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ABSTRACT 

 

This study investigates the application of hyperspectral imagery and deep learning techniques 

for crop type mapping. With global food security threatened by population growth and climate 

change, accurate crop type mapping becomes essential for estimating crop yields and 

optimizing agricultural management. Traditional methods using multispectral images face 

limitations in distinguishing crops with similar spectral characteristics. This research addresses 

these challenges by leveraging the high spectral resolution of hyperspectral imagery and the 

temporal analysis capabilities of deep learning models. 

 

The study area in Belgium provided a diverse range of annual crops. Hyperspectral datasets 

from the PRISMA satellite and labeled training samples from the Flemish government were 

utilized to classify the different crops. Two deep learning models, 2D CNN for single-date 

imagery and 3D CNN for multi-temporal imagery, were developed and evaluated. 

 

Results demonstrated that the 3D CNN model significantly improved classification accuracy 

by capturing the temporal dynamics of crop growth, achieving higher overall accuracy 

compared to the 2D CNN model. Most crops, including corn, “flax and hemp”, sugar beets, 

“grains, seeds and legumes”, and “vegetables, herbs, and ornamental plants”, exhibited 

improved classification performance with multi-temporal images compared to single-date 

images. However, for crops prone to classification ambiguity, such as grasslands and forages, 

the benefits of multi-temporal data are less pronounced. Early stopping techniques further 

enhanced the models' generalization capabilities, reducing overfitting. The findings explore the 

potential of integrating hyperspectral and multi-temporal data for precise crop classification, 

offering valuable insights for agricultural monitoring and management. 

 

Keywords: Crop classification; Hyperspectral images; Multi-temporal analysis; Deep learning 
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1. INTRODUCTION 

1.1. Background 

The main threats to global food security are world population growth and climate change. The 

world's population is expected to grow to 9.7 billion by 2050 (United Nations, 2019), while 

climate change is already causing more extreme weather events, such as droughts and floods. 

These combinations of factors are more likely to affect food supplies and quality. To address 

the problem, crop type mapping is applied to help governments estimate crop yields and predict 

the influence of climate change (Wang et al., 2023). Besides, accurate crop type mapping may 

enable governments to optimize land resources and agricultural management (Farmonov et al., 

2023). 

 

Remote sensing methods have been used for crop classification since the 1970s (Torbick et al., 

2018). In this regard, multispectral images (e.g., Landsat, Sentinel 2, or SPOT images) are 

frequently applied to classify various crop types because multispectral data provides valuable 

information about the spectral properties and spatial patterns of different crop types. To be more 

specific, the spectral signatures of crops depend on factors such as plant health, plant pigments, 

leaf water content, and ground cover, and, consequently, each crop species has a unique spectral 

response (Zhang et al., 2020). Therefore, different crop types can be identified and classified 

by analyzing the spectral signatures of crops from multispectral images (Yi et al., 2020).  

 

However, despite the advancements in multispectral images, the limited number of spectral 

bands in multispectral imagery cannot identify different crop types with similar spectral 

characteristics (Lu et al., 2020). For example, maize and soybeans have similar spectral 

signatures when using the limited number of bands in multispectral imagery, which may make 

it difficult to discriminate between these two crop types (Skakun et al., 2016). In contrast, 

hyperspectral imagery provides a much higher spectral resolution and detailed information 

across hundreds of contiguous, narrow spectral bands. It captures detailed spectral signatures 

of vegetation which are influenced by the biochemical and biophysical properties of each crop 

(Teke et al., 2013).   
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In addition, temporal information is also essential for distinguishing between different crop 

types in satellite imagery. Initially, the classification of individual crops relied on single-date 

images, but this approach may not be accurate because the same crop has a variety of growth 

patterns, development stages, and harvesting times on a particular date. It is difficult to identify 

specific crop types on the single-date satellite image. To overcome this challenge, multi-

temporal images have been applied in crop type mapping. This is because multi-temporal 

images can capture every growth stage of the crops, and different crops with similar spectral 

signatures can be discriminated by tracking changes over time (Vuolo et al., 2018; Zhang et al., 

2020). Although multi-temporal images improve classification accuracy, some crops are often 

confused with each other, i.e. high misclassification rate, due to their similar temporal profiles. 

For instance, corn and potato cannot be differentiated very well because of their similar growing 

cycles (Piedelobo et al., 2019). 

 

In recent years, deep learning techniques have gained importance in crop type mapping using 

multi-temporal or hyperspectral datasets (Spiller et al., 2021; Zhang et al., 2020). One of the 

primary advantages of deep learning models in agriculture is their ability to handle multi-

temporal datasets effectively (Li et al., 2023). Unlike traditional machine learning models, deep 

learning algorithms can automatically extract features through backpropagation during training, 

which is so suitable for dealing with multi-temporal images involving seasonal patterns (Wang 

et al., 2022). For example, three-dimensional CNN models can acquire temporal, spectral, and 

spatial information from the images simultaneously (Ji et al., 2018; Li et al., 2023). Additionally, 

deep learning models can effectively cope with hyperspectral remote sensing data (Khan et al., 

2022). This is because deep learning algorithms can be used to reduce the dimensionality of the 

hyperspectral datasets which contain a large number of spectral bands, and extract spatial and 

spectral information from the image. This can lead to better accuracy of deep learning models 

on the remote sensing hyperspectral data (Bhosle & Musande, 2022).  

 

Although the combination of deep learning techniques with multi-temporal hyperspectral 

imaging has great potential in crop classification, there are several challenges that hinder its 

widespread adoption of hyperspectral datasets. One challenge is the limited availability of 

training data. This is because hyperspectral images provide abundant information that contains 

a spectrum of hundreds of spectral bands for each pixel. This makes it difficult to find enough 

labeled training data to train the model that can generalize well to new data (Xie et al., 2023). 
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More importantly, limited research has explored the potential of crop type mapping using multi-

temporal hyperspectral images and deep learning, with most studies focusing on a single 

hyperspectral image or multi-temporal multispectral images. Some studies used hyperspectral 

images and deep learning for crop classification, and they primarily focused on single 

hyperspectral images rather than incorporating images during the target crop growth cycle 

(Spiller et al., 2021; Xie et al., 2023). Other studies focused on crop classification using 

multitemporal multispectral images, and found that the temporal information might help deep 

learning models learn spatio-temporal features from remote sensing images (Ji et al., 2018; Li 

et al., 2023; Zhong et al., 2019). 

 

Therefore, the focus of this study is to combine the advantages of abundant labeled sample 

datasets, hyperspectral images, multi-temporal datasets, and deep learning models on crop 

mapping. By leveraging the advantages of high spectral resolution of hyperspectral imagery 

and the feature extraction capabilities of deep learning, the research aims to explore the potential 

of multi-temporal hyperspectral image analysis for crop type mapping. Crucially, the inclusion 

of large numbers of samples is anticipated to address the challenges of generalization and 

overfitting identified in previous studies, ultimately contributing to improved multi-temporal 

crop-type maps with high precision. 
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1.2. Research objective and research questions 

1.2.1. Research objective 

The main objective of this research is to evaluate the impact of multi-temporal hyperspectral 

data on the accuracy and effectiveness of crop type mapping compared to single-date 

hyperspectral imagery, while applying deep learning techniques. 

 

1.2.2. Research questions  

a. How effectively can deep learning models extract discriminative features from single-date 

hyperspectral imagery to differentiate between crop types? 

b. What are the comparative performance and accuracy of single-date images and multi-

temporal images in classifying different types of crops? 
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2. STUDY AREAS AND DATASETS 

2.1. Study area 

The study area is located in the West Flanders province of Belgium, specifically encompassing 

the regions of Diksmuide, Houthulst, and Lo-Reninge. The study area (red rectangle in Figure 

1) has a length of 24 km, a width of 21 km, and covers an area of 504km2 (Figure 1). 

 

In general, lands are flat in this study area. Flat lands tend to have more uniform soil conditions 

and water distribution, which can lead to more consistent growth patterns among crops.  Besides, 

The study area is primarily dominated by annual crops, which have distinct, predictable growth 

cycles within a single year. Most crops are planted in spring and are harvested in autumn. The 

features of this location make it a good study area for multi-temporal crop type mapping. 

