performance according to litera-
ture and exhibit the most variation across different architectures. Parameters such as the optimizer, pooling
type, and activation function, which appeared to be consistent across prior studies, were not adjusted. In-
stead, tuning was focused on parameters like learning rate and dropout probability, which varied significantly
among the architectures listed in Table 1. The number of training epochs was not directly tuned; instead,
early stopping was implemented to prevent overfitting. Early stopping interrupts training when validation
loss stops improving, with the patience value determining the number of epochs to wait for before stopping.
This approach balances optimizing training time and preventing overtraining. The search space for the
selected parameters is detailed in Table 2.
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Hyperparameter type Hyperparameter Search space
Training Batch size [32, 64, 128, 1024]

Learning rate [1e-5: 1e-1] (logarithmic scale)
Input size Sampling frequency [128, 140, 250, 500, 512]

Window start [0.05:0.35]
Window end [0.6:1.5]

Regularization Dropout probability [0.1:0.6]
Dropout type ["SpatialDropout2D", "Dropout", "AlphaDropout"]

Patience [2:20]

Table 2: Hyperparameters selected for hyperparameter tuning along with their search spaces.

Initially, the hyperparameters related to training and input size are explored using BOHB as implemented
by the python library BOHB-HPO. In this library a budget is defined as a integer which in the case of
NN is usually defined as the number of epochs. In this study, the computational budget was related to
the number of folds in cross-validation. Additionally, the maximum budget determines the number of com-
binations being tested by the algorithm, based on this, a maximum budget of 100 is selected as it allows
for testing a total of 143 hyperparameter combinations. To ensure a maximum of 10 folds, a function
(nfolds = Budgetlog(10)/ log(MaxBudget)) was used to map the assigned budget to a range of 1 to 10 folds.
With this budget, the algorithm initially selects 81 random combinations to explore the search space. Suc-
cessive halving is applied, with two-thirds of the non-promising configurations being discarded and assigning
more resources to the best ones. After this process, additional rounds are conducted where the selected
combinations are based on the regions of interest identified by the BO algorithm.

Once the optimal values for the selected training and input size hyperparameters are determined, these values
are used in the second round of hyperparameter tuning related to regularization parameters. A maximum
budget of 30 is chosen, allowing for three different groups of hyperparameter combinations and a total of
23 combinations. Similarly, these budget values are adjusted to a maximum of a 10-fold cross-validation.
To implement early stopping in hyperparameter tuning, an additional term related to the time needed to
complete the run is used to prevent the methods from being biased towards higher values of patience that
contribute little to performance.

After this initial search, each hyperparameter is changed from its optimal value while keeping the rest fixed
to determine which hyperparameter potentially has the most significant influence on overall performance.
Once identified, hyperparameter tuning using only BO (implemented by the hyperopt library) is employed
to circumvent the problem of prematurely discarding promising results. To enhance time efficiency, parallel
computing is implemented, with each fold running in a different thread.

Once the optimal network is chosen in terms of architecture and hyperparameters, other strategies such as
transfer learning and ensembles are tested. Transfer learning is performed using the dataset presented by
Santamaría-Vázquez et al., which includes data from 73 subjects (42 healthy, 31 with a disability) using an
ERP-based speller recorded at 256 Hz, using 8 channels (’FZ’, ’CZ’, ’PZ’, ’P3’, ’P4’, ’PO7’, ’PO8’, ’OZ’),
amounting to 701,615 observations [59]. The optimal network previously selected is first trained with this
dataset and then fine-tuned with the dataset already used for training. In the case of ensembles, the networks
with the highest metrics are combined by averaging the outputs to build a new classifier. These networks
are tested with DS2. The selected strategy is then further improved by implementing longer training.

3.2 Simulations

To explore the effects of various parameters associated with the GN and 2IFC procedures, as well as the
impact of varying accuracy values, a Python class is implemented to simulate a threshold tracking procedure.

26



3. Methods M. Martínez Pinedo

In these simulations, given a threshold and slope, the method constructs the PF curve. Using the stimulation
amplitude, the PF maps stimulus intensity to the probability of detecting the stimulus, simulating in this way
subjects responses. Other input parameters are related to the size of the vector from which the stimulation
amplitude are chosen (k) the step (dcorrect and dincorrect) used to shift the amplitudes of the vector depending
on the response and the distance between each of the vector elements (s). In the case of a 2IFC task dincorrect
is set to be three times 3 ∗ dcorrect, to account for the high guessing rate in the case of non-perceived stimuli.
An additional parameter, termed "agreement probability" is introduced to assess the effects of accuracy. To
implement the agreement probability, first a decision (1 or 0) is made according to the stimulus intensity and
the probability value given by the PF function, after this, the "agreement probability" is used to determine
if the made decision will be altered or not. From this process a set of stimulus response pairs is created.
A GLM is then fitted in the simulated data, considering responses, stimuli amplitues and trial number, in
order to obtain the simulated PF, from which a threshold and a slope can be estimated.

First, the effects of varying k, s, and dcorrect on how closely the threshold estimates of the 2IFC match the
real threshold obtained from a GN procedure are studied. Two vector sizes (5 and 7) are tested, with s values
of 0.008 (the minimum amplitude supported by the stimulator), 0.01, 0.015, 0.02, 0.025, and 0.03 explored.
Similarly, dcorrect values are varied within the range of 0.008 to 0.035. All possible combinations of these
values for each vector size are tested with agreement probabilities ranging from 0.5 to 1 in steps of 0.05. The
sum of the absolute differences in thresholds across tested agreement probabilities is used as a metric for
comparison, with the lowest value being ideal.

To assess the effects of accuracy and determine a theoretical minimum accuracy required for experiments,
both slope and threshold values are obtained after simulating the threshold tracking procedure data with
agreement probabilities ranging from 0.5 to 1. From this stage, the optimal parameters for the 2IFC task
are chosen, and the minimum expected accuracy needed for reliable threshold estimates is determined as the
value at which the estimates start to converge towards the real threshold.

3.3 Experiments

The following section outlines the experimental setup and methodology employed in this study.

3.3.1 Participants

The study is conducted only on healthy participants recruited at the University of Twente. Before par-
ticipation, subjects receive all relevant information through an information brochure (Appendix B). The
exclusion criteria include skin abnormalities, abnormal blood pressure, heart problems, diabetes, chronic
pain, implanted stimulation or electronic devices such as pacemakers, pregnancy, and the use of stimulants,
narcotics, or analgesic drugs within 24 hours before the experiment, as well as any pain complaints at the
time of the experiments. In total, 15 subjects with an average age of 24.06 years (std = 1.83, 6 females)
participate in the study. Ethical approval for conducting this study is provided by the Natural Sciences &
Engineering Science committee of the University of Twente.

3.3.2 Experimental procedure

The NDT-EP method is followed, using a TMSi 32-channel EEG low-noise cap with only the electrodes
F4, Fz, F3, C3, Cz, C4, T7, and T8 enabled and maintaining impedances below 5kΩ. Intra-epidermal
electric stimulation is applied with double pulse stimulation at a 10ms interpulse interval. To evaluate the
performance of the developed network against the usual button press method and when no concurrent motor
task is performed, two tasks are conducted by each subject. The definition of these tasks and their parameters
are based on the experiments conducted by van den Berg, et al. [5]. Each subject completes both tasks in
a randomized order, with 4-block randomization ensuring a balanced distribution. Detailed descriptions of
each task are provided below:
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Task 1

The perceptual threshold based on reported stimulus perception is compared to the perceptual threshold
estimated by the neural network. Participants perform a GN task by pressing a button and briefly releasing
it when a stimulus is perceived. Simultaneously, the selected neural network performs a 2IFC classification
task where pre- and post-stimulus intervals are given. Multiple threshold tracking is used to independently
track the perceptual threshold via the GN task and the threshold estimated by the neural network. Stim-
ulus amplitudes are selected by two independent adaptive methods of limits in randomized order to center
amplitudes around the perceptual threshold, with one using neural network classification as feedback and
the other using the button release. A total of 200 stimuli are presented

Task 2

Instead of using a button to report the perceived stimuli, participants count each stimulus when perceived.
To simplify the task, participants report the number of stimuli they have felt at various intervals during the
procedure. The task is divided, in most cases, into two segments, but depending on the participant’s request,
the report of the count can be done on three occasions during the procedure. Multiple threshold tracking is
used to independently track two pain thresholds using the same neural network. A total of 200 stimuli are
presented.

A more detailed description of the followed protocol is found in appendix C.

3.3.3 Analysis

The analysis of the obtained data, including figures, is done entirely using python libraries. The code is avail-
able in the BSS Git repository. The neural network’s performance is initially assessed using the obtained
experimental data, which was recorded using 8 EEG electrodes. Specifically, the network’s ability to distin-
guish between pre- and post-stimulus epochs, in cases where subjects reported perception, is evaluated. This
method aligns with the original training and evaluation of the networks. A confusion matrix is constructed
to visualize this performance, and its significance is tested using a chi2 test from the sci-py library. In this
study, a 5% significance level is applied to all statistical tests.

For each individual experiment, the initial analysis involves visualizing the tracking procedure (see Appendix
D), fitting the PF (which allows to obtain the NDT, slope and drift), and extracting and plotting the EPs. To
estimate the PF, a GLM with a logit link function is used as implemented by the statsmodel library. In this
model, the dependent variable is the participant’s response, while the explanatory variables are the stimulus
amplitudes and trial numbers. An additional variance weight term is included to prevent underestimation
of the threshold in the 2IFC procedure. This term assumes that a larger weight (bounded between 0 and
1) corresponds to a more credible observation. In this context, network responses indicating a perceived
stimulus are given a weight of 1 (as they are considered more credible), while non-perceived stimuli are
weighted at 0.5 to account for the 50% guessing rate inherent in the 2IFC task. For plotting the EPs, the
signal is cleaned using the autoreject algorithm from the mne-python library.

