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Previous works onMembership Inference Attacks (MIAs) have done plentiful
research on the effect of different hyperparameters of a Federated Learning
(FL) system on the susceptibility to MIAs [2, 8, 11, 23, 31–33, 35, 36]. In this
work, we go one meta-step higher to investigate the effect the optimisation
method itself has on the MIA accuracy and AUC. We apply white-box Mem-
bership Inference Attacks (MIAs) on these protocols to show that FedAdam
[27], FedNAG [34], and a version of FedNL [29] are more susceptible to MIAs
than FedAvg [22] because of an increased generalisation error, despite an
overall lower empirical error. We find this is because alternative protocols
have more overconfidence than FedAvg, which results in clearer distinc-
tions in membership. Furthermore, we tailor a new attack to these protocols
called the Ancillary Attack. This attack relies on the ancillary variables that
the alternative protocols use. The update to the ancillary variables shows
different patterns for member than for non-member data and so can be used
to improve an MIA. We modify the attack of Nasr et al. [23] by adding a
component that takes this update as input. Though this component further
decreases the stability of the attack model, we show that it helps to improve
the prediction of membership. We run experiments with and without this
component on the victim model architectures of ResNet [12] with 18 and 34
layers, smaller Fully Connected Networks (FCNs) and on logistic regression
trained for CIFAR-10, CIFAR-100 [17], Purchase100 and Texas100 [31] in a
cross-silo federated setting [14]. We show that even with a federation of 100
clients, a client can successfully attack systems optimised with alternatives
to FedAvg. Additionally, when using the ancillary attack component, they
can further their success.

Additional KeyWords and Phrases:Membership InferenceAttacks, Federated
Learning, Federated Optimisation, Ancillary Attack

1 INTRODUCTION
Since 2023, Machine Learning (ML) has been going through many
innovations that have made the technology significantly more ac-
cessible to the public. With the increased use of this technology,
the problem of the collection of sensitive data for the creation of
intelligent models has slowly been surfacing. Federated Learning
(FL) [22] seems to provide a solution to prevent the collection of
sensitive data by requiring clients to train an ML model locally to
then aggregate the local models at a server to train a collaborative
model in a series of rounds.
Although minimal, the clients still transmit some information

about their training data. For that reason, a common security audit
[5] is to verify if an attacker cannot succeed in a Membership Infer-
ence Attack (MIA) [31]. The purpose of an MIA is to infer from a
givenmodel if a victim sample has been included in the training data.
For this, another ML model is trained to find the overconfidence
the victim model has in members compared to non-members and to
find other possible overfitting patterns.

In recent years, much work has been done to find the effect batch
size [2, 8], model size [8, 32, 36], amount of epochs [2, 8, 11], learning
rate [2] and regularisation [23, 31, 33, 35, 36] has on the accuracy of
membership prediction. From this research, it has become apparent
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that, in general, the more a model is able to generalise, the more
resilient it is to MIAs. However, current work has not investigated
the effect the optimisation protocol itself has on the accuracy of
membership prediction.

As Aggarwal [1] states, alternatives to standard gradient-descent
[28] perform well in ill-conditioned optimisation problems. Since
the local optimisation problems of the clients within a federation
are inhomogeneous, the alternatives are an attractive strategy. We
investigate if using these alternatives carries or mitigates any ad-
ditional privacy risk that comes from FL. The alternatives that we
consider are the FedAdam [27], FedNAG [34] and a simplified FedNL
[29] protocol as well as standard FedAvg [22].

The FedNAG and FedNL protocols require the clients to transmit
more information than just the updated model parameters to im-
prove their optimisation technique. We examine if these ancillary
variables can be used in an attack and whether the increase in model
prediction accuracy weighs up to the increase in leakage. For this,
we developed an Ancillary Attack that leverages this information.
We examine the chance of success for an attacking server and client
in four cross-silo FL applications. In FL, a federation either consists
of many clients with few data or few clients with much data [14].
These are called cross-device and cross-silo applications, and we
investigate the latter.
We run the Ancillary Attack on models trained on the CIFAR-

10 and 100 [17], Purchase100 [31] and Texas100 [31] datasets. For
CIFAR-10 and 100, we attack a ResNet [12] of 18 and 34 layers, and
for Purchase100 and Texas100, we attack a simple Fully Connected
Network (FCN) and a logistic regression model. We train each archi-
tecture with FedAdam, FedAvg, and FedNAG. We also train logistic
regression using FedNL.
With our experiments, we show that these learning methods

increase the overall performance of a federated model, but with
that, the susceptibility to MIAs increases due to an increase in the
generalisation error. Furthermore, we show that ancillary variables
can be used to increase the MIA performance both for an average
increase and an increase in performance when targeting clients that
are outliers to the distribution, and so are more vulnerable. Finally,
we show that in a small cross-device setting, these attacks are even
possible by a federation client.

2 BACKGROUND

2.1 Federated Learning Protocols
With Federated Learning (FL), a federation of 𝐾 clients collectively
tries to fit a mapping function 𝑓 parameterised by 𝜃 between the
input data x and target outputs y under the orchestration of a server.
This target mapping is what is used to best predict a result; hence,
we speak of optimising the parameters that lead to good predictions.
In each global round, the server selects a fraction 𝐶 of the clients to
perform a local optimisation round. These clients form that round’s
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participation set 𝑆𝑖 . To these clients, the server transmits the model
𝜃𝑖 , which the clients use as initial parameters.

During a local optimisation round, the selected clients 𝑘 ∈ 𝑆𝑖
use their local dataset D𝑘 = {(x𝑖 , y𝑖 )}𝑚𝑖=1 to minimimise a loss
function ℓ (𝑓𝜃 (x), y). They do so until the local convergence criteria
are fulfilled, typically after passing some amount of local epochs 𝐸.
The client transmits their updated model 𝜃 (𝑘 )

𝑖+1 , and their amount of
data 𝑛𝑘 = |D𝑘 | to the server. The server takes the weighted average
of the received models w.r.t. the size of the dataset corresponding
to the received parameters to obtain the new aggregate 𝜃𝑖+1. This
is repeated until some global convergence criteria are fulfilled, e.g.,
after some amount of global rounds have passed.
Depending on the optimisation protocol, the server and client

may vary in the information transmitted. In our experiments, we
consider the following protocols that may be encountered in a cross-
silo FL setting [14].

