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ABSTRACT 

Rainfall-runoff modelling is required for effective water resource management, flood risk assessment, and 

environmental planning, particularly in locations such as the Nyabarongo catchment area in Rwanda, where 

in-situ data are insufficient and of poor quality. Remote sensing data such as Digital Elevation Models 

(DEMs), Land Use Land Cover (LULC) maps, soil data, and Satellite Rainfall Estimates (SREs) such as 

CHIRPS, CMORPH, and GPM-IMERG, can be alternative sources of data for hydrologic modelling in 

such a context of limited data. The main objective of this study is to assess how remote sensing data sources 

affect the performance of rainfall-runoff modelling in the Nyabarongo catchment area. This study developed 

a semi-distributed HEC-HMS model using four model combinations of data sources: Local DEM (10m × 

10m) with in-situ or SREs rainfall and Sentinel-2, Local DEM (10m × 10m) with in-situ or SREs rainfall 

and LandSat-8, SRTM (30m × 30m) with in-situ or SREs rainfall and Sentinel-2, and SRTM (30m × 30m) 

with in-situ or SREs rainfall and LandSat-8. The Local DEM (10m × 10m) with in-situ rainfall and Sentinel-

2 served as a reference case because it showed high performance for the first run compared to the other 

models developed. The preliminary effect assessment of different data sources showed that the LULC map 

from Sentinel-2 provided a more detailed land cover type than LandSat-8. For DEMs, the Local DEM 10m 

× 10m provided more detailed topographic information and stream network delineation, and low volume-

water storage compared to the SRTM DEM 30m×30m, which contributed to better runoff simulation and 

model performance within the Nyabarongo catchment area. The analysis of both in-situ and SRE products 

showed that CHIRPS and GPM-IMERG overestimated the in-situ rainfall, and CMORPH underestimated 

it. The effects of data sources on model performance, the HEC-HMS model that used high-resolution data 

of the Local DEM 10m × 10m, Sentinel-2 LULC map, and in-situ rainfall outperformed other model 

developed, achieving a Nash-Sutcliffe Efficient (NSE) of 0.89, and Relative Volume Error (RVE) of 2.9%. 

The study also evaluated and corrected errors in SREs, finding that the Power Transform (PT) bias 

correction technique was the most effective in reducing errors compared to other techniques (Time Space 

variant and Distribution Transformation). Additionally, the study assessed different time window sizes for 

bias correction using a Sequential Window approach and showed that a 7-day window is most effective. 

Furthermore, the effects of error propagation from these data sources on streamflow simulations were 

analysed. The uncorrected SREs showed an increase in error. However, applying bias correction effectively 

reduced these errors. Finally, a runoff coefficient evaluation showed that the highest coefficients occurred 

with the model using the Local DEM, Sentinel-2 LULC, and in-situ rainfall data, as well as the corrected 

SREs with the Power Transform.  

 

Keywords: Remote sensing data, Rainfall-runoff modelling, Nyabarongo catchment, HEC-HMS, SREs, 

LULC, Digital Elevation Model, In-situ data, bias correction techniques.     
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1. INTRODUCTION 

1.1. Background   

 
Hydrologic modelling provides essential information for environmental planning, water resource 

management and flood risk assessment (Chalkias et al., 2016). The quality and sources of the remote sensing 

input data, such as Land Use Land Cover, Digital Elevation Model, Soil types, and rainfall products, have a 

significant impact on the performance of the model, particularly the HEC-HMS model (Santos et al., 2022). 

In areas with inadequate and poor in-situ data, remote sensing data can serve as the origin of data for rainfall-

runoff modelling (Mushore et al., 2019). This study focused on evaluating the effect of various input data 

sources on the performance of the HEC-HMS model in the Nyabarongo catchment area.    

 

Remote sensing data provide spatially distributed observations, allowing the building of both simple and 

more complicated models, which are important for rainfall-runoff modelling (Khan et al., 2011). Predicting 

rainfall-runoff processes in the Nyabarongo catchment area is difficult because of the spatial distribution 

and variations in rainfall and discharge records (Manyifika, 2015). Due to its broad spatial coverage and 

temporal frequency, remote sensing data are often assumed to overcome the limitations of in situ data; 

however, remote sensing data may be inaccurate and even be of poor quality. As such, the use of remote 

sensing data may result in very different model performance depending on the quality of the data.  

 

For modelling hydrological processes, the applying of remote sensing data, such as Digital Elevation Models 

and LULC data, provides essential information on the topography and land cover needed by the model. 

Sentinel-2 and LandSat-8 LULC images provide high-resolution maps that help in differentiating between 

various land use types, which have an immediate impact on evapotranspiration and runoff processes (Ahn 

et al., 2014). These high-resolution maps enable detailed mapping and capture of the landscape, which is 

essential for understanding the spatial distribution of different land use types and how they affect rainfall 

runoff responses (Koneti et al., 2018). Therefore, the simulation of surface runoff for rainfall-runoff models 

may be greatly impacted by LULC data. For instance, compared with urban or built-up areas, which are 

defined by impermeable surfaces that cause increased runoff and less infiltration, forested areas often have 

higher infiltration rates and lower surface runoff (Manyifika, 2015). Precise land use cover data (LULC) 

ensures improved model performance as land cover affects hydrological processes. In contrast, DEM is 

essential for catchment delineation and stream network analysis (Rocha et al., 2020). It provides the 

topographic information necessary to define and identify the boundaries and flow paths of runoff within a 

watershed (Moges et al., 2023a). The resolution of a DEM directly affects the capacity of model 
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performance to simulate runoff processes, such as overland flow, flow within channel, and the movement 

of water through the surface (Roostaee & Deng, 2020).  

 

Soil properties, particularly texture and hydraulic conductivity, significantly affect infiltration and surface 

runoff (Trinh et al., 2018). Using precise soil data can improve the performance of hydrological models 

(Trinh et al.2018). The soil properties, such as structure, texture, and hydraulic conductivity, may be 

provided by the FAO Digital Soil Map of the World, which are necessary to accurately simulate soil-water 

interactions in rainfall-runoff models. Therefore, the soil data helps to capture the spatial variation in soil 

characteristics across the catchment, which affects the performance of the hydrologic model. However, the 

impact of soil data on the model performance can vary. Loague (1992) found that using soil texture data to 

estimate hydraulic conductivity can reduce model performance, whereas Lannoy (2014) reported significant 

improvements in a land surface model’s simulation of soil moisture and hydrological flows when using new 

soil texture data. Van Tol (2020) and Trinh (2018) demonstrated the role of detailed soil data in rainfall 

runoff modelling, showing that more detailed soil data can improve simulation efficiency.  

 

The temporal and spatial coverage offered by Satellite Rainfall Estimates (SREs) is particularly helpful in 

areas where ground-based rainfall observations are insufficient (Belayneh et al., 2020). These estimations 

provide a high-resolution alternative to traditional in situ measurements because they are obtained from 

remote sensing data. The SRE products are not free from errors that can be random or systematic by nature; 

thus, before applying them to rainfall-runoff modelling, rigorous evaluation and error correction are required 

(Belayneh et al., 2020). It is essential to evaluate these satellite data for hydrological modelling, specifically 

in the Nyabarongo catchment area, which varies with different land cover, topography, and climate, and 

with frequent and extreme floods where hydrological stations and rain gauges are scarce (REMA, 2019).  

 

Hydrologic models, especially the HEC-HMS model, may be applied as lumped or semi-distributed models 

to simulate hydrological processes and rely mainly on rainfall, the Digital Elevation Model, curve number 

grid, and runoff time series as input data. The HEC-HMS model has been applied in numerous researches 

to simulate hydrological processes within a watershed. For instance, Asadi (2013) showed that the semi-

distributed model was more effective than the lumped model in simulating the peak runoff discharge and 

total runoff volume. Similarly, Tibangayuka (2022) and Mind’je (2021) confirmed the high performance of 

the HEC-HMS model in simulating streamflow, peak flow, and volume. The HEC-HMS model requires in 

situ data such as discharge and rainfall measurements for calibration and validation purposes. These data 

provide a ground-truth reference that helps adjust model parameters to improve the performance of the 

objective function selected by research (Asadi & Boustani, 2013).  
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1.2. Problem statement 

 
Rainfall-runoff modelling frequently suffers from inaccuracies due to errors in the input data, which include 

both in-situ and remote sensing sources. This issue is particularly evident in the Nyabarongo catchment area 

in Rwanda. Previous studies, such as Manyifika (2015) and Huang (2018), have used satellite and in-situ data 

to model urban floods and inflow discharges within the Nyabarongo catchment area, highlighting the 

significant impact of data quality on the model performance for streamflow simulations. Sendama (2015) 

further assessed satellite data products, such as TRMM, RFE, and CMORPH, for streamflow modelling 

using the HBV-light model in the Nyabarongo catchment area. The findings indicated that rainfall was 

typically less estimated by satellite rainfall products before error correction, and showed good performance 

of the model when these errors were fixed. 

 

These studies have identified the critical issues of data availability and quality. Manyifica (2015) noted the 

scarcity and poor quality of rainfall and hydrological data, suggesting the integration of remote sensing 

products to address this issue for rainfall-runoff modelling. Huang (2018) identified gaps in in-situ data 

coverage and the low density of rain gauges, which limit the reliability and performance of rainfall-runoff 

models. This study proposed the adoption of advanced data techniques, including satellite-based data, to 

solve the identified issue. Sendama pointed out the challenges of limited and unreliable hydrological data, 

suggesting that future studies should apply and evaluate remote sensing data to improve the model 

performance in other parts of the Nyabarongo catchment.  

 

Recent studies in Rwanda by Ntawukuriryayo (2022) showed that the error and uncertainty in model input 

data should be addressed by using and evaluating SRE rainfall products. By integrating various remote 

sensing products, such as SREs, Land Use Land Cover (LULC) data, Digital Elevation Models (DEMs), 

and soil data, it is possible to address the limitations of ground-based measurements. These data sources 

can enhance and affect the performance of hydrologic models differently, particularly in areas with sparse 

in-situ data, such as the Nyabarongo catchment area. Assessment of the effectiveness of these remote 

sensing data sources, particularly through error correction, propagation, and comparison with in-situ data 

as a reference, is essential for improving model performance and reliability However, the selection of data 

sources and model combinations must be carefully considered, as different datasets can significantly affect 

model outcomes (Elaji & Ji, 2020).  
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1.3. Research objectives 

1.3.1. Global objective 

 
The main objective of this study is to assess how remote sensing data affect the performance of rainfall-

runoff modelling in the Nyabarongo catchment area.  

1.3.2. Specific objectives  

 

The specific objectives of this study are as follows: 

1. To develop a semi-distributed HEC-HMS rainfall-runoff model for the Nyabarongo catchment 

area. 

2. To assess and compare the performance of the semi-distributed HEC-HMS rainfall-runoff model 

by applying SRE products and in situ rainfall data, as well as analyzing the effects of various data 

sources such as Land Use Land Cover and Digital Elevation Model on the performance of the 

model. 

3. To evaluate the accuracy and perform bias correction for the CHIRPS, CMORPH, and GPM-

IMERG satellite rainfall products in the Nyabarongo catchment area. 

4. To assess how errors in different data source sets affect the error in streamflow simulation with a 

semi-distributed HEC HMS model. 

5. To assess the changes in runoff coefficient resulting from the application of remote sensing data 

(SREs, DEMs, LULC) and in situ rainfall data in the Nyabrongo catchment area. 

1.4. Research questions  

 
This study addressed the following questions that align with the previously stated objectives: 

1. What is the ability of a semi-distributed HEC-HMS model to simulate rainfall-runoff processes in 

the Nyabarongo catchment area? 

2. To what performance level does the semi-distributed HEC-HMS rainfall-runoff model use various 

remote sensing data and in-situ rainfall data as a benchmark? 

3. How accurate are bias-corrected and uncorrected CHIRPS, CMORPH, and GPM-IMERG 

satellite rainfall products for estimating rainfall in the Nyabarongo catchment area? 

4. What are the most effective bias correction techniques for satellite rainfall products, and the extent 

to which bias correction improves accuracy?  

5. How does error propagation in various data sources affect the accuracy of streamflow simulations 

using a semi-distributed HEC-HMS model? 

6. How does the use of satellite data (SREs, DEMs, and LULC) affect the catchment runoff 

coefficient compared with in-situ rainfall data as a reference in the Nyabarongo catchment? 
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1.5. Research structure 

 
The conceptual framework of this study includes the following essential components. The first chapter 

discusses the study background, problem statements, objectives, and questions. The next chapter details the 

relevant literature. The third chapter describes the study area, including the datasets, and how they were 

preprocessed. The fourth chapter focuses on the research methodology. The fifth chapter covers the 

research findings and provides a thorough discussion. Finally, the sixth chapter concludes and summarizes 

the findings, suggests recommendations, and acknowledges the limitations of this study. 
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2. LITERATURE REVIEW 

2.1. Hydrologic modeling  

 
Rainfall-runoff models are designed to simulate the movement, distribution, and quality of water in the real 

world (Islam, 2011). Rientjes (2016) describes different model approaches. The descriptions are adopted 

below and are sometimes paraphrased. Models are simplified representations of real-world phenomena 

using mathematical formulations, and consider catchment, meteorological, and boundary conditions. 

Hydrologic models are grouped into three types, including empirical, conceptual, and physically based 

models, with each varying in complexity and level of detail in representing hydrological processes (Devia et 

al., 2015). Hydrologic models are categorized depending on their input, structure, and parameters as well as 

the application of physical concepts, and they can be lumped, semi-distributed, or fully distributed (all 

adopted from Rientjes, 2016). 

 

The lumped models consider the catchment as a single entity, where the input data and outputs are averaged 

over the entire area, and this simplification makes lumped models computationally efficient. The semi-

distributed models divide the catchment into different sub-catchments based on terrain, which are 

considered as single units during computation. The semi-distributed approach is more detailed than lumped 

models but requires more data and computational resources (Knudsen et al., 1986). The fully distributed 

models discretize the catchment into fine grids, where each cell is individually modeled. These are most 

detailed and allow a full representation of spatial variations in rainfall, topography, soil moisture, and other 

factors within the catchment, but they significantly cost data requirements and computational time (Godara, 

2019).  

 

Rainfall-runoff models include WeSpa, HBV, HEC-HMS, SWAT, and MIKE SHE exists, and the 

application of these models is highly dependent on their purpose, with some used for research and others 

for decision-making (Moradkhani & Sorooshian, 2009). These models require calibration to improve their 

performance in simulating real-world processes (Rientjes 2016). Model performance evaluation is an 

important aspect of hydrologic modeling, as it contributes to the accuracy and reliability of the model 

simulation. The validation, on the other hand, tests the model’s prediction or simulation capability using a 

different dataset than that used for the calibration (Morrison et al.2013).  

