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Abstract—Autonomous driving is expected to be the next
revolution in transportation. In recognition of this, the RDW
each year hosts a self-driving challenge. Within the context of
this contest, this thesis focuses on how autonomous driving can
be achieved solely dependent on camera input and classical
computer vision methods. The focus of the thesis is placed on lane
detection, vanishing point based control, real time image stitching
and optical flow odometry. Lane detection showed great results
for multiple scenarios. Vanishing point based control worked
really well as long as both road sidelines are visible. Camera
stitching was unfortunately not achieved in real time due to
poor environmental keypoints and unstable cameras, but only
when manually calibrated on a video frame. Optical flow based
odometry shows decent results but is likely out competed by IMU
units and GPS.

I. INTRODUCTION

A. Social relevance

A little over a hundred years ago horse carriages filled
the streets of cities in the western world. Since then, cars
have become the primary mode of human transportation. Cars
have seen a lot of improvements over the years making
them faster, safer, and more comfortable. The automotive
industry is now working on the next step: autonomous driving.
Autonomous vehicles have many advantages. because they are
more efficient, safer, have positive economic benefits and give
freedom to those who can’t currently drive by themselves.
They are more efficient due to shorter reaction times and
communication between vehicles which reduces congestion.
They are safer because human errors due to distractions
or fatigue are eliminated. Both these previous factors have
economic benefits due to less congestion, damage and delays
from accidents. Moreover, because people don’t have to drive
themselves they are able to be more productive as well.
Furthermore autonomous vehicles give independence to those
who are currently considered unsuitable to drive, such as the
disabled. [2]. For these reasons, fully autonomous vehicles are
expected to be the future of human transportation [1] [3].

B. Scientific relevance

Although lane detection has been researched for many years
already, there is still a lot that has to be explored. Even though
model based detection approaches are very popular nowadays,
feature based approaches still have their place. Model based
lane detection algorithms are often black box models making
it more difficult to understand what’s going on. Furthermore,
in many applications in robotic limited hardware is available
or expensive options are not desirable due to the production
scale of a product.

C. RDW selfdriving challenge

The RDW is an independent Dutch governmental organ-
isation that is responsible for the national registration of
motorised vehicles. Since they recognize the importance of
developing autonomous vehicles, they each year host the RDW
self driving challenge. This is a competition for educational
institutions to complete a race track as quickly as possible
using a self-driving kart. In the 2024 edition there are two
categories: the closed and open category. The open category
has the freedom to design and build their own car within the
rules of the RDW. Closed category participants all share the
same car provided by the RDW and cannot make any hardware
adjustments. For this research only the closed category will be
considered. This means that the hardware is pre-determined by
the RDW and outside the scope of this paper.

D. Research Scope

There are several factors that narrow down the scope of the
research. First of all, due to the challenge task division, any
tasks involving object detection and lidar involvement are not
considered here. This mainly involves the recognition of traffic
signs, traffic lights and other objects like the pedestrian, the car
that needs to be overtaken and the barrier around the parking
spot. Furthermore, the closed category of the challenge does
not allow for any adjustments to be made to the car. Therefore,
the entire hardware of the car is outside the scope of this
research as well. Lastly, the time and weather conditions are
limited to dry daytime weather. A lot of electronics are placed
uncovered on the outside of the car, it is consequently not
possible to drive during rain or in whet conditions. Regarding
the daytime limit, all testing and recording time slots were
during the day, so no nighttime footage could be recorded.

E. Research Questions

Based on everything the following research question was
decided: ”How can autonomous driving be achieved solely
dependent on camera input and classical computer vision
methods?”

This can be further subdivided into several questions.
• How can optical flow be utilized to track the movement

of an autonomous vehicle and construct a road map?
• How can lane detection be achieved only using cameras

and classical computer vision methods?
• How can real-time camera stitching be realized with

unstable cameras?
• How can road markings be used to find the vanishing

point and control the vehicle?



F. Report structure

The report is structured as follow. Section 2 contains related
work of all relevant topics to the research. Section 3 includes
the methods chosen and experiments conducted. The results
of the experiments are then displayed in section 4. Section 5
interprets and discusses the results found and finally section
6 is the conclusion, where the research questions will be
answered.