2.1.1 Federated Averaging (FedAvg) [22]. Designed by McMahan et
al. [22]. To minimise the loss function, the selected clients apply the
stochastic gradient descent (SGD) [28] algorithm with a learning
rate 𝜂 and transmit their updated model to the server:

𝜃
(𝑘 )
𝑖+1 = 𝜃𝑖 − 𝜂

∑︁
(x,y) ∈𝐵

∇𝜃𝑖 ℓ (𝑓𝜃𝑖 (x), y)

Where 𝐵 is a batch of samples from D𝑘 . The server combines the
results as follows and returns the updated model:

𝜃𝑖+1 =
∑︁
𝑘∈𝑆𝑖

𝑛𝑘∑
𝑘∈𝑆𝑖 𝑛𝑘

𝜃
(𝑘 )
𝑖+1

2.1.2 Federated Adam (FedAdam) [27]. A subclass of the FedOpt
protocols [27] and increases the adaptivity of FedAvg by eliminating
the static aggregation at the server. To naturally apply adaptive
aggregation, the clients transmit the delta Δ(𝑘 )

𝑖+1 = 𝜃
(𝑘 )
𝑖+1 − 𝜃𝑖 instead

of the parameters; the server transmission remains as described.
One of the most popular [1] Machine Learning (ML) optimisers,

Adam [16], forms the inspiration for FedAdam. FedAdam maintains
a first and second-ordermomentum at the server, withweight decays
𝛽1 and 𝛽2 and the weighted average Δ𝑖+1. Respectively:

𝑚𝑖+1 = 𝛽1𝑚𝑖 + (1 − 𝛽1)Δ𝑖+1 𝑣𝑖+1 = 𝛽2𝑣𝑖 + (1 − 𝛽2)Δ2
𝑖+1

The momenta are initialised at zero. As a result, momenta are ini-
tially biased to zero. To account for the bias to that zero, we adjust
the momenta before updating:

𝑚̂𝑖+1 =
𝑚𝑖+1

1 − 𝛽𝑖+11
𝑣𝑖+1 =

𝑣𝑖+1
1 − 𝛽𝑖+12

We update the parameters in line with Adam, using a small regular-
isation term 𝜖 and a global learning rate 𝜂𝑔 :

𝜃𝑖+1 = 𝜃𝑖 + 𝜂𝑔
𝑚̂𝑖+1√
𝑣𝑖+1 + 𝜖

2.1.3 Federated Nesterov Accelerated Gradient (FedNAG) [34]. An
attempt to prevent client drift [15] in FL by incorporating Nesterov
Momentum [24]. Client drift is the process of clients separately
moving away from globally optimal parameters due to inhomo-
geneous local optimisation problems. Momentum [26] maintains
the information of previous updates via a velocity term 𝑢𝑖 scaled

Game 1 Membership inference security game [30, 36], with an
optimisation algorithmT and a distributionD fromwhich𝑛 samples
are included in training. The challenger randomly selects a dataset
from the distribution and trains on the union of that subset and 𝑧0
or 𝑧1 dependent on the outcome of coinflip 𝑏. The adversary A can
tell if 𝑧0 was included in training if they can consistently predict 𝑏.
Input: T ,D, 𝑛,A
1: 𝑆 ∼ D𝑛−1
2: 𝑏 ∼ {0, 1}
3: 𝑧0 ∼ D
4: 𝑧1 ∼ D
5: 𝜃 ← T (𝑆 ∪ {𝑧𝑏 })
6: 𝑏 ← A(T ,D, 𝑛, 𝜃, 𝑧0)

by a friction 𝛾 . Consequently, clients will account for each other’s
updates, finding a better solution quicker. The server maintains
this velocity and transmits it with the parameters 𝜃𝑖 to the selected
clients. The client returns the updated velocity with the updated
parameters and optimises using the following:

𝑢
(𝑘 )
𝑖+1 = 𝛾𝑢𝑖 − 𝜂

∑︁
(x,y) ∈𝐵

∇𝜃𝑖+𝑢𝑖 ℓ (𝑓𝜃𝑖+𝑢𝑖 (x), y)

𝜃
(𝑘 )
𝑖+1 = 𝜃𝑖 + 𝑢 (𝑘 )𝑖+1

The server takes the weighted average of the momentum as it would
for the parameters.

2.1.4 Federated Newton Learning (FedNL). For logistic regression,
we also use an adapted version of FedNL [29]. Our adaptation still
uses the Newton method to find the parameters for which the loss
function is minimal. However, we recompute the exact Hessian
for each round instead of computing the approximation using the
Frobenius norm. The resulting optimisation step is:

𝜃
(𝑘 )
𝑖+1 = 𝜃𝑖 − 𝐻−1∇𝜃𝑖 ℓ (𝑓𝜃𝑖 (x), y)

Where the gradient and Hessian are computed over the complete
dataset at once. In this protocol, the server sends the initial param-
eters to the clients, who respond with their Hessian and gradient.
The server weightily averages both over the amount of data per
client, computes the inverse of the Hessian, and finds the model
update as the client would. Since the computation of the Hessian
and its inverse is intense, this method is only a feasible protocol
for shallow neural networks. Therefore, we only use it for logistic
regression.

2.2 Membership Inference Attacks
A Membership Inference Attack (MIA) is an attack that aims to
determine whether a given victim data sample was part of the victim
model’s training dataset or not [31]. It is one of themost basic attacks
[30] and for that reason is often used to audit data privacy [5]. Game
1 gives the security game for a MIA [30, 36]. The training algorithm
is secure for the distribution if the adversary cannot predict 𝑏 better
than a random guess, i.e. the probability of a correct answer is 0.5.

To make the attack more relevant for various applications, many
works alter Game 1 to create attackers of different strengths:
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2.2.1 Black and white-box. A black-box attacker has querying ac-
cess to the victim model to obtain 𝑓𝜃 (x) of any x. A white-box
attacker knows the full model architecture 𝑓 , its parameters 𝜃 and
the hyper-parameters that were used to obtain 𝑓𝜃 . They can ac-
cess any intermediate computation of the model architecture and
compute its full gradients.

2.2.2 Passive and active mode. A passive attacker can only observe
the computations that would be made regardless of their attack. An
active attacker may alter its computations and messages to affect
other clients’ computations. Depending on whether the attacker is
the server or a client, this may mean the malicious server can single
out clients, or malicious clients may send updates to let other clients
reveal more about their data. Logically, a malicious server is more
powerful.

3 RELATED WORK

3.1 Membership Inference Attacks
Shokri et al. [31] coined Membership Inference Attack (MIA) and,
with that, showed how it might work. The intuition is that many ML
models overfit to some degree: Modelling more complex relations
than necessary to get better results on the training data at the cost
of decreased performance on other data. They capture this phenom-
enon by training many ‘shadow models’ on datasets similar to the
victim dataset. Shadow models have a similar architecture to the
victim model and, for that reason, should show similar overfitting
patterns. These patterns include overconfidence or lower loss on
member data, as shown in Appendix A. A final model, the attack
model, is trained to predict membership by finding these patterns
in the shadow models based on the input data, prediction and target
label: (x, 𝑓𝜃shadow (x), y). In the final attack, the threat model should
predict the membership of input data based on the prediction of the
victim model.

Yeom et al. [35] formally show the positive relation between over-
fitting and MIA advantage and confirm models are more vulnerable
the more they overfit. Besides, they show larger models are more
susceptible to MIAs, regardless of generalisation performance.

The attack of Nasr et al. [23] also shows this for their white-box
attack. Their attack leverages its white-box access by considering
not only the confidence of the prediction but also the loss value,
the value of each activation layer and the value of the gradients of
each parameterised layer. The idea is that the loss and gradient are
closer to zero for members than for non-members. They say not
all activation values necessarily contribute to a better attack model.
The earlier layers tend to extract simpler features relevant to all
possible samples. In contrast, the information of the later layers
is shown to improve the attack model better since these are more
prone to overfitting.

Because the attack model of Nasr et al. [23] takes more input data
than just the loss and target label, it requires more than a standard
binary classifier. For this, they propose an alternate architecture
which forms the basis for our Ancillary Attack model architecture.
We explain this and Nasr et al. their architecture in Section 4.