 

Hydrologic models require input data, including in-situ data, such as rainfall and discharge data; remote 

sensing data, such as Digital Elevation Models (DEMs), which provide detailed topographic information; 

and Land Use and Land Cover (LULC) data, SRE products, and soil data. These data sources are essential 

for understanding and modeling water movement and distribution because they provide the necessary 

information on the terrain and land surface characteristics that influence rainfall-runoff processes. The 
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HEC- HMS semi-distributed model was selected and applied in this research because of its ability to manage 

complex hydrological conditions efficiently, despite that the model concept is relatively simple. It has been 

shown in research carried out in the Upper Blue Nile River Basin to provide reliable and accurate predictions 

under various conditions, which is crucial for the Nyabarongo area with complex water systems (Gebre, 

2015). Furthermore, the model has demonstrated good performance in analyzing its applicability and 

hydrological simulation in the Abbay River, making it a suitable choice for the Nyabarongo watershed 

(Zelelew & Melesse, 2018).  

2.2. Satellite rainfall 

2.2.1. Infrared-based approaches 

 
Infrared-based techniques use IR band sensors on board of geostationary satellites. These sensors are crucial 

for determining the rainfall intensity by observing various stages of cloud formation (Amorati et al., 2000). 

Approaches based on infrared imaging, as well as algorithms that consider seasonal changes, regional 

variations, and cloud-top temperatures, help in precipitation estimation (Dold, 2016). These techniques are 

based on the idea that colder, higher-altitude clouds are more likely to precipitate, though it should be 

emphasized that not all cold clouds, such as high cirrus clouds, produce rainfall (Amorati et al., 2000). 

Although infrared technologies can detect rainfall, they are less precise in determining its depth (D’souza et 

al., 1990).  

2.2.2. Microwave-based approaches 

 

Microwave (MW)-based approaches for estimating rainfall use the properties of MW radiation to directly 

observe precipitation, unlike visible or infrared techniques, which can be masked by clouds (Aonashi & 

Ferraro, 2020). This approach, based on Planck's radiation law, detects precipitation particles by analysing 

the microwave energy that is emitted or scattered (Kidd et al., 2003). To provide detailed precipitation data, 

the position of MW sensors on low-Earth orbit satellites results in less frequent and limited coverage 

compared to geostationary satellites (Levizzani et al., 2007). 

2.2.3. Integrating Microwave and Infrared Techniques 

 

Integrated Microwave and Infrared techniques offer unique ways to estimate rainfall, each with its own 

strengths and weaknesses. Thermal Infrared (IR) approaches are appreciated for their simplicity and the 

ability to provide data around the clock. However, they are not perfect (Marzano et al., 2004) and one of 

the main issues at the time with IR techniques was that they tend to estimate rainfall amounts that are 

extremely high. Additionally, there is usually a delay when they try to measure rainfall, meaning that what 

they report has already happened a bit ago, making them less reliable for real-time observations. On the 

other hand, microwave (MV) approaches offer a different approach to estimating rainfall. These methods 
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are known to provide estimates with less frequent updates, which means that they might not capture every 

change in rainfall intensity as quickly as desired. Despite this, MW techniques have a crucial advantage in 

that they offer direct insights into cloud and rainfall characteristics, which can lead to more accurate rainfall 

estimates (Feudale & Manzato, 2014). 

To overcome the inherent limitations of using either IR or MW techniques alone, a blending approach has 

been developed. This innovative method combines data from both IR and MW satellite sensors. By doing 

this, it benefits from the frequent updates available from IR images and more accurate and direct 

measurements of rainfall from MW images. This blend leads to a more reliable and timely estimation of the 

rainfall. Notable SREs such as TRMM 3B42, CMORPH, and RFE apply this blended approach. They used 

the precision of MW sensors to refine and improve the estimates derived from the IR temperatures of 

geostationary satellites, ensuring accurate rainfall measurements (Feudale & Manzato, 2014).  

2.2.4. SRE products 

 

Inaccurate precipitation data may result in poor simulation outcomes, leading to incorrect conclusions 

regarding hydrological processes in the catchment (Vrugt et al., 2005). For instance, precise estimations of 

rainfall can be obtained from in-situ measurements that rely on the use of rain gauges (Brocca et al., 2019). 

Haile et al. (2009) indicate that local topography, hill slope and convergence, terrain elevation, and slope 

gradient are some examples of aspects that could affect the variations in rainfall. To improve rainfall 

representation in space and time, in situ rainfall observations can be integrated with rainfall measured by 

satellites (Lanza & Vuerich, 2009). Therefore, accurate in situ and SRE data are also pertinent.  

 

Satellite rainfall products, including TRMM-3B427, CHIRPS, CMORPH, and GPM-IMERG, have been 

used in various hydrometeorological applications (Stisen & Sandholt, 2010). For instance, the CMORPH 

was most effective in streamflow simulation among four SRE products evaluated using a fully distributed 

rainfall runoff model (Bitew & Gebremichael, 2011), and the daily CHIRPS SRE was more effective and 

reliable as input data for rainfall-runoff modelling (Guermazi et al., 2019). The GPM SRE product offered 

high-resolution and showed good performance for daily rainfall estimation and detecting precipitation 

events in mountain high-slope areas characterized by significant variations in rainfall patterns and often 

inadequate coverage of rain gauges, which are usually scattered and irregularly spaced (C. Zhang et al., 2018). 

Hussein (2023) compared in situ rainfall data to GPM-IMERG and CHIRPS and confirmed that the HEC-

HMS model performed well with both products (Hussein & Baylar, 2023). Brocca et al. (2013) reported that 

daily SRE products showed good results for the performance of rainfall-runoff modelling in areas with poor 

or no in situ rainfall data, but most studies indicate large estimations of errors. Belayneh et al. (2020) indicates 

that both TMPA-3B42v7 and CHIRPS satellite data performed well and can be useful for providing good 

rainfall data for hydrologic modelling. Moreover, because of their high accuracy and temporal and spatial 
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resolutions, SREs such as CMORPH, GPM-IMERG, TRMM, and PERSIANN, have become more 

applicable for large-scale rainfall-runoff models (Stisen & Sandholt, 2010).  

 

The accuracy of satellite rainfall estimates varies based on satellite type, data processing algorithms, and 

geographical location (Bitew & Gebremichael, 2011). According to previous studies, estimates are more 

reliable on land than on water and can be influenced by the presence of mountains and variable topography 

(Zambrano-Bigiarini et al., 2016). To overcome these problems, techniques such as the Global Precipitation 

Measurement (GPM) mission’s Integrated Multi-satellite Retrievals for GPM (IMERG), have been 

developed, resulting in increased precipitation detection and measurement accuracy under different 

conditions (Meng et al., 2021).  

2.2.5. SREs bias correction  

 

Satellite Rainfall Estimates (SREs) can have inaccuracies due to random and systematic errors, which may 

result in incorrect simulation outcomes when applied (Gumindoga et al., 2017). To correct for these errors, 

a technique called bias correction must be used prior to their application to reduce errors in SREs. The goal 

of applying bias-correction techniques is to improve the precision of SREs for the desired application. 

Various methods have been investigated. For instance, Gumindoga et al. (2019) assessed five bias correction 

techniques. These techniques are Spatio-Temporal (STB), Elevation Zone (EZ), Power Transform (PT), 

Distribution Transformation (DT), and Quantile Mapping using empirical distribution (QME) algorithms 

on the CMORPH SRE product. The findings showed that the STB and EZ approaches were significantly 

more effective than the other approaches. Similarly, Habib et al. (2014) evaluated three versions of the STB 

techniques such as time-space variable (TSV), time variable (TV), and time-space fixed (TSF), and confirmed 

that the TSV technique reduced bias in the CMORPH SRE product. 

 

Satellite rainfall estimations are essential for flood forecasting, agricultural planning, and drought 

monitoring. Despite their advantages, satellite rainfall estimates have limitations, particularly in terms of 

ground validation and under or overestimation of the rainfall intensity (Amekudzi et al., 2016). The challenge 

of validating satellite data with ground observations remains critical, as differences can arise owing to 

differences in spatial and temporal resolution between satellite measurements and ground-based sensors 

(Amekudzi et al., 2016). 
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2.3. Land Use  Land Cover, and soil data for rainfall-runoff modeling 

 
Soil properties and LULC are crucial for hydrological analysis and have a significant impact on the 

interaction between rainfall and runoff in a watershed (Chow et al., 1988). Land cover features have a direct 

effect on water infiltration, storage, and runoff (Babaremu, 2024), and the relationship between LULC and 

hydrological processes is a well-established concept in environmental studiesClick or tap here to enter text.. 

Several types of land cover, such as urban areas, forests, and farmlands, respond to rainfall in different ways 

to determine the amount of water flowing into rivers and seeps into the ground (Afonso de Oliveira Serrão 

et al., 2022); (Zhou, 2020). This relationship is essential for understanding and predicting the movement of 

water within a catchment, where varied land use impacts water resources (Babaremu, 2024).  

 

Soil characteristics influence water infiltration, retention, and discharge within a watershed and are important 

when studying hydrological processes (Chow et al., 1988). The capacity of different soil types to retain and 

absorb water varied. Soil properties such as texture, porosity, and organic matter content significantly affect 

hydrological processes. These characteristics determine the ability of the soil to absorb water, thereby 

influencing groundwater recharge and surface runoff patterns (McCauley et al., 2005). For example, sandy 

soils with high porosity allow for more water infiltration and minimize surface runoff, whereas clay-based 

soils with low porosity cause more runoff because of the reduced infiltration rate (J.Herben Huddleston, 

1996). Soil and LULC maps were used to create a curve number grid that served as the input for the HEC-

HMS semi-distributed model. 

 

Remote sensing technology, using satellites such as Landsat-8 and Sentinel-2, is a helpful tool for monitoring 

and mapping LULC and soil properties across large areas and over time (Nasiri et al., 2022). These satellites 

capture high-resolution images that can be used to accurately and consistently identify changes in land cover. 

This aspect is particularly useful in areas where ground-based inspection of LULC change detection is 

difficult or impractical. The apply of remote sensing data for LULC analysis enables an understanding of 

how land changes affect hydrological processes and, as a result, rainfall-runoff modelling (Govender et al., 

2022). 

 

Furthermore, digital soil maps, such as the Digital Soil Map of the World sourced from the FAO, provide 

detailed information about the soil characteristics in various landscapes (Sanchez et al., 2009). When 

combined with remote sensing data, these maps provide a thorough overview of the physical and chemical 

properties of the soil at different depths (Richer-de-Forges et al., 2023). This integrated approach improves 

the accuracy of hydrological models by combining spatially detailed data from both the land surface and soil 

profiles. As a result of this research, a model that incorporates detailed LULC and soil data from remote 

sensing and digital soil maps is better able to predict the dynamics of rainfall-runoff processes in the 

Nyabarongo catchment area, which is critical for successful water resource management and planning.     
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2.4. Topographic data for rainfall-runoff modeling  

 
Topographic data sources are important in hydrologic modeling because they offer complete details of the 

physical characteristics of the terrain (Vaze & Teng, 2007). They provide full elevation and terrain features 

for the study area, which are required to simulate runoff processes. This information is critical for 

understanding how water moves across landscapes, which influences rainfall-runoff processes and model 

performance (Lee et al., 2009). According to previous studies, high-resolution topographic data can 

considerably improve the performance of hydrological models (Ma et al., 2016). This is because a finer 

spatial resolution provides more detailed representations of topographical features, which are essential for 

calculating water flow patterns and accumulation areas. Topographic data can often be generated from 

remote sensing sources, such as Digital Elevation Models (DEM) and the Shuttle Radar Topography 

Mission (SRTM), which provide crucial information about the physical characteristics of the land surface 

(Smith & Sandwell, 2003). The elevation and slope obtained from DEM and SRTM are essential for 

determining the direction and speed of surface water flow, both of which are important components in 

modeling rainfall-runoff dynamics. 
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3. STUDY AREA, DATA  ACQUISITION AND 
PROCESSING 

3.1. Study area description  

 

The focus of this research was the Nyabarongo catchment, as shown in Figure 1, which is located between 

-1.962584° ’S and 30. 003816° ’E and occupies a total area of 8,876.42 Km2. The catchment serves various 

activities, such as agricultural irrigation, settlement, hydropower production, water treatment plants and 

supply, groundwater recharge, and as a habitat for biodiversity. The mean yearly precipitation of the 

catchment varies from 992 to 1,128 mm and it is defined as a moderate tropical climate. In this catchment, 

the annual evapotranspiration varies from 503 to 1,050 mm, and the catchment average temperature changes 

between 17°C and 20°C. The catchment has two major rainy seasons: one from March to early May and the 

other from late September to late December. The mean elevation is 1,342 m above sea level in the 

catchment, and it can reach approximately 4,480 m above sea level in the northern area (RoR, 2018).  

 
Figure 1: Location map of the study area 
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3.2. Data acquisition 

 

The Nyabarongo catchment has suffered flooding in recent years; however, local in-situ data recording are 

limited, mostly for measuring water streamflow. This study intends to assess how remote sensing data can 

affect the performance of hydrologic modeling in the catchment. Therefore, various data, including in-situ 

rainfall data, satellite-based precipitation products, river discharge data, LULC and soil characteristics data, 

and topographic data, were used to accomplish this research, as summarized in Table 1. 

 

Table 1: Datasets used in the research 

Data 

category 

Dataset Spatial 

resolution  

Temporal 

resolution 

Source of data Role of dataset 

Meteorological 

data 

Rainfall gauge Daily Rwanda Meteorology Agency Model input  

Hydrological 

data 

Stage and 

discharge  

gauge Daily Rwanda Water Board Model calibration 

and validation 

Topographic 

data 

DEM 10m×10m - Rwanda National Land 

Authority 

Terrain model 

processing 

SRTM 30m×30m - Earth data(nasa.gov), USGS 

Earth Explorer 

Terrain model 

processing 

LULC Sentinel-2 10m×10m  - USGS Earth Explorer To create a curve 

number grid for 

model input 
Landsat-8 30m×30m - USGS Earth Explorer 

Soil type   -  - FAO/USDA Soil classification 

Satellites 

rainfall Data 

CHIRPS 5Km×5Km Daily http://chg.geog.ucsb.edu/data/ Model input 

chirps/ or CHG, USGs 

GPM-

IMERG 

10Km×10Km Daily NASA GPM Data Access Model input 

CMORPH 8Km×8Km Daily https://CMORPH 

CDR/National Centers for 

Environmental (NCEI) 

(noaa.gov) or 

ftp://ftp.cpc.ncep.n 

oaa.gov/precip/ 

Model input 

 

3.2.1. Rainfall data 

 
This study used in-situ and SRE products. The in-situ rainfall data were provided by the Rwanda 

Meteorological Agency, which covered precipitation values from 2016 to 2020. This dataset served as the 

basis for the analysis, allowing us to assess the detailed patterns of rainfall throughout the study area after 

processing. Three satellite rainfall products were evaluated: CMORPH, GPM-IMERG, and CHIRPS. 

https://cmorph/
https://cmorph/
https://cmorph/
https://cmorph/
https://cmorph/
https://cmorph/
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Furthermore, the intended time window for these SRE products was from 2016 to 2020. Daily time series 

were used for all in situ rainfall data and SRE products. 