For the group analysis, both independent threshold tracking procedures obtained in each task are initially
visualized using boxplots to display the NDT, slope, and drift. These values are further analyzed by testing for
significant differences in the means using a chi2 test and assessed for agreement by calculating the Intraclass
Correlation Coefficient (ICC) according to equation 3.3.3. This formula refers to the Two-way mixed effects,
consistency, single rater/measurement or ICC(3, 1), which was determined to be the most suitable for this
case [68]. In equation 3.3.3, MSB denotes the mean square between subjects, MSR represents the mean
square of the residual, and k is the number of classes (in this case, 2) . To further visualize agreement, Bland-
Altman plots are constructed. Additionally, the obtained EPs are examined using butterfly plots and Global
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Field Power (GFP), which allows to identify time points with the highest overall amplitude [69]. Individual
channels of interest are also plotted and contrasts between the perceived and non-percieved EPs for both
GN and 2IFC procedures are tested using cluster-based non-parametric statistical testing. Topographical
maps of the EPs are created at time steps identified through the GFP analysis to understand the spatial
localization of responses.

ICC =
MSB −MSR

MSB + (k − 1) ∗MSR
(7)

For Task 1, an additional analysis is conducted to assess the network’s performance during real-time appli-
cation. A confusion matrix is constructed using the button responses as true labels and the outputs from
the NN application as the predictions. In Task 2, an additional analysis involves visualizing the participants’
reported counts and calculating the ICC between reported counts in each half of the experiment to assess
the reliability of the NN throughout the task.
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4 Results

The results obtained from this work are divided into three stages: (1) exploring neural networks and methods
to improve their performance, (2) conducting simulations to select parameters for the experiments, and (3)
applying the network in real-time during the experiments.

4.1 Selection of an improved neural network

The metrics from the initial exploration of the previously used network with all 32 EEG electrodes is shown
in table 3. This table also presents the performance metrics when the network was applied to the eight
(subpsampled) electrodes of interest. A noticeable drop in average of approximately 5% is seen due to
the subsampling. These initial performance metrics served as comparison points to assess changes and
improvements to the networks.

Sampling frequency Hyperparameters Av. Loss Av. Accuracy Best loss Best accuracy
512 van den Berg, 2022 [5] 0.52 (0.056) 0.73 (0.039) 0.44 0.79632 electrodes 128 Lawhern, 2018 [57] 0.52 (0.055) 0.74 (0.038) 0.43 0.798
512 van den Berg, 2022 [5] 0.60 (0.046) 0.69 (0.029) 0.50 0.768 electrodes 128 Lawhern, 2018 [57] 0.59 (0.043) 0.69 (0.038) 0.52 0.76

Table 3: Results from the initial exploration of the neural networks with all 32 electrodes and a
subsample of eight electrodes of interest.

Several other architectures were implemented and evaluated using DS1, with the performance metrics from
a 10-fold cross-validation summarized in Table 4. The EEG-Inception network showed a 2% increase in
accuracy compared to the obtained baseline. While the accuracy of PLnet remained similar to that of
EEGnet, PLnet exhibited slightly better performance, as indicated by a marginally lower loss. The remaining
networks tested showed accuracy values slightly below those of EEGnet. Due to its superior improvement in
accuracy and loss the Inception network was selected for further exploration. EEGnet was also retained for
comparison purposes after performing hyperparameter tuning.

Network Average Loss Average Accuracy Best Loss Best Accuracy
Inception [59] 0.562 (0.052) 0.714 (0.032) 0.478 0.771

P3Cnet [66] 0.604 (0.038) 0.681 (0.027) 0.538 0.726
P3net [67] 0.602 (0.053) 0.686 (0.035) 0.496 0.768
PLnet [54] 0.577 (0.037) 0.697 (0.027) 0.495 0.758

RNN - EEGnet [58] 0.667 (0.157) 0.658 (0.057) 0.504 0.751

Table 4: Results from testing different architectures obtained from literature.

In the first round of hyperparameter tuning, which focused on training parameters and input size, the values
that resulted in the best metrics are described in Table 5. The evaluation of these parameters using 10-fold
cross-validation with DS1 is shown in Table 6. Little to no improvement during this round of hyperparameter
tuning is observed. EEGnet’s average accuracy decreased slightly by around 1% while EEG-Inception showed
a minimal increase of 0.3%.

Network Batch Size Learning Rate Sampling Freq [Hz] Window Start [s] Window end [s]
EEGnet 64 0.003 250 0.25 1.49
Inception 64 0.05 140 0.35 1.3

Table 5: Values for the best performing parameters after the first round of hyperparameter tuning.
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Network Average Loss Average Accuracy Best Loss Best Accuracy
EEGnet 0.589 (0.0447) 0.682 (0.0428) 0.524 0.729
Inception 0.570 (0.065) 0.717 (0.0406) 0.472 0.779

Table 6: Results from testing the best found hyperparameters described in Table 5 with 10-fold
cross validation.

Using the hyperparameters listed in Table 5, a second round of hyperparameter tuning focused on regulariza-
tion parameters was conducted. For EEGnet, the optimal hyperparameters identified were a patience value
of 8 for early stopping, a dropout rate of 0.18, and the use of "SpatialDropout2D" as the dropout method.
For Inception, the selected hyperparameters were a patience value of 2, a dropout rate of 0.21, and also
"SpatialDropout2D". The performance results from the 10-fold validation are shown in 7. Here, a consisted
performance of EEGnet compared to the metrics obtained before tuning is observed. However, for EEG-
Inception, a slight decrease in accuracy of about 1%was observed after applying the tuned hyperparameters,
similar to the results seen in the previous round of tuning.

Network Average Loss Average Accuracy Best Loss Best Accuracy
EEGnet 0.566 (0.0418) 0.699 (0.0399) 0.517 0.744
Inception 0.577 (0.0463) 0.699 (0.0329) 0.498 0.765

Table 7: Results from testing the best-found hyperparameters after improving the regularization
parameters with 10-fold cross-validation.

Window size appeared to have the most significant impact on network performance. To test this, each hyper-
parameter was varied from the optimal value while keeping the others fixed. Since Inception outperformed
EEGnet, further tuning was done only with this network. Another round of hyperparameter tuning using BO
resulted in selecting a window size between 0.05 and 1.4 seconds post-stimulus. The 10-fold cross validation
of this last hyperparameter tuning resulted in an average loss of 0.536 (std=0.05), an average accuracy of
0.728 (std=0.028), which constitutes a modest increase in accuracy of about 1%. The performance of this
tuned network was compared with a network trained with transfer learning (with and without fine-tuning
with a window size of 1 second), an ensemble network built by averaging the outputs of EEGnet, PLnet,
and Inception (the best-performing networks according to Table 4), and the networks with the original
parameters. Results of this comparison on dataset DS2 are shown in Table 8.

Network Loss Accuracy
Inception (tuned window) 0.526 0.735

Transfer learning + fine tuning 0.571 0.731
Transfer learning 0.606 0.718

Ensemble (EEGnet, Inception and PLnet) 0.548 0.710
Inception 0.547 0.709
EEGnet 0.591 0.695

Table 8: Comparison of the best-tuned network with other strategies to improve network perfor-
mance.

Based on the results shown, the Inception network with a tuned window was chosen as the best model, since
it represents a 4% increase in accuracy when compared to the application of the same dataset on the original
EEGnet. This model was then trained for a longer period on DS1, with a patience of 25 and a duration
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of 200 epochs. After this, the trained network was tested again on DS2, resulting in a loss of 0.516 and an
accuracy of 0.759. This trained network was used for further experiments.

4.2 Simulations

Simulations of the GN and 2IFC threshold estimation procedures were carried out to explore the impact of
various parameters. The simulations evaluated differences in estimated thresholds by varying factors such
as the size of the current amplitude vector, the distance between vector elements, and the step size used
to adjust the vector in subsequent trials. For each combination of step and distance between elements, the
difference between the threshold obtained from the simulation and the real value were evaluated. These
difference was calculated for varying simulated accuracies and their sum is shown in Figure 9.

Figure 9: Effects of vector size, distance between elements, and step size on the accuracy of threshold
estimation. Lower values indicate a more accurate estimated threshold.

In addition, the potential effects of different accuracy values for a machine learning model were explored,
as shown in Figure 10. This analysis helped establish a possible minimum accuracy standard for evaluating
the networks. For threshold estimates, a minimum accuracy around 70% appeared to be sufficient to yield
reliable threshold estimates. Conversely, achieving an accuracy higher than 90% seemed to be necessary for
the estimated slope to approximate real values.

Figure 10: Expected impact of neural network accuracy on threshold estimation. The gray dotted
line represents the threshold and slope obtained from the real experiment. The red dotted line
corresponds to the threshold and slope from simulated GN data using experimental parameters. The
blue and orange lines show the estimated threshold and slope over different agreement probabilities
for the simulation of a 2IFC procedure.
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Based on the results obtained here, the parameters listed in table 9 were selected for the experiments, which
align with those proposed in [5].

Procedure Vector Size Distance Between Elements Step
GN 5 0.025 0.025

2IFC (NN) 7 0.008 0.008 (0.024 incorrect)

Table 9: Selected parameters for the real-time experiments for each procedure. The GN procedure
corresponds to the subject’s response, and the 2IFC procedure relates to the neural network responses.

4.3 Experimental results

All participants successfully completed the two proposed tasks. However, there were specific issues with data
collection for some subjects. For Subjects 3 and 5, the T6 electrode was broken, therefore 7 electrodes were
active instead of the intended 8. Additionally, Subject 1 was excluded from the analysis of Task 2 due to a
damaged cable, which lead to unreliable results from this test. Furthermore, the data for Subject 4 during
Task 1 was not recorded correctly because of an error during task setup, which resulted in the settings from
task 2 being mistakenly used.