II. RELATED WORK

Reda et al (2024) divide the Autonomous Driving System
into six stages: sensors, perception, localization, assessment,
path planning, and control [14]. These are the six layers
required to achieve autonomous driving. The sensor stage is
just measuring the environment. In this case this is mainly
done through the three cameras, but also by the other in-
cluded sensors. perception is about interpreting this data. This
includes lane detection. localization is about determining the
cars position. Vehicle tracking does this relative to the staring
point. assessment is about risk calculation. This step is not
considered in this research. Path planning concerns generating
a path from the current position of the car to the desired
location. Finally, control ensures the car stays on this desired
path.

A. Lane Detection

For a vehicle, to be able to drive autonomously, based on
a camera input, it should be able to distinguish the road its
driving on. This is called road lane detection or lane detection.
Because lane detection is a fundamental step in autonomous
driving, there are many papers published on lane detection.
They can generally be subdivided into two categories: feature
based lane detection and deep learning, or model based lane
detection [6] [7]. As the name suggests deep learning based
methods are based on deep learning and use neural networks
to find the road lanes. An overview of deep learning based
methods can be found at Zao et al (2020) [7]. Feature
based or traditional lane detection relies on classical computer
vision methods, which use mathematical techniques to detect
road markings as geometric shapes. Traditional approaches
typically consist of two steps. The first step takes an image
and after a couple of prepossessing steps, implements some
form of edge detection, typically canny edge detection is used.
The second step takes the edges and applies a line fitting
algorithm to find the lane lines [7] [8]. There are several
ways of implementing line fitting. Muthalagu et al (2020)
present a minimalistic approach that uses Hough transform
and linear regression for line fitting [20]. Hu et al (2010) use
guided RANSAC to find the road markings [21]. Jiang et al
(2011) first change perspective to a birds eye view, before
applying edge detection and line fitting in a top perspective
[19]. Sometimes a tracking step is included to use information
of a previous frame to find the lines in a consecutive frame.
Bottazzi et al (2014) for example use Lucas Kanade tracking
to track the lane lines [18].

Traditional approaches have several advantages in compar-
ison to deep learning based lane detection. First of all they
are very accurate in detecting geometric features in a clear
environment, which is very beneficial when looking for road
markings. Secondly, Traditional methods are computationally
less expensive, making them run more efficient with limited
hardware options. In addition to this no dataset and model
training is required. Lastly feature based lane detection is
easier to understand than deep learning based approaches.
Deep learning often relies on a black box model where it
is difficult to understand why decisions are made. As a result
deep learning based models are harder to understand, explain
or debug. Deep learning based approaches typically excel in
their versatility, adaptability and ability to perform when lanes
are less visible. Traditional approaches are typically tuned
to specific circumstances and their accuracy declines when
applied in a different environment or with less visibility.

B. Vanishing point

A vanishing point is a point where all lines that are parallel
in the real world, intersect in an image. The vanishing point is
always located on the horizon. On a road with no elevation, all
road lane lines intersect in the vanishing point. For this reason
the vanishing point can be very useful when trying to find road
lanes. T. Youjin et al use the vanishing point to estimate the
best road lines [12]. Moghadam et al uses road structures and
markings in unstructured environments to locate the vanishing
point [13].

C. Odometry

Odometry uses sensor data to estimate robotic movement. In
case of a car, the this means tracking its traveled path. In many
applications GPS is used to determine a location. Since gps is
not super accurate on shorter distances and does not always
work as well, like inside a tunnel, its is often combined with
other sensors. Many applications in robotics use an inertial
measurement unit (IMU). An IMU contains an accelerometer,
a gyroscope and a magnetometer. These can predict the orien-
tation of the sensor based on its movement. There are several
other methods to realize odometry. Bohlmann et al (2012)
implemented automated odometry self-calibration for car-like
robots [26]. Zhang et al (2014) use Lidar based odometry for
real time mapping [23]. Odometry based on camera inputs
is called visual odometry. Bahnam et al (2021) use multiple
cameras for stereo based odometry, while Zhang et al (2022)
researched monocular visual odometry, which is only based
on a single camera [25] [24].

D. Control

Once it is determined where the road lanes are, the car still
needs to determine where to drive to stay on the road. This is
where the path planning and control stages of the autonomous
driving system come in [14]. Path planning entails creating a
path to get from where the car is currently, to where it wants
to go. Control then ensures that it actually stays on this path.
Due to the stable nature of autonomous cars, they typically



do not require a very complicated controller. Often a simple
PID controller suffices. Path planning can be subdivided into
global and local path planning. Global path planning is based
on a map with known information regarding road information.
Local path planning is more concerned with sudden traffic
situations such as overtaking another car. The most common
path planning algorithms are tradition algorithms, graph search
algorithms and group intelligent optimization algorithms [22].