With their attack, they do not need to train many shadow models.
Instead, they compute all the needed values on the victim model.
This attack significantly improves the results of Shokri et al. [31] and
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Fig. 1. The ancillary attack model architecture. 𝜃𝑖,𝑗 is the 𝑗th layer of the
𝑖th iteration of the victim model, 𝐴𝑖,𝑗 is the 𝑗th layer of the 𝑖th iteration of
the ancillary variable. In blue are the components and information added
to the model of Nasr et al. [23] to use the ancillary variables.

reports an average membership prediction accuracy improvement
of 5% or 3%pt.

3.2 Attack Success Interpretability
Many works on MIAs make use of balanced attack accuracy [11, 19,
23, 31–33, 35]: the average prediction score on a balanced dataset of
members and non-members. Carlini et al. [5] vouch for an alternate
interpretation of the success of an attack. They argue that the ac-
curacy may unreasonably increase if a model is great at predicting
non-membership but can hardly predict membership. Therefore,
they recommend reporting the Area Under the Curve (AUC) of the
True-Positive Rate/False-Positive Rate (TPR/FPR) tradeoff charac-
terised by a Receiver Operating Characteristic (ROC) curve along
logarithmic axes. With logarithmic axes, the resulting figure focuses
on the parts of the data that are susceptible to MIAs and so on
the degree to which a model can predict membership rather than
non-membership.

4 ANCILLARY ATTACK
Ancillary variables are the variables used to improve the optimisa-
tion: The velocity 𝑢 for FedNAG and the Hessian for FedNL. As a
general notation, we use 𝐴𝑖 to mean the ancillary variable at round
𝑖 .

Ancillary variables are often used for two purposes: Either they
are used to ensure the cross-iteration optimisation information other
than the model updates is not discarded by, for example, keeping
track of the average direction of the last few updates scaled by
some decay. Alternatively, they are used to ensure one optimisation
iteration obtains muchmore information than they would otherwise.
Because of this role in the learning process, they so should display
smaller update steps for member data than for non-member data
when the model has completed training, similar to the gradient.
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With that, we propose to further the thought of Nasr et al. [23]
by also accounting for communicated ‘Ancillary’ variables. The
architecture of the attack model of Nasr et al. consists of several
components for the loss, label, activation and gradient value(s) that
result from the victim model prediction on the victim sample. The
loss, label and activation components are a Fully ConnectedNetwork
(FCN) with one hidden layer of size 128 and a Rectified Linear Unit
(ReLU) activation function. The FCN has an output vector size of 64
and a 20% dropout probability.
The gradients are first put in a Convolutional Neural Network

(CNN) component before being put into an FCN with the same
architecture as before. The CNN is 1 convolutional layer with a
stride of 1, a dropout probability of 20%, and a ReLU activation
function. The kernel width is 1, and the height is the size of the
layer’s input on which the gradient is computed. The output of
the CNN is flattened before it is put into the FCN. Similarly, the
outputs of the FCN are flattened before all outputs are concatenated
and put into the encoder. The encoder is another FCN with three
hidden layers of sizes 256, 128, 64, 20% dropout probability and a
ReLU activation function. The encoder output size is 1 and forms
the membership prediction. To account for multiple model rounds,
the input of the FCN and CNN components can be deepened to the
number of captured rounds - we do not investigate this. Flattening
happens over all dimensions of the component output vector.
We adjust this attack model architecture by considering the up-

date to the ancillary variable given an ancillary variable aggregate
and the input data. We note this update as 𝐴𝑖 (x) and have drawn a
general architecture in Figure 1. Similar to the loss and the gradient,
this value should be smaller for members than for non-members, as
the update for the member has already been accounted for in the
initial ancillary variable. Since this value has the same dimensions as
the gradient, the ancillary components have the same architecture
as the gradient components.

5 EXPERIMENTAL SETUP
For our experiments, we implemented anMIAworkbench1 in Python.
This workbench can be used to describe or import PyTorch [25]
models to train Flower [3] FL systems on different HuggingFace [20]
or self-imported datasets split iid or non-iid using FedArtML [10].
The workbench can simulate FedAvg [22], FedAdam [27], FedNAG
[34] and our adaptation of FedNL [29]. After the simulation is com-
plete, it attacks as described in this section. All hyperparameters
and variables mentioned can be optimised using grid search, with
logging to W&B [4].

5.1 Datasets
5.1.1 CIFAR. CIFAR-10 and CIFAR-100 [17] are popular benchmark
datasets to evaluate image recognition models. Both contain 32x32
coloured images. CIFAR-10 contains 60,000 samples in 10 classes,
with 6,000 samples per class. CIFAR-100 contains 60,000 samples
in 100 classes, with 600 samples per class. We use these datasets to
experiment with attacking a more complex task. For both datasets,
we simulate a federation of 100 clients where 10 clients are selected
per round. The data is split iid and each client has an equal amount.

1https://github.com/P1mguin/conFEDential

To have a balanced member-to-non-member ratio, we use 30,000
samples for training, 7,500 for testing, and the other 22,500 only
for the attack experiments. For both datasets, we apply random
cropping with a padding of four pixels, random horizontal flipping,
random rotation with a maximum of 15°, and normalisation on the
training data. The testing data is only normalised.

5.1.2 Privacy Datasets. Weuse the Purchase100 and Texas100 datasets
to evaluate simpler but more sensitive data usage with FL. The Pur-
chase100 dataset is a derivation from the Kaggle ‘Acquire Valued
Shoppers Challenge’ dataset2 and the Texas100 dataset is a deriva-
tion of the Hospital Discharge Data of the Texas Department of
State Health Services3. Both derivations are described by Shokri et
al. [31].

Purchase100 contains 600 binary features representing whether a
customer has ever bought a specific product. The task is to predict
one of 100 shopping patterns. Texas100 contains 6,169 binary fea-
tures that each represent some attribute of the patient, e.g. whether
the cause of injury was drug misuse. The task is to predict one of the
100 most frequent procedures; other procedures are excluded. To
have a balanced member-to-non-member ratio for both datasets, we
randomly select 10,000 training samples, 2,500 testing samples, and
7,500 other samples only used for the attack experiments. In this
scenario, we model a smaller federation of 10 clients where each
client is selected per round. The data is split iid and each client has
an equal amount. This scenario is especially relevant for hospitals
or other small federations that work with highly sensitive data. We
do not apply data augmentation to Purchase100 and Texas100.

5.2 Target Models
For the CIFAR-10 and 100 datasets, we use a ResNet [12] with 18 and
34 layers, respectively. For the privacy datasets, we use simple FCNs
and logistic regression. We use logistic regression since sensitive
applications often require simpler models to make the sensitive
prediction more easily explainable or because the weights of simpler
modelsmay scientifically bemore relevant as in [6]. For Purchase100,
we use an FCNwith layer sizes 600, 1024, 512, 256, 100. For Texas100,
we use an FCN with layer sizes 6169, 2048, 1024, 512, 256, 100. Both
models use a tanh activation function without dropout. All models
of all datasets are trained using a cross-entropy loss function.
In Appendix B, we describe which hyperparameters we use for

which simulation. For all protocols except FedNL, the clients train
locally for 4 epochs. For FedNL, we use 1 local epoch. We stop
global learning if the loss has not decreased by 0.1% in the last 20
rounds. In Table 1, we show the prediction accuracy on the training,
testing and validation data per simulation. From this, we confirm
that alternatives to FedAvg result in a better performance. Though
the accuracy is not too impressive compared to the central setting
[7, 9], for a federated setting, these results are in line with the
original proposals [22, 27, 34]. For the full learning curves of the
protocols, see Appendix C.

