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ABSTRACT 

The Amazon Rainforest, crucial for global climate regulation and biodiversity, faces significant 
threats from deforestation and degradation. Traditional monitoring methods often lack precision 
and scalability, failing to capture the complex temporal dynamics of forest ecosystems. This study 
addresses these gaps by developing and implementing a deep-learning-based model to map forest 
regeneration areas in the Amazon Rainforest using satellite image time series. The methodology 
involved data pre-processing, model development, and performance evaluation using metrics such 
as accuracy, precision, recall, and F1-score. Precision-recall and ROC curves (AUC-ROC) were 
also employed to assess model performance. 

Time-series analysis is essential for understanding the temporal patterns of forest regeneration. We 
found that the hybrid transformer architecture outperformed the standard transformer model in 
distinguishing regenerated areas from other classes. The hybrid transformer model demonstrated 
superior performance, achieving an overall accuracy of 86.36% compared to the traditional 
transformer's 85.48%. The model achieved an F1-score of 0.863. When analysing longer periods, 
the hybrid transformer achieved an overall accuracy of 86.88%, a recall of 0.86, and a precision of 
0.86. According to the most accurate model, secondary forest occupies 6.4% of the research area 
and has a mapping accuracy of 86.38%, which aligns with previous studies. 

In conclusion, the hybrid transformer model is a valuable tool for conservation and management, 
providing precise and reliable maps of forest regeneration. Future research should continue 
investigating hybrid transformers that utilize both spatial and temporal data and explore more 
advanced deep-learning architectures, such as Long Short-Term Memory (LSTM) networks. 
additional features such as the Normalized Difference Vegetation Index (NDVI), which is crucial 
for differentiating vegetation from other classes Additionally, integrating other additional features 
such as the Normalized Difference Vegetation Index (NDVI), which is crucial for differentiating 
vegetation from other classes. 

Keywords: Deep-learning models, Forest regeneration, Satellite image time series, Performance 
metrics. 
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CHAPTER 1: INTRODUCTION 

1.1 Background  

Forests cover approximately one-third of the Earth's surface, or approximately 4 billion hectares, 
making them a critical component of our planet's ecosystem ( Dieterle, 2010; Katila et al., 2014; 
Lakshmi, 2015; Sukumar, 2008). They play a crucial role in regulating the carbon cycle by absorbing 
and storing carbon, which helps mitigate high atmospheric carbon dioxide concentrations 
(Reichstein et al., 2013). Carbon absorption is essential because it reduces the greenhouse effect, 
which is a major driver of global warming. Therefore, protecting and restoring forests is essential 
to mitigate climate change and reduce carbon emissions. 

Deforestation, driven by agricultural expansion, infrastructure development, and urbanization, is a 
significant environmental issue that threatens biodiversity and contributes to high levels of CO2 
emissions (Suding et al., 2014),  leading to loss of forest cover, exacerbation of climate change, and 
habitat damage. The Amazon Rainforest, the largest tropical rainforest in the world, covering 
approximately 5.5 million square kilometers, exemplifies this issue. It plays a vital role in global 
climate regulation and biodiversity. However, it faces severe threats from deforestation and 
degradation, which impact its capacity to function as a carbon sink (Brando et al., 2014; Lima et 
al., 2014), which is crucial for maintaining the health of the Amazon and its ability to regulate the 
global climate. 

In the Amazon, forests are severely affected by factors, such as agricultural expansion, illegal 
logging, and infrastructure development (Shiferaw & Suryabhagavan, 2019)). These activities not 
only cause local ecological disruptions but also have profound global implications, including climate 
change, biodiversity damage, carbon release, and diminishing the forest's role as a carbon sink (Coe 
et al. 2013). Consequently, addressing deforestation is essential for preserving the Amazon 
Rainforest and mitigating the effects of climate change (Nepstad et al., 2014). 

Forest regeneration is a vital process that helps forests recover and grow, enhancing the ability of 
the Amazon rainforest to absorb and store carbon dioxide from the atmosphere (Chazdon et al., 
2016). This process also conserves biodiversity and enhances ecosystem services, which are crucial 
for maintaining the balanced and stable functioning of ecosystems worldwide. By focusing on 
forest regeneration, the Amazon Rainforest can sequester carbon and support a diverse array of 
species, thereby contributing to the stabilization of the global climate.  

Traditional machine learning techniques such as K-Nearest Neighbors (KNN), Support Vector 
Machines (SVM), and Random Forests (RF) have been widely used for land use and land cover 
classification using satellite imagery (Bharghavi et al., 2023; Loganathan et al., 2021). Although 
these methods have proven to be effective in various applications, they are typically applied on a 
small scale and face challenges related to precision, accuracy, and time efficiency. Specifically, the 
limitations of these techniques become apparent when handling large datasets, resulting in reduced 
classification performance and increased computational demands. Consequently, although 
traditional machine-learning methods provide valuable insights, their scalability and efficiency 
highlight the need for more advanced approaches in large-scale remote-sensing applications. 

The integration of deep-learning techniques, specifically transformer and hybrid transformer neural 
networks, with satellite image time series analysis, represents a significant advancement in 
environmental monitoring, particularly in forest mapping. These models learn complex temporal 
patterns from large datasets and are powerful tools for analyzing time series from optical images, 
such as Landsat 5 and Landsat 8. Using Landsat images, this approach overcomes traditional 
limitations, such as spectral confusion in optical data, thereby improving the precision, accuracy, 
and effectiveness of forest regeneration mapping (Hirschmugl et al., 2020).  
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Previous research on mapping regeneration areas in the Amazon rainforest primarily relied on 
manual techniques and single-time-point analyses and lacked the precision and automation 
necessary for large-scale assessments (da Silva et al., 2023). This study aims to bridge this gap by 
evaluating two advanced deep-learning techniques: a hybrid transformer model and a transformer 
model. These models automate the process of image classification using satellite image time-series 
data from 2012 to 2021 instead of relying on single time slots. 

The advantage of this approach is its ability to capture temporal dynamics and reduce spectral 
confusion, which are common challenges in single-time-slot analyses. By improving the precision, 
accuracy, and effectiveness of forest regeneration mapping, this method not only enhances the 
reliability of results but also provides a robust tool for future research on secondary forest recovery 
in the Amazon rainforest. 

1.2 Main Objective 

The main objective of this research was to develop and implement a deep learning-based model 
for the analysis of satellite image time series for mapping forest regeneration areas. 

1.2.1 Specific Objectives: 

1. To explore deep learning-based models, specifically the transformer and hybrid 
transformer, to accurately identify and distinguish regeneration areas from other classes in 
the Amazon rainforest. 

2. To Assess the model's capability by analyzing time-series data over different time lengths, 
ensuring improved accuracy and a more realistic representation of  the regeneration area. 

3. Evaluate the best-performing models for mapping regenerated areas from the developed 
models. 

4. To quantify the area of  secondary forest across the entire study area based on the 
classification generated by the proposed method. 

1.3 Research questions 

1. Which of  the two deep learning architectures, transformer and hybrid transformer, is the 
most suitable for accurately differentiating regeneration areas from primary forests in the 
Amazon rainforest? 

2. What are the capabilities of  the model to effectively manage time-series data across varying 
time steps to achieve a more accurate and realistic representation of  regeneration in the 
Amazon rainforest?  

3. What is the performance of  the best-performing model for mapping regenerated areas 
from the developed models? 

4. To what extent is there a secondary forest across the entire study area, based on the 
classification generated by the proposed method? 

1.4 Scope of the study  

The scope of this research is to develop and evaluate two deep-learning-based models, specifically 
the transformer and hybrid transformer, using satellite image time series to identify regenerated 
areas from other classes in the Amazon Rainforest, particularly in Pará state. These models were 
evaluated to accurately map the regenerated areas by analyzing temporal information. This study 
aimed to accurately quantify secondary forests in Pará state and assess model performance using 
metrics such as accuracy, precision, recall, and AUC, as well as RoC and precision-recall curves. 
Key aspects of the methodology include model training using satellite temporal series data extracted 
from satellite image time series with tools such as Python and Google Earth Engine and employing 
ArcGIS for data visualization.  
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1.5 Thesis structure  

Chapter 1 provides an overview of the research including the study's background, problem 
statement, research gaps, research objectives, research questions, scope, and thesis structure. 
Section 2 presents a literature review. Section 3 describes the study area, datasets, and materials 
used. Chapter 4 discusses the methodology used to answer the research question. Chapter 5 
presents an analysis of the results and addresses the research question. The final section concludes 
this thesis and offers recommendations for future research. 
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CHAPTER 2: LITERATURE REVIEW  

2.1 Overview  

This literature review examines the various deep learning architectures used in the mapping of 
forest regeneration in the Amazon Rainforest. This chapter highlights how these models process 
temporal data, which are essential for accurately identifying regeneration areas. Understanding the 
capabilities and limitations of these technologies is crucial to improve forest management and 
conservation strategies.  