E. Image stitching

Image stitching is the process of stitching multiple images
together to create one bigger image instead of several smaller
ones. This technique is used for creating google street view
images and to create panorama images. Image stitching typ-
ically consists of three stages: registration, seam finding and
blending [10]. The registration step finds the transformation
matrix between two images and transforms them into the same
plane. This can be done by deriving the extrinsic and intrinsic
camera parameters manually. Alternatively they can be found
by matching key points in the overlapping sections of the
camera images. This is done with keypoint detection and a
keypoint matching step. There are many keypoint detection
algorithms such as ORB and SIFT [11]. Keypoint matching
takes the keypoints in one image and looks for their match in
another image. An example of keypoint matching is FLANN
based matching [27]. Seam finding is used to ensure every
pixel on the border between the two images has a source image
assigned, ensuring a smooth transition. Lastly blending is used
to fix minor inconsistencies between images such as color or
brightness deviations. An example of using image stitching
to create a panorama image can be found in Xiong and Pulli
[9]. They used a fast stitching approach to get a high quality
panorama image suitable for mobile phone implementations.

III. METHOD

As a participant in the RDW self driving challenge the goal
is to complete the track as quickly as possible. To achieve au-
tonomous driving several stages need to be considered [?]. The
stages that will be researched in this pare are perception in the
shape of lane detection, optical flow odometry for localization
and path planning and control through a vanishing point based
controller. First, however, it is crucial to understand the RDW
self driving challenge.

A. The Car

The car provided by RDW has a go-kart as its base. It has a
3.5 kW electric direct-drive motor, powered by a ’fixed-speed’
motor controller that automatically regulates output power, a
hydraulic brake line powered by a linear actuator and a servo
motor mounted to steering shaft to control the steering angle.
It has three Logitech StreamCam cameras mounted to the
front of the kart in a 3d printed camera holder. The middle
camera is facing forward at a slight downward angle. The
left and right camera are adjacent to the middle camera and
a rotated down and away from the centre. The front of the
car also contains a planar 360 degrees lidar with a range of 6

Fig. 1. The RDW car used for the closed category [4]

Fig. 2. The RDW racing track. Note that there are two parallel tracks of
which the bottom one was used for the finale [4]

meters. Furthermore, the car contains a steering angle sensor
and a speed sensor on the back axle that measures the wheel
rotations with a 1 km/h accuracy. The Car is controller by an
Intel NUC mini-computer. The NUC contains an Intel Core
i5-1135G7 processor with 16 GB RAM and a 512 GB NVME
SSD with Ubuntu Linux installed. Notably it does not contain
a gpu. Any internal communication between the NUC and
actuators is done through a can-bus system [5].

B. The Track

The track for the challenge is about 250 meters long with
3-meter-wide lanes. The entire track is made from asphalt
with white continuous lines marking the track boundaries.
The track starts with a straight section which includes several
challenges. First of all, the car needs to adhere to the speed
limit determined by the speed sign on the side of the road.
Secondly, when encountering a red traffic light, the car needs
to stop within a set distance of the stop line. Along this first
section, there also is a zebra crossing, where a pedestrian may
or may not cross. It is important to note that there is also a
section included with the remnants of an old zebra crossing,
which is no longer considered a pedestrian crossing. After a
turn, the car enters a section with two lanes, where a striped
line separates the two lines. After another pedestrian crossing,
the car needs to switch lanes to overtake a parked car. Finally,
there is a sharp turn (over 180 degrees) and a parallel parking
objective to finish the challenge. The goal of the challenge
is to complete the track and all its challenges as quickly as
possible [5].

C. Lane detection

Figure 3 displays the flow chart used for lane detection.
Lane detection section takes a frame as input and outputs a
line for each side of the lane if any can be found. Since all road



Fig. 3. The flow chart describes the lane detection, starting with an input
images and outputting the left and right lane lines

markings are colored white, using a color mask is really useful
in filtering out noise. First the image is converted to a HSV
image. From here, a mask is created based on the brightness of
the pixels. The threshold of the brightness filter is dependent
on the exposure of the camera, which is automatically adjusted
when starting up the cameras. A small dilation is applied to
ensure all white edges are included within the mask. Besides
being converted to a HSV image, the input image is also
converted to a gray scale image. This is standard procedure,
since edge detection does not care about color. The image
is then put through a Gaussian filter to smoothen the image,
reducing noise in the edge detection. Canny edge detection is
then applied to find the regions of interest. Applying the color
filter removes any edges that are not white and therefore do
not belong to any road markings. A region of interest mask
is then applied to remove any irrelevant edges. This is region
of interest is determined by the expected position of the road
and the previous location of the road lines.