 

 

 

Figure 1. Study area of this research  
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2.2. Datasets  

2.2.1. Hyperspectral satellite data 

Hyperspectral datasets were downloaded from the PRISMA satellite website 

( https://prismauserregistration.asi.it/) and read using the “prismaread” R package (Busetto & 

Ranghetti, 2020). PRISMA is an Earth Observation satellite owned and operated by the Italian 

Space Agency (ASI). It was launched on March 22, 2019, and is designed to provide 

hyperspectral imagery of the Earth's surface. PRISMA has a total of 240 spectral and continuous 

bands ranging between 400 and 2500 nm. PRISMA's hyperspectral sensor has a spatial 

resolution of 30 meters (Shaik et al., 2023).  Table 1 shows the description of the PRISMA 

image wavelength. This study uses VNIR and SWIR bands to classify crops without using the 

panchromatic band. 

 

 

Table 1. PRISMA PAN, VNIR, and SWIR bands and their wavelength ranges 

Spectral range Wavelength range 
The Numbers of 

bands 
Spatial resolution 

Visible near-infrared (VNIR) 400–1010 nm 66 30 m 

Short-wave infrared (SWIR) 920–2500 nm 173 30 m 

Panchromatic (PAN) 400–700 nm 1 5 m 

 

In this research, Level 2D (L2D) PRISMA products were utilized to classify different crops. 

The choice of L2D products is due to their inclusion of reflectance values that are both geocoded 

and orthorectified (Delogu et al., 2023). The images were captured from the growing season of 

2022 between March and October.  

 

Cloud cover obstructs the view of the Earth's surface, and its presence in satellite images can 

affect their usability (Whitcraft et al., 2015). To ensure the clarity and usability of the images, 

only those with less than 1% cloud cover were selected for this study. Table 2. lists the 

acquisition dates and the percentage of cloud coverage for the images used in this research. 

 

 

 

https://prismauserregistration.asi.it/
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Table 2. PRISMA acquisition dates and corresponding cloud cover of the selected images 

Date Cloud coverage (%) 

2022-04-16 0.06 

2022-07-17 0.02 

2022-08-09 0.02 

 

 

2.2.2. Labeled data  

Labeled data was obtained from the Flander’s government website 

(https://www.geopunt.be/inspire). This data includes the information on the main crop 

cultivated for all agricultural plots in Belgium, which was collected on April 21, 2022. The 

farmers supplied the information on the main crops they cultivated on their agricultural plots. 

The labeled data includes the following classes: 1. Corn, 2. Flax and Hemp, 3. Forages, 4. Fruit 

and nuts, 5. Grains, seeds, and legumes, 6. Grassland, 7. Other crops, 8. Sugar beets, 9. 

Potatoes, 10. Vegetables, herbs, and ornamental plants, 11. Woody plants.  
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3. RESEARCH METHODS 

3.1. Workflow 

The focus of this research is to advance crop classification accuracy and efficiency by 

synergizing available Prisma images collected across different times along the crop growing 

season and deep learning methodologies. To achieve the research objectives outlined above, a 

comprehensive research workflow has been designed (Figure 2). The phases of the research 

shown in Figure 2 will be described in the remainder of this chapter. 

 

Figure 2. Workflow for evaluating and comparing the performance of 2D and 3D CNN 

models on single-date and multi-temporal PRISMA images, with and without early stopping, 

to determine the effectiveness of temporal information in image classification 



 

9 

3.2. Pre-processing of hyperspectral imagery 

Hyperspectral imagery was collected from the Prisma website. The dates of the image was 

chosen between March and October during the whole growing season. Then, although the 

PRISMA Products Specification Document claimed that the PRISMA images were 

orthorectified successfully, there were issues with line misalignments among different 

hyperspectral images, indicating a lack of standardized procedures for orienting them (Baiocchi 

et al., 2022). Therefore, PRISMA images were pre-processed to ensure data consistency, quality, 

and compatibility. This includes geometric correction and orthorectification  (Lu et al., 2020).  

 

3.2.1. Hyperspectral images type conversion 

The "prismaread" R package (Busetto & Ranghetti, 2020) facilitates the conversion of PRISMA 

hyperspectral data from the original ASI-provided HDF format to more manageable formats 

(GeoTIFF). PRISMA sensors record data in two spectral bands: VNIR (Visible and Near 

Infrared) and SWIR (Short Wave Infrared). These bands partially overlap; the VNIR band 

ranges from 400 nm to 975 nm, while the SWIR band spans from 939 nm to 2500 nm, creating 

an overlap between 939 nm and 975 nm. 

 

To address potential redundancy or confusion during data conversion or analysis due to this 

overlap, the "prismaread" package includes a join_priority setting. This setting allows users to 

specify which band's data should be prioritized in the overlapping range. By setting the priority 

to "SWIR," the data from the SWIR band is preferentially used for the wavelengths between 

939 nm and 975 nm. This functionality ensures clear and effective management of spectral data 

where the VNIR and SWIR bands intersect. After merging the bands using this approach, the 

hyperspectral data is consolidated into 230 bands, reducing redundancy and simplifying 

subsequent analysis. Annex 1. shows the wavelength range before merging bands and after 

merging bands. 
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3.2.2. Coregistration of hyperspectral images  

To fix misaligned PRISMA data, AROSICS (Python package) was used to perform automatic 

subpixel co-registration of two satellite image datasets based on image matching (Scheffler et 

al., 2017). 

 

AROSICS (Automated and Robust Open-Source Image Co-Registration Software) is a Python-

based software designed for automatic sub-pixel co-registration of multi-sensor data based on 

image matching. The primary goal was to ensure that a target image matches a reference image 

as closely as possible in terms of geographical position and alignment. The process of the 

algorithm was divided into three steps: input data preparation, detection of geometric shifts, and 

correction of displacements.  

 

Firstly, because the numbers of bands of a target image and a reference image might be different,  

spectral bands from different images had to be selected for image matching. If the co-

registration was achieved using the selected bands, the same transformation (shifts and 

alignments) could be applied to the other bands of a target image. Secondly, the algorithm used 

grids of points to identify corresponding points or features on overlapping areas of the target 

and reference images and estimate X/Y offsets on both images. The final step involved 

correcting the detected displacements to align the target image with the reference image 

accurately. Affine transformation was applied to ensure the reliability and accuracy of subpixel 

co-registration. 

 

In this study,  PRISMA images were defined as the target image, and the Sentinel 2A images 

were used as the reference image. Sentinel 2 images have been proven to be effective reference 

images for the co-registration process of PRISMA data, thereby improving the quality of 

PRISMA data (De Luca et al., 2024). Table 3. shows the dates and cloud cover percentage on 

the target images and reference images. The assumption of this algorithm was to correspond 

the wavelength range of band 51  (843.87 mm - 854.59 mm) of PRISMA images to that of band 

8 of the Sentinel 2A images  (NIR band, 785 mm - 900 mm) first. After determining the 

geometric correction parameters (shift vectors, rotation angles) from band 51 of the PRISMA 

images, these parameters could be applied to all other bands of the PRISMA image. In addition, 

the parts of images that include the ocean were omitted in this process because water lacks fixed 
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reference points, making it nearly impossible to obtain consistent measurements (Román et al., 

2024). 

 

Table 3. The dates and cloud cover for the target images (PRISMA) and reference images (Sentinel 2A) 

Target images Reference images 

PRISMA images 

(Spatial Resolution: 30m) 

Sentinel 2A images 

(Spatial Resolution: 10m) 

Time Cloud coverage (%) Time Cloud coverage (%) 

2022-04-16 0.06 2022-04-20 18.79 

2022-07-17 0.02 2022-07-19 0.08 

2022-08-09 0.02 2022-08-11 0.05 

 

3.2.3. Hyperspectral image resampling 

Pixel grids from different images could not align with each other because three PRISMA images 

were captured from different angles. To overcome this issue, a cubic spline resampling method 

was utilized to align the pixels with each other. This method leveraged cubic convolution, which 

utilizes 16 pixels to compute an output pixel value. The April Image was chosen as the reference, 

with July and August images being resampled to match its spatial resolution and alignment. 

Although the cloud cover in April was slightly higher than in July and August, it remains very 

low (0.06%). The April image, taken before large-scale crop growth, minimized the impact of 

vegetation growth and seasonal changes on image alignment. 
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3.3. Training sample preparation 

3.3.1. Labeled dataset reprojection 

Labeled crop data was acquired from the Vlaams government website. The labeled dataset was 

projected in Belge 1972 / Belgian Lambert 72 (EPSG:31370), and hyperspectral images were 

projected in WGS 84 / UTM zone 31N (EPSG:32631). The coordination systems are different 

on these types of datasets. To transform from one coordinate system to another, the labeled 

dataset was reprojected in WGS 84 / UTM zone 31N (EPSG:32631). 