The Transformer model, introduced by Vaswani et al. (2017) for natural language processing (NLP) 
with a novel application of attention mechanisms, allows for efficient processing of sequential 
data  (Dosovitskiy et al., 2021). Unlike recurrent neural networks (RNNs), transformers can capture 
long-range dependencies without the limitations of sequential processing (Yan et al., 2023), making 
them faster and more effective for large datasets. Originally developed for natural language 
processing (NLP), these models have found significant applications in other domains, including 
image recognition and classification (Dosovitskiy et al., 2021). 

This architecture comprises an encoder and decoder, each consisting of multiple layers of self-
attention and feed-forward neural networks. The self-attention mechanism computes the 
relationships between different positions in the input sequence, enabling the model to focus on the 
relevant parts of the data. This mechanism is particularly useful for tasks that require understanding 
of the context and relationships within the data. Building on the success of Transformers in NLP, 
Dosovitskiy et al. (2021) applied transformer architecture to image recognition tasks by introducing 
a transformer. The transformer processes images as sequences of patches, analogous to tokens in 
NLP, which allows the model to capture long-range dependencies and global contexts more 
effectively than traditional convolutional neural networks (CNNs). By treating an image as a 
sequence of patches, such as words in a sentence, transformers can use their attention mechanisms 
to capture spatial relationships. This approach has been shown to outperform traditional CNNs 
for certain image classification and segmentation tasks. 

The Transformer model for image processing involves embedding each image patch into a high-
dimensional space and adding positional encodings to retain the spatial information. These 
embeddings are then processed by the transformer encoder, which learns the complex relationships 
between the patches. The output is used for various downstream tasks such as classification or 
segmentation. 

2.2 Case studies  

Table 1 summarizes various case studies involving different models used to analyze forest 
regeneration patterns and land cover classification. It highlights the specific capabilities of each 
model, their performance metrics such as overall accuracy, F1-Score, and AUC-ROC, and the 
relevant references for each study. 
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Table 1: Case studies related to work. 

Case Study Model Used Capabilities 

Performance 
Metrics 
(Accuracy, F1-
Score, AUC-
ROC) 

Reference 

Application of LSTM in 
Predicting Forest 
Regeneration Patterns in 
Tropical Forests 

LSTM 
Multi-temporal 
analysis across time 
length s 

Accuracy: 82%, 
F1-Score: 0.81, 
AUC-ROC: 
0.88 

(Ball et al., 
2022) 

GRU-Based Analysis of 
Secondary Forest 
Dynamics in the Amazon 
Basin  

GRU 
Single time length 
data input 

Accuracy: 85%, 
F1-Score: 0.84, 
AUC-ROC: 
0.90 

(Carvalho 
et al., 2019) 

Temporal Dynamics 
Analysis with RNN in 
North American Forests 

RNN  
Sequential data 
processing for 
long-term trends 

Accuracy: 76%, 
F1-Score: 0.74, 
AUC-ROC: 
0.80 

(Carvalho 
et al., 2019) 

Hybrid Transformer for 
Comprehensive Mapping 
of Forest Regeneration in 
Southeast Asia   

Hybrid 
Transformer 
and CNN) 

Integration of 
multispectral and 
radar data across 
two-time length s 

 

Accuracy: 89%, 
F1-Score: 0.88, 
AUC-ROC: 
0.93 

(Lucas et 
al., 2000) 

 

HyFormer:  Hybrid 
Transformer and CNN 
for Pixel-Level 
Multispectral Image Land 
Cover Classification in 
Changxing County and 
Nanxun District 

Hybrid 
Transformer 

Pixel-level 
classification of 
multispectral 
images  

Accuracy: 91%, 
F1-Score: 0.90, 
AUC-ROC: 
0.94  

 

(Yan et al., 
2023) 

 

2.3 Deep-learning Architectures for Time Series Data 

This section reviews case studies that apply advanced deep learning models to time-series data to 
map secondary forests. Table 2 summarizes the different models used along with their descriptions 
and limitations. 
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Table 2 : Summary of Deep-learning Architectures for Time Series Data 

Model Description Limitation Literature 

RNN 
(Recurrent 
Neural 
Network) 

Utilizes sequential data 
processing to maintain state 
information across inputs, 
suitable for modelling time-
dependent patterns. 

Prone to vanishing gradient 
problem, which can impede 
learning in long data 
sequences. 

(Park et al., 2020) 

(Noh, 2021 

LSTM (Long 
Short-Term 
Memory) 

Designed to overcome 
vanishing gradient issues in 
RNNs, enabling better 
performance on long sequence 
data. 

Computationally intensive, 
requiring more resources 
which can be a limitation in 
large-scale deployments. 

(Chandra et al., 
2021) 

GRU (Gated 
Recurrent 
Units) 

Provides a simplified 
architecture compared to 
LSTM, which requires fewer 
computational resources while 
achieving similar performance. 

Although efficient, may not 
capture complexities as 
effectively as LSTM in 
certain applications. 

(Chandra et al., 
2021) 

Hybrid 
Transformer 

Integrates convolutional neural 
layers for spatial data processing 
with transformer mechanisms 
for handling sequential data. 

High computational cost 
and requires large amounts 
of data to train effectively. 

(Ouyang et al., 
2023) 
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CHAPTER 3: STUDY AREA AND DATASETS 

In this section, we provide an overview of our study area, including its location, the datasets we used, 
and their availability. We explain each component in detail and discuss its significance in our research. 

3.1 Study area description  

This study was conducted in the Amazon rainforest of Pará State, Brazil. Geographically, the 
Amazon rainforest lies between the latitudes of 2°37'56.928" and 9°50'44.268" and the longitudes of 
58°53'53.7576" and 46°3'5.2308". Approximately 60% of the Amazon rainforest is in Brazil and 
covers an area of approximately 5.5 million square kilometers. The study area map is shown in the 
figure1. 

 

Figure 1: The study area is the Amazon rainforest in Pará State, Brazil. The large map highlights the study 

grid (red outline).  

Pará State is a vast state situated in the Amazon rainforest, making it challenging to simultaneously 
study the entire region. We chose a smaller area within Pará for our study because it has experienced 
high rates of deforestation and forest regeneration. Focusing on this specific area makes it easier to 
simplify the model, reduce processing time, and manage memory usage. 
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3.2 Datasets  

3.2.1 Reference Land Use and Land Cover Data  

The Land Use and Land Cover dataset was downloaded from the MapBiomas project 
(https://brasil.mapbiomas.org/).  These maps were downloaded in raster format using the WGS84 
spatial reference system (EPSG: 4326). The datasets were generated using machine learning 
algorithms supplemented by human interventions to improve accuracy. Table 3 provides an overview 
of these datasets along with their descriptions. Table 3 presents these datasets and their descriptions.  

Table 3: Datasets and sources used.  

  Dataset Source  Temporal  

1 Land Use and Land Cover Map   https://brasil.mapbiomas.org  2021 

2 Deforestation data from PRODES https://terrabrasilis.dpi.inpe.br 2021 

3 Satellite images  USGS Earth Explorer  2012-2021  

4 Brazil tiles  Brazill dataCube  2022 

5 Administrative boundaries  https://www.diva-gis.org 2022 

3.2.2 Satellite image 

We obtained images covering the period from 2012 to 2021 from satellites such as Landsat-5 and 
Landsat-8. These were freely acquired through the Google Earth Engine (GEE) from the European 
Space Agency (ESA) Earth Explorer or Open Access Hub. Landsat 5 TM has 7 bands, and Landsat 
8 OLI has 11 bands, as shown in Table 4. 

 

 

 

 

 

 

 

 

 

 

https://brasil.mapbiomas.org/
https://staging-brasil.mapbiomas.org/codigos-de-legenda/
https://terrabrasilis.dpi.inpe.br/en/download-2/
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Table 4: Optical Data characteristics for 5 TM Bands and Landsat 8 OLI/TIRS Bands 

Landsat 5 TM Bands Landsat 8 OLI/TIRS Bands 

Band 
Resolution 

Color  
Wavelength 

(µm) 
Band 

Resolution 

(m) 
Color 

Wavelength 

(µm) 
(m) 

  1 30 
Coastal/ 

0.435-0.451 
Aerosol 

1 30 Blue 0.45 -0.52  2 30 Blue 0.452-0.512 

2 30 Green 0.52 - 0.60 3 30 Green 0.533-0.590 

3 30 Red 0.63-0.69 4 30 Red 0.636-0.673 

4 30 NIR 0.76-0.90 5 30 NIR 1.566-1.651 

5 30 
SWIR-

1 
1.55 -1.75 6 30 SWIR-1 1.566-1.651 

6 60 TIR 10.4 -12.3 

10 

100, (for 

landsat5 

120) 

TIR-1 10.60-11.19 

11 100 TIR-2 11.50-12.51 

7 30 
SWIR-

2 
2.08 - 2.35 7 30 SWIR-2 2.107-2.294 

    8 15 Pan 0.503-0.676 

    9 30 Cirrus 1.363-1.384 

 

3.3 Availability and Materials  

Using Google Earth Engine, we downloaded Landsat-5 and 8 datasets from repositories, such as the 
USGS Earth Explorer (https://earthexplorer.usgs.gov/). Reference data was also available at 
https://mapbiomas.org, and we obtained Brazilian administrative boundaries from diva-gis.org.  
These repositories offer freely accessible data for research. To process and analyze these datasets, we 
used geospatial software packages, such as Google Earth Engine and ArcGIS Pro, for visualization. 
For data processing and analysis, we used Python with libraries, including Rasterio and PyTorch. We 
performed additional processing and analysis using computing resources equipped with 72 vCPU 
Intel x86-64 processors, 768 GB RAM, and an NVIDIA RTX A4000 GPU. 