Then a filter is applied that removes any dense white areas.
This is necessary to filter out noise. An example of this is the
remnants of the zebra crossing. This area caused a lot of lines
to be detected due to its broken nature. A contour filter is then
applied to filter out any small contours which are often caused
by white stones in the road structure. This completes the edge
detection stage of the lane detection. For line fitting Hough
lines are used. This detects many different lines. Lines with
similar angles in close proximity are then combined together
to mend any broken lines. Finally the lines are split based on
their angle and position, outputting the best line for each side
of the road. all parameters were empirically tuned on several
videos of the car driving on the track. These videos were taking
at different times on different days to ensure robustness in
multiple weather and lighting conditions.

D. Vanishing point based control

Instead of using the vanishing point to optimize the line
detection, the vanishing point can also be used for control of
the vehicle. For the RDW challenge the car always starts on
a straight piece of road. This means that the starting lines are
always parallel. This means that during initialization the lane
detection lines can be used to determine the vanishing point
and therefore the height of the horizon. Based of the orien-
tation of the car and the road lines, the horizontal coordinate
of the vanishing point in the front camera might differ, but
the vertical coordinate remains the same. After initialization,
even when one of the side lines is not visible, the vanishing
point can still be determined based on the intersection point
of the horizon and the remaining road line. This way the error
can be calculated based on the horizontal distance between the
vanishing point and the center of the frame. In reality, however,
the camera is not perfectly facing forward, because the camera
angle is not perfectly aligned with the car. In addition, when
just using the vanishing point for control, the car does not
care about its position in the lane. This would cause the car
to slowly drift of the track in the opposite direction of the
camera misalignment. This problem is fixed by taking into
account the distance from the car to both sidelines. If the car
is closer to one line, it will get a bias in the opposite direction.
The error is thus calculated based on the vanishing point and
the distance to the sidelines. The car is then controlled using
a PID controller. To test the vanishing point based control of
the car, the car will drive the track to see how well it stays
within the lane. The radius of the car can be calculated as is
described in figure 4. The error that is fed into the controller
is the difference between the horizontal target position and the
horizontal frame centre in frame pixels. The target is calculated
like in equation 1. xhl and xhr are the x coordinate of the left
and right line crossing the horizon respectively. dL and dR
indicate the distance from the bottom centre to the left and
right line and k is a constant that determines how much the
distance compensation contributes. For the experiments k was
set at 1.

target = ((xhl + xhr)/2) + (dL − dR) ∗ k (1)



E. Optical flow odometry

To track the car several solutions were attempted. All these
options were tested on videos of the car driving on the race
track. The car starts on the start line, then goes straight until it
has to go through s-turn. Then there is another straight section
until it reaches the sharp u-turn and finally finishes besides the
parking spot. The overtaking of the parked car and the parking
challenge are not included in this experiment. In total three
methods to determine the position of the car were tested. First
of all, the position was estimated based on the speed sensor
and the steering angle sensor on the car itself. The steering
angle is measured at the middle in the front at the axis of the
steering wheel. The speed of the car is determined through
counting the rotations of the rear axis. In figure 4 is a top
view of the turning radius of the car. Note that the rear axis
has a smaller turning angle than the front one. This needs to be
taken into account when calculating the movement of the car.
Before calculating the cars movement, the sensor information
needs to be converted to SI units. The speed sensor outputs
data in hm/h which is converted to m/s. Equation 2 is then
used to find the distance traveled from one data point to the
next. With maximal steering input, the car has a turning radius
of 5.75 meter. Using the recorded data, a relation between the
sensor output and the car angle could be established. To get the
radius from the steering angle equation 3 is used and equation
4 then calculates the circumference. The angle change can then
be calculated like in equation 5, here the percent sign is used
to calculate the remainder, ensuring the equation holds after
completing a full circle. The position of the car is then given
by equations 6 and 7

s1 = v1/(t1 − t0) (2)

r = l/sin(δ) (3)

c = 2π ∗ r (4)

angle = 2π ∗ (s%|c|)/c (5)

x1 = s1 ∗ sin(angle1) (6)

y1 = s1 ∗ cos(angle1) (7)

