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ABSTRACT 

This study provides analysis of deforestation dynamics and forest regeneration in Gaza Province, 
Mozambique, spanning the 30-year period from 1993 to 2023. Utilizing a Random Forest machine 
learning algorithm applied to historical Landsat satellite imagery, the research integrates a diverse range of 
spectral bands, spectral indices, topographic features, tasselled cap and texture measures to map and 
quantify landcover changes. The analysis reveals a substantial 37% decrease in forest cover equating to a 
total loss of 7,288.8 km² with an average annual loss rate of 242.96 km². In contrast, forest regeneration 
efforts resulted in the recovery of only 2,456 km² of forest averaging 81.9 km² per year. This significant 
disparity between forest cover loss and regeneration underscores the inadequacy of current reforestation 
and conservation initiatives in the region. The temporal breakdown of the data highlights critical periods 
where forest cover loss intensified. Between 1993 and 2004 forest regeneration accounted for 1,085 km² 
representing 10% of the forest cover while the loss during the same period amounted to 2,323.6 km² of 
forest cover. In the subsequent periods, forest regeneration rates diminished considerably with 655 km² 
(6.9%) regenerated from 1998 to 2008, 282 km² (3.3%) from 2004 to 2013, and a mere 152 km² (2%) from 
2013 to 2023. Forest cover loss fluctuated but remained substantial peaking at 2,280.2 km² (29%) between 
2008 and 2018 marking the most significant reduction in forested land during the study period.  
 

Geographically, the study identifies Mabalane district as experiencing the highest levels of forest 
regeneration particularly in the earlier periods compared to Chókwè and Bilene districts. Despite these 
localized efforts the overall trend points to a persistent and severe reduction in forest cover across the 
province. This trend is further exacerbated by the expansion of cropland and built-up areas driven by 
agricultural development and urbanization which have significantly altered the landscape.The Random 
Forest algorithm employed in this study proved highly effective in classifying landcover types, achieving 
overall classification accuracies between 80% and 86% across the different years analysed. The model was 
particularly accurate in distinguishing forest and cropland categories with user and producer accuracies 
consistently exceeding 80%. However, challenges arose in accurately classifying built-up and other land 
categories reflecting the complexity of these landcover types. The study's use of spectral indices like 
NDVI as well as topographic and texture measures contributed to the robustness of the model's 
performance. These findings underscore the critical need for more effective and scalable conservation 
strategies in Gaza Province.  
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1. INTRODUCTION 

1.1. BACKGROUND 

Tropical forests located between the Tropic of Capricorn (23°26'14"N) and the Tropic of Cancer 

(23°26'14"S) include both tropical rainforests and tropical dry forests (Roberts et al., 2016). Tropical 

rainforests experience high rainfall and a warm climate year-round while tropical dry forests have a 

distinctly seasonal climate with less rainfall (Pennington et al., 2018). These forests are found in the 

Neotropical (Latin America), Afrotropical (Sub-Saharan Africa) and Indo-Malayan (Southeast Asia) 

regions (Raven et al., 2020). The Amazon rainforest in Brazil covering 5.5 million square kilometres is the 

largest tropical forest (Das & Saha, 2021) followed by the Congo Basin in Sub-Saharan Africa which spans 

3.7 million square kilometres (Modu et al., 2014). In Southeast Asia, tropical forests are found in countries 

like Malaysia, Thailand, and Indonesia (Estoque et al., 2019). These tropical forests are epicentres of 

deforestation. 

 
Sub-Saharan Africa's tropical forests like the other tropical forests face threats of deforestation resulting 

from rapid population growth, logging, agricultural expansion, collection of firewood and production of 

charcoal (Arko et al., 2024; Chirwa & Adeyemi, 2020; Maishanu et al., 2019; Martino, 2022). This region is 

crucial for biodiversity conservation due to endemic species like the African mahogany which have 

traditional and pharmaceutical applications (Abrefa Danquah et al., 2019). Fauna includes species such as 

the forest elephant, gorillas and the Okapia johnstoni, or "forest giraffe" (Williams et al., 2000). 

Conservation efforts in this region include integrated projects that enhance local livelihoods alongside 

forest protection such as agroforestry initiatives combined with sustainable farming practices (Franks et 

al., 2017). 

 

Deforestation is a widespread issue across many Sub-Saharan African countries. Mozambique's tropical 

forests are experiencing alarming rates of deforestation (Mucova et al., 2018a). The loss of these forests 

threatens biodiversity and reduces the natural carbon sequestration capacity contributing to climate change 

(Edwards et al., 2014). Deforestation affects local communities that rely on forests for their livelihoods 

leading to increased poverty and food insecurity (Chirwa & Adeyemi, 2020a). The high deforestation rates 

combined with the critical importance of its forests for biodiversity and local communities' well-being 

make the need for effective mapping and conservation strategies particularly urgent (Tokura, Matimele, 

Smit, & Hoffman, 2020). Accurately mapping deforestation particularly in Mozambique is crucial for 

several reasons; Detailed maps help identify critical habitats and biodiversity hotspots allowing for targeted 

conservation efforts to protect endangered species and preserve ecological balance (Gou & Gou, 2016). In 

addition, as forests play an important role in sequestering carbon dioxide, understanding deforestation 

patterns enables better climate change mitigation strategies by highlighting areas that need reforestation 

and conservation (Yosef, 2014). Furthermore, accurate landcover maps provide essential data for 

sustainable land-use planning as well as suitability mapping. This helps balance development needs with 

conservation goals ensuring that agricultural expansion and infrastructure development do not irreversibly 

damage forested areas. Lastly, reliable data on forest cover changes support policymakers in drafting and 

implementing effective environmental regulations and conservation policies. It also aids in monitoring 

compliance with these regulations. 
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Currently, accurately measuring changes in forest cover is challenging due to the difficulty of accessing 

remote areas and obtaining historical data. While manual techniques like handheld GPS devices offer 

precision but time-consuming and are affected by factors such as canopy closure, receiver quality and 

topography (Valbuena et al., 2010). However, Remote Sensing (RS) offers an efficient alternative with 

satellite imagery providing spatial and temporal coverage (Kadhim et al., 2016). Satellite sensors like 

Sentinel, Landsat, and MODIS (Moderate Resolution Imaging Spectroradiometer) are instrumental in 

mapping forests and extracting crucial information for monitoring forest health, crop yield, soil moisture 

and urban expansion among others (Radeloff et al., 2024). 

 

The Landsat program is a series of satellites that includes Landsat 5 which was launched by the US 

Geological Survey in 1984. Landsat 5 operated for 29 years making it the longest-operating Earth 

Observation satellite in history (Wulder et al., 2022). Its Thematic Mapper (TM) sensor captured detailed 

multispectral images across seven spectral bands providing valuable data for monitoring landcover, 

vegetation health, and geological formations (Wulder et al., 2022). With a 16-day revisit cycle Landsat 5 

was crucial for tracking environmental changes such as deforestation and urban expansion (Zhou et al., 

2019). For example, Bullock et al. (2020) used Landsat 5 to monitor deforestation in Brazil's Rondônia 

state from 1990 to 2013 achieving high accuracy using spectral mixture analysis and the Normalized 

Degradation Fraction Index (NDFI). Landsat 7 launched with the Enhanced Thematic Mapper Plus 

(ETM+) introduced a 15-meter panchromatic band and improved radiometric calibration (Sutradhar, 

2018). However, the failure of the scan-line corrector (SLC) in 2003 created data gaps complicating 

monitoring efforts (Trigg et al., 2006). Despite this, Trigg et al. (2006) documented deforestation linked to 

industrial activities in Gunung Palung National Park, Indonesian Borneo using Landsat 7. Landsat 8, 

launched in 2013 brought significant advancements with its Operational Land Imager (OLI) and Thermal 

Infrared Sensor (TIRS) offering enhanced imaging capabilities and additional spectral bands such as 

coastal aerosol and cirrus bands (Roy et al., 2014). These improvements enable better monitoring of 

atmospheric and surface conditions. Sothe et al. (2017) demonstrated that combining Landsat 8 data with 

Sentinel-2 significantly improved the accuracy of classifying forest successional stages. 

 

Sentinel-2 with its higher spatial resolution and frequent revisit time offers valuable data for detailed 

monitoring of landcover and vegetation (Phiri et al., 2020). The combination of Sentinel-2's multispectral 

data with other sources such as Landsat enhances the accuracy and reliability of environmental 

monitoring. However, despite its advantages Sentinel-2 shorter time series compared to Landsat limits its 

utility in long-term change detection studies. PlanetScope known for its high spatial and temporal 

resolution provides daily imagery at a resolution of 3-5 meters (Houborg & McCabe, 2018). This allows 

for detailed and frequent monitoring of small-scale changes. However, the shorter historical archive of 

PlanetScope data can limit its use in long-term environmental monitoring compared to the decades-long 

data series offered by Landsat. 

 

MODIS known for its high temporal resolution and broad spectral coverage is versatile in tracking spatial 

and temporal changes (Wei et al., 2019). However, its coarse spatial resolution (250m to 1km) makes it less 

suitable for detecting fine-scale changes compared to higher-resolution sensors like Landsat (Wei et al., 

2019; Zhan et al., 2002). Despite these limitations MODIS's frequent, broad-scale observations are often 

integrated with higher-resolution data to provide a comprehensive understanding of forest dynamics 

(Portillo-Quintero & Sánchez-Azofeifa, 2010). 
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In the field of RS, supervised classification algorithms are essential for accurate and efficient landcover 

mapping. Various machine learning (ML) algorithms are employed for this purpose each with its unique 

strengths and weaknesses. For example, Support Vector Machines (SVM) are known for their 

effectiveness in high-dimensional spaces and are used for classifying complex datasets like satellite imagery 

(Cervantes et al., 2020). The main advantages of SVM include their ability to manage large feature spaces 

and their robustness against overfitting especially in high-dimensional data (Bolón-Canedo et al., 2016). 

However, SVMs can be computationally intensive especially with large datasets and require careful tuning 

of parameters such as the kernel type and regularization parameter (Horn et al., 2018; Landeros & Lange, 

2023). 

 

Another popular ML algorithm used for supervised classification in remote sensing are decision trees 

(DT). DT are known for their simplicity and interpretability making them a favoured choice for many 

classification tasks (Costa & Pedreira, 2022). They work by repeatedly splitting the data into subsets based 

on the value of input features creating a tree-like model of decisions (Priyanka & Kumar, 2020; Thomas et 

al., 2020a). The main strengths of DT include their ease of understanding and interpretation as they 

provide a clear visual representation of the decision-making process (Huysmans et al., 2011). Additionally, 

DT are computationally efficient and can manage large datasets effectively (Thomas et al., 2020b). 

However, DT have several weaknesses. One significant weakness is their tendency to overfit the training 

data especially if the tree is allowed to grow without constraints (Tamiminia et al., 2022). This overfitting 

can lead to poor generalization on unseen data (Thomas et al., 2020b). Additionally, DT can be unstable 

meaning that slight changes in the data can result in different tree structures(Thomas et al., 2020b). 

 

To address the drawbacks of DT ensemble methods such as Random Forests (RF) are frequently 

employed. RF is a machine learning algorithm composed of numerous individual DT that work together 

as an ensemble (Parmar et al., 2019). Each tree in the forest makes a class prediction and the class with the 

most votes becomes the model’s final prediction (Parmar et al., 2019). The benefits of RF include their 

high accuracy and robustness particularly when working with large and complex datasets (Belgiu & Drăgu, 

2016). RF is capable of handling missing data and can provide reliable estimates of feature importance 

which is useful for understanding the importance of various variables in the classification process 

(Jordanov et al., 2018). Additionally, they are less sensitive to noise in the data compared to single DT 

(Belgiu & Drăgu, 2016). However, RF have some drawbacks. They can be computationally intensive 

requiring more processing power and memory especially with large datasets (Belgiu & Drăgu, 2016; 

Jordanov et al., 2018). The complexity of RF can also make them more difficult to interpret than single 

DT as the ensemble approach aggregates results from multiple trees to make the final decision (Aria et al., 

2021). 

