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Executive Summary

Introduction

The European Parliament has adopted the European Climate Law to address climate change, aiming
for a 55% reduction in net greenhouse gas (GHG) emissions by 2030 and climate neutrality by 2050
(European Parliament, 2018b). Central to this effort is the European Emissions Trading System (ETS), a
carbon cap-and-trade mechanism for regulating and pricing carbon dioxide (CO2) emissions (European
Parliament, 2018b, Harvard Business Review, 2015). With growing societal pressure for environmental
responsibility, businesses are increasingly compelled to demonstrate their commitment to climate
action (Yakavenka et al., 2019, Xu et al., 2016, Albitar et al., 2023).

Problem definition

The Fast-Moving Consumer Goods (FMCG) industry, known for its high sales volumes and frequent
use of disposable products, has a significant impact on the environment. In response to CO2 regulations
and increasing consumer demand for greener products, FMCG companies are adopting strategies to
reduce CO2 emissions. While greener packaging is already a trend in the industry, the location of
warehouses also has a direct impact on CO2 emissions.

It is a common practice among companies in the FMCG industry to employ the use of a shared
distribution network, whereby their transportation and warehousing activities are outsourced to
logistics service providers. This allows for the optimisation of truck space and the reduction of costs. By
pooling resources and sharing infrastructure, companies achieve economies of scale and adaptability
to fluctuating demand patterns. This approach eliminates the need for individual dedicated facilities
and allows for flexible expansion or contraction of operations as needed.

At Royal HaskoningDHV (RHDHV), they recognize a growing demand from clients for getting
insight in the trade-off between CO2 emissions and distribution costs in their distribution network.
Therefore, the aim of our research is to visualize this trade-off, to gain insight into the impact of
their logistics providers’ warehouse locations and customer assignments on these two objectives. The
resulting research question is formulated as follows:

How should FMCG companies design their distribution network, considering the trade-off between minimizing
distribution costs and CO2 emissions?

ii
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Model Development

We begin by introducing Facility Location Problems (FLP), particularly in the context of shared
distribution networks, with the dual objective of minimizing distribution costs and CO2 emissions.
Through a literature review, we found that the model of Harris et al., 2009 is the most suitable model
for our problem, since it addresses an Uncapacitated FLP (UFLP), with a discrete set of warehouses.
We refined this model according to the FMCG industry characteristics, and a more extensive CO2

emission calculation. According to the Greenhouse Gas Protocol, 2024, there are different methods for
calculating CO2 emissions from transportation and warehouses. We evaluated that the distance-based
method and the site-specific method are the most suitable for our case.

Extensions to the model introduce a maximum distance constraint to ensure deliveries meet
FMCG product delivery requirements. The Square Root Law (SRL) is applied to optimize warehouse
utilization and manage inventory within a shared warehouse network. Enhanced CO2 emission
calculations integrate specific emission factors for transportation and warehouse operations, offering a
detailed environmental impact assessment tailored to FMCG logistics.

Trade-off Distribution Costs and CO2 Emissions

We employed the 𝜖-constraint method to visualize the trade-off between the two objectives in a Pareto
front (Figure 1). Our case study revealed significant impacts of the dual objective on warehouse
configuration. Minimizing distribution costs led to fewer warehouses, while minimizing CO2 emissions
required more. The Pareto front showed that operating fewer warehouses reduce costs but increase
emissions, and more warehouses have the opposite effect. Customer assignments remained stable
when the same warehouses were selected. Optimal solutions derived from our analysis offered
more effective ways to reduce both CO2 emissions and distribution costs compared to the original
configuration. The highest CO2 reduction achieved, compared with the initial warehouse configuration,
was 25.8%, with incremental costs of =C380,654.71.

Figure 1: Pareto front resulting from 𝜖-constraint method.

In comparing different temperature control logistics (TCL) scenarios, we found that chilled and
heated scenarios increase both costs and emissions compared to frost-free scenarios. In the chilled
scenario, higher warehouse emissions shifted the Pareto front, favoring fewer warehouses. In the
heated scenario, while costs and emissions were slightly higher, the trade-off structure remained
similar to frost-free scenarios. Our analysis of carbon pricing regulations (ETS2) concluded that the
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trade-off remains largely unchanged unless transportation costs triple, which is unlikely. Therefore,
carbon pricing has minimal impact on the trade-off unless costs increase significantly.

Keywords: FMCG industry, UFLP, shared distribution network, distribution costs, CO2 emissions.
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Introduction

In response to the urgent need to compete with climate change, the European Parliament acted by
adopting the European Climate Law. This law raises the EU’s target of reducing net greenhouse
gas (GHG) emissions by at least 55% by 2030 and legally binds the EU to achieve climate neutrality
by 2050 (European Parliament, 2018b). To support these ambitious goals, carbon dioxide (CO2)
emissions are increasingly examined, regulated, and priced (Harvard Business Review, 2015). This
includes the implementation of the European Emissions Trading System (ETS), functioning as a carbon
cap-and-trade mechanism (European Parliament, 2018b).

Alongside governmental initiatives, the societal pressure increases (Yakavenka et al., 2019), with
a growing number of consumers expressing preferences for environmentally friendly products and
favoring products from companies with positive reputation (Xu et al., 2016). Consequently, companies
are compelled to demonstrate responsibility and commitment to addressing climate change (Albitar
et al., 2023).

1.1 Problem Context

The Fast-Moving Consumer Goods (FMCG) industry, also known as the consumer-packaged goods
sector, is one of the largest industries globally. However, its substantial size and scale also result in
a significant environmental impact (Guo and Liu, 2023). FMCG products, which include items like
household care, skincare, food and beverages, medicines, and affordable consumer electronics, are
known for their low-profit margins but high sales volume to meet daily demands (Guo and Liu, 2023).
Major FMCG companies such as Nestlé, Procter and Gamble, PepsiCo, Unilever, and Coca-Cola offer a
diverse range of products within this sector (Team, 2023).

The environmental impact of the FMCG sector stems from various factors. The rapid turnover
and short product life-cycles contribute significantly to their environmental impact, particularly in
terms of emissions. The nature of FMCG products, which are quickly depleted from store shelves
due to frequent usage, often results in a high volume of production and disposal. Additionally,
many FMCG items are designed for single or limited use, leading to a significant amount of waste
generated. The demand for fast delivery of FMCG products has grown rapidly, driven by evolving
customer expectations for quick access to goods. As a result, short lead times have become increasingly
important for FMCG companies aiming to stay competitive. However, shorter lead times can often
result in more frequent and smaller shipments, which can contribute to higher transportation-related
emissions.

2



1.2. Problem Relevance 3

Sales dynamics in the FMCG industry are influenced by factors such as store discounts, seasonal
variations, and demand uncertainty, leading to price competition among retailers. Managing input
costs becomes crucial, as even slight margin improvements can have a significant impact on the bottom
line due to the large volumes involved (Rajalakshmi and Umadevi, 2020). Furthermore, to meet the
high (uncertain) demand for FMCG products and to deliver in time, FMCG companies often need to
maintain a high inventory level. This enables them to have sufficient stock on hand to quickly respond
to customer needs and fluctuations in market demand.

To manage these complexities, FMCG companies often outsource their transportation and warehous-
ing to logistics service providers, utilizing shared distribution networks. These networks consolidate
FMCG products from multiple companies, enabling efficient distribution by optimizing truck space
and reducing transportation costs.

Given the rising CO2 price and the increasing preference of customers for companies that are
committed to environmental responsibility, FMCG companies are compelled to reduce their footprint to
maintain market share and brand loyalty. While greener packaging is already a trending subject in the
FMCG sector, there is a growing recognition of the importance of designing sustainable logistics as well
(Kellner and Igl, 2012). This underscores the need for FMCG companies to extend their sustainability
efforts beyond packaging and encompass the entire supply chain, including transportation and
warehouse logistics.

The locations of warehouses directly impact transport-related CO2 emissions, with studies indicating
that CO2 pricing can influence facility relocation decisions (Gaigné et al., 2020). Location-allocation
decisions, which encompass both the selection of warehouse locations (strategic decision) and the
assignment of customers to these facilities (tactical decision), significantly influence both logistics costs
and environmental factors (Afshari et al., 2014; Harris et al., 2014).

The FMCG sector’s significant environmental impact, driven by factors such as high production
volumes, short product life cycles and frequent transportation, requires the adoption of sustainable
logistics practices and strategic decisions on warehouse locations to reduce CO2 emissions, minimize
distribution costs and meet customer demand for environmentally responsible solutions.

1.2 Problem Relevance

This research is conducted at Royal HaskoningDHV (RHDHV), an engineering and advisory firm
established in the Netherlands and operating globally. RHDHV specializes in providing valuable
services primarily tailored for clients and is driven by a shared passion for making a positive impact.
RHDHV’s expertise helps clients improve their businesses and they are committed to create a
sustainable future. They notice a growing demand from clients seeking guidance on optimizing their
networks, driven by the increasing importance of sustainability. This trend is demonstrated by recent
inquiries from FMCG companies, whose perspective as shippers highlights a growing interest in
achieving both cost-effectiveness and sustainability within distribution networks.

By providing a strategic framework aligned with both financial and environmental objectives,
companies can make informed decisions that optimize their distribution networks. In assessing
environmental sustainability, particularly GHG emissions, play a significant role (European Parliament,
2018a). This research focuses specifically on CO2 emissions due to their substantial contribution to
GHG emissions. The financial aspect of the research focuses on distribution costs, which includes
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warehouse costs and transportation costs.
The objective of this research is to give FMCG companies insight in the trade-off between distribution

costs and CO2 emissions, regarding the locations of their warehouses and the customer allocations.
As we pursue two objectives, we perform multi-objective optimization to minimize distribution costs
and CO2 emissions within FMCG distribution networks. We employ multi-objective optimization
techniques, exploring various scenarios to demonstrate the costs of varying degrees of CO2 emission
reduction. The goal of this research is to provide valuable insights into the placement of warehouses
and customer allocation, illustrating the trade-off between cost minimization and CO2 emission
reduction.

This research addresses critical gaps not covered by existing studies. While previous research
has examined the trade-off between cost minimization and CO2 emission reduction, it typically lacks
comprehensive calculations for CO2 emissions. Additionally, the characteristics of shared distribution
networks used by FMCG companies, such as inventory considerations, the need for timely delivery,
and different temperature conditions for products, have not been investigated together. Furthermore,
the impact of the CO2 price (ETS2) in combination with locating warehouses has not been thoroughly
investigated. Our study addresses these gaps by combining these elements, as further explained in
Chapter 2. By doing so, the results of this research will support FMCG companies in their efforts to
transition towards more sustainable operations, facilitating informed decision-making in network
design.

1.3 Research Objectives

The SCQA (Situation Complication Question Answer) framework is a widely used method to structure
problems (Minto, 1996). By dividing a problem into four components, this framework helps derive
a conclusive answer. In formulating our primary research question, we focus on the initial three
components of the SCQA framework, as outlined in Table 1.1. The final component, the answer, is
covered in the conclusion.

Table 1.1: Situation Complication Question

Situation Firms are transitioning to sustainability-driven models due to regulatory changes and
consumer demand for green products.

Complication FMCG companies recognize the importance of sustainability but face challenges to integrate
to it into their supply chain while maintaining cost efficiency, particularly in redesigning
logistics networks.

Question How can FMCG companies effectively balance distribution cost minimization with CO2

emission reduction in the design of distribution networks, considering regulatory require-
ments, consumer demands, and the need for sustainable business practices?

This framework leads to the formulation of the main research question:

How should FMCG companies design their distribution network, considering the trade-off between minimizing
distribution costs and CO2 emissions?

The research question can be translated into a theoretical objective and a practical objective:
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• Theoretical objective: Contribute to the understanding of how distribution cost minimization
and CO2 emission reduction intersect in distribution network design.

• Practical objective: Provide insights for FMCG companies aiming to optimize their distribution
networks in a way that balances cost minimization and CO2 emission reduction effectively.

1.4 Research Questions

Given the complexity of the research question described in Section 1.3, we propose several sub-research
questions.

1. What is the most suitable model for selecting warehouse locations in a FMCG network to minimize
distribution costs and CO2 emissions, and how can it be modified for FMCG-specific characteristics?

Considering the wide variation in FLPs (Facility Location Problem), influenced by factors such as
echelon levels, time periods, capacity constraints, and other considerations, selecting the most suitable
model for warehouse location in an FMCG network to minimize distribution costs and CO2 emissions
is crucial. We first classify our problem according to the type of FLP it represents. Following this
classification, we conduct a literature review to identify the most suitable model for our research.
Subsequently, we modify this model for FMCG characteristics.

2. How does the dual objective of minimizing distribution costs and CO2 emissions impact the selection for
warehouses locations and customer assignments?

This question directly addresses the optimization of warehouse locations and customer assignments,
with the dual objective of minimizing distribution costs and CO2 emissions. By using the selected
model from the preceding research question, this question can be answered. The model will yield a set
of optimal solutions, based on the two objectives of minimizing distribution costs and CO2 emissions.
Each optimal solution will present the optimal warehouse locations and corresponding customer
assignments.

3. What are the incremental costs associated with reducing CO2 emissions in the FMCG distribution network,
and how does this trade-off vary with changes in input parameters?

This question directly contributes to informed decision-making by examining the trade-off between
distribution costs and CO2 minimization, aligning with the main research question. By evaluating
incremental costs associated with CO2 emission reduction initiatives, companies can gain valuable
insights into the financial trade-offs involved in achieving their sustainability goals.

It is also important to understand the influence of regulatory changes regarding CO2 emissions and
the influence of diverse product types, on the cost-CO2 trade-off. This analysis helps organizations
understand and guide their decision-making process towards more effective and sustainable strategies.
In the subsequent section we describe the methodology utilized in this study to answer each research
question.
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1.5 Research Design and Thesis Outline

In this section we discuss in more detail how we will answer the research questions outlined in Section
1.4, together with an overview of the thesis structure. In Chapter 1, we started with an introduction to
the research topic. We formulated the research goal and several sub-questions.

1.5.1 Theoretical Framework

In order to identify the optimal locations for warehouses within an FMCG network, in Chapter 2 we
begin by introducing FLPs. Following that, we conduct a literature review to categorize and evaluate
existing models, and identify the research gap. Taking into account FMCG-specific characteristics, we
select the most appropriate model for our research.

Building on this, in Chapter 3, we evaluate different calculation methods for quantifying CO2

emissions in the model, for both transportation and warehouse emissions, contributing to research
question 1.

1.5.2 Model Development

Subsequently, in Chapter 4, we design (parts of) the selected model from the literature review and refine
it to align with the characteristics of FMCG networks and the requirements of a shared distribution
network.