Secondly, monocular visual odometry was attempted. Stereo
visual odometry was unfortunately unattainable, as a result
of the too small overlapping area between the three cameras.
Instead of comparing keypoints between two cameras like for
stereo visual odometry, monocular visual odometry compares
keypoints between two frames. Again a combination of ORB
feature detection and FLANN based keypoint matching was
used. ORB is a feature detector. It stands for Orientated FAST
and Rotated BRIEF. It is a combination of FAST feature
detection and BRIEF descriptor with several enhancements.
FLANN stands for Fast Library for Approximate Nearest

Fig. 4. top view schematic of the turning radius of the car [17]

Fig. 5. A frame from the topview when driving on the track

Neighbours. It takes the features detected by the orb feature
detector in two frames and matches them in pairs. From these
pairs the essential matrix is determined, which is then used to
find the transformation between the different frames and thus
the taken path.

Lastly, odometry was attempted through optical flow in the
birds eye view. Optical flow is often used to measure relative
movement of objects in a camera frame. Instead of tracking
objects, the movement of the road will be tracked, knowing
that if the road moves in one direction on camera, the car
moves in the opposite direction. For this approach keypoints
were manually selected to generate an accurate birds eye view
of the front camera. This can be observed in figure 5. The
birds eye view transformation was manually calibrated to have
equal horizontal and vertical pixel lengths. This means that
the height and width of a pixel transposed into real world
coordinates are the same. Since optical flow does not work as
well near the borders of the frame, due to structures leaving
and entering the frame, a window was used to select a region
to use for analysis. The optical flow results are displayed in
figure 6. Here the colors represent the direction in which the
pixels move and the brightness shows the magnitude. The red
square is the selected window used for odometry.

Since regions closer to the car showed more detail, this



Fig. 6. Optical flow applied to the top view perspective. The colors indicate
direction and the brightness displays speed. The red square is the area used
for optical flow odometry.

Fig. 7. the angle measured in the square (a1) compared to the actual angle
of the car (a2).

region was chosen. The average vector of all vectors in this
region was taken to estimate the movement of the camera
and therefore the movement of the car represented in polar
coordinates. Since the camera is slightly misaligned with the
car, a small compensation is incorporated.

It is important to know that the optical flow movement
is calculated slightly in front of the car and not on the car
itself. The further away the selected area is from the car, the
more the squared region will move with sideways movement
of the car. This difference in angle can be observed in figure
7. To determine the position of the square relative to the car,
a marker was placed on the road of which the distance to
the car was measured. This is then used to find the size and
position of the square relative to the car. From the angle at the
red square, the angle of the car (a2) can be calculated as in
equation 8. In this equation a1 and mag are the angle and the
magnitude calculated by the optical flow section respectively.
d is the distance from the camera to the square.

a2 = arctan((mag ∗ sin(a1))/(mag ∗ cos(a1) + d)) (8)

F. Stitching

To utilize the full potential of the given cameras it is
beneficial to use all three cameras. Camera images could
be analysed individually. This way, however, one needs to
deal with overlapping areas between cameras and different
orientations. It would be easier if all camera images are
stitched together first and then a larger image can be used for
lane detection. The goal of stitching is to use all three cameras
while only having to process a single image. It enlarges the
closer and therefore more relevant lines, because of their
presence in the side cameras. Due to the unstable nature
of the cameras manually determining the camera parameters
is not an option. To find the transformation matrix between
the different cameras, three experiments were conducted. All
experiments were done on a recording of the car driving on the
racing track. The first experiment aims attempts live stitching
by using keypoint detection and keypoint matching for every
single frame.ORB detection is attempted in combination with
FLANN based matching. Using the keypoint pairs, a the
essential matrix is found. As a result the transformation
matrix is used to transpose the images from the left and
right camera into the front cameras frame. The advantages
of this method is that it is more robust to camera movement
and cart differences. However, it requires a decent camera
overlap and good key points for accurate results. Furthermore,
it is more computationally expensive due to constant key
point detection and matching. The second experiment uses
the same preset transformation matrix for every frame. This
matrix is determined by manually selecting and matching
keypoints in a video recording of the car. To do this a frame
with a pedestrian crossing was selected. The corners of the
crossing rectangles are manually determined to ensure good
keypoints are found. Through the same process as the first
method the matching keypoint pairs are then used to find the
transformation matrix between cameras and transpose them all
into the coordinate system of the front camera. This method
allows for precise tuning and therefore a very accurate result.
Furthermore, no live tuning is required making this the fastest
method. The last experiment that will be run uses the same
predetermined matrix, however, it also implements a bumper
detection algorithm to detect bumper movement in the frame,
allowing for compensation for the bouncing of the cameras.
This is essentially the same method as used for the second
experiment with an additional step. Using color filtering the
bumper is extracted from the frame. Tracking these keypoints
and transposing them to the coordinate of the manually tuned
frame, allows to compensate for any movement of the camera
in relation to the bumper. The bumper tracking extraction can
be seen in figure