3.2.2. In situ streamflow data  

 
In Rwanda, pressure sensors, radar, float-operated shaft encoders, staff gauges, and other devices are used 

to measure and record the water level. On the other hand, dilution gauging, radar point velocity meters, 

acoustic Doppler current profilers, and mechanical current meters are used to measure river flow, which is 

also referred to as streamflow discharge (RoR, 2018). Acquiring reliable streamflow time-series data is 

important for calibrating and validating hydrologic models. Data on the water level of the Nyabarongo River 

were obtained from the Rwanda Water Board for use in this study, with a special focus on Rwinzoka station 

as the catchment outlet. 

3.2.3. Topographic data  

 
The Digital Elevation Model (DEM) is crucial for hydrologic modelling. It provides full elevation and 

topographical data for the study area, which are required for guiding the runoff process simulation. The 

study area is divided into smaller cells using a mesh or grid created from this DEM, and each cell has its 

elevation value, which originates from the Digital Elevation Model ( Adugna, 2021). Different techniques 

can be applied to generate Digital Elevation models (DEMs), such as Mesa-Mingorance and Aiza-Lopez 

(2020) explained. LIDAR, photogrammetry, interferometry, and topographic surveys are examples of these 

techniques. In this study, two Digital Elevation Models (DEMs), including a local DEM with a spatial 

resolution of 10m × 10m from the Rwanda National Land Authority and SRTM data with a spatial 

resolution of 30m × 30m, were applied and evaluated.  

3.2.4. Soil type, Land Use, and Land Cover data 

 
Soil type has effect on the interaction between rainfall and runoff in a catchment (Chow et al., 1988). They 

are required to define curve number values at pixel level that is an input to the HEC-HMS model (see 

Section 4.4). The surface characteristics of the area can change because of LULC changes such as 

urbanization or deforestation, and both the quantity of rainfall that becomes surface runoff and the amount 

that penetrates the ground are affected by these changes (Afonso de Oliveira Serrão et al., 2022). For 

example, the natural capacity of vegetation to intercept and absorb rainfall decreases when forests are 

converted to urban areas or agricultural land. The increased surface runoff frequently causes erosion and 

flooding. To effectively predict the effects on runoff amounts and patterns, rainfall-runoff models consider 

these LULC changes (Guide & Manual, 2008). Two sets of Land Use and Land Cover (LULC) data, one 

from the Sentinel-2 satellite and one from the Landsat-8 satellite were processed and used in this study. 
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In addition, soil characteristics influence water infiltration, retention, and discharge within a catchment, and 

are important when studying hydrological processes (Chow et al., 1988). For example, the ability of different 

soil types to hold and absorb water varies. Chow et al. (1988) reported that clay soils have different rainfall 

patterns because of their fine particle structure and high water-retention capacity, in contrast to sandy soils, 

which have larger particles and lower water retention capacities. Accurately simulating the change in 

precipitation into runoff and ground penetration in various parts of the catchment depends on this variation 

(Guide and Manual, 2008). In this study, soil data were sourced from the Food and Agriculture Organization 

(FAO) Digital Soil Map of the World (DSMW).  

3.3. Data processing  

3.3.1. In-situ rainfall data 

 
The Thiessen Polygon approach was used to represent the amount of rainfall for each sub-catchment station 

entering the entire catchment. Twenty-eight rain gauge stations, both inside and outside the study area, were 

selected for this study, as shown in Figure 2.  

 

Figure 2: Location of selected meteorological stations 

Manyifika (2015) described that the rainfall station’s weight in a selected catchment was determined by 

dividing the effect of the Thiessen polygon by the desired catchment area. Equation 1 was used to determine 

the weighting:  

 

 �̅� =
1

𝐴
∑ (𝐴𝑠𝑃𝑠)𝑠=𝑛

𝑠=1                                                                                                                   Equation 1 
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Where �̅� represents the average rainfall and Ps represents the precipitation of the station. The intended 

catchment area is indicated by A, the impact area of the station within the intended catchment by As, and 

the number of precipitation stations affecting the target catchment by n.  

 

Juru station incorrectly recorded two days of rainfall on May 6th and 7, 2018, with a rainfall of -9,999 mm. 

Similarly, Kigali Aero, Cyato, Kitabi Tea, Gacurabwenge, and Rwinkwavu stations also reported incorrect 

rainfall of -9,999mm for five days from May 6th to May 10th, 2018. The arithmetic mean approach was 

used to fill gaps in the precipitation data, as shown in Equation 2. 

 

 𝑃𝑋 =
1

𝑚
∑ 𝑃𝑖𝑚

𝑖=1                                                                                                                           Equation 2 

Where Px is the missing rainfall data, m represents the number of neighboring stations, and Pi is the 

rainfall recorded at the ith station. 

 

After the precipitation data were gap-filled, the consistency of the data from each station was assessed. To 

verify this, a double mass curve analysis was conducted, and this method was calculated by comparing the 

cumulative daily precipitation at one station to the total accumulated daily precipitation at nearby stations, 

as shown in Figure 3 (Manyifika, 2015).  

 

Figure 3: Example of double mass curve analysis of in-situ rain gauge stations  

Figure 3 shows the cumulative rainfall data for the Kabuye SW station compared to nearby stations, while 

the right graph shows the same data for the Gitega station. Both graphs show good linearity, with R-squared 

values of 0.9983 for Kabuye SW and 0.9987 for Gitega. This high linear correlation indicates that the rainfall 

data from these stations are consistent with those of nearby stations, indicating that the recordings are 

reliable. All stations explained the consistent rainfall. The Rwinkwavu station consistently underestimated 

the daily rainfall compared to the other stations, whereas the Sovu station recorded significantly higher 

annual rainfall. 
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3.3.2. In-situ streamflow data 

 

The rainfall-runoff model requires stream flow time series data for model calibration and validation. A stage-

discharge relationship was developed using accessible field visit recordings of the water stage for the 

Rwinzoka station obtained from the Rwanda Water Board. Rwinzoka station is considered the river outlet 

location for the entire catchment.  After the stage-discharge relationship, the obtained water level data were 

transformed into discharge flow using Equation 3, as explained by Manyifika (2015). 

 

 

Figure 4: Stage-discharge relationship at outlet sink 

𝑄 = 𝐶 ∗ (ℎ − 𝑎)𝑏                                                                                                                   Equation 3 

Where h represents the water level in meters, and Q represents the flow rate expressed in m3/s. The meaning 

of a is the water stage when there is no flow, C and b are calibrating constants, b is the logarithmic gradient 

of the rating curve, and C represents the flow rate at which the effective water flow depth (the sum of h and 

a) equals one. In Equation 3, Manyifika (2015) fully explained the processes used to determine the 

coefficients a, C, and b. Once the coefficients have been calculated, the relationship between the stage and 

discharge is estimated, as shown in Equation 4.  
 

𝑄 = 32.39817 ∗ (ℎ − 0.45)1.127994                                                                                                         Equation 4  

After deducing the stage-discharge relationship, it was essential to analyse the streamflow data from the 

outlet sink of the catchment to verify how the catchment responds to rainfall, as shown in Figure 5. 

Equations 5 and 6 were used to adjust the ratio values in the streamflow data to guarantee a steady or 

consistent streamflow for the outlet station, as well as to correct the recorded streamflow data (Goez, 2011).  

 

 ∆𝑃 = 𝑃𝑡 − 𝑃𝑡−1 & ∆𝑄 = 𝑄𝑡 − 𝑄𝑡−1                                                                              Equation 5 
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𝑅𝑎𝑡𝑖𝑜 =
|∆𝑃|

∆𝑄
                                                                                                                    Equation 6 

Where ∆𝑃 represents the variations in precipitation and ∆𝑄 represents the observed discharge. 𝑃𝑡−1 and 

𝑄𝑡−1, respectively indicate the previous precipitation and streamflow of day. 𝑃𝑡  and 𝑄𝑡  indicate the current 

rainfall and streamflow of the day, respectively. 

 

Figure 5: Nyabarongo River variation ratios 2016-2020 before and after discharge correction  

Figure 5 shows the Nyabarongo streamflow variation ratios from 2016 to 2020 before and after discharge 

correction. The analysis focused on two main variables: ΔP (blue line) and the ratio |ΔP|/ΔQ (black dots). 

ΔP represents precipitation changes, ΔQ represents the change in streamflow and |ΔP|/ΔQ represents the 

ratio of absolute precipitation to streamflow. The plot shows a consistent relationship between precipitation 

variations and streamflow responses, with most of the |ΔP|/ΔQ values falling between -450 and 450. 

Outliers (-7500-6500) indicate significant anomalies and indicate an error in observed P or Q. All ratios 

within the outlier values (-450 to 450 and -7500 to 6500) were adjusted and corrected within a range values 

of -10 and 10 to obtain the final discharge data used in this study, as shown in Figure 6.  
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Figure 6: Nyabarongo River corrected streamflow 

3.3.3. Topographic data  

 
Two different topographic datasets were used in this research, including a local DEM and SRTM of 10m × 

10m and 30m × 30m spatial resolutions, respectively. These datasets were harmonized to a spatial resolution 

of 30m × 30m, ensuring that they aligned the analysis and consistency for semi-distributed HEC-HMS 

rainfall-runoff. Furthermore, the bilinear interpolation method has been demonstrated to be more effective 

than other methods, including nearest neighbour and bicubic resampling techniques, when applications 

require a smoothing representation from fine to coarse resolution (Omondi, 2017). Bilinear interpolation 

was adopted to harmonize the local DEM and SRTM data with a commonly selected spatial resolution of 

30m × 30m.  

 

Figure 7: Topographic maps of Nyabarongo catchment (Local DEM-10m and SRTM-30m) 
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3.3.4. Soil type, Land Use, and Land Cover data 

3.3.4.1. Soil type 

 
In the Nyabarongo catchment area, accurate soil data are essential for the effective simulation of the rainfall-

runoff model. The soil data used in this study were obtained from the FAO Digital Soil Map of the World 

(DSMW,2007). This map contains complete worldwide soil information, which is necessary to understand 

the soil characteristics of the research area. The soil map was carefully downloaded and processed to extract 

the area of interest of the Nyabarongo catchment area. The soil map was classified after extracting the study 

area. The method involves dividing the soil into different types based on its properties. The reclassification 

identified seven soil types in the Nyabarongo catchment including clay, loam, silty clay, clay loam, sandy 

clay, and sandy loam as shown in Figure 8. Each of these soil types has different characteristics that influence 

water infiltration and runoff, making them crucial for effective hydrological modelling. 

 

Figure 8: Soil map of the Nyabarongo catchment area 

The reclassified soil map was then used to generate Curve Number (CN) grids, which were required for the 

HEC-HMS semi-distributed model in this study. CN values are essential for estimating runoff potential 

from various land use and soil combinations (Ara & Zakwan, 2018). These values were assigned to different 

land use and hydrologic soil group (HSG) classifications based on remote sensing data from Sentinel-2 and 

Landsat-8.  
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3.3.4.2. Land Use Land Cover from Sentinel-2 and LandSat-8 

 

Land Use and Land Cover (LULC) maps are important for evaluating remote sensing data for hydrologic 

modeling. These LULC maps were created using maps from Sentinel-2 and Landsat 8 satellites. A Sentinel-

2 map with a spatial resolution of 10m × 10m and a Landsat-8 map with a spatial resolution of 30m × 30m 

were extracted to generate useful data for the research area. LULC maps were downloaded using Google 

Earth Engine. After extraction of the Nyabarongo catchment area, the LULC maps were reclassified 

applying a supervised classification technique. The dataset was split among 70% training samples and 30% 

testing samples, with more than 50 samples to conduct classification.  

 

The classification process found six main LULC classes, such as built-up areas, croplands, water bodies 

forests, grasslands, and bare land, as indicated in Figure 10. The final LULC map created using Sentinel-2 

data had an overall accuracy of 78.8%, whereas the Landsat-8-derived map had an accuracy of 73.1%. These 

LULC maps, when combined with soil maps, were useful for generating the Curve Numbers (CN) grid, 

which was an essential input for the semi-distributed HEC-HMS model.  

 

Figure 9: LULC maps of Nyabarongo catchment area (Sentinel-2 and LandSat-8) 

3.3.5. SREs products 

3.3.5.1. CMORPH 

 

The CMORPH rainfall product was assessed from 2016 to 2020, using 28 meteorological stations located 

throughout the catchment area. CPC Morphing methodology (CMORPH) is an advanced precipitation 

estimation technique that generates high-resolution global precipitation datasets from passive microwave 

(PMW) and infrared (IR) data. The CMORPH covers latitudes ranging from 60°N to 60°S and provides 

data with a spatial precision of approximately 0.08° and a temporal resolution of 30min, allowing for a 

detailed investigation of rainfall patterns (Joyce et al., 2004). 
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The download and processing sequence for CMORPH data on a half-hour basis began with the CMORPH-

8 km data from an FTP location (a specific server location where the CMORPH datasets are stored). The 

data were loaded into the ILWIS raster format and underwent initial processing, which included producing 

a 30-minute data maplist and mirror rotation. The next step was to subset the 30-minute images to the area 

of interest (AOI) and reproject them accordingly (WGS 84 datum applying UTM Zone 36S). These images 

were then mosaicked to provide hourly equivalents and aggregated into daily totals to match the temporal 

resolution required for comparison with ground-based gauge data. The result is the daily precipitation in 

millimeters per day, which was saved in a Microsoft Excel sheet for further analysis.  