Next, we explain how we can demonstrate the trade-off between distribution costs and CO2

emissions in a Pareto front. We implement a multi-objective optimization method to generate a diverse
set of Pareto-optimal solutions. This approach guarantees that no solution is superior in both objectives
when compared to another solution. This model will explore the trade-offs between minimizing
distribution costs and reducing CO2 emissions. This method aims to offer a set of different optimal
solutions instead of one best solution, to facilitate a decision based on the trade-off between the two
objectives, specifically addressing research question 2.

1.5.3 Case Study

To validate the model and obtain meaningful insights, in Chapter 5, we will apply a constructed case
study. The dataset used is representative of a FMCG company, reflecting typical characteristics such as
high turnover rates. With these results, we gain insights into the trade-off between the dual objective,
addressing research questions 2 and 3.

1.5.4 Scenario Analysis

Through this case study, we will explore various scenarios in Chapter 7. A scenario refers to a specific
set of conditions or circumstances that we will consider in our analysis. Each scenario represents a
different situation or context that may impact the FMCG industry. To cope with the various types of
products within the FMCG industry, we test the model for temperature conditions. Furthermore, we
analyze the impact of CO2 regulations on the trade-off. With a scenario analysis, we test the robustness
of the model, offering insights into its performance under different conditions and highlighting the
adaptability required to manage uncertainties and differences in the FMCG sector. This chapter
addresses the second part of research question 3.
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1.5.5 Evaluation

Finally, in Chapter 8, we present the conclusions of the thesis, provide limitations of the research, and
explore potential paths for future research.

In the following section we will present an overview of the scope of the research, outlining the
specific areas of focus included.

1.6 Scope

The scope (Figure 1.1) of this thesis centers on locating warehouses in a FMCG network, with a specific
focus on shared distribution networks. In the FMCG industry, distribution networks typically feature
shared logistics services due to the small size and high turnover of products, leading to frequent but
less-than-full truckload deliveries. These networks facilitate the consolidation of FMCG products from
multiple companies, thereby enabling efficient distribution through the optimization of truck space
and the reduction of transportation costs. To illustrate, shared distribution networks can deliver a
diverse range of FMCG products to supermarkets in a single truck, thereby reducing the time and
resources required for transportation (Alikhani et al., 2023).

Figure 1.1: Scope of the research, highlighted in green.

Moreover, shared logistics operations provide the advantage of pooling resources and sharing
warehouse and transportation infrastructure, eliminating the need for individual dedicated facilities for
FMCG companies. This approach leverages economies of scale, resulting in cost savings. Additionally,
shared distribution networks offer flexibility and scalability, allowing FMCG companies to adjust
their warehousing and transportation capacities based on fluctuating demand patterns and seasonal
variations. This adaptability enables companies to expand or contract their operations as needed
without being constrained by dedicated infrastructure (Alikhani et al., 2023).

Considering shared distribution networks, we do not have knowledge of the other customers
included in our routes. As a result, solving the Vehicle Routing Problem has limited academic relevance
in this context.

In order to ensure the practicality and real-world applicability of our research, we adopt a discrete
solution space without capacity constraints. This implies that we consider a limited set of potential
warehouse locations, rather than an infinite or continuous range. The locations we consider for
warehouses are determined by the availability of logistics service providers, meaning we only choose
from locations where these providers already operate. Moreover, we assume that these warehouses
have unlimited capacity. This assumption is justified by the fact that the focus of this research is on
shared logistics networks, where capacity is typically flexible and can be adjusted based on demand.
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In the FMCG industry, B2C logistics, which involve the delivery of products to customers through a
network of retailers, are relatively limited. Therefore, our primary focus is on B2B logistics operations.
We focus specifically on distribution warehouses (single echelon). This is particularly crucial in the
FMCG sector, where the ability to deliver products on-time and in-full is a key factor in maintaining
market share and building customer loyalty. In such a competitive landscape, the efficiency and
reliability of warehouse operations can be crucial in a company’s success. Although logistics involves
multiple echelon levels, distribution costs make up a large part of the total logistics expenditure,
particularly in the FMCG industry, where companies deliver small loads to a multitude of addresses.
This supports our choice to focus on a single echelon, warehouse-centered perspective.

By focusing on these elements, this research contributes to the development of a generalized model
that can be applied to a range of cases. In the next chapter, we begin by addressing the first research
question.



2

Facility Location Problem

In FMCG distribution networks, the strategic placement of warehouses is crucial for optimizing
operational efficiency and achieving sustainability goals. Our research aims to identify and modify
the most appropriate FLP model for FMCG logistics. By drawing on insights from existing models
and methodologies, our objective is to develop a model that shows the trade-off between distribution
costs and CO2 emissions considering FMCG characteristics. The solutions produced by the model will
identify the optimal locations for warehouses and customer assignments.

In this chapter, we start with an introduction on FLPs and a classification of this problem (Section
2.1). Subsequently, we apply this classification to our specific problem. In Section 2.2, we conduct a
literature review in order to obtain related articles. In Section 2.3, we identify the research gap and we
determine the most appropriate model for our problem. The primary research question addressed in
this chapter is:

What is the most suitable model for selecting warehouse locations in a FMCG network to minimize distribution
costs and CO2 emissions, and how can it be modified for FMCG-specific characteristics?

By delving into various types of FLPs and assessing their applicability within FMCG networks, we
aim to contribute valuable insights to the field of logistics optimization and sustainability in FMCG
distribution.

2.1 Introduction

The first study in the field of location theory, conducted by Weber, 1909, consists of determining optimal
facility locations and customer allocations. Subsequently, a variety of FLPs have been developed,
including the determination of the optimal number of emergency services (Toregas et al., 1971) and the
implementation of charging infrastructure for electric vehicles (Sun et al., 2020). To address the diverse
set of businesses, researchers have developed a comprehensive set of models. In this section, we will
elaborate on various FLPs to identify the type of model suited for addressing our research problem.

2.1.1 Objectives

Farahani et al., 2010 provided a comprehensive classification of the objectives of FLPs in their study. In
Figure 2.1, we present an overview of this classification. Real-world problems in the FMCG industry
often present themselves as multi-objective problems. Typically, these objectives are conflicting,
making it challenging to find a single optimal solution (Tadaros and Migdalas, 2022).

9
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FMCG companies aim to balance various objectives, including minimizing transportation costs by
reducing the expense of moving goods from production facilities to distribution centers and retailers,
and reducing delivery times to ensure timely delivery, meet customer expectations, and maintain
competitiveness. They also focus on optimizing inventory levels to maintain adequate stock and
prevent stock outs while minimizing holding costs, and improving customer satisfaction by enhancing
service levels and reliability to build customer loyalty. Additionally, since there is an increasing shift
towards sustainability objectives, FMCG companies striving to reduce their environmental impact by
optimizing routes and minimizing emissions.

The general formulation of a multi-objective minimization model is defined in equation 2.1, where
𝑘 denotes the number of objectives.

min
(
𝑓1(®𝑥), 𝑓2(®𝑥), . . . , 𝑓𝑘(®𝑥)

)
s.t. ®𝑥 ∈ 𝑋

(2.1)

Multi-objective models can be categorized into two primary types: bi-objective models and
𝑘-objective models. Bi-objective models aim to optimize two distinct yet interrelated objectives
simultaneously. These objectives may often be inversely correlated, posing a trade-off between the two
objectives. Bi-objective models seek to find solutions that achieve a balance between these conflicting
goals, offering decision-makers a range of Pareto optimal solutions that represent efficient trade-offs
between the objectives.

Scenarios with more than two objectives, k-objective problems (Farahani et al., 2010), introduce
further complexity. These objectives can span a wide range, including dealing costs, demand coverage,
profit maximization, environmental concerns, equity-efficiency trade-offs, and more. The inclusion of
multiple objectives adds layers of complexity to decision-making processes, as decision-makers must
navigate trade-offs and compromises among a diverse set of goals.

Figure 2.1: Classification of multi-criteria Facility Location Problems.

2.1.2 Discrete Multi-Facility Location Problem

The FLP presents two primary modeling approaches: continuous and discrete. Continuous models
allow facility locations to be chosen from a continuous solution set, offering greater flexibility in
decision-making. Despite this flexibility, continuous models are characterized by high computational
time and often suffer from missing data on potential facility locations. Furthermore, practical



2.1. Introduction 11

constraints such as space availability and regulatory limitations may be overlooked, resulting in
potentially sub-optimal facility placements, particularly in densely populated urban areas.

In contrast, discrete models involve the selection of facility locations from a predefined set of
candidate solutions, offering simplicity in decision-making but may result in the exclusion of optimal
locations that are not included in the predefined set (Melo et al., 2009). However, since we assume a
shared distribution network, this approach aligns with our consideration of a limited set of potential
warehouse locations, determined by the availability of logistics service providers. Consequently, our
research focuses on a discrete set of warehouse locations determined by logistics service providers’
existing operations. In this context, a solution comprises the selection of specific warehouse locations
and the assignment of customers to these warehouses, ensuring that the solution satisfies the model
constraints, illustrated in Figure 2.2.

Figure 2.2: Visual presentation of a discrete multi-FLP.

In Figure 2.3 we provide five modifications of this problem. We explain each type of problem.

Figure 2.3: A classification of discrete FLPs.

1. Uncapacitated (UFLP): Determines the optimal locations of an undetermined number of facilities
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to minimize cost and meet customer demand. It is also known as the simple facility location
problem, under which both potential facility locations and customers are discrete points in a
network. The assumption of this problem is that potential facility locations are predetermined
and customer demand is centered on specific points within each region (Verter, 2011).

2. Capacitated (CFLP): The problem is similar to the UFLP, but here the facilities have capacity
limits (Verter, 2011).

3. P-median: Determines the optimal locations of p facilities and their assigned customers in
order to minimize the total distance or cost of transportation between customers and facilities
(Dantrakul et al., 2013).

4. P-center: P-center is a special case of p-median, where problems have a specific objective function
to minimize the distance between each customer and its assigned facility (Dantrakul et al., 2013).

5. Covering: The objective of covering problems is to find the minimum number of facilities to
cover all customers or to maximize the number of customers covered by a given number of
opened facilities (Dantrakul et al., 2013).

Maintaining a high service level and customer satisfaction is important in the FMCG industry
to maintain customer loyalty. The p-center problem, which aims to minimize the distance between
customers and facilities, contributes to this aspect. However, our problem differs in that we are not
seeking to determine a specific number of facilities to open. Instead, our objective is to minimize
distribution costs and CO2 emissions by deciding on the number and location of facilities. Therefore,
the p-median and p-center approaches are not representative for our research. In addition, covering
problems focus on service objectives. Given that the FMCG industry prioritizes efficient and reliable
service, it is essential to incorporate this consideration into the model. However, rather than treating
service efficiency as an objective, our research addresses it as a constraint.

As outlined in the scope (1.1), we assume unlimited capacity, given that we are examining a shared
distribution network. In light of this, the UFLP appears to be the most appropriate model for our
problem. However, the CFLP can be seen as a more constrained version of the UFLP. Since we can
easily adjust the CFLP to an UFLP, we will explore both in the literature.

In a shared distribution network, the costs associated with a warehouse are determined by the
proportion of the total inventory space that a company occupies, rather than by the costs of operating
individual warehouses. Therefore, our research problem considers a UFLP with two objectives,
minimizing distribution costs and CO2 emissions, while taking inventory into account for calculating
warehouse costs and warehouse emissions, and having a service constraint to cope with customer
expectations of fast delivery.

In the next section, we delve into related literature to investigate the research gap and explore
existing models that can serve as a starting model.

2.2 Related Literature

In this section, we employ a systematic literature review, with the details of this approach included in
Appendix A. We present an overview of relevant literature in Table 2.1. This table comprises articles
on discrete FLPs, whether uncapacitated or capacitated, which address, at the least, one of the research
objectives, namely, cost and the environment. Each column classifies the articles based on specific
characteristics. The last row contains information about our research problem, facilitating comparison
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with other articles sharing similar attributes.

Table 2.1: Overview of most related literature.
Article Objective Capacity Inventory Service Solution

Cost Service Environment constraint method
Harris et al., 2009 ✓ ✓ - - - NSGA-II
Atta et al., 2019 ✓ ✓ - - - - NSGA-II, WSGA
Xifeng and Peng, 2013 ✓ ✓ ✓ - - - Hybrid Algorithm
Harris et al., 2014 ✓ - ✓ ✓ - - SEAMO2, NSGA-II
Caselli et al., 2022 - - ✓ ✓ - - MILP
Xi-Feng et al., 2020 ✓ - ✓ ✓ - - SEAMO2, NSGA-II
Das and Roy, 2019 ✓ ✓ ✓ ✓ - - Loc-Alloc heuristic
Wang et al., 2011 ✓ - ✓ ✓ - - Normalized constraint method
Yu and Solvang, 2016 ✓ - - ✓ - - 𝜖-constraint method
Chandra et al., 2020 ✓ ✓ - ✓ - - 𝜖-constraint method
Research Problem ✓ - ✓ - ✓ ✓ 𝜖-constraint method

Harris et al., 2009 propose an UFLP, to optimize cost and environmental impact simultaneously.
They implement an evolutionary multi-objective algorithm, the non-dominated sorting genetic
algorithm II (NSGA-II), to show a set of non-dominated solutions in a Pareto-front. The environmental
impact is incorporated by the introduction of weighting factors, denoted by 𝑊𝑇 and 𝑊𝐹. These
factors derive the environmental impact from transportation and facilities, respectively, in relation to
transportation costs and fixed facility costs. The results show that minimizing environmental impact
often requires opening more facilities, which increases costs, highlighting the trade-off between cost
efficiency and environmental sustainability.

Harris et al., 2014 extends the basic UFLP of Harris et al., 2009 with a maximum capacity. They
propose a bi-objective CFLP to minimize the total costs and CO2 emissions. Harris et al., 2014 combines
an evolutionary algorithm (SEAMO2) and Lagrangian Relaxation technique. The results show that
the lowest cost solution results in the highest CO2 emissions with less facilities open and the higher
number of open facilities produces lowest emissions at much higher cost.

Xifeng and Peng, 2013 conducted a study based on the UFLP, using a multi-objective optimization
model. This model aimed to determine the trade-off among economic costs, service reliability, and
environmental impact. Specifically, they incorporated environmental impact by calculating CO2

emissions from transportation. The study used CO2 emissions factors for fully loaded trucks on the
outbound journey and empty trucks on the return trip, as well as considering distance and weight to
quantify the environmental impact. The results of their study indicated that it might be beneficial to
open more facilities than what is considered optimal from only a economic perspective. However,
in shared distribution networks, trucks often carry products from multiple companies, reducing
the number of completely empty trips and improving truck capacity utilization. Consequently, the
distinction between full and empty truck trips is less pertinent to our research, as the shared nature of
loads enhances overall efficiency.