IV. RESULTS

A. Line detection

To demonstrate the implemented line detection, a single
frame was selected while autonomously driving the track.
Figure 8, 9 and 10 correlate to the blocks shown in figure



Fig. 8. The process of getting from the input image to the road line edges
in eight steps. A: The input image. B: Grayscale conversion. C: Gaussian
Blurring. D: Canny Edge Detection. E: Color filtering. F: Region of interest
filtering. G: White Filtering. H: Contour Filtering.

Fig. 9. The creation of the color mask in 4 steps. A: HSV conversion. B:
Gaussian Blurring. C: Brightness thresholding. D: Dilation.

Fig. 10. Line fitting starting with Houghlines in A and the selected road lines
in B.

3. Figure 8 shows the steps from the input images to the
eventual edge detection. Figure 9 shows the process of creating
the color mask and figure 10 demonstrates how the line fitting
process gets from multiple Hough lines to two lane boundaries.

B. Vanishing Point based control

As previously stated the error for the vanishing based
control is determined by the position of the vanishing point
and the distance to the side lines. While driving on the track
several frames were captured in different situations that show
the middle of the frame in white and the target location in
red. The left and right lane line are also included in the image,
colored green and blue respectively. These results can be found
in figure 11. The scenarios from top to bottom are: driving
straight on a straight road, driving at an angle on a straight
road, driving in a turn on one side of the road, driving over
a pedestrian crossing and driving in a sharp turn. Note that
in the last image the target dot is not in the frame. This is
because it is too far left to fit the images size.

C. Odometry

Figure 12, 13 and 14 show the results of the the three
odometry experiments compared to the orange line, which
represents the shape of the track. All three images show the
path of the car starting from the origin and following the
line to the parking space. Figure 12 shows the worst results
of the three. The track is unrecognizable in this figure. The
orange line of the track is only partially visible here because
of the major deviation of the estimation of the track. Figure
13 shows the path estimated by the speed and steering angle
sensor. When comparing this estimated path to the actual track
in figure 2, the first part of the track is pretty similar. The
estimated path is pretty straight until the first turn at 150
meters, which was measured only slightly early. After the turn
the line is rotated slightly more left than expected. In reality
it should have been parallel to the start section. Similar to the
first turn, the second turn is slightly early again and measured
sharper than expected. This results in the slight crossing of
lines in the last section.

In figure 14, just like in figure 13, the track can be seen in
the estimated path. When comparing it to the actual track in
figure 2, the estimation makes a straight start just as expected.
Both turns, expected at 150 meter and 218 meter, however,
are measured a bit later than then they are on the actual track.
Furthermore, the last turn seems to be measured a little too



Fig. 11. The target point (red) and frame centre (white) for different situations.

Fig. 12. The estimated path of the car determined through visual monocular
odometry (purple) compared to the true path (orange). Both axis are in meters,
where the car start on the start of the track looking in the positive y direction.

Fig. 13. The estimated path of the car determined through the speed and
steering angle sensor of the car (blue) compared to the true path (orange).
Both axis are in meters, where the car start on the start of the track looking
in the positive y direction.

blunt. This is the case because the last section of the estimated
path slowly moves away from the supposed to be parallel line
besides it.

D. Image Stitching

For Image stitching three experiments conducted. Figure
15, 16 and 17 show the live keypoint stitching, preset trans-
formation stitching and preset transformation stitching with
bumper based correction respectively. Since the entire video
could not be shown in a report format, two frames were
selected from each method. In these images each channel of
the RGB matrix represents a different camera. Live keypoint
stitching is displayed in figure 15. Frame A is one of the



Fig. 14. The estimated path of the car determined through optical flow
odometry (blue) compared to the true path (orange). Both axis are in meters,
where the car start on the start of the track looking in the positive y direction.

better looking frames, while frame B looks a bit worse. This
method showed really inconsistent results. The first frame has
a slight misalignment of the lines while this error is way
greater in frame B. Figure 16 and 17 show images from
a video were due to a bump in the road, the right camera
is displaced halfway through the drive. Figure 16 A and
17 A show the results before the displacement and figure
16 B and 17 B afterwards. Before the displacement both
videos showed consistent results, with a bit more noise in the
bumper correction experiment. After the camera displacement
however, the bumper displacement corrected more for this
error than the method with only a preset transformation.