The performance of the network was evaluated using the recorded dataset, which used only the eight elec-
trodes of interest. Figure 11 shows the metrics related to the classification of pre- and post-stimulus activity
in the subset of stimuli marked as felt by the subject. An overall accuracy of 71% is seen with a significant
association between the predicted and actual classes (p<0.001). Compared to the accuracy obtained in the
test set, a drop of 4% is seen. The network appears to be slightly better at classifying post-stimuli compared
to pre-stimuli intervals.

Figure 11: Neural network performance in classifying pre- and post-stimulus activity for stimuli
marked as felt in the recorded dataset.

Further analysis of the data obtained during the experiments is divided into the following sections:

4.3.1 Task 1

To further assess the network’s performance, Figure 12 shows a confusion matrix built with data from the
real-time experiment. Here, instead of post- and pre-stimulus, the predicted labels correspond to those
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assigned by the network while the participant was performing the GN procedure and are compared to the
subject’s responses. Despite a low overall accuracy of 60%, the results are not due to chance (as seen by a
p-value 0.034 in the conducted chi2 test) and follow the expected pattern present in Figure 3.

Figure 12: Neural network’s real-time performance in classifying stimuli averaged over all subjects.
The real labels refer to the participants’ responses during the GN procedure, while the predicted
labels are the results of the 2IFC task performed concurrently by the neural network.

Figure 13 presents the estimated perceptual thresholds, slopes, and drifts for each participant, with mea-
surements from the same individual connected by a dotted line to visually compare the two methods. The
p-values from the Wilcoxon rank test and the corresponding ICC values for each metric are also provided.
Although the 2IFC method generally yields lower NDT estimates compared to those obtained using the GN
procedure, this difference is not statistically significant (p > 0.05). The substantial crossing of lines between
the same subjects indicates a high variability between methods, as evidenced by the low ICC, which suggests
poor reliability. Regarding the other metrics, the average drift obtained from the two methods was not
significantly different, the ICC of 0.67 suggests moderate reliability. In terms of slope, the 2IFC method
resulted in significantly lower slopes and low reliability between the methods with an ICC of 0.19.

Figure 13: Boxplots of the estimated threshold, slope, and drift after fitting a GLM in the data
obtained for Task 1. The dotted lines join data points from the same subject.

The estimated metrics are also analyzed using a Bland-Altman plot, as shown in Figure 14. In general,
for all metrics a very big variability, with large confidence intervals. In the figure related to the threshold,
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most differences (9/12) seem to lay close to zero. Also, a tendency of the button press values to be higher
can be observed considering a positive mean difference. The small value of this mean differences and the
described observation aling with the non-significant difference observed in Figure 13. In the case of the slope,
a seemingly positive linear tendency is seen, while for the drift, most values seem to lay to the left of the
graph, towards small means between methods.

Figure 14: Bland-Altman plot for comparing agreement between estimated thresholds, slopes and
drifts obtained by subject responses during a GN procedure in contrasts to those obtained through
the implementation of a neural network performing a GN procedure.

The EPs generated by the stimulation are shown in a butterfly plot along with their GFP in Figure 15. EPs
obtained from the GN procedure and the 2IFC are contrasted for both detected and non-detected stimuli.
EPs are also shown in Figure 16, where only responses from channel Cz, which has the largest potential
according to the butterfly plot, are depicted. In both figures the potentials derived from the GN procedure
appear to be about two times larger than those derived from the 2IFC task. Additionally, only in the EPs
for the subject responses, a significant contrast between stimuli classified as perceived and non-perceived was
identified.

35



4. Results M. Martínez Pinedo

Figure 15: Butterfly plot of the grand average potentials and GFP of the EPs resulting from
intra-epidermal stimulation during task 1. The vertical dashed line represents the time point when
the stimulus is given while the other vertical lines represent the possible time points in which the
nociceptive peaks are observed.

Figure 16: Grand average over subjects of the evoked potential at Cz during task 1. The vertical
line corresponds to the time point when the stimulus is applied.

Peaks of interest where determined from the GFP of the subject responses for the felt stimuli in Figure
15. The first two early peaks where defined at 12ms and 19ms. The larger, later peak was defined at the
maximum point of the GFP, at around 36ms. These time points of interest are additionally plotted as
topographies in figure 17, where the expected ERP distribution is observed.

Based on the results obtained in this section, it was of interest to assess which factors might contribute to a
better performance of the neural network. An ordinary linear model was built in order to identify possible
explanatory variables, however, from the analysis, no significant relations were observed. More details are
found on appendix E.
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Figure 17: Topographical maps of average evoked potentials at three time points of interest.

4.3.2 Task 2

Figure 18 shows the estimated perceptual thresholds, slopes, and drifts for each participant. Measurements
corresponding to the same subject are connected with a dotted line to visually explore differences between
the two methods. A non-significant difference between the average NDT of the two networks is seen despite
the larger mean NDT observed for the second network. Additionally, negative and close to zero ICC values
indicate very poor agreement, due to a greater variability within subjects’ measurements compared to the
variability between different subjects in the same group.

Figure 18: Boxplots of the estimated threshold, slope, and drift after fitting a GLM to the data
obtained from Task 2. Dotted lines join data points from the same subject.

The differences between the two networks for the estimated metrics are also studied by means of a Bland-
Altman plot as shown in Figure 14. Large intervals of confidence are seen in the case of the Threshold and
slope. No clear distribution of the difference between methods is seen for the NDT and drift estimates, while
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in the case of the slope, higher agreement between the methods seems to be present for mean slopes below
13mA−1

Figure 19: Bland-Altman plot comparing the estimated thresholds, slopes and drifts for Task 2.

The reported number of felt stimuli is shown in Figure 20. Two plots represent each half of the experiment,
each containing approximately 100 stimuli. Dotted lines connect data points from the same subject. The
obtained ICC is also presented on the figure. The average reported count on each half of the experiment was
around 65, with some subjects reporting a number of perceived stimuli as high as 99 out of 100.

Figure 20: Reported number of felt stimuli for each half of the experiment, with dotted lines
connecting data points from the same subject.

The EPs generated by the stimulation where depicted in a butterfly plot along with their GFP. Figure 21
contrasts the EPs obtained from the two concurrent. EPs are also presented in figure 22, where only responses
of channel Cz are presented. No significant differences were found between "correct" and "incorrect" EPs
from the same network. In both correct and incorrect classified stimuli, a clear peak is seen for both networks
with the average peaks of network 2 being slightly larger than network 1.
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Figure 21: Butterfly plot of the grand average potentials and GFP of the EPs resulting from the
intra-epidermal stimulation performed in task 2. The vertical dashed line represents the time point
when the stimulus is given while the other vertical lines represent the possible time points in which
the nociceptive peaks are observed.

Figure 22: Grand average over subjects of the evoked potential at Cz during task 2. The vertical
line corresponds to the time point when the stimulus is applied.

The same peaks of interest identified in Figure 15 were chosen to represent the evoked potentials in Figure
23. Here, the expected EP distribution is also seen.
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Figure 23: Average topographical maps of evoked potentials at three time points of interest.
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5 Discussion

5.1 Network selection

The application of the EEG-net architecture to the DS1 dataset using 32 electrodes results in metrics that
differ minimally from those reported in [5], with Table 3 showing a 1-2% lower accuracy. These differences
could be attributed to randomization effects, such as the use of a different random seed for network ini-
tialization and dataset shuffling. Additionally, there are differences in the used datasets; the original study
involved 38 participants, while currently, the dataset includes 64 participants. Considering these factors and
the minor variation in average accuracy, it is confirmed that the network has been applied correctly.

The minimal performance improvements observed after hyperparameter tuning (as shown in Tables 6 and 7)
suggest that the search space for the tuning process may have been too large relative to the computational
budget. This could have led to the selection of a suboptimal combination of parameters. However, due to
computational constraints, increasing the budget was not feasible. When considering a reduced search space,
such as tuning only the window size, a modest increase in average accuracy (about 1%) was observed relative
to applying the Inception architecture with its original parameters. Considering also the small differences
in accuracy when comparing the original EEGnet parameters proposed by [57] and those proposed in [5],
suggests that the impact of hyperparameter tuning on performance was minimal.

A possible limitation to the effect of this strategy is the training duration, which was restricted to 9 epochs.
This is considerably fewer than the epochs typically used in training similar networks [57, 59, 54, 66]. This
shorter training duration may have prevented the model from fully optimizing, thereby limiting the discovery
of the best possible parameter combinations. This effect is particularly evident in the final selected network,
where a 2% improvement in accuracy is observed only by increasing training time. However, using a longer
training time during a performance tuning strategy can significantly increase the time needed to evaluate
one combination of hyperparameters, leading to less combinations being tested.

In the case of transfer learning, a limiting factor was the duration of the epochs in the dataset (one-second),
as opposed to the 1.4 seconds deemed optimal by hyperparameter tuning. Another possibility is the similarity
between the training and testing datasets. Dag et al. [66] found that transfer learning had minimal effect on
accuracy for datasets involving healthy subjects but significantly impacted datasets with disabled subjects.
Since this study only used datasets from healthy subjects, transfer learning’s impact was likely reduced.
Additionally, the training dataset’s size was adequate for training a neural network without overfitting;
larger accuracy improvements might be observed with smaller training datasets [64].

Regarding ensembles, only one type was tested, more complex strategies such as bagging or stacking might
help increasing the accuracy. Using different types of models such as decision trees or support vector machines
can more variety of the patterns of the data. Additionally, for an ensemble to perform optimally, independence
of the classifier should exist, this however cannot be obtained when the training is done in the same data,
as the classifiers are more likely to make similar mistakes [61, 70]. All of the classifiers used in the ensemble
presented here were CNNs, limiting the variability of the patterns that are studied, also, since only one
training dataset was used, it is possible that some errors related to the differences in testing and training
data set are present in all classifiers.