From Table 1, we see that overall, FedAvg, in general, takes longer
to converge to equal performance than other protocols. Furthermore,
we see that FedNAG is able to converge quicker for simpler datasets
2https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
3https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
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Table 1. Model performance of target models on datasets for different
optimisers on train, test, and validation data and the number of global
rounds until converged.

Simulation Protocol Global
rounds Train Test

CIFAR10
ResNet18

FedAvg
FedAdam
FedNAG

328
134
921

68.5%
71.4%
67.3%

55.7%
57.3%
54.8%

CIFAR100
ResNet34

FedAvg
FedAdam
FedNAG

482
83
317

39.3%
37.8%
44.0%

21.7%
20.0%
23.0%

Purchase100
FCN

FedAvg
FedAdam
FedNAG

34
98
30

99.4%
100.0%
100.0%

78.1%
76.7%
77.4%

Purchase100
Logistic
regression

FedAvg
FedAdam
FedNAG
FedNL

274
43
206
24

93.4%
95.1%
94.8%
89.0%

57.1%
61.1%
57.2%
26.3%

Texas100
FCN

FedAvg
FedAdam
FedNAG

37
78
15

71.7%
68.5%
70.1%

51.8%
51.3%
51.3%

Texas100
Logistic
regression

FedAvg
FedAdam
FedNAG
FedNL

117
130
146
23

81.4%
79.4%
78.2%
85.4%

56.5%
55.8%
56.0%
53.0%

and that FedAdam converges quicker for all datasets. This is because
FedNAG can overcome the increasing amount of local minima that
exist when the problem gets more complex and, therefore, is not
stopped. FedAdam does converge to these local minima but does it
quicker than FedAvg and FedNAG as a result of the adaptive learning
rate. This adaptive learning rate is not a great help in overcoming
local minima, and therefore, the model converges more quickly.

Reconsidering Table 1, we see that FedNAG has a lower difference
in prediction accuracy between the training and testing data for
CIFAR10 and CIFAR100. This results from the momentum that helps
to overcome more frequent local minima. When the problem gets
simpler, the frequency of local minima decreases, so FedNAG starts
to converge more quickly than FedAvg, with similar prediction
accuracy. FedNL converges much quicker than the other protocols.
As explained, FedNL takes big and accurate steps that take more
computational power. Furthermore, since these big steps are taken
on the training data, we see a significant difference between the
training and testing data, indicating a large degree of overfitting.

5.3 Threat Model
In the experiments, we test for a global and local passive white-
box attacker, i.e. the server and a client. For both, we assume the
strongest threat: For the global attacker, we assume they can create
an auxiliary dataset that overlaps precisely with the training/testing
dataset of all clients combined but is only missing the victim sample,
in line with Game 1. They have access to all aggregate variables and
a balanced dataset they use to train the Ancillary Attack model. The
victim is randomly selected from all data.

Table 2. Description of which scenario uses which component. For instance,
scenario D uses all components.

Scenario
name Loss Label Activation Gradient Ancillary

A True True False False False
B True True True True False
C True True False False True
D True True True True True

We assume the local attacker has been selected for each training
round. So, they have access to all aggregates transmitted from the
server to the clients. The local attacker uses these aggregates in
combination with their local dataset to train the Ancillary Attack
model. The dataset of the local attacker comprises half members
and half non-members and is of a size equivalent to the total data
of the federation divided equally among all clients. The victim is
randomly selected from all data that does not belong to the local
attacker.

5.4 Attack Simulation
We run experiments by varying the components used in the Ancil-
lary Attack model. The attacker can use the ancillary component if
the attacker has access to the ancillary aggregate and if one exists.
For instance, the local attacker does not have access to the aggregate
of the Hessian as that information is only sent to the server and not
returned. In this example, we could not use an ancillary component.
By default, we use the loss value and target label. The gradient

and activation components and the ancillary components are cross-
examined to obtain a total of four configurations if a protocol has
ancillary variables to which the attacker has access and two if they
do not. For clarity, we name each scenario in Table 2. We will refer
to each scenario as named in Table 2.
We train the attack model for the global attacker on all the data

except the victim sample. Of that data, 85% is used for training and
15% for validation. The local attacker similarly uses 85% of its data as
training and 15% for validation. The data to which the local attacker
does not have access is used as testing data. For the global attacker,
this is the target victim. For the local attacker, the victim and the
data of the other clients. For both attackers, the data is put into the
model of the aggregation round that has the highest accuracy, i.e.
the final model. If multiple rounds resulted in the same accuracy,
we use the earlier round.

We train the attack model using Adam [16] with a learning rate
of 0.001, betas of 0.9 and 0.999, an epsilon of 0.0001, and no weight
decay. We use L2 loss for the attack model. We stop training if the
average loss of the last 5 rounds has not decreased by 0.1% for 10
consecutive rounds.
The attack models often converge to a performance equivalent

to that of guessing. Therefore, we repeat the simulation until we
get a result that is not guessing, with a maximum of 10 attempts.
If an experiment did not produce a usable model, we report the
evaluation metrics in italics. To see how often each experiment was
run until a result was found, refer to Appendix D.
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5.5 Evaluation Metrics
5.5.1 Attack Accuracy. The number of correctly predicted test sam-
ples when the membership decision threshold is 0.5, divided by the
total number of samples. The decision threshold is the membership
probability that is at least required for us to consider the model
prediction membership classification. We use accuracy because of
its usage by other works, increasing comparability.

5.5.2 ROC (Logarithmic Scale). As stated by Carlini et al. [5], the
decision threshold can be put anywhere to create arbitrary success
metrics. Therefore, we disclose the ROC along linear and logarith-
mic axes to make a fair judgement if metric components increase
membership prediction rather than non-membership prediction. For
simplicity, we sometimes report the AUC instead of the full curve.
We will clarify when the AUC is computed for the logarithmic axes.
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Fig. 2. Difference in loss distribution between members and non-members
for logistic regression on Purchase100.

6 EVALUATION & DISCUSSION

6.1 Impact of Optimisation Method
We start the evaluation by investigating the effect the optimisation
method has on the performance of the MIA without the ancillary
component enabled. In Table 3, we show that, in general, a global
attacker can achieve a higher attack accuracy when a federation
uses an optimisation protocol alternative to FedAvg. To understand
this, we start by evaluating the experiment set that sees the highest
relative changes in MIA accuracy. We compare the difference in loss
distribution over all classes for logistic regression on Purchase100
in Figure 2. From this figure, we see that alternatives to FedAvg
achieve a lower loss for both members and non-members - with

10−2 10−1 100
0

1

2

3

D
en
sit
y

Non-Members
Members

(a) FedAdam

10−4 10−3 10−2 10−1 100
0

0.5

1

1.5

2

(b) FedAvg

10−4 10−3 10−2 10−1 100
0

1

2

Cross-entropy loss

D
en
sit
y

(c) FedNAG

Fig. 3. Difference in loss distribution between members and non-members
for ResNet18 on CIFAR-10.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
sit
iv
e
Ra

te

FedAdam (0.83/0.63) FedAvg (0.75/0.64) FedNAG (0.78/0.62) FedNL (0.85/0.73)

FedAdam (0.76/0.0.61) FedAvg (0.71/0.51) FedNAG (0.81/0.62) FedNL (0.88/0.60)

10−5 10−4 10−3 10−2 10−1 100
10−5
10−4
10−3
10−2
10−1
100

False Positive Rate

Fig. 4. ROC curves for a global attacker, attacking logistic regression for
Purchase100 optimised with various learning methods. The attacker uses
only the loss and the label component. In dashed lines, the validation ROC
and the continuous lines, the training ROC. The first value in the legend
is the AUC under the linear axes, and the second value is computed along
logarithmic axes.