 

From 2011 to 2020, numerous studies focused on landcover classification in Mozambique aiming to 

understand environmental changes and inform sustainable land management practices (Assede et al., 2023; 

Carrilho et al., 2024; Macarringue et al., 2023). A study by Macarringue et al., (2023) highlighted RF 

effectiveness in processing multi-temporal datasets for accurate landcover classification. The integration of 

various spectral bands and derived indices notably enhances classification accuracy. Key variables like 

Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and the Land 

Surface Water Index (LSWI) are critical in differentiating vegetation types and conditions (Macarringue et 

al., 2023). The combination of Landsat-8 and Sentinel-2, along with advanced classification algorithms like 

RF resulted in highly accurate landcover maps with 87% accuracy, essential for agricultural management 

and land-use planning in the Zambezi River basin (Bofana et al., 2020). Past research has demonstrated 
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that integrating multi-spectral data and derived indices processed through powerful machine learning 

algorithms on cloud computing platforms could significantly enhance the accuracy and efficiency of 

landcover classification in diverse landscapes. For instance, Nogueira Lisboa et al. (2024a) studied the 

landcover dynamics of the Miombo Landscape in the Beira corridor of Central Mozambique using NDVI, 

Normalized Difference Water Index (NDWI), and Normalized Burn Ratio (NBR) over two decades. 

NDVI was particularly effective in yielding accuracies of 88% and 90% for 2000 and 2020 respectively 

(Nogueira Lisboa et al., 2024). Similarly, Masolele et al. (2022) utilized RF to analyse forest cover loss in 

Mozambique incorporating terrain attributes and vegetation indices processed on the GEE platform 

significantly enhancing the study's capability to manage large-scale datasets. 

1.2. Problem Statement 

Accurate landcover mapping is important for managing natural resources in Gaza Province, Mozambique, 

due to its dynamic landscape. These maps are important in tracking environmental changes over time 

which is vital for sustainable resource management and development. Reliable landcover data informs 

policy decisions such as forest conservation and management which directly influence the livelihoods of 

people. 

 

Forest cover loss in Gaza Province demands urgent attention. Forests in this region face continuous 

threats from illegal logging, urban expansion and land conversion for agriculture, heightening the need for 

precise monitoring and effective conservation strategies (Aquino et al., 2018). These forests are critical 

ecological assets that provide significant environmental, economic and climate-related benefits. They serve 

as vital ecological buffers protecting coastlines from erosion and storm surges while stabilizing sediments 

and improving water quality through their complex root systems. Also, they support biodiversity by 

offering habitat and nursery grounds for a diverse range of marine and terrestrial species which is crucial 

for maintaining ecological balance and supporting local fisheries. Forests are remarkable for their ability to 

sequester carbon, a feature that positions them as key players in climate change mitigation strategies. 

Economically, forests are indispensable to local communities in Gaza Province. They provide critical 

resources such as timber and non-timber products that support local livelihoods. These products include 

wood for fuel and construction and other materials used in daily community life. The economic reliance 

on forests underscores the need for sustainable management and conservation practices to preserve these 

resources for future generations. Conservation and restoration efforts within these forests are vital. 

Research suggests that while replanted forests are beneficial, natural forests exhibit superior carbon 

storage and structural attributes, emphasizing the importance of preserving existing forest ecosystems 

alongside restoration efforts (Chazdon et al., 2016; Stanturf & Mansourian, 2020; Waring et al., 2020).  

 

While mapping forests is essential, there is a gap in detailed landcover classification data at the provincial 

level, although such mapping has been conducted at the national level. Therefore, estimating changes in 

forest cover over the past decades is crucial as these changes affect both ecological and human community 

sustainability. This involves assessing the extent of forest cover loss and the regeneration of forest cover 

which are important for informed environmental management and policy development. 
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1.3. Research objectives and questions 

The main objective of this study is to assess the effectiveness of various metrics in differentiating forest 

cover from other landcover types, evaluate landcover change and estimate the rate of forest cover loss and 

regenerated forest cover in the study area. 

 
Research Objective 1: To assess the importance of different metrics (spectral bands, vegetation indices, 

topographic, textural features and tasselled cap features) in distinguishing forest cover from other 

landcover types.  

Research Question 1: Which metrics are relevant for distinguishing forest cover class from other 

landcover types?  

Hypothesis: Among different metrics, spectral bands and vegetation indices will be the most important 

in distinguishing forest cover from other landcover types due to their relationship with vegetation 

properties compared to topographic, textural features and tasselled cap features. 

 
Research Objective 2: To estimate the rate of forest cover loss and regenerated forest cover in the study 
area.  
Research Question 2: What are the rates of forest cover loss and forest regeneration in the study area 
over time?  
 
Hypothesis: Over time, the rate of forest cover loss in the study area is expected to decrease while the 
rate of regenerated forest cover is expected to increase 
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2. METHODS 

This chapter explains the study area, data, preparation of remote sensing data, implementation of random 

forest algorithm, variable importance assessment and change detection. 

2.1. Study area 

The Gaza province extends to an area of 75,709 km² and has a population of 1,422,460 (Twumasi et al., 

2022). Gaza province is one of the 10 administrative provinces of Mozambique with its capital city located 

in Xai-Xai. The Gaza province borders Inhambane province to the east, Manica to the north, and Maputo 

to the south. The province is subdivided into 14 districts and experiences a tropical climate with distinct 

wet and dry seasons (Salite, 2019). The wet season from November to April is characterized by heavy 

rainfall and high humidity while the dry season from May to October brings cooler temperatures and 

minimal precipitation (Mavume et al., 2021). The vegetation in Gaza is savannah featuring a mix of 

grasslands and scattered trees that thrive under the province’s climatic conditions (Massingue, 2019). 

These forests are primarily made up of miombo woodlands characterized by a variety of tree species 

adapted to the drier sandy soil prevalent in the area (Massingue, 2019). The topography of the Gaza 

Province varies from coastal lowlands in the east including floodplains of rivers flowing into the Indian 

Ocean to higher plateaus in the western parts (Briggs, 2014). The Limpopo River which is one of the 

major geographical features runs through the province influencing the landscape and soil types across 

different districts (Briggs, 2014). Due to the vast area of the Gaza Province, the following districts were 

selected for their unique characteristics (Bilene Macia, Chokwe and Mabalane) as shown below in Figure 1. 

 
Figure 1: Map of the study area in Gaza Province, Mozambique, highlighting Mabalane, Chókwè, and Bilene districts. 
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Bilene's urban expansion driven by tourism and agriculture is putting pressure on forest resources leading 

to habitat and forest loss (Pihale, 2003). Tourism infrastructure development and agricultural growth 

exacerbate deforestation and land conversion. Chokwe known for its agricultural productivity particularly 

in rice and maize has seen important forest loss due to agricultural expansion (Ezeokoli et al., 2021). 

Balancing agricultural development with forest conservation in Chokwe is crucial for sustainable land 

management. Mabalane with its extensive miombo woodlands is rich in biodiversity and ecological 

significance but faces threats from illegal logging and charcoal production (Woollen et al., 2016). To map 

deforestation trends in Bilene, Chokwe, and Mabalane, the years 1993, 1998, 2004, 2008, 2013, 2018, and 

2023 were selected. The year 1993 serves as a baseline period before global and regional policy changes 

regarding environmental conservation and sustainable development widely implemented. By starting in 

1993, the study captures the state of forests before major international environmental agreements, such as 

the Kyoto Protocol which began influencing national policies and practices (McDermott et al., 2010).  The 

year 2008 represents a period shortly after the 2007-2008 global financial crisis which had widespread 

economic effect that could have influenced deforestation rates and landcover changes (Antonarakis et al., 

2022). By 2013, important global initiatives such as the United Nations’ REDD+ program were actively 

promoting forest conservation and sustainable management (Bayrak & Marafa, 2016). The year 2018 falls 

within the period of the UN’s Sustainable Development Goals adopted in 2015 which include specific 

targets for combating deforestation and promoting sustainable land use (Dugarova & Gülasan, 2017). The 

year 2023 provides the current state of forests offering a contemporary snapshot for analysis. 
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2.2. Data 

Table 1 below shows the datasets used in this study including maps, administrative boundaries and satellite 

imagery 

 

Table 1: Data sources and usage 

 

 

2.2.1. Preparation of remote sensing data 

For this study, Landsat 5 and Landsat 8 satellite images were selected due to their long lifespan, 

continuous data collection, free and easy access to data. The years of interest are 1993, 1998, 2004, 2008, 

2013, 2018, and 2023 covering 30 years in 5-year interval. These years were chosen to analyse long-term 

changes in vegetation over three decades in Gaza Province, Mozambique. A region that has experienced 

environmental changes due to various factors such as climate variability, land use changes and socio-

economic developments (Mucova et al., 2018b). 

 

Landsat 5 was used for data from 1993 to 2013. This satellite system offers one of the longest records of 

earth observation however, imagery data from 2003 had transmission errors  (Trigg et al., 2006) hence the 

image for the year 2004 was used.  Landsat 8 was selected to retrieve data from 2013 to 2023 because 

Landsat 5 does not provide coverage for this period. Both Landsat 5 and Landsat 8 Collection 2 Tier 1 

data were used. Tier 1 scenes include Level-1 Precision Terrain (L1TP) processed data with well-

characterized radiometry and inter-calibrated sensors which ensures consistent and high-quality 

data(Hermosilla et al., 2016). The geo- registration of these scenes is within prescribed tolerances (≤12 m 

root mean square error, RMSE) (Doucette et al., 2013). 

 

The preparation of the satellite images acquired included the application of a Spatial Filter (SF) to restrict 

the image collection to those intersecting the Region of Interest (ROI). Temporal Filter (TF) was done to 

limit images to those captured within the specified date range of each selected year (1993, 1998, 2004, 

2008, 2013, 2018, and 2023). A Metadata Filter (MF) was also done to include images with less than 5% 

cloud cover to ensure clearer and more usable data. 

Data Description of 

Data 

Data 

Type 

Data Usage Source 

Landsat 5/8 Multispectral 

satellite imagery 

Raster This was used to 

analyse and classify  
United States Geological Survey. 

https://earthexplorer.usgs.gov/ 

Land 

use/Landcover 

map 

Map of Gaza 

province depicting 

landuse and land 

cover patterns in 

Mozambique 

Vector This was used as a 

reference data to 

identify different 

landcover types in 

Gaza, Mozambique 

Mozambique National and 

Remote Sensing Centre 

(CENACARTA) 

Administrative

Boundary 

This is a shapefile 

of all the 

provinces in 

Mozambique 

Vector This was overlayed 

with other spatial 

data and ensure a 

good alignment of 

administrative areas 

The humanitarian data exchange 

portal. 

https://data.humdata.org/dataset

/geoboundaries-admin-

boundaries-for-mozambique 

https://earthexplorer.usgs.gov/
https://data.humdata.org/dataset/geoboundaries-admin-boundaries-for-mozambique
https://data.humdata.org/dataset/geoboundaries-admin-boundaries-for-mozambique
https://data.humdata.org/dataset/geoboundaries-admin-boundaries-for-mozambique
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To create representative images for each year to be used for classification, the median composite method 

was employed. This involved: 

Dry Season Selection: Images from the dry months (April 1st to November 30th) were used to focus on 

vegetation studies. 

Monthly Median Calculation: The median value for each pixel across all images in a month was 

calculated. The median is effective in RS as it reduces the impact of outliers like clouds or shadows 

(Mastin, 1985). 

Composite Construction: The median values for each month were combined to create a median 

composite for the dry season. This approach smooths out variability and highlights the central trend of the 

data. 

By using the median rather than the mean, the final composite images more accurately represent the 

typical conditions during the dry season minimizing the effect of outliers and providing a clearer picture of 

vegetation change over the study period. Table 2 below details the band and corresponding wavelength 

ranges of Landsat 5 TM and Landsat 8 OLI. Both satellites have temporal resolutions of 16 days and 

spatial resolution of 30meters. The radiometric resolution differs with Landsat 5 (8bits) and Landsat 8 

(12bits) as shown in Table 2. 

 

Table 2 : Landsat 5/8 sensor characteristics. 