 

3.3.2. Feature matching 

To accurately identify pixels of interest, the initial step involved creating pixels on the labeled 

data that correspond to the satellite imagery (the grid size: 30m). This alignment enabled the 

precise extraction of pixels within the designated polygon areas, ensuring that the pixels in the 

labeled data accurately match those in the satellite imagery (Li et al., 2020; Siesto et al., 2021). 

Subsequently, a 6-meter buffer was generated around the boundaries of a field to avoid edge 

effects. These edge effects often result from a mixture of different crops and the presence of 

features like fences, ditches, and uncropped areas, which do not accurately reflect the actual 

crop types from the labeled data. By creating a buffer, these edge effects could be excluded, 

ensuring that the data collected from within the buffer represents the field's interior conditions 

more accurately. Figure 3 shows the boundaries of the crop fields, buffer zones, and selected 

crop pixels. Because of the consideration of the Hughes phenomenon, some crop types were 

excluded in  Figure 3. The detailed information was described in the chapter 3.3.3. 
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Figure 3. Spatial representation of 6-meter buffer zones and crop type pixels 

 

3.3.3. Selection of training and validation samples 

From the overall labeled dataset, 800 pixels from each crop type were randomly selected as the 

sample data. These pixels were further divided into two independent sets: the training sample 

set (560 pixels), and the validation sample set (240 pixels), thereby maintaining a 7:3 ratio. The 

key approach was to ensure that training and validation pixels were selected from different 

agricultural plots. Table 4 shows the numbers of agricultural plots and corresponding pixels in 

the study area. This separation guarantees that the training and validation datasets are 

independent and do not overlap, effectively preventing overfitting.  

 

Another crucial consideration was that the number of training and validation samples should 

exceed the number of spectral bands to avoid the Hughes phenomenon. The Hughes 

phenomenon, also known as the curse of dimensionality, occurs when the number of spectral 

bands (features) is very high compared to the number of training samples, which leads to a 

decrease in classification accuracy (Pal & Foody, 2010). In this study, the number of spectral 

bands was effectively reduced to 230 after merging some of bands, which ensured that the 

number of training and validation samples exceeds the number of spectral bands. 
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In this study, certain classes such as Woody plants and Other crops were constrained by having 

fewer than 230 valid pixels (Table 4). 230 is the number of spectral bands of the satellite data. 

This insufficient sample size hindered the feasibility of running a deep learning model 

effectively. Additionally, Fruit and nuts was excluded from the study. This is because the 

available data could not guarantee that training and validation pixels were selected from 

different agricultural plots if more than 230 valid pixels were extracted. Consequently, eight 

classes were selected for the study to adapt to this constraint and ensure robust model training. 

Table 5 shows the number of training and validation samples per class for the deep learning 

model. 

 

 

Table 4. Training sample data in the study area 

Class (Dutch) Class (English) 
The total of 

pixels 

The total of 

agricultural 

plots 

Choice 

Aardappelen Potatoes 21014 1593 Yes 

Fruit en Noten Fruit and Nuts 613 72 No 

Granen, zaden en 

peulvruchten 

Grains, seeds and 

legumes 
27961 1853 Yes 

Grasland Grassland 40741 4881 Yes 

Groenten, kruiden en 

sierplanten 

Vegetables, herbs and 

ornamental plants 
17669 1349 Yes 

Houtachtige gewassen Woody plants 15 6 No 

Maïs Corn 38075 3586 Yes 

Overige gewassen Other crops 181 48 No 

Suikerbieten Sugar beets 6634 382 Yes 

Vlas en hennep Flax and hemp 1457 87 Yes 

Voedergewassen Forages 4410 391 Yes 
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Table 5. Training and validation data sample sizes for the deep learning model 

Class Training Samples (Pixels) Validation Samples (Pixels) 

Corn 560 240 

Forages 560 240 

Flax and hemp 560 240 

Grains, seeds and legumes 560 240 

Grassland 560 240 

Potatoes 560 240 

Sugar beets 560 240 

Vegetables, herbs and 

ornamental plants 
560 240 

Total 4480 1920 

 

 

3.4. Deep learning model 

A CNN model was used in this research due to its ability to handle high-dimensional data. This 

is because hyperspectral images contain a large number of spectral bands. CNN can capture the 

correlations between different spectral bands while integrating spatial information (Guerri et al., 

2023). Additionally, CNN excels at learning distinctive spatio-temporal features of crops from 

the remote sensing data (Ji et al., 2018). 

 

The 2D CNN model can extract spectral and spatial features within pre-processed hyperspectral 

images simultaneously (Vaddi & Manoharan, 2020), and the 3D CNN model can incorporate 

temporal features from hyperspectral images, capturing unique spectral signatures, temporal 

variations in crop growth, and crop spatial distribution within the imagery. (Ji et al., 2018). 
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3.4.1. 2D CNN structure for single-date hyperspectral image classification 

The 2D CNN model was used to classify crops using a single-date hyperspectral image. The 

model leverages a sequential layer structure. The input data is represented as 2D tensors with 

spectral and spatial dimensions (230, n, w). Here, 230 corresponds to the number of bands in 

the PRISMA data after merging, and h and w represent the image height and width, respectively. 

These tensors are processed through three convolutional layers. Each convolutional layer is 

followed by a ReLU activation and adaptive max-pooling operations, aimed at capturing both 

spectral and spatial features essential for accurate crop classification (Ji et al., 2018; Seyrek & 

Uysal, 2024; Zafar et al., 2022). Specifically, the first convolutional layer utilizes 32 kernels, 

the second layer uses 64 kernels, and the third layer employs 128 kernels, each with a 3x3 kernel 

size to extract multi-level features from the input data. The final feature maps are then flattened 

and passed through fully connected (FC) layers, which consist of 64 neurons before outputting 

predictions across 8 crop classes. The 2D CNN network structure is shown in Figure 4. This 

model employed a constant learning rate of 0.0005 and utilized a batch size of 8. The default 

epoch size is 300. 

 

 

Figure 4. 2D CNN network architecture for single-date crop classification, where h and w 

represent the image height and width, respectively. The model employs 3×3 convolutions, 

adaptive max pooling, and FC layers (64 neurons, 8 output classes).  
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3.4.2. 3D CNN structure for multi-temporal hyperspectral image classification  

The 3D CNN was used to process multi-temporal satellite data. The input data was represented 

as 3D tensors with spectral,  spatial, and temporal dimensions (230, n w, h), where 230 is the 

number of spectral bands in the PRISMA data after merging, w represents the image width, h 

represents the image height, and n represents the number of images in the time dimension (n=3).  

 

The network architecture comprised three convolutional layers followed by FC layers, as 

depicted in Figure 5. Each convolutional layer used a kernel size of 3x3x3, with the number of 

kernels increasing sequentially through the layers: 32, 64, and 128, respectively. These layers 

extract spatial-temporal features from the input data, which consist of multi-band satellite 

images over three time periods. 

 

To preserve temporal information until the final classification stage, an applied adaptive max 

pooling was applied in each convolutional layer, ensuring that the temporal dimension remains 

uncompressed until reaching the FC layers. The FC layers consist of 64 neurons in the first 

layer and output neurons corresponding to the number of classes (c=8) in the final layer. The 

network structure is shown in Figure 5. The Adam optimizer was chosen due to its demonstrated 

superiority over other stochastic optimization methods. Its effectiveness has been validated in 

various multi-temporal classification (H. Zhao et al., 2019). The fixed learning rate is 0.0005 

and the batch size is 8. The default epoch size is 300. 
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Figure 5. 3D CNN network architecture for multitemporal crop classification, where n=3 is 

the number of images, w is the width, and h is the height. The network utilizes multiple 3×3×3 

convolutions, adaptive max pooling, and FC layers for classification with 64 and c (the 

number of classes=8) units respectively. 

 

 

 

3.4.3. Early stopping technique  

To evaluate the performance of a deep learning model, it will be trained both without early 

stopping and with early stopping. Initially, the model will be trained without using early 

stopping to establish its baseline performance. This approach allows observation of the model's 

behavior when it is allowed to train for the full number of epochs without interruption, helping 

to identify any potential overfitting issues. 