The results indicate that all the attempted strategies, despite the identified limitations, positively impacted
performance. A thorough exploration using various approaches was conducted. This provides valuable
information about the suitability of each paradigm for the type of data being studied, allowing future
research to be better guided. Notably, hyperparameter tuning, while resulting in small changes on its own,
led to more substantial performance improvements when combined with a smaller search space, the adoption
of a different architecture, and extended training duration. Together, these adjustments led to an overall
accuracy increase of 6% in the final selected architecture when tested on DS2.
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5.2 Simulations

The conducted simulation provided a basis for justifying the values used for vector length, step, and distance
between vectors, ensuring a more confident selection process. It should be noted, however, that there are
already expected differences due to the use of a GN or a 2IFC. In [71], comparing subject performance
between the two tasks, no significant differences were seen in threshold or slope estimates, but mean slope
between methods had a difference of about 7mA-1, with the slope of the GN being higher, this is consistent
with the lower slope estimates seen in Figure 10 even with relatively higher agreement probabilities of around
80%.

A main limitation in directly applying these results to neural network accuracies is the constant agreement
probability in these estimates. In [5], it was observed that trained networks might perform better in classifying
pre-stimulus compared to post-stimulus. Additionally, as shown in Figure 3, the classification in the case
of non-perceived stimuli during a 2IFC task, will be mostly influenced by the guessing rate instead of the
PF. Therefore, varying agreement probabilities dependent on the initial response derived from the PF
and considering the effects of the guessing rate could better model neural network performance. Despite
these simplifications, this simulation allows to obtain useful information, aligns with results obtained from
literature and provides a base to interpret the obtained accuracy levels and how these might relate to reliable
estimates.

5.3 Experimental results

The drop in accuracy seen when testing the selected neural network in the recorded dataset with 8 electrodes
should still allow for accurate threshold estimations, according to the conducted simulations. This reduction
in accuracy suggests that subsampling the electrodes provides different signal quality compared to recording
from only eight. This discrepancy can be explained by the use of CAR during signal recording, which
could result in potentially useful information from the other channels being present when subsampling eight
electrodes from 32 and in cleaner signals, which might enhance the network’s ability to classify the stimuli
accurately.

The following sections provide a specific discussion related to the two tasks performed by the subject:

5.3.1 Task 1

The additional test of the neural network’s performance, illustrated in Figure 12, provides a better under-
standing of its behavior during actual experiments. Considering the theory related to the 2IFC task (see
section 2.3.1), it is anticipated that when a stimulus is not perceived in a GN (button response 0), the
2IFC classifier should have an equal probability of classifying the stimulus as perceived or not. However, the
network shows a bias towards indicating that the stimulus was perceived. Theoretically, assuming perfect
network performance, these discrepancies could be attributed to the lapse rate or by a subject’s internal
criterion, which may result in stimuli being perceived but deemed too weak to report. These phenomena
could partially explain the values observed in the confusion matrix, particularly since they suggest an average
lapse rate of only seven trials, a plausible number out of 100 trials.

In cases where subjects reported perception of the stimuli (button responses = 1), misclassified trials could
be partially attributed to a guessing rate, where a subject accidentally releases the button without actual
perception. However, given the setup of the GN procedure, this guessing rate should be extremely low, and
the discrepancies are more likely due to errors in the neural network’s classification. Therefore, the proportion
of correctly classified responses in reported perception cases (84%) might better reflect the network’s behavior
than the analysis of responses where no perception was reported.

Differences in thresholds are expected as the overall accuracy of the neural network was lower than the
standard set by the simulations. Interestingly, based on simulations and results from [71], it would be
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expected for the 2IFC threshold estimates to be higher, rather than lower as seen in Figure 13. However,
considering the network’s bias towards predicting that a stimulus is perceived, as observed in Figure 12, it
is logical that the threshold decreases slightly, though not significantly. The low ICC seen between NDT
estimates indicates a poor agreement between the methods. A lower ICC could be attributed to random
errors in the network’s performance, which would be amplified due to subject-specific variations in EP shape
and noisy recordings not adequately averaged using CAR. However, a value as low as 0.137 is most likely
hinting at a suboptimal performance of the network for the given task.

Regarding the other obtained estimates, a better reliability of the drift suggests a stable behaviour of the
network throughout the experiment. The difference in slope between the methods aligns with the conducted
simulations, which anticipated lower slopes in case of low accuracy values, additionally due to the inherent
differences between GN and 2IFC methods, a lower slope would also be logical as seen in [71].

The Bland-Altman plot (Figure 14)confirmed significant variability by showing large confidence intervals
across all metrics when evaluating the agreement between methods. For the threshold metric, larger differ-
ences between methods are seen for the data points where the mean between the methods is larger. The plot
indicated a tendency for button press thresholds to be higher, as evidenced by a positive mean difference,
although this difference was not substantial. In contrast, the distribution of the data points related to the
slope metric indicates less agreement at higher mean values. This pattern can be attributed to generally
higher slope estimates from subjects compared to the 2IFC task, with only 2 subjects presenting higher
slopes with the 2IFC.

One of the most noticeable aspects in the butterfly plot of the collected EPs from both procedures (see figure
15) is the difference in amplitudes of the responses of the perceived stimuli of the GN compared to the 2IFC
method. Van den Berg et al. (2022) reported that the EPs from 2IFC trials were about half the amplitude
of those from GN procedures when analyzed at Cz-M1M2 [71]. In the mentioned study, the average P2
peak amplitude for GN reached approximately 16µV, whereas for 2IFC, it was around 8µV. Comparing
these results to another study by the same author [43], where an average reference was used instead of
mastoids, the P2 peak amplitudes were similar to those obtained in this study, around 3µV for the GN task.
These findings underscore the importance of the reference electrode, as M1 and M2 potentially reveal critical
information. Furthermore, the reduction in amplitude observed from GN to 2IFC was consistent with the
twofold reduction expected from the literature. However, due to the difference in reference and probably due
to the inclusion of many false positives, the contrast between epochs classified as correct and incorrect did
not reach statistical significance (Figure 16).

For non-perceived stimuli, a similar overall behavior is seen in the butterfly plot, except for the lateral
electrodes (T6 and T7), which exhibit slightly larger post-stimulus activity in the 2IFC task compared to
the GN. When isolating the Cz electrode (Figure 16), a small peak at the P2 location is evident even in
the non-perceived responses of the GN procedure. This could indicate that the small amplitude stimuli still
elicited a response, or it might suggest subjects missed reporting some stimuli. In contrast, for non-perceived
stimuli in the 2IFC, this peak is absent, and the potential for perceived stimuli is significantly smaller, similar
in amplitude to the non-perceived GN stimuli. This suggests that, while some differences could be attributed
to factors other than network performance, the low EP for perceived stimuli in 2IFC indicates suboptimal
network classification.

Topographical maps of the EPs show expected patterns when comparing with a similar study [43], with
central activity for P2 and bilateral differences between electrodes such as F4 and T7. However, the bilateral
behavior appears more pronounced in the 2IFC procedure compared to GN.

In summary, the comparison between the network’s performance and subject responses reveals that, al-
though the network behaves as expected, it exhibits a bias towards classifying stimuli as perceived, which
compromises its reliability. This bias affects the accuracy of threshold estimates, which, despite not being
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significantly different on average, show high variability and poor reliability, as indicated by large confidence
intervals and low ICC. The EP analysis supports these findings, with observed peak amplitudes showing no
significant difference between epochs classified as correct and incorrect. However, it is important to note that
expected EP shapes are generally observed, demonstrating that the network is capable of capturing relevant
neural activity. Despite the challenges, the analysis underscores the potential for improvement, particularly
in addressing network bias to achieve a more reliable classification.

5.3.2 Task 2

A previous study [71] and the results from the current task indicate that mean threshold estimates for the
studied age group should be around 0.2 mA or lower. In Task 2, the NDT estimates are slightly higher
but remain within a reasonable range (Figure 18). However, poor reliability across all metrics, as evidenced
by low ICC values, suggests suboptimal network performance. Despite a higher average NDT and drift for
Network 2, the high variability between subjects and groups makes it difficult to conclusively determine if
this is due to a network bias or chance. The Bland-Altman plot (Figure 19) further highlights this variability,
showing large confidence intervals and a small positive mean difference between methods. While this might
suggest a slight bias towards the second network, the magnitude and variability make it uncertain whether
this bias would persist with a larger sample size.

Additionally, the high count of reported stimuli suggests inaccuracies in the network’s classification, resulting
in elevated threshold estimates. The inconsistency in behavior throughout the task is further reflected in the
low reliability between the two halves of the experiment.

Regarding the EPs, the peaks are higher than in the previous 2IFC task, confirming that subjects were
stimulated above their perception threshold. The presence of clear peaks in incorrectly classified epochs and
the non-significant differences between EPs further emphasize the network’s poor classification performance
during the task. Despite these issues, the topographical maps of the EPs show the expected patterns.

5.4 Comparison of Neural Network performance across tasks

Noticeable differences in neural network behavior are observed between tasks. In Task 1, the neural network
was closer to the threshold, potentially underestimating it. In contrast, in Task 2, the thresholds were
overestimated, as evidenced by a count of reported stimuli higher than expected from the type of task and
generally higher threshold values than anticipated for the studied population.

These findings are further corroborated by the analysis of the EPs. Although the EPs from the 2IFC task in
Task 1 were lower than expected, the presence of a peak for detected stimuli and the absence of such a peak
for undetected stimuli indicate that the network was performing the classification with a high rate of false
positives. Conversely, in Task 2, clear and high peaks are observed for both perceived and non-perceived
stimuli, confirming poor classification performance that resulted in above-threshold stimulation.

These differences indicate that the network’s ability to detect stimuli is highly influenced by the physical task
of pressing a button. While this outcome is understandable given that the networks were trained exclusively
on responses where subjects indicated perception with a button press, it was not anticipated. In a similar
setup used by van den Berg (2022), involving 32 electrodes, the network had a satisfactory performance
without a concurrent physical task, despite being trained on a dataset with similar characteristics. These
results underscore the importance of a more thorough selection of EEG electrodes.