Band Description Wavelength 

(µm) 

Landsat 5 

TM 

Wavelength 

(µm) 

Landsat 8 

OLI 

Temporal 

Resolution 

Spatial 

Resolution 

(Landsat 5 

TM) 

Spatial 

Resolution 

(Landsat 8 OLI) 

1 Blue 0.45-0.52 0.45-0.51 16 days 30 m 30 m 

2 Green 0.52-0.60 0.53-0.59 16 days 30 m 30 m 

3 Red 0.63-0.69 0.64-0.67 16 days 30 m 30 m 

4 NIR 0.76-0.90 0.85-0.88 16 days 30 m 30 m 

5 SWIR 1 1.55-1.75 1.57-1.65 16 days 30 m 30 m 

6 TIR 10.40-12.50 - 16 days 30 m - 

7 SWIR 2 2.08-2.35 2.11-2.29 16 days 30 m 30 m 

8 PAN 

(Panchromatic) 

- 0.50-0.68 16 days - 15 m 

9 Coastal/Aerosol - 0.43-0.45 16 days - 30 m 

10 Cirrus - 1.36-1.38 16 days - 30 m 

Source: (USGS, 2024) 
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2.2.2. Water masking 

Prior to performing landcover classification using Random Forest (RF) waterbodies were excluded from 

the study area to prevent them from skewing the analysis of landcover changes. This exclusion process 

involved calculating the Normalized Difference Water Index (NDWI) and applying a threshold of zero (0) 

to detect water bodies(Gao, 1996a). Also, a similar study by McFeeters, (1996) established a threshold of 

zero for NDWI where NDWI >0 then the area is classified as water while <= 0, the area is classified as 

non-water. NDWI has been found effective for distinguishing waterbodies from non-water features (Gao, 

1996b; McFeeters, 1996). This preprocessing step ensures that water bodies do not affect the accuracy of 

the landcover classification by isolating them from the dataset. Regarding healthy vegetation, while NDWI 

is primarily used for detecting water bodies it also captures water content in vegetation. Healthy vegetation 

contains water which can influence NDWI values. However, the NDWI threshold approach helps ensure 

that water bodies are distinguished from vegetated areas with high water content thereby maintaining the 

accuracy of the landcover classification. These preprocessing steps were crucial for preparing the satellite 

imagery for analysis. 

 

2.2.3. Landcover classes for classification 

Landcover classifications are important for understanding how land is used and transformed by natural 

processes and human activities. Key categories such as Forest, Cropland, Built-up, and Other as shown in 

Table 3 are important in providing critical insights into these dynamics. Forest areas are predominantly 

characterized by tree cover whereas croplands are primarily devoted to the cultivation of crops including 

agroforestry systems. Built-up areas refer to land developed for human habitation and infrastructure while 

the Other category encompasses features such as sand, sand dunes, rocks and non-forest vegetated areas. 

These classes were selected to align with the specific objectives of the study. Nonetheless, the omission of 

categories such as Grass and Shrubs despite their importance in landscape analysis was necessitated by 

their limited visibility in historical high-resolution imagery of Google Earth Pro for 1993, 1998, and 2004, 

which posed challenge for reliable validation. 

 
Table 3: Landcover classification scheme to produce maps 

IPCC landcover classification scheme 

Landcover class Definition 

Forest A land predominantly made up of trees  

Cropland This categorized as cultivated lands, agroforestry 

lands, that are not defined as forest 

Built up This category encompasses all developed lands 

that include Built up and transport infrastructure. 

Other land This is categorized into sand, sand dunes and 

rocks. 

  

Source: (IPCC, 2006) 
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2.2.4. Training and validation dataset preparation 

To provide sufficient points for training the model, 1000 random points were generated within the study 

area. For each of these points, a buffer zone of 15 meters by 15 meters was created to capture a precise 

area around the point. Although this buffer size does not coincide directly with the 30-meter resolution of 

Landsat pixels, it was chosen to capture finer details and variations within each pixel. These buffered 

points were then overlayed onto high resolution imagery offered on the Google Earth Pro platform to 

assess the purity of the land cover classes. This assessment aimed to identify pure classes, defined as areas 

where the landcover within the entire pixel was homogeneous. Pixels containing more than one class 

within their boundaries were considered impure and were subsequently excluded from the analysis. In the 

end the study remained with 400 points of pure classes, 100 points per class. This meticulous process 

ensured that only pure class pixels were retained for further study enhancing the accuracy and reliability of 

the landcover classification model. Subsequently, the samples were randomly split 70% training and 30% 

validation sets(Q. H. Nguyen et al., 2021). This technique ensures an unbiased division of samples 

maintaining the original data distribution and preventing systematic bias that might occur with ordered 

data (Q. H. Nguyen et al., 2021). By ensuring both the training and validation sets are representative of the 

overall dataset, the model was trained and validated effectively. Figure 2 below illustrates the random 

points selection and buffer creation process. 

 

 
Figure 2 : Random point selection for landcover classification 
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2.2.5. Preparation and implementation of random forest 

The preparation of input variables for the RF model involved several important steps to ensure accuracy 

in differentiating forest cover types in the study area.  

 

For this study, various spectral indices were derived including the Normalized Difference Vegetation 

Index (NDVI). NDVI is a widely used index for assessing vegetation health by comparing near-infrared 

(NIR) and red reflectance (Pamuji et al., 2023). NDVI values range from -1 to 1, with higher values 

indicating denser or healthier vegetation (Nugroho et al., 2021; Sihag & Sihag, 2021). Healthy vegetation 

reflects more NIR light and absorbs more red light due to chlorophyll content, resulting in higher NDVI 

values (Nugroho et al., 2021). The NDVI is calculated by subtracting red reflectance from NIR reflectance 

and dividing by their sum (Pamuji et al., 2023). This index has been used in various applications, including 

drought monitoring, crop production assessment, and environmental change detection (Kogan, 2020). 

NDVI data derived from satellite imagery provides a long-term, global perspective on vegetation health, 

enabling researchers to monitor and analyse changes in vegetation cover and condition over time (Kogan, 

2020).  

 

On the other hand, the Green Normalized Difference Vegetation Index (GNDVI) is gaining prominence 

in precision agriculture for assessing crop health and stress. It uses the green band instead of the red 

making it more sensitive to chlorophyll content and particularly useful in agriculture for assessing plant 

stress and water content (Croft et al., 2020). Studies have shown that GNDVI is among the strongest 

correlating indices for estimating crop chlorophyll content, particularly in maize farms (Peter et al., 2021). 

While traditional indices like NDVI remain useful, green-based indices like GNDVI demonstrate 

increased sensitivity to vegetation properties (de Lima et al., 2021). In corn monitoring, GNDVI has 

proven effective in detecting crop variability (Alvino et al., 2020). Additionally, NDVI sensors, which 

operate on similar principles as GNDVI, have shown strong correlations with commercial chlorophyll 

meters in estimating leaf chlorophyll content (Chen et al., 2021). These findings suggest that green-based 

indices, including GNDVI, are valuable tools for assessing plant health, water content, and stress levels in 

various agricultural applications, offering potential improvements over traditional red-based indices for 

precision agriculture and crop management.  

 

The Soil Adjusted Vegetation Index (SAVI) was developed to minimize soil influences on canopy spectra 

by incorporating a soil adjustment factor L into the Normalized Difference Vegetation Index (NDVI) 

equation (Qi et al., 1994). Meanwhile, Normalized Difference Water Index (NDWI) is employed to 

monitor water content in vegetation and detect water bodies by comparing green and NIR reflectance 

(Huang et al., 2009; Sun et al., 2012). The Difference Vegetation Index (DVI) calculates the absolute 

difference between NIR and red bands but it lacks the normalization found in NDVI (Bacour et al., 2006). 

Lastly, the Enhanced Vegetation Index (EVI) offers improvements over NDVI by correcting for 

atmospheric conditions and soil background providing better sensitivity in areas with dense vegetation and 

high biomass (Fensholt et al., 2006; Zhen et al., 2023). These indices are important for assessing 

vegetation health, density, and related characteristics by analysing spectral data captured by satellites.  

 

Additionally, topographic features such as slope, aspect, and elevation which describe the physical 

characteristics of the Earth's surface were extracted from Shuttle Radar Topography Mission (SRTM) data. 

Slope, a crucial topographic feature derived from SRTM data, represents terrain steepness and is essential 

for understanding water runoff, soil erosion, and land suitability (Manjare & Singh, 2022) .SRTM-derived 

slope accuracy depends on factors such as DEM resolution, orientation, and data precision(Saberi et al., 
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2023). In low-relief terrain, SRTM DEMs provide more accurate slope estimates compared to interpolated 

DEMs, particularly the 30m SRTM-derived DEM-S(Kinsey-Henderson & Wilkinson, 2013). Aspect, the 

compass direction a slope faces influences microclimates, vegetation patterns and solar exposure(Lieffers 

& Larkin-Lieffers, 1987). Elevation or the height of the land above sea level affect climate, weather 

patterns and biodiversity. The high-resolution elevation data provided by SRTM is important for 

environmental monitoring. 

 

Moreover, texture measures such as entropy, homogeneity, and contrast are key variables used to describe 

the texture of an image and they were calculated using the Grey Level Co-occurrence Matrix (GLCM) 

method. This statistical approach examines the spatial relationship between pixels by analysing how often 

pairs of pixels with specific gray level values occur in a defined spatial relationship within the image (Aouat 

et al., 2021). Entropy reflects the complexity or randomness of the texture with higher values indicating 

more varied textures(C. Xie et al., 2023). In image analysis, first-order intensity entropy quantifies the 

dynamic range and randomness of pixel intensities within a region (Carlson, 1989). In time series analysis, 

entropy measures the rate of information gain and degree of regularity, with higher scores indicating more 

random or chaotic series (Gan & Learmonth, 2015). Homogeneity measures the uniformity of pixel values 

where higher values suggest a smoother more consistent texture (C. Xie et al., 2023). Contrast represents 

the difference in intensity between neighbouring pixels with higher values indicating a more distinct and 

varied pattern(D. Das & Naskar, 2024). These texture measures provide valuable insights for 

differentiating and classifying various surface types or materials in the image.  

 

On the other hand, the Tasselled Cap Transformation was used to derive brightness, greenness, and 

wetness components. It enhances interpretability and provides meaningful insights into the physical 

properties of the landscape (C. Chen et al., 2019). The stability of Tasselled Cap Transformation 

components varies across seasons and geographical locations, necessitating the use of appropriate 

parameters for specific contexts (Ivits et al., 2008). Tasselled Cap Transformation has proven useful in 

land cover discrimination ((Ivits et al., 2008) and water body extraction, where considering greenness and 

wetness can help minimize the influence of shadows and dense vegetation ( Chen et al., 2022). Greenness 

highlights vegetation presence and health by emphasizing the difference between visible light which plants 

absorb and near-infrared light which they reflect with higher values indicating healthier vegetation(Baig et 

al., 2014a; Eniolorunda & Jibrillah, 2020). Wetness captures moisture content in soil and vegetation by 

assessing the contrast between shortwave infrared and near-infrared bands making it useful for identifying 

areas with higher water conten t(Eniolorunda & Jibrillah, 2020). Brightness represents the overall 

reflectance of the surface (Baig et al., 2014a; Eniolorunda & Jibrillah, 2020). 

 

 

Remote sensing utilizes various electromagnetic spectral bands to analyse Earth's surface features. The 

blue band (0.45-0.52 µm) is effective for mapping water bodies and detecting atmospheric aerosols (Laake, 

2022). The green band (0.52-0.60 µm) is sensitive to vegetation health, while the red band (0.63-0.69 µm) 

distinguishes vegetation from soil (Laake, 2022). Near-infrared (NIR) bands are crucial for vegetation 

analysis, with NIR:visible ratios effectively discriminating between soil and vegetation(Dormann et al., 

2013). Combining blue, green, and red bands creates true-colour images resembling human perception 

(Laake, 2021). However, adding blue band information doesn't significantly improve discrimination 

between green and dry vegetation or soil (Pickup et al., 2000).  
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All these indices, spectral bands, topographic, texture and tasselled cap features were combined into a 

single image and normalized to ensure they were on comparable scales improving the performance of the 

RF classifier. This process prevents any single variable from disproportionately influencing the model due 

to its scale leading to more balanced and accurate predictions (Pelletier et al., 2016). Additionally, 

normalization improves the model's convergence speed during training making the process more efficient 

(Pelletier et al., 2016). This thorough preparation provided a strong and diverse set of input variables 

essential for accurate landcover classification and effective natural resource management in the region. A 

summary of the input variables is presented in Table 4 below. 

 

Table 4: Input variables computed for this study 

Variables Formula Purpose 

NDVI 

 

NDWI  

 

(NIR-Red)/(NIR+Red) 

 

(Green-NIR)/(Green+NIR) 

 

Identifies presence of vegetation 

 

Identifies presence of water in general. 