Xi-Feng et al., 2020 builds upon there previous research. The NSGA-II and SEAMO2 algorithms are
employed to solve the model. Three different allocation rules based on distance, cost, and emissions
are applied. The results show that the allocation rules have nearly no influence on the solution quality,
and the allocation rule based on the distance has an absolute advantage of computation time.

Atta et al., 2019 evaluated the NSGA-II and the weighted sum genetic algorithm (WSGA) to solve
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the the multi-objective of minimizing costs and maximizing the sum of preferences for all customers.
Caselli et al., 2022 developed a Mixed-Integer Linear Programming (MILP) model to minimize

CO2 emissions in a waste transfer facility location problem. The objective was to optimize the network
of facilities for waste collection while considering environmental impacts. The model incorporated
capacity constraints, binary variables for facility selection, and continuous variables for waste flow.
CO2 emissions were calculated by summing emissions from transportation, based on vehicle type,
travel time, fuel consumption, and the number of trips between customers, intermediate, and final
facilities, as well as from facility operations, divided into variable and fixed components depending
on waste processed and energy use. The MILP model was solved exactly, yielding a single optimal
solution that minimizes total CO2 emissions across the waste transfer network.

Das and Roy, 2019 propose a hybrid approach to minimize transportation costs, time, and carbon
emissions by locating p-facilities and allocating product flow. Their study considers variable carbon
emissions under carbon tax or cap and trade regulations. The study also includes sensitivity analysis
for supply and demand parameters.

Wang et al., 2011 propose a multi-objective model to minimize both total cost and environmental
impact in a green supply chain network. The model incorporates CO2 emissions by evaluating two
main sources: emissions from facility operations and emissions from transportation. Facility emissions
are influenced by the environmental protection level of each facility, affecting how much CO2 is
generated per unit of product handled. Transportation emissions arise from the movement of products
between suppliers and facilities, with each arc in the network contributing to the total CO2 emissions,
based on the volume of goods transported. The sensitivity analysis demonstrates that increasing
network capacity and supply can lower both CO2 emissions and total cost, emphasizing the need to
consider environmental impacts as demand levels rise.

Chandra et al., 2020 present a CFLP to minimize installation, transportation, treatment costs, and
social costs using the 𝜖-constraint method to generate Pareto optimal solutions.

Yu and Solvang, 2016 addresses hazardous waste location-routing problems using a multi-objective
mixed integer programming model. The study uses the 𝜖-constraint method to generate Pareto optimal
solutions and explores trade-offs between cost and risk objectives.

As shown in Table 2.1, we identify a clear gap in the existing literature on this topic. In the following
section, we will explore this gap in greater detail.

2.3 Literature Gap

In this section, we discuss the literature gap filled by this thesis. The previous section shows that
a wide variety of (un)capacitated FLP is available. However, our research problem differs from the
aforementioned articles in certain aspects.

The FMCG industry gives high priority on providing efficient and reliable service to customers.
Therefore, it is crucial to consider service constraints when optimizing facility locations. While Harris
et al., 2009 and Xifeng and Peng, 2013 studied an UFLP while simultaneously minimizing costs, CO2

emissions, and maximizing service, our model does not address service as an objective but as a
constraint.

Furthermore, the articles do not include inventory in their model, when deciding on the number of
facilities to open. However, in our model the inclusion of inventory is critical because the decision to
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open additional facilities affects the total inventory and consequently impacts the associated facility
costs. By incorporating inventory considerations, our research model provides a more comprehensive
and realistic representation of the FMCG industry’s facility location optimization problem.

While several models incorporate environmental factors, they often focus on different aspects.
Xi-Feng et al., 2020 specifically addresses CO2 emissions related to transportation but does not extend
the analysis to broader environmental impacts within the context of facility location. Harris et al.,
2009 assesses the environmental impact of both transportation and warehousing, yet this impact is
considered in conjunction with financial factors rather than being isolated to CO2 emissions alone. The
study by Caselli et al., 2022 centers on waste management and CO2 emissions related to waste, which
falls outside the scope of our research objectives. Moreover, Wang et al., 2011 examines environmental
protection levels rather than focusing specifically on CO2 emissions, which does not align with our
goal of integrating CO2 emissions into the facility location model.

In addition, there is a lack of detailed analysis regarding the share of CO2 emissions attributable to
different companies using the same warehouse within a shared distribution network. Most studies
that consider CO2 emissions related to facilities usually calculate the total emissions for each facility.
Our research aims to fill this gap by providing a more detailed analysis of the CO2 emissions for a
shared distribution network.

Another identified gap in the literature is the limited use of scenario analysis. Das and Roy, 2019
performed sensitivity analysis for supply and demand parameters, and Wang et al., 2011 conducted
sensitivity analysis by increasing network capacity and supply. However, these studies do not consider
changes in CO2 regulations and different product types, and they both focus on CFLPs.

In conclusion, we address the identified literature gaps by incorporating both a service constraint
and inventory considerations into the UFLP. We also conduct an extensive scenario analysis to account
for the unpredictable future of CO2 regulations and the diverse range of product categories within the
FMCG industry. Furthermore, we perform comprehensive and precise calculations of CO2 emissions
associated with a shared distribution network.

To establish a baseline model, we utilize the model proposed by Harris et al., 2009, which balances
cost minimization with environmental impact, accounting for both transportation and warehousing.
In Chapter 4, we will adapt this model to align with our research problem. In the next chapter, we
evaluate different methods for CO2 calculation for warehouses and transportation.
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Quantifying CO2 Emissions

In this chapter, we describe the methodologies for calculating CO2 emissions in the context of
our problem. The focus of our analysis will be on two key sources of emissions: transportation
and warehouses. We will not focus on waste and production-related emissions, as the location of
warehouses does not directly influence those factors.

The first section of this chapter will provide an explanation of the GHG protocol, which serves as a
recognized framework for measuring GHG emissions. Understanding this protocol is essential as it
provides the foundation for calculating CO2 emissions accurately. In the subsequent section, we will
elaborate on the calculation of CO2 emissions specifically related to transportation activities. Lastly, we
will focus on calculating CO2 emissions coming from warehouses. We evaluate these methodologies
for calculating both transportation and warehouse emissions and identify the most suitable methods
for our research problem.

3.1 Greenhouse Gas Protocol

The GHG protocol is a recognized framework for measuring and reporting GHG emissions (Greenhouse
Gas Protocol, 2024). It was developed by the World Resources Institute (WRI) and the World Business
Council for Sustainable Development (WBCSD). The protocol provides a standardized method and
guidelines for organizations to quantify and report their emissions accurately and transparently. By
using this protocol, we can ensure meaningful comparisons across different studies and organizations.
The GHG protocol provides guidelines on measuring emissions across different emission sources and
activities. Greenhouse Gas Protocol, 2024 categorizes emissions into three scopes:

• Scope 1: This includes direct emissions from sources that are owned or controlled by the
organization, such as on-site fuel combustion or in-house transportation emissions.

• Scope 2: This covers indirect emissions resulting from the generation of purchased electricity,
heat, or steam consumed by the organization.

• Scope 3: These are indirect emissions that occur in the value chain of the organization, encom-
passing activities such as the extraction and production of purchased materials, transportation
of purchased fuels, and the use of sold products and services.

The division of emissions into these scopes helps prevent double counting, ensuring accurate and
comprehensive reporting of GHG emissions. In Figure 3.1, we provide an overview of the scopes
mentioned above.

16
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Figure 3.1: Overview of GHG protocol scopes and CO2 emissions.

The quantity of CO2 emitted by a vehicle is directly linked to its fuel consumption, which is
influenced by speed, load, and traffic conditions (Demir et al., 2014). In this research, we consider
FMCG that outsource their distribution to a logistic service provider. As a result, emissions from
transportation and warehouses fall within scope 3 classification. This category includes third-party
distribution services procured by the reporting company during the reporting year. According to
Greenhouse Gas Protocol, 2024 transportation emissions from this class can be calculated by different
methods:

• Fuel-based method: Determines the amount of fuel consumed and applying the appropriate
emission factor for that fuel.

• Distance-based method: Determines the mass, distance, and mode of each shipment, and
applies the appropriate mass-distance emission factor for the vehicle used.

• Spend-based method: Determines the amount of money spent on each mode of business travel
transport and applying secondary (EEIO) emission factors.

According to Greenhouse Gas Protocol, 2024 we can use two different methods to calculate CO2

emissions from distribution centers or warehouses in scope 3: the site-specific method and the
average-data method.

• The site-specific method: determines the emissions based on the energy consumption of the
warehouse facilities and allocates these emissions based on the actual usage of these warehouse
facilities.

• The average-data method: Estimates emissions for each distribution activity based on average
data. Emissions are estimated using average values, such as emissions per pallet or cubic meter
stored per day.

In order to conduct our research, we must employ methods to calculate CO2 emissions for both
transportation and warehouse activities within a shared distribution network. In the following sections
we explain and justify the specific methods we employ for the calculation of CO2 emissions.
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3.2 Transportation Emissions

We employ the distance-based method for transportation emissions due to the nature of our logistics
operations. Since we outsource transportation to a logistics service provider, our goods are transported
alongside other products. The distance-based method allows us to accurately account for emissions
based on the mass, distance traveled, and transportation mode used. The alternative fuel-based
method relies on detailed fuel consumption data, which may be limited in outsourced transportation
scenarios. This detailed fuel consumption data is often more readily available when transportation is
handled in-house because you can directly access information such as customer and delivery addresses
from your own systems. On the other hand, the spend-based method could be useful when detailed
mass and distance data are unavailable. However, in most cases, companies have access to data on the
mass of their products, the distance traveled, and the transportation mode used. Thus, we focus on
the distance-based method, which is addressed by the following equation:

CO2 emissions from transportation =

∑
(mass (tonnes))

· distance travelled (km)

· emission factor of transport mode type (kg CO2 / tonne-km)
(3.1)

3.3 Warehouse Emissions

In order to calculate emissions from warehouses, we employ the site-specific method, which is suitable
for shared distribution networks. This method determines emissions based on the total energy
consumption of the warehouse and allocates them according to the space in use of each company.

According to data from CBS, 2018, natural gas represents the primary energy source for warehouses,
comprising 75% of total consumption, primarily for heating purposes. Approximately 15% of energy
consumption is attributed to electricity, which is primarily used for lighting and operating equipment.
However, this can vary greatly depending on the warehouse’s specific requirements, such as whether it
is heated, maintained frost-free, or chilled. In Chapter 7, we will examine the impact of these different
requirements.

The site-specific method enables us to accurately calculate emissions using detailed data on gas
and electricity consumption. This approach ensures precise emissions allocation based on actual usage
in a shared distribution network. The site-specific method is defined by the following formula:

CO2 emissions from warehouses =∑ (
inventorycompany (m2)
inventorywarehouse (m2)

)
·
[ (

gas consumption (m3) · gas emission factor (kg CO2 per m3)
)

+
(
electricity consumption (kWh)

· electricity emission factor (kg CO2 per kWh)
) ]

(3.2)
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By applying Equation 3.2, we can calculate the total emissions allocated to a company by summing
the emissions of each individual warehouse, based on the proportion of inventory the company
occupies. This method ensures an accurate reflection of a company’s portion of the emissions from
shared warehouse operations. Furthermore, incorporating energy consumption allows for allocation of
emissions based on different storage methods, including temperature-controlled and ambient storage.

3.4 Emission Factors

According to CO2 Emissiefactoren, 2022, there are three definitions of CO2 emission factors:

1. Well to Tank (WtT): This approach focuses on emissions in the upstream phase of the activity,
encompassing fuel extraction and production.

2. Tank to Wheel (TtW): This approach considers direct emissions from the activity, specifically
fuel usage in vehicles.

3. Well to Wheel (WtW): This comprehensive approach combines both the WtT and TtW approaches,
accounting for emissions throughout the entire life-cycle, from upstream phases to direct
emissions.

Given that we are outsourcing both storage and transportation within a shared distribution network,
we determine our specific share of the CO2 emissions. For this purpose, we employ TtW emission
factors. TtW emission factors measure the direct emissions produced during the consumption of
fuel or energy in operational activities. Specifically, for transport, TtW factors account for the CO2

emissions generated by the vehicles while they are in use, directly reflecting the environmental impact
of transporting goods from warehouses to customers. Similarly, for warehouse operations, TtW factors
capture the emissions resulting from the consumption of electricity and natural gas for lighting,
heating, cooling, and other warehouse activities.

Selecting appropriate emission factors is critical for accurately calculating the environmental impact
of warehouse operations. Emission factors for transportation are typically measured in kilograms of
CO2 per tonne-kilometre and vary depending on the type of vehicle. In the context of warehouses, the
emission factors are determined by the type of energy consumed and are expressed in kilograms of
CO2 per kilowatt-hour (kWh) for electricity and per cubic metre (m3) for natural gas.

The selection of specific emission factors and the details of energy usage will be further specified in
the accompanying case study. In the subsequent chapter, we integrate these CO2 emission calculation
methods in our mathematical model.
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Mathematical Model

In this chapter, we begin by presenting the mathematical formulation of our baseline model. Subse-
quently, we introduce our own mathematical model, taking into consideration the characteristics of
the FMCG industry.

4.1 Baseline Model: The Multi-Objective UFLP for Green Logistics

As we introduced in Section 2.3, the model by Harris et al., 2009 provides a starting point for the
research model since it addresses the UFLP in a single echelon environment while minimizing costs
and CO2 emissions. It operates under the assumptions of unlimited warehouse capacity and the
selection of warehouses from a predefined set. These assumptions are aligned with the requirements
of our research problem, as explained in Subsection 2.1.2. In the following section (4.1.1), we provide a
comprehensive formulation of the baseline model.

4.1.1 Model Formulation

• Sets

𝜏 = {1, . . . , 𝑁} (set of potential depots)

𝛾 = {1, . . . , 𝐾} (set of customers)

• Parameters

𝑐𝑖 𝑗 transportation cost of serving the demand from customer 𝑗 using depot 𝑖 (=C)

𝑓𝑖 fixed cost for opening depot 𝑖 (=C)

𝑊𝑇 factor for the environmental impact from transport in relation to transportation costs

𝑊𝐹 factor for the environmental impact from depots in relation to fixed costs

• Decision Variables

𝑥𝑖 𝑗 =


1, if the demand of customer 𝑗 is fulfilled by depot 𝑖

0, otherwise

𝑦𝑖 =


1, if depot 𝑖 is chosen to operate

0, otherwise

20
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• Objectives

Minimizing costs: min

∑
𝑖∈𝜏

∑
𝑗∈𝛾

𝑐𝑖 𝑗𝑥𝑖 𝑗 +
∑
𝑖∈𝜏

𝑓𝑖𝑦𝑖

 (4.1)

Minimizing environmental impact: min

∑
𝑖∈𝜏

∑
𝑗∈𝛾

𝑐𝑖 𝑗 ·𝑊𝑇 · 𝑥𝑖 𝑗 +
∑
𝑖∈𝜏

𝑓𝑖 ·𝑊𝐹 · 𝑦𝑖
 (4.2)

The objective contains the transportation costs of attending to customer demand by the open
depots and the fixed facility costs of the open depots. The second objective has the same formulation
as the cost objective except for the addition of weight factors𝑊𝑇 and𝑊𝐹. The weight factors𝑊𝑇 and
𝑊𝐹 represent the environmental impact of the transportation cost and fixed cost, respectively.