 

https://earthexplorer.usgs.gov/
https://mapbiomas.org/
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CHAPTER 4: METHODOLOGY  

4.1 Overview of methodology  

Figure 2 provides an overview of the methods used in this study. Section 4.2 provides a thorough 
explanation and discussion of each part of the methodology, including data preprocessing, model 
architecture development, model training, and the application of these methods to predict forest 
regeneration in the study area.  

 

Figure 2: Overview of the methodology 
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4.2 Data pre-processing  

a) Satellite images  

In this section, we perform preprocessing tasks using the Google Earth Engine platform before 
downloading images. These tasks included atmospheric correction, cloud masking, and 
normalization. We selected the most informative spectral bands, red, green, blue, near-infrared 
(NIR), and short-wave infrared (SWIR) (Jin & Wang, 2019), to effectively distinguish forest 
regeneration and reduce the computational costs during model training. SWIR bands, which are 
sensitive to moisture content in vegetation and soil, are particularly valuable for land cover 
identification (Chuvieco et al., 2002; Wang et al., 2008). These bands are recognized for their ability 
to capture critical information about vegetation health, moisture content, and land cover changes 
(Rukhovich et al., 2022). 

b) Reference preparation 

Figure 3 illustrates the division of a large tile (211,200 m × 211,200 m) from the Brazil Data Cube 
into 64 smaller tiles, each measuring 26,400 m × 26,400 m. To make the data more manageable, we 
split the smaller tiles into three sets: 70% for training, 15% for validation, and 15% for testing. This 
distribution ensured that the model was trained on a substantial portion of the data, validated to 
prevent overfitting, and tested to evaluate its performance on unseen data. Consequently, this 
structured approach to ground-truth preparation enhances the reliability and robustness of the image 
classification model. 

 

Figure 3: Division of large tiles into 64 smaller tiles and splitting them into training (green), validation 

(orange), and testing (yellow) sets. 
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c) LULC maps and reclassification  

The maps included several classes, such as anthropic areas, primary vegetation, secondary forests, 
suppression of primary forests, recovery of secondary forests, and suppression of secondary 
forests. We grouped these classes into five new categories: anthropic, deforestation, primary forest, 
secondary forest, and water (see Figure 4). 

 

Figure 4: Reclassified LULC map from Mapbiomas data, showing anthropic areas (yellow), deforestation 

(red), primary forests (dark green), secondary forests (light green), and water (blue). 

After reclassification, we generated 2000 random points per class for the training set and 1000 
random points per class for both the testing and validation sets. We then extracted a temporal series 
of spectral features from five bands: blue, green, red, near-infrared (NIR), and short-wave infrared 
(SWIR). Before feeding the data to the model, we applied one-hot encoding to the categorical class 
labels. This technique converts each class label into a binary vector, making it easier for the model 
to read and classify data by indicating the presence or absence of each class. This one-hot encoding 
ensures that the model can reliably distinguish between different classes, thereby enhancing 
classification performance. Figure 5 shows the distributions of the training, validation, and testing 
points. 
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Figure 5: Distribution of random points for the training (green), testing (yellow), and validation (orange) 

sets after reclassification. 

4.3 Model Development  

In this section, we describe two deep-learning architectures, Transformer and Hybrid Transformer, 
which were explored and evaluated for their effectiveness in distinguishing regenerated areas from 
other classes. Once the predictions were made, the extent of the regenerated area was quantified.  

4.3.1 Transformer 

The Transformer model, originally developed for natural language processing (NLP) by (Dosovitskiy 
et al. (2020), was adapted for various image processing tasks. In this study, we employed a 
transformer to predict forest regeneration using satellite images.  

The model processes a one-dimensional sequence of pixels, with each sequence containing five 
spectral bands over varying time series lengths: a single image (t1), three time lengths (t3), five time 
lengths(t5), and ten time lengths(t10). The input data are first converted into dense vector 
embeddings and then projected into a higher-dimensional space, specifically, a multi-channel feature 
map. Positional information was added to maintain the sequence order.  

Temporal patterns were extracted using the multihead attention mechanism (Shih et al., 2018), and 
these combined patterns and positional embeddings were fed into the transformer encoders. Finally, 
the MLP (Multilayer Perceptron) head converts the embedded features into classification results. 
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Table 5 outlines the key components and layers of our transformer model, highlighting the 
transformation of the input data through convolutional operations, positional embeddings, multiread 
attention mechanisms, and final classification. 

Table 5: Transformer Model Architecture for Spectral Data that adapted from a study by Yan et al. (2023).  

Layer  Formula  Description  

input embeddings  X ∈ ℝ L∗5 Input 1 D sequence of pixels across five 
bands over different time lengths. 

linear projection   

Ei = W. Xi + b 

for i=1,….. L 

Each pixel sequence (of five spectral bands) 
is linearly projected into high-dimensional 
space. 

Positional embeddings  P ∈ ℝ L∗D Positional embeddings are added to the 
input sequence to encode positional 
information  

Adding Positional 
Information: 

Z = E + P 
 

Combines linearly projected embeddings 
with positional embeddings to form the 
input for the multi-head attention 
mechanism. 

Multi-head attention  (Q, K, V) = SoftMax(  
 

Applies multi-head attention to the input 
embeddings to focus on different relevant 
parts of the input sequence for making 
predictions 

Layer Normalization 
and Residual 
Connections 

FFN(x) =max (0, 
xW1+b1) W2+b2  
 

Applies multi-head attention to the input 
embeddings to focus on different relevant 
parts of the input sequence for making 
predictions 

MLP Dense (5, 
activation=′SoftMax′) 

 A multi-layer perceptron (MLP) with a 
dense layer of 5 units, using SoftMax 
activation to classify the input into one of 
five categories based on the learned features. 
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Figure 6:  Workflow of the Transformer model for forest classification across different time lengths. This 

methodology was partly inspired by Dosovitskiy et al. (2020). 

Figure 6: Steps of using a transformer model to analyze land cover changes over different time 
periods. The input raster maps were converted into a 1D sequence of pixels, which were then 
projected linearly and embedded in positional information. These embeddings are fed into the 
Transformer encoder, which processes the data to classify each pixel into one of five categories: 
anthropic, deforestation, primary forest, secondary forest, and water 

4.3.2 Hybrid Transformer 

Hybrid transformer architecture involves the integration of CNNs and transformers. Figure 7 depicts 
the hybrid transformer architecture used in this project to predict the one-dimensional pixel sequence 
of the five classes. This architecture focuses on temporal information using a CNN layer to capture 
temporal patterns and a transformer to capture temporal dependencies. 

We processed a one-dimensional pixel sequence of five classes over different time lengths, including 
t1, t3, t5, and t10. Each pixel was represented as a sequence of five spectral values. The input data 
are first fed into the CNN. Temporal patterns were extracted using a 2D CNN layer and embedded 
into a higher-dimensional space, specifically, a multi-channel feature map for further analysis using 
transformer blocks. The transformer combines the CNN-extracted temporal patterns with positional 
encoding, which are then fed into the transformer encoders. Finally, the MLP (Multilayer Perceptron) 
head converts the embedded features into classification results. 
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Figure 7: Hybrid Transformer architecture for predicting one-dimensional pixel sequences across five 

classes. The methodology was partly inspired by that adapted from Yan et al. (2023) 

Layer Details 

Table 6 presents a detailed list of the layers used in the hybrid transformer model. Each layer is 
described using its corresponding formula and functionality within the model. 
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Table 6: Transformer Model Architecture for Spectral data. This table was adapted from Yan et al. (2023). 

Layer Formula Description 

CNN Block 

  

2D convolution Y = Conv2D (X, W) Applies a 2D convolution over the input image to extract temporal information. 

Pixel-wise nonlinear 
activation 

Y = ReLU(X) Applies ReLU activation function to introduce non-linearity. 

Max-pooling Y = MaxPool(X) Downsamples the input along the temporal dimension by taking the maximum value 
over an input window (pooling window) for each channel. 

   

Transformer Encoder 

  

Adding Positional 
Information: 

Z = E + P Combines linearly projected embeddings with positional embeddings to form the 
input for the multi-head attention mechanism. 

Multi-head attention Z=E+P  Applies multi-head attention to the input embeddings to focus on different relevant 
parts of the input sequence for making predictions. 