DVI  

 

Near Infrared-Red Indicates the presence of vegetation 

GNDVI  

 

(Green-NIR)/NIR+Green  Enhances sensitivity to chlorophyll content in 

plants 

SAVI  

 

(NIR-

Red)*(1+0.5)/(NIR+Red+0.5) 

Minimizes soil brightness influence on the NDVI, 

especially where vegetation cover is sparse. 

 

EVI  

 

2.5*(NIR-Red)/(NIR+6*(Red-

7.5*Blue+1) 

Improve sensitivity in high biomass regions and 

reduces atmospheric influences 

 

Slope Derived from SRTM-DEM (Shuttle 

Radar Topography Mission) data 

 

Indicates the steepness or inclination of terrain 

Aspect Derived from SRTM-DEM (Shuttle 

Radar Topography Mission) data 

Indicates the compass direction that a terrain 

surface faces, affecting microclimate conditions 

 

Elevation Derived from SRTM-DEM (Shuttle 

Radar Topography Mission) data. 

 

Essential for relief mapping. 

Homogeneity Texture analysis on image bands  Measures the closeness of the distribution of 

elements in a texture window 

 

Entropy Texture analysis on image bands Measures the randomness in the textural image, 

indicating complexity or disorder. 

 

Contrast Texture analysis on image bands Measures the local variations in an image, helpful 

in distinguishing features. 

   

 (Blue * brightness [0]) + (Green *  
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Source: (Baig et al., 2014b; Bofana et al., 2020; Cheng et al., 2023; Taye et al., 2013; C. Xie et al., 2023) 

 

2.2.6. Variable selection 

To determine the most important variables for distinguishing between different landcover classes (Forest, 

Cropland, Built up, Other), multiple statistical approaches were employed. First, a one-way ANOVA 

(Analysis of Variance) was conducted to assess whether there are statistically significant differences in the 

means of various variables across the landcover classes (McHugh, 2011). The rationale behind this is that 

if a variable shows significant differences between classes it implies that the variable can effectively 

differentiate between those classes (McHugh, 2011). For instance, a significant difference in a vegetation 

index between Forest and Cropland would suggest its usefulness in distinguishing these landcover types. 

 

Following the ANOVA, Tukey's post-hoc test was performed. While ANOVA can indicate if there is a 

significant difference among group means it does not specify which groups differ from each other 

(McHugh, 2011). Tukey's test addresses this by providing detailed pairwise comparisons between groups 

(Voss, 2015) allowing to pinpoint exactly which landcover classes differ from each other for each 

significant variable identified by ANOVA. This step is crucial for understanding the differences between 

the landcover classes.  After identifying the significant variables, Pearson correlation analysis was 

conducted to quantify the strength and direction of the linear relationship between pairs of variables 

(Chok, 2010; Coccia, 2020). This analysis aimed to understand the interaction and influence of the 

variables on each other. Highly correlated variables were removed to enhance the model's efficiency by 

eliminating redundant information. The Pearson correlation coefficient ranges from -1 to 1, with 1 

indicating a perfect positive linear correlation, -1 indicating a perfect negative linear correlation, and 0 

indicating no linear correlation (Coccia, 2020). To manage redundancy, variables with a high Pearson 

correlation coefficient (r )> 0.9 were further examined using a variable importance score (Asuero et al., 

2006; Schober & Schwarte, 2018;).  

 

The MDG metric (Mean Decrease in Gini) was used to evaluate the importance of each variable by 

measuring its contribution to the homogeneity of the nodes and leaves in the Random Forest model 

Brightness  

 

 

 

 

Greenness  

 

 

 

 

Wetness 

 

 

 

brightness [1]) + (Red * brightness 

[2]) + (NIR * brightness [3]) + 

(SWIR1 * brightness [4]) + (SWIR2 

* brightness [5]) 

 

(Blue * greenness [0]) + (Green * 

greenness[1]) + (Red * greenness 

[2]) + (NIR * greenness [3]) + 

(SWIR1 * greenness [4]) + (SWIR2 * 

greenness [5]) 

 

(Blue * wetness[0]) + (Green * 

wetness[1]) + (Red * wetness[2]) + 

(NIR * wetness[3]) + (SWIR1 * 

wetness [4]) + (SWIR2 * wetness 

[5]) 

 

Often used in algorithms to determine land cover 

features by their reflectivity. 

 

 

 

 

Identifies healthy vegetation 

 

 

 

 

 

 

Identifies areas with higher water content. 
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(Nicodemus, 2011). This ensures that the selected variables are the most influential for accurately 

distinguishing between the landcover classes. By integrating one-way ANOVA, Tukey's post-hoc test, 

Pearson correlation, and MDG analysis, the study ensured identification and prioritization of the most 

effective variables for landcover classification. 

 

2.2.7. Evaluation of RF model 

Evaluating the performance of the RF algorithm is important for understanding its effectiveness in 

making accurate predictions in landcover classification. This study used User Accuracy (UA), Producer 

Accuracy (PA), and the F1 Score for this evaluation. UA (Precision) measures the correctly predicted 

positive observations to the total predicted positive observations (Powers & Ailab, 2020) answering the 

question: “of all the observations that were predicted to be in a given class how many were correctly 

classified?” The equation for calculating UA is: 

UA =
True Positives

True Positives + False Positives
 

PA measures the correctly predicted positive observations to all observations in the actual class (Powers & 

Ailab, 2020). This metric is important because it evaluates the model’s ability to correctly identify instances 

of a specific class. The formula for calculating PA is: 

PA =
True Positives

True Positives + False Negatives
 

  

The F1 Score provides a single metric that balances the trade-off between precision and recall making it 

particularly useful when the class distribution is imbalanced (Powers & Ailab, 2020). The formula for 

calculating the F1 Score is: 

F1 Score = 2 X 
User Accuracy X  Producer Accuracy

User Accuracy X Producer Accuracy
 

 

According to (Powers & Ailab, 2020) UA, PA and F-1 score are crucial for model validation especially in 

cases of imbalanced data where accuracy alone can be misleading. By using these metrics, we can evaluate 

the performance of the RF model in landcover classification ensuring a reliable assessment. 

 

 

2.2.8 Change detection and reforestation detection  
This study used an image differencing technique in ArcMap (ESRI, 2018) to calculate areas that have 
transitioned into different classes over time. This method involves subtracting one temporal image from 
another (Panuju et al., 2020) to identify changes in landcover between specific years (1998-1993, 2004-
1998, 2008-2004, 2013-2008, 2018-2013, 2023-2018). Image differencing was performed using the raster 
calculator in ArcMap (ESRI, 2018) to highlight changes by subtracting pixel values of earlier images from 
later ones (Panuju et al., 2020). The entire process is straightforward and computationally efficient 
requiring basic mathematical computations and provides a quantitative measure of change, allowing for 
precise calculation of both the magnitude and direction of changes (Lu et al., 2004; Panuju et al., 2020). 
This makes it a valuable tool for analysing landcover changes over time.  
  
To quantify the extent of forest cover loss over the period from 1993 to 2023 this formula was used: 
Forest Loss = Net Change in Forest Cover + Regeneration from Other Landcover Classes. Net Change 
in Forest Cover represents the difference in forested area between the initial and final years of the study 
period. This change reflects both the loss of forest due to deforestation or land conversion and any gain 
from natural or assisted regeneration. The term Regeneration from Other Land Cover Classes accounts 
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for areas that were not originally forested at the beginning of the period but have since been converted 
back to forest.    
  
To detect forest regeneration, a function   was created in google earth engine to identify specific landcover 
changes over a three-year period. The function requires two inputs thus a classified collection of landcover 
data and a sequence of three years (start, middle, and end). For each year in the specified three-year period, 
the function retrieves the corresponding landcover image from the dataset which shows how landcover 
was classified in that particular year. The function then checks for two key conditions. Firstly, areas that 
were forested in the start year but became non-forested in the middle year and secondly, areas that were 
non-forested in the middle year but returned to being forested by the end year. These conditions help 
pinpoint regions that have undergone the transition pattern indicative of forest regeneration. The function 
creates a mask that highlights areas where the specific landcover change pattern is detected. This mask 
shows which regions have experienced forest regeneration. The function repeats this process for every 
possible three-year period within the dataset. Providing a detailed view of how forests have regenerated 
over time. A map is then generated from the output and areas that changed were calculated by converting 
the pixel count to square kilometres. The regenerated forest was further assessed using this formula: 
Regenerated = Regenerated Forest Area/Time period (years).  
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3.  RESULTS 

This chapter presents the findings of the study on analysis of variance using ANOVA, pairwise 

comparison among class means using Tukey’s HSD test, evaluating correlation among variables, variable 

importance in landcover classification model, evaluation of the classification result, landcover change 

detection statistics, forest loss and forest regeneration statistics. 

 

3.1. Analysis of variance among variables 

From Table 5 below, higher F-values greater than the critical value imply significant differences between 

group means. The results of the ANOVA for various variables are summarized below. The ANOVA 

results indicate that there are significant differences (p-value <0.05) among the groups for all the variables 

tested except Aspect. The variables with F-values significantly greater than the F-critical value (2.627441 as 

shown in appendix, table 1) indicates that there are significant differences between group means. These 

variables are Homogeneity, DVI, Contrast, Elevation, Blue, Green, Red, EVI, SAVI, Wetness, Brightness, 

Entropy, Greenness, SWIR2, SWIR1, NDWI, NDVI, GNDVI, NIR and Slope. Aspect has an F- value 

(1.09386) less than the critical value indicating no significant difference between group means and was 

removed from further analysis.  

 
Table 5: ANOVA results for various variables 

Variables  P-value  F-score  

Homogeneity  9.71E-56   121.3288   

DVI  1.49E-67   158.731   

Elevation  1.98E-34   65.54534   

Blue  9.98E-80   203.036   

Green  3.08E-70   167.9708   

Red  1.39E-89   243.7862   

NDWI  1.4E-87   235.1226   

GNDVI  1.4E-87   235.1226   

SWIR 1  1.6E-109  341.987   

Contrast  1.28E-21  38.03352  

NDVI  9.7E-129   460.794   

SWIR 2  8.5E-112   354.7006   

Entropy  1.95E-17  29.88421  

Brightness  1.5E-84   222.3969  

Greenness  4.73E-94   263.8601   
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Wetness  1.2E-122  420.3086  

SAVI  9.26E-95   267.1363  

EVI  9.26E-95  267.1363   

Slope  0.005095   4.33011   

NIR  2.16E-25   45.72288   

GNDVI  1.4E-87   235.1226   

Aspect  0.351534   1.09386  

 

3.2. Pairwise comparison among class means using tukey’s HSD test 

The results of the Tukey test for homogeneity as presented in Table 6 indicate significant differences 

between several pairs of landcover categories. Specifically, statistically distinct homogeneity was found 

between Cropland and Built-up (p = 0.0005), Forest and Built-up (p = 0.0000), Forest and Cropland (p = 

0.0000), Other and Cropland (p = 0.0001), and Other and Forest (p = 0.0000). However, no significant 

difference was observed between Other and Built-up (p = 0.9910) suggesting similar homogeneity 

between these categories. For slope, the Tukey test results indicate that most pairwise comparisons did not 

show statistically significant differences: Cropland vs. Built-up (p = 0.6447), Forest vs. Built-up (p = 

1.0000), Forest vs. Cropland (p = 0.6289), and Other vs. Cropland (p = 0.2230). However, significant 

differences were found between Other and Built-up (p = 0.0117) and Other and Forest (p = 0.0107) 

suggesting that the slope values for Other landcover significantly differ from those of Built-up and Forest 

areas. The NDVI analysis showed significant differences across all pairwise comparisons of landcover 

categories: Cropland vs. Built-up (p = 0.0000), Forest vs. Built-up (p = 0.0000), Other vs. Built-up (p = 

0.0000), Forest vs. Cropland (p = 0.0000), Other vs. Cropland (p = 0.0000), and Other vs. Forest (p = 

0.0000). This indicates that the NDVI values are significantly different between all landcover categories 

suggesting distinct vegetation characteristics. 