V. DISCUSSION

A. Lane detection

The lane detection algorithm was tested on many recordings
with great results. For a single frame all the steps described
in figure 3 can be seen in figure 8, 9 and 10. Looking at
figure 8, the edge detection section does its job really well.
After the plane canny edge detection result in 8B, all noise
was filtered leaving only the road lines in figure 8H. Note that
in the last image, the last striped road line on the left side
of the road was filtered out. Since the line was still far away
and therefore really small in the image, this is not a problem.
Especially if the side cameras could be utilized, the bigger and
more relevant lines are always detected.

Figure 10 shows the line fitting step. The Hough lines
detected in the left image are combined to get both road
lines. This is not just the case for the shown example. Over
several runs no wrong lines could detected. Both sidelines
could consistently be found as long as they were present in
the camera frame. The only small problem occurs on the zebra

Fig. 15. Two different frames when using live keypoint detection and
matching to stitch the centre and right camera together.

Fig. 16. Two image stitching frames with a preset transformation matrix. Each
channel of the RGB matrix represents a different camera. image A was taken
before the right camera was moved and image B after the camera movement.



Fig. 17. Two image stitching frames with a preset transformation matrix
and bumper based correction.Each channel of the RGB matrix represents a
different camera. image A was taken before the right camera was moved and
image B after the camera movement.

crossings. On these crossings the algorithm detects the cross-
ing lines as road lines. For determining the vanishing point
this is not necessarily a problem, since all these lines point to
the vanishing point anyways. However, when determining the
distance to the sidelines, it matters more which line is selected.
On occasion a small reposition is done by the car to stay in
the middle between the selected lines. This reposition is still
far too small to displace the car from its lane. This could be
fixed by filtering out the crossing stripes and focusing on the
lines further along the road for lane detection, when such a
crossing is encountered.

The main advantage of the implemented lane detection is
that it is very accurate and consistent. There are however a
few downsides to the design. One of the disadvantages is that
it only considers the current that lane the car is driving in.
For planning in real life scenarios it is often useful to not
only track the current lane but all lanes on the road. Another
disadvantage is that the lane detection algorithm is designed
and fine-tuned for the RDW test track in Lelystad. Several
adjustments may need to be made when driving in a different
environment. For example, if yellow road lines were used, they
would be filtered out by the white colour mask.

B. vanishing point based control

To test the vanishing point based control, the car was sent
to drive the track autonomously. To give an idea of how
it behaves, figure 11 shows the target location in several
interesting situations. When driving straight in the middle of a
straight road, like in the top image, the target is in the middle
of the frame, meaning no steering is required. When the car
drives at an angle like in the second image of figure 11, the

target tries to take it back so it becomes straight again. When
the car approaches the side of the road, even in the inside of a
turn, the car is encouraged to move back to the middle of the
road like in the third image of figure 11. The behaviour on a
pedestrian crossing was already discussed in the lane detection
section. To reiterate, the somewhat inconsistent choice of
which lines that is used at the pedestrian crossing sometimes
causes the car to reposition itself between these lines. This
problem is more the responsibility of the lane detection than
the control. The final image in figure 11 shows the behaviour
of the car in a sharp turn. This is the most problematic part.
Just before the displayed frame the car had no vision of the
left road line for a while. For this reason, the car crossed the
inner line of the road slightly. When the car loses vision of
one of the lanes the lane centering does not work as effectively
anymore, especially in a sharp turn. The best way to improve
this is by increasing the vision of the car. This would have
been done if image stitching was achieved in time. When both
lane lines are correctly detected, however, the vanishing point
based control performed really well. In these scenarios the car
was kept in the middle of the lane in a really consistent and
controlled way.