Layer Normalization and 
Residual Connections 

(Q, K, V) = SoftMax 

(QKT/√𝒅𝒌 )V 

Applies layer normalization and adds the residual connections to stabilize and 
accelerate the training. 
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MLP Dense (5, 
activation='SoftMax') 

A multi-layer perceptron (MLP) with a dense layer of 5 units, using SoftMax 
activation to classify the input into one of five categories based on the learned 
features. 
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4.4 Loss function  

Cross-entropy is commonly used for multiclass image classification because of its ability to manage multiple 
categories (Andreieva & Shvai, 2021). It measures the model performance of the predicted class probabilities 
compared with the actual target classes for each pixel. Cross-entropy (L) was mathematically calculated as 
follows: 

𝐿 =  −
1

𝑁
 ∑ 𝑦𝑖𝑐  𝑀

𝑖=1 log(𝑝𝑖𝑐)                                                                                                                                (4. 1)  

 

Where N is samples, 𝑀 denotes the number of classes and 𝑦𝑖c is the sign function (0 or 1). If the true 

category of sample i is equal to c, take 1, otherwise take 0; 𝑝𝑖c is the predicted probability that the observed 

sample i belongs to category 𝑐. This formula quantifies the discrepancy between the predicted probabilities 
and actual class labels, thereby effectively guiding the model to improve its predictions.  

4.5 MODEL PERFORMANCE METRICS 

4.5.1 Overall Accuracy 

Overall accuracy is a fundamental metric used to evaluate the performance of classification models 
(Novakovic et al., 2017). This represents the proportion of correctly classified instances (both positive and 
negative) out of the total number of instances. Simply put, it measures how often the model makes correct 
predictions across all classes (Bharghavi et al., 2023). The formula for calculating overall accuracy is as follows 

 

𝑶𝒗𝒆𝒓𝒂𝒍𝒍 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑭𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
                                                                                                                (4.2) 

4.5.2 Precision, Recall, and F1-Score 

In addition to the overall accuracy, we analyzed the confusion matrix to derive other critical metrics, such as 
precision, recall, and F1-score. These metrics provide more detailed insights into the performance of the 
model, particularly in the context of imbalanced datasets. Using Eq. (4.2), we calculated the precision and 
recall for each class, as follows: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷+𝑭𝑷 
,𝑹𝒆𝒄𝒂𝒍𝒍 =

𝑻𝑷

𝑻𝑷+𝑭𝑷 
                                                                                                             (4.3) 

Where TP, FP, and FN are the total number of true positives, number of false positives, and number of false 
negatives, respectively.  

Precision indicates the proportion of correct positive predictions, whereas recall indicates the proportion of 
actual positive cases that were correctly identified by the classifier (Alvarez, 2002). The F1-score, which is the 
harmonic mean of the precision and recall, provides a single measure that balances the two metrics. 
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4.5.3 Receiver Operating Characteristic (ROC) Curve and Precision-Recall Curve 

To further evaluate the performance of our model, we generated a Receiver Operating Characteristic (ROC) 
curve and precision-recall curve. These curves provide additional insights into the ability of the model to 
distinguish between different classes, which is crucial when dealing with imbalanced datasets. 

 

𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 (𝑻𝑷𝑹) =
𝑻𝑷

𝑻𝑷+𝑭𝑷 
                                                                                                             (4.4)  

 𝑭𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆  =
𝑭𝑷

𝑻𝑷+𝑭𝑷 
                                                                                                                      (4.5) 

 

The ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) across various 
thresholds, helping to assess the model's overall discriminatory power. The Area Under the ROC Curve 
(AUC) was used as the summary statistic to quantify the overall performance of the model. 

Similarly, the precision-recall curve plots precision against recall for different thresholds, offering a more informative 
perspective, particularly in scenarios where the dataset is imbalanced. These curves, along with the calculated metrics, 
provide a comprehensive evaluation of our model’s performance, allowing us to identify both strengths and areas for 
potential improvement.  

4.6 Application to Full Image 

The trained models were applied to the entire Landsat image, which was preprocessed before making 
predictions for each pixel. The results were visualized as classified images to provide a detailed visual 
representation of the predicted land cover types across the landscape. This step demonstrated the practical 
application of the models in real-world scenarios. 

4.7 Post-processing and Analysis 

In the post-processing phase, we quantified the secondary forest by calculating the class statistics. We counted 
the pixels for each land cover class, calculated the area in square kilometers (km²), and determined the 
percentage of each land cover type. We then plotted a pie chart to visualize these proportions. 

𝑨𝒓𝒆𝒂 (𝒌𝒎𝟐) = 𝑝𝑖𝑥𝑒𝑙𝑐𝑜𝑢𝑛𝑡 𝑋 𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒                                                                                                         (4.6)      
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CHAPTER 5: RESULTS AND DISCUSSIONS 

5.1 Introduction 

This chapter presents the results obtained from the study and provides detailed findings, along with the research 
objectives and questions. The performance of the deep learning models, their accuracy, and the implications of these 
results for mapping forest regeneration were analyzed. 

The main objective of this research was to develop and implement a deep learning-based model for the analysis 
of satellite image time series to map forest regeneration areas. The results were organized according to specific 
objectives and research questions. 

5.2 Exploration of deep learning models 

To explore the effectiveness of deep learning models in identifying and distinguishing regenerated areas, we 
developed and tested two models: a transformer model and a hybrid transformer model. The transformer 
model uses self-attention mechanisms to capture global dependencies within the satellite image time series 
data, whereas the hybrid transformer model combines convolutional neural networks (CNN) with transformer 
layers to integrate both local and global feature extraction capabilities. The CNN layer was used to capture 
temporal patterns, and a transformer was used to capture temporal dependencies. Both models were trained 
on a dataset consisting of a 1D sequence of pixels across five bands over different time lengths, which were 
labelled into various classes such as anthropic, deforestation, primary forest, secondary forest, and water 
bodies.  

The evaluation metrics further demonstrated the superiority of the hybrid model, with an overall accuracy of 
86.38%, precision of 0.86, recall of 0.86, and F1-score of 0.86. In comparison, the traditional transformer 
achieved an overall accuracy of 85.48% with a precision of 0.86, recall of 0.85, and F1-score of 0.85.  The 
visual results shown in section 5.3.1 indicated the qualitative analysis of the predicted maps. 

5.3 Model capability with time series data over different time lengths 

In this study, we evaluated the performance of two models: the Transformer and the Hybrid Transformer in 
predicting regenerated areas in the Amazon rainforest using time-series data of varying lengths: a single time 
step (t1), three time steps (t3), five time steps (t5), and ten time steps (t10). We assessed each model's 
effectiveness through precision, recall, F1-score, and overall accuracy (see Table 7). 

At t1, the Transformer model achieved an F1-score of 0.71 with an overall accuracy of 70.80%, indicating its 
ability to identify some patterns but with limitations due to the short temporal context. The Hybrid 
Transformer performed slightly better, with an F1-score of 0.74 and an overall accuracy of 73.88%, likely due 
to its CNN layer, which captures local temporal patterns. 

As the time steps increased to t3, both models improved; the Transformer achieved an F1-score of 0.80 and 
an accuracy of 80.74%, while the Hybrid Transformer reached 0.88 and 81.76%, respectively. The Hybrid 
model’s architecture, combining CNN and Transformer layers, allowed for more effective utilization of 
temporal data, resulting in more accurate predictions. 

By t5, the Transformer’s F1-score rose to 0.83 with 83.70% accuracy, but the Hybrid Transformer continued 
to outperform it, achieving an F1-score of 0.84 and 85.50% accuracy. At t10, the Transformer peaked with 
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an F1-score of 0.85 and 85.48% accuracy, while the Hybrid Transformer maintained its lead with 0.86 and 
86.36%. 

Therefore, the Hybrid Transformer consistently outperformed the standard Transformer across all time steps 
due to its superior architecture, which effectively captures both local and long-term temporal patterns. This 
makes the Hybrid Transformer a more accurate and reliable model for predicting forest regeneration in the 
Amazon rainforest, especially when using extended time-series data. 

 

Table 7: Model capabilities with time series data on performance metrics over different time lengths (Using 
testing points) 

Time length (𝒕𝒊) Model  Precision Recall F1-score Overall  

accuracy (%) 

1 Transformer 0.71 0.71 0.71 70.80 

Hybrid Transformer 0.74 0.74 0.74 73.88 

3 Transformer 0.81 0.81 0.8 80.74 

Hybrid Transformer 0.83 0.82 0.88 81.76 

5 Transformer 0.84 0.83 0.83 83.70 

Hybrid Transformer 0.85 0.84 0.84 85.50 

10 Transformer 0.86 0.85 0.85 85.48 

Hybrid Transformer 0.86 0.86 0.86 86.36 

 

5.4 The performance of the best-performing model for mapping regenerated areas  

Once the model capabilities were tested and assessed, it became evident that both the Hybrid Transformer 
and the Traditional Transformer performed well at larger time steps. Given their strong performance at these 
extended time steps, particularly in classes with distinct spectral signatures, these two models were 
subsequently applied to predict forest regeneration across the Amazon rainforest. The following sections 
present a detailed evaluation of the models' performance in mapping regenerated areas using testing sample 
points and by assessing the accuracy using all pixels from predicted images corresponding to testing set tiles. 
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5.4.1 Evaluation using testing sample points  

The performance of the Hybrid Transformer and Traditional Transformer models for mapping regenerated 
areas is summarized in Tables 8 and 11. Overall, the Hybrid Transformer outperformed the Traditional 
Transformer across most land-cover classes, demonstrating higher accuracy, precision, recall, and F1 scores. 