 
Table 6 : Tukey HSD test for variables 

Index   Comparison   diff   lwr   upr   p adj   

   

   

   

   

   

Homogeneity  

Cropland-Built 

up  0.079002  0.027822  0.130183  0.0005  

Forest-Built up  0.322474  0.271294  0.373655  0.0000  

Other-Built up  -0.00586  -0.05704  0.045318  0.9910  

Forest-

Cropland  0.243472  0.192421  0.294524  0.0000  

Other-

Cropland  -0.08486  -0.13592  -0.03381  0.0001  

Other-Forest  -0.32834  -0.37939  -0.27728  0.0000  
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Slope  

Cropland-Built 

up  0.441717  -0.53035  1.413785  0.6447  

Forest-Built up  -0.00828  -0.98035  0.963785  1.0000  

Other-Built up  1.161717  0.189649  2.133785  0.0117  

Forest-

Cropland  -0.45  -1.41962  0.519622  0.6289  

Other-

Cropland  0.72  -0.24962  1.689622  0.2230  

Other-Forest  1.17  0.200378  2.139622  0.0107  

                  

   

   

   

   

   

NDVI  

Cropland-Built 

up  0.160867  0.129639  0.192096  0.0000  

Forest-Built up  0.346006  0.314778  0.377235  0.0000  

Other-Built up  -0.06353  -0.09476  -0.03231  0.0000  

Forest-

Cropland  0.185139  0.153989  0.216289  0.0000  

Other-

Cropland  -0.2244  -0.25555  -0.19325  0.0000  

Other-Forest  -0.40954  -0.44069  -0.37839  0.0000  

 

3.3. Evaluating correlation among variables 

From Figure 3, it is observed that variables namely homogeneity, contrast, slope, elevation, NIR, NDWI, 

entropy, and wetness have correlation coefficients less than 0.9, indicating they are not highly correlated 

and should be kept. These variable provides different information and do not share similar information.  

 

On the other hand, highly correlated pairs with coefficients greater than 0.9 were found among the 
variables Red, Green, Blue, SWIR1, SWIR2, and brightness. These variables share similar information and 
therefore one of these variables should be selected. Also, NDVI, DVI, EVI, GNDVI, SAVI, and 
Greenness were also highly correlated among each other. While the r=0.9 is a cut-off used by Dormann et 
al., (2013), in this analysis the selection of variables was driven primarily by expert knowledge, given the 
study's objectives related to forest analysis. Variables like Red and NDVI were selected based on their 
known importance in forest monitoring and analysis, rather than solely on statistical criteria. Red was 
chosen from the group of highly correlated spectral variables (Red, Green, Blue, SWIR1, SWIR2, and 
brightness) due to its relevance in detecting vegetation health and stress. Similarly, NDVI was selected 
from the group of vegetation indices (NDVI, DVI, EVI, GNDVI, SAVI, and Greenness) because of its 
established role in assessing vegetation density and forest cover.  
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Figure 3: A Pearson correlation matrix showing the relationship among variables, high correlation among (Red, Green, Blue, 
SWIR1, SWIR2, brightness) and (NDVI, DVI, EVI, GNDVI, SAVI, and Greenness) and low correlation among (homogeneity, 
contrast, slope, elevation, NIR, NDWI, entropy, and wetness)  

 

 

 

 

 

 

  

 

 

 



MAPPING DEFORESTATION IN THE GAZA PROVINCE(MOZAMBIQUE) WITH RANDOM FOREST MACHINE LEARNING ALGORITHM ON HISTORICAL LANDSAT 

SATELLITE IMAGERY 

 

 

22 

3.4. Variable importance in landcover classification model 

Further analysis was conducted to select the most important variable from each of these groups as shown 

in appendix, Figure 6. Red was chosen from the first group due to its highest variable importance score 

above 40 and NDVI being selected from the second group with an importance score above 20 as shown 

in Figure 4 below. From Figure 4, each bar represents the importance score of a variable with higher 

scores indicating greater importance in the landcover classification.  NDVI, contrast, elevation, 

homogeneity, wetness and NDVI have scores above 15 indicating their importance in the classification 

process whereas slope has the least score below 10. This ranking underscores the diverse factors that 

collectively enhance the accuracy and reliability of the landcover classification model. 

  

 
Figure 4:Ranking of different variables in landcover classification 

 
Table 7 below shows the selected variables for classification based on the variable selection process that 

have been explained above. The final selection consists of the following variables, Red, NDVI, Wetness, 

Elevation, Contrast, NDWI, Homogeneity, NIR, Entropy, and Slope as shown in the table.  
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Table 7: Selected variables for classifying landcover 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Evaluation of the classification results 

In this study landcover maps generated shown in figure 5 illustrate the landcover classification outputs for 

the years 1993 through 2023. The maps depict the landcover classifications for the years 1993, 1998, 2004, 

2008, 2013, 2018, and 2023 displaying the categories Forest, Cropland, Built-Up, and Other. The study 

reported overall classification accuracies of 84%, 85%, 86%, 85%, 80%, 83%, and 80% for the years 1993, 

1998, 2004, 2008, 2013, 2018, and 2023, respectively as detailed in Table 8. Additionally, the RF 

classification model demonstrated uncertainty levels of 16%, 15%, 14%, 20%, 17%, and 20% for the 

corresponding years reflecting the model's reliability and the degree of confidence in the classification 

outputs.  

 

The performance of the RF classification model was evaluated for its effectiveness in categorizing 

landcover classes using selected variables. Table 8 below presents the model's performance metrics 

including UA, PA, uncertainty, and the F1 score which provide insights into the model's accuracy in 

classifying different landcover types. The RF classification model demonstrates high performance for 

forest areas with UA, PA, F1-score above 80%. On the other hand, the RF classification model was 

capable of classifying Cropland by achieving UA, PA, F1-score above 79%.  Moreover, Built up and Other 

has UA, PA, F1-score above 56%.  Forest class consistently exhibits strong classification performance 

with high accuracy and minimal confusion with other classes as seen in appendix, confusion matrix (figure 

14 to figure 15). Similarly, the "Built up" class also demonstrates robust classification with only occasional 

misclassifications. The "Cropland" class while generally well-classified does show some minor 

misclassifications particularly with the "Other" class though these errors are relatively minimal. However, 

the "Other" category emerges as the most challenging frequently being confused with the "Built up" class 

(as seen in appendix, confusion matrix (figure 14 to figure 15). This pattern is particularly noticeable and 

may suggest that the features used to distinguish "Other" from "Built up" are not as distinct as those for 

other classes. This indicate that RF is a better classifier for Forest and Cropland as compared with Built up 

and Other based on study site. 

Red 

NDVI  

Wetness 

Elevation 

Contrast 

NDWI  

Homogeneity  

NIR 

Entropy 

Slope 
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Figure 5: Landcover maps for the year 1993, 1998, 2004, 2008, 2013, 2018 and 202 
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Table 8: User accuracy, producer accuracy, uncertainty and F1-score by classes for the landcover maps 
 

   1993  1998  

Class  User 

Accuracy 

(UA) (%)  

Producer 

Accuracy 

(PA) (%)  

F1-Score 

(%)  

User 

Accuracy 

(UA) (%)  

Producer 

Accuracy 

(PA) (%)  

F1-Score 

(%)  

Forest  92  92  92  95  88  83  

Cropland  80  85  82  79  90  84  

Other  82  76  78  85  78  81  

Built up  80  84  82  80  84  81  

Overall 

Accuracy 

(OA)  

84  85  

Uncertainty  0.16  0.15  

   

   2004  2008  

Class  User 

Accuracy 

(UA) (%)  

Producer 

Accuracy 

(PA)  

F1-Score 

(%)  

User 

Accuracy 

(UA) (%)  

Producer 

Accuracy 

(PA) (%)  

F1-Score 

(%)  

Forest  95  92  93  95  84  89  

Cropland  80  100  88  94  85  88  

Other  82  63  71  82  73  77  

Built up  88  94  90  72  100  83  

Overall 

Accuracy 

(OA)  

86  85  

Uncertainty  0.14  0.15  

   

   2013  2018  

Class  User 

Accuracy 

(%)  

Producer 

Accuracy 

(%)  

F1-Score 

(%)  

User 

Accuracy 

(%)  

Producer 

Accuracy 

(%)  

F1-Score 

(%)  

Forest  95  84  89  95  80  86  

Cropland  100  90  94  95  90  92  

Other  78  65  70  85  78  81  
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Built up  57  84  67  64  88  74  

Overall 

Accuracy 

(OA)  

80  83  

Uncertainty  0.20  0.17  

      

   2023     

Class  User 

Accuracy 

(%)  

Producer 

Accuracy 

(%)  

F1-Score 

(%)  

Forest  100  80  88  

Cropland  95  95  95  

Other  86  56  67  

Built up  56  94  70  

Overall 

Accuracy 

(OA)  

80  

Uncertainty  0.20  

   

 

 

3.6. Landcover change detection statistics for 1993, 1998, 2004, 2008, 2013, 2018 and 2023  

Over the past 30 years, the extent of land coverage for various landcover types has changed as illustrated 
in Figure 6. Between 1993 and 1998, the forested area decreased by approximately 10% (i.e. from 
10592km² to 9474km²). This decline continued from 1998 to 2004, where the forest cover was reduced by 
an additional 11% (i.e. from 9474km² to 8367km²). The rate of decrease slowed slightly between 2004 and 
2008 with an 8% (i.e. from 8367km² to 7655km².) reduction in forested land. However, the downward 
trend persisted from 2008 to 2013, which saw a 9% (i.e. from 7655km² to 6917km²) decrease. The most 
significant reduction in forested land occurred between 2013 and 2018 where a dramatic 22% (i.e. from 
6917km² to 5377km²) of the remaining forest cover was lost. Interestingly, the trend reversed between 
2018 and 2023 where the data indicates a 22% (i.e. from 5377km² to 6613km²) increase in forested area 
contrary to the previous periods of decline. Overall, from 1993 to 2023, there was an approximate 37% 
decrease in forested land indicating a significant reduction over the 30-year study period.   
   
In contrast, between 1993 and 1998, there was a substantial 32% (i.e. from 2130km² to 1443km²) decrease 
in cropland area. However, from 1998 to 2004, cropland expanded significantly by 75% (i.e. from 1443 to 

2531km²). This was followed by an 18% (i.e. from 2531km² to 2072km²) decrease from 2004 to 2008 and 
then a 28% (i.e. from 2072km² to 2662m²) increase from 2008 to 2013. The period from 2013 to 2018 saw 
another large decrease of 32% (i.e. from 2662km² to 1809km²) while the last period from 2018 to 2023 
showed a 35% (i.e. from 1809km² to 2442km²) increase.   
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Figure 6: Statistics of landcover changes from 1993 to 2023 measured in km² 

 
The built-up land category reflects the most dramatic changes highlighting rapid urbanization. Between 
1993 and 1998, the built-up area increased by an astounding 733% (i.e. from 48km² to 400km²), followed 
by a modest 2% (i.e. from 400km² to 410km²) increase from 1998 to 2004. Urban expansion continued 
with a 41% (i.e. from 410km² to 582km²) increase from 2004 to 2008 and an increase of 56% (i.e. from 
582km² to 913m²) from 2008 to 2013. The built-up area grew by 33% (i.e. from 913km² to 1219km²) 
between 2013 and 2018 and by 12% (i.e. from 6412km² to 4368km²) from 2018 to 2023. Overall, the 
built-up area expanded by a staggering 2746% from 1993 to 2023, underscoring the significant urban 
growth over the study period.  
  
The "Other" land cover category has seen significant changes as well. From 1993 to 1998, this category 
increased by a substantial 71% (i.e. from 2018km² to 3451km²), followed by a slight decrease of 2% (i.e. 
from 3451km² to 3349km²) from 1998 to 2004. The area classified as "Other" grew by 33% (i.e. from 
3349km² to 4475km²) from 2004 to 2008 before seeing a minor 3% (i.e. from 3349km² to 4475km²) 

decrease from 2008 to 2013. A notable increase of 49% (i.e. from 4301km² to 2072km²) occurred 
between 2013 and 2018 with a subsequent 6% (i.e. from 2072km² to 2662km²) decrease from 2018 to 
2023. Over the 30-year period the "Other" landcover category expanded by 116% (i.e. from 6415km² to 
4368km²) indicating a significant shift in landcover.   