C. Odometry

From the three odometry experiments that were conducted,
the monocular visual odometry clearly performs the worst.
This is a result of having poor keypoints. The current keypoints
rely on the environment, which for a big part, consists out of
asphalt, grass and trees. All of these generally do not give
many good keypoints, because they are not very distinctive.
The latter two are especially bad because they can also be in-
fluenced by wind. When having a higher threshold to filter the
quality of the keypoint matches, often frames occur with too
few points to be analysed. To get usable results, the threshold
had to be lowered. As a result of this too many poor keypoints
were used and the estimated path became unrecognisable. To
efficiently use this method several improvements could be
made. First of all, better features are required. This would
require a track with more solid structures like buildings close
to the road. Secondly, it would benefit this method to have
a greater overlap between the camera images, so that stereo
visual odometry was possible.

The remaining two methods to track the cars movement,
using the sensors and using optical flow, both showed some
promise. The odometry based on the steering angle and speed
sensor of the car showed the best results regarding distance es-
timation, with only a small error between actual and expected
turning points. The inaccuracy is probably caused by the low
accuracy of the speed sensor being rounded to full kilometers
per hour. This rounding error adds up over time. The sensor
based odometry method does however show some inaccuracies
during the turns. Both turn are estimated too sharp. This is
probably the case, because the model does not account for tyre
slip. This means that some or all tyres of the car lose traction,
causing the car to turn without movement of the steering
wheel. Since the steering wheel is unaffected, the rotation can



not be picked up by the steering angle sensor, resulting in
a tracking error. To reduce this error, a mathematical model
could be implemented that predicts tyre slip based on factors
like the speed and weight distribution of the car.

The odometery based on optical flow also produced a
path from which the track can clearly be recognized. The
estimated distance is however slightly greater than in reality.
This is presumably caused by drift in the distance error due
to inaccuracies in the optical flow measurements. Optical flow
odometry does perform better, however, when it comes to the
turn angle. The results seem to be almost in line with the real
track. Although the performance of the optical flow odometry
seems pretty good, there are still some inaccuracies caused by
the optical flow calculations and in the conversion to the birds
eye view. There are several improvements that could be made
to increase the accuracy of optical flow odometry. A higher
frame rate allows for a more accurate optical flow estimation
and a higher quality camera for better quality optical flow and
more accurate tracking.

Based on distance, the sensors outperformed the optical
flow. However, on the turning sections optical flow shows
better results. Ideally combining these methods would allow
for a better solution, by combining the best of both worlds.

D. Image Stitching

Similar to the keypoint based odometry, the keypoint based
image stitching yields poor results. The problem is again
rooted in the poor available keypoints. Furthermore, this
method was quite slow and therefore difficult to implement
on the limited hardware.

The second experiment with manually initialised keypoints
already shows better results. Since all the keypoints are
calculated in advance this method works the fastest out of
the three. Furthermore, it is the most noise resistant out of
the three methods. The big disadvantage of this method is
that it is vulnerable to camera movement. Calculating the
transformation matrix beforehand assumes that the cameras
will not move relative to one another. When this does happen
like in figures 16 B, the method breaks. The last method with
bumper detection is more robust to camera movement as can
be seen in figure 17. This comes at a small computational
cost as well as being influenced by any inaccuracies in the
keypoint tracking on the bumper itself. One can argue if this
trade off is worth it since camera stabilization should most
likely not be done through software. This could be achieved
by improving the camera mount, allowing for less camera
movement. Unfortunately, Stitching could only be achieved
on video, but not live on the track. This is because of the
inconsistency of camera positioning between runs. Keypoints
would have to mannually selected every run, which is a process
that takes a lot of time to complete. This could be fixed through
the introduction of an initialization mat. A big mat could be
rolled out in front of the cart, similar to a chessboard pattern.
Before driving, the transformation matrix can then easily be
determined through matching of easily detectable key points
like the chess board corners. This would fix the inconsistency

between runs. Unfortunately, due to time limitations, this idea
could not be executed.

VI. CONCLUSION

In conclusion autonomous driving based on visual input and
traditional computer vision techniques was definitely achieved.
The car stably drove on the majority of the RDW track.
The only problem was encountered when vision was lost of
the inner sideline in a sharp turn. Image stitching fixes this
problem. Unfortunately, image stitching was only achieved
in video analysis, but not live on the car. Based on video
analysis, however, it is highly likely that its is possible to be
achieved through a checkerboard mat initialization. Realising
this would also allow for the live implementation of optical
flow odometry, since it would allow a stable birds eye view
to be consistently created. Optical flow is definitely a good
option for odometry when no other sensors are available. It can
also be used in combinations with other sensors to combine
different methods. In real world applications however IMU
units and GPS will likely still outperform it.
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