5.5 Implications

The observed classification performance issues may stem from various factors, which cannot be precisely
identified with the available data. Factors such as the presence of a physical task component in the EPs from
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the training set, the reference used for recording, the choice of electrodes, and the hyperparameter tuning
strategy all call for more research to enhance the reliability of automatic classification estimates.

The network’s worse performance without a concurrent physical task suggests that the training set or selected
electrodes are not optimal. Future work should focus on the EEG responses from the button press and how
that reflects on the EPs to better select the EEG channels and address the training issue. Regarding network
improvement, all chosen strategies did result in an improvement, but limited computational power prevented
a thorough exploration of the hyperparameter space. Further study into the most influential hyperparameters
would better guide decisions on which to tune.

Signal quality is another limiting factor when using only eight electrodes. Common post-hoc analysis tech-
niques, such as ICA and regression, were not feasible due to the limited number of signals and the absence of
an EOG recording. Exploring the impact of alternative references on signal quality could be valuable. The
average reference used in this study may not be optimal, as it assumes that the surface potential integral
of a dipole in a volume conductor is zero, which does not hold with only eight midline electrodes. Possible
alternatives used in literature include placing the reference at FPz [59] and at Afz [66].

Additionally, explaining the network scores, which was beyond the scope of this study, provides a useful
point for further research. Algorithms such as occlusion sensitivity, which tests the effect of occluding input
features, and Layerwise Relevance Propagation, which traces activations through the network layers to the
output and back, could reveal what the network focuses on during classification [72]. This could inform
decisions regarding channel selection and potentially reveal whether the network uses information other
than nociceptive evoked EPs. Exploring these methods could enhance our understanding and improve the
network’s accuracy in detecting nociceptive signals.
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6 Conclusion

In this thesis, significant steps were made towards the clinical application of automatic nociceptive threshold
classification. Building on the encouraging results previously presented by van den Berg (2022) [5], this study
explored the feasibility of reducing the number of EEG channels needed.

While is was possible to observe an increased accuracy of the previously used CNN by 6%, several short-
comings were evident during the experimental procedures. The neural network’s accuracy, compared to a
concurrent GN procedure, showed only a small bias towards classifying stimuli as perceived. Although the
average thresholds obtained from the GN and 2IFC tasks were not significantly different, the poor corre-
lation between methods demonstrated that the network’s performance during this task was not optimal.
Additionally, a smaller than expected peak amplitude in the obtained EP along with non-significant con-
trasts between EPs classified as correct and incorrect confirmed the presence of many false positives. When
analyzing the neural network without a concurrent button press, a very low correlation between the two
estimated thresholds demonstrated that the network could not reliably estimate the threshold. Furthermore,
clear nociceptive EPs seen when the network classified a stimulus as non-perceived proved the network’s low
ability to distinguish between perceived and non-perceived stimuli.

Considering these findings, it was determined that with the current setup, automatic tracking of the nocicep-
tive detection threshold is not possible. Despite this, several areas for improvement were identified, providing
possible directions for future research. More attention should be given to electrode selection by examining
the network’s activities and the information it uses. Additionally, exploring the possibility of using different
references during recording could improve the quality of the recorded signals.

Moreover, this thesis explored several methods for improving neural network performance. Future research
should focus on optimizing these strategies, such as refining hyperparameter tuning to target a smaller, more
influential set of parameters or applying transfer learning with a large dataset followed by fine-tuning with
a smaller, more relevant dataset.

Despite the less-than-ideal results presented here, it provides confidence on the next steps to follow. The
ongoing advancements in artificial intelligence and its applications in BCIs offer an expanding array of tools
that might help to enhance the methods explored in this work. Achieving automatic tracking of nociceptive
thresholds can significantly contribute to objective pain measurement, benefiting a broader range of patients
with chronic pain. This advancement could lead to a more comprehensive understanding of pain, improved
evaluation methods, and ultimately, better treatment options.
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Appendix M. Martínez Pinedo

A Architectures

EEGNet [57]

Figure 24: Architecture for EEGnet.

Block Layer # filters Size Output Options

1

Input (C, T)
Reshape (1, C, T)
Conv2D F1 (1, 64) (F1, C, T) activation = Linear, mode=same

BatchNorm (F1, C, T)

DepthwiseConv2D D × F1 (C, 1) (D × F1, 1, T ) mode = valid, depth = D,
max norm = 1, activation=Linear

BatchNorm (D × F1, 1, T)
Activation (D × F1, 1, T ) activation = ELU

AveragePool2D (1, 4) (D × F1, 1, T //4)
Dropout (D × F1, 1, T //4) p = 0.25 or p = 0.5

2

SeparableCon2D F2 (1, 16) (F2, 1, T //4) mode= same, activation=linear
BatchNorm (F2, 1, T //4)
Activation (F2, 1, T //4) activation=ELU

AveragePool2D (1, 8) (F2, 1, T //32)
Dropout (F2, 1, T //32) p = 0.25 or p = 0.5
Flatten (F2 × (T //32))

Classifier Dense N max norm=0.25, activation = softmax

Table 10: EEGnet parameters, as presented in [57]
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EEG-Inception [59]

Figure 25: Architecture for EEG-Inception.

Block Type # filters Depth Size Padding Output Connected to Role
IN Input – – – – 128 × 8 × 1 – Input
C1 Conv2D 8 – 64 × 1 Same 128 × 8 × 8 D1 Temporal analysis
D1 DepthwiseConv2D – 2 1 × 8 Valid 128 × 8 × 16 N1 Spatial analysis
C2 Conv2D 8 – 32 × 1 Same 128 × 8 × 8 D2 Temporal analysis
D2 DepthwiseConv2D – 2 1 × 8 Valid 128 × 8 × 16 N1 Spatial analysis
C3 Conv2D 8 – 16 × 1 Same 128 × 8 × 8 D3 Temporal analysis
D3 DepthwiseConv2D – 2 1 × 8 Valid 128 × 8 × 16 N1 Spatial analysis
N1 Concatenate – – – – 128 × 1 × 48 A1 Concatenation
A1 AveragePooling2D – – 4 × 1 – 32 × 1 × 48 C4, C5, C6 Concatenation
C4 Conv2D 8 – 16 × 1 Same 32 × 1 × 8 N2 Temporal analysis
C5 Conv2D 8 – 8 × 1 Same 32 × 1 × 8 N2 Temporal analysis
C6 Conv2D 8 – 4 × 1 Same 32 × 1 × 8 N2 Temporal analysis
N2 Concatenate – – – – 32 × 1 × 24 A2 Concatenation
A2 AveragePooling2D – – 4 × 1 – 16 × 1 × 24 A3 Dimension reduction
C7 Conv2D 8 – 4 × 1 Same 16 × 1 × 8 N3 Temporal analysis
A3 AveragePooling2D – – 4 × 1 – 8 × 1 × 24 C8 Dimension reduction
C8 Conv2D 6 – 4 × 1 Same 8 × 1 × 12 A4 Temporal analysis
A4 AveragePooling2D – – 2 × 1 – 4 × 1 × 6 C7 Dimension reduction

OUT Dense – – – – 2 – Softmax output

Table 11: EEG-Inception Architecture Details according to [59]
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P3Cnet [66]

Figure 26: Architecture for P3Cnet.

Block Layer # filters Size Output Options

1

Conv2D 8 (8, 15) (1, 126, 8) strides = (1,1), activation = linear,
max norm = 1

BatchNorm (1, 126, 8)
Activation (1, 126, 8) activation= ELU

AveragePool2D (1, 4) (1, 31, 8)
Dropout (1, 31, 8) p = 0.35

2

Conv2D 16 (1, 5) (1, 27, 16) strides = (1, 1), activation=linear
BatchNorm2D (1, 27, 16)

Activation (1, 27, 16) activation = ELU
AveragePool2D (1,4) (1, 6, 16)

Dropout (1, 6, 16) p=0.2

3

Conv2D 32 (1, 5) (1, 2, 32) strides = (1, 1), activation = linear
BatchNorm2D (1, 2, 32)

Activation (1, 2, 32) activation = ELU
AveragePool2D (1, 1, 32)

Flatten (1, 32)
Classifier Dense 2 max norm=0.25, activation = softmax

Table 12: Parameters related to the implementation of P3Cnet, according to [66]
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P3Net [67]

Figure 27: Architecture for P3net.

Block Layer # filters Size Output Options

1

Conv2D (7, 7) (32, 16, 76)
BatchNorm (32, 16, 76)
Activation (32, 16, 76) activation = ReLU
MaxPool2D (32, 8, 38)

2

Conv2D (7, 7) (16, 8, 38)
BatchNorm2D (16, 8, 38)

Activation (16, 8, 38) activation = ReLU
MaxPool2D (16, 4, 19)

3
Dropout (16, 4, 19) p=0.1
Flatten 256

Classifier Dense 2 max norm=0.1, activation = softmax

Table 13: Details of the implementation of P3Net presented in [67]
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RNN-EEGNet [58]

Block Layer # filters Size Output Options

1

Reshape (1, 8,350)
ZeroPadding (0, 32) (1, 8, 414)

Conv2D 30 (1, 125) (30, 8, 290) activation=linear, mode=valid
BatchNorm (30, 8, 290)

DepthwiseConv2D (8, 1) (60, 1, 290) D = 2, max norm=1,
activation=linear, mode=valid

BatchNorm (60, 1, 290)
Activation (60, 1, 290) activation = ELU

AveragePool (1, 4) (60, 1, 72)
Dropout (60, 1, 72) p = 0.25

2

ZeroPadding (0,8) (60, 1, 88)
SeparableConv2D 50 (1, 16) (50, 1, 73) activation = linear, mode=valid

BatchNorm (50, 1, 73)
Activation (50, 1, 73) activation = elu

AveragePooling (1, 8) (50, 1, 9)
Dropout (50, 1, 9)

3

Reshape (50, 9)

GRU (50, 128) Bidirectional, units=64,
return_seq=True, activation = elu

GRU (50, 128) Bidirectional, units=64,
return_seq=True, activation=elu

BatchNorm (50, 128)
Activation (50, 128) activation=ELU
Flatten 6400

Classifier Dense 2 max norm=0.25, activation = softmax

Table 14: Parameters proposed for in the implementation of RNN-EEGnet as shown in [58]
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PLNet [54]

Figure 28: Architecture for PLnet.