 

Early stopping is a technique used in training machine learning models to prevent overfitting 

and improve generalization. Overfitting occurs when a model learns the training data too well, 

capturing noise and fluctuations, which reduces its performance on new, unseen data. Early 

stopping involves monitoring the model's performance on a validation set during training. If the 

validation performance starts to deteriorate while training performance continues to improve, it 
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signals overfitting. Training is stopped at the point where the validation performance is best, 

which typically corresponds to the model being more generalized and robust (Lu et al., 2022). 

 

The categorical cross-entropy loss function, which integrates cross-entropy loss with a softmax 

activation, was employed for this study. This function is particularly effective for multi-class 

classification tasks, such as crop type mapping (T. Lu et al., 2022; Mohammadi et al., 2021; H. 

Zhao et al., 2019). The function is defined mathematically as shown in Equation: 

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 = ∑ 𝑦𝑜,𝑐 log (𝑝𝑜,𝑐)

𝑀

𝑐=1

 

Where: 

M is the number of classes. 

𝑦𝑜,𝑐 is a binary indicator (0 or 1) if class label 𝑐 is the correct classification for observation 𝑜. 

𝑝𝑜,𝑐 is the predicted probability that observation c. 

 

Additionally, a patience parameter of 10 epochs is implemented to mitigate the risk of 

overfitting. This parameter operates under the principle that if the validation loss ceases to 

decrease over a span of 10 consecutive epochs, it indicates that the model may be starting to 

learn noise and irrelevant details from the training dataset. 

 

Therefore, in Chapter 4.1, the model will be trained without early stopping to establish baseline 

performance.  In Chapter 4.2, early stopping techniques will be applied to classify the crops. 

This approach is expected to provide insights into the model's performance both without and 

with early stopping. 

 

3.5. Accuracy assessment 

To evaluate the results, accuracy assessments, such as a confusion matrix, are employed to 

evaluate the model's performance in correctly identifying crop types (Niu et al., 2022). The 

confusion matrix helps to extract accuracy metrics like overall accuracy (OA), user accuracy 

(UA), and producer accuracy (PA). Misclassified crop types are analyzed alongside accuracy 

assessments by comparing them with sample data from the government to determine the causes 

of misclassification. 
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3.6. Comparative analysis of single-date images and multi-temporal image 

To further assess the performance of the crop type mapping framework, a comparative analysis 

was conducted using both single-date images and a multi-temporal image. For the single-date 

image analysis, models trained on hyperspectral images from specific months (April, July, 

August) are analyzed to assess their performance. This evaluation focuses on the OA from each 

image and examines the individual crop type performance based on UA and PA. 

 

For the multi-temporal image analysis, the study employed a 3D CNN model to analyze both 

spatial, spectral, and temporal features, providing insights into the OA for each result and how 

the OA improves compared to the single-date image’s OA. This comparison aims to determine 

the differences in classification accuracy between the single-date images (April, July, and 

August) versus multi-temporal datasets. 
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4. RESULTS  

This chapter discusses the performance of crop classification models using both single-date and 

multi-temporal satellite images. The analysis focuses on the comparison of the classification 

results for various crops, both before and after the implementation of early stopping. This 

comparison aims to know the impact of the model performance with early stopping and without 

early stopping. 

4.1. Classification result before early stopping 

4.1.1. Single-date Image Classification Result 

 Table 6. and Table 7. show the confusion matrices for April's training and validation 

classifications. In the training sample classification, the model achieved an OA of 67%. “Grains, 

seeds, and legumes” performed best, with 88% UA and 93% PA. Corn had a UA of 47% and a 

PA of 44%. For the validation sample classification, the OA dropped to 52%, with Corn at 39% 

UA and 25% PA, and “Grains, seeds, and legumes” at 80% UA and 87% PA. In brief, this result 

indicates varying performance, with the highest accuracy in “grains, seeds, and legumes” and 

the lowest in corn and “vegetables, herbs, and ornamental plants”. 
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Table 6. Confusion matrix for April training sample classification before early stopping 

 
 

 

Table 7. Confusion matrix for April validation sample classification before early stopping 
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Table 8. and Table 9. reveal the confusion matrices for July's training and validation sample 

classifications, with an OA of 88% in training and 81% in validation. Corn shows strong 

accuracy with 96% UA and 91% PA in training, and 93% UA and 84% PA in validation. “Flax 

and hemp” performs similarly well, with 97% UA and 96% PA in training, and 90% UA and 

94% PA in validation. Sugar beets excel with 98% UA in both sets. However, forages and 

grassland show lower accuracies. 

 

Table 8. Confusion matrix for July training sample classification before early stopping 
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Table 9. Confusion matrix for July validation sample classification before early stopping 

 

 

 

Table 10. and Table 11. demonstrate the confusion matrices for August's training and validation 

sample classifications across various crops. The training set shows an OA of 90%, with corn 

achieving 98% UA and 96% PA. “Flax and hemp’ also performs well with 99% UA and PA. 

In contrast, forages have a lower UA of 50% and PA of 81%. Validation results show an OA 

of 80%, with corn at 94% UA and 93% PA, and flax and hemp at 92% UA and 95% PA. Forages 

remain low with 30% UA and 73% PA. The results highlight the model's strengths in correctly 

classifying corn, “flax and hemp”, and sugar beets, but indicate room for improvement in 

forages and “vegetables, herbs, and ornamental plants”. 
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Table 10. Confusion matrix for August training sample classification before early stopping 

 

 

 

Table 11. Confusion matrix for August validation sample classification before early stopping 
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4.1.2. Multi-temporal Image Classification Result 

Table 12. and Table 13. depict the confusion matrices for multi-temporal training and validation 

sample classifications. In the training set, the OA is 96%. Corn achieved 99% UA and 98% PA. 

“Flax and hemp”, “grains, seeds, and legumes”, sugar beets, and “vegetables, herbs, and 

ornamental plants” all achieved 100% UA and PA. Validation results show an OA of 85%, with 

corn at 94% UA and 88% PA, and “flax and hemp’ at 96% UA and 95% PA. Forages had lower 

accuracy, with 54% UA and 78% PA. These results highlight strong performance in most crops, 

with some improvement needed in forages and grassland. 

 

 

 

Table 12. Confusion matrix for multi-temporal training sample classification before early stopping 
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Table 13. Confusion matrix for multi-temporal validation sample classification before early stopping 

 

 

 

4.2. Classification result after early stopping 

4.2.1. Single-date Image Classification Result 

Table 14 and Table 15 display the confusion matrices for the April images with early stopping 

for both training and validation samples across various agricultural classes. Early stopping 

was applied at epoch 37, with a final training loss of 1.1956 and validation loss of 1.4378. The 

OA achieved with early stopping is 54% for the training samples and 48% for the validation 

samples. To be more specific, "Flax and hemp" demonstrates a high UA of 85% and PA of 

86% in the training set but drops to 60% UA and 59% PA in the validation set. Classes like 

corn and "vegetables, herbs and ornamental plants" show notably low accuracies, indicating 

challenges in correctly classifying these categories. 
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Table 14. Confusion matrix for April training sample classification after early stopping 

 
 

Table 15. Confusion matrix for April validation sample classification after early stopping 
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The confusion matrices for July (Table 16. & Table 17.) illustrate the classification performance 

with early stopping at epoch 58, where the training loss was 0.3897 and the validation loss was 

0.5456. The OA achieved was 85% for training and 80% for validation samples. UA were 

notably high for many classes, with "Corn" achieving 92% in training and 91% in validation, 

and "Potatoes" reaching 95% in both training and validation. However, the "Forages" and 

"Grassland" categories demonstrated more crucial classification challenges. "Forages" had a 

UA of 42% in training and 36% in validation, indicating difficulties in correctly classifying this 

category. PA for "Forages" was 62% in training and 73% in validation, showing some 

improvement but still lower than other classes. 

 

Table 16. Confusion matrix for July training sample classification after early stopping 
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Table 17. Confusion matrix for July validation sample classification after early stopping 

 

 

 

The confusion matrices for August (Table 18. and Table 19.) detail the classification 

performance with early stopping, reflecting results for both training and validation samples.  

These results were obtained after early stopping at epoch 66. The training sample achieved an 

OA of 81%, while the validation sample reached an OA of 73%. UA was notably high for 

several categories: "Corn" achieved a 95% UA in training and 90% in validation, while 

"Potatoes" reached 90% UA in training and 86% in validation. These high accuracies indicate 

a strong performance in correctly classifying these crops. 