3.3.5.2. CHIRPS 

  

For this product, time series data from the Climate Hazards Group InfraRed Precipitation with Stations 

(CHIRPS) were downloaded and processed for 28 meteorological stations within the catchment area from 

2016 to 2020. The data, which are quasi-global and extend from 50°S to 50°N, were available using the FTP 

location of the Climate Hazards Group. The downloading process included obtaining daily rainfall data with 

a spatial precision of 0.05°, which were then organized and saved for further analysis. These high-resolution 

data were beneficial for capturing the variability and distribution of rainfall throughout the entire basin. 

CHIRPS data combine infrared Cold Cloud Duration (CCD) observations and in situ measurements to 

produce full precipitation estimates (Funk et al., 2015). 

3.3.5.3. GPM-IMEWRG 

 
NASA and JAXA developed the GPM-IMERG product, which offers daily worldwide precipitation 

estimates at a spatial resolution of 0.10°×0.10°. It uses data from numerous satellite sources including 

microwave and infrared sensors (Huffman et al., 2019). Downloading and processing GPM-IMERG data 

require numerous important stages to obtain accurate and relevant precipitation data. GPM-IMERG data 

from 28 meteorological stations in the catchment area between 2016 and 2020 were downloaded. These 

data were obtained from the NASA Earth data website, which provides access to GPM-IMERG datasets 

(Huffman et al., 2019). After downloading, the data files, which were often in the HDF5 format, were pre-

processed to convert them to a usable format, such as NetCDF and CSV, for further analysis. Finally, data 

were extracted to match the specific coordinates and time ranges of the 28 meteorological stations.  

The obtained data for the SREs were verified for consistency before their application, as shown in Figure 

12. 
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Figure 10: Example of uncorrected SRE cumulative rainfall for some rain gauge stations 

Figure 10 shows the cumulative uncorrected rainfall data for the Kabuye SW and Gitega stations, comparing 

the in-situ data to three satellite-based rainfall estimating (SRE) products: CHIRPS, CMORPH, and GPM-

IMERG. Examination of 28 stations showed a consistent relationship between the SRE data and in-situ 

measurements. Specifically, CHIRPS and GPM-IMERG overestimated rainfall compared with in situ data, 

but CMORPH underestimated rainfall.  
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4. RESEARCH METHODOLOGY 

4.1. Schematic framework  
 

In-situ and satellite data were used in this research. The HEC-HMS semi-distributed model was applied for 

rainfall-runoff modelling, and the NSE and RVE performance metrics were employed as indicators for 

model performance. Therefore, in situ rainfall data, satellite-based precipitation products, river discharge 

data, LULC, soil characteristic data, and topographic data were examined. The main steps adopted in this 

study are illustrated in Figure 11. 

 

Figure 11: Conceptual flowchart  

4.2. Evaluation of Satellite rainfall products  

 
The assessment of satellite rainfall products (SREs) has focused on assessing the differences between 

ground-based and satellite rainfall data. A reference dataset was created using observations from 28 

meteorological monitoring stations located both within and outside the catchment, and the observations 

ranged from 2016 to 2020. The Thiessen Polygon method was used for a reliable spatial representation of 
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rainfall over the catchment. This method maps each station's recorded rainfall to specified locations, 

resulting in a thorough spatial rainfall distribution (Ball & Luk, 1998). A set of statistical function indicators 

was used, including the Mean Error (ME), correlation coefficient (R2), relative bias (rBias), and Root Mean 

Square Error (RMSE), to evaluate these SREs products, as shown in Table 2 (Solakian et al., 2020). Negative 

values signify underestimation, and positive values show overestimation by the satellite.  

 

Table 2: Statistical performance metrics used to evaluate SREs and error propagation 

Statistical metric Values Units Accurate value 

RMSE=√
∑ (𝑺−𝑮)𝟐𝒏

𝟏=𝟏

𝑵

𝟐

 

[0 to ∞] mm 0 

ME=
∑ (𝑺−𝑮)𝒏

𝒊=𝟏

𝑵
 

[-∞ to +∞] mm 0 

rBias=
∑ (𝑺−𝑮)𝒏

𝒊=𝟏

∑ 𝑮𝒏
𝒊=𝟏

∗ 𝟏𝟎𝟎  
[-∞ to +∞] % 0 

R2=
∑ (𝑺𝒊−�̅�𝒊)(𝑮𝒊−�̅�𝒊)𝒏

𝒊=𝟏

√∑ (𝑺𝒊
𝒏
𝒊=𝟏 −�̅�𝒊)𝟐√∑ (𝑮𝒊−�̅�𝒊)𝟐𝒏

𝒊=𝟏

 
[-1 to 1] [-] 1 

 

Where S is the rainfall data gathered using satellites or the simulated streamflow derived from satellite 

data. G is the recording from gauge stations (in situ rain gauge observation) or simulated observed 

streamflow (from in situ reference rain gauge), and N symbolizes the total count of the recorded 

observations.  

 

The correlation coefficient (R²) assesses the linear correlation between satellite and in-situ rainfall estimates, 

whereas RMSE measures the standard deviation of differences (precipitation errors from SREs products). 

Relative Bias (rBias) indicates overestimation or underestimation of real rainfall (between satellite and in-

situ). The Mean Error (ME) determines the errors or accuracy direction related to the underestimation or 

overestimation of the SRE products. 

 

After rigorous statistical analysis was carried out to determine the errors and evaluate the correlation between 

satellite and ground-based rainfall estimations, graphical summaries, such as scatter plots and error 

distribution charts, were created to visually show the relative performance of each satellite product, as 

demonstrated in the Results and Discussion section.  
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4.3. Satellites rainfall bias correction  

 
SRE products are not free from errors, and these errors can generally occur either randomly or systematically 

from different sources (Aghakouchak et al., 2012). Before applying SRE products for rainfall-runoff 

modelling, it is necessary to identify, evaluate, and fix these biases. Therefore, bias or error correction 

techniques have been established to enhance the accuracy of rainfall in terms of spatial and temporal 

representations just before being applied in rainfall-runoff modelling (Najmaddin et al., 2017). In this study, 

bias correction was performed on the SRE products, including CMORPH, CHIRPS, and GPM-IMERG.  

 According to their effectiveness proven by various studies, the following three bias correlation techniques, 

including Time and Space Variant (TSV), Distribution Transformation, and Power Transform bias 

correction methods, were assessed and tested in this research to prove the most effective bias correction 

technique, which indicates improvement in the accuracy of SRE products and to be applied in this 

research. 

• Time and Space Variant (TSV) bias correction technique 

The results of Omondi (2017), Habib et al., (2014), and Gumindoga et al., (2019) in their studies indicated 

that Time and Space Variant was the most effective bias correction approach. As they explained, the TVSV 

relies on the following equation and was applied in this study: 

 𝐵𝐹𝑇𝑆𝑉 =
∑ 𝐺(𝑖,𝑡)𝑡=𝑑−𝑙

𝑡=𝑑

∑ 𝑆(𝑖,𝑡)𝑡=𝑑−𝑙
𝑡=𝑑

                                                                              Equation 7 

Where BF represents the daily bias factor, G and S indicate the daily recorded precipitation data in mm/day 

(daily gauge and satellite), d is the day number, i is the number of rain gauge locations, t is the Julian day 

number, and l indicates the defined period over which the bias was assessed and calculated (time window).  

• Distribution Transformation (DT) bias correction method  

Based on research by Omondi (2017), the Distribution Transformation (DT) and Time and Space Variant 

(TSV) methods showed good performance among other bias correction techniques in terms of correcting 

mean rainfall and eliminating daily bias. Regarding the matching concept, the differences in the variance and 

mean value are fixed according to the chosen time, as explained in the following equations (Gumindoga et 

al., 2016). Equation (8) determines the bias correction factor for mean values.  

𝐷𝑇µ =
𝐺𝜇

𝑆𝜇
                                                                                                                                    Equation 8 

𝑆𝜇 represents the mean value of the selected time window size of satellite rainfall estimate products, and 𝐺𝜇 

shows the mean value of the selected time window size of gauged rainfall observation. Equation 9 shows 

the variance bias correction factor (standard deviation) for the gauge (Gτ) and SREs (Sτ). 

𝐷𝑇𝜏 =
𝐺𝜏

𝑆𝜏
                                                                                                                                    Equation 9 
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Finally, Equation 10 was applied to determine the corrected SREs for daily estimates (SDT) after determining 

the bias correction factors within a chosen time window. Therefore, correction factors were used for the 

daily satellite rainfall estimates (Si,t). 

𝑆𝐷𝑇 = 𝐷𝑇𝜏(𝑆𝑖,𝑡 − 𝑆µ) + 𝐷𝑇µ𝑆𝜏                                                                                              Equation 10 

• Non-linear Power Transform (PT) bias correction technique  

A nonlinear power transform bias correction approach can be used to remove satellite data errors for 

hydrological modelling (Vernimmen et al., 2012). This bias correction technique was more effective and 

effective in providing precipitation, as confirmed by Gumindoga et al. (2019) in their study. This approach 

focused on adjusting the standard deviation of the rainfall series through an exponential form, and Equation 

11 was applied.  

𝑃𝑇 = 𝛼𝐺(𝑖, 𝑡)𝛽                                                                                         Equation 11 

G represents the gauged daily precipitation in mm/day, signifies the pre-factor set to equalize the mean 

values for the transformed SREs and observed gauged rainfall, β is a coefficient calculated to match the 

coefficient of variation (CV) of the SREs to that of the gauged data, t represents the day number, and i 

signifies the gauge number. The final values for α and β were derived from the optimization approach, 

allowing for a more precise correction of satellite-derived rainfall data (Gumindoga et al., 2019). The 

optimizing process of the α and β coefficients aimed to minimize the difference between the measured (in 

situ) and corrected satellite rainfall values. This could be achieved through an algorithm that minimizes the 

root mean square error (RMSE) between the corrected satellite rainfall values and in situ values (Fylstra et 

al., 1998). 

4.3.1. Testing and determining the most effective bias correction approach  

 
This study aimed to obtain an appropriate bias correction approach for satellite rainfall estimates (SREs), 

including the CMORPH, CHIRPS, and GPM-IMERG datasets, in the context of evaluating remote sensing 

data for rainfall-runoff modelling in the Nyabarongo catchment area. The assessment was conducted using 

data from 28 meteorological stations inside and beyond the catchment area interpolated through the 

Thiessen Polygon method, which ranges from 2016 to 2020. 

 

To assess the effectiveness of the bias correction methods mentioned above, this study tested them on a 

hundred sample time series recorded during the 2020 rainy season, from February 12th to May 21st. Testing 

was carried out at four meteorological stations: Gitega, Kabuye SW, Kigali Aero, and Gacurabwenge. The 

BF for each approach was determined over a seven-day period window and applied to daily satellite rainfall 

data. For the Power Transform method, further tests were performed without a preset time window. These 

approaches were evaluated by comparing corrected SREs with gauge-based rainfall data using performance 

indicators, such as Mean Error (ME), correlation coefficient (R²), relative bias (rBias), and Root Mean Square 
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Error (RMSE), as noted in the preceding section. The results of this evaluation test are detailed in Table 3 

of the results section, providing a full overview of the performance indicators for each tested method. 

 

The most effective bias correction technique was then applied to all 28 rain-gauge locations in the study 

area. Other less effective methods were also used in part throughout the same time window for comparison 

purposes. The purpose of implementing these methods was to produce an improved rainfall dataset for 

each method. The uncorrected and corrected data were then used to analyze the performance of the HEC-

HMS semi-distributed rainfall-runoff model, and the impact of bias correction on the model was established 

by comparing its performance to rainfall corrected data using the most and least effective methods 

throughout the time series of the same year.  

 

Due to the computational time for optimizing the coefficients (α and β) for the Power Transform method 

across several time series, this optimization was fully completed and limited to data from 2016, 2017 and 

2018 due to the limited time to perform all bias correction. The others remaining 2019 and 2020 years 

timeseries, on the α and β values the average from 2016 to 2018 was used per station and the obtained 

values for α and β were applied to the others remaining years (2019 and 2020).  

4.3.2. Time Window defining  

 

Sequential Window (SW), the most applicable approach, was used to estimate the size of the time window, 

as recommended by Habib et al. (2014). The daily SREs in this study were corrected using a multiplicative 

bias factor, which is often known as the multiplicative shift approach. To obtain a biased adjusted rainfall 

estimate, the ratio of gauge-to-satellite estimates was calculated and multiplied by satellite estimates. 

Therefore, to remove bias in SREs, the Sequential (SW) approach was used. The windows of 3,5,7, 9, and 

17 days were analysed and tested on four rain gauge stations, and the errors spread among in situ 

observations and SREs were assessed by determining the root mean square error (RMSE). The objective 

was to find an optimum window length to be applied to all 28 rain gauge stations, which accurately captures 

the SRE bias and effectively corrects it for rainfall-runoff model simulations.  

4.4. HEC-HMS rainfall-runoff modeling  

4.4.1. Model description  

 

A HEC-HMS semi-distributed model was used to meet the objectives of this study. HEC-HMS is an 

acronym for Hydrologic Engineering’s Center Hydrologic Modelling System, which was developed by the 

U.S. Army Corps of Engineers (USACE, 2022). The HEC-HMS model is a commonly used software for 

simulating rainfall-runoff processes, and it was specifically designed to manage the complexity of 

hydrological processes in various catchments ( Feldman, 2000). This model simulates the effects of 

precipitation, evaporation, and transpiration on runoff, making it appropriate for evaluating the hydrological 
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responses in catchment areas (Singh & Woolhiser, 2003).The semi-distributed approach for HEC-HMS 

provides a more detailed representation of spatial variability within the catchment than lumped models, 

which treat the entire watershed as a single unit (Beven, 2012). The semi-distributed model divides the 

catchment into sub-basins, each with distinct characteristics, improving the precision of the runoff 

predictions.  

4.4.2. Model setup 

The selected approach for processing the rainfall transforms into runoff at the sub-basins and reaches the 

element level within the entire Nyabarongo catchment area in this study, as shown in Figure 12. 

 

Figure 12: Semi-distributed HEC-HMS model used methods 

In the flow chart, C represents the canopy interception of rainfall, S represents the rainfall stored in the 

surface depressions, I is the rainfall lost due to infiltration, and P is the precipitation. 

The four models were set including Local DEM (10m × 10m) with in-situ or SREs rainfall and Sentinel-2, 

Local DEM (10m × 10m) with in-situ or SREs rainfall and LandSat-8, SRTM (30m × 30m) with in-situ or 

SREs rainfall and Sentinel-2, and SRTM (30m × 30m) with in-situ or SREs rainfall and LandSat-8. 