Block Layer # filters Size Output Options

1

Input (60, 128)
Reshape (60, 128, 1)
Conv2D 8 (1, 32) (60, 25, 8) strides = (1,4), max norm = 0.5

BatchNorm (60, 25, 8)
Activation (60, 25, 8) activation=linear

2

Permute (60, 8, 25)

DepthwiseConv2D 25 (60, 1) (1, 8, 25) stride = (1,1), max norm=0.5,
depth = 1

Permute (1, 25, 8)
BatchNorm (1, 25, 8)
Activation (1, 25, 8) activation=ELU

SpatialDropout2D (1, 25, 8) p = 0.25

3

SeparableConv2D 16 (1, 9) (1, 17, 16) strides = (1,1), max norm=0.5
BatchNorm (1, 17, 16)
Activation (1, 17, 16) activation = ELU

AveragePool2D (1, 17) (1, 1, 16)
SpatialDropout2D (1, 1, 16) p=0.5

Classifier Flatten 16
Dense 2 max norm=0.1, activation = softmax

Table 15: Parameters proposed for PLnet in [54].
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B Subject information

Feasibility of channel reduction in real-time estimation of perceptual 
nociceptive threshold based on EEG measurements.  
Information on technical scientific research for human participants  

We provide the following information to inform your decision before participating in this study. 
Please take your time to thoroughly read and discuss it with your partner, friends, or family, if you 
wish. Should you have any questions after reviewing the information provided here, you are 
welcome to contact the researcher. Contact details are provided at the end of this information 
sheet. 
 
What is the objective of this study? 
Chronic pain is an impairing condition that affects around 100million people in Europe. Its effects are 
found in different areas from economical to societal for not only patients, but also family members, 
caregivers, and the healthcare system. However, the understanding of the underlaying mechanisms 
related to pain and its maintenance is poorly understood leading to suboptimal treatment. Because 
of this, the development of accurate diagnostic tools is of great importance. Recently, a method for 
measuring properties related to the development and maintenance of pain has been developed. This 
project focuses on improving the current method by decreasing the time needed for the 
measurements and increase the reliability by using EEG responses instead of patients reports.   
 
How will this research be conducted? 

The experiment will take place at the University of Twente and take 
approximately 2 hours. At the beginning of your visit, we will have an 
introductory conversation in which you can ask all your questions. After this we 
will ask you to give a written informed consent form. Next an EEG cap, such as 
the one shown in Figure 1 will be fitted. Gel will be injected into the electrodes. 
To improve conduction, the skin will be scratched a bit with a blunt needle, this 
should not hurt. Then the electrodes for stimulation will be attached to the 
back of the hand as shown in Figure 2. The stimulation electrode has very small 
(0.2mm) pins which will not penetrate the skin, but only stimulates the upper 
layer of the skin. The bigger electrode serves as a ground. 
 
Once the set-up is complete, you will be given a 
response button; the measurement will not start until 
you press it. You can pause or stop the experiment by 
releasing the response button. When the stimuli are 

stronger than your detection threshold, you will feel a light pain sensation 
which can be described as tingling or little pinpricks.  
 
The first part of the experiment consists of a familiarization session for you to 
get acquainted with the stimuli. A second measurement will be then 
conducted to get an initial estimation of the threshold. Afterwards, two 
measurements will take place. First, stimulations with different amplitudes 
around your perceptual threshold will be given and you will have to briefly release the button if you 
feel the stimulus. For the second one, you must keep the button pressed to receive the stimuli and 
try to count each stimulus you receive. If you need a short break, you can release the button.  
 
What is expected of you? 

Figure 1: example 
of an EEG cap like 
the one used for the 

experiments.   
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Any person with a normal health condition can participate in this study. If you have skin 
abnormalities, abnormal blood pressure, heart problems, diabetes, chronic pain, implanted 
stimulation devices or if you are pregnant, you cannot participate. 
 
To be able to participate in this study, there are a few recommendations: 

• Don’t use stimulants or narcotics (e.g. alcohol, drugs or painkillers) within 24 hours 
before the experiment. 

• Before participating in the experiment have a good night of sleep, breakfast, and/or 
lunch. 

• Contact the researcher if you have pain complaints at the day of the experiment. 
 
Are there side effects and/or risks? 
There are no expected side effects and/or risks by participating in this study. The needle electrode 
may cause some irritation to the skin or redness, which will fade in a day. 
 
What are the possible (dis)advantages of participating in this study? 
Other than contributing to science, the experiment performed in this study will not benefit or harm 
you in your personal situation. For us your participation can yield very useful data from which we 
can ultimately get a better understanding of chronic pain.  
 
Can I retreat from participating? 
You can decide freely if you want to participate in this study, so it’s completely voluntary. You can 
change your mind at any moment and stop with the experiment without sharing a reason. 
 
What happens with my personal information? 
When you participate in this study, data about you is gathered during the experiments. This 
information will only be used for research and will never be disclosed to any person other than the 
researcher(s). Personal data will be stored as long as prescribed by legal regulations or scientific 
codes of conduct and destroyed afterwards. Your name will never be mentioned in any publication 
or presentation. 
 
For further questions you can contact the researcher, Marcela Martínez, via 
m.l.martinezpinedo@student.utwente.nl  
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C Experimental protocol

Procedure based on B. van den Berg and L. Vanwinsen, adapted by M. Martínez. 

Smart acquisition of nociceptive detection Thresholds based on an 8 channel EEG set-up.  
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Scope 
Experimental protocol for “Feasibility of channel reduction in real-time estimation of perceptual 

nociceptive threshold based on EEG measurements.” 

Background  
The evaluation of perceptual thresholds plays a crucial role in the assessment of different sensory 

systems such as vision, hearing touch and nociception. Evaluation of the perceptual thresholds in 

pain research can be used to assess altered nociceptive processing and sensitivity of ascending 

pathways in the nociceptive system (van den Berg, B., et al., 2022).  

For the assessment of the nociceptive function, intra-epidermal electric stimulation has been used to 

selectively stimulate nociceptive Fibers with currents lower than twice the detection thresholds 

(Mouraux, A., et al., 2010). Recent experiments at the University of Twente rely on a needle 

electrode placed on the right hand to administer the electrical stimuli. The electrical stimuli are 

generated with a custom-built stimulator (NociTRACK AmbuStim) with a uniformly randomized 

interstimulus interval of 3.5-4.5s. 

In addition to this selective stimulation, participants must remain focused and consistently respond 

to the stimulation to accurately assess the perceptual thresholds. Nonetheless, perception report is 

not always equal to perception. Participants might lose focus due to long or boring procedures, might 

fail to report a perceived stimulus (lapsing) or might report stimulus perception while no stimulus 

was perceived (guessing). In some cases, subjects could be unable to communicate stimulus 

perception (van den Berg, B., et al., 2022). 

Therefore, the use of a fully automated approach relying on electroencephalogram (EEG) has been 

explored to enable the accurate and objective assessment of perceptual threshold in a wide variety 

of patients groups. Nociceptive activity can be quantified by recording and analyzing the EEG signal 

time-locked to the stimuli. The average time-locked signal, referred to as the evoked potential (EP) 

describes transient synchronized activity of large neural networks within the cortex. In van den Berg 

et al., a deep learning classifier based on a 32 channel EEG was able to reliably analyze brain activity 

in response to nociceptive stimuli. The constructed neural network led to accurate estimates of the 

perceptual threshold and proved the possibility to use deep network classification to control the 

adaptive stimulus sequence and estimate the perceptual threshold in real time. Furthermore, the 

application of this method enables shorter procedures by removing the need to wait for the subject’s 

responses and limits the negative effects of poor task performance by the subject.  

A next step in the development of the current method would be to reduce the number of EEG 

electrodes needed. A lower number of electrodes would reduce the time and effort needed to set up 

the procedures allowing for more time efficient studies and clinical applications on a larger scale. For 

this study, the electrodes (C3, Cz, C4, T8, F3, Fz and F4) were chosen based on the EPs observed using 

32 electrodes with a 10-20 montage.  

In this document, the experimental protocol for assessing the feasibility of an 8 channel EEG set-up 

will be described. The protocol consists of two measurements: one with the subject reporting their 

felt stimulus by pressing a button and a second where no concurrent physical task is performed.  

  



Required Materials  
  

Description  #  Specification  

General      

Computers  1 One computer with LabView 2013 SP or higher, MTT-EP 
stimulation software (build in LabView), Matlab 2015b or 
higher, TMSi Polybench Designer, and a custom-made TMSi 
Polybench recording application. The computer should have 
at least the following specifications:  
- Windows 7 64-bit, or higher  
- Intel Core i5 1.6 GHz, or higher  
- Bluetooth adapter  
- 64-bit operating system  
- 8 GB RAM, or more   

Tape  0.5 m  Non-allergenic skin-friendly medical tape. E.g., Leukofix.  

Medical abrasive gel  2 cl  Medical abrasive gel to remove dead skin cells.  

Cleansing liquid  2 cl  Alcohol, 70 % Ethanol  

Cleansing tissues  2  Tissues (should preferable not release fibers)  

Cleansing sticks  2  Cotton-top cleansing sticks  

Multiple Threshold Tracking      

Stimulator  1  NociTRACK AmbuStim single-channel stimulator, capable of 
generating a minimum current of 8 µA and a maximum 
current of 16 mA. Shown in Figure 4.  