 

However, the "Forages" category faced serious challenges, with a UA of only 22% in training 

and 20% in validation. This low accuracy suggests difficulties in distinguishing "Forages" from 

other categories. The PA for "Forages" was also relatively low, at 62% in training and 50% in 

validation, further emphasizing the need for improvement in this category's classification. 
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Table 18. Confusion matrix for August training sample classification after early stopping 

 

 

 

Table 19. Confusion matrix for August validation sample classification after early stopping 
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4.2.2. Multi-temporal Image Classification Result 

Table 20. and Table 21. demonstrate the confusion matrices for the multi-temporal training and 

validation sample classifications with early stopping. The confusion matrices for the multi-

temporal training and validation sample classifications show robust model performance. The 

training set achieved an OA of 91%. Corn had 98% UA and 97% PA. “Flax and hemp” achieved 

100% UA and PA, while forages had 51% UA and 75% PA. Validation results show an OA of 

84%, with corn at 94% UA and 92% PA, and ‘flax and hemp” at 98% UA and 96% PA. Forages 

had lower performance with 39% UA and 78% PA. The results indicate strong performance in 

most crops, with improvements needed for forages. 

 

 

 

 

Table 20. Confusion matrix for multi-temporal training sample classification after early stopping 
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Table 21. Confusion matrix for multi-temporal validation sample classification after early stopping 

 

  



 

34 

5. DISCUSSION 

5.1. Evaluating the impact of early stopping on classification accuracies 

 

Table 22. compares classification accuracies before and after early stopping for different 

datasets and model configurations. A noticeable gap between training and validation accuracies 

in the data before early stopping demonstrates overfitting. The results from the crop 

classification using single-date and multi-temporal images show a discrepancy between training 

and validation accuracy. For example, in the CNN2D model for April image classification, the 

training accuracy is 67% while the validation accuracy is only 52%. Similarly, in the multi-

temporal image classification, the OA on the training set is 96%, higher than the OA on the 

validation set (85%). This large gap suggests that the model performs well on the training data 

but does not generalize effectively to unseen data. 

 

In response to this challenge, chapter 4.2 explores the application of early stopping techniques 

to improve the model's generalization capabilities. Early stopping monitors the model's 

performance on a validation set and halts training once the performance ceases to improve, thus 

preventing the model from overfitting the training data. After implementing the early stopping 

techniques,  the training accuracy becomes closer to the validation accuracy in each case. For 

example, April’s training accuracy adjusts to 54% from 67%, and the validation accuracy 

becomes 48% from 52%, narrowing the gap to 6%. In multi-temporal classification, training 

accuracy adjusted from 96% to 91% and validation accuracy from 85% to 84%. Consequently, 

the gap between the training and validation accuracies narrowed from 11% to 7%. The decrease 

in the discrepancy between training and validation accuracies demonstrates an improvement in 

the model's generalization. 
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Table 22. Comparison between classification accuracies before and after early stopping 

 

Training 

Samples Before 

Early Stopping 

Validation 

Samples Before 

Early Stopping 

Training 

Samples After 

Early Stopping 

Validation 

Samples After 

Early Stopping 

CNN2D-April 67% 52% 54% 48% 

CNN2D-July 88% 81% 85% 79% 

CNN2D-August 90% 79% 81% 73% 

CNN3D-Multi-

temporal 
96% 85% 91% 84% 

 

 

 

 

5.2. Ambiguity of crop type classification results 

5.2.1. The ambiguity between forages and grasslands 

According to the confusion matrices in Chapter 4, grassland and forages display the lowest 

accuracies among the crops, especially in validation settings. The primary reason for this 

ambiguity is the overlap between these two classes.  

 

Based on the sample data from the government, forages which include annual alfalfa, grass-

clover mixes, grass-lucerne combinations, perennial alfalfa, mixtures of legumes, and mixed 

cultivation of maize and legume cultivation, as well as fodder beets. Forages is primarily grown 

and harvested to feed livestock (Capstaff & Miller, 2018). They are characterized by their 

cultivation and management for optimal nutritional content, yield, and palatability to ensure 

high-quality feed for animals. 

 

In contrast, grasslands include sown grass seeds and permanent grassland areas on the basis of 

the sample data. These areas are often used for grazing livestock directly and are managed to 

maintain their ecological balance, biodiversity, and soil health (Fraser et al., 2022). Grasslands 

can be natural or semi-natural habitats that provide a range of ecosystem services beyond just 

forage production, such as carbon sequestration, water regulation, and habitat for wildlife (Zhao 

et al., 2020). 
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The ambiguity between forages and grasslands arises because both are used to feed livestock. 

Grasslands can serve as a source of forage either through direct grazing by animals or by being 

harvested for hay (Schils et al., 2022). This overlap in usage, along with the presence of grasses 

in both systems, complicates classification. Therefore, the result in this study is consistent with 

the previous studies because remote sensing images can’t clearly differentiate between forages 

and grassland  (Eder et al., 2023; Frank et al., 2022). 

 

 

5.2.2. The ambiguity between sugar beets and forages  

There was a noticeable distinction between UA and PA in the context of classifying sugar beets, 

based on the confusion matrics of the sugar beets. 

 

On one hand, UA for sugar beets was relatively good, which suggests that when the 

classification model can predict a pixel as sugar beet. This could be due to specific spectral 

signatures of sugar beets that the model learned to recognize well, making it effective at 

identifying pixels that are indeed sugar beets. 

 

On the other hand, PA for sugar beets was not as good as UA. The relatively lower PA indicated 

that many pixels representing actual sugar beets were not being correctly classified as such by 

the model. Based on the labeled data from the government, fodder beets are categorized into 

the forage type because it is for the consumption of the livestock. However, fodder beets is still 

a kind of sugar beets per se (Evans & Messerschmidt, 2017; Wiśniewska et al., 2019). Therefore, 

there is ambiguity between sugar beets and forages in the result. 
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5.3. Single-date image analysis 

The data reveals that crop classification accuracy fluctuates significantly throughout the year, 

aligning with the phenological stages of crop development. This variation is particularly 

pronounced when comparing the early season (April) to the peak growth months (July and 

August). 

 

April presents substantial challenges for crop classification, largely due to the non-germinated 

state of many crops, and only bare soil being visible in many fields. The CNN 2D model shows 

significantly lower accuracy in April. When applying early stopping, the CNN 2D model shows 

a high increase in accuracy for April. For instance, the UA for corn is only 2% for both training 

and validation, with an OA of 54%. This issue is even more pronounced for “vegetables, herbs, 

and ornamental plants”, where UA is 23% in training and 22% in validation, with OAs of 54% 

and 48%, respectively. These results illustrate the difficulty of identifying crops that have barely 

started to grow. 

 

Conversely, the classification accuracies increase considerably as the crops are fully developed 

and their distinct features become clearly visible. For example, with early stopping, corn’s UA 

in July is a robust 92% in training and 91% in validation. Sugar beets also display strong 

performance with a UA of 96% in training during July,  reinforcing the advantage of later-

season classification when the crops are fully developed. The OAs for these periods are 

impressive as well, with 85% in training and 79% in validation for July and an increase to 81% 

in training and 73% in validation by August.  

 

These results confirm the findings of previous studies that demonstrate the challenge of crop 

classification in the early growing season. Maponya et al. (2020) and  Veloso et al. (2017) used 

machine learning methods and Sentinel 2 images to classify different crops, comparing the 

performance between all single-date images. Accuracies during the early stages of crop 

development were low but improved dramatically as the growing season progressed and crops 

matured. This enhanced accuracy is attributed to the physical characteristics of the crops, such 

as distinct plant shapes, sizes, and the presence of mature plant features (Yi et al., 2020). In this 

study, crop type mapping using hyperspectral images and deep learning method showed similar 



 

38 

results, with lower classification accuracy from the April image compared to the July and 

August images. 

 

To sum up, this analysis underlines the importance of considering the growth stage and the 

phenological characteristics of crops when deploying agricultural monitoring, as classification 

accuracy improves significantly as crops mature. 