• Constraints∑
𝑖∈𝜏

𝑥𝑖 𝑗 = 1, ∀𝑗 ∈ 𝛾 (4.3)

𝑥𝑖 𝑗 ≤ 𝑦𝑖 , ∀𝑗 ∈ 𝛾, ∀𝑖 ∈ 𝜏 (4.4)

𝑥𝑖 𝑗 ∈ {0, 1}, ∀𝑗 ∈ 𝛾, ∀𝑖 ∈ 𝜏 (4.5)

𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝜏 (4.6)

Constraint 4.3 ensures that each customer is served by exactly one depot. Constraint 4.4 assigns
the customers to only the open depots. Constraints 4.5 and 4.6 define the decision variables as binary.

4.2 The Multi-Objective UFLP for Green Logistics within the FMCG
Industry

Our research model extends the baseline model proposed by Harris et al., 2009 in order to better
align with the characteristics of the FMCG industry. In the following subsections, we explain the
extensions we make to the baseline model in order to develop our own research model, together with
an explanation of the resulting new assumptions.

4.2.1 Extensions

In Table 4.1 we present the extensions we make to the baseline model to address the key characteristics
in the FMCG supply chain. We incorporate a maximum distance constraint to ensure timely deliveries.
Inventory considerations are integrated to account for the share of a shared warehouse. Lastly, we
enhance the CO2 calculation to provide a detailed assessment of emissions from transportation and
warehouse operations.

Table 4.1: Extensions to the baseline model.

# Extension Model implementation

1 Maximum distance constraint ℎ𝑖 𝑗 ≤ ℎmax

2 Inventory inclusion 𝑘 ·
√∑

𝑖∈𝜏 𝑦𝑖

3 Extended CO2 calculation (ℎ𝑖 𝑗 + ℎ 𝑗𝑖) ·𝑊𝑇 · 𝑥𝑖 𝑗 · 𝑑 𝑗 + (𝑊𝐸 · 𝐸 +𝑊𝐺 · 𝐺)
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Extension I: Maximum distance constraint

The growing demand for fast delivery of FMCG products, driven by higher customer expectations,
demands the incorporation of short lead times into the model. While it is possible to introduce an
additional constraint specifying that deliveries must occur on the requested delivery day, our current
model does not take specific days or times into account, as they are not directly relevant to our defined
objectives. Our primary focus is on optimizing costs and emissions based on factors such as overall
weight and distance traveled, rather than the frequency of trips to customer locations. As a result, we
have incorporated a maximum distance constraint into the model to maintain the desired service level.

ℎ𝑖 𝑗 ≤ ℎmax

This constraint sets a limit on the distance that can be covered within a specified time frame.

Extension II: Inventory inclusion

The baseline model focuses on opening costs per depot. In a shared distribution network, however, the
allocation of warehouse costs is based on the proportion of the total inventory space that each company
occupies, rather than on the specific operational costs of individual warehouses. This approach
allows for the determination of warehouse costs on a costs per m2 basis, reflecting the shared usage of
warehouse space.

Given that costs and CO2 emissions can be expressed per m2, we adopt the assumption that all
warehouses have uniform characteristics. From a long-term perspective, fluctuations in performance,
costs, and other factors are likely to average out, making the assumption of uniform characteristics
across warehouses more reasonable for strategic planning. Furthermore, this assumption provides a
clear baseline scenario, serving as a foundation for exploring more complex scenarios that incorporate
variations in warehouse conditions, such as differing temperature requirements. This will be tested in
Chapter 7.

The Square Root Law (SRL) is a commonly used formula to calculate inventory levels based on the
number of operational warehouses (Fleischmann, 2016). The total inventory increases with the square
root of the number of warehouses that are operational. The SRL formula (Equation 4.7) states that the
future inventory level (𝑋2) is equal to the existing inventory level (𝑋1) multiplied by the square root of
the ratio of the number of future facilities (𝑛2) to the number of existing facilities (𝑛1).

𝑋2 = 𝑋1 ·
√
𝑛2
𝑛1

(4.7)

While the total inventory across the network increases with the addition of more warehouses, the
average inventory per warehouse decreases due to risk pooling effects, enabling the network to better
handle temporary fluctuations in demand. Additionally, more warehouses mean closer proximity to
customers, which can reduce lead times and thus the need for safety stock.

In order to establish a theoretical basis for the practical application of the SRL in different logistical
scenarios, we derive a generalized formula that determines inventory levels based on the number of
open warehouses. This eliminates the need for a comparative analysis of the current inventory and the
future inventory each time. By determining a baseline scenario, where the inventory for one open
warehouse, denoted as 𝑛1 = 1, is known as 𝑋0, we formulated the following equation:
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𝐼 = 𝑋0 ·
√
𝑛

1 = 𝑋0 ·
√
𝑛

Here, 𝐼 represents the inventory requirement for 𝑛 facilities, and 𝑋0 is the baseline inventory for
one facility. Introducing a constant factor 𝑘 to represent the baseline inventory, we can further simplify
the relationship as:

𝐼 = 𝑘 ·
√
𝑛

Here, 𝑛 represents the number of open warehouses, which is equal to the sum of 𝑦𝑖 for all 𝑖 in the
set 𝜏. To calculate the total warehouse costs and warehouse CO2 emissions, we can incorporate the
inventory formula into the objective function of our optimization problem. By using the following
expression:

𝑘 ·
√∑

𝑖∈𝜏
𝑦𝑖

This formulation allows us to optimize the number of open warehouses while considering the
associated distribution costs and CO2 emissions, as stated in the objective function of our model.

By assuming equal characteristics for all warehouses, we can apply the SRL consistently across the
entire set of potential warehouses. Since we consider costs per m2, we only need to know the total
inventory to determine the total costs. Consequently, the distribution of inventory across different
warehouses does not impact our objective values.

Accordingly, our model incorporates two additional assumptions relative to the baseline model:
1) that all warehouses exhibit uniform characteristics, and 2) that inventory is distributed uniformly
across all warehouses.

Extension III: Extended CO2 calculation

The baseline model calculates the environmental impact through weighted cost factors, assuming a
direct correlation between costs and emissions. Transportation costs are scaled by a weight factor𝑊𝑇 ,
suggesting that the environmental impact of transporting goods is proportional to the cost. Similarly,
facility operations are evaluated using a weight factor 𝑊𝐹, applied to the operational costs of each
warehouse. In order to improve this calculation, we integrate more detailed CO2 calculations from
the GHG Protocol for both transportation and warehousing, as detailed in Equations 3.1 and 3.2 in
Chapter 3. As stated in the calculation method in Equation 3.1, we calculate transportation emissions
by considering the distances traveled between warehouses and customers. The distance is multiplied
by the appropriate emission factor and scaled by the demand in weight (𝑑 𝑗). This methodology directly
measures transport emissions based on the volume of goods transported and the distance traveled.

The calculation of warehouse emissions according to Equation 3.2 involves two key components: fuel
consumption and electricity consumption. Each component’s emissions are quantified by multiplying
the respective consumption levels by their emission factors (W𝐸 for electricity and W𝐺 for gas).

Since we assume equal characteristics across all warehouses, all warehouses are equal in size,
temperature condition, costs, and energy consumption rates. Consequently, the energy usage per m2

are consistent across all warehouses.
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By multiplying the fuel and electricity usage per m2 by the total inventory (m2) of the reporting
company, we can calculate the share of the company’s emissions. This method focuses on our
proportional share of inventory and energy usage, thereby avoiding the need to consider the total
inventory of each warehouse.

We quantify the emissions using specific emission factors (𝑊𝐸 for electricity and 𝑊𝐺 for gas),
applied to the energy consumed per m2 of facility space. This energy consumption is then scaled by a
function of the number of facilities 𝑘

√∑
𝑖∈𝜏 𝑦𝑖 . This results in the following formula:

(ℎ𝑖 𝑗 + ℎ 𝑗𝑖) ·𝑊𝑇 · 𝑥𝑖 𝑗 · 𝑑 𝑗 +
∑
𝑖∈𝜏 (𝑊𝐸 · 𝐸 +𝑊𝐺 · 𝐺) · 𝑘

√∑
𝑖∈𝜏 𝑦𝑖

This approach allows us to account for variations in emissions resulting from differences in energy
consumption rates and operational efficiencies. We analyze these variations in greater detail in the
scenario analysis (Chapter 7) of our thesis.

We incorporate the extensions mentioned above in our mathematical model, as presented in the
following subsection.

4.2.2 Model Formulation

In this section, we present our mathematical model for the multi-objective discrete UFLP.

• Sets

𝜏 = {1, . . . , 𝑁} (set of potential warehouses)

𝛾 = {1, . . . , 𝐾} (set of customers)

• Parameters

𝑐 transportation costs (=C/km)

𝑘 baseline inventory (m2)

𝑑 𝑗 demand of customer 𝑗 (tonnes)

ℎ𝑖 𝑗 distance from warehouse 𝑖 to customer 𝑗 (km)

ℎ 𝑗𝑖 distance from customer 𝑗 to warehouse 𝑖 (km)

𝑊𝑇 emission factor for transportation (kg CO2/tonne-kilometre)

𝑊𝐸 emission factor for electricity (kg CO2/kWh)

𝑊𝐺 emission factor for gas (kg CO2/m3)

ℎmax maximum distance allowed (km)

𝑓 warehouse costs (=C/m2)

𝐸 electricity consumption (kWh/m2)

𝐺 gas consumption (m3/m2)

• Decision variables

𝑥𝑖 𝑗 =


1, if the demand of customer 𝑗 is fulfilled by warehouse 𝑖

0, otherwise

𝑦𝑖 =


1, if warehouse 𝑖 is selected

0, otherwise
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• Objectives

Minimizing distribution costs:

min

[∑
𝑖∈𝜏

∑
𝑗∈𝛾

(
(ℎ𝑖 𝑗 + ℎ 𝑗𝑖) · 𝑐 · 𝑥𝑖 𝑗

)
+ 𝑓 · 𝑘

√∑
𝑖∈𝜏

𝑦𝑖

]
Minimizing CO2 emissions:

min

[∑
𝑖∈𝜏

∑
𝑗∈𝛾

(
(ℎ𝑖 𝑗 + ℎ 𝑗𝑖) ·𝑊𝑇 · 𝑥𝑖 𝑗 · 𝑑 𝑗

)
+

∑
𝑖∈𝜏

(𝑊𝐸 · 𝐸 +𝑊𝐺 · 𝐺) · 𝑘
√∑

𝑖∈𝜏
𝑦𝑖

]
• Constraints∑

𝑖∈𝜏
𝑥𝑖 𝑗 = 1, ∀𝑗 ∈ 𝛾 (4.8)

𝑥𝑖 𝑗 ≤ 𝑦𝑖 , ∀𝑗 ∈ 𝛾, ∀𝑖 ∈ 𝜏 (4.9)

ℎ𝑖 𝑗 ≤ ℎmax , ∀𝑗 ∈ 𝛾, ∀𝑖 ∈ 𝜏 (4.10)

𝑥𝑖 𝑗 ∈ {0, 1}, ∀𝑗 ∈ 𝛾, ∀𝑖 ∈ 𝜏 (4.11)

𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝜏 (4.12)

Constraint 4.8 ensures that every customer is served by one warehouse. Constraint 4.9 specifies
that customers should only be assigned to operating warehouses. Constraint 4.10 sets a maximum
allowed distance between the warehouse and the customer. This constraint limits the distance between
a warehouse and its assigned customer, ensuring that the customer is within a specific range from the
warehouse. And constraints 4.11, 4.12 define the decision variables as binary.

In conclusion, we have extended the baseline model proposed by Harris et al., 2009 to better align
with the specific characteristics of the FMCG industry. Our extensions include inventory considerations
and the incorporation of a maximum distance constraint to ensure timely deliveries. Furthermore, we
have extended the CO2 calculations to provide a more detailed assessment of emissions from both
transportation and warehouse operations.

However, it is important to note that the formulated model represents a non-linear function as a
result of the incorporation of the square root within the objective functions. In optimization problems,
especially those formulated using linear programming, non-linear functions such as the square root
pose significant challenges. Gurobi and similar optimization tools are designed to handle linear
constraints and objectives efficiently but cannot directly process non-linear functions. In the next
subsection, we explain how we address this non-linear function.

4.2.3 Piecewise Linear Approximation of the Square Root Function

In order to address the non-linear function, we incorporate a piecewise linear approximation of the
square root function into the model. This allows us to maintain linearity in the model while still
incorporating the inventory level based on the number of open warehouses. The piecewise linear
approximation involves defining several constraints that represent linear segments approximating the
square root function (D’Ambrosio et al., 2010). Each segment is tailored to approximate the square root
curve within a specific interval of the number of warehouses. By dividing the function into these linear
segments, we effectively simplify the original non-linear problem into a series of linear constraints.
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Let 𝑧 represent the approximation of the square root of the total number of open warehouses:

𝑧 ≈
√∑

𝑖∈𝜏
𝑦𝑖

We introduce breakpoints and binary decision variables to linearize the square root function. The
breakpoints are selected in advance to divide the range of possible inputs into intervals. For each
interval, we use a linear function to approximate the square root.

Parameters

• Breakpoints: {0, 1, 2, . . . , 𝑚}, where 𝑚 is the maximum number of open warehouses.
• Sqrt values: {

√
0,
√

1,
√

2, . . . ,
√
𝑚}, the actual square root values at the breakpoints.

Variables

• 𝑧: Continuous variable representing the approximated value of the square root.
• 𝛽𝑘 : Binary variables to indicate which interval (or segment) the total number of open warehouses

falls into.