FedNL being the exception for this dataset. However, we can also
see that alternatives to FedAvg have a greater statistical distance
between the member and non-member loss distribution. In Table 4,
we show the generalisation error next to the MIA accuracy. In this
table, we take the generalisation error as the difference between
the mean cross-entropy loss. From this table, we can draw that
not per se low model performance, but the generalisation error
increases membership inference susceptibility. Though alternatives
have smaller differences in prediction accuracy between member
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Table 3. Accuracy of the global attack over FedAdam, FedAvg, FedNAG and FedNL using only the loss and label. The accuracy is the weighted combination of
the training, validation and testing accuracy, weighted by the amount of data in each split. FedNL was only used on logistic regression models, so the other
model architectures do not apply to FedNL.

CIFAR-10
ResNet18

CIFAR-100
ResNet34

Purchase100
Logistic regression

Purchase100
FCN

Texas100
Logistic regression

Texas100
FCN

FedAdam 60% 65% 69% 65% 68% 60%
FedAvg 52% 62% 69% 60% 62% 58%
FedNAG 61% 71% 70% 63% 61% 59%
FedNL n/a n/a 75% n/a 66% n/a

Table 4. The increase in Membership Inference Attack (MIA) accuracy and
increase in the difference in expected cross-entropy loss (generalisation
error) for non-members and members, relative to the FedAvg protocol for
logistic regression on Purchase100.

Generalisation
error

Relative
increase

MIA
accuracy

Relative
increase

FedAvg 0.75 n/a 69% n/a
FedAdam 0.80 7% 69% 0%
FedNAG 0.80 7% 70% 1%
FedNL 1.38 80% 75% 9%

Table 5. The increase in Membership Inference Attack (MIA) accuracy and
increase in the difference in expected cross-entropy loss (generalisation
error) for non-members and members, relative to the FedAvg protocol for
ResNet18 trained on CIFAR-10.

Generalisation
error

Relative
increase

MIA
accuracy

Relative
increase

FedAvg 0.48 n/a 52% n/a
FedAdam 2.91 506% 60% 15%
FedNAG 2.76 475% 61% 17%

and non-member data, as shown in Table 1. The generalisation error
for them is greater. This is because alternatives to FedAvg can use
their ancillary variables to get deeper into the minimum in which
they converge. As a result, they predict the same result but do it more
confidently. This difference is not shown in the prediction accuracy
because both models still predict the same value. It is shown in the
difference in the cross-entropy loss values as that value accounts for
the confidence of the prediction. Therefore, alternatives to FedAvg
seem to carry an increased susceptibility to MIAs.
To show that this relation holds for other datasets, we also de-

scribe ResNet18 on CIFAR10, which results in the smallest relative
difference in MIA accuracy between optimisation protocols. In Fig-
ure 3, we again visualise the difference between non-members’ and
members’ loss values. To make the subtle difference clearer, this
time, we show it along a logarithmic axis. From this, we understand
the results of Table 5, which also show that an increase in generali-
sation error coincides with an increase in MIA accuracy. We see that
our earlier patterns uphold: the bigger the distance in distribution
between members and non-members, the smaller the resilience to
standard MIAs.
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Fig. 5. ROC curves for a global attacker, attacking ResNet18 trained for
CIFAR-10 optimised with various learning methods. The attacker uses only
the loss and the label component. In dashed lines, the validation ROC and
the continuous lines, the training ROC. The first value in the legend is
the AUC under the linear axes, and the second value is computed along
logarithmic axes.

Finally, in Figure 4 and Figure 5, we showwhat this difference does
to the ROC and the AUC for both logistic regression on Purchase100
and ResNet18 trained on CIFAR-10. In this figure, we see that the
performance again increases for alternatives to FedAvg. Also, we
see that this performance is not only an average case increase but
also an increase in the AUC on the logarithmic axes. That means
that alternatives to FedAvg are not only more vulnerable on an
average case but also more vulnerable outlying data samples are
now at increased risk.

So, we have shown that the FedAdam, FedNAG and FedNL proto-
cols result in a machine learning model that is more susceptible to
MIAs than optimisation with the FedAvg would have been. Despite
these protocols resulting in better overall prediction accuracy, there
is a greater difference in prediction accuracy for member and non-
member data. Therefore, they make it easier to tell apart whether a
prediction corresponds to a member or non-member input, increas-
ing susceptibility to MIAs.

6.2 Impact of Components
In Table 6, we show the MIA accuracy of our attack model trained
with various components by a global attacker. Additionally, in Table
7, we show what impact the new components have on the AUC. As
shown and explained by Nasr et al. [23] and Carlini et al. [5], the
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Table 6. The accuracy of the global attack over FedAdam, FedAvg, FedNAG, and FedNL with attack models using different components. Scenario A uses the
loss and label components; scenario B uses the loss, label, activation and gradient components; scenario C uses the loss, label and ancillary component; and
scenario D uses the loss, label, activation, gradient and ancillary component. The accuracy is the weighted combination of the training, validation, and testing
accuracy, weighted by the amount of data of each split. Scenarios C and D do not apply to the protocols without ancillary variables. We only applied FedNL
on logistic regression models. The results in italics highlight experiments that did not converge to more than guessing after ten attempts.

CIFAR-10
ResNet18

CIFAR-100
ResNet34

Purchase100
Logistic regression

Purchase100
FCN

Texas100
Logistic Regression

Texas100
FCN

A B C D A B C D A B C D A B C D A B C D A B C D
FedAdam 60% 69% n/a n/a 65% 69% n/a n/a 69% 77% n/a n/a 65% 70% n/a n/a 68% 74% n/a n/a 60% 67% n/a n/a
FedAvg 52% 62% n/a n/a 62% 64% n/a n/a 69% 71% n/a n/a 60% 68% n/a n/a 62% 69% n/a n/a 58% 66% n/a n/a
FedNAG 61% 69% 59% 66% 71% 75% 72% 72% 70% 70% 70% 71% 63% 66% 64% 51% 61% 66% 61% 68% 59% 61% 56% 63%
FedNL n/a n/a n/a n/a n/a n/a n/a n/a 75% 88% 89% 85% n/a n/a n/a n/a 66% 79% 81% 53% n/a n/a n/a n/a

Table 7. The ROC AUC of the global attack over FedAdam, FedAvg, FedNAG, and FedNL with attack models using different components. Scenario A uses the
loss and label components; scenario B uses the loss, label, activation and gradient components; scenario C uses the loss, label and ancillary component; and
scenario D uses the loss, label, activation, gradient and ancillary component. The first value is the ROC AUC computed along linear axes; the second value is
computed along logarithmic axes. Both values are the weighted combination of the ROC AUC, weighted by the amount of data of each split. Scenarios C and
D do not apply to the protocols without ancillary variables. We only applied FedNL on logistic regression models. The results in italics highlight experiments
that did not converge to more than guessing after ten attempts.