 

5.4. Multi-temporal image analysis and comparative evaluation 

The utilization of 3D convolutional neural networks (3D CNN) in classifying crop types via 

hyperspectral imaging underscores the model's capacity to effectively capture the temporal 

dynamics of crop growth. The effective classification of “flax and hemp”, sugar beets, 

“vegetables, herbs, and ornamental plants”, as well as corn over time (as evidenced by high UA 

and PA percentages), suggests that the 3D CNN captures the temporal dynamics of crop growth 

well. This is important since these dynamics involve changes in spectral signatures as the crops 

grow, which are captured by the hyperspectral images. For instance, with early stopping, “flax 

and hemp” achieve a PA of 96% and a UA of 98%, while sugar beets impress with both PA and 

UA at 99% on the validation data. Similarly, “vegetables, herbs, and ornamental plants” 

registers 91% in both PA and UA, and corn show 92% and 94% in PA and UA respectively.  

 

To evaluate the comparative performance and accuracy of single-date images versus multi-

temporal images in crop classification, it is crucial to rely on validation and early stopping data. 

This approach ensures that the assessment of the models' effectiveness is based on their ability 

to generalize well to unseen data and prevents overfitting. The following analysis will utilize 

validation and early stopping data to delve into the specific performance outcomes of the use 

of single-date images and multi-temporal images. 

 

In the analysis of existing outcomes, the evidence clearly shows that multi-temporal imaging 

outperform single-date imaging in crop classification In both training and validation, 3D CNN 

models show at least a 4-5% increase in classification accuracy over 2D CNN model (Table 

23), which might demonstrate the benefits of multi-temporal data. The finding is similar to the 

earlier research that compared crop classification accuracy between 2D and 3D CNN models 
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using Sentinel-2 imagery (Ji et al., 2018). They emphasized that OA of 3D CNN surpasses that 

of 2D CNN by roughly 3% on average.  

 

Table 23. presents a comparison of the PA and UA improvements from single-time images to 

multi-temporal images for various crops. The columns include the highest UA and PA achieved 

with single-time images, the UA and PA achieved with multi-temporal images, and the 

respective improvements in accuracy. By selecting the highest UA and PA from single-time 

images, the analysis ensures that the most accurate single-time performance is compared with 

the multi-temporal performance. If multi-temporal imagery shows improvements over these 

best-case single-time results, it demonstrates the added value of temporal data. 

 

Table 23. The individual crop classification accuracy improvements on validation data using early stopping 

Crop 

Highest 

Single-

Time UA 

Highest 

Single-

Time PA 

Multi-

temporal 

UA 

Multi-

temporal 

PA 

UA 

Improvement 

PA 

Improvement 

Corn 91% 88% 94% 92% +3% +4% 

Flax and 

Hemp 
82% 89% 98% 96% +16% +7% 

Forages 39% 73% 39% 78% 0% +5% 

Grains, 

Seeds, and 

Legumes 

89% 84% 93% 96% +4% +12% 

Grasslands 87% 59% 86% 58% -1% -1% 

Potatoes 95% 84% 93% 93% -2% +9% 

Sugar Beets 97% 76% 99% 79% +2% +3% 

Vegetables, 

Herbs, and 

Ornamental 

Plants 

84% 89% 91% 79% +7% +2% 

 

 

The use of multi-temporal imagery significantly enhances crop classification accuracy by 

capturing growth patterns and phenological changes over time. 3D CNN models are particularly 

effective in capturing these seasonal growth changes. Crops undergo distinct transitions from 

one growth phase to another, and accurately capturing these transitions is crucial for precise 

classification. Single-date images often depict fields as bare soil, especially in early spring, 
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posing classification challenges. However, crops like corn, “flax and hemp”, potatoes, sugar 

beets, and “vegetables, herbs, and ornamental plants”, which primarily grow in the summer, 

show improved classification accuracy when temporal data is utilized. For example, compared 

to the highest UA and PA from single-time images, corn's UA and PA increased by 3% and 4%, 

respectively, with the inclusion of multi-temporal data. Similarly, crops such as “grains, seeds, 

and legumes”, which grow between April and August, show marked accuracy improvements 

due to the detailed observation of their growth transitions, with UA and PA improvements of 

4% and 12%, respectively. 

 

However, the multi-temporal approach of 3D CNN models cannot enhance classification 

accuracy for crops with a high amount of misclassification, like grasslands and forages. These 

crops are hard to distinguish in single-date images, and even with the integration of multiple 

temporal data points, the improvements are minimal. For instance, grasslands show a slight 

decrease in both UA and PA by 1%, indicating the limitations of this approach for certain crop 

types. 

 

In summary, multi-temporal imagery can enhance OA by capturing growth patterns and 

phenological changes efficiently. This method is especially beneficial for crops with 

overlapping spectral signatures and seasonal growth changes, leading to more precise 

agricultural monitoring. However, for certain crops like grasslands and forages, 3D CNN 

models can’t show the improvements by integrating temporal data and hyperspectral imagery, 

demonstrating the limitations of this approach for certain crop types. 
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6. CONCLUSION 

6.1. Answer to research questions 

RQ a. How effectively can deep learning models extract discriminative features from 

single-date hyperspectral imagery to differentiate between crop types? 

Deep learning models, particularly 2D CNN, can effectively extract discriminative features 

from single-date hyperspectral imagery to differentiate between crop types, but their 

effectiveness is highly influenced by the timing of the imagery. The models perform best when 

crops are fully developed and distinct features are visible, as seen in the improved accuracies 

during July and August. 

 

 

RQ b. What are the comparative performance and accuracy of single-date images and 

multi-temporal images in classifying different crop types? 

Multi-temporal images improve crop classification accuracy compared to single-date images. 

The OA from multi-temporal images outperforms the OA from the single-date images, with 

improvements in UA and PA for various crops. Besides, multi-temporal images improve most 

crops’ PA and OA, such as corn, “flax and hemp”, sugar beets, “grains, seeds, and legumes” 

and “vegetables, herbs, and ornamental plants”. This enhancement is attributed to the models' 

ability to capture temporal changes and growth patterns, which are not available in single-date 

imagery. However, for crops such as grasslands and forages, which are prone to ambiguity, the 

advantages of multi-temporal data are minimal.  

 

 

6.2. Conclusion 

This research aims to integrate hyperspectral and multi-temporal imagery for the classification 

of different crops. The analysis indicates that the 3D CNN model, which utilizes multi-temporal 

hyperspectral imaging, outperforms single-date hyperspectral imaging in terms of crop 

classification accuracy. Most individual crops (corn, “flax and hemp”, sugar beets, “grains, 

seeds, and legumes” and “vegetables, herbs, and ornamental plants”, demonstrate better 

performance when using multi-temporal images compared to single-date images. Therefore, 
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multi-temporal hyperspectral imaging technology presents a valuable option for agricultural 

researchers who are striving for precision in crop monitoring and management. However, for 

crops prone to ambiguity, such as grasslands and forages, the benefits are not clear. 

 

Besides, the findings from this research can contribute to Monitoring Agricultural ResourceS 

(MARS) project (European Commission, 2023). This project aims to provide timely and 

reliable information on crop conditions and yields across Europe. This study can help the project 

improve classification accuracy and calculate sown areas for different crop types throughout 

their growing seasons. This enhances yield predictions and provides insights of each crop 

growth stage, contributing to more effective agricultural resource management and planning 

(van der Velde & Nisini, 2019; Wu et al., 2023). 

 

6.3. Research challenges 

There are several challenges of this research. Firstly, the findings may not be generalizable to 

other PRISMA datasets from different areas or times. To be more specific,  PRISMA image 

acquisition is based on user demand, requiring users to specify the target areas beforehand 

(Vangi et al., 2021). Consequently, only three suitable PRISMA images are available for the 

study area and period covered in this research, as there are no other multi-temporal data 

available on the PRISMA website.  

 

Another challenge in crop classification using hyperspectral images is the limited availability 

of data, particularly in the temporal dimension. This is because deep learning models rely on a 

diverse and extensive dataset to learn spectral, spatial, and temporal features effectively (Li et 

al., 2023). However, due to the absence of continuous multi-temporal data across the growing 

season, the ability of these models might not fully leverage temporal variations for 

distinguishing between different crop types.  
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6.4. Future research direction 

This study establishes an initial foundation by comparing single-date and multi-temporal 

analysis to delineate the benefits of incorporating temporal data. Future work will extend this 

understanding by comparing the performance of multitemporal hyperspectral and multispectral 

data. By doing so, the impact of hyperspectral information on classification accuracy, 

particularly in relation to the spectral signature, can be better understood. This comparative 

analysis aims to identify the specific advantages and limitations of hyperspectral data over 

multispectral data in multi-temporal crop classification applications. By understanding these 

differences, it will be possible to achieve more precise and reliable classification outcomes. 