3.7. Regenerated forest cover and forest cover loss statistics  

Over the 30-year period from 1993 to 2023 there has been a significant disparity between forest 
regeneration efforts and the rate of forest cover loss as shown in Figure 7. While a total of 2,456 km² of 
forest was regenerated, with an average annual rate of 81.9 km², the total forest cover loss amounted to 
7,288.8 km² averaging 242.96 km² per year. Breaking down the trends by periods, from 1993 to 2004, 
regeneration accounted for 1,085 km² (10% of forest cover) compared to a loss of 2,323.6 km² (21%). In 
the subsequent periods, regeneration rates decreased significantly: 655 km² (6.9%) from 1998 to 2008, 282 
km² (3.3%) from 2004 to 2013, and just 152 km² (2%) from 2013 to 2023. Meanwhile, forest cover loss 
fluctuated but remained substantial, peaking at 2,280.2 km² (29%) between 2008 and 2018.  
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Figure 7:Statistics of regenerated forest cover and forest cover loss from 1993 to 2023 measured in km² 

In Figure 8 it was observed that Mabalane experienced more forest regeneration compared to Chokwe and 

Bilene during the period from 1993 to 2004. Notably, from 1998 to 2008, Bilene witnessed a progress in 

forest cover regeneration. Moreover, from 2004 to 2013, Mabalane once again outpaced the other two 

districts in forest regeneration surpassing their combined totals. From 2013 to 2023, Mabalane witnessed a 

decline in forest regeneration as compared to the previous years.   
 

 

 
 

 

 

 

 

 

 

 

 
      

 

 

 

 

 

 Figure 8: Regenerated forest cover map for the period 1993-2004, 1998-2008, 2004 – 2013, 2013-2018 and 2018 - 
2023 
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Deforestation maps in Figure 9 illustrates the maps of forest cover loss from 1993 to 2023 in the study 
area. During the period from 1993 to 1998, Mabalane experienced a higher rate of forest cover loss 
compared to Bilene and Chokwe. In the subsequent period, 1998 to 2004, Bilene saw a greater loss of 
forest cover than Chokwe although Mabalane continued to have the most extensive forest cover loss 
during this time. Between 2004 and 2008 Chokwe experienced more forest cover loss than Bilene yet 
Mabalane again had the highest overall loss. In the period from 2008 to 2013 deforestation remained 
prevalent across all districts; however, it was observed that Mabalane began to see an increase in forest 
coverage between 2013 and 2018. Finally, from 2018 to 2023 the rate of forest cover loss declined across 

all three districts.   
  

 

Figure 9:  Deforestation maps for the period 1993 – 2004, 1998 - 2008, 2004 – 2013, 2008-2018, and 2013-2023 
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4. DISCUSSION 

4.1. Analysis of variance among variables 

 
The One-Way ANOVA analysis in this study revealed significant difference among group means for 

spectral bands, vegetation indices, topographic features, textural features, and tasselled cap features. These 

differences are attributed to the distinct characteristics of the landscape captured by these variables, such 

as vegetation health, surface reflectance, and spatial patterns which varies across different landcover types. 

For instance, spectral bands like NIR are sensitive to vegetation while indices like NDVI highlight 

differences in vegetation density(Matsushita et al., 2007). Topographic features such as elevation and slope 

influence environmental conditions, for instance, differences in slope lead to variations in air and soil 

temperature, moisture content, and evaporation rates, thereby creating distinct microclimatic zones that 

are closely associated with alterations in vegetation structure and composition (Singh, 2018). A study by 

Alvarez & Naughton-Treves (2003) in the Peruvian Amazon shows that roads and rivers serve as primary 

conduits for forest clearing, with roadside deforestation often at higher rates than riverside clearing. The 

difference among group means of the variables in the study represent well-defined categories and the 

One-Way ANOVA detects these differences. However, high p-value (>0.05) for "Aspect" is expected as 

its influence on vegetation and surface feature is nuanced compared to other factors. Other variables like 

elevation and spectral indices capture most of the variability thus, rendering aspect's contribution relatively 

low. For example, a study by Cheng et al. (2023) in northwestern Yunnan, China found that while 

elevation and slope had significant effect on vegetation structure and composition, aspect’s influence was 

less pronounced suggesting how other variables such as elevation capture more variability in vegetation. 

On the other hand, a study by Stage & Salas (2007) conducted in Utah in the United State suggest that 

elevation interacts with aspect and slope to influence forest productivity and species composition.  

4.2. Evaluating correlation among variables 

 

The strong correlations observed among certain variables as outlined in section 3.3 (Figure 3) can be 

explained by their inherent characteristics. Spectral bands like Red, Green, Blue, SWIR1, and SWIR2 show 

high correlation because they capture similar reflectance properties particularly in non-vegetated areas 

such as urban regions and bare soil which tend to reflect light in a similar manner across these bands 

(Malamiri et al., 2023). For example, Meti et al. (2019) classified alkaline soils in Karnataka, India using 

Sentinel-2 and Landsat-8 bands and found that these spectral bands exhibited high correlation due to their 

ability to capture similar reflectance characteristics in non-vegetated surfaces. SWIR1 and SWIR2 

operating in the shortwave infrared region are sensitive to moisture content in vegetation and soil. This 

makes them useful for detecting water stress, mapping soil properties, and distinguishing materials based 

on moisture content (Le et al., 2023; Swathandran & Aslam, 2019). Similarly, Madonsela (2018) classified 

tree species diversity in South Africa's savannah woodlands and found that Landsat-derived spectral 

variables especially those in the SWIR region were effective in explaining tree species diversity due to their 

sensitivity to moisture. Vegetation indices such as NDVI, DVI, EVI, GNDVI, and SAVI are primarily 

derived from the Red and Near-Infrared (NIR) regions of the electromagnetic spectrum. These indices 

often show high correlation because they are designed to measure closely related aspects of vegetation 

using similar spectral bands. Jopia et al. (2020) found that these indices while offering unique insights 

under specific conditions frequently exhibit high correlation due to their shared purpose. This is further 

supported by da Silva et al. (2020) who observed that indices like NDVI, EVI, and SAVI show high 
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correlation due to their similar spectral characteristics. The lower correlation coefficients (below 0.9) 

among variables like homogeneity, contrast, slope, elevation, NIR, NDWI, entropy, and wetness indicate 

that these variables are not highly correlated. Each variable reflects distinct environmental factors, such as 

vegetation, water content, topography, or image texture (Xie et al., 2023). This finding aligns with Lane et 

al. (2014) who used eight-band high-resolution satellite imagery to classify wetland areas and observed 

similarly low correlations among these variables. This suggests that each variable captures unique 

environmental aspects and does not overlap significantly with the others. 

4.3. Variable importance 

 
The five most important variables derived after running the RF model with the selected variables will be 

discussed in relation to previous research, where these variables were important for land cover 

classification. They are in the following order: the red band, NDVI, wetness, elevation, contrast. The 

finding are in agreement with the research of Henareh Khalyani et al. (2012) on detecting Zagros forest in 

Iran using NDVI, elevation and red band as important variables for classifying and detecting Zagros 

forest. Also a study by Jin et al. (2018)shows that texture measure such as GLCM contrast proved 

important in landcover mapping in central Shandong. The red band of LANDSAT imagery was the most 

important variable. This is justified by its effectiveness in vegetation detection. Chlorophyll- in plants 

absorbs red light in the visible spectrum. The red band on the visible part of the electromagnetic spectrum 

is a strong indicator for differentiating forests and other vegetation because in dense vegetation like 

forests, red light will have a less reflection as compared to areas with sparse or no vegetation (Gutman et 

al., 2021). The red band is important in distinguishing between vegetation and other classes like built up 

areas, as concrete, asphalt and materials used for building rooftops have a high reflectance in the red band 

(XI et al., 2019).  Similarly, NDVI values which quantify vegetation cover by using a mathematical 

equation involving both the red band and the NIR band. NDVI has the potential to distinguish dense 

vegetation and sparse vegetation, as well as non-vegetated areas like built up areas (Zheng et al., 2021). 

High NDVI values generally mean that the red band reflectance is low compared to the NIR reflectance, 

which corresponds to healthy vegetation that is actively photosynthesizing. The wetness variable is the 

next important feature and can capture the hydrological characteristics of different landcover classes. For 

example, built-up areas have lower wetness values mostly because surfaces like asphalt and concrete do 

not have high water retention capacity (Yesilnacar & Süzen, 2006). Conversely, even though affected by 

other human and environmental factors, forests and other vegetation, generally have a higher potential to 

retain water thereby increasing the wetness values (Yesilnacar & Süzen, 2006). Elevation provides 

additional context about the physical environment which influence the distribution of landcover types. 

Elevation affects the microclimates which influences the types of landcover in an area. An example of this 

can be seen in Table 6 of Naqvi et al., (2013).  Elevation is important for understanding watershed and 

drainage systems which in turn influence built-up area expansion. However, In Mozambique, a study by  

Lisboa et al., (2024) demonstrated that deforestation levels decline with increasing elevation as areas of 

low elevation are suitable for smallholder agriculture and logging, and areas of high elevation are difficult 

to access.  The contrast variable derived from GCLM was also important. This measure captures the 

variation in intensity levels between neighbouring pixels where higher contrast values indicate more 

pronounced texture.   information is crucial for distinguishing between landcover types with distinct 

textural characteristics such as differentiating urban areas from natural landscapes (Hall-Beyer, 2017). 

Furthermore, high contrast values often occur at the boundaries between different landcover types 

facilitating more precise delineation and classification of these boundaries. This capability is beneficial in 
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complex environments where features exhibit similar spectral signatures but differ in texture (Park & 

Guldmann, 2020). The results are valid as they agree with previous studies as demonstrated above. 

4.4. Evaluation of classification 

 

In the context of landcover classification for this study, the RF model's reported overall accuracies ranging 

between 80% and 86% across different years indicate a robust performance but also reveal some 

variability over time. For example, a study by Macarringue et al., (2023) performed landcover mapping 

using RF classification method in Mozambique and achieved comparable accuracies further validating the 

effectiveness of the RF model in this region. Specifically, their study, which also utilized moderate-

resolution satellite data reported overall accuracies close to those observed in this study reinforcing the 

reliability of the RF classification model. 

 

One of the strengths of the RF model is its ability to accurately classify forest areas as evidenced by the 

UA, PA, and F1-scores consistently exceeding 80%. This high accuracy is largely due to the distinctive 

spectral signatures of forests which are easier to differentiate from different landcover types. Forests 

typically exhibit a high NDVI and distinct textural features making them readily separable in classification 

tasks (Mucova et al., 2018). Observations from (Macarringue et al., 2023; Mucova et al., 2018) highlighting 

that the distinctiveness of forest spectral signatures contributes to the model's strong performance in this 

domain. Moreover, the temporal consistency in classification accuracies with values ranging from 84% to 

86% across most years suggests that the features used by the RF classification model such as spectral 

bands and vegetation indices remain effective across different temporal datasets. Despite the high 

performance the RF model's accuracy shows a decline to an 80% in certain years such as 2013 and 2023. 

This decline is attributed to changes in landcover that introduce greater complexity into the classification 

task. For example, factors such as urban expansion, agricultural intensification, or natural disturbances 

(e.g., deforestation) result in more mixed pixels making accurate classification more challenging. For 

instance, Lisboa et al., (2024) highlights an increase in settlement and the intensification of smallholder 

agriculture in Mozambique, these activities not only contribute to landcover changes however, result in 

intermingling of urban, agriculture and natural areas making it difficult for remote sensing technologies to 

distinguish between different landcover types.  

 

Another common challenge in landcover classification particularly highlighted in the context of landcover 

classification in this study is the confusion between certain classes, such as the "Other" and "Built-Up" 

categories. These classes often share similar spectral properties especially in areas with degraded 

landscapes leading to misclassifications. The difficulty in distinguishing mixed landcovers or transitional 

zones exhibit overlapping spectral characteristics is a well-documented issue in remote sensing (Chen et 

al., 2016). Another source of confusion is the similarity in spectral features between "Cropland" and 

"Other" classes where common elements like soil reflectance or barren land present in both categories 

(Nguyen et al., 2021). This overlap in spectral signature presents a challenge in remote sensing 

classification as the spectral resolution of sensors can limit the ability to distinguish between similar 

landcover types.  

 

While the RF model was employed in this study, other methods like Support Vector Machines (SVM) and 

Convolutional Neural Networks (CNNs) have also shown significant promise in landcover classification 

tasks. For instance, Qian et al. (2014) utilized SVM for urban landcover classification and achieved a high 

accuracy exceeding 90%. Similarly, Fayaz et al. (2024) demonstrated the effectiveness of deep learning 
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models, specifically CNNs in landcover classification with accuracies surpassing 90%. These studies 

suggest that alternative methods such as SVM and neural networks have the potential to deliver even 

higher accuracies than RF. 