CIFAR-10
ResNet18

CIFAR-100
ResNet34

Purchase100
Logistic regression

Purchase100
FCN

Texas100
Logistic regression

Texas100
FCN

A B C D A B C D A B C D A B C D A B C D A B C D

FedAdam 0.65
0.49

0.71
0.63 n/a n/a 0.69

0.55
0.69
0.54 n/a n/a 0.78

0.63
0.85
0.61 n/a n/a 0.66

0.54
0.65
0.61 n/a n/a 0.69

0.62
0.75
0.63 n/a n/a 0.65

0.49
0.80
0.59 n/a n/a

FedAvg 0.56
0.47

0.61
0.55 n/a n/a 0.66

0.52
0.67
0.55 n/a n/a 0.74

0.57
0.75
0.61 n/a n/a 0.62

0.48
0.68
0.56 n/a n/a 0.68

0.59
0.76
0.62 n/a n/a 0.59

0.49
0.76
0.51 n/a n/a

FedNAG 0.70
0.56

0.76
0.70

0.69
0.56

0.79
0.81

0.67
0.60

0.71
0.62

0.71
0.56

0.70
0.59

0.78
0.59

0.77
0.61

0.79
0.65

0.78
0.62

0.63
0.51

0.65
0.54

0.64
0.59

0.65
0.53

0.66
0.57

0.73
0.58

0.67
0.57

0.65
0.58

0.61
0.53

0.68
0.55

0.68
0.83

0.52
0.49

FedNL n/a n/a n/a n/a n/a n/a n/a n/a 0.85
0.71

0.94
0.71

0.96
0.75

0.96
0.76 n/a n/a n/a n/a 0.74

0.52
0.83
0.65

0.73
0.59

0.51
0.50 n/a n/a n/a n/a

inclusion of the activation and gradient component increases the
attack performance of the attack model. As shown in Tables 6 and
7, our experiments show the same pattern.

6.2.1 Impact of the Ancillary Component. From our results, we see
that the ancillary component shows a minor improvement in aver-
age case evaluation metrics and a greater improvement in metrics
fixating on predicting membership rather than non-membership.
Moreover, we see that the improvement decreases as the data and
model get more complex. Similar to the generalisation error of Fig-
ures 2 and 3, the updates to the ancillary variable get more nuanced
as the complexity of the model and data increases. A subtle differ-
ence is harder to model, and therefore, the improvement decreases
on an average case. A small part of the samples are still not very
subtle, which is what is reflected in the ROC AUC (log).
Across optimisation methods, we find that FedNL more easily

overfits than FedNAG. This is because FedNL itself is more prone
to overfitting than FedNAG, as we show in Table 1. As a result,
this is not the result of a difference in complexity. Rather, this is
because different protocols lead to different generalisation errors,
which leads to a difference in MIA susceptibility, as we showed in
the previous section.

In Figure 6, we show what effect the ancillary component has on
the AUC along linear and logarithmic axes. From this, it is clear that
the ancillary component does not greatly improve the average case
attack, but it does improve it much for a minor part of the dataset,
which is more threatening.

This means that we have shown that the ancillary component
does not, on average, help with increasing the MIA accuracy. Rather,
the ancillary component improves to predict membership on the
outliers in the dataset and, therefore, is a useful tool in predicting
membership. Furthermore, the more complex input data and model
architecture get, the smaller the contribution of the ancillary com-
ponent on membership prediction. There is no notable difference in
the ancillary component across optimisation methods, only that for
some protocols, it cannot be used.

6.3 Impact of Attacker Role
So far, our evaluations have only regarded a global attacker. In Table
8, we show the MIA accuracy for the attack model trained with
various components by a local attacker and in Table 9, we show
what AUC was achieved using these models.

In Tables 8 and 9, we see that for all datasets, the attacker can
achieve results that are close to a global attacker. Considering that
the local attacker sometimes only had access to 1% of all data, we
find it reasonable to consider each participant in the federation a
threat.
Overall, we see that the patterns we mentioned concerning the

impact of the optimisation method and the impact of components
are equal for a global and local attacker. For the scenarios in which
we used not only the loss and label components, we sometimes see
that a local attacker outperforms a global attacker. In theory, our
global attacker should be able to at least achieve the performance
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Table 8. The accuracy of the local attack over FedAdam, FedAvg, FedNAG, and FedNL with attack models using different components. Scenario A uses the
loss and label components; scenario B uses the loss, label, activation and gradient components; scenario C uses the loss, label and ancillary component; and
scenario D uses the loss, label, activation, gradient and ancillary component. The accuracy is the weighted combination of the training, validation, and testing
accuracy, weighted by the amount of data of each split. Scenarios C and D do not apply to the protocols without ancillary variables. We only applied FedNL
on logistic regression models. The local attacker cannot apply the ancillary attack on FedNL as they do not have access to the ancillary variable.

CIFAR-10
ResNet18

CIFAR-100
ResNet34

Purchase100
Logistic regression

Purchase100
FCN

Texas100
Logistic Regression

Texas100
FCN

A B C D A B C D A B C D A B C D A B C D A B C D
FedAdam 57% 61% n/a n/a 67% 65% n/a n/a 69% 78% n/a n/a 63% 65% n/a n/a 68% 74% n/a n/a 60% 61% n/a n/a
FedAvg 54% 57% n/a n/a 58% 59% n/a n/a 65% 67% n/a n/a 59% 59% n/a n/a 56% 69% n/a n/a 58% 62% n/a n/a
FedNAG 56% 54% 52% 62% 72% 65% 64% 56% 71% 69% 70% 59% 59% 61% 60% 60% 58% 57% 59% 58% 56% 59% 57% 58%
FedNL n/a n/a n/a n/a n/a n/a n/a n/a 71% 88% n/a n/a n/a n/a n/a n/a 61% 61% n/a n/a n/a n/a n/a n/a

Table 9. The ROC AUC of the local attack over FedAdam, FedAvg, FedNAG, and FedNL with attack models using different components. Scenario A uses the
loss and label components; scenario B uses the loss, label, activation and gradient components; scenario C uses the loss, label and ancillary component; and
scenario D uses the loss, label, activation, gradient and ancillary component. The first value is the ROC AUC computed along linear axes; the second value is
computed along logarithmic axes. Both values are the weighted combination of the ROC AUC, weighted by the amount of data of each split. Scenarios C and
D do not apply to the protocols without ancillary variables. We only applied FedNL on logistic regression models. The local attacker cannot apply the ancillary
attack on FedNL as they do not have access to the ancillary variable.