In Table 8, the Hybrid Transformer exhibited strong performance in the water class, achieving a precision of 
97.80% and an F1 score of 97.85%. This indicates the model’s effectiveness in identifying water bodies, a 
land-cover class with distinct and consistent spectral signals. Similarly, in the primary forest class, the Hybrid 
Transformer excelled, with a precision of 79.94% and an F1 score of 86.5%. The model’s integration of CNN 
layers likely contributed to this success by enhancing its ability to capture and process local temporal patterns, 
which are crucial for accurately identifying stable land-cover types like primary forests. 

Despite its overall strong performance, the Hybrid Transformer encountered challenges in accurately 
classifying more complex classes, such as secondary forests and deforestation areas. In Table 8, the model’s 
precision for the deforestation class was 84.79%, with an F1 score of 81.58%, reflecting difficulties in 
distinguishing deforested areas. The Traditional Transformer struggled even more in this class, achieving a 
precision of 76.22% and an F1 score of 79.49%. 

Additionally, both models showed weaker performance in the secondary forest class, where the Hybrid 
Transformer achieved a precision of 81.65% and an F1 score of 81.32%, while the Traditional Transformer 
had a precision of 76.22% and an F1 score of 80.77%. These results underscore the complexities involved in 
classifying secondary forests, which often exhibit mixed or transitional spectral characteristics, making them 
challenging for both models. 

The Hybrid Transformer consistently demonstrated superior performance, particularly in classes with distinct 
and stable spectral signatures, such as water bodies and primary forests. However, both models showed 
limitations in more challenging classes like deforestation and secondary forests, where spectral variability and 
complexity are higher. These findings suggest that while the Hybrid Transformer is generally more reliable, 
further improvements are needed to enhance its accuracy in these difficult-to-classify areas. 
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Table 8: Performance of the hybrid model to map regenerated areas using test sample points. 

  hybrid transformer  Transformer  

Class 
Precisio
n (User)  

Recall 
(Producer
)  

F1-
Scor
e  

Overall 
Accuracy  

Precisio
n  

Recall 
(Producer
)  

F1-
Scor
e  

Overall 
Accurac
y  

Anthropic 87.98 87.8 87.89  84.41 88.8 86.55  

Deforestation 84.79 78.6 81.58  94.49 68.6 79.49  

Primary Forest 79.94 86.5 86.5  78.56 85.4 81.84  

Secondary Forest 81.65 81 81.32  76.22 85.9 80.77  

Water 97.8 97.9 97.85   97.92 98.7 98.31   

Overall Accuracy       86.36       85.48 

 

5.4.2 Assessing the accuracy using all pixels from predicted images corresponding to testing set tiles 

The classification capabilities of the Hybrid Transformer and Traditional Transformer models were evaluated 
using precision, recall, and F1 scores across various land-cover classes, as detailed in Table 9. The Hybrid 
Transformer generally outperformed the Traditional Transformer, achieving an overall accuracy of 81.087% 
compared to 79.346%. 

The Hybrid Transformer excelled in the anthropic class, with a precision of 99.42% and an F1 score of 
93.02%, and in the primary forest class, where it achieved a recall of 94.98% and an F1 score of 94.89%. This 
strong performance can be attributed to the model’s ability to capture clear and consistent spectral patterns 
through its CNN layers, making it particularly effective in classes with well-defined characteristics. 

However, the Hybrid Transformer showed limitations in the water class, where it recorded a precision of 
55.42% and an F1 score of 69.85%, and in the deforestation class, with a precision of 51.21% and an F1 score 
of 59.75%. These lower scores suggest challenges in classifying land-cover types with less distinct spectral 
signatures, likely due to variability and mixed signals within these categories. 

To improve performance in challenging classes such as water and deforestation, several strategies could be 
implemented. Enhancing the model’s training data with more representative samples, particularly in areas with 
high spectral variability, could help the model better distinguish these complex classes. Incorporating post-
classification smoothing techniques, such as spatial filtering methods like majority filtering, may reduce the 
impact of mixed pixels and improve the consistency of the model’s predictions. Additionally, integrating 
features such as NDVI, critical for vegetation analysis, could further enhance classification accuracy. 
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While the Traditional Transformer showed higher precision in the primary forest class (95.48%) with a higher 
F1 score of 97.61%, it suffered from significantly lower recall in the deforestation class (30.74%), suggesting 
a potential underestimation of this category. In secondary forests, the Hybrid Transformer’s balanced 
precision (64.95%), recall (67.73%), and F1 score (66.32%) demonstrate its robustness in handling complex, 
transitional land-cover types. Conversely, the Traditional Transformer struggled more with the spectral 
variability in these areas. 

Thus, while the Hybrid Transformer demonstrates strong performance in classes with distinct spectral 
signatures, both models face challenges in more complex environments. Addressing these limitations through 
improved data, post-classification techniques, and multi-temporal data integration could enhance their 
accuracy and robustness in diverse real-world applications. 

Table 9: Performance of the hybrid model for mapping regenerated areas.  

  Hybrid transformer  Transformer  

Class 
Precision 
(User) 

Recall 
(Producer) 

F1-
Score 

Overall 
Accuracy 
(%) 

Precision 
(User) 

Recall 
(Producer) 

F1-
Score 

Overall 
Accuracy 
(%) 

Anthropic 99.42 87.56 93.02  89.98 89.12 90  

Deforestation 51.21 71.82 59.75  38.97 30.74 51.45  

Primary 
Forest 

94.8 94.98 94.89  95.48 98.63 97.61  

Secondary 
Forest 

64.95 67.73 66.32  61.24 59.69 61.91  

Water 55.42 94.29 69.85   88.81 54.1 67.82   

Overall 
Accuracy 

      81.087       79.346 
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5.4.3 ROC curve and precision-recall curves  

I. Using testing points 
 
The evaluation of the Hybrid Transformer and Traditional Transformer models trained using sample points, 
through ROC and precision-recall curves provides valuable insights into their classification capabilities. The 
ROC curve's AUC values, ranging from 0 to 1, serve as a key metric for assessing model performance, where 
an AUC closer to 1 indicates excellent predictive ability, while values around 0.5 suggest random guessing, 
and below 0.5 indicate poor performance. In this study, the ROC curves demonstrated the superiority of the 
Hybrid Transformer, which achieved impressive AUC values of 0.97 for anthropic, 0.95 for deforestation, 
0.967 for primary forest, 0.96 for secondary forest, and 1.00 for water. These results reflect the model's robust 
classification capabilities, particularly in distinguishing between different land-cover types. 

However, a critical analysis reveals that while the Hybrid Transformer performs exceptionally well in most 
classes, its performance in the deforestation class, although strong with an AUC of 0.95, still indicates areas 
for improvement. The inherent complexity and spectral variability within deforested areas might introduce 
challenges in maintaining high classification accuracy. The Traditional Transformer, in contrast, showed 
generally lower AUC values, particularly in the deforestation class (0.85), which emphasizes the advantage of 
the hybrid approach but also highlights the necessity for enhanced methodologies to handle difficult classes 
like deforestation and secondary forests. 

The precision-recall curves offer additional insights into the models' effectiveness. For the Hybrid 
Transformer, the anthropic class displayed a high AUC of 0.92, indicating excellent precision across various 
recall levels, underscoring the model's strength in handling this relatively straightforward class. However, the 
deforestation class, with an AUC of 0.92, although balanced, showed some precision loss at higher recall 
levels. This suggests that while the model is generally robust, the nuanced characteristics of deforested areas 
require further refinement, possibly through more sophisticated feature extraction or enhanced training data 
that better represents these complex environments. 

In contrast, the Traditional Transformer’s performance, particularly in the deforestation class with an AUC 
of just 0.56, reveals significant limitations. The sharp drop in precision at higher recall levels suggests that the 
model struggles considerably with the spectral complexity and variability inherent in deforestation areas, likely 
leading to a higher rate of misclassifications. This highlights a crucial weakness that must be addressed if the 
model is to be effectively applied in more complex, real-world scenarios. 
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Figure 8: ROC curves for Transformer and Hybrid Transformer 

Precision-recall curves were also used to represent high-performance models in forest regeneration mapping. 
The blue curve (Anthropic, AUC = 0.92) showed high precision across different recall levels. The red curve 
(Deforestation, AUC = 0.92) indicates balanced precision and recall. The green curve (Primary Forest, AUC 
= 0.88) showed a good performance, although there was a slight drop in precision at higher recall levels. The 
purple curve (Secondary Forest, AUC = 0.86) shows lower performance with challenges in maintaining high 
precision at higher recall. 