Constraints

We introduce binary variables 𝛽𝑘 and a set of constraints to enforce that only one segment is active at a
time. The constraints are written as:

𝑚−1∑
𝑘=1

𝛽𝑘 = 1

For each segment 𝑘, we enforce the following constraints to approximate the square root function:

𝑧 ≥ sqrt_values[𝑘] +
sqrt_values[𝑘 + 1] − sqrt_values[𝑘]
breakpoints[𝑘 + 1] − breakpoints[𝑘] ·

(∑
𝑖∈𝜏

𝑦𝑖 − breakpoints[𝑘]
)
−𝑀(1 − 𝛽𝑘)

𝑧 ≤ sqrt_values[𝑘] +
sqrt_values[𝑘 + 1] − sqrt_values[𝑘]
breakpoints[𝑘 + 1] − breakpoints[𝑘] ·

(∑
𝑖∈𝜏

𝑦𝑖 − breakpoints[𝑘]
)
+𝑀(1 − 𝛽𝑘)

where 𝑀 is a large constant used to deactivate the constraints for segments that are not selected.

Objectives

The approximation 𝑧 is then used in the objective functions to minimize costs and CO2 emissions.

min

∑
𝑖∈𝜏

∑
𝑗∈𝛾

(
(ℎ𝑖 𝑗 + ℎ 𝑗𝑖) · 𝑐 · 𝑥𝑖 𝑗

)
+ 𝑓 · 𝑘 · 𝑧
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min

∑
𝑖∈𝜏

∑
𝑗∈𝛾

(
(ℎ𝑖 𝑗 + ℎ 𝑗𝑖) ·𝑊𝑇 · 𝑥𝑖 𝑗 · 𝑑 𝑗

)
+ (𝑊𝐸 · 𝐸 +𝑊𝐺 · 𝐺) · 𝑘 · 𝑧


The result of the linear approximation used is shown in Figure 4.1. We observed that the linear

approximation accurately approximates the square root.

Figure 4.1: Piecewise linear approximation of the square root function for the number of open warehouses.

In order to obtain a set of optimal solutions and demonstrate the trade-off between distribution
costs and CO2 emissions, we require a multi-objective optimization. In the following section we will
elaborate on the method employed for the multi-objective optimization and present the adjusted
mathematical model, including the linear approximation of the square root.

4.3 Multi-objective Optimization

In this section, we discuss our approach to solving the multi-objective optimization problem using
a Pareto front. A Pareto front represents a set of efficient solutions where any improvement in one
objective results in the degradation of another (Ahmadi et al., 2016).

The 𝜖-constraint method provides exact solutions to multi-objective optimization problems by
systematically varying 𝜖 values to generate the entire Pareto front. This precision is crucial for strategic
decisions, such as warehouse placement, where accuracy directly impacts long-term efficiency and
cost.

In contrast, heuristic algorithms, such as the NSGA-II, use evolutionary algorithms to find multiple
Pareto optimal solutions, and it excels in handling larger, more complex problems. However, these
solutions are approximations and may not capture the optimal set as comprehensively as exact methods.
Given the strategic nature of our research, where long-term, high-impact decisions are necessary, we
employ the 𝜖-constraint method.
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4.3.1 Introduction Epsilon-Constraint Method

The 𝜖-constraint method is a widely used approach for solving Multi-Objective Mixed Integer Linear
Programming (MOMPP) problems (Mavrotas, 2009). Consider the general formulation of a multi-
objective minimization problem:

min ( 𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑝(𝑥)) (4.13)

s.t. 𝑥 ∈ 𝑆, (4.14)

where 𝑥 is the vector of decision variables, 𝑓1(𝑥), . . . , 𝑓𝑝(𝑥) are the 𝑝 objective functions, and 𝑆 is the
feasible region. In the 𝜖-constraint method, we optimize one of the objective functions while treating
the other objective functions as constraints. These objectives are incorporated into the constraint part
of the model with specified threshold values (𝜖-values). This transformation allows us to handle the
original multi-objective problem as a single-objective problem, formulated as follows (Haimes et al.,
1971):

min 𝑓1(𝑥) (4.15)

s.t. 𝑓2(𝑥) ≤ 𝜖2 ,

𝑓3(𝑥) ≤ 𝜖3 ,

...

𝑓𝑝(𝑥) ≤ 𝜖𝑝 ,

𝑥 ∈ 𝑆.

Th 𝜖-values range from the minimum and maximum value of the objective that is written as a
constraint. The step size by which the 𝜖-value increases can be obtained by:

Step size =
𝑓 𝑚𝑎𝑥2 − 𝑓 𝑚𝑖𝑛2

number of steps

The range of 𝜖-values will then be from the minimum 𝜖-value to the maximum 𝜖-value with the
appropriate step size. Using these 𝜖-values, we generate a series of single-objective optimization
problems. Each problem minimizes the primary objective while ensuring that the second objective
does not exceed a specific 𝜖-value. This approach yields a set of Pareto optimal solutions, illustrating
the trade-off between the the two different objectives. In Figure 4.2 we present the steps of this model
in a flowchart.
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Start

Primary ob-
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number of steps
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2 , 𝑓max

2

Write 𝑓2 as a constraint: 𝑓2(𝑥) ≤ 𝜖

Set 𝜖 = 𝑓min
2

Minimize 𝑓1(𝑥) subject to constraints and 𝑓2(𝑥) ≤ 𝜖

Is 𝜖 < 𝑓max
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Generate Pareto Front

no

yes

Figure 4.2: Flowchart of the 𝜖-constraint method.

In our research, we select distribution costs as the primary objective in examining the trade-off
between these costs and CO2 emissions. This decision enables us to gain insights into the expenses
associated with achieving various target levels of CO2 emissions, which can be viewed as the 𝜖-
constraint values. By doing so, we can analyze the incremental costs linked to different levels of CO2

emissions.

Subsequently, in the following subsection, we reformulate our mathematical model to include both
the linear approximation and the 𝜖-constraint method.

4.3.2 Epsilon Constraint Model Formulation including Piecewise Linear Approximation

In this section, we present our epsilon constraint model. In this model, the objective is to minimize
distribution costs, while a constraint is imposed on CO2 emissions.

• Sets

𝜏 = {1, . . . , 𝑁}, (set of potential warehouses)

𝛾 = {1, . . . , 𝐾}, (set of customers)

ℬ = {1, . . . , 𝑚}, (set of breakpoints for piecewise linear approximation)
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• Parameters

𝑐 transportation costs (=C/km)

𝑘 baseline inventory (m2)

𝑑 𝑗 demand of customer 𝑗 (tonnes)

ℎ𝑖 𝑗 distance from warehouse 𝑖 to customer 𝑗 (km)

ℎ 𝑗𝑖 distance from customer 𝑗 to warehouse 𝑖 (km)

𝑊𝑇 emission factor for transportation (kg CO2/tonne-kilometre)

𝑊𝐸 emission factor for electricity (kg CO2/kWh)

𝑊𝐺 emission factor for gas (kg CO2/m3)

ℎmax maximum distance allowed (km)

𝑓 warehouse costs (=C/m2)

𝐸 electricity consumption (kWh/m2)

𝐺 gas consumption (m3/m2)

breakpoints𝑏 breakpoint values for piecewise linear approximation, 𝑏 ∈ ℬ
sqrt_values𝑏 square root values at each breakpoint, 𝑏 ∈ ℬ
𝑀 large constant

• Decision variables

𝑥𝑖 𝑗 =


1, if the demand of customer 𝑗 is fulfilled by warehouse 𝑖

0, otherwise

𝑦𝑖 =


1, if warehouse 𝑖 is selected

0, otherwise

𝑧 ∈ R+ , continuous variable representing the square root approximation

𝛽𝑘 =


1, if the 𝑘-th segment of the piecewise linear approximation is used

0, otherwise
∀𝑘 ∈ ℬ

• Objective

Minimize distribution costs:

min

[∑
𝑖∈𝜏

∑
𝑗∈𝛾

(
(ℎ𝑖 𝑗 + ℎ 𝑗𝑖) · 𝑐 · 𝑥𝑖 𝑗

)
+ 𝑓 · 𝑘 · 𝑧

]
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• Constraints∑
𝑖∈𝜏

𝑥𝑖 𝑗 = 1, ∀𝑗 ∈ 𝛾

(4.16)

𝑥𝑖 𝑗 ≤ 𝑦𝑖 , ∀𝑗 ∈ 𝛾, ∀𝑖 ∈ 𝜏

(4.17)

ℎ𝑖 𝑗 ≤ ℎmax , ∀𝑗 ∈ 𝛾, ∀𝑖 ∈ 𝜏

(4.18)
𝑚−1∑
𝑘=1

𝛽𝑘 = 1, (4.19)

𝑧 ≥ sqrt_values𝑘 +
sqrt_values𝑘+1 − sqrt_values𝑘
breakpoints𝑘+1 − breakpoints𝑘

·
(∑
𝑖∈𝜏

𝑦𝑖 − breakpoints𝑘

)
−𝑀(1 − 𝛽𝑘), ∀𝑘 ∈ ℬ

(4.20)

𝑧 ≤ sqrt_values𝑘 +
sqrt_values𝑘+1 − sqrt_values𝑘
breakpoints𝑘+1 − breakpoints𝑘

·
(∑
𝑖∈𝜏

𝑦𝑖 − breakpoints𝑘

)
+𝑀(1 − 𝛽𝑘), ∀𝑘 ∈ ℬ

(4.21)∑
𝑖∈𝜏

∑
𝑗∈𝛾

(
(ℎ𝑖 𝑗 + ℎ 𝑗𝑖) ·𝑊𝑇 · 𝑥𝑖 𝑗 · 𝑑 𝑗

)
+

∑
𝑖∈𝜏

(𝑊𝐸 · 𝐸 +𝑊𝐺 · 𝐺) · 𝑘 · 𝑧 ≤ 𝜖, (4.22)

𝑥𝑖 𝑗 ∈ {0, 1}, ∀𝑗 ∈ 𝛾, ∀𝑖 ∈ 𝜏

(4.23)

𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝜏

(4.24)

In the next chapter, we will apply this model to our case study in order to obtain and analyse the
results.
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Case Study

In this chapter, we introduce the case study. In Section 5.1, we provide a general overview of the case.
In the following sections, we will explore the dataset in more detail.

5.1 Introduction Case

The case study data set has been constructed based on actual data from a FMCG company. The
initial dataset included detailed information on customers (country and zip code), current warehouse
locations (country and zip code), and outbound orders (shipment ID, order line ID, weight, and
volume). The initial dataset has been modified to guarantee anonymity and confidentiality. The
modifications made guarantee that the overall characteristics remain realistic. Inventory levels, order
quantities, and product weights are maintained within comparable ranges to those observed in the
original dataset, ensuring a representative FMCG dataset.

The dataset reflects the characteristics of FMCG distribution, where products have relatively short
shelf lives and high demand, coupled with high turnover rates. This necessitates the implementation
of efficient distribution networks and frequent replenishment. It captures a variety of shipment
destinations, including supermarkets, convenience stores, and major online platforms, reflecting a
geographically dispersed and dense customer base concentrated in populated areas.

Despite the wide range of FMCG products, the diversity within this dataset remains relatively
consistent across borders, thereby facilitating the consolidation of inventories. Furthermore, certain
FMCG products require storage in a conditioned or temperature-controlled environment due to food
safety regulations. However, this particular case does not involve such requirements. The impact of
different temperature conditions on the results will be analysed in 7.

While seasonality is an inherent characteristic of the FMCG industry, it is not directly addressed in
our analysis. Although the dataset includes seasonal variations, these variations do not influence the
objective values of our study.

5.2 Customers and Demand

The constructed data set comprised 11,578 customers in the Netherlands (NL) and in Belgium (BE).
From this dataset, we removed the orders with a total weight of less than 50 kg, as these are to be
distributed by a parcel service. Subsequently, we aggregated the customers based on a four-digit zip
code. Furthermore, we removed the zip codes associated with customers on the Wadden Islands from
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the dataset, as our study only considers truck transport, not boat. This yielded a set of 2,277 zip codes,
which are illustrated in Figure 5.1a. Figure 5.1b illustrates the number of customers in each area. We
calculated the demand for each zip code over a one-year period.

(a) Map of all customers. (b) Customers clustered per area.

Figure 5.1: Visual representation of customer distribution.

5.3 Set of Warehouses

In this case study, we utilize two existing warehouses operated by logistic service providers, located in
Tiel (NL) and Waterloo (BE).

The set of candidate warehouses includes these warehouse locations, as well as potential locations
provided by logistic service providers. In Figure 5.2, we present a map of all candidate warehouse
locations considered in this case, comprising a total of 19 locations. These locations are based on actual
logistic service provider sites, which are typically situated on the outer edges of urban areas rather
than in city centres.

The selection process also considered geographical relevance and strategic positioning within the
supply chain network. Specifically, we did not identify logical locations in regions such as Drenthe,
Groningen, or the Ardennes, as these areas are far from the central logistics hub and do not align with
the strategic focus on locations near the population and industry centers.

We assume that all candidate warehouses are available in every period. However, it is important to
recognize that real-world warehouse availability can vary. It is possible that logistics service providers
who own these warehouses may not always have the capacity to accommodate additional clients.
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Figure 5.2: Candidate locations for warehouses.

5.4 Inventory

In order to incorporate the inventory into the model, we need to determine the baseline inventory, as
outlined in Subsection 4.2.1. The inventory level at the warehouses in Tiel and Waterloo are 4,100 m2

and 3,902 m2, respectively. This yields a total inventory of 8,002 m2 (𝐼 = 8002) for two warehouses (𝑛 =
2). This number and the following formula determine the baseline inventory.

𝐼 = 𝑘 ∗
√
𝑛

8, 002 = 𝑘 ∗
√

2

𝑘 = 5, 658.268463 ≈ 5, 658

By applying the aforementioned formula and employing the known value of 𝑘, we can calculate
the inventory for any number of open warehouses (Appendix C). Since we assume that the warehouse
have equal characteristics, all warehouses have identical costs per m2 (=C70) (Industrial Real Estate
Partners, 2020). In Figure 5.3, we present how the warehouse costs increase with the number of open
warehouses.

Figure 5.3: Warehouse costs (=C/m2/year) with increasing number of open warehouses.
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The graph demonstrates that as we open more warehouses, the costs do not develop as quickly as
the number of operational warehouses. This highlights the effectiveness of the SRL in managing and
optimizing warehouse operations, as explained in Section 4.2.

5.5 Maximum Distance

The maximum distance allowed between a warehouse and a customer is determined by the company’s
desired delivery time. In the initial dataset, no information was given about the required delivery time.
Therefore, we determine the maximum distance allowed based on the current warehouse locations in
the dataset. The analysis involves examining the distances between all customers and the warehouses
in Tiel and Waterloo. Each customer is assumed to be served by the nearest warehouse. Consequently,
the highest distance between a warehouse and assigned customer represents the maximum distance.
In this case, the maximum distance between a warehouse and a customer is found to be 175.42 km.