 
The process of developing the HEC-HMS semi-distributed rainfall-runoff model for the Nyabarongo 

catchment area was conducted and separated into the following main steps. 
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• Initial setup and basin model  

The HEC-HMS model was established by first developing the basin model, which involved specifying the 

physical representation of the Nyabarongo catchment area. This is often done using Geographic 

Information System (GIS) data, including the Terrain Model. The basin model comprises sub-basins, 

reaches, junctions, and reservoirs in the Nyabarongo catchment, all of which are necessary for defining the 

catchment and understanding the movement of water within it.  

• GIS pre-processing 

For this study, GIS pre-processing included the use of GIS tools to process spatial data, such as terrain or 

digital elevation models (DEMs), land use data, and soil data. These processed data were applied to precisely 

delineate the sub-basins and extract relevant hydrological characteristics for the model. 

• Assigning Curve Numbers to sub-basins 

Assigning Curve Numbers (CN) to each sub-basin was an important step in developing the HEC-HMS 

model for the Nyabarongo catchment area. CN values, which are based on land use and soil data, are crucial 

for predicting direct runoff from rainfall. These numbers were derived from standardized tables created by 

the USDA’s Natural Resources Conservation Service (NRCS) and incorporated into the model for each 

sub-basin (Manyifika, 2015).  
 

Initially, the obtained a soil map as explained in the section of data processing which included various soil 

types such as clay, loam, silty clay, clay loam, sandy clay, and sandy loam. Each of these soils was classified 

based on their Hydraulic Conductivity (in/h) using SCS HGS results. Using ArcGIS, these classified soil 

groups were crossed with SCS Curve Numbers, which are defined for different Land Use Land Cover 

(LULC) types present in the study area. This combination process produces a curve-number grid map. 

Subsequently, using ArcGIS Pro, the Zonal Statistics as Table tool was used to intersect or join the Curve 

Number grid with the subbasins delineated in the model. This final step allowed us to determine the specific 

Curve Numbers for each sub-basin, which were the input data for the HEC-HMS model. 

• Assigning Lag Time and Muskingum Parameters 

The Lag time, described as the interval time between peak rainfall and peak runoff, was assigned to each 

sub-basin in the model for the Nyabarongo catchment area ( Feldman 2000). Furthermore, Muskingum 

parameters (K, X) were defined to simulate the movement of water across the river network. These factors 

are crucial for effectively estimating the time and degree of runoff within the Nyabarongo catchment area. 

The proper assignment of lag times and Muskingum parameters ensured that the model could accurately 

simulate hydrological processes within the catchment. The Lag Time within the Nyabarongo catchment area 

was calculated from the following equations (12,13 and 14), as detailed by the HEC-HMS User’s Manual, 

Version 2022, upgraded by the US Army Corps of Engineers. 
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𝑇𝐶 =
𝑙0.8(𝑆+1)0.7

1,140𝑌0.5                                                                                                                                        Equation 12 

 

𝑌 =
1000

𝐶𝑁
− 10                                                                                                                                         Equation 13 

 Lag=0.6𝑇𝐶                                                                                                                                              Equation 14 

Where TC indicates the Time of Concentration (in hours), which is the period needed for rainfall drop to 

travel from the farthest point in the catchment to the outlet. The l is the flow length (ft), Y is the mean 

catchment land slope (%), S is the maximum potential retention, and CN represents the Curve Number. 

Lag is the Lag Time expressed in hours.  

• Creating a meteorologic model 

Creating a meteorological model for the Nyabarongo catchment in the HEC-HMS setting up required 

describing the catchment's rainfall input (time series), which included entering rainfall data from various 

sources such as in situ stations and remote sensing data (SREs). 

• Creating control specifications and simulation run 

The final stage in the Nyabarongo HEC-HMS model setup was to create control specifications that defined 

the time and intervals of the simulation. This involved determining the start and end dates (time) for the 

simulation period in the Nyabarongo catchment area. A simulation was conducted by connecting the basin 

model, meteorological model, and control specifications, allowing the modeler to run the model and view 

the results.  

4.4.3. Calibration and performance evaluation of the model  
 

Rainfall–runoff modelling must be calibrated to generate a match or fit of the time series for the simulated 

and observed stream flow. The calibration process refers to the fine-tuning of the model parameters (model 

parameter optimization), boundary conditions, and meteorological factors to obtain the best possible model 

input and create precise and reliable model simulations (Rientjes, 2016). To analyse the performance of the 

model, the validation process requires a different meteorological dataset that is not used for calibration 

(Legates & McCabe, 1999). Visual assessment and comparison of the observed and simulated hydrographs 

and objective functions were employed to assess the model performance. The performance metrics, 

including the Nash-Sutcliffe coefficient of efficiency (NSE) and Relative Volume Error (RVE), were used 

to assess the matching between the observed and simulated hydrographs, as described by Rientjes (2016).  

The NSE evaluates the resemblance between simulated and observed hydrograph shapes, while the RVE 

shows the difference in volume between the observed and simulated hydrographs. A description of the 

equations for the statistical criteria used in this study is provided in Table 3, as indicated by Rientjes (2016).   
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Table 3: Performance metrics 

 

4.5. Evaluation of data sources on the performance of hydrologic model  
 

Before incorporating the datasets into the model (DEMs, LULC maps, and rainfall data), individual 

comparisons were performed to understand their preliminary impact on the model and reliability.  First, a 

local DEM with a 10m ×10m resolution and SRTM with a 30m × 30m resolution were assessed. These 

DEMs were compared by determining the differences in surface storage (sinks) and their ability to delineate 

stream networks within the catchment. Local DEM and DEM generated from SRTM were filled using a fill 

sink tool to eliminate some depressions, which led to the continuous flow of water on the terrain. Moreover, 

the filled DEM helps determine the direction of water flow for each cell in the DEM. Therefore, the flow 

accumulation is derived from the flow direction, where it calculates the accumulated flow of water into each 

cell by showing potential stream locations. The flow accumulation data produced were used to assign an 

order to each segment of the stream network. 

 

This comparison allowed us to understand how their accuracy differs and may affect hydrological modelling 

before and after being received by the model. Next, the two LULC maps were crossed and compared, 

including Sentinel-2 with a 10m × 10m resolution and LandSat-8 with a 30m × 30m resolution. Both LULC 

maps were combined with the digital soil map of the world from FAO to produce Curve Number (CN) 

grids, which were necessary input data for the model. These LULC maps were compared by analysing the 

surface areas across different land cover classes. For the rainfall data, the daily mean rainfall selected in the 

rainy season of two months ranged from 01/03 to 30/04 for 5 years’ time series for both in situ 

measurements, and uncorrected SREs were compared by generating rainfall maps and delta maps. To 

differentiate between these rainfall data, the IN-SITU map was subtracted from each SRE map, resulting in 

different maps showing variation in precipitation values. Finally, maps are prepared that show the difference 

between IN-SITU data and GPM-IMERG, IN-SITU and CMORPH, and IN-SITU and CHIRPS rainfall 

data, in the following these maps will be referred to as DELTA maps. After the preliminary assessment and 

Performance 

metrics 

Equations Values Performance indicator 

Nash-Sutcliffe 

coefficient of 

efficiency (NS) 

𝑁𝑆 = 1 −
∑ (𝑄𝑜𝑏𝑠(𝑖)

𝑁
𝑛−1 − 𝑄𝑠𝑖𝑚(𝑖))2

∑ (𝑄𝑜𝑏𝑠(𝑖)−
𝑁
𝑛−1 𝑄𝑜𝑏𝑠(𝑖))2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

 

 

-∞ to 1 Range 

1 Perfect 

0.9-1 Extremely good 

0.8-0.9 Very good 

0.6-0.8 Reasonably good 

<0.6 Poor 

Relative 

Volume Error 

(RVE) 

𝑅𝑉𝐸 = [
∑ (𝑄𝑠𝑖𝑚(𝑖) − 𝑄𝑜𝑏𝑠(𝑖)

𝑛
𝑖=1

∑ 𝑄𝑜𝑏𝑠(𝑖)
𝑛
𝑛=1

] × 100 
-∞ to +∞  Range 

0 Best 

-5% to +5% Good 

±5% to ±10 Reasonable 
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comparison, the impacts of these different data sources on model performance were evaluated using four 

models with different input data developed. These models were evaluated using performance metrics, such 

as the Nash-Sutcliffe efficiency (NSE) and Relative Volume Error (RVE). The in-situ rainfall, local DEM, 

and Sentinel-2 LULC map served as reference data for comparison with other datasets and model 

evaluation. 

4.6. Evaluation the effects of error propagation in streamflow simulations 
 

The error propagation of data sources, primarily in SREs within the model, was evaluated by checking the 

variations in streamflow employing statistical indices such as the Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), and Correlation Coefficient (CC). The ratios of these metrics (RMSEQs/RMSER, 

MAEQs/MAER, and CCQs/CCR) for discharge and precipitation were determined to assess the influence of 

error propagation within the model across data sources. Therefore, when the ratios for RMSEQs/RMSER 

and MAEQs/MAER were below 1 and the ratio for CCQ/CCR was greater than 1, the errors decreased or 

attenuated (Gumindoga et al., 2021). The statistical metrics (RMSE, MAE, and CC) for both rainfall and 

streamflow were calculated using the equations listed in Table 2.  

4.7. Runoff coefficient assessment resulting from the incorporation of different data sources 
 

In this study, various data sources were evaluated for their effectiveness in assessing the runoff coefficient 

using the HEC-HMS semi-distributed model. These data sources, as mentioned in the section above, were 

used to analyse the runoff coefficient across the total outlet volume water generated by the four models 

developed as discussed above. The model outputs (outlet discharge) were divided by the input rainfall data 

sources to calculate the runoff coefficient. To compare the performance of different data sources, the model 

using in-situ rainfall data, local DEM, and Sentinel-2 LULC map was considered as benchmark.  
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5. RESULTS AND DISCUSSION 

This chapter contains research findings based on the objectives stated in the introduction part. The findings 

are compared to previous scientific studies and related studies. 

5.1. HEC-HMS rainfall runoff modelling  

5.1.1. Model runs and calibration  

5.1.1.1. Hydrological Soil Groups and Curve Number  

 
Table 4 shows the grouping of the different soil types obtained based on their hydraulic conductivity, 

measured in inches per hour (in/h). This grouping is based on four SCS Hydrologic Soil Groups (A, B, C, 

and D) based on factors such as hydraulic conductivity, texture, and drainage properties, which help in 

understanding the infiltration rates and water movement through the soil in the study area (Abraham et al., 

2019). For example, clay soil and Sandy Clay with a hydraulic conductivity of 0.03 in/h were grouped as 

HSG D, indicating low permeability and high runoff (Sartika et al., 2020). Therefore, they have low 

infiltration rate within the study area. Conversely, Sandy Loam with a much higher conductivity of 1.98 in/h 

also falls into HSG A, Loam and Sandy Clay Loam with hydraulic conductivity respectively of 0.73 and 0.31 

in/h both also fall into HSG A groups, demonstrating significant infiltration rate within the study area 

according within their soil groups (Abraham et al., 2019; Sartika et al., 2020). They have low runoff and a 

high infiltration rate.  

 

The grouping also showed that soils with intermediate conductivity values, such as silty clay (0.15 in/h) and 

Clay Loam (0.18 in/h), were classified into group B. This corresponds to the established knowledge that 

these soils have moderate infiltration rates (Sartika et al., 2020). The ranges of hydraulic conductivity for 

each HSG were provided, e.g., HSG A soils generally have conductivities greater than 0.30 in/h, confirming 

that soils with higher permeability are grouped together for hydrological modelling purposes.  

 

Table 4: SCS Hydrologic Soil Groups identified in the study area  

 

S/N Soil type  Hydraulic 
conductivity (in/h) 
results for Soil Type 

SCS 
HSG 

Range of Hydraulic 
Conductivity (in/h) for 
SCS HSG 

SCS HGS 
results for 
Soil Type 

1 Clay  0.03 A >0.30 D 

2 Loam 0.73 B 0.15-0.3 A 

3 Silty Clay 0.15 C 0.05-0.15 B 

4 Sandy Clay Loam 0.31 D 0.00-0.05 A 

5 Clay Loam 0.18     B 

6 Sandy Clay 0.03     D 

7 Sandy Loam 1.98     A 
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Table 5 presents SCS Curve Numbers (CN) assigned to different land use and land cover (LULC) types, 

differentiated by HSG. Curve numbers are used to predict the direct runoff or infiltration from rainfall 

(Hong & Adler, 2008). For instance, built-up areas have higher CN values (77-92) across all HSGs, indicating 

a higher runoff potential due to impervious surfaces, as indicated in their study; urban areas typically have 

higher CN values, indicating a greater runoff potential (Rawls et al., 1981). Water bodies have a CN of 100, 

indicating no infiltration, which aligns with the expectations for open water surfaces, as explained by the 

USDA NRCS, 1986. Agricultural lands (crops) have varying CN values (67-89), reflecting differences in soil 

management and vegetative cover. Forested areas have the lowest CN values (30-77), indicating high 

infiltration rates and low runoff, consistent with findings of their study conducted on the impact of LULC 

on runoff (Rietz & Hawkins, 2004). 

 

Table 5: SCS Curve Numbers defined per Land Use Land Cover (Ottawa, 2017) 

Hydrologic Soil Groups  

S/N LULC A B C D  

1 Built up 77 85 90 92  

2 Water 100 100 100 100  

3 Crop 67 78 85 89  

4 Forest 30 55 70 77  

5 Grass Land 49 69 79 84  

6 Bare Land 76 85 90 93  

 

As illustrated in Figure 13, the CN maps from Landsat-8 and Sentinel-2 indicate visual representations of 

CN values in the study area. The CN values vary differently within subbasins across land cover and soil 

conditions after joining curve numbers obtained per LULC classes with SCS HGS identified in the study 

area. Higher CN values suggest areas with a higher runoff potential, often due to impervious surfaces or 

compacted soils. Conversely, lower CN values indicated areas with high infiltration and low runoff. The 

comparison of the CN between the two satellite-LULC maps can highlight temporal changes in land cover 

and soil types affecting runoff potential. Sentinel-2, with its higher spatial resolution, may provide more 

detailed and accurate representations of the hydrological characteristics of the study area. For instance, 

studies have shown that Sentinel-2 data can enhance the precision of hydrological models because of their 

finer resolution and higher revisit frequency (Forkuor et al., 2018a). 
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Figure 13: Hydrological Soil Groups and Curve Number 

5.1.1.2. Model runs 

 
Figure 14 shows the simulated and observed discharge hydrographs as outcomes of the first run of 

streamflow simulations using the HEC-HMS semi-distributed model. It includes four scenarios combining 

different Digital Elevation Models (DEMs), LULC, Soils, and in situ data. Local DEM (10m × 10m) with 

in-situ rainfall, soil, and Sentinel-2, Local DEM (10m × 10m) with in-situ rainfall, soil, and LandSat-8; SRTM 

(30m × 30m) with in-situ rainfall, soil, and Sentinel-2; and SRTM (30m × 30m) with in-situ rainfall, soil, and 

LandSat-8. This figure also illustrates the performance of these simulations in terms of their matching with 

observed streamflow data and evaluation using the Nash-Sutcliffe efficiency (NSE) and Relative Volume 

Error (RVE).  
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Figure 14: Simulated and observed discharges hydrograph 

The first graph in Figure 14 (top left) shows the streamflow simulation results using a high-resolution Local 

DEM (10m × 10m) in combination with in-situ rainfall data and the Sentinel-2 LULC map. This scenario 

indicated a high Nash-Sutcliffe efficiency (NSE) of 0.90 and a Relative Volume Error (RVE) of 3.9%. A 

high NSE value, close to 1, indicates an excellent fit between the observed and simulated streamflow, 

indicating that the model effectively captures the streamflow dynamics. The low RVE indicates a minimal 

difference in the total volume of the simulated flow compared to the observed flow, demonstrating the 

effective results of this combination.  