 

Another future research direction involves comparing different machine learning and deep 

learning methods to determine the most effective approach for multitemporal crop type 

classification using hyperspectral imagery. This comparison will help identify the best 

techniques for utilizing the extensive data provided by hyperspectral imagery and multi-

temporal analysis, further improving the precision and reliability of crop mapping. 
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7. ETHICAL CONSIDERATIONS, RISKS AND 

CONTINGENCIES 

This research focused on the potential for image classification using deep learning algorithms. 

The algorithm was trained on a large dataset of images and used to identify crops in images. 

The research had a number of ethical implications, which needed to be addressed. 

 

• Privacy and data security: 

The data from Flemish government is anonymized and publicly available. The data has been 

stored on the University of Twente's OneDrive and used in this thesis. 

 

• Citation practices: 

All references were properly cited to avoid plagiarism and acknowledge previous work. 

 

• The use of AI: 

During the preparation of this work, ChatGPT was used to know the background knowledge if 

I couldn’t understand the details of the previous papers. Grammarly helped me to correct the 

grammatical mistakes in my article. After using this tool, the content was reviewed and edited 

as needed, and I am fully responsible for the published content. 
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ANNEX 1. WAVELENGTH RANGE OF MERGING BANDS ON 

PRISMA IMAGERY 

 
Merge Bands Near-Infrared (VNIR) Bands Short-Wave Infrared (SWIR) Bands 

Band Min 
Wavelength 

Max 
Wavelength 

Band Min 
Wavelength 

Max 
Wavelength 

Band  Min 
Wavelength 

Max 
Wavelength 

1 402,57 411,42 1 402,57 411,42 
   

2 411,42 419,81 2 411,42 419,81 
   

3 419,81 427,56 3 419,81 427,56 
   

4 427,56 435,00 4 427,56 435,00 
   

5 435,00 442,34 5 435,00 442,34 
   

6 442,34 449,70 6 442,34 449,70 
   

7 449,70 457,06 7 449,70 457,06 
   

8 457,06 464,42 8 457,06 464,42 
   

9 464,42 471,71 9 464,42 471,71 
   

10 471,71 478,93 10 471,71 478,93 
   

11 478,93 486,17 11 478,93 486,17 
   

12 486,17 493,43 12 486,17 493,43 
   

13 493,43 500,79 13 493,43 500,79 
   

14 500,79 508,28 14 500,79 508,28 
   

15 508,28 515,80 15 508,28 515,80 
   

16 515,80 523,42 16 515,80 523,42 
   

17 523,42 531,18 17 523,42 531,18 
   

18 531,18 538,97 18 531,18 538,97 
   

19 538,97 546,90 19 538,97 546,90 
   

20 546,90 554,97 20 546,90 554,97 
   

21 554,97 563,11 21 554,97 563,11 
   

22 563,11 571,35 22 563,11 571,35 
   

23 571,35 579,67 23 571,35 579,67 
   

24 579,67 588,09 24 579,67 588,09 
   

25 588,09 596,68 25 588,09 596,68 
   

26 596,68 605,49 26 596,68 605,49 
   

27 605,49 614,34 27 605,49 614,34 
   

28 614,34 623,25 28 614,34 623,25 
   

29 623,25 632,23 29 623,25 632,23 
   

30 632,23 641,32 30 632,23 641,32 
   

31 641,32 650,69 31 641,32 650,69 
   

32 650,69 660,16 32 650,69 660,16 
   

33 660,16 669,68 33 660,16 669,68 
   

34 669,68 679,30 34 669,68 679,30 
   

35 679,30 689,13 35 679,30 689,13 
   

36 689,13 698,93 36 689,13 698,93 
   

37 698,93 708,73 37 698,93 708,73 
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38 708,73 718,80 38 708,73 718,80 
   

39 718,80 728,92 39 718,80 728,92 
   

40 728,92 739,05 40 728,92 739,05 
   

41 739,05 749,31 41 739,05 749,31 
   

42 749,31 759,66 42 749,31 759,66 
   

43 759,66 770,06 43 759,66 770,06 
   

44 770,06 780,47 44 770,06 780,47 
   

45 780,47 790,89 45 780,47 790,89 
   

46 790,89 801,42 46 790,89 801,42 
   

47 801,42 812,01 47 801,42 812,01 
   

48 812,01 822,62 48 812,01 822,62 
   

49 822,62 833,22 49 822,62 833,22 
   

50 833,22 843,87 50 833,22 843,87 
   

51 843,87 854,59 51 843,87 854,59 
   

52 854,59 865,36 52 854,59 865,36 
   

53 865,36 876,10 53 865,36 876,10 
   

54 876,10 886,77 54 876,10 886,77 
   

55 886,77 897,44 55 886,77 897,44 
   

56 897,44 908,12 56 897,44 908,12 
   

57 908,12 918,70 57 908,12 918,70 
   

58 918,70 929,03 58 918,70 929,03 
   

59 929,03 938,73 59 929,03 939,37 
   

60 938,73 947,38 60 939,37 950,45 3 939,34 947,38 

61 947,38 955,69 61 950,45 961,65 4 947,38 955,69 

62 955,69 964,91 62 961,65 972,20 5 955,69 964,91 

63 964,91 974,53 63 972,20 982,53 6 964,91 974,53 

64 974,53 984,07 
   

7 974,53 984,07 

65 984,07 993,91 
   

8 984,07 993,91 

66 993,91 1003,78 
   

9 993,91 1003,78 

67 1003,78 1013,59 
   

10 1003,78 1013,59 

68 1013,59 1023,94 
   

11 1013,59 1023,94 

69 1023,94 1033,67 
   

12 1023,94 1033,67 

70 1033,67 1042,83 
   

13 1033,67 1042,83 

71 1042,83 1052,62 
   

14 1042,83 1052,62 

72 1052,62 1062,68 
   

15 1052,62 1062,68 

73 1062,68 1073,01 
   

16 1062,68 1073,01 

74 1073,01 1083,49 
   

17 1073,01 1083,49 

75 1083,49 1094,02 
   

18 1083,49 1094,02 

76 1094,02 1104,58 
   

19 1094,02 1104,58 

77 1104,58 1115,28 
   

20 1104,58 1115,28 

78 1115,28 1125,99 
   

21 1115,28 1125,99 

79 1125,99 1136,69 
   

22 1125,99 1136,69 

80 1136,69 1147,36 
   

23 1136,69 1147,36 

81 1147,36 1158,16 
   

24 1147,36 1158,16 

82 1158,16 1169,20 
   

25 1158,16 1169,20 
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83 1169,20 1180,15 
   