Charger  1  NociTRACK charger for AmbuStim stimulators  

Trigger generator  1  Arduino-based trigger generation system, which can be 
connected to the computer (input) via USB A to B cable, 
connected to the NociTRACK AmbuStim stimulator (output 1) 
via a BNC cable and connected to the EEG amplifier via a DB25 
parallel cable. Shown in Figure 3 D-E-F.  

USB A to B cable  1  Cable for connection of the trigger generator to the 
computer.  

BNC  to binder cable  1  Cable for connection of the trigger box (BNC) to the 
NociTRACK AmbuStim stimulator (Binder connector). Should 
have a length of at least 2 meters.  

Custom cable with 37p sub-D 
connector 

1  Cable for connection of the trigger generator to the EEG 
amplifier. Should have a length of 1-2 meters.  

Stimulation electrode  1  Sterile IES-5 electrode for intra-epidermal electrocutaneous 
stimulation. Shown in Figure 9.  

Grounding electrode  1  TENS disposable adhesive surface ground (40x50mm) 
electrode, which will serve as a ground during the stimulation. 
Shown in Figure 10.  

Stimulator-to-electrode cable  1  A custom-made double cable that connects the stimulation 
and grounding electrode to the stimulator.  

EEG Measurement      

Amplifier  1  TMSI SAGA32+/64+ amplifier with 32 or 64 unipolar, 4 bipolar, 
9 auxiliary and 1 digital channel.   

Medical power supply  1  TMSi power supply for EEG amplifier.  

USB A to B cable  1  USB A to B cable used to connect the TMSi docking station  to 
the PC 

EEG caps  2  TMSi 32-channel low-noise actively shielded caps. A small-
medium or medium-large size cap have to be available for 
different head sizes of the subjects.  



Patient ground  1 TMSi wristbands for the patient ground (with its 
corresponding patient electrode cable)  

Color-coded measurement tape  1  Tape for measuring the required EEG cap size.  

Syringes  
 

10 ml Luer-Lok tip syringe (B-D Plastipak) for injection of EEG 
gel into cap electrodes.  

Blunt needles  1 Blunt needle (16G) for injection of EEG gel into cap electrodes 
and scratching the skin.  

Wooden sticks 1 Small wooden sticks to move the hair after placing the 
electrode cap.  

EEG electrode gel   200 ml  Electro-gel (ECI), for injection in EEG cap electrodes.  

EEG electrode paste    Conductive EEG paste (Ten20).  

Towel  2  Large size towel for covering the shoulders during application 
of electrode gel, and another medium size towel for subjects 
to dry the hair after measurement.  

Power cable  1  Power cable for medical power supply.  

Comfortable chair  1  Comfortable chair for participants to relax during the 
experiment. The chair should especially provide rest to the 
muscles around the head and neck since those might disturb 
the measurement.  

Focus image  1  Small image or sign for subjects to look at during the 
experiment.  

 
  



Procedure  

A. General Preparation  
Time: > 1 hour before session  

1. Send potential participants an information e-mail containing the official patient 
information letter. After they confirm their participation, send them another e-mail with 
specific information about the experiment. These e-mails can contain a text like the one 
shown in Figure 1 The second mail should tell potential participants to:  

- The date, time, and location of the experiment.  
- Where to meet the researcher and contact information.  
- Bring a towel to the experiment, and possibly some shampoo/conditioner and 

hair gel.  
- Preferably wear lenses to the experiment if they have the option to choose 

between lenses and glasses (This is not consistent with the example text in 
Figure 1 but was later adapted).  

- No alcohol is allowed within 24h before the experiment.  
- Drink the same amount of coffee as they normally do.  

2. If you expect participants with another language, make sure translations are 
available.  
3. Plan an experimental date with potential participants via e-mail or telephone.  
4. After a date has been planned, inform a possible emergency contact about the date 
and time of the experiment.  
5. Regularly charge the electric chair. However, do not leave the charger connected for 
more than a few hours, since this might damage the battery.  
6. Always make sure that sufficient sterilized electrodes are available. If this is not the 
case, sterilize a batch of electrodes according to “SOP - Sterilization of IES-5 and BiModEl 
Electrodes”.  
7. Make sure that you know in which lab the experiment takes place and which numbers 
to call in case of an emergency.  

 

 
Figure 2: Example e-mails.  

 

B. EEG System Preparation  
Time: > 1 hour before session  

1. Attach the EEG amplifier to the power adapter.  
2. Attach the EEG amplifier via a USB A to B cable to the EEG computer.  
3. Connect the trigger generator to the computer using the USB A to B cable.  



4. Connect the trigger generator to the EEG amplifier using the parallel cable.  
5. Connect the cap to the amplifier.  
6. Connect the unipolar snap cable of the grounding electrode to GND.  
7. Attach a small sign or image in front of the chair, for subjects to focus on a single point during 

the experiment.  
For more information about the connections, please refer to Figure 2.  
 

 
 

 

  
 

C. Stimulator System Preparation  
Time: > 1 hour before session  

1. Connect the trigger generator to the stimulator via the BNC cable.  
2. Note the number of the used stimulator and locate the corresponding calibration file.  
3. Connect the stimulator-to-electrode cable to the stimulator.  
4. Charge the stimulator with the stimulator turned off, using the NociTRACK charger.  

For more information about the connections, please refer to Figure 3.  
  

B 

A 

C 

D 

E 

F 

Figure 2. Connections between EEG system, 
trigger generator and EEG cap using a SAGA 
amplifier. A is the connector of the cap. B is the 
connection of the trigger cable which is 
connected to the trigger box C. The trigger box 
should also be connected to the PC through 
cable D. Additionally, the amplifier is powered 
by connecting cable E and cable F is the 
connects the amplifier to the same PC.  



 
Figure 3: Inputs and outputs of the NociTRACK AmbuStim stimulator. A is a response button, which is actuated by the 
subject to indicate if the stimulus is perceived. B is a connection to the stimulator cable. C is an input for the trigger signal. D 
is the power switch. E is the input for the charger. The stimulator should be switched off while charging.  

 

D. Materials Preparation  
Time: > 1 hour before session 
Make sure that the following materials are ready for use and easy to reach:  

1. Electrode caps.  
2. Colored measurement tape. 
3. EEG electrode gel and paste.  
4. Two syringes. 
5. Blunt needles (in the package) for gel injection into the electrodes.  
6. Medical abrasive gel.  
7. Tissues and cotton sticks.  
8. Alcohol. 
9. Unipolar snap cable for the grounding electrode of the EEG 
10. One TENS electrode.  
11. One sterilized IES-5 electrode. 

 

E. System Start-up  
Time: > 20 minutes before session  

1. Turn on both computers.  
2. Turn on the power supply of the EEG amplifier.  
3. Turn on the EEG amplifier.  
4. Turn on the NociTrack.  
5. Note the NociTrack number and check for an existing calibration file.  

 

F. Labview Initialization  
Time: > 10 minutes before session  
On the LabView computer:  

1. Edit the config.ini by copying the configuration for the first part of the experiment from 
‘task1_MM’  

2. Open the LabVIEW program NDTEP.vi. 
3. Wait until FrontPanel.vi started. Press the arrow button.  
4. A new screen will open (Figure 4b). Fill in the Patient ID (do not add personal information) and 

press “Continue”.  
5. A new screen will open (StimCom Bluetooth Control).  

a. Click on “Search” to start searching for a AmbuStim stimulator (Figure 4a).  
b. The number of the AmbuStim is indicated on the stimulator.  
c. If the AmbuStim does not appear on the screen, check if the stimulator is turned on 

and press “Search” again.  



d. Click on the AmbuStim which is to be connected, but do not press “Connect” yet 
(Figure 4a).  

 
Figure 4: Left, the Bluetooth connection interface for the NociTRACK AmbuStim stimulator. First, press ‘Search.’ If the 

correct stimulator device has been found (doublecheck with the number on the stimulator), press ‘Connect.’ Right, the initial 

interface of the experimental application. Fill in the subject ID, confirm the COM port of the trigger generator in ‘Device 

Manager,’ and press ‘Continue.’ 

 

G. EEG initialization  
Time: > 10 minutes before session  

1. The impedance measurement interface in MATLAB will start after the device is connected. 
2. Turn your phone to airplane mode. 
3. Close the impedance measurement window and wait for MATLAB to automatically close.  

 
 

H. Subject reception and preparation  
Time: start of the session  

1. Meet with the subject at the entrance of the lab. To do so, be present at the entrance 10 
minutes before the start of the session and leave the lab door open.  

2. Give the subject a hard copy of the information letter and the informed consent (preferably, 
the subject has already received and read the information letter in advance, via e-mail). Ask 
the subject:  

- “Do you have any questions?”  
- “Would you like to participate in the study?”  
- “Do you want to sign the informed consent?”  

3. Explain to the subject what is going to happen. Ask the subject:  
- “Please, set the mobile phone to airplane mode.”   



- “Do you need to go to the toilet? The session will take approximately 2 hours.”  
4. Instruct the subject:  

- “Sit-down on the chair and set the chair to a comfortable position.”   
- “Make sure there is sufficient space for the legs.”  
- “The chair should be inclined slightly backwards to relieve the muscles around the 

neck.”  
5. Use the colored measurement tape to measure which size of the cap is required.  
6. Measure the distance between the nasion and the inion.  
7. Measure the distance between the pre-auricular points.  
8. Place the electrode cap on the head of the subject, by pulling over the forehead towards the 

back.   
9. Ask the subject:  

- “Please adjust the cap to fit as tightly as possible on the head.”  
- “Please, attach the strap around the chin as tightly as possible, and pull the rope at 

the side of the cap for a better fit.”  
10. Using the measured distances, make sure that the cap electrode is exactly in the middle of 

those measured positions. If necessary, slightly adjust the position of the cap, and ask the 
subject for feedback on the fit. Tape the  wires of the cap to the share or shirt to avoid 
movement artifacts.  