 

Figure 9: Precision-Recall curves for Transformer and Hybrid Transformer  

 

II. Precision-Recall Curves 

For the hybrid transformer model using testing points, the precision-recall curve for the anthropic class 
showed an AUC of 0.92, indicating excellent precision across various recall levels. The deforestation class had 
an AUC of 0.87, showing balanced precision and recall, with some decreases at higher recall levels. The 
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primary forest class exhibited an AUC of 0.79, reflecting a good performance with a slight drop in precision 
at higher recall levels. The secondary forest class showed strong performance, with an AUC of 0.92, but faced 
challenges in maintaining high precision at higher recall levels. The water class demonstrated excellent 
precision and recall with an AUC of 0.92. 

In comparison, the transformer model using the testing points yielded different results. The anthropic class 
had a precision-recall curve AUC of 0.90, indicating high precision but slightly lower than that of the hybrid 
model. The deforestation class exhibited poor performance, with an AUC of 0.56, indicating a significant drop 
in precision at higher recall levels. The primary forest class performed very well, with an AUC of 0.97, 
indicating very high precision and recall. However, the secondary forest class reflects poor performance, with 
an AUC of 0.45. The water class showed a moderate performance, with an AUC of 0.71. 

III. ROC-AUC Curves 

For the hybrid transformer model using testing points, the ROC curves revealed high AUC values across all 
classes: 0.97, 0.95, 0.97 for primary forest, 0.96 for secondary forest, and 1.00. These values indicate excellent 
classification performance, particularly for water, primary forest, and anthropic classes. 

In comparison, the transformer model using testing points showed lower AUC values: 0.94 for anthropic, 0.85 for 
deforestation, 0.95 for primary forest, 0.89 for secondary forest, and 1.00 for water. Although the performance is good, 
it is noticeably lower for deforestation and secondary forest classes compared to the hybrid transformer model. 

IV. Comparative Evaluation of Model Performance Using Accuracy Metrics, precision-recall and ROC-AUC 
Analysis 

The relationship between the evaluation techniques in sections 5.3.1 and 5.3.3 is evident, as both assess the 
performance of the Hybrid Transformer and Traditional Transformer models. Section 5.3.1 evaluates the 
models using traditional accuracy metrics such as precision, recall, and F1 scores based on testing sample 
points. In contrast, section 5.3.3 offers a more detailed assessment through ROC-AUC and precision-recall 
curves. These complementary approaches provide a comprehensive understanding of each model's 
performance across various land-cover classes. 

Both sections highlight the Hybrid Transformer’s strong performance in the water class. In section 5.3.1, the 
Hybrid Transformer achieved a precision of 97.80% and an F1 score of 97.85%, which aligns with the perfect 
AUC of 1.00 observed in section 5.3.3, underscoring the model’s reliability in handling distinct and consistent 
spectral signatures. 

The deforestation class presents more complexity. In section 5.3.1, the Hybrid Transformer’s precision was 
84.79%, with an F1 score of 81.58%, consistent with an AUC of 0.95 in section 5.3.3. These results suggest 
areas for refinement, particularly in classes with high spectral variability. 

Similarly, for the primary forest class, section 5.3.1 reports a precision of 79.94% and an F1 score of 86.5%, 
which aligns with an AUC of 0.967 in section 5.3.3, indicating robust performance. Challenges in classifying 
secondary forests are evident in both sections, where precision, F1 scores, and AUC values suggest the need 
for further improvement. Overall, the findings in both sections align, reinforcing that while the Hybrid 
Transformer is generally reliable, there is room for enhancement, especially in more challenging land-cover 
classes. 
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5.5 Qualitative analysis of the results 

I. Predicted maps made by Hybrid and Transformer Models 
 
Figure 10 provides a visual comparison between the reference data (a) and the predictions made by two 
different models: the transformer (c) and the Hybrid Transformer (b). Both models utilised temporal 
information and classified the data into five distinct categories: anthropic, deforestation, primary forest, 
secondary forest, and water. A close inspection reveals that the Hybrid Transformer model more accurately 
maps the regenerated areas than the traditional transformer model by capturing finer details and showing 
fewer misclassifications, particularly in areas transitioning from deforestation to secondary forests. 
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Figure 10: Depicts predicted and reference maps for forest regeneration 
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II. Identifying areas of accurate prediction 

 

To evaluate the classification performance of the Hybrid Transformer and Standard Transformer models, we 
conducted an in-depth analysis using historical Landsat images from 2012, recent images from 2021, and 
predicted maps for 2021. The analysis involved visually comparing reference data with predictions from both 
models, identifying areas of accurate and inaccurate classification, as illustrated in Figures 11 and 12. 

The Hybrid Transformer model strongly aligned with reference data, particularly in regions classified as 
primary and secondary forests (see Figures 11 and 12). This accuracy is attributed to the model’s integration 
of Convolutional Neural Networks (CNNs), which effectively process local temporal patterns. The CNN 
layers enable the model to capture subtle variations in vegetation growth, crucial for distinguishing between 
primary and secondary forests. 

In contrast, the Standard Transformer, which lacks CNN layers and relies on processing sequential temporal 
dependencies, often overestimates the extent of secondary forests (see Figure 12). The Standard Transformer 
also faces challenges in distinguishing between secondary and primary forests due to their spectral similarities, 
resulting in higher rates of misclassification.  

The Hybrid Transformer, by combining CNNs for local temporal analysis with transformers for sequential 
dependency processing, proves more ability for managing these challenges. This dual approach allows the 
Hybrid Transformer to provide more accurate classifications, especially in complex and transitional areas like 
secondary forests and deforestation zones. While both models performed reasonably well in identifying water 
bodies, the Hybrid Transformer had a slight edge, consistently capturing temporal variations across seasons, 
resulting in more precise classifications. 

Therefore, the Hybrid Transformer outperforms the Standard Transformer in overall classification accuracy, 
particularly in complex areas like secondary forests. Its superior performance stems from the integration of 
CNN layers for enhanced local temporal pattern recognition and the transformer’s ability to process sequential 
data, leading to more accurate and reliable land cover classifications. 
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Figure 11: Comparison of model predictions with reference data and historical Landsat images (a)
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Figure 12: Comparison of model predictions with reference data and historical Landsat images (b).
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I. Inaccurate predictions  
 

Despite the overall strong performance of the Hybrid Transformer model, some regions exhibited 
poor predictions. Figure 9 highlights areas where both the Hybrid Transformer and Standard 
Transformer models did not align well with the reference data. 

These inaccuracies are largely due to uncertainties in the reference data (see Figure 13 and 14), which 
can confuse the classifiers and negatively impact the models' performance. While the Hybrid 
transformer generally performed better, it still encountered challenges in areas where reference data 
noise was more pronounced. In these cases, the model's predictions deviated from the reference data, 
leading to both overestimations and underestimations. 

The Standard Transformer exhibited even greater difficulties, particularly in handling complex 
temporal patterns. Its reliance on sequential temporal processing, without the ability to process 
localized temporal variations effectively, made it more prone to misclassifications. This often resulted 
in a mismatch between the model's predictions and the reference data, further highlighting the 
limitations of the Standard Transformer in accurately capturing intricate land-cover changes. 

To address these issues, future work should focus on improving the quality and accuracy of reference 
maps, particularly by filtering out transition noise and ensuring more consistent classification of similar 
land-cover types. By refining the reference data, the models could achieve greater alignment with 
actual land cover, reducing misclassifications and improving overall predictive accuracy. 

 

 



DEEP-LEARNINGDEEP-LEARNING-BASED ANALYSIS OF SATELITES IMAGE TIME SERIES FOR MAPPING FOREST REGENERATION IN AMAZON RAINFOREST   

 

34 

 

 

Figure 13:  Visual comparison of model predictions with reference data, showing better alignment by the 

Hybrid Transformer over the Standard Transformer (a) 
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Figure 14:  Visual comparison of model predictions with reference data, showing better alignment by the 

Hybrid Transformer over the Standard Transformer (b) 

5.6 Objective 4: Quantify the Extent of Secondary Forest 

The extent of the secondary forest within the study area was quantified using predictions from the 
best-performing model, which demonstrated a high overall accuracy of 86.38%. The results indicated 
that secondary forest covered 6.4% of the total study area. Other land cover classes were distributed 
as follows: primary forest (73.2%), water bodies (1.2%), anthropogenic zones (11.5%), and areas of 
deforestation (7.6%). These findings underscore the model's capability in accurately predicting and 
quantifying various land cover types, particularly secondary forests, providing critical insights for 
environmental monitoring and forest management. 

However, it is important to acknowledge that these predictions come with inherent uncertainties. 
While the model's high accuracy indicates reliable performance, the 13.62% error rate suggests 
potential misclassifications that might impact the accuracy of predicted secondary forest and other 
land cover extents. This is especially relevant in areas where land cover classes share similar spectral 
characteristics, like primary and secondary forests or deforested areas, where the model could 
overestimate or underestimate actual reference data. 
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Figure 15:  : Extent of secondary forest compared with other classes 
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CHAPTER 6: DISCUSSIONS AND IMPLICATIONS 

DISCUSSIONS  

Research Question 1: Comparative Performance of Transformer and Hybrid Transformer Models. 