26 1169,20 1180,15 

84 1180,15 1190,96 
   

27 1180,15 1190,96 

85 1190,96 1201,81 
   

28 1190,96 1201,81 

86 1201,81 1212,57 
   

29 1201,81 1212,57 

87 1212,57 1223,52 
   

30 1212,57 1223,52 

88 1223,52 1234,70 
   

31 1223,52 1234,70 

89 1234,70 1245,60 
   

32 1234,70 1245,60 

90 1245,60 1256,76 
   

33 1245,60 1256,76 

91 1256,76 1268,01 
   

34 1256,76 1268,01 

92 1268,01 1278,99 
   

35 1268,01 1278,99 

93 1278,99 1289,95 
   

36 1278,99 1289,95 

94 1289,95 1300,82 
   

37 1289,95 1300,82 

95 1300,82 1311,74 
   

38 1300,82 1311,74 

96 1311,74 1322,78 
   

39 1311,74 1322,78 

97 1322,78 1333,71 
   

40 1322,78 1333,71 

98 1333,71 1344,46 
   

41 1333,71 1344,46 

99 1344,46 1355,42 
   

42 1344,46 1355,42 

100 1355,42 1366,98 
   

43 1355,42 1366,98 

101 1366,98 1378,10 
   

44 1366,98 1378,10 

102 1378,10 1389,02 
   

45 1378,10 1389,02 

103 1389,02 1400,19 
   

46 1389,02 1400,19 

104 1400,19 1411,08 
   

47 1400,19 1411,08 

105 1411,08 1421,96 
   

48 1411,08 1421,96 

106 1421,96 1432,92 
   

49 1421,96 1432,92 

107 1432,92 1443,83 
   

50 1432,92 1443,83 

108 1443,83 1454,25 
   

51 1443,83 1454,25 

109 1454,25 1464,62 
   

52 1454,25 1464,62 

110 1464,62 1475,39 
   

53 1464,62 1475,39 

111 1475,39 1486,14 
   

54 1475,39 1486,14 

112 1486,14 1496,73 
   

55 1486,14 1496,73 

113 1496,73 1507,33 
   

56 1496,73 1507,33 

114 1507,33 1517,93 
   

57 1507,33 1517,93 

115 1517,93 1528,50 
   

58 1517,93 1528,50 

116 1528,50 1539,00 
   

59 1528,50 1539,00 

117 1539,00 1549,52 
   

60 1539,00 1549,52 

118 1549,52 1560,09 
   

61 1549,52 1560,09 

119 1560,09 1570,50 
   

62 1560,09 1570,50 

120 1570,50 1580,74 
   

63 1570,50 1580,74 

121 1580,74 1591,05 
   

64 1580,74 1591,05 

122 1591,05 1601,37 
   

65 1591,05 1601,37 

123 1601,37 1611,66 
   

66 1601,37 1611,66 

124 1611,66 1621,93 
   

67 1611,66 1621,93 

125 1621,93 1632,06 
   

68 1621,93 1632,06 

126 1632,06 1642,16 
   

69 1632,06 1642,16 

127 1642,16 1652,08 
   

70 1642,16 1652,08 
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128 1652,08 1662,06 
   

71 1652,08 1662,06 

129 1662,06 1672,25 
   

72 1662,06 1672,25 

130 1672,25 1682,37 
   

73 1672,25 1682,37 

131 1682,37 1692,36 
   

74 1682,37 1692,36 

132 1692,36 1702,19 
   

75 1692,36 1702,19 

133 1702,19 1711,98 
   

76 1702,19 1711,98 

134 1711,98 1721,76 
   

77 1711,98 1721,76 

135 1721,76 1731,57 
   

78 1721,76 1731,57 

136 1731,57 1741,35 
   

79 1731,57 1741,35 

137 1741,35 1751,03 
   

80 1741,35 1751,03 

138 1751,03 1760,67 
   

81 1751,03 1760,67 

139 1760,67 1770,32 
   

82 1760,67 1770,32 

140 1770,32 1779,92 
   

83 1770,32 1779,92 

141 1779,92 1789,34 
   

84 1779,92 1789,34 

142 1789,34 1798,77 
   

85 1789,34 1798,77 

143 1798,77 1808,32 
   

86 1798,77 1808,32 

144 1808,32 1817,75 
   

87 1808,32 1817,75 

145 1817,75 1827,23 
   

88 1817,75 1827,23 

146 1827,23 1836,68 
   

89 1827,23 1836,68 

147 1836,68 1845,94 
   

90 1836,68 1845,94 

148 1845,94 1855,06 
   

91 1845,94 1855,06 

149 1855,06 1863,87 
   

92 1855,06 1863,87 

150 1863,87 1873,46 
   

93 1863,87 1873,46 

151 1873,46 1882,91 
   

94 1873,46 1882,91 

152 1882,91 1891,59 
   

95 1882,91 1891,59 

153 1891,59 1900,51 
   

96 1891,59 1900,51 

154 1900,51 1909,62 
   

97 1900,51 1909,62 

155 1909,62 1918,84 
   

98 1909,62 1918,84 

156 1918,84 1927,82 
   

99 1918,84 1927,82 

157 1927,82 1936,69 
   

100 1927,82 1936,69 

158 1936,69 1945,51 
   

101 1936,69 1945,51 

159 1945,51 1954,26 
   

102 1945,51 1954,26 

160 1954,26 1962,98 
   

103 1954,26 1962,98 

161 1962,98 1971,68 
   

104 1962,98 1971,68 

162 1971,68 1980,43 
   

105 1971,68 1980,43 

163 1980,43 1989,20 
   

106 1980,43 1989,20 

164 1989,20 1997,83 
   

107 1989,20 1997,83 

165 1997,83 2006,39 
   

108 1997,83 2006,39 

166 2006,39 2014,99 
   

109 2006,39 2014,99 

167 2014,99 2023,52 
   

110 2014,99 2023,52 

168 2023,52 2031,99 
   

111 2023,52 2031,99 

169 2031,99 2040,47 
   

112 2031,99 2040,47 

170 2040,47 2048,84 
   

113 2040,47 2048,84 

171 2048,84 2057,19 
   

114 2048,84 2057,19 

172 2057,19 2065,59 
   

115 2057,19 2065,59 
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173 2065,59 2073,89 
   

116 2065,59 2073,89 

174 2073,89 2082,19 
   

117 2073,89 2082,19 

175 2082,19 2090,50 
   

118 2082,19 2090,50 

176 2090,50 2098,72 
   

119 2090,50 2098,72 

177 2098,72 2106,93 
   

120 2098,72 2106,93 

178 2106,93 2115,14 
   

121 2106,93 2115,14 

179 2115,14 2123,28 
   

122 2115,14 2123,28 

180 2123,28 2131,42 
   

123 2123,28 2131,42 

181 2131,42 2139,49 
   

124 2131,42 2139,49 

182 2139,49 2147,43 
   

125 2139,49 2147,43 

183 2147,43 2155,48 
   

126 2147,43 2155,48 

184 2155,48 2163,52 
   

127 2155,48 2163,52 

185 2163,52 2171,41 
   

128 2163,52 2171,41 

186 2171,41 2179,38 
   

129 2171,41 2179,38 

187 2179,38 2187,26 
   

130 2179,38 2187,26 

188 2187,26 2195,12 
   

131 2187,26 2195,12 

189 2195,12 2202,99 
   

132 2195,12 2202,99 

190 2202,99 2210,73 
   

133 2202,99 2210,73 

191 2210,73 2218,53 
   

134 2210,73 2218,53 

192 2218,53 2226,22 
   

135 2218,53 2226,22 

193 2226,22 2233,96 
   

136 2226,22 2233,96 

194 2233,96 2241,68 
   

137 2233,96 2241,68 

195 2241,68 2249,28 
   

138 2241,68 2249,28 

196 2249,28 2256,99 
   

139 2249,28 2256,99 

197 2256,99 2264,58 
   

140 2256,99 2264,58 

198 2264,58 2272,17 
   

141 2264,58 2272,17 

199 2272,17 2279,77 
   

142 2272,17 2279,77 

200 2279,77 2287,16 
   

143 2279,77 2287,16 

201 2287,16 2294,72 
   

144 2287,16 2294,72 

202 2294,72 2302,17 
   

145 2294,72 2302,17 

203 2302,17 2309,46 
   

146 2302,17 2309,46 

204 2309,46 2317,05 
   

147 2309,46 2317,05 

205 2317,05 2324,36 
   

148 2317,05 2324,36 

206 2324,36 2331,68 
   

149 2324,36 2331,68 

207 2331,68 2339,17 
   

150 2331,68 2339,17 

208 2339,17 2346,31 
   

151 2339,17 2346,31 

209 2346,31 2353,54 
   

152 2346,31 2353,54 

210 2353,54 2360,94 
   

153 2353,54 2360,94 

211 2360,94 2368,07 
   

154 2360,94 2368,07 

212 2368,07 2375,16 
   

155 2368,07 2375,16 

213 2375,16 2382,42 
   

156 2375,16 2382,42 

214 2382,42 2389,55 
   

157 2382,42 2389,55 

215 2389,55 2396,54 
   

158 2389,55 2396,54 

216 2396,54 2403,82 
   

159 2396,54 2403,82 

217 2403,82 2410,98 
   

160 2403,82 2410,98 
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218 2410,98 2417,80 
   

161 2410,98 2417,80 

219 2417,80 2424,95 
   

162 2417,80 2424,95 

220 2424,95 2432,11 
   

163 2424,95 2432,11 

221 2432,11 2438,97 
   

164 2432,11 2438,97 

222 2438,97 2445,77 
   

165 2438,97 2445,77 

223 2445,77 2452,86 
   

166 2445,77 2452,86 

224 2452,86 2459,81 
   

167 2452,86 2459,81 

225 2459,81 2466,33 
   

168 2459,81 2466,33 

226 2466,33 2473,34 
   

169 2466,33 2473,34 

227 2473,34 2480,42 
   

170 2473,34 2480,42 

228 2480,42 2487,01 
   

171 2480,42 2487,01 

229 2487,01 2493,67 
   

172 2487,01 2493,67 

230 2493,67 2500,56 
   

173 2493,67 2500,56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