11. Once the cap is adjusted, secure it by taping the wires to the chair or subject’s shirt. 
12. Use medical abrasive gel and a cotton stick to clean the positions of the ground electrode. 
13. Use a tissue with alcohol to clean the same location.  
14. Explain the subject:  

- “You will not feel anything from EEG measurement.”  
- “Gel will be injected into the electrodes. To improve conduction, the skin will be 

scratched a bit with a blunt needle. This should not hurt, if it does, pleas say so.”  
- “If you discomfort, you can indicate this at any time.”  

15. Make sure that the location of the ground electrode is dry and attach the ground electrode.  
16. Take the needle and the syringe. Show to the subject you take a new needle from the package 

and fill the needle and syringe with gel.  
17. Fill the selected electrodes (F3, Fz, F4, T7, C3, Cz, C4, T8) in the cap with gel by injecting it while 

scratching the skin by turning the blunt needle with a circular motion. Use the back end of a 
cotton stick for extra scratching if necessary.  

18. Use the impedance display on the screen to make sure impedances are below 5 kOhm.  
19. In the impedance interface of the EEG recording application, take a screenshot to save 

information about the impedances.  
20. Explain to the subject that you will attach the electrodes for stimulation:  

- “The first electrode is an electrode with small pins that will not penetrate the skin, 
but solely serve to stimulate the upper layer of skin.”  

- “The second electrode is a sticky electrode which serves as a ground.”  
21. Attach the electrodes as depicted in Figure 5. Ask the subject:  

- “Please, hold the IES-5 electrode at the back of the right hand.”   
22. Attach the electrode with medical tape and ask the subject:  

- “Is the pressure on the electrode needles painless?”  
23. Glue the TENS electrode right behind the IES-5 electrode on the wrist, as is depicted in 

Figure 5. Ask the subject:   
- “Can you press the electrode firmly onto the skin?”  

24. Attach the stimulator-to-electrode cable to the electrodes.  
 

 



                     
Figure 5: The IES-5 electrode (left) and the TENs electrode (center), which serves as ground for stimulation, and the example 

of the placement of the electrodes (right) 
 

I. Familiarization  
Time: 40 minutes after start of the session  

1. Explain to the subject:  
- “First, a measurement will be made for familiarization and initialization of the 

experiment.”  
- “I will press on start in the application. However, the measurement will not start 

until you press the response button. You can pause or stop the experiment by 
releasing the response button.”  

2. Ask the subject:   
- “Please, hold the stimulator in the hand opposite to the side of stimulation.”  

3. Explain to the subject:  
- “The first measurement will just serve to get acquainted with the stimuli. Therefore, 

you should hold the response button as long as possible and release the response 
button if the stimuli start to hurt. If the sequence reaches 1 mA, the measurement 
will stop automatically.”  

4. Press ‘Connect’ in the LabView interface to connect to the stimulator.  
5. A screen will open for measurement of the initial detection threshold (Figure 6). When the 

subject is ready, start the first measurement via the LabView interface by pressing ‘Stimulate’ 
and tell the subject that he/she can start by pressing the response button.   

6. Explain that:  
- “The second measurement will serve to determine the initial detection threshold. 

Therefore, you should release the response button as soon as you feel a sensation 
that you ascribe to the stimulus.”  

7. When the subject is ready, start the second measurement via the LabView interface and tell 
the subject that they can start by pressing the response button.  

8. If necessary, the second measurement can be repeated by starting the measurement a third 
time via the interface. If the second measurement was successful, press ‘Continue’ in the 
LabView interface.  

9. A new screen will appear (Figure 7), which is the control interface for multiple threshold 
tracking.  

 



 
Figure 6: Interface for familiarization and measurement of the initial detection threshold.  

 

 
Figure 7: Interface for multiple threshold tracking.  

 

J. Experiment 
Time: 50 minutes after the start of the experiment 

1. Open the LabVIEW program program “NDTEP.vi” . 

2. Wait until FrontPanel.vi starts. Press the arrow button.  

3. A new screen will open (Figure 4b). Fill in the Patient ID (do not add personal 

information) and press “Continue”. 

4. A new screen will open (StimCom Bluetooth Control) 

- Click on “Search” to start searching for an AmbuStim stimulator (Figure 4a) 

- The number of the AmbuStim is indicated on the stimulator 

- If the AmbuStim does not appear on the screen, check if the stimulator is 

turned on and press “Search” again. 

5. Click on the AmbuStim which is to be connected, and press “Connect” (Figure 4a). 



6. Perform the two tasks explained below in random order.  

J.1. Task 1  

In goal of this task is to evaluate the performance of the deep learning classifier in comparison to the 

subject report (button-press) 

1. Edit the file config.ini by copying the configurations for the second part of the 

experiment from **config** 

2. Explain the experimental procedure to the subject:  
- “To receive stimuli, you have to press the button.”   
- “You have to release the button immediately when you feel a sensation that 

you prescribe to the stimulus.”  
- “After releasing the button, you can re-press the button after approximately 

one second.”  
- “If you need a short break, you can wait longer before re-pressing the 

button.”  
3. Ask the subject:  

- “Please, blink as few times possible while holding the response button.”  
- “Keep looking towards the focus image on the wall while holding the 

response button.”  
- “Try to relax and not move while holding the response button.”  
- “Do not talk while holding the response button.”  
- “Keep your attention focused on the detection of stimuli.”  
- “Doing this will greatly enhance the signal quality.”  

4. Press “Start Experiment”.  
5. Indicate the subject may now press the button and start the procedure.  
6. A message will pop-up after 200 stimulations indicating the end of the session.  

 

J.2. Task 2 

In goal of this task is to evaluate the performance of the deep learning classifier when no concurrent 

physical task is performed.  

1. Edit the file config.ini by copying the configurations for the second part of the 

experiment from “task2_MM” 

2. Explain the experimental procedure to the subject:  
- “To receive stimuli, you have to press the button.”   
- “Keep the button pressed and focus on the stimuli. Try to count each 

stimulus you receive.” 
- “If you need a short break, you can release the button.”  

3. Ask the subject:  
- “Please, blink as few times possible while holding the response button.”  
- “Keep looking towards the focus image on the wall while holding the 

response button.”  
- “Try to relax and not move while holding the response button.”  
- “Do not talk while holding the response button. If you have an urgent 

question, you can release it before speaking.”  
- “Keep your attention focused on the detection of stimuli.”  
- “Doing this will greatly enhance the signal quality.”  

4. Press “Start Experiment”.  
5. Indicate the subject may now press the button and start the procedure.  



6. A message will pop-up after 200 stimulations indicating the end of the session.  

K. Round-up  
1. Inform the subject:  

- “The experiment was completed successfully.”  
2. Turn-off the stimulator and disconnect the subject from all cables.  
3. Instruct the subject:   

- “You can take off the EEG cap.”  
- “You can wash your hair in the sink in the lab, or downstairs in the shower, 

(ZH-109, go down the stairs close to the red couches, in front of the stairs.).”  
4. When the subject is ready to leave, tell the subject:  

- “Thank you for your participation in the experiment.”  
- Give the student the financial compensation for participation in the 

experiment.  
- Ask the subject if he/she would like to be informed about the result of the 

experiment.  
- Provide the subject with contact information in case he/she has any 

questions.  

      L. Clean-up  
1. Turn-off the software, and the EEG amplifier. 
2. Make a note regarding the adverse event on the informed consent form.  
3. Clean the cap electrodes directly after the experiment following the instruction next 

to the sink.  
4. Dry the cap on the ventilator.  
5. Put all equipment back where it belongs.  
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Appendix M. Martínez Pinedo

D Individual results from the threshold tracking procedure

The obtained threshold tracking results from the conducted experiments are shown below:

D.1 Task 1

Due to a malfunctioning electrode in the EEG cap, the data from subjects 3 and 5 were excluded from this
task. Additionally, the measurement from subject 4 was not recorded properly, as the configuration intended
for Task 2 was mistakenly applied during this part of the experiment.
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D.2 Task 2

For this task, subjects 3 and 5 were excluded due to the same issue as in task 1. Furthermore, subject 1 was
excluded because it is believed that a broken stimulation cable prevented a proper administration of stimuli,
leading to unreliable results.
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E Ordinary linear regression

To explore factors potentially influencing the accuracy of threshold estimates generated by the neural network,
an ordinary linear regression analysis was conducted, focusing only on Task 1, where a threshold derived
from subjects’ button press responses was available. The dependent variable was defined as the absolute
difference between the estimated and actual thresholds for each subject. The following explanatory variables
were considered:

• Order of tasks: A binary variable was created to indicate whether the subject performed Task 1 (coded
as 0) or Task 2 (coded as 1) first.

• Gender

• Signal quality: The proportion of non-rejected epochs after applying Autoreject was used as a metric
for signal quality.

Other parameters, such as detection rate and age, were initially considered. However, these were excluded
from the final model due to their limited variability. Specifically, the detection rate for all subjects was
approximately 0.5, and the age range of participants was narrow (between 22 and 27 years).

Continuous variables, including signal quality and the absolute difference between thresholds, were shifted
by subtracting their mean. The correlation among the explanatory variables was assessed using the Variance
Inflation Factor (VIF). All variables presented VIF values below 1.6, indicating no significant multicollinearity
and making them suitable for inclusion in the regression analysis [73].

The resulting model was not statistically significant (p-value = 0.258), suggesting that the selected variables
do not adequately explain the differences in threshold estimates. However, given the small sample size, it is
unclear whether this finding is generalizable.
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F Q-Q plots

The distribution obtained from the experimental data, was explored using a Q-Q plot in order to assess
normality of the data. Figure 29 and 30 show the plots for task 1 and 2 respectively. From these figures it
is clear that the assumption of normality is not met and therefore non parametric statistics are used.

Figure 29: Q-Q plot for the metrics derived from task 1 to assess normality.

Figure 30: Q-Q plot for the metrics derived from task 1 to assess normality.
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