The second graph (top right) illustrates the simulation results using the same Local DEM (10m × 10m) and 

in situ rainfall, but with LandSat-8 data instead of Sentinel-2. This combination also produced a higher NSE 

of 0.89, indicating a good match between the simulated and observed streamflow. However, the RVE 

increased -8.6%, indicating a higher volume difference or discrepancy between the simulated and observed 

streamflow. While the model fits the observed streamflow, the increased RVE indicates larger errors in the 

total volume estimation compared with the first scenario.  

The third graph (bottom left) presents the results using a coarser-resolution SRTM DEM (30m × 30m) 

combined with Sentinel-2 data. This scenario achieved an NSE of 0.90 and an RVE of -7.1%. The NSE was 
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relatively identical to that of the first scenario, indicating a strong model performance even with a coarser 

DEM resolution. However, there is a significant difference in the RVE for the second scenario, suggesting 

that coarser resolution affects the accuracy of the catchment representation and flow estimations, leading to 

comparable volume errors.  

The fourth graph (bottom right) shows the simulation results using the SRTM DEM (30m × 30m) with 

LandSat-8 data. This combination resulted in an NSE of 0.89 and an RVE of -9.5%. The NSE remains high 

and thus indicates good model performance. The RVE was the largest, indicating the largest volume error. 

This indicates that the combination of the coarser DEM with LandSat-8 data cannot capture the detailed 

catchment characteristics.  

The analysis of these results shows several key points regarding the impact of DEM resolution and the 

choice of satellite (LULC) data on rainfall runoff modelling. All four simulations performed well, with NSE 

values close to or above 0.89, indicating reliable streamflow simulations. However, the fit of the total volume 

of simulated flow was influenced by both the DEM resolution and satellite LULC map used. Higher 

resolution Local DEM (10m × 10m) combined with high Sentinel-2 LULC provided better volume fit 

compared to the courser SRTM DEM (30m × 30m) combined with both Sentinel-2 and LandSta-8 LUL, 

as evidenced by the lower RVE in the first scenario.  This can be aligned with studies conducted and 

demonstrated that finer-resolution DEMs and finer LULC resolution offer a better representation of 

catchment characteristics, leading to improved simulation streamflow predictions (Rocha et al., 2020b). 

Moreover, the choice between Sentinel-2 and LandSat-8 maps affects the model performance. The Sentinel-

2 LULC map results in lower RVE values and better NSE values when combined with high-resolution 

DEM, and it may provide more accurate surface information for streamflow modelling compared to 

LandSat-8 (Al-Khafaji & Al-Sweiti, 2017).  

5.1.1.3. Model calibration 

 
The primary objective of this study was to assess the effect of remote sensing data on the performance of 

rainfall-runoff modelling in the Nyabarongo catchment area. This was achieved through the calibration of 

the HEC-HMS semi-distributed model using a reference scenario combining Local DEM (10m × 10m) with 

in-situ rainfall, soil data, and Sentinel-2 LULC maps, as shown in Figure 15, and the subsequent application 

of optimized parameters to various other model combinations. This allowed for a comprehensive analysis 

of how varying data sources (DEMs, LULC maps, and SREs) influence rainfall-runoff simulations.  
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Figure 15: HEC-HMS model calibrated hydrograph 

Figure 15 shows the simulated and observed discharge hydrographs as the outcomes of the calibrated HEC-

HMS semi-distributed model using the reference case. This model achieved a high Nash-Sutcliffe efficiency 

(NSE) of 0.89 and a Relative Volume Error (RVE) of 2.9%, from 3.9%. A high NSE value indicates that 

the model accurately simulates the observed streamflow, showing a good match between the simulated and 

observed discharges. The low RVE suggests minimum errors in the total volume of the simulated runoff 

compared to the observed runoff, confirming the effectiveness of the model in volume estimation.  

The calibration process involved optimizing parameters within the subbasins, such as Muskingum K and X 

values on benchmark model. The reference case model was selected for calibration because of its superior 

initial performance metrics for the first runs compared to other scenarios, as shown in Figure 14, and 

explained in the section above. The initial Curve Number values reflect the varying infiltration capacities 

across the sub-basins were not changed or adjusted for all developed models. Additionally, the Lag time 

initial values, which affect the timing of runoff, indicate that various hydrological responses within the 

Nyabarongo catchment remained the same for all models. The Muskingum K and X values, critical for 

routing flows, were optimized between 0.40372 to 0.59127 and 0.19842 to 0.29743, respectively across the 

sub-basins, reflecting significant control over the storage and translation of runoff or flood waves through 

the sub-basins. These adjustments in the K and X values influenced the timing and attenuation of peak 

flows, thereby enhancing the runoff simulations. All the obtained optimized parameter values for each sub-
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basin were then applied to other model combinations to evaluate their performance and other data sources 

under the same calibrated conditions. Therefore, it was possible to assess the impact of different data sources 

on the model performance.   

5.2. Evaluation of data sources on the performance of rainfall-runoff model  

5.2.1. Preliminary assessment 

5.2.1.1. Land Use Land Cover maps evaluation 

 
Figure 16 was generated from the inter-crossing and comparison of Sentinel-2 and LandSat-8. It presents 

the area distribution in square kilometers of LULC data sources across various LULC classes, comparing 

Sentinel-2 and LandSat-8. This distribution highlights the differences between these two datasets in terms 

of spatial resolution and potential effects on runoff simulations.  

 

Figure 16: Comparison between LULC maps from Sentinel-2 and LandSat-8 

The built-up area showed a minor difference between Sentinel-2 (2032.7 Km2, with a rate of 20.1%) and 

LandSat-8 (2200.3 Km2) (21.8%). This difference could influence the runoff simulation, as urban areas 

typically generate higher runoff due to impervious surfaces. The higher spatial resolution of Sentinel-2 

allowed for a more precise identification of built-up areas compared to LandSat-8 as reported by studies, 

potentially leading to more accurate runoff simulations (Kuc & Chormański, 2019). The water bodies were 
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slightly more abundant in Sentinel-2 covering 393.3 Km2 (3.9 %) compared to LandSat-8 (310.3 Km2, 3.1 

%). Therefore, the improved resolution of Sentinel-2 provides the detection of smaller water bodies, which 

can refine runoff simulations by providing more detailed streams and hydrological networks (Jakovljević et 

al., 2018). 

 

The cropland area was significantly larger in LandSat-8 (1634.7 Km2, 16.2%) than in Sentinel-2 (874.1 Km2, 

8.7%). This may be due to the seasonal differences in crop visibility. Croplands affect runoff through 

infiltration and evapotranspiration (ET). The higher resolution of Sentinel-2 may lead to better 

differentiation between croplands and other land covers, which indicates the accuracy of simulating runoff 

compared with LandSat-8, which may be lost through infiltration and evapotranspiration processes based 

on these reclassification results (Etchanchu et al., 2017). Forest areas were also more in LandSat-8 (1435.2 

Km2, 14.2%) compared to Sentinel-2 (1263.4 Km2, 12.5%). These results reflect the reduction in runoff due 

to the high infiltration capacity and evapotranspiration. The higher spatial resolution of Sentinel-2 could 

provide a more detailed forest cover map, improving most runoff simulation results for forest-related 

hydrological processes compared with LandSat-8.  

 

Grassland coverage was higher in Sentinel-2 (3213.9 Km2, 31.8%) compared to LandSat-8 (2574.3 Km2, 

25.5%). Grasslands influence runoff through moderate infiltration and evapotranspiration rates. Sentinel-2, 

with finer resolution, increases the detection of smaller patches of grassland, potentially leading to more 

accurate runoff simulations (Etchanchu et al., 2017). Bare land was more in Sentinel-2 (2336.5 Km2, 23.1%) 

compared than in LandSat-8 (1985.2 Km2, 19.3%). This implies higher runoff due to minimal infiltration. 

The higher resolution of Sentinel-2 allows for better detection of bare land patches, which could refine 

runoff simulations by providing a detailed surface cover map.  

 

The resolution differences between Sentinel-2 (10m × 10m) and LandSat-8 (30m × 30m) significantly 

affected the accuracy of the LULC classification. For instance, as explained in the data processing section, 

Sentinel-2 had an overall accuracy of 78.8%, and LandSat-8 achieved 73.1% accuracy. Sentinel-2 higher 

resolution provided a more detailed and precise land cover map, which can improve the accuracy of rainfall-

runoff simulations in the HEC-HMS model in the Nyabarongo catchment, aligned with the research done 

by Forkuor et al.,2018 showed that finer spatial resolution of LULC maps leads to better delineation of land 

cover types, which is essential for precise hydrological simulations (Forkuor et al., 2018). 
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5.2.1.2. Assessing Digital Elevation data 

 
In this study, SRTM DEM and a local DEM were evaluated. Figures 17 and 18 present the comparative 

outcomes of stream network delineation and surface volume storage using two different digital elevation 

models, including the Local DEM with a resolution of 10m × 10m and SRTM of 30m × 30m within the 

Nyabarongo catchment area. 

 
 

Figure 17: Stream networks delineating using Local DEM 10m×10m and SRTM 30m×30m   

Figure 17 shows a comparison of the stream networks delineated using both DEMs. As illustrated in the 

figure, the stream network delineated using the Local DEM shows more detailed stream networks than 

SRTM, which are less detailed. Therefore, the higher resolution allows for the capture of finer topographical 

details, resulting in a more accurate representation of smaller tributaries and minor streams. The detailed 

stream networks in the Local DEM can potentially lead to more precise rainfall-runoff simulations in the 

HEC-HMS model compared to the SRTM, which might lead to less accurate runoff simulations due to a 

less detailed stream network, as indicated in Figure 17. 
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Figure 18: Volume storage at the surface using both Local DEM 10m × 10m and SRTM 30m × 
30m  

Figure 18 shows the volume storage at the surface using both DEMs, with calculated total volumes of 

8,885,700m3 for the Local DEM and 19,562,400m3 for the SRTM DEM, as illustrated in Appendices 1 and 

2, respectively. The surface storage volume in the Local DEM (10m × 10m) was significantly lower than 

that in the SRTM DEM (30m × 30m). High resolution captures more detailed terrain features, such as small 

depressions and natural storage areas, but these are distributed over a more extensive network, leading to a 

lower total storage volume (Hou et al., 2021). This higher surface storage volume with the SRTM DEM may 

occur because the lower resolution tends to generalize the terrain, resulting in larger, smoother depressions 

and storage areas, which cumulatively account for the higher total volume.  

 

These dissimilarities in surface volume storage may have implications for rainfall-runoff simulations. For 

instance, a lower volume of surface storage may lead to higher peak flows during rainfall events because 

there are fewer large storage areas to attenuate the flow. This can result in a more responsive catchment 

with rapid runoff generation. However, a higher volume of surface storage implies a more significant flow 

attenuation. Larger storage areas can capture and hold more water during rainfall events, potentially lowering 

peak flows and delaying runoff response.  
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The choice of DEM resolution has a notable effect on rainfall-runoff simulations within the Nyabarongo 

catchment using the HEC-HMS model. The higher-resolution DEM provides a more detailed 

representation of the terrain, leading to more detailed stream networks and lower storage volumes compared 

to the lower-resolution DEM (W. Zhang & Montgomery, 1994). The lower-resolution DEM can lead to 

less accurate runoff simulations, particularly in areas where small topographical features significantly 

influence hydrological responses. The Local DEM (10m × 10m) provided a more detailed and accurate 

representation of the Nyabarongo catchment compared to the SRTM DEM (30m × 30m). This resulted in 

more precise rainfall-runoff simulations in the HEC-HMS model. These findings align with other existing 

research that focused on the importance of DEM resolution in rainfall runoff modelling. Higher-resolution 

DEMs are generally preferred for detailed and accurate simulations, especially in locations with complex 

terrain such as the Nyabarongo catchment area (Moges et al., 2023b).   

5.2.1.3. Rainfall data source analysis 

 
The rainfall distribution maps in Figure 19 show the spatial variability of the daily average rainfall across the 

study area using both in-situ rainfall and SRE products such as CMORPH, CHIRPS, and GPM-IMERG. 

From these maps, it is evident that in-situ rainfall and SREs are different within the catchment. The DELTA 

maps in Figure 20 highlight the differences between in-situ rainfall and various SREs, specifically CMORPH, 

CHIRPS, and GPM-IMERG. For instance, in the delta map in-situ and CHIRPS, the top-centre map shows 

the difference between in-situ and CHIRPS. Positive values indicate areas where SREs overestimated 

precipitation, and negative values indicate underestimated precipitation compared to in-situ data.  

 

Figure 19: Rainfall maps showing distribution patterns in both in-situ and SREs 
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Figure 20: DELTA maps (i.e. difference maps) showing rainfall patterns for SREs 

This spatial variability and differences in rainfall data have significant implications for errors in rainfall-

runoff simulations using the HEC-HMS semi-distributed model (Troutman, 1983). The spatial variability 

captured by both SREs, and in-situ rainfall must be the same to achieve good runoff simulation results. 

Areas with higher precipitation contribute more to runoff than those with lower precipitation, potentially 

leading to localized flooding if not accurately represented. Therefore, dissimilarities related to 

overestimations and underestimations for these SREs compared with in-situ rainfall could lead to 

overprediction and underprediction of runoff simulation within the model. Incorporating bias-corrected 

rainfall data, such as power transform, time–space variant, and distribution transformation techniques, may 

improve the accuracy of rainfall-runoff simulations (Sharma et al., 2007). 