CIFAR-10
ResNet18

CIFAR-100
ResNet34

Purchase100
Logistic regression

Purchase100
FCN

Texas100
Logistic regression

Texas100
FCN

A B C D A B C D A B C D A B C D A B C D A B C D

FedAdam 0.61
0.54

0.62
0.56 n/a n/a 0.67

0.53
0.65
0.55 n/a n/a 0.71

0.59
0.75
0.62 n/a n/a 0.64

0.54
0.65
0.56 n/a n/a 0.71

0.63
0.76
0.65 n/a n/a 0.62

0.53
0.67
0.54 n/a n/a

FedAvg 0.56
0.51

0.59
0.55 n/a n/a 0.59

0.52
0.61
0.54 n/a n/a 0.69

0.56
0.71
0.61 n/a n/a 0.61

0.51
0.62
0.53 n/a n/a 0.61

0.53
0.73
0.57 n/a n/a 0.57

0.50
0.68
0.52 n/a n/a

FedNAG 0.61
0.52

0.50
0.50

0.51
0.48

0.63
0.54

0.70
0.62

0.66
0.59

0.71
0.65

0.54
0.49

0.74
0.61

0.72
0.61

0.75
0.69

0.62
0.63

0.62
0.53

0.64
0.53

0.63
0.58

0.64
0.57

0.64
0.60

0.64
0.59

0.64
0.68

0.65
0.67

0.59
0.50

0.63
0.53

0.60
0.60

0.63
0.52

FedNL n/a n/a n/a n/a n/a n/a n/a n/a 0.77
0.72

0.73
0.55 n/a n/a n/a n/a n/a n/a 0.63

0.54
0.60
0.55 n/a n/a n/a n/a n/a n/a

of our local attacker by using the same fraction of their data as
a local attacker has. This difference likely comes from the model
instability that also causes the model to frequently converge to a
result equivalent to guessing.
Furthermore, we think the local attacker can achieve accuracy

comparable to that of a global attacker by how we designed the
experiment. For that, two factors are in play: The first is that the
data is split iid amongst the clients. As a result, the local attacker is
given samples from the complete member and non-member data.
Consequently, the local attacker has at least learned something about
all the data it faces. In contrast, if the attacker only has access to
the very tails of both distributions, it could hardly predict anything
about the tail at the opposite end of the distribution, as it has learned
nothing about it. This aligns with what Liu and Dong [21] describe.
When more clients are introduced, non-iid federations are better
protected than iid federations are against MIAs.
Secondly, the local attacker is given a balanced dataset. In other

words, they have as many members as non-members. In a typical
setting, the client must use more than half of its data to participate
in training - if it behaves honestly - this would lower the amount of
non-member data drastically. In such a scenario, the client would
have a very unbalanced dataset with which to optimise their attack
model. This would further harm their attack model performance.

So, we have shown that the local attacker achieves similar results
as the global attacker. In some cases, the local attacker outperforms
the global attacker due to the instability of the model architecture.

We think the local attacker achieves these good results because the
data is split iid and because they have access to a balanced dataset.

7 FUTURE WORK
From the evaluation and discussion, various experiments call for
further investigation. Firstly, the idea of the Ancillary Attack can be
explored more thoroughly. One option is to let the attacker maintain
ancillary variables outside of the federation’s protocol. For instance,
an attacker could maintain a local momentum of the received global
parameters. This momentum is never shared, but, as we have shown,
ancillary variables can increase the prediction accuracy of a Mem-
bership Inference Attack (MIA). Then, even beyond protocols, the
attacker can keep track of various ancillary variables, which could
increase their attack likelihood. Future work should determine if and
which variables work best for an attacker and, more importantly,
how to defend against such ‘self-tailoring Ancillary Attacks’.
Other works on the Ancillary Attack may look into the effect

different layers have on the quality of the MIA. Similar to Nasr et
al. [23], it may be that earlier layers provide less information than
later layers of the model architecture do. This may greatly increase
the time required for convergence of the model.
Beyond the Ancillary Attack, future work could advance the

knowledge of the MIA susceptibility of different optimisation proto-
cols in Federated Learning (FL) by repeating similar experiments on
greater datasets and different models. For instance, more federations
may be simulated with equal datasets, but different models, such
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Fig. 6. Validation ROC curves for a global attacker, attacking models that
are optimised using FedNAG. The upper figures display the ROC curves for
an attack model using only the loss and label component; the lower figures
also use the ancillary component. The first pair in the legend are without the
ancillary component, and the remaining pair is with the ancillary component.
Within the pair, the first value is the AUC under the linear axes; the second
is the AUC along logarithmic axes.

as DenseNet [13] or AlexNet [18]. By doing so, these simulations
can find the effect the model size has on the difference in MIA sus-
ceptibility between protocols. To explain, the choice in protocol
may matter more for larger than for smaller models. Also, it is in-
teresting to see whether providing the attack model with multiple
input rounds may cause one protocol to become more susceptible
than other protocols because of the cross-iteration optimisation
information in the ancillary variables and model parameters.
It is interesting to investigate further the difference in inference

power between local and global attackers. We have shown that a
local attacker with a small amount of data can achieve similar results
to a global attacker if their attack dataset is balanced and the data
is split iid. It is interesting to see whether these two conditions are
required for a local attack to succeed. Besides, it can be investigated
what percentage of the data is required for a local attacker to become
as powerful as the theoretical limit of the global attacker.

Finally, to find out the real implications the choice in optimisation
method has on privacy, future work should further the security audit
and find out its effect on, for instance, attribute inference or full
data reconstruction. In these experiments, the thesis of the ancillary
attack may contribute to furthering awareness of what to defend
against and how to use federated learning.

8 CONCLUSION
In this paper, we considered a new variable that plays a role in the
susceptibility of a Federated Learning (FL) system to a Membership
Inference Attack (MIA), the optimisation protocol. We considered
FedAvg [22], FedAdam [27], FedNAG [34] and FedNL [29], to show
that some protocols lead to a greater generalisation error which
leads to a greater susceptibility to Membership Inference Attacks
(MIAs). In our results, we found that alternatives to FedAvg cause a
greater generalisation error and, hence, should be considered when
defending against MIAs.

To investigate the risk that is caused by alternative optimisation
strategies further, we created the Ancillary Attack. This attack lever-
ages the ancillary variables that some FL protocols use to increase
their prediction accuracy or decrease their required training time.
We showed that the update to the ancillary variable can be used
alongside typical MIA models to increase the membership predic-
tion for a white box attacker. This is because the ancillary variable
is used for two purposes: Either it is used to maintain information
learned in one iteration across multiple iterations, or it is used to
generate much more information in one iteration. We showed that
because of this increase in information, the ancillary component
works. From this, we conclude that the difference in pattern updates
on the ancillary variables between members and non-members can
be used to distinguish membership in the training data.
Finally, we showed that a local attacker can successfully apply

(ancillary) attacks on different optimisation protocols if the data is
spread iid and the local attacker is given a balanced dataset.
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A PREDICTION DIFFERENCE BETWEEN MEMBERS
AND NON-MEMBERS

In Figure 7, we plot the difference in confidence, logit confidence and
cross-entropy loss for members and non-members for a ResNet18
model trained on CIFAR10 with the FedNAG protocol. With this
figure, the reason why membership inference attacks work is easily
shown. Overall, this machine learning model is more confident in
the prediction for data it has seen before - training data - and its
prediction is closer to the target value.

B HYPERPARAMETERS OF THE TARGET MODELS
To simulate an attack on models that are the best option of a fed-
eration, we applied grid search across a range of hyperparameters.

Table 10. The spaces in which we grid search for the best hyperparameters.
FedNL does not have any hyperparameter, and so no hyperparameter space
is applicable.