5.6 Emissions Factors

In this case study, we have chosen to use emission factors specific to NL, for both warehouse and
transportation emissions. As a significant portion of the demand and the majority of kilometers
traveled occur within NL, we employ Dutch emission factors for our calculations.

While it might initially seem reasonable to consider different emission factors for warehouses
located in NL and BE, doing so would introduce inconsistencies when combined with transportation
emissions. The ability of trucks to refuel in both NL and BE makes it impractical to assign a single
country’s emission factor to all transportation activities.

Using different emission factors for warehouses in NL and BE, while applying a single emission
factor for transportation from NL, would result in inconsistent and potentially inaccurate calculations.
Therefore, to maintain a straightforward and consistent methodology, we will standardize the emission
factors to those of NL for both warehouses and transportation. This approach avoids the complexities
of cross-border refueling. In Table 5.1 we present the emission factors we employ. For transportation
we employ the emission factor of a Diesel truck of 10-20 tonne.

Additionally, the transportation cost per kilometer comprises a range of variables cost, such as
driver expenses, toll charges, insurance costs and fuel expenditures. These transportation costs vary
based on factors such as the type of vehicle, the fuel type, and the country of operation. We will use a
transportation cost of =C1.18 per kilometer, as this provides a good indication based on data from the
RHDHV logistic service provider tariffs database.

Table 5.1: Emission factors per energy type (CO2 Emissiefactoren, 2024).

Category Energy Type Unit Emission Factors TtW (kg CO2/unit)

Warehouse
Electricity kWh 0.27
Gas m3 1.779

Transportation Diesel tkm 0.194
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5.7 Energy Consumption for Warehouses

In order to calculate the CO2 emissions of a warehouse, we need to consider the energy usage per m2.
Table 5.2 provides key figures for gas and electricity usage per m2 for different surface classes and
temperature conditions, as reported by CBS, 2019.

Table 5.2: Energy consumption per surface class (CBS, 2019).

Energy type Surface class (m2) Temperature condition

Frost-free Heated Chilled

Electricity (kWh/m²)

4,000 - 10,000 27.5 32.2 139.4
10,000 - 25,000 28.4 38.8 125.1
25,000 - 50,000 31.9 30.9 78.7
50,000 - 100,000 29.5 59.1 -

Gas (m³/m²)

4,000 - 10,000 3.1 3.8 3.4
10,000 - 25,000 2.7 3.7 2.2
25,000 - 50,000 2.4 4.9 3.9
50,000 - 100,000 1.9 1.7 -

The data presented in the table indicates that the highest electricity consumption occurs in chilled
conditions across the surface classes. This observation is consistent with the high electricity usage
of cooling systems. Conversely, gas consumption is higher for heated conditions in comparison to
frost-free and chilled conditions. This is due to the fact that heating is frequently conducted using gas.
The variations in energy consumption across different surface classes indicate that the efficiency of a
warehouse can have a significant impact on its overall energy usage. Larger warehouses might be
more energy-efficient due to economies of scale, whereas smaller ones may consume more energy
per square meter due to less efficient space utilization. However, this is dependent on the specific
warehouse in question, and therefore, there is some variation in these figures.

In our model, we assume equal characteristics across all warehouses. Consequently, we consider
warehouses with a surface area between 4,000 and 10,000 m², maintaining a single temperature
condition of frost-free. In a frost-free environment, the warehouse temperature is kept above the
freezing point to prevent stored goods from freezing, without maintaining a specific temperature
above freezing. Given the typical temperatures in NL and BE are above zero, and the absence of data
regarding the energy usage of ambient warehouses, we will use the frost-free figures for energy usage
in our calculations.

In Table 5.3 we present an overview of the aforementioned parameter values for this case. We
will utilize the figures as inputs for our model. In the following chapter, we will present the results
obtained.
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Table 5.3: Parameter settings of the case study.

Description Parameter Value

Transportation costs (=C/km) 𝑐 1.18
Baseline inventory (m2) 𝑘 5,658
Emission factor for transportation (kg CO2/tonne-kilometre) 𝑊𝑇 0.194
Emission factor electricity (kg CO2/kWh) 𝑊𝐸 0.27
Emission factor gas (kg CO2/m3) 𝑊𝐺 1.779
Maximum distance allowed (km) ℎmax 175.42
Facility costs (=C/m2) 𝑓 70
Electricity consumption (kWh/m2) 𝐸 27.5
Gas consumption (m3/m2) 𝐺 3.1
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Results

In this chapter, we apply the theory of previous chapters to obtain results. In Section 6.1, we present
the results of optimizing the individual objectives. In Section 6.2 we present the results of the
multi-objective optimization. We address the second research question and the first part of the last
research question:

How does the dual objective of minimizing distribution costs and CO2 emissions impact the selection for
warehouses locations and customer assignments?

What are the incremental costs associated with reducing CO2 emissions in the FMCG distribution network?

6.1 Optimization Results for Individual Objectives

In this section, we present the results of optimizing the individual objectives: minimizing distribution
costs, minimizing CO2 emissions, and minimizing both by combining the two objective values. The
model is solved using Gurobi solver (11.0.1) in Python (3.11.8).

Figure 6.1 illustrates the warehouse locations and customer assignments for each objective. When
the objective is to minimize costs only, the optimization model prioritizes warehouses that minimize
the sum of transportation distances and the associated costs. For our dataset, this approach leads to
the selection of warehouses in Leuven and Almere (Figure 6.1a). The maximum distance constraint
contributes to the selection of two warehouses instead of one; without this constraint, only one
warehouse is selected (Tilburg).

In contrast, optimizing for CO2 emissions increases the number of warehouses from two to eight
(Figure 6.1b). This approach reduces the distance goods need to travel, thereby minimizing CO2

emissions from transportation, despite increasing the total number of warehouses. This indicates that
transportation emissions outweigh warehouse emissions, leading to a preference for more warehouse
locations when optimizing for CO2 emissions. Conversely, lower transportation costs compared to
warehouse costs lead to a preference for fewer warehouses when optimizing for distribution costs.

When both objectives are optimized by adding up their values, the model once again selects two
warehouses, as was the case with cost minimization alone. However, in this case, Luik is chosen
instead of Leuven (Figure 6.1c). This results in slightly higher distribution costs but slightly lower
CO2 emissions compared to focusing solely on minimizing distribution costs. This difference can
be explained by the specific factors considered in each objective. For cost minimization, only the
distance and transportation costs are taken into account. On the other hand, CO2 emission calculations
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(a) Minimizing distribution costs. (b) Minimizing CO2 emissions. (c) Minimizing both objectives.

Figure 6.1: Optimal warehouse locations and customer allocations for each objective.

incorporate the total weight of goods per customer, the distance, and the emission factor. Luik, while
less centrally located than Leuven, is closer to a subset of high-demand customers (Figure 6.2). This
proximity is crucial for reducing total CO2 emissions. The reduced distance to these high-demand
customers means that the emissions, which are influenced by the weight of goods transported over a
given distance, are lower even if the transportation costs might be higher due to the overall distance.
Therefore, although the distribution costs increase slightly with the selection of Luik, the overall CO2

emissions decrease, making it a preferable choice when balancing both objectives.

However, the results may not be entirely accurate due to the scale differences between distribution
costs and CO2 emissions. When combining objectives with different scales, the larger-scale term
can disproportionately influence the optimization outcome. In this case, distribution costs have a
significantly larger numerical value compared to CO2 emissions. As a result, the optimization model
places more emphasis on minimizing distribution costs, leading to suboptimal consideration of CO2

emissions.

This imbalance occurs because a small change in distribution costs has a more substantial impact
on the overall objective function than a relatively larger change in CO2 emissions. Consequently, the
model’s choice of Luik, while beneficial in reducing CO2 emissions, may not fully reflect the optimal
trade-off between cost and environmental impact due to this scale difference. In order to achieve
more balanced results, it may be necessary to normalize the objectives. However, since we employ the
𝜖-constraint method, whereby one objective is minimized and the other is set as a constraint, this is not
a necessary step.

In Table 6.1 we present the results, where MC represents minimizing costs and ME represents
minimizing CO2 emissions. The comparison shows how different objectives impact the optimal
number and location of warehouses, balancing transportation costs and emissions. In the next section,
we will use these results as an input for the multi-objective optimization.
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Figure 6.2: Heat map illustrating customer demand around Leuven and Luik (red indicates higher demand).

Table 6.1: A comparison of the results of separate and combined objectives.

Objective Number of warehouses Distribution costs (=C) CO2 emissions (kg) Total Objective Value

MC 2 922,036.52 672,159.25 1,594,195.77
ME 8 1,309,461.50 520,076.28 1,829,537.78
MC + ME 2 923,117.23 663,586.37 1,586,703.60

6.2 Optimization Results Epsilon-Constraint Method

In this section, we first establish an appropriate step size. We then present our results and proceed to
compare the solutions on the Pareto front with the initial warehouse configuration.

6.2.1 Determining the Step Size

In order to determine an appropriate step size for the 𝜖-constraint method, we need the range of CO2

emissions ( 𝑓min
2 , 𝑓max

2 ). The maximum CO2 emissions are identified by solving the model with the
objective of minimizing distribution costs only, and the minimum CO2 emissions by minimizing the
CO2 emissions objective only. We determined both of these values in Section 6.1, which result in 𝑓min

2
= 520,076.28 and 𝑓max

2 = 672,159.25. In order to determine an appropriate step size, we conducted
experiments with different numbers of steps and recorded the run times. The results are shown in
Figure 6.3.

We observe that increasing from 10 steps to 20 steps results in the generation of four additional
solutions. Therefore, we further increase the number of steps from 20 to 100, resulting in five additional
solutions compared to 20 steps. However, when the number of steps is increased from 100 to 200, no
additional solutions are yielded.

From 200 to 300 steps, we do find one additional solution, but it is approximately the same as
the neighbouring solution. In particular, we observe a 0.21% reduction in CO2 emissions and a
corresponding 0.15% increase in costs. Upon increasing the number of steps from 300 to 500, an
additional solution is identified. Nevertheless, the solution remains largely identical to that of the
neighbouring solution. A reduction of 0.75% in CO2 emissions was observed, accompanied by a 0.01%
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(a) 10 and 20 steps. (b) 20 and 100 steps.

(c) 100 and 200 steps. (d) 200 and 300 steps.

(e) 300 and 500 steps.

Figure 6.3: Comparison of the solutions for different numbers of steps.
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increase in costs.
Therefore, we choose a step size of 100, as the percentage of CO2 reduction for the extra solutions is

minimal, and the running time increases significantly with the number of steps (Table 6.2). Moreover,
it is unlikely that a company would alter its warehouse locations or invest significant resources in
new contracts with logistics service providers for a relatively minor reduction in CO2 emissions. This
results in a step size of:

672, 159.25 − 520, 076.28
100 = 1, 520.83

Table 6.2: Running times for different numbers of steps.

Number of steps Running time (sec.)

10 9,875.29
20 16,857.28
100 79,065.35
200 163,783.26
300 248,800.52
500 412,348.22

6.2.2 Pareto Front Solutions

With this step size, we derive a set of optimal solutions, which are depicted in Figure 6.4. The specific
warehouse selections for each solution are detailed in Table 6.3.

The solutions presented in Table 6.3 demonstrate various configurations of warehouses. It is
logical to conclude that optimal solutions do not include multiple configurations with the same
set of warehouses open but different customer assignments. This is because both objectives aim to
minimize the distances, because greater distance result in higher costs and increased CO2 emissions.
Consequently, there is no differentiation in customer assignments when the same set of warehouse
locations is utilized. As a result, the Pareto front does not contain solutions where the same warehouses
are open but yield different outcomes in terms of objectives.

From the Pareto front presented in Figure 6.4 and the warehouse configuration in Table 6.3, we
observe distinct strategies based on the prioritization of objectives. When we prioritize CO2 reduction,
we tend to favor the selection of a greater number of warehouses. Conversely, when our focus is on
minimizing distribution costs, the recommendation shifts towards fewer warehouses. This relationship
between the number of open warehouses and the two primary objectives is illustrated in Figure 6.5.

Solutions 1 and 19, positioned at the extremes of the Pareto front spectrum, likely represent sub
optimal choices due to their extreme nature. In Table 6.4, we demonstrate the CO2 emissions and
the distribution costs per solution. Furthermore, we provide the incremental cost of CO2 reduction
between adjacent solutions.

The most promising solutions are those that achieve a notable reduction in CO2 emissions while
maintaining a relatively low incremental cost. It is important to note that the incremental costs in this
table compare adjacent solutions. Nevertheless, in order for a company to make an informed decision,
it is essential to evaluate these solutions in relation to their current warehouse locations. This will
assist them in determining whether they should reconsider their warehouse locations and, if so, which
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Table 6.3: Warehouse selection per solution.

Solution Warehouses

1 Tilburg, Arnhem, Mechelen, Hasselt, Charleroi, Rotterdam, Leeuwarden, Almere
2 Breda, Arnhem, Mechelen, Hasselt, Charleroi, Leeuwarden, Almere
3 Arnhem, Mechelen, Hasselt, Charleroi, Rotterdam, Leeuwarden, Almere
4 Breda, Arnhem, Mechelen, Hasselt, Charleroi, Almere
5 Waterloo, Breda, Arnhem, Hasselt, Leeuwarden, Almere
6 Waterloo, Breda, Arnhem, Hasselt, Almere
7 Waterloo, Arnhem, Hasselt, Rotterdam, Almere
8 Waterloo, Arnhem, Hasselt, Rotterdam, Leeuwarden
9 Waterloo, Breda, Arnhem, Hasselt
10 Waterloo, Arnhem, Hasselt, Rotterdam
11 Waterloo, Breda, Hasselt, Almere
12 Waterloo, Hasselt, Rotterdam, Almere
13 Mechelen, Hasselt, Almere
14 Arnhem, Luik, Rotterdam
15 Arnhem, Leuven, Rotterdam
16 Tilburg, Leuven, Almere
17 Waterloo, Eindhoven, Almere
18 Luik, Almere
19 Leuven, Almere

Figure 6.4: Pareto front resulting from 𝜖-constraint method.
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Figure 6.5: Distribution costs and CO2 emissions with increasing number of open warehouses.

Table 6.4: Comparison of CO2 emissions, distribution costs, and incremental costs of CO2 reduction between adjacent
solutions.