5.2.2. Effects of data sources on the performance of HEC-HMS rainfall runoff model 

 
Table 6 shows the performance of different data sources for streamflow simulation using the HEC-HMS 

semi-distributed model. As shown in this table, the effects of data sources are divided into sections that 

show the Nash-Sutcliffe Efficient (NSE) and Relative Volume Error (RVE) for both initial runs and 

calibrated models, including the reference case model of Local DEM 10m × 10m with Sentinel-2 and other 

models of  Local DEM 10m × 10m with LandSat-8, SRTM 30m × 30m with Sentinel-2, and SRTM 30m × 

30m with LandSat-8. The different rainfall both in situ, uncorrected, and corrected SREs with different bias 
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correction techniques and the same soil data were received by these developed models, as stipulated in Table 

6 and appendix 3.  

Table 6: Performance of different data sources on the streamflow simulation 

Local DEM 10m × 10m with Sentinel-2 Local DEM 10m × 10m with LandSat-
2 

  Initial runs Calibrated Initial runs Calibrated 

Rainfall NSE RVE NSE RVE NSE RVE NSE RVE 

In-situ 0.90 3.9 0.89 2.9 0.89 -8.6 0.89 -7.4 

CMORPH-Uncorrected 0.24 -9.6 0.38 -7.8 0.23 -13.0 0.30 -10.1 

CMORPH-PT 0.71 1.4 0.77 0.4 0.61 12.0 0.69 10.0 

CMORPH-TSV 0.38 -8.6 0.49 -7.4 0.40 -11.4 0.50 -9.4 

CMORPH-DT 0.33 -1.04 0.43 -0.04 0.30 10.4 0.33 9.4 

CHIRPS-Uncorrected 0.17 0.3 0.28 -1.3 0.22 -10.7 0.27 -10.2 

CHIPS-PT 0.73 7.2 0.79 6.3 0.63 8.1 0.69 8.7 

CHIPS-TSV 0.30 -2.8 0.43 -1.2 0.37 -10.0 0.41 -7.3 

CHIPS-DT 0.20 12.2 0.29 1.3 0.30 10.0 0.31 10.1 

IMERG-Uncorrected 0.38 16.8 0.41 14.0 0.34 -17.5 0.40 -11.5 

IMERG-PT 0.70 9.0 0.72 8.0 0.62 12.7 0.67 10.2 

IMERG-TSV 0.52 0.9 0.62 2.0 0.60 -10.1 0.60 -10.1 

IMERG-DT 0.50 14.3 0.54 12.8 0.44 15.9 0.50 10.6 

SRTM 30m × 30m with Sentinel-2 SRTM 30m × 30m with LandSat-8 

Rainfall NSE RVE NSE RVE NSE RVE NSE RVE 

In-situ 0.90 -7.1 0.89 -6.1 0.89 -9.5 0.90 -8.5 

CMORPH-Uncorrected 0.23 -11.9 0.35 -8.9 0.20 -14.2 0.30 -11.2 

CMORPH-PT 0.69 4.5 0.77 2.5 0.61 13.8 0.70 10.8 

CMORPH-TSV 0.40 -9.2 0.49 -8.3 0.39 -12.5 0.49 -10.4 

CMORPH-DT 0.33 2.4 0.43 1.3 0.29 12.4 0.30 10.4 

CHIRPS-Uncorrected 0.20 -14.3 0.26 -13.3 0.16 -15.7 0.20 -13.7 

CHIPS-PT 0.68 10.3 0.70 8.4 0.60 11.3 0.60 10.7 

CHIPS-TSV 0.36 -7.0 0.42 -6.0 0.36 -11.3 0.41 -9.4 

CHIPS-DT 0.28 14.1 0.31 12.4 2.64 12.5 0.31 12.2 

IMERG-Uncorrected 0.37 -11.1 0.40 -10.1 0.36 25.4 0.40 -22.4 

IMERG-PT 0.70 10.4 0.71 9.1 0.51 24.5 0.65 19.0 

IMERG-TSV 0.53 -4.9 0.61 -3.8 0.57 -15.8 0.62 -12.2 

IMERG-DT 0.48 10.3 0.54 9.5 0.43 20.8 0.49 18.8 

 
The initial runs for the reference case model of Local DEM 10m × 10m with Sentinel-2 using in-situ rainfall 

data achieved a high NSE of 0.90 and an RVE of 3.9%, indicating a strong match between the observed 

and simulated streamflow. Uncorrected SREs such as CMORPH, CHIRPS, and GPM-IMERG showed 

significantly lower performance, with NSE values of 0.24, 0.17, and 0.38, respectively, and significant 

underestimations of no fit in RVE values of -9.6%, 0.3%, and 16.8% according to the acceptable range of -

5% and +5%. The application of the bias correction techniques significantly improved the results. For 

example, the Power Transform (PT) correction technique for CMORPH increased the NSE to 0.71 and 
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adjusted the RVE to 1.4%. Similarly, the Time-space Variant (TSV) and Distribution Transformation bias 

correction techniques also increased the NSE and reduced the RVE, but the Power Transformation 

performed well. After calibration, the NSE for the reference model with in-situ rainfall remained high at 

0.89, with an improved RVE of 2.9%. The calibrated model with uncorrected and corrected SREs further 

increased performance. For instance, the Power Transform in CMORPH achieved an NSE of 0.77 and 

RVE of 0.4%. For other corrected SREs such as CHIRPS and GPM-IMERG, the Power Transform also 

showed significant improvements in both NSE and RVE, indicating effective bias correction.  

 

The initial runs with Local DEM 10m × 10m with LandSat-8 showed an NSE of 0.89 with in-situ rainfall 

but a notably bad estimation with RVE at -8.6% compared to the reference case. Uncorrected SREs such 

as CMORPH, CHIRPS, and GPM-IMERG performed poorly, with NSE values of approximately 0.23, 

0.22, and 0.34, respectively, and significant underestimations in RVE of approximately -13.0%, -10.7%, and 

-17.5% compared to the reference case and Local DEM 10m × 10m with LandSat-8 and in-situ rainfall. 

Bias correction techniques improved these metrics, with the Power Transform, which is the best, in 

CMORPH, for example, showing an NSE of 0.61 and an RVE of 12.0%, demonstrating a shift to the best 

results compared to uncorrected. The other techniques and power transforms in all and other SREs, namely 

CHIRPS and GPM-IMERG, also showed improvements in NSE and RVE. The results of calibration 

showed that the NSE for the model with in-situ rainfall was 0.89, and the RVE was -7.4%. The corrected 

SREs showed an NSE of 0.69 and RVE of 10.0% in the Power Transform, indicating improvement. 

Therefore, Power Transform and other techniques in all SREs improved NSE and RVE values but were 

still poor compared to the reference case and Local DEM  10m × 10m with LandSat-8 and in-situ rainfall, 

as shown in Table 6 and Appendix 3.  

 

Using the SRTM 30m × 30m DEM with Sentinel-2 and in situ rainfall, the results showed an NSE of 0.90 

and an RVE of -7.1% for the initial runs. Uncorrected SREs showed poor performance, with NSE values 

of approximately 0.23 and RVE of -11.9% in CMORPH, indicating underestimation and performance for 

other SREs compared to the reference case and SRTM 30m × 30m DEM with Sentinel-2 and in-situ rainfall. 

Corrected SREs through the power transform and time–space variant showed improvements. The power 

Transform in CMORPH achieved an NSE of 0.69 and an RVE of 4.5%, while CHIRPS and GPM-IMEG 

also enhanced NSE and reduced RVE compared to the uncorrected data. Calibrated runs with SRTM 30m 

× 30m DEM and Sentinel-2 with in-situ rainfall showed an NSE of 0.89 and an RVE of -6.1%. Corrected 

SREs by Power Transform, such as CMORPH, achieved an NSE of 0.77 and RVE of 2.5%, indicating a 

significant improvement over uncorrected data. The power Transform also showed an improved 

performance, reflecting an effective bias correction.  

 

Initial runs with SRTM 30m × 30m DEM and LandSat-2 had an NSE of 0.89 and -9.5%, respectively, with 

in-situ rainfall. Uncorrected SREs, such as CMORPH, also performed poorly with an NSE of 0.20 and RVE 
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of -14.2% compared to the corrected data, and SRTM 30m × 30m DEM and LandSat-2 run with in-situ 

rainfall and reference cases. Power transformation also outperformed the other techniques for all SRE 

products. Calibration of the SRTM 30m × 30m DEM and LandSat-2 model with in-situ rainfall resulted in 

an NSE of 090 and RVE of -8.5 %, which also outperformed the initial runed model.  

 

These overall results on the impacts of various data sources on the performance of the model aligned with 

other studies that focused on the importance of high-resolution data and effective bias correction. Rocha et 

al. (2020) found that high-resolution DEMs and land cover significantly increased rainfall-runoff model 

performance by providing detailed topographic and surface information (Rocha et al., 2020). Gumindoga et 

al. (2019) and Goshine et al. (2019) demonstrated that bias correction techniques such as Power Transform, 

Time Space Variant, and Distribution Transformation improve the accuracy of SREs in rainfall-runoff 

modelling (Goshime et al., 2019). Among these bias correction techniques, the Power Transform (PT) was 

the most effective, consistently improving NSE and RVE values across different SRE products and model 

combinations. The comparison of these study findings indicated that models combined with higher-

resolution Local DEM (10m × 10m) and LULC maps (Sentinel-2) with in-situ rainfall consistently 

outperformed those with lower-resolution SRTM (30m × 30m), as evidenced by higher NSE values and 

lower RVE percentages. This is reliable with the findings of Rocha et al. (2020), who highlighted the 

influence of detailed terrain data on rainfall-runoff simulations. The resolution of land cover data has also 

played a crucial role. Models with Sentinel-2 (10m × 10m resolution) generally showed better performance 

than those with Land Sat-8 (30m × 30m resolution), supporting the conclusions drawn by Hanif et al.,2023) 

regarding the significant improvement in surface representation with high-resolution land cover data, 

indicating the best performance in simulating streamflow (Hanif et al., 2023).  The reference case model of 

Local DEM 10m × 10m with Sentinel-2 and in situ rainfall outperformed other models, highlighting the 

importance of high-resolution DEM and detailed land cover data in achieving good streamflow simulations.  

5.3. Evaluation and bias correction of SRE products 

5.3.1. Time window defining  
 

The performance metrics were assessed using the Sequential Window (SW) approach over different bias 

correction time windows (days) at numerous stations. This was performed using both TSV and DT bias 

correction techniques. The RMSE and other performance metrics, such as ME, RBias, and R2, were 

primarily evaluated to determine the optimum time window size for bias correction for SRE. Following 

Habib et al. (2014), the SW technique was used to identify the optimal time window size for bias correction 

of the daily SREs. In this research, by examining time windows of 3, 5, 6, 7, 9, and up to 17 days across four 

rain gauge stations including Gitega, Kabuye SW, Kigali Aero, and Gacurabwenge as samples to test and 

determine the optimal window size for effectively capturing and correcting SRE biases, the results showed 

that a 7-day time window provided the greatest performance for all assessed SREs. 
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For the CHIRPS data, the 7-day time window proved to be the most successful at reducing biases across 

different parameters. For example, the Gitega station has a significantly lower RMSE value (5.9 for a 7-day 

window compared to 6.1 for a 3-day window, which appears as the next one after a 7-day time window 

compared to other remaining time window lengths. The ME for the 7-day window was 3.6, compared to 

3.7 for the 3-day window, indicating an improved performance in terms of error reduction. The R2 value 

increased from 0.66 for the 3-day window to 0.70 for the 7-day window, indicating improved performance 

with an optimal window size, as shown in Table 7. At Kabuye station, the 7-day window generated an RMSE 

of 7.2 compared to 9.1 for the 3-day window. For Gacurabwenge and Kigali Aero stations, the obtained 

RMSE is significantly lower compared to other time window sizes, with values of 7.1 and 7.0, respectively. 

However, after considering the RMSE, ME, and R2 values, a 7-day window was recommended compared 

to other time window lengths, as displayed in Table 7. 

 

For the CMORPH data, the 7-day time window also performed well. For instance, at the Gacurabwenge 

station, the RMSE decreased to 9.0 for a 7-day window, while the ME decreased to 4.9, indicating a better 

fit or optimal time window size with bias correction applied compared to all other time window sizes. The 

R2 value was relatively high (close to 0.54), demonstrating consistent performance across a 7-day time 

window. The RMSE value for the Kigali Aero Station was 8.7 for the 7-day window, which was lower than 

that for the other time window sizes. The ME decreased to 4.1, indicating an improvement compared to all 

other time window sizes. The R2 value increased to 0.55, which is higher and indicates a stronger correlation 

between the observed (in situ) and corrected (satellite) values after bias correction compared to other time 

window sizes. Similarly to the Kabuye and Gitega stations, the RMSE has significantly decreased to 8.1 and 

6.0 values which are lower compared to other time window sizes.  
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Table 7: Variation of statistical indicators for the time window length defining 

S
R

E
  Metrics Time window length for Gacurabwenge station Time window length for Gitega station 

3 
days 

5 
days 

 6 
days 

7 
days 

10 
days 

12 
days 

15 
days 

17 
days 

3 
days 

5 
days 

6 
days 

7 
days 

10 
days 

12 
days 

15 
days 

17 
days 

C
H

IR
P

S
 

RBias -0.25 -0.12 -0.05 -0.01 -0.21 -0.21 -0.21 -0.21 -0.21 0.00 -0.07 0.00 -0.06 -0.01 0.05 -0.03 

RMSE 8.2 9.0 9.7 7.1 9.3 9.3 9.3 9.3 6.1 7.2 6.8 5.9 7.3 7.5 7.5 7.4 

ME 4.3 4.8 5.2 4.1 5.1 5.1 5.1 5.1 3.7 4.6 4.5 3.6 4.8 4.9 5.0 4.9 

R2 0.55 0.51 0.42 0.60 0.40 0.40 0.40 0.40 0.66 0.54 0.55 0.70 0.48 0.48 0.48 0.48 

  Time window length for Kabuye station Time window length for Kigali Aero station 

RBias -0.13 -0.02 -0.06 0.01 0.13 0.06 0.13 0.18 -0.08 0.02 -0.02 0.00 0.01 -0.02 0.03 0.00 