Protocol Hyperparameters

FedAdam 𝜂 {10−2.5, 10−2, 10−1.5, 10−1}
𝜂𝑔 {10−2.5, 10−2, 10−1.5, 10−1}

FedAvg 𝜂 {10−3, 10−2.5, 10−2, 10−1.5, 10−1, 0.2, 10−0.5}

FedNAG 𝜂 {10−3, 10−2.5, 10−2, 10−1.5, 10−1, 0.2, 10−0.5}
𝛾 {0.85, 0.90, 0.95}

FedNL n/a
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Fig. 7. Difference in confidence and loss for members and non-members for FCN trained with FedAVG on Purchase100 dataset.

Table 11. The hyperparameters used for the models trained using FedNL.

Protocol Hyperparameters
Purchase 𝐵 ∞
Logistic regression
Texas 𝐵 ∞
Logistic regression

Table 12. The hyperparameters used for the models trained using FedAvg.

Protocol Hyperparameters
CIFAR10 𝐵 64
ResNet18 𝜂 0.2
CIFAR100 𝐵 64
ResNet34 𝜂 10−0.5
Purchase 𝐵 64
FCN 𝜂 10−0.5
Purchase 𝐵 64
Logistic regression 𝜂 10−2.0
Texas 𝐵 64
FCN 𝜂 0.2
Texas 𝐵 64
Logistic regression 𝜂 10−0.5

In Table 10, we describe across what space we searched for what
variable for what protocol. FedNL takes no variables apart from
batch size. However, by design, the batch size is intended to take
the whole dataset at once. Hence, we do not apply any searching
for FedNL. We made no difference in searching between datasets
and models. From the results, we selected the configuration that
resulted in the highest prediction accuracy on the test data. This
search resulted in the hyperparameter configurations described in
Tables 11, 12, 13, and 14.

Table 13. The hyperparameters used for the models trained using FedAdam.

Protocol Hyperparameters
CIFAR10 𝐵 64
ResNet18 𝜂 10−2

𝜂𝑔 10−1
𝛽1 0.9
𝛽2 0.99
𝜖 10−3

CIFAR100 𝐵 64
ResNet34 𝜂 10−2.5

𝜂𝑔 10−1
𝛽1 0.9
𝛽2 0.99
𝜖 10−3

Purchase 𝐵 64
FCN 𝜂 10−2.5

𝜂𝑔 10−1.5
𝛽1 0.9
𝛽2 0.99
𝜖 10−3

Purchase 𝐵 64
Logistic regression 𝜂 10−2

𝜂𝑔 10−1.5
𝛽1 0.9
𝛽2 0.99
𝜖 10−3

Texas 𝐵 64
FCN 𝜂 10−2

𝜂𝑔 10−2
𝛽1 0.9
𝛽2 0.99
𝜖 10−3

Texas 𝐵 64
Logistic regression 𝜂 10−2.5

𝜂𝑔 10−1
𝛽1 0.9
𝛽2 0.99
𝜖 10−3
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Table 14. The hyperparameters used for the models trained using FedNAG.

Protocol Hyperparameters
CIFAR10 𝐵 64
ResNet18 𝜂 10−1.0

𝛾 0.85
CIFAR100 𝐵 64
ResNet34 𝜂 10−0.5

𝛾 0.9
Purchase 𝐵 64
FCN 𝜂 10−1.0

𝛾 0.9
Purchase 𝐵 64
Logistic regression 𝜂 10−2.5

𝛾 0.85
Texas 𝐵 64
FCN 𝜂 10−1.0

𝛾 0.9
Texas 𝐵 64
Logistic regression 𝜂 10−2.0

𝛾 0.95

C LEARNING CURVES OF TARGET MODELS
In Figure 8, we plotted the learning curves for the models we attack.
For the simpler Texas100 and Purchase100 dataset, it can be seen
that alternatives to FedAvg can find a better or equal solution in
less iterations. For CIFAR-10 we see the alternatives take longer to
converge. We hypothesize this is because CIFAR-10 contains more
complex relations and therefore more local minima in which FedAvg
gets stuck but the alternatives do not. This pattern does not hold
for CIFAR-100 which is likely due to the overall poor performance
of the CIFAR-100 models.

D ATTACK ATTEMPTS
In Tables 15 and 16, we show how many training attempts we made
before the attack model prediction was meaningful. The model
is perceived as meaningful if the ROC AUC on the training data
rounded to 1 decimal was more than 0.5. From this data, we see that
the more complex the model gets, the harder it gets to converge to a
usable model. We hypothesise this is simply because of an increase
in the amount of parameters. The study’s goal was not to investigate
model stability, so we do not have any further findings on what may
be used to let the model converge to something meaningful more
quickly.
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Fig. 8. Different learning curves of the victim models that are under attack.

Table 15. The number of training attempts before the global attack model resulted in better average prediction than guessing. The data describes a global
attack model over FedAdam, FedAvg, FedNAG and FedNL with attack models using different components. Scenario A uses the loss and label components;
scenario B uses the loss, label, activation and gradient components; scenario C uses the loss, label and ancillary component; and scenario D uses the loss, label,
activation, gradient and ancillary component. Scenarios C and D do not apply to the protocols without ancillary variables. We only applied FedNL on logistic
regression models. In italics are the stopped models, as we had a maximum of ten attempts.

CIFAR-10
ResNet18

CIFAR-100
ResNet34

Purchase100
FCN

Purchase100
Logistic regression

Texas100
FCN

Texas100
Logistic regression

A B C D A B C D A B C D A B C D A B C D A B C D
FedAdam 2 6 n/a n/a 3 3 n/a n/a 1 2 n/a n/a 3 2 n/a n/a 3 1 n/a n/a 1 3 n/a n/a
FedAvg 1 3 n/a n/a 2 2 n/a n/a 3 1 n/a n/a 1 2 n/a n/a 1 1 n/a n/a 3 3 n/a n/a
FedNAG 1 4 7 6 2 3 5 6 2 2 4 9 4 3 6 10 1 2 4 3 2 1 4 10
FedNL n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 2 2 4 5 n/a n/a n/a n/a 1 3 4 2

Table 16. The number of training attempts before the local attack model resulted in better average prediction than guessing. The data describes a global attack
model over FedAdam, FedAvg, FedNAG and FedNL with attack models using different components. Scenario A uses the loss and label components; scenario B
uses the loss, label, activation and gradient components; scenario C uses the loss, label and ancillary component; and scenario D uses the loss, label, activation,
gradient and ancillary component. Scenarios C and D do not apply to the protocols without ancillary variables. We only applied FedNL on logistic regression
models. In italics are the models that were stopped, as we had a maximum of ten attempts.

CIFAR-10
ResNet18

CIFAR-100
ResNet34

Purchase100
FCN

Purchase100
Logistic regression

Texas100
FCN

Texas100
Logistic regression

A B C D A B C D A B C D A B C D A B C D A B C D
FedAdam 2 1 n/a n/a 1 5 n/a n/a 1 5 n/a n/a 1 1 n/a n/a 1 5 n/a n/a 3 5 n/a n/a
FedAvg 1 4 n/a n/a 3 6 n/a n/a 2 5 n/a n/a 1 2 n/a n/a 3 2 n/a n/a 2 7 n/a n/a
FedNAG 2 10 10 10 2 7 5 10 1 4 3 6 1 3 4 4 2 1 4 9 4 3 6 7
FedNL n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 3 6 n/a n/a n/a n/a n/a n/a 3 5 n/a n/a
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