Solution CO2 emissions (kg) Distribution costs (=C) CO2 reduction (kg) Incremental costs (=C)

1 520,076.28 1,309,461.50 4344.52 49,888.18
2 524,420.80 1,259,573.32 4798.79 6,175.44
3 529,219.59 1,253,397.88 934.89 43,328.16
4 530,154.49 1,210,069.73 5077.29 18,381.06
5 535,231.78 1,191,688.66 4477.26 56,300.38
6 539,709.04 1,135,388.28 11993.84 3,940.62
7 551,702.89 1,131,447.66 4710.03 4,297.48
8 556,412.92 1,127,150.18 9595.02 36,793.98
9 566,007.94 1,090,356.20 2744.14 17,953.84
10 568,752.08 1,072,402.37 295.73 4.54
11 569,047.81 1,072,397.83 13266.69 909.67
12 582,314.50 1,071,488.15 19080.73 60,370.46
13 601,395.23 1,011,117.69 25557.07 12,274.87
14 626,952.30 998,842.82 10251.19 50.83
15 637,203.49 998,791.99 6179.52 300.47
16 643,383.01 998,491.53 16773.12 1,295.89
17 660,156.13 997,195.64 3430.25 74,078.41
18 663,586.37 923,117.23 8572.88 1,080.71
19 672,159.25 922,036.52 - -
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locations would be optimal in terms of sustainability, given their sustainability goals and the financial
resources available to them.

6.2.3 Comparison with initial warehouse configuration

In the case study, we initially employed two warehouses, in Tiel and Waterloo. This setup, however, is
not included in the Pareto optimal solutions, indicating it is sub optimal. The initial configuration, with
CO2 emissions of 700,901.79 kg and costs amounting to =C928,806.80, is dominated by other solutions
that achieve lower distribution costs and CO2 emissions, as depicted in Figure 6.6.

Figure 6.6: Comparison of initial warehouse configuration with Pareto optimal solutions.

In Table 6.5, we present the incremental costs of different levels of CO2 reduction, compared with
the initial solution. As the initial configuration of warehouses was sub optimal, solutions 18 and 19
exhibit negative incremental costs. These solutions also involve the operation of two warehouses, in
accordance with the initial configuration, however, with lower values of both objectives. This approach
enables companies to identify solutions that align with their specific CO2 reduction targets. In the
next chapter, we analyze the impact of varying inputs on the trade-off.
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Table 6.5: Overview solutions for different target levels of CO2 reduction.

Target CO2 reduction Solution CO2 reduction (%) Incremental costs (=C)

20-25% 1 25.80 380,654.71
2 25.18 330,766.53
3 24.49 324,591.09
4 24.36 281,262.93
5 23.64 262,881.87
6 23.00 206,581.48
7 21.29 202,640.86
8 20.61 198,343.38

15-20% 9 19.25 161,549.41
10 18.85 143,595.57
11 18.81 143,591.03
12 16.92 142,681.36

10-15% 13 14.20 82,310.90
14 10.55 70,036.03

5-10% 15 9.09 69,985.20
16 8.21 69,684.73
17 5.81 68,388.84
18 5.32 -5,689.57

0-5% 19 4.10 -6,770.27
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Scenario Analysis

In this chapter, we present various scenario analysis. First, we examine the impact of Temperature-
Controlled Logistics (TCL) on the trade-off between the two objectives. Subsequently, we analyze the
impact of the new carbon price regulations.The second part of the last research question is answered
in this chapter.

How does the trade-off vary with changes in input parameters?

7.1 Temperature-Controlled Logistics

In this section, we present an analysis of the impact of TCL on the trade-off between distribution costs
and CO2 emissions. Given the diverse range of products and their unique characteristics within the
FMCG sector, it is essential to understand how TCL impacts the Pareto front. TCL involves managing
products within specific temperature ranges to prevent spoilage and ensure efficacy. For instance,
dairy products and certain pharmaceuticals require chilled environments, while other items, such as
cosmetics, need a stable temperature to maintain their quality. Medicines, in particular, present a wide
array of temperature requirements, emphasizing the complexity of TCL (IFC, 2020).

In our case study, we considered a frost-free temperature requirement. However, for a more
comprehensive analysis, we examine two additional conditions: chilled and heated environments.
Chilled conditions are essential for products requiring cooling, such as dairy, pharmaceuticals, and
cosmetics. In contrast, heated conditions are primarily used to maintain a constant temperature and
ensure a comfortable working environment in warehouses. Since we assume equal characteristics
among both warehouses and trucks, we assume that they each operate under the same temperature
condition. Additionally, we assume that within the warehouse and within the truck, they maintain
one type of condition.

For the chilled scenario, we analyze the changes in input parameters for both warehouses and
trucks, as both need to maintain the necessary cooling conditions. However, for the heated scenario,
we focus solely on warehouses. This is because the relatively short distances within the FMCG sector
do not necessitate the use of heated trucks to maintain a constant temperature for products during
transport.

In the following subsections, we determine the changes in input parameters for the specific
temperature conditions for both warehouses and trucks.
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7.1.1 Temperature-Controlled Warehouses

Temperature conditions in warehouses, either chilled or heated, significantly impact energy con-
sumption, as shown in Table 7.1. We can directly calculate the shift in CO2 emissions related to this
energy consumption. In order to identify the costs associated with a specific warehouse condition, it is
necessary to determine the costs associated with energy. In our case study, we considered a frost-free
warehouse with total costs amounting to =C70 per m2 per year. Energy costs represent 15% of the
overhead warehouse costs (Ries et al., 2016), amounting to =C10.5 per m2 per year. To estimate the costs
associated with chilled or heated warehouses, we first calculate the costs per unit of energy.

Cost per unit energy (=C) =
Energy cost (=C)

Total energy usage (units) =
10.5

27.5 + 3.1 = =C0.343/unit of energy (7.1)

Using this cost per unit of energy, we can calculate the total warehouse costs per m2 ( 𝑓 ) for different
temperature conditions as follows:

𝑓 = 0.343𝑥 + 59.5 (7.2)

Where 𝑥 is the energy usage in units per m2. In Table 7.1, we present the total cost per m2 for the
different warehouse conditions.

Table 7.1: Energy usage and cost comparison of different warehouse types.

Warehouse condition Electricity
usage

(kWh/m2)

Gas usage
(m3/m2)

Total
energy
usage
(units)

Energy
cost per

unit
energy (=C)

Fixed costs
(=C)

Total cost
per m2 (=C)

Base case 27.5 3.1 30.60 0.343 59.5 70.00

Heated 32.2 3.8 36.0 0.343 59.5 71.85

Chilled 139.4 3.4 142.80 0.343 59.5 108.50

7.1.2 Temperature-Controlled Trucks

Specific energy usage data for trucks is unavailable. As indicated by Sukkel et al., 2014, the consumption
of fuel by refrigerated trucks is observed to increase by 10%. According to the logistics service provider
rates database of RHDHV, the costs per kilometer for chilled trucks also increase by 10%.

This means that the transportation costs increase proportional to the fuel consumption. Although
not all transportation costs are solely attributable to fuel expenses, refrigerated trucks have a lower
capacity than non-refrigerated trucks due to the additional insulation layer required for temperature
control, as well as the packaging constraints. Furthermore, the refrigeration unit adds extra weight
to the load, thereby impacting the vehicle’s movement and speed (Teleroute, 2018). These aspects
contribute to a less efficient logistics network which result in higher overall transportation costs, which
aligns with the observed 10% increase in fuel consumption.

Therefore, we use an emission factor of 0.213 kg CO2/km, and transportation cots of =C1.30/km for
refrigerated trucks. In Table 7.2, we present the parameter settings for each environmental condition,
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for both the truck and the warehouse, as previously outlined. These parameter settings will be
employed to test the two scenarios, chilled and heated conditions. In the subsequent section, we
present the results.

Table 7.2: Overview of parameter settings for each environmental condition.

Environmental condition
Category Parameter Base case Chilled Heated

Truck
Transportation costs (c) 1.18 1.30 1.18
Emission factor (W𝑇) 0.194 0.213 0.194

Warehouse
Warehouse costs (f) 70 108.5 71.853
Electricity usage (E) 27.5 139.4 32.2
Gas usage (G) 3.1 3.4 3.8

7.1.3 Results

In order to resolve the model for these scenarios, it is necessary to determine the step size once more,
as the range of CO2 emissions is subject to change. In Table 7.3, we present the results when optimizing
the objectives individually. In Table 7.4, we present the corresponding step size per scenario.

Table 7.3: Individual objective optimization results per TCL scenario.

Scenario Objective
Number of
warehouses

selected

Distribution
costs (=C)

CO2 emissions
(kg)

Base case
MC 2 922,036.52 672,159.25
ME 8 1,309,461.50 520,076.28

Chilled
MC 2 1,266,916.56 973,883.37
ME 3 1,421,493.33 949,204.83

Heated
MC 2 936,864.23 692,278.68
ME 8 1,339,116.91 560,315.13

Table 7.4: CO2 range and step size per scenario.

Scenario CO2 range Step size
Base case 152,082.97 1,520.83
Chilled 24,678.54 246.79
Heated 131,963.55 1,319.64

We illustrate the Pareto fronts of the scenarios in Figure 7.1. In Subfigure 7.1a we present the
results of all scenarios, while in Subfigure 7.1b we compare the base case (frost-free) and the heated
scenario. Subfigure 7.1c highlights the results of the chilled scenario alone.

In the heated scenario, distribution costs and CO2 emissions are slightly higher compared to the
base case. However, the warehouse configurations remain consistent, as indicated by a rightward shift
in the Pareto front without any alteration in its shape. Notably, the CO2 range in the heated scenario is
smaller, resulting in one fewer solution on the Pareto front.
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(a) Results of all scenarios. (b) Results of frost-free and chilled.

(c) Result of chilled.

Figure 7.1: Comparison of Pareto fronts across TCL scenarios.

In contrast, the results from the chilled scenario differ significantly from those in the base case.
The narrower range of CO2 emissions in the chilled scenario necessitates a strategy of minimizing the
number of warehouses across both objectives, leading to a distinct warehouse configuration compared
to the baseline scenario. This shift results in only four solutions on the Pareto front. The reduced
number of solutions stems from the fact that, in the base case, warehouse emissions were lower
than transportation emissions. As a result, when minimizing CO2 emissions, it was advantageous to
operate more warehouses, while minimizing costs favored operating fewer warehouses due to lower
transportation costs relative to warehouse costs.

However, in the chilled scenario, warehouse emissions increased significantly more than both
warehouse costs and transportation emissions and costs. Consequently, even when minimizing CO2

emissions, it becomes more beneficial to operate fewer warehouses, as the high emissions associated
with warehouses outweigh the benefits of having more locations. Additionally, since warehouse costs
remain higher than transportation costs, minimizing costs also favors operating fewer warehouses.
This explains the limited number of solutions on the Pareto front in the chilled scenario.

In Appendix B, we present the detailed warehouse configurations along with the associated
distribution costs and CO2 emissions in both the chilled and heated scenario.

7.2 Impact of New Regulation Carbon Emissions: ETS2

The European Green Deal aims to cut EU GHG emissions by 55% from 1990 levels by 2030 and achieve
net-zero emissions by 2050. Despite overall emissions decreasing by 20% from 1990 to 2019, road
transport emissions have risen by over 25%, necessitating more aggressive policies. (Climate Action,
2024).
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Carbon pricing, through mechanisms like the EU’s Emissions Trading System (ETS), is a critical
tool for reducing GHG emissions. The EU ETS has been successful in the power sector and large
industrial emitters. To build on this success, the European Commission introduced ETS2, starting in
2027, targeting fuel combustion in buildings, road transport, and small industries. Under ETS2, fuel
suppliers are required to monitor and report their emissions and purchase allowances to cover these
emissions, aiming to reduce them by 42% by 2030.

The ETS2 introduces a carbon price starting at =C45 per ton of CO2 in 2027. This initial price acts as
a trigger point set by the Market Stability Reserve (MSR). If the carbon price exceeds =C45, the MSR
will release additional allowances into the market to stabilize prices and prevent excessive volatility.

However, according to Haywood and Jakob, 2023, to achieve the EU’s target of a 42% reduction in
emissions by 2030, the carbon price is expected to increase substantially over time. This significant
increase is necessary because the initial carbon price increase is projected to reduce emissions by only
about 2.2%, far below the required reduction. The low price elasticity of fuel consumption, where
demand does not significantly decrease with moderate price increases, suggests that much higher
prices will be necessary to drive substantial emission reductions. For example, a carbon price of =C100
per ton would result in a roughly 18% increase in fuel prices. If the carbon price rises to =C500 per ton,
fuel prices are expected to double, representing a 100% increase.

In this scenario analysis, we examine how the trade-off, the Pareto front, shifts when the trans-
portation costs of logistics service providers increase due to the introduction of the ETS2. We assume
that fuel suppliers and logistics service providers fully pass on the carbon price.

7.2.1 Results

The CO2 range, and consequently the step size, remain consistent with the baseline scenario, as fuel
costs do not influence the CO2 range. According to various sources, fuel costs account for approximately
25% of total transportation costs (Comite National Routier, 2019; Ondernemersvereniging Evofenedex,
n.d.; Zofío et al., 2014). With current transportation costs at =C1.18 per km, this translates to a fuel cost
of =C0.295 per km. In Table 7.5 we present the transportation costs for each scenario.

Table 7.5: Impact of CO2 pricing on transportation costs

Scenario Increase in fuel price (%) Fuel price (=C per km) Transportation costs (=C per km)

Base case - 0.295 1.18
=C45 per ton CO2 9 0.32155 1.20655
=C100 per ton CO2 18 0.3481 1.2331
=C500 per ton CO2 100 0.59 1.475

These transportation costs results in the Pareto fronts illustrated in Figure 7.2. As transportation
costs increase under various carbon pricing scenarios, we observe a rightward shift in the Pareto fronts,
indicating higher overall costs driven by increased transportation expenses. However, this shift does
not result in changes to warehouse configurations, as there is no observable alteration in the structure
of the Pareto fronts. From our analysis, we conclude that carbon pricing does not have a significant
impact on the trade-off between distribution costs and CO2 emissions. Despite the fact that the fuel
supplier and the logistics service provider passes through the whole CO2 price, this has no significant
impact on the trade-off.
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Figure 7.2: Comparison of Pareto fronts for different transportation cost (TC) levels.

To determine when the impact becomes significant, we analyzed the results for transportation costs
(TC) of =C2, =C3, and =C4 per km, as shown in Figure 7.3. For TC = =C2, the Pareto front only shifts to
the right but does not change in structure. However, starting from TC = =C3, the Pareto front changes,
indicating fewer solutions and different warehouse configurations (Appendix D). Specifically, the
higher transportation costs involves opening more warehouses because transportation costs outweigh
warehouse costs more significantly than in the previous scenarios.

Figure 7.3: Comparison of Pareto fronts for different transportation cost (TC) levels.