RMSE 9.1 10.1 9.4 7.2 11.4 11.2 11.3 11.7 9.2 8.9 9.3 7.0 9.9 10.1 10.0 9.9 

ME 4.4 5.2 4.8 4.0 6.0 5.8 6.1 6.2 5.3 5.5 5.7 4.1 6.1 6.1 6.1 6.1 

R2 0.34 0.24 0.32 0.55 0.19 0.22 0.21 0.21 0.39 0.43 0.35 0.59 0.24 0.24 0.27 0.22 

C
M

O
R

P
H

 

  Time window length for Gacurabwenge station Time window length for Gitega station 

RBias -0.07 -0.12 -0.11 -0.01 -0.09 -0.18 -0.17 -0.29 -0.13 -0.08 -0.04 -0.01 -0.13 -0.03 -0.16 -0.26 

RMSE 10.6 9.6 9.9 9.0 10.3 10.5 10.2 9.6 6.4 6.8 7.3 6.0 7.3 9.5 8.3 8.0 

ME 5.6 5.3 5.6 4.9 5.8 5.9 5.8 5.4 3.5 3.8 4.1 3.0 4.0 5.2 4.4 4.4 

R2 0.44 0.48 0.49 0.54 0.42 0.36 0.39 0.40 0.68 0.64 0.60 0.69 0.61 0.41 0.43 0.43 

  Time window length for Kabuye station Time window length for Kigali Aero station 

RBias -0.20 -0.12 -0.09 -0.01 -0.25 -0.13 -0.23 -0.25 -0.14 -0.09 0.00 0.00 -0.17 -0.10 -0.13 -0.20 

RMSE 8.6 9.8 9.3 8.1 8.8 9.6 9.0 9.3 9.0 9.6 9.5 8.7 9.1 9.7 9.5 9.2 

ME 4.1 5.2 5.0 3.9 4.8 5.5 5.2 5.3 4.6 5.3 5.3 4.1 5.0 5.4 5.2 5.1 

R2 0.57 0.43 0.44 0.66 0.50 0.45 0.42 0.40 0.45 0.36 0.45 0.55 0.44 0.44 0.40 0.40 

G
P

M
-I

M
E

R
G

 

  Time window length for Gacurabwenge station Time window length for Gitega station 

RBias -0.02 -0.06 -0.05 -0.01 -0.03 0.03 0.02 -0.07 0.00 0.00 0.00 0.00 -0.03 0.03 0.02 0.06 

RMSE 6.8 6.4 7.0 6.1 7.2 9.6 9.6 8.9 5.7 5.4 5.7 5.1 5.8 6.2 6.0 6.6 

ME 3.5 3.7 3.7 3.3 4.0 5.4 5.0 4.8 3.1 3.1 3.3 2.9 3.5 3.9 3.6 4.0 

R2 0.74 0.77 0.73 0.80 0.74 0.51 0.53 0.54 0.74 0.75 0.72 0.79 0.72 0.65 0.72 0.65 

  Time window length for Kabuye station Time window length for Kigali Aero station 

RBias -0.04 0.01 -0.04 0.00 -0.01 -0.05 -0.04 -0.03 0.00 0.00 -0.01 0.00 0.00 -0.01 0.01 0.01 

RMSE 4.3 5.9 6.1 4.1 5.9 6.3 6.6 6.3 4.8 5.6 6.2 4.3 6.6 6.8 6.8 6.5 

ME 2.5 3.5 3.5 2.2 3.7 3.8 4.0 3.9 2.5 3.2 3.6 2.3 3.8 4.0 4.1 3.8 

R2 0.89 0.79 0.76 0.91 0.79 0.73 0.71 0.74 0.83 0.76 0.72 0.86 0.67 0.65 0.65 0.69 
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For GPM-IMERG, the 7-day time window provided the best results across all the tested stations. At 

Gacurabwenge station, the RMSE for the 7-day window was 6.1, which was lower compared to other time 

window sizes, demonstrating a decrease in error predicting. The ME decreased significantly to 3.3, which 

was also the lowest compared with the other time window sizes. At the other stations including Kabuye, 

Kigali Aero and Gitega stations, the 7-day window's RMSE was also notably lower and showed 

improvement over all obtained for all remaining time window sizes with values of 4.1, 4.3, and 5.1, 

respectively. The other indicators like ME, and R2 showed notable improvement, showing better data fit 

and consistency with an optimal time window size of 7 days. 

 

The 7-day time window consistently provided the best bias correction for SREs across all tested 

meteorological stations and satellite products in the Nyabarongo catchment area. Research conducted by 

Bhatti et al. (2016) and Habib et al. (2014) demonstrated that a 7-day time window was most effective for 

bias correction in similar hydrological situations. The 7-day time window was confirmed to be applicable 

over all 28 rain gauge stations within and outside the catchment area of this study. The improved RMSE, 

ME, and R2 values for the CHIRPS, CMORPH, and GPM-IMERG products confirmed that the 7-day time 

window approach was reliable and suitable for reducing errors from SREs for efficient rainfall-runoff 

modeling in the research area, as shown in Table 7. 

5.3.2. Testing of Bias Correction Techniques 

 
Uncorrected SREs in CHIRPS data showed considerable errors for all rain gauge stations, with RMSE values 

ranging from 7.4 mm/day at Gitega station to 11.03 mm/day at Kabuye SW stations. The TSV technique 

reduced the RMSE to 5.9 mm/day at Gitega station and to 7.2 mm/day at Kabuye SW station, indicating 

improvement in all stations by reducing errors but with significant inaccuracies, particularly at stations with 

high original RMSE (uncorrected) values. The DT approach did not improve accuracy in all rain gauge 

stations, it increased the RMSE at four stations including Gitega, Kabuye SW, Kigali Aero, and 

Gacurabwenge. The PT technique achieved a significant reduction in errors, with the lowest RMSE values 

among all rain gauge stations compared to the other bias correction techniques, as shown in Table 8. 

Furthermore, PT showed a significant difference in improving all other performance metrics, including the 

R², ME, and RBias values, as displayed in Figure 21 and Table 8. The method consistently yielded the highest 

R² values and lowest ME and RBias values, indicating better error correction performance with perfect 

values compared to the other methods. 

 

The uncorrected CMORPH data showed high RMSE values, particularly at Kigali Aero and Kabuye SW, 

with values of 10.0 mm/day. The TSV technique reduced the RMSE to 8.7 mm/day at the Kigali Aero 

station and 8.1 mm/day in Kabuye SW. The TSV showed a moderate decrease in the RMSE for all stations. 

The DT technique significantly reduced RMSE values for three stations of Gitega, Kabuye SW, and Kigali 

Arero and increased RMSE in the Gacurabwenge station. The PT technique was the most successful, with 
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RMSE values as low as 0.005 mm/day at Gacurabwenge and other stations, compared to all tested bias 

correction techniques. The PT once again outperformed the others with ME, R², and RBias, with significant 

values across all stations in the CMORPH product.  

 

 The GPM-IMERG data showed that the uncorrected RMSE values ranged from 7.0 mm/d at Kabuye SW 

to 9.7 mm/d at Gacurabwenge. The TSV bias correction technique reduced the RMSE to 4.1 mm/d at 

Kabuye SW and 6.1 mm/d at Gacurabwenge. The DT technique was further improved, with RMSE values 

ranging from 6.0 mm/day at Kabuye SW to 8.4 mm/day at Gacurabwenge. The PT approach produced the 

best results, with RMSE values as low as 0.027 mm/day at Kabuye SW and Gacurabwenge. Generally, all 

bias correction techniques decreased the RMSE in the GPM-IMERG data, but PT was the most followed 

by TSV and the last one was DT. 
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Table 8: Testing of bias correction techniques 

 

Gauge Station Method CHIRPS CMORPH GPM-IMERG 

Rbias RMSE ME R2 Rbias RMSE ME R2 Rbias RMSE ME R2 

Gitega Uncorrected -0.03 7.4 4.9 0.48 -0.01 9.9 5.3 0.38 0.11 7.1 4.4 0.64 

TSV 0.00 5.9 3.6 0.70 -0.01 6.0 3.04 0.69 0.00 5.1 2.9 0.79 

DT 0.25 7.6 5.4 0.48 0.08 7.7 4.6 0.51 0.17 6.5 4.3 0.64 

PT 0.00 0.1 0.03 1.00 0.002 0.1 0.03 1.00 -0.001 0.01 0.004 1.00 

Kabuye SW Uncorrected -0.07 11.0 5.9 0.21 -0.17 10.0 5.6 0.39 0.10 7.0 4.1 0.71 

TSV 0.01 7.2 4.0 0.55 -0.01 8.1 3.9 0.66 0.00 4.1 2.2 0.91 

DT 0.36 11.4 6.2 0.37 -0.07 8.7 5.1 0.51 0.15 6.0 3.9 0.79 

PT 0.001 0.02 0.01 1.00 0.001 0.02 0.01 1.00 -0.002 0.03 0.01 1.00 

Kigali Aero Uncorrected -0.15 9.7 5.8 0.21 -0.08 10.0 5.4 0.40 0.09 7.9 4.4 0.60 

TSV 0.00 7.0 4.1 0.59 0.00 8.7 4.1 0.55 0.00 4.3 2.3 0.86 

DT 0.03 9.96 6.1 0.24 0.13 8.8 5.4 0.46 0.19 6.5 4.2 0.68 

PT 0.002 0.1 0.0 1.00 0.003 0.05 0.03 1.00 -0.001 0.02 0.01 1.00 

Gacurabwenge Uncorrected -0.21 9.3 5.1 0.40 -0.29 9.6 5.4 0.40 -0.09 9.7 5.2 0.50 

TSV -0.01 7.1 4.1 0.60 -0.01 9.0 4.9 0.54 -0.01 6.1 3.3 0.80 

DT 0.08 9.3 5.6 0.40 0.41 10.4 6.3 0.49 0.17 8.4 5.01 0.62 

PT -0.001 0.1 0.04 1.00 0.00 0.005 0.002 1.00 0.001 0.03 0.02 1.00 
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Gitega station Kabuye SW station Kigali Aero  station Gacurabwenge station 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Results on testing of bias correction methods   for four stations on the SRE products
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The results show that the Power Transformation (PT) technique consistently outperformed the Time-Space 

Variable (TSV) and Distribution Transform (DT) methods across all SREs. This finding correlates with 

those of previous studies. For instance, the study carried out by Habib et al. (2014) and Xiao et al. (2022) 

demonstrated the effectiveness of the PT method in reducing bias and improving the accuracy of satellite-

derived rainfall data. The PT correction effectively improved rainfall estimates in the Nyabarongo catchment 

area, as evidenced by a significant reduction in RMSE and MAE and an increase in R² values. The PT 

approach was proven for bias correction in SREs because it reduces errors and improves the correlation 

with ground-based observations in the Nyabarongo catchment area.  

5.3.3. Assessment of SREs bias correction effect 

The analysis presented in Figure 22 indicates a comprehensive evaluation of various SREs both before and 

after applying different bias correction techniques within the Nyabarongo catchment area. The Taylor 

diagram visually compares these SREs based on the correlation coefficient, standard deviation, and centered 

Root Mean Square Error against ground observations, serving as a key reference for assessing the 

effectiveness of each SREs and bias correction technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Taylor diagram showing the statistical performance of both corrected and uncorrected 
SREs 
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As illustrated in Figure 22, uncorrected CMORPH slightly outperformed the other uncorrected SRE 

products. The Power Transform bias correction technique significantly improves the performance  accuracy 

of CMORPH, CHIRPS, and GPM-IMERG, reducing the standard deviation closer to that of in-situ 

measurements (4.75) from the values of 6.48 to 5.07, 7.35 to 5.29, and 6.93 to 5.22, respectively, and 

significantly enhancing the correlation  from 0.61 to 0.94, 0.58 to 0.95 and 0.7 to 0.94, respectively, indicating 

a strong match in the pattern and distribution of rainfall estimates compared to reference in-situ 

measurements and other bias correction techniques. CMORPH, CHIRPS, and GPM-IMERG showed 

difference from the in situ standard deviation, with CMORPH having a slightly higher standard deviation 

compared to other SREs. The time-space variant bias correction technique showed a moderate 

improvement, especially in aligning the standard deviation of SREs with the in-situ data. The Distribution 

Transformation demonstrated a lower performance compared with other bias correction techniques, as 

detailed by the Taylor diagram in Figure 22. 

5.3.4. Effects of error propagation in streamflow simulations  

 
To evaluate how remote sensing data can affect the performance of rainfall runoff modelling in the 

Nyabarongo catchment area, this study specifically aimed to assess the effects of error propagation, mostly 

from both uncorrected and corrected SREs data, on streamflow simulations employing the HEC-HMS 

semi-distributed model in the Nyabarongo catchment. Figure 23 and appendix 4 present the statistical 

indicator ratios of error propagation for SREs applied to various combinations of developed models from 

different data sources. 
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Figure 23: Error propagation effects on streamflow simulations 

As illustrated in Figure 23, for the Local DEM 10m × 10m with Sentinel-2, the uncorrected CMORPH 

dataset showed significant error propagation in streamflow simulations with a MAE (MAEQS/MAER) ratio 

of 1.1, which is larger than 1. The other ratios in this uncorrected product show error attenuation as fit with 

an acceptable  range where RMSEQS/RMSER was 0.8, which is below 1, and CCQS/CCR was 1.14, which is 

greater than 1, suggesting attenuation of errors. The uncorrected CHIRPS dataset showed an increase in 

MAE ratio of 1.1, indicating the need for bias correction to achieve good streamflow simulations. In 

addition, uncorrected GPM-IMERG indicated an error propagation (increase) with an RMSEQS/RMSER of 

1.04, which is above 1. Bias correction techniques generally reduced these errors, indicating notable 

attenuation of errors in the CMORPH, CHIRPS, and GPM-IMERG products, as depicted in Appendix 4. 

These results align with other studies conducted by Gumindoga et al., 2021 that focus the effectiveness of 

bias correction methods in reducing the propagation of errors from SREs to streamflow simulations where 

their findings cofirmed that the uncorrected CMORPH showed increases of error propagation compared 

to corrected dataset (Gumindoga et al., 2021).  

 

Using Local DEM 10m × 10m with LandSat-8, the uncorrected CMORPH data again showed increase in 

errors with an RMSE ratio of 1.01, which was above 1. Uncorrected CHIRPS and GPM-IMERG also 

indicated an increase in errors with a CCQS/CCR of 0.91 which is lower than 1, and MAEQS/MAER of 1.03, 

which is greater than 1 in GPM-IMERG. After applying bias correction techniques, the techniques showed 

improvements indicating effective error attenuation, except distribution transformation (DT) for CHIRPS, 
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which showed an increase in error with a CCQS/CCR of 0.92, which is lower than