Here, the main objective was to compare the performance of two deep-learning architectures, the 
transformer and the hybrid transformer, to determine which is more suitable for accurately 
differentiating regeneration areas from other classes in the Amazon rainforest. 

The results indicated that the hybrid transformer consistently outperformed the traditional 
transformer across all evaluated metrics, particularly in its ability to integrate temporal and spectral 
information effectively. On the one hand, the hybrid transformer achieved an overall accuracy of 
86.36%, compared to 85.48% for the traditional transformer. This performance advantage is largely 
attributed to the integration of CNN layers within the hybrid model, which allowed it to capture local 
temporal patterns more efficiently.  

On the other hand, the traditional transformer indicated its strength in capturing broader temporal 
dependencies without the need for detailed local pattern extraction, which is why its accuracy is low 
compared to a hybrid transformer.  These findings align with previous research conducted by Li et al. 
(2022); Liang et al. (2023) and Ma et al. (2022), which has shown that hybrid models often yield better 
results across various domains by combining different modelling techniques. 

Research Question 2: Effectiveness of Handling Time-Series Data Over Different Time Steps 

The purpose of this question was to assess how well the models handle time-series data over different 
time steps and how this affects their accuracy and representation of regeneration in the Amazon 
rainforest. 

Here, the findings revealed that the hybrid transformer is highly effective in utilizing long time-series 
data, leading to more accurate predictions of forest regeneration in the Amazon rainforest. As the 
period increased from single-time steps (t1) to ten-time steps (t10), the model's performance 
consistently improved, indicating its ability to capture long-term trends and subtle changes over time. 
This capability to model complex temporal dynamics is essential for accurately representing the 
gradual and nuanced processes involved in forest regeneration. 

In terms of performance metrics, the hybrid transformer achieved an overall accuracy of 86.36%, with 
precision, recall, and F1-scores all at 0.86. In contrast, the standard transformer recorded an overall 
accuracy of 85.48%, with a precision of 0.86, recall of 0.85, and F1-score of 0.85. This improvement 
is attributed to the hybrid model's effective integration of both temporal and spectral information 
across different periods, significantly enhancing its prediction accuracy.  

The reason the hybrid transformer outperforms the standard transformer is due to the integration of 
Convolutional Neural Network (CNN) layers within its architecture. These CNN layers enable the 
model to capture local temporal patterns more effectively, while the transformer layers focus on 
processing and understanding local temporal dependencies. This approach aligns with previous studies 
by Li et al. (2020) that emphasize the advantages of combining CNN and transformer technologies 
for time-series analysis.  
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Although the hybrid transformer is very effective for mapping forest regeneration, it performs poorly 
when dealing with a small number of images or short time lengths. For instance, when processing 
single time steps (t1), the hybrid transformer, while still better than the traditional transformer, showed 
a noticeable decline in performance. This decline is attributed to the lack of adequate temporal 
dependencies when analyzing changes over time. Consequently, the hybrid transformer achieved a 
precision, recall, and F1-score of 0.74, with an overall accuracy of 73.88%, compared to the traditional 
transformer's precision, recall, and F1-score of 0.71 and an overall accuracy of 70.80%. 

Despite the clear advantages of the hybrid transformer in handling long time-series data, there are 
significant challenges related to its computational demands. The integration of CNN and transformer 
layers, especially over extensive time steps, increases the computational burden, which can be a major 
obstacle in resource-limited settings. This high computational requirement may restrict the model's 
application in real-time environments or in areas with limited technological infrastructure, where rapid 
data processing is essential. 

Research Question 3: The Best-Performing Model in Mapping Regenerated Areas 

The purpose of this question was to evaluate the performance of the hybrid transformer, identified as 
the best model from previous analyses (RQ1 and RQ2), in mapping secondary forests and other land-
cover classes within the Amazon rainforest. The findings from our study demonstrate that the hybrid 
transformer model outperforms the traditional transformer in this task, particularly in distinguishing 
secondary forests from other land-cover types. 

The hybrid transformer’s performance was assessed using both testing points and test tiles, and in 
both scenarios, the model consistently demonstrated superior accuracy and F1 scores compared to 
the traditional transformer. These results align with earlier research that emphasized the advantages 
of combining CNN layers with transformer architectures for complex environmental tasks (Li et al., 
2022; Liang et al., 2023). In our study, the hybrid transformer achieved an overall accuracy (OA) of 
86.36% with testing points, surpassing the traditional transformer’s OA of 85.48%. This result aligns 
with earlier work by Ouyang et al. (2023),where advanced hybrid models demonstrated improved 
accuracy in remote sensing tasks, attributed to their ability to capture both local and global features in 
time-series data. 

Notably, in the critical category of secondary forests, the hybrid transformer recorded a precision of 
81.65%, a recall of 81.0%, and an F1 score of 81.32%, outperforming the traditional transformer. This 
performance improvement is consistent with earlier studies such as that of (Ouyang et al., 2023) which 
highlighted the hybrid transformer’s superior capability in handling complex, multi-temporal data. The 
model’s ability to integrate both CNN and transformer layers allowed it to better differentiate 
secondary forests, which are often difficult to classify due to their spectral similarities with other land-
cover types. 

Similarly, when evaluated using test tiles, the hybrid transformer continued to show superior 
performance with an overall accuracy of 81.087%, compared to 79.346% for the traditional 
transformer. In secondary forests, it achieved a precision of 64.95% and an F1 score of 66.32%, again 
reflecting the model’s enhanced ability to process and analyze complex temporal patterns. This aligns 
with previous research by Zhou et al. (2019), who demonstrated that models incorporating both 
temporal features tend to perform better in detecting subtle changes in land cover. 
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The hybrid transformer excelled in well-defined classes like water and anthropic areas, achieving high 
precision and F1 scores. This success can be attributed to the distinct spectral signatures of these 
classes, which the model effectively captures through its CNN layers. However, the model’s 
performance was more variable in complex classes like deforestation and secondary forests. These 
areas are challenging due to variability in spectral characteristics, driven by factors such as vegetation 
regrowth and human activities, issues similarly noted in earlier studies by Liu et al., (2021). 

In fact, misclassification became particularly evident when secondary forests shared similar spectral 
features with other land-cover types, leading to overlaps and false positives. This challenge poses a 
limitation of the current model. To address this, one potential improvement could involve integrating 
additional features such as the Normalized Difference Vegetation Index (NDVI), which is crucial for 
differentiating vegetation from other classes. As demonstrated by Kwan et al. (2020), the integration 
of NDVI into models significantly improves their ability to differentiate between vegetative and non-
vegetative areas, thereby reducing the risk of misclassification. 

Research Question 4: To what extent is there secondary forest in the entire study area? 

In addressing Research Question 4, our study quantified the extent of secondary forest within the 
entire study area using predictions from the best-performing model, which demonstrated a high 
overall accuracy of 86.38%. The analysis revealed that secondary forests covered 6.4% of the total 
study area. The distribution of other land cover classes was as follows: primary forest (73.2%), water 
bodies (1.2%), anthropogenic zones (11.5%), and areas of deforestation (7.6%). These findings 
highlight the effectiveness of the hybrid transformer model in accurately identifying and quantifying 
various land cover classes, offering valuable insights for environmental monitoring and forest 
management. 

The accurate quantification of secondary forest cover is essential for understanding forest recovery 
dynamics and guiding reforestation efforts. Secondary forests play a crucial role in the ecological 
landscape, as they represent areas where natural regeneration is occurring, contributing to biodiversity 
conservation, carbon sequestration, and the maintenance of hydrological cycles. By providing a precise 
estimate of secondary forest extent, our model supports the evaluation of the success of natural 
regeneration and reforestation initiatives, which is vital for the effective monitoring of forest dynamics. 

The ability to accurately map and quantify secondary forests also informs the development of 
conservation strategies and policies. Understanding the spatial distribution and extent of secondary 
forests allows policymakers and conservationists to prioritize areas for protection, restoration, or 
further intervention. For instance, areas identified as secondary forests may require different 
management approaches compared to primary forests or deforested regions, depending on their stage 
of regeneration. 

 

 

IMPLICATIONS 

The high performance of the hybrid transformer model in distinguishing secondary forests from other 
land-cover classes highlights its potential as a valuable tool for environmental monitoring, forest 
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management, and sustainability efforts. Its accuracy in mapping regenerated areas supports the 
continuous monitoring of forest dynamics in the Amazon rainforest, which is essential for informed 
decision-making regarding ecosystem protection and restoration. 

In the Amazon, where forest recovery is crucial for biodiversity, carbon sequestration, and 
hydrological cycles, the hybrid transformer model's data can be instrumental in evaluating 
reforestation projects and guiding conservation strategies. Its ability to differentiate between various 
stages of forest regeneration enhances conservation planning by identifying areas that are successfully 
regenerating and those requiring targeted intervention or changes in land management practices. 

Moreover, the model’s application in mapping regenerated areas has broader implications for 
sustainable forest management. By providing accurate and timely data on forest recovery, the model 
can inform policy decisions aimed at achieving sustainability goals. This is particularly relevant for 
climate change mitigation, where understanding the extent of secondary forests is vital for assessing 
carbon sequestration potential and setting realistic carbon offset targets. 