4.5. Change detection statistics for detecting landcover   

This research highlights significant changes in landcover over the past three decades emphasizing the 

dynamic shifts in landcover between 1993 and 2023. One of the most prominent findings is the 

substantial reduction in forested areas accompanied by a consistent expansion of croplands and an 

increase in built-up areas. These trends are exemplified in regions like Chókwè where the expansion of 

cropland is largely driven by the growing demand for rice production. Studies by Ismael et al. (2021) and 

de Sousa et al. (2019) underscore the extensive landcover changes associated with the Chókwè Irrigation 

Scheme (CIS) which is Mozambique's largest irrigation project. The conversion of forested areas into 

agricultural fields to support rice cultivation has directly contributed to the observed decline in forest 

cover in this region as vast tracts of land have been cleared to meet agricultural needs (Temudo & Silva, 

2012a, 2012b).  

 

Urban expansion has contributed to the reduction of forested areas particularly in regions such as Bilene, 

Mozambique. The growth of urban areas often necessitates the conversion of forested land into 

agricultural, residential, and commercial zones. Similar studies by Tokura, Matimele, Smit, Timm 

Hoffman, et al. (2020) in the Licuati Forest Reserve, estimated deforestation due to charcoal production 

and settlement expansion. Sedano et al., (2016) conducted a study in Tete on charcoal production for 

urban energy consumption led to substantial forest degradation comparable in magnitude to deforestation. 

Allan et al. (2017) conducted a study in the Niassa National Reserve and found that, the loss of the forest 

resort was due to agricultural expansion around settlements and roads.  

 

Woodlands serve as the major source of energy in Gaza with charcoal being the dominant fuel in urban 

centres as noted by Ugembe et al. (2022). Charcoal production not only provides employment 

opportunities but affects landcover. Luz et al. (2015) highlights that Gaza Province, particularly Mabalane 

District is a major supplier of charcoal to Maputo with Mabalane holding the highest number of licenses 

for charcoal production in the province. This activity further contributes to landcover changes particularly 

in the form of woodland depletion.  

  

However, the period from 2013 to 2023 accounted for the highest regeneration. This surge in regeneration 

aligns with global trends observed in recent years where increased awareness of deforestation's impact has 

led to intensified reforestation efforts(Chazdon & Uriarte, 2016; Daigneault et al., 2022). For example, the 

United Nation’s Reducing Emissions from Deforestation and Forest Degradation in Developing 

Countries (UN-REDD+) have played a pivotal role during this period providing a framework and 

resources for large-scale regeneration initiatives (Bayrak & Marafa, 2016b). The data suggests that the 

recent decade has seen both enhanced policy implementation and improved techniques in reforestation 

leading to a significant recovery rate. This indicates a shift in priorities towards sustainable forest 

management and conservation. Forest regeneration plays a crucial role in sequestering carbon as it is 

indeed one of the most cost-effective strategies for mitigating climate change. For instance, according to 

Gilroy et al. (2014) regenerating forests can absorb carbon dioxide thus reducing the overall concentration 

of greenhouse gases in the atmosphere. Additionally, Strassburg et al. (2020) highlight that forest 

regeneration supports biodiversity by providing habitat for various species which is vital for maintaining 
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ecological balance. However, the findings underscore that forest regeneration remains slow and gradual 

process.  

  

(Bayrak & Marafa, 2016b) However, the period from 2013 to 2023 accounted for the highest regeneration. 

This surge in regeneration aligns with global trends observed in recent years where increased awareness of 

deforestation's impact has led to intensified reforestation efforts. For example, the United Nation’s 

Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (UN-REDD+) 

have played a pivotal role during this period providing a framework and resources for large-scale 

regeneration initiatives (Bayrak & Marafa, 2016b). The data suggests that the recent decade has seen both 

enhanced policy implementation and improved techniques in reforestation leading to a significant recovery 

rate. This indicates a shift in priorities towards sustainable forest management and conservation. Forest 

regeneration plays a crucial role in sequestering carbon as it is indeed one of the most cost-effective 

strategies for mitigating climate change. For instance, according to Gilroy et al. (2014) regenerating forests 

can absorb carbon dioxide thus reducing the overall concentration of greenhouse gases in the atmosphere. 

Additionally, Strassburg et al. (2020)  highlight that forest regeneration supports biodiversity by providing 

habitat for various species which is vital for maintaining ecological balance. However, the findings 

underscore that forest regeneration remains slow and gradual process. 
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4.6. Limitations and recommendations 

This study faced several limitations. Among those was the 30-meter spatial resolution of the Landsat 5 and 

Landsat 8 satellites used. While effective for broad scale landcover mapping, this resolution presents 

challenges when applied to specific landcover classes such as forests, croplands, and built-up areas. It is 

generally suitable for mapping large, contiguous areas like dense forests, but struggles to capture smaller 

patches or regions with mixed landcover types. This limitation could have led to potential 

misclassification, particularly in areas with fragmented forests, interspersed land classes, or small patches 

of barren soil that may blend with adjacent landcover types. While large cropland areas can be mapped 

with high accuracies (UA and PA over 80%), the resolution is inadequate for smaller fields, especially in 

regions with mixed cropping systems.  

Another limitation of this study lies in the number of classes used in the classification scheme. Although 

mixed cropping systems and other landcover types often have distinct spectral responses, the classification 

was likely too simplified to adequately capture this diversity and complexity, particularly within smaller 

plots. This oversimplification could have led to a lack of differentiation between various croplands or 

cropping systems, especially in areas characterized by heterogeneous land cover. As a result, the limited 

number of classes may have been insufficient to fully represent the variability within the study thereby 

reducing the overall accuracy of the landcover maps and hindering the ability to accurately distinguish 

between different landcover types within the study area. 

Moreover, while the Landsat 5 and Landsat 8 satellites provided the necessary temporal coverage for this 

study, spanning the period from 1993 to 2023, the analysis was limited by their spectral resolution. The 

relatively broad spectral bands available on these satellites, while sufficient for broad scale landcover 

mapping, constrained the ability to distinguish between more nuanced landcover classes. This limitation 

led to the classification being restricted to four broad categories: forest, cropland, built-up areas, and an 

"other" category. The cropland class included a variety of crops, while the "other" category encompassed 

diverse landcover types such as sand dunes, barren land, and rocky areas. A finer spectral resolution, such 

as that offered by hyperspectral sensors with their numerous narrow bands, could have allowed for a more 

detailed classification, potentially improving the accuracy of the analysis and enabling the differentiation of 

these more complex and diverse landcover types. This limitation suggests that incorporating data from 

sensors with finer spectral resolution could have significantly enhanced the quality and precision of the 

study's outcomes. 

To address some of the limitations identified in this study, one effective strategy would involve integrating 

ancillary data sources such as LiDAR or Digital Elevation Models (DEMs). This could also mitigate the 

limitations posed by the spectral resolution of Landsat satellites. LiDAR provides detailed 3D information 

on vegetation structure, significantly improving the detection and classification of small forest patches, 

built-up areas, and other complex landcover types. DEMs offer valuable topographical data, accounting 

for elevation and slope variations that influence vegetation patterns. By combining these datasets with 

traditional satellite imagery, future studies can achieve more precise classification outcomes, particularly in 

areas where spectral data alone may not suffice. 

Also, expanding the classification scheme to include additional landcover classes could significantly 

improve the understanding of the landscape. The current classification may have oversimplified the 

landscape by restricting it to broad categories such as forest, cropland, built-up areas, and "other." By 

incorporating additional classes, such as shrubland, or distinguishing between different types of croplands, 

future studies could better capture the diversity and complexity of the study area, particularly in regions 

with heterogeneous landcover. This approach would refine the classification scheme, avoiding 

oversimplification and enhancing the ability to accurately differentiate between various landcover types, 

resulting in more detailed and informative landcover maps. 

Incorporating hyperspectral data, where available, would further enhance the spectral resolution of the 

study. Hyperspectral sensors capture data across hundreds of narrow spectral bands, allowing for the 
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identification of subtle differences between landcover types that might be indistinguishable using 

multispectral data alone. This finer spectral resolution could greatly improve the accuracy of landcover 

classification and provide a deeper understanding of the ecological and environmental dynamics within the 

study area. 

Moreover, exploring alternative machine learning algorithms or ensemble methods is another 

recommended strategy. While the Random Forest (RF) algorithm proved effective in this study, 

algorithms such as SVM, Neural Networks, and Gradient Boosting Machines (GBM) offer different 

strengths and could be tested in similar contexts to assess their effectiveness compared to RF. 

Additionally, ensemble approaches that combine the strengths of multiple algorithms could yield more 

robust and accurate classification results. Experimenting with these advanced techniques could help 

identify the most suitable algorithm for specific landcover classification challenges, ultimately improving 

the reliability and precision of the outcomes. 
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5. CONCLUSION 

The study aimed to detect deforestation in the Gaza Province of Mozambique with a focus on Bilene, 
Mabalane and Chokwe using random forest machine learning algorithm. The main finding from the study 
was that it is possible to use RF to detect deforestation over the years with high accuracies greater than 
80%. Consequently, there was regeneration of the forest from 1994 to 2023. Despite efforts to regenerate 
a total of 2456 km² of forest, the loss of 7,288.8 km² of forest cover significantly outpaced these efforts. 
The overall accuracy of the maps generated from the study can be improved by using other data sources 
like LiDAR and high-resolution satellites (Sentinel 2 and PlanetScope). It can be concluded that a mix of 
spectral bands, vegetation indices, and tasseled cap features particularly the Red band, NDVI, and wetness 
are important for accurate classification. The maps generated are valuable for illustrating forest 
regeneration in Gaza Province where many previous studies have focused on global scales highlighting the 
potential to apply these methods at a more localized level in this relatively unexplored region. Conclusively 
this study demonstrates the capability of using the random forest algorithm to detect deforestation and 
monitor forest regeneration in Mozambique with a high degree of accuracy. The results underscore the 
effectiveness of combining various remote sensing features for classification and highlight the significant 
potential for applying these methods to localized, under-mapped areas. This work contributes valuable 
insights into forest dynamics in Mozambique, providing a strong foundation for future environmental 
monitoring and conservation efforts in the region.  
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6. ETHICAL CONSIDERATION 

This study was based entirely on secondary data meaning there were no direct interactions with 

individuals. The research followed the ethical guidelines established by the University of Twente's 

Research Ethics Policy. These guidelines emphasize the importance of obtaining consent when needed 

and enforce strict protocols to safeguard data privacy. To ensure confidentiality, all personal information 

was anonymized and securely stored with access to sensitive data limited to authorized personnel. These 

efforts underscore a strong dedication to upholding the highest ethical standards in managing data 

throughout the research process. 
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APPENDIXES 

Variability analysis 

The Table 1 provides detail insight into variables according to their significant differences in relation to 

the P-value, F-value and F-critical 

Table 1: Analysis of variance among variables 

EVI       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 2.614298 3 0.871433 267.1363 
9.26E-

95 2.627441 
Within Groups 1.291803 396 0.003262    

       

Total 3.906101 399         
 

Savi       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 2.614298 3 0.871433 267.1363 
9.26E-

95 2.627441 
Within Groups 1.291803 396 0.003262    

       

Total 3.906101 399         
 

Wetness       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 2.145679 3 0.715226 420.3086 
1.2E-

122 2.627441 
Within Groups 0.673861 396 0.001702    

       

Total 2.819541 399         
 

Greenness       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.632818 3 0.210939 263.8601 
4.73E-

94 2.627441 
Within Groups 0.316577 396 0.000799    

       

Total 0.949395 399         
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SWIR1       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 3.195783 3 1.065261 341.987 
1.6E-

109 2.627441 
Within Groups 1.233507 396 0.003115    

       

Total 4.42929 399         
 

NDWI       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 2.939629 3 0.979876 235.1226 1.4E-87 2.627441 
Within Groups 1.650335 396 0.004168    

       

Total 4.589964 399         
 

NDVI       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 10.06356 3 3.35452 460.794 
9.7E-

129 2.627441 
Within Groups 2.882828 396 0.00728    

       

Total 12.94639 399         
 

GNDVI       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 2.939629 3 0.979876 235.1226 1.4E-87 2.627441 
Within Groups 1.650335 396 0.004168    