As the TC increases, the optimization problem gradually shifts towards a single objective. This
occurs because, at higher transportation costs, minimizing transportation expenses becomes the
dominant objective. Consequently, the trade-off between distribution costs and CO2 emissions
becomes narrower, leading to fewer optimal solutions and a preference for configurations with less
warehouses to minimize distribution costs.
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Conclusions, Limitations and Further Research

In this chapter, we discuss the key findings of our research and we answer the main research question:

How should FMCG companies design their distribution network, considering the trade-off between minimizing
distribution costs and CO2 emissions?

In Section 8.1, we present the conclusions of our research. In Section 8.2, we discuss the limitations
and we elaborate on the possible extensions, referred as further research. In the following section,
we provide general recommendations for the FMCG industry. In the final section, we address the
generalizability of our research.

8.1 Conclusions

In Chapter 1 we defined three sub-research questions. In this section we will address each of them.

1. What is the most suitable model for selecting warehouse locations in a FMCG network to minimize
distribution costs and CO2 emissions, and how can it be modified for FMCG-specific characteristics?

In Chapter 2, we introduce the FLP concept. For the FMCG industry considering a shared
distribution network, a discrete model is required since warehouse locations of logistic service
providers are selected from a predefined set of candidate locations. The multi-facility class of discrete
models is the most appropriate, as it determines the optimal number and locations of warehouse
facilities, balancing distribution costs and CO2 emissions. Specifically, the discrete UFLP is the most
comprehensive model, allowing for unlimited capacity.

Based on a literature review, the model proposed by Harris et al., 2009 is the most suitable for this
research, as it considers the trade-off between minimizing costs and CO2 emissions with a discrete
solution set and unlimited capacity. We made three extensions to this model.

We included a maximum distance constraint to ensure timely deliveries. We also accounted for
increased total inventory requirements in a shared network using the SRL. Finally, in Chapter 3, we
evaluated that the distance-based method and the site-specific method are most suitable for our case,
refining the CO2 emissions calculation accordingly. This refined model enabled us to address the
following research question.

2. How does the dual objective of minimizing distribution costs and CO2 emissions impact the selection for
warehouses locations and customer assignments?

53
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In Chapter 5, we explored the dual objective of minimizing both distribution costs and CO2

emissions and its impact on warehouse locations and customer assignments. When the goal is to
minimize distribution costs, the optimal strategy involves operating fewer warehouses, specifically
two. Conversely, when the objective shifts to minimizing CO2 emissions, the model recommends
opening eight warehouses to achieve the lowest possible emissions.

In Section 4.3, we determined the trade-off between distribution costs and CO2 emissions using a
Pareto front. We introduced multi-objective optimization and illustrated the trade-off with the Pareto
front, employing the 𝜖-constraint method. This method balances competing objectives by setting one
objective as a constraint and iteratively adjusting it to generate a set of optimal solutions representing
different trade-offs.

From the Pareto front, we conclude that as we approach the objective of minimizing distribution
costs, it becomes advantageous to choose fewer logistics service providers. Conversely, to minimize
CO2 emissions, selecting a greater number of providers is advisable. This trade-off is further
understood by examining total transportation and warehouse costs, as well as emissions. A reduction
in logistics providers increases the distance between customers and warehouses, raising transportation
costs but reducing warehouse costs. This scenario indicates that transportation costs are less than
warehouse costs, leading to the selection of fewer warehouses when minimizing distribution costs.
On the other hand, increasing the number of warehouses decreases total CO2 emissions by reducing
transportation emissions, despite the rise in emissions from the warehouses themselves. This shows
that transportation emissions are greater than those from warehousing.

The warehouse configuration indicates that selecting warehouses and customer assignments does
not result in significant variation in assignments when the same warehouses are chosen. This is
due to the shared objective of minimizing distances, which reduces both costs and CO2 emissions.
Consequently, the Pareto front does not contain solutions where the same warehouses are open but
yield different outcomes in terms of objectives.

The trade-off between transportation and warehouse costs and emissions can vary depending on
specific context factors, such as warehouse types and transportation costs. The next research question
will conclude how this trade-off varies when these factors are adjusted.

3. What are the incremental costs associated with reducing CO2 emissions in the FMCG distribution network,
and how does this trade-off vary with changes in input parameters?

When comparing the Pareto front solutions with the initial warehouse configuration, we found
that the initial setup was suboptimal. Solutions derived from our analysis provided more effective
ways to reduce both CO2 emissions and distribution costs compared to the original configuration. We
calculated the incremental costs of different levels of CO2 reduction, with the highest level of reduction
being 25%, at an incremental cost of =C380,654.71.

Several conclusions can be drawn regarding the trade-off between distribution costs and CO2

emissions in different TCL scenarios. Comparing the chilled scenario with the base case, reveals
that costs and emissions for both transportation and warehouses are higher in the chilled scenario,
especially warehouse emissions. In the base case, transportation emissions were greater than warehouse
emissions, while transportation costs were lower than warehouse costs. In the chilled scenario, there is
a notable increase in warehouse emissions compared to transportation emissions, shifting the structure
of the Pareto front. Thus, selecting fewer warehouses is more advantageous for both cost and emissions
objectives.



8.2. Limitations and Future Research 55

In the heated scenario, similar to the base case, minimizing costs favors fewer warehouses with
lower transportation costs compared to warehouse costs. However, costs and CO2 emissions are slightly
higher in the heated scenario due to increased energy consumption. Minimizing CO2 emissions still
favors opening more warehouses to reduce transportation emissions, maintaining a similar Pareto
front structure to the frost-free scenario despite slightly higher operational costs.

The impact of carbon pricing regulations (ETS2) on the trade-off demonstrates a shift in the Pareto
front due to increased transportation expenses. Even if fuel suppliers and logistics service providers
fully pass on CO2 emission costs to customers, the trade-off remains unchanged until transportation
costs increase to =C3 per km. It is unlikely that transportation costs would triple to observe a significant
change in the Pareto front structure. Therefore, while carbon pricing regulations might increase
transportation costs, the impact on the trade-off is minimal unless transportation expenses reach a
significantly higher level.

8.2 Limitations and Future Research

In this section, we discuss the limitations of our research and we propose several future research
directions.

Equal warehouse characteristics

Currently, we assume that all warehouses have equal characteristics. This simplification overlooks
potential variations in operational costs due to regional differences in labor costs, taxation, and other
economic factors. The availability of labour is also becoming an increasingly important topic in this
context. It has the potential to lead to automation and mechanisation, which may have a different
impact on emissions.

Another assumption we make, is that all candidate warehouses are available in every period. It
is, however, important to recognize that the availability of warehouses in the real world can vary.
It is possible that logistics service providers who own these warehouses may not always have the
capacity to accommodate additional clients. This would result in a smaller set of candidate locations,
which would in turn reduce the number of possible solutions and consequently alter the Pareto front.
Further research could investigate the impact of these variations on the overall cost and efficiency of
the distribution network.

Country specific energy mix

For this study, we did not consider country specific energy mix, which refers to the different energy
sources and their respective emission factors used in a country. Since countries vary in their use of
renewable energy, the emissions factors for electricity and gas consumption can significantly impact
the total CO2 emissions. For example, nearly half (48%) of the electricity produced in the Netherlands
in 2023 came from renewable sources, including solar, wind, and water, leading to lower emission
factors for electricity consumption (Netherlands, 2024). In contrast, 39.2% of the energy consumed
in Belgium came from renewable sources (International Energy Agency, n.d.). Therefore, Belgium’s
overall energy mix results in higher emission factors for transportation, electricity, and gas compared
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to the Netherlands.

If these differences were incorporated into the model, it might show a preference for warehouse
locations in the Netherlands due to the lower emissions associated with Dutch energy sources. By
including the energy mix, the model could tend to select locations with lower overall emissions,
assuming other characteristics are similar. Future research should consider these differences to provide
a more accurate assessment of the environmental impact of distribution networks.

Difference in detail of CO2 calculation for transportation and warehouses

Currently, our CO2 calculations for transportation are less detailed compared to those for warehousing.
The site-specific method for warehouses, including fuel consumption, is more detailed than the distance-
based method employed for transportation. As a result, the model might under or overestimate the
transportation emissions, impacting the overall assessment of the distribution network. Future studies
could provide a more accurate analysis of transportation emissions using the fuel-based method,
which could refine the trade-offs between transportation and warehousing emissions and costs.

Exclusion of refrigerant leakage

We excluded refrigerant leakage from our emissions calculations due to the difficulty in obtaining
accurate data and its relatively minor contribution to total emissions. However, future research could
incorporate refrigerant leakage, which would provide a more comprehensive view of emissions,
particularly for TCL.

Impact of product size and weight

Our model currently does not account for the different impacts of product size and weight on emissions
and costs. Heavier products increase transportation emissions due to higher weight, which can alter
the trade-off. On the other hand, larger products require more warehouse space, potentially leading to
higher warehouse costs and emissions. Analyzing these factors could provide more nuanced insights
into the trade-offs between transportation efficiency and warehouse requirements. Future research
should explore how variations in product size and weight influence the overall cost and emissions of
the distribution network.

Considering different warehouse sizes

Analyzing the impact of different warehouse sizes, particularly in scenarios requiring temperature
control, could yield important insights. Larger warehouses may be more efficient for heating, while
smaller warehouses could be more efficient for cooling. Future research could investigate how these
factors influence overall emissions and operational efficiency.
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Inbound deliveries and multi-echelon Approach

We focus on optimizing outbound deliveries within a single-echelon environment. Including inbound
deliveries in the analysis could provide a more holistic view of the supply chain. For instance,
optimizing for CO2 emissions by increasing the number of warehouses may reduce the distance
and emissions associated with inbound logistics, as goods can be transported to a closer warehouse.
However, this could lead to increased overall complexity and costs due to more frequent but shorter
shipments. Conversely, minimizing distribution costs with fewer warehouses might extend inbound
delivery routes, potentially increasing CO2 emissions and costs related to inbound logistics. Another
possibility is that less efficient deliveries could occur due to near-full truckloads being split among
multiple distribution centers, particularly if the majority of production occurs overseas. Future research
could incorporate a multi-echelon approach, considering both inbound and outbound logistics, to
achieve a more comprehensive understanding of the trade-off between these dual objectives.

Impact CO2 reduction on customer demand

As consumer preferences shift towards more sustainable products, CO2 reduction could lead to an
increase in demand. This could lead to a higher preference for companies to reduce CO2 emissions. In
our study, we did not explore this relationship. Future studies could investigate how fluctuations in
customer demand due to sustainability considerations impact the distribution network. Furthermore,
an investigation into whether a superior CO2 footprint is associated with augmented sales could assist
in determining the profitability of investing in emission reduction, despite the potential for increased
expenditure.

By addressing these limitations and pursuing these future research directions, we can achieve
a more comprehensive understanding of the complexities and trade-offs involved in optimizing
distribution networks for cost efficiency and environmental sustainability.

8.3 General Recommendations for the FMCG Industry

The findings from our research highlight a clear trade-off between minimizing distribution costs and
reducing CO2 emissions in FMCG distribution networks. To effectively manage this trade-off, FMCG
companies should consider the following:

• Set clear CO2 emissions reduction goals.

FMCG companies should decide on specific CO2 reduction targets and adjust their distribution network
accordingly. For instance, if the goal is to reduce CO2 emissions by a certain percentage (e.g., 10%, 20%,
25%), the analysis shows that expanding the number of warehouses can help achieve these targets by
reducing transportation distances, even if it leads to higher warehousing emissions.

• Expand warehouse network to reduce CO2 emissions.

For companies prioritizing sustainability, increasing the number of warehouses reduces transportation
distances and associated emissions. More localized networks lead to lower overall CO2 emissions.

• Centralize warehousing to minimize distribution costs.
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To cut distribution costs, consolidating operations into fewer warehouses is generally more cost-
effective.

• Tailor the distribution network to specific product temperature requirements.

For chilled products, where warehouse emissions are higher due to energy-intensive cooling, central-
izing operations into fewer warehouses helps reduce both costs and CO2 emissions. It is advisable
that FMCG companies conduct a detailed analysis of energy consumption specific to the temperature
requirements of their products to optimize efficiency and sustainability further.

• Monitor the carbon pricing (ETS2).

Although carbon pricing under ETS2 is expected to increase transportation costs, the overall impact on
the cost-emissions trade-off is likely to remain minimal unless fuel prices rise significantly. FMCG
companies should closely monitor developments in carbon pricing and adapt their distribution
strategies only in the event of substantial increases in transportation costs, which may necessitate
adjustments in warehouse configuration or the selection of logistics providers.

8.4 Generalizability

The findings from our research present a flexible framework that can be applied across various sectors
within the FMCG industry and beyond. The model is adaptable to different industries that utilize
a shared distribution network. It can be tailored through a variety of parameters, enhancing its
applicability to many contexts. For instance, incorporating the maximum distance constraint allows
the model to accommodate various service levels. Additionally, different emission factors, such as
WtW metrics or those from different countries, can be easily implemented. Consequently, this model
can be effectively applied to multiple scenarios, demonstrating its generalizability.
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A

Appendix A

We implement the systematic literature review approach of Xiao and Watson 2019, involving:

1. Channel selection
2. Search string formulation

The databases used are Web of Science and Scopus. Within this research framework, we define
two exclusion criteria:

• Articles written in non-English.
• Articles from years before 1995, to prevent outdated articles.

The search strings for the initial search are presented in Table A.1.

Table A.1: Search strings and results per database.

Search Criteria ScienceDirect Scopus
"Facility Location Problem" AND "Fast-moving consumer goods" 17 48
"Facility Location Problem" AND FMCG 14 30
"Location Allocation" AND "Fast-moving consumer goods" 20 64
"Location Allocation" AND FMCG 13 37
"Multi-objective optimization" AND "Facility Location Problem" 523 1,743
"Multi-objective optimization" AND "Location Allocation" 599 2,208
"Uncapacitated Facility Location Problem" AND "CO2 Emissions" 7 22
UFLP AND "CO2 Emissions" 3 1
”Facility location” AND ”Uncapacitated” 1,638 534
”Facility location” AND ”Sustainability” 3,840 224
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C

Appendix C

Table C.1: Total inventory and warehouse costs per number of open warehouses.

Number of Warehouses Inventory (m2) Warehouse costs (=C)

1 5,658 396,060
2 8,002 560,140
3 9,800 686,000
4 11,317 792,190
5 12,652 885,640
6 13,860 970,200
7 14,970 1,047,900
8 16,004 1,120,280
9 16,975 1,188,250
10 17,893 1,252,510
11 18,766 1,313,620
12 19,601 1,372,070
13 20,401 1,428,070
14 21,171 1,481,970
15 21,914 1,534,980
16 22,633 1,584,310
17 23,330 1,633,100
18 24,006 1,680,420
19 24,664 1,726,480
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