The hybrid transformer’s consistent performance across various land-cover classes suggests it could 
be a valuable tool for monitoring other critical ecosystems. Its ability to provide detailed and accurate 
mapping of complex landscapes makes it a powerful asset for global conservation efforts, particularly 
in regions experiencing rapid environmental changes where timely and precise data is crucial. 
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CHAPTER 7: CONCLUSION AND RECOMMENDATION 

7.1 Conclusion 

This study aimed to evaluate the effectiveness of transformer-based deep learning architectures, 
specifically the hybrid transformer model, in distinguishing regeneration areas from other land-cover 
classes in the Amazon rainforest. The research focused on comparing the traditional transformer 
model and the hybrid transformer model and assessing their performance across various time lengths 
(t1, t3, t5, and t10) to predict forest regeneration accurately. 

The hybrid transformer model demonstrated superior performance compared with the traditional 
transformer model. The integration of CNN layers in the hybrid model allowed for more efficient 
capture of local temporal patterns, enhancing feature extraction and overall accuracy. The hybrid 
transformer consistently outperformed the traditional transformer across all metrics, achieving an 
overall accuracy of 86.36% compared with 85.48% for the transformer. The precision, recall, and F1-
score metrics also showed superior performance for the hybrid transformer, particularly at longer time 
lengths. 

The study also highlighted the capability of the hybrid transformer to handle extended time-series 
data, providing a more accurate and realistic representation of regeneration dynamics. The ability of 
this model to integrate temporal information across multiple time lengths significantly improved its 
predictive performance, in agreement with previous studies that combined CNNs and transformers 
for better results in time-series analysis tasks. 

In terms of mapping regenerated areas, the hybrid transformer's higher performance metrics indicate 
its effectiveness. The model achieved a precision of 64.95%, recall of 67.73%, and F1 score of 66.32% 
for secondary forest mapping, supporting its application in large-scale environmental monitoring and 
deforestation assessment. Accurate quantification of secondary forest cover is crucial for 
understanding forest recovery and for guiding reforestation efforts, particularly in the Amazon 
rainforest. 

The extent of secondary forest within the study area was quantified using the hybrid transformer 
model, which revealed that secondary forest covers 6.4% of the total study area. Accurate 
quantification is vital for assessing the success of natural regeneration and reforestation initiatives, 
providing essential data for the effective monitoring of forest dynamics and formulating conservation 
strategies. 

7.2 Recommendations for Future Research 

Exploration of other deep-learning architectures: Future research should focus on models like 
CNN-transformer and LSTM networks that explicitly incorporate spatial dimensions, improving the 
accuracy and efficiency of forest regeneration mapping. 

Extended Time Series Data Analysis: Future studies should continue to explore the potential of 
hybrid transformer models for handling extended time-series data. This approach provides a more 
realistic representation of forest dynamics and can significantly improve the predictive accuracy. 
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Integration with Additional Data Sources: To improve the model's predictive accuracy and 
robustness, combining satellite imagery with features such as Digital Elevation Model (DEM) data is 
recommended. This integration can help to reduce the effects of topography on data acquisition, 
leading to more accurate predictions. 

Inclusion of Comprehensive Field Surveys: Owing to the current limitations imposed by 
inaccuracies in the reference data, it is advised that future research includes comprehensive field 
surveys. These surveys should aim to collect more precise and reliable data, which will help validate 
and refine the model's predictions, ensuring better alignment with real-world conditions. 

7.3 Ethical Considerations 

This study strictly followed ethical standards in accordance with the Research Ethics Policy of the 
University of Twente. The following points were considered in this study.  

Data Privacy and Security: This study utilized open-source datasets in which satellite images such 
as Landsat 5 and 8 were freely and publicly accessible. Data acquisition methods were scrutinized to 
ensure that the data were representative, unbiased, and comprehensive, encompassing all relevant 
variables, without any undue exclusions. Efforts were made to verify the accuracy and completeness 
of the data through rigorous pre-processing steps, including data cleaning, handling missing values, 
and removing outliers that could distort the performance of the model. 

Moreover, the ethical use of data sources was considered, ensuring that all data were obtained and 
utilized in compliance with legal and ethical standards, including obtaining the necessary permissions 
and ensuring the privacy and confidentiality of any sensitive information. Regular audits and validation 
checks were performed to maintain data integrity and reliability throughout the data-handling process. 

Acknowledgement of Previous Research: All previous research related to this study has been 
properly acknowledged and referenced in the body of the text and the list of references. This aspect 
respects the contributions of other researchers and maintains their academic integrity. By recognizing 
the work of others, this study upholds the ethical standards of academic honesty and integrity, 
fostering a culture of respect and collaboration within the scientific community. This approach 
ensured that the study was conducted with a high level of ethical responsibility, recognizing the value 
of both the data and the scholarly work preceding it. 

Use of AI Tools: AI tools were used to improve text clarity, grammar, and formatting, and to assist 
in code development. Their use was limited to improving language precision and coding efficiency, 
without influencing research findings or content generation. All AI applications adhered to ethical 
guidelines, ensuring academic integrity. 
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Appendix 1: Confusion matrices 

Hybrid transformer for single time length  

  
Anthropi
c 

Deforestatio
n 

Primary 
forest 

Secondary 
forest  

Wate
r  

Tota
l 

Precision 
(user) 

Anthropic 733 169 14 82 2 
100

0 77.57 

Deforestation 154 536 140 163 7 
100

0 60.56 

Primary forest 0 12 838 149 1 
100

0 72.49 

Secondary forest  55 144 157 631 13 
100

0 60.97 

Water  3 24 7 10 956 
100

0 97.65 

Total 945 885 1156 1035 979 
500

0   

Recall 
(producer) 73.3 53.6 83.8 63.1 95.6     

Overall Accuracy             73.88 

 

 

Hybrid transformer for Three-time length  

  Anthropic Deforestation Primary forest Secondary forest  Water  Total Precision (user) 

Anthropic 880 55 15 40 10 1000 76.92 
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Deforestation 75 705 172 47 1 1000 84.23 

Primary forest 6 17 907 69 1 1000 70.31 

Secondary forest  182 58 187 563 10 1000 77.66 

Water  1 2 9 6 982 1000 97.81 

Total 1144 837 1290 725 1004 5000   

Recall (producer) 88 70.5 90.7 56.3 98.2     

Overall Accuracy             80.74 

 

 

 

 

Hybrid transfomer for Five-time length s 

  Anthropic Deforestation Primary forest Secondary forest  Water  Total Precision (user) 
 

Anthropic 825 59 16 100 0 1000 91.16 
 

Deforestation 37 712 178 73 0 1000 86.3 
 

Primary forest 2 21 894 82 1 1000 74.44 
 

Secondary forest  40 32 109 813 6 1000 74.59 
 

Water  1 1 4 22 972 1000 99.28 
 

Total 905 825 1201 1090 979 5000   
 

Recall (producer) 82.5 71.2 89.4 81.3 97.2     
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Overall Accuracy             84.32 
 

 

 

 

Transfomer for single time length  

  Anthropic Deforestation Primary forest Secondary forest  Water  Total Precision (user) 

Anthropic 674 240 13 68 5 1000 82.1 

Deforestation 116 565 142 145 32 1000 54.27 

Primary forest 0 16 848 133 3 1000 72.23 

Secondary forest  29 216 165 575 15 1000 61.96 

Water  2 4 6 7 981 1000 94.69 

Total 821 1041 1174 928 1036 5000   

Recall (producer) 67.4 56.5 84.8 57.5 98.1     

Overall Accuracy           72.86 

 

 

Transfomer for Three-time length s 

  Anthropic Deforestation Primary forest Secondary forest  Water  Total Precision (user) 

Anthropic 787 106 21 82 4 1000 91.62 

Deforestation 15 722 159 102 2 1000 79.87 
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Primary forest 2 15 861 121 1 1000 72.66 

Secondary forest  48 57 135 747 13 1000 70.41 

Water  7 4 9 9 971 1000 97.98 

Total 859 904 1185 1061 991 5000   

Recall (producer) 78.7 72.2 86.1 74.7 97.1     

Overall Accuracy           82.06 

 

 

Transfomer for Five-time length s 

  Anthropic Deforestation 
Primary 
forest 

Secondary 
forest  Water  Total 

Precision 
(user) 

 

Anthropic 866 63 13 55 3 1000 85.49 
 

Deforestation 40 752 174 34 0 1000 84.4 
 

Primary forest 3 24 928 44 1 1000 71.94 
 

Secondary forest  101 51 168 673 7 1000 81.18 
 

Water  3 1 7 23 966 1000 98.87 
 

Total 1013 891 1290 829 977 5000   
 

Recall 
(producer) 86.6 75.2 92.8 67.3 96.6     

 

Overall Accuracy           83.7 
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Link for code : https://github.com/Fulgence8595/Hybrid_transfomer-  

https://github.com/Fulgence8595/Hybrid_transfomer-