       

Total 4.589964 399         
 

Brightness       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 5.27085 3 1.75695 222.3969 1.5E-84 2.627441 
Within Groups 3.128425 396 0.0079    

       

Total 8.399276 399         
 

 

 

 

Entropy       
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Source of 
Variation SS df MS F P-value F crit 

Between Groups 12.69696 3 4.232319 29.88421 
1.95E-

17 2.627441 
Within Groups 56.08306 396 0.141624    

       

Total 68.78002 399         
 

SWIR2       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 3.489544 3 1.163181 354.7006 
8.5E-

112 2.627441 
Within Groups 1.298616 396 0.003279    

       

Total 4.78816 399         
 

NIR       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.32193 3 0.10731 45.72288 
2.16E-

25 2.627441 
Within Groups 0.929397 396 0.002347    

       

Total 1.251327 399         
 

Table 2: Tukey’s HSD test for evaluating variability among landcover classes 

Index  Comparison  diff  lwr  upr  p adj  

Homogeneity  

Cropland-Built 

up  0.079002  0.027822  0.130183  0.0005  

Forest-Built up  0.322474  0.271294  0.373655  0.0000  

Other-Built up  -0.00586  -0.05704  0.045318  0.9910  

Forest-Cropland  0.243472  0.192421  0.294524  0.0000  

Other-Cropland  -0.08486  -0.13592  -0.03381  0.0001  

Other-Forest  -0.32834  -0.37939  -0.27728  0.0000  

                  

DVI  

Cropland-Built 

up  0.040057  0.027255  0.052858  0.0000  

Forest-Built up  0.092688  0.079887  0.10549  0.0000  

Other-Built up  -0.00028  -0.01308  0.012525  0.9999  
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Forest-Cropland  0.052631  0.039862  0.0654  0.0000  

Other-Cropland  -0.04033  -0.0531  -0.02756  0.0000  

Other-Forest  -0.09296  -0.10573  -0.0802  0.0000  

                  

Contrast  

Cropland-Built 

up  -188702  -325913  -51490.8  0.0024  

Forest-Built up  -269645  -406857  -132434  0.0000  

Other-Built up  250490.1  113278.8  387701.4  0.0000  

Forest-Cropland  -80943.2  -217809  55922.94  0.4230  

Other-Cropland  439192.1  302326  576058.3  0.0000  

Other-Forest  520135.3  383269.2  657001.5  0.0000  

                  

Slope  

Cropland-Built 

up  0.441717  -0.53035  1.413785  0.6447  

Forest-Built up  -0.00828  -0.98035  0.963785  1.0000  

Other-Built up  1.161717  0.189649  2.133785  0.0117  

Forest-Cropland  -0.45  -1.41962  0.519622  0.6289  

Other-Cropland  0.72  -0.24962  1.689622  0.2230  

Other-Forest  1.17  0.200378  2.139622  0.0107  

                  

Elevation  

Cropland-Built 

up  -16.3332  -26.3855  -6.28094  0.0002  

Forest-Built up  36.15677  26.10447  46.20906  0.0000  

Other-Built up  13.63677  3.584475  23.68906  0.0029  

Forest-Cropland  52.49  42.463  62.517  0.0000  

Other-Cropland  29.97  19.943  39.997  0.0000  

Other-Forest  -22.52  -32.547  -12.493  0.0000  

                  

Blue  

Cropland-Built 

up  -0.02421  -0.03048  -0.01795  0.0000  

Forest-Built up  -0.03879  -0.04505  -0.03253  0.0000  

Other-Built up  0.015739  0.009476  0.022002  0.0000  



MAPPING DEFORESTATION IN THE GAZA PROVINCE(MOZAMBIQUE) WITH RANDOM FOREST MACHINE LEARNING ALGORITHM ON HISTORICAL LANDSAT 

SATELLITE IMAGERY 

 

 

 

 

52 

Forest-Cropland  -0.01458  -0.02082  -0.00833  0.0000  

Other-Cropland  0.039952  0.033705  0.046199  0.0000  

Other-Forest  0.054528  0.048281  0.060775  0.0000  

                  

Green  

Cropland-Built 

up  -0.02608  -0.0362  -0.01595  0.0000  

Forest-Built up  -0.04568  -0.05581  -0.03556  0.0000  

Other-Built up  0.037183  0.027058  0.047308  0.0000  

Forest-Cropland  -0.0196  -0.0297  -0.0095  0.0000  

Other-Cropland  0.063262  0.053162  0.073362  0.0000  

Other-Forest  0.082867  0.072767  0.092966  0.0000  

                  

Red  

Cropland-Built 

up  -0.04653  -0.06109  -0.03196  0.0000  

Forest-Built up  -0.07634  -0.0909  -0.06177  0.0000  

Other-Built up  0.066165  0.0516  0.080731  0.0000  

Forest-Cropland  -0.02981  -0.04434  -0.01528  0.0000  

Other-Cropland  0.112694  0.098165  0.127223  0.0000  

Other-Forest  0.142502  0.127973  0.157031  0.0000  

                  

NIR  

Cropland-Built 

up  -0.00647  -0.02421  0.01127  0.7827  

Forest-Built up  0.016351  -0.00139  0.034093  0.0831  

Other-Built up  0.065889  0.048147  0.083631  0.0000  

Forest-Cropland  0.022823  0.005126  0.040521  0.0053  

Other-Cropland  0.072361  0.054664  0.090059  0.0000  

Other-Forest  0.049538  0.03184  0.067235  0.0000  

                  

NDWI  

Cropland-Built 

up  -0.079  -0.10264  -0.05537  0.0000  

Forest-Built up  -0.20843  -0.23207  -0.1848  0.0000  

Other-Built up  0.00218  -0.02146  0.025815  0.9953  
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Forest-Cropland  -0.12943  -0.15301  -0.10586  0.0000  

Other-Cropland  0.081181  0.057605  0.104757  0.0000  

Other-Forest  0.210614  0.187038  0.23419  0.0000  

                  

GNDVI  

Cropland-Built 

up  0.079001  0.055366  0.102637  0.0000  

Forest-Built up  0.208435  0.184799  0.23207  0.0000  

Other-Built up  -0.00218  -0.02582  0.021456  0.9953  

Forest-Cropland  0.129433  0.105857  0.15301  0.0000  

Other-Cropland  -0.08118  -0.10476  -0.0576  0.0000  

Other-Forest  -0.21061  -0.23419  -0.18704  0.0000  

                  

SWIR1  

Cropland-Built 

up  -0.07708  -0.09752  -0.05664  0.0000  

Forest-Built up  -0.14051  -0.16095  -0.12007  0.0000  

Other-Built up  0.098943  0.078503  0.119384  0.0000  

Forest-Cropland  -0.06343  -0.08382  -0.04304  0.0000  

Other-Cropland  0.176021  0.155632  0.19641  0.0000  

Other-Forest  0.239455  0.219065  0.259844  0.0000  

                  

NDVI  

Cropland-Built 

up  0.160867  0.129639  0.192096  0.0000  

Forest-Built up  0.346006  0.314778  0.377235  0.0000  

Other-Built up  -0.06353  -0.09476  -0.03231  0.0000  

Forest-Cropland  0.185139  0.153989  0.216289  0.0000  

Other-Cropland  -0.2244  -0.25555  -0.19325  0.0000  

Other-Forest  -0.40954  -0.44069  -0.37839  0.0000  

                  

SWIR2  

Cropland-Built 

up  -0.09868  -0.11966  -0.07771  0.0000  

Forest-Built up  -0.15814  -0.17912  -0.13717  0.0000  

Other-Built up  0.086164  0.065191  0.107138  0.0000  
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Forest-Cropland  -0.05946  -0.08038  -0.03854  0.0000  

Other-Cropland  0.184846  0.163926  0.205767  0.0000  

Other-Forest  0.244309  0.223388  0.265229  0.0000  

                  

Entropy  

Cropland-Built 

up  -0.05292  -0.19075  0.084901  0.7548  

Forest-Built up  -0.43339  -0.57122  -0.29557  0.0000  

Other-Built up  -0.01895  -0.15678  0.118871  0.9847  

Forest-Cropland  -0.38047  -0.51795  -0.24299  0.0000  

Other-Cropland  0.033969  -0.10351  0.171446  0.9198  

Other-Forest  0.41444  0.276964  0.551917  0.0000  

                  

Brightness  

Cropland-Built 

up  -0.09787  -0.13043  -0.06532  0.0000  

Forest-Built up  -0.15244  -0.18499  -0.11988  0.0000  

Other-Built up  0.149727  0.117174  0.18228  0.0000  

Forest-Cropland  -0.05456  -0.08703  -0.02209  0.0001  

Other-Cropland  0.247601  0.21513  0.280072  0.0000  

Other-Forest  0.302163  0.269692  0.334634  0.0000  

                  

Greenness  

Cropland-Built 

up  0.044359  0.034009  0.05471  0.0000  

Forest-Built up  0.091223  0.080872  0.101573  0.0000  

Other-Built up  -0.00841  -0.01876  0.001939  0.1559  

Forest-Cropland  0.046864  0.036539  0.057188  0.0000  

Other-Cropland  -0.05277  -0.0631  -0.04245  0.0000  

Other-Forest  -0.09963  -0.10996  -0.08931  0.0000  

                  

Wetness  

Cropland-Built 

up  0.073561  0.058453  0.088669  0.0000  

Forest-Built up  0.137735  0.122627  0.152843  0.0000  

Other-Built up  -0.05582  -0.07092  -0.04071  0.0000  
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Forest-Cropland  0.064174  0.049104  0.079244  0.0000  

Other-Cropland  -0.12938  -0.14445  -0.11431  0.0000  

Other-Forest  -0.19355  -0.20862  -0.17848  0.0000  

                  

Savi  

Cropland-Built 

up  0.081777  0.06087  0.102683  0.0000  

Forest-Built up  0.183418  0.162512  0.204325  0.0000  

Other-Built up  -0.02242  -0.04332  -0.00151  0.0301  

Forest-Cropland  0.101642  0.080788  0.122496  0.0000  

Other-Cropland  -0.10419  -0.12505  -0.08334  0.0000  

Other-Forest  -0.20583  -0.22669  -0.18498  0.0000  

                  

EVI  

Cropland-Built 

up  0.138075  0.102576  0.173575  0.0000  

Forest-Built up  0.319137  0.283638  0.354637  0.0000  

Other-Built up  -0.06303  -0.09853  -0.02753  0.0000  

Forest-Cropland  0.181062  0.145652  0.216472  0.0000  

Other-Cropland  -0.20111  -0.23652  -0.16569  0.0000  

Other-Forest  -0.38217  -0.41758  -0.34676  0.0000  

 
Boxplot showing variability among landcover classes  

This section illustrates the use of boxplots to visualize the distribution of spectral bands, vegetation 

indices, topographic, texture features, and tasselled cap features across landcover classes: Forest, Built up, 

Cropland, and Other using Landsat data. This aided in evaluating if there were variability among classes by 

visually inspecting the means as well as based on statistical findings as shown in section Table 2.   
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Figure 1: Boxplot showing the distribution of spectral bands (Green, Red, Blue, SWIR1, SWIR2, NIR) 

across landcover classes: Forest, Cropland, Built up and Other using Landsat data. 
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Figure 2: Boxplot showing the distribution of vegetation indices (NDVI, EVI, GNDVI, SAVI, NDWI, 

DVI) across landcover classes: Forest, Built up, Other and Cropland using Landsat data.  
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Figure 3: Boxplot showing the distribution of topographic features (Elevation, Slope, Aspect) across 

landcover classes: Forest, and Cropland, Built up and Other using Landsat data. 
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Figure 4: Boxplot showing the distribution of texture features (Homogeneity, Contrast, Entropy) across 

landcover classes: Forest, Cropland, Built up and Other using Landsat data. 
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Figure 5: Boxplot showing the distribution of tasselled cap features (Brightness, Greenness, Wetness) 

across landcover classes: Forest, Cropland, Built up and Other using Landsat data. 
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Feature importance score for assessing variables 

The Figure 6 below shows ranking for all variables that were identified as significant different and was 

further assessed for similarities. 

 
 

Figure 6: Ranking of different variables in landcover classification 
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Confusion matix 
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Figure 15: Confusion matrix for the year 2013, 2018, and 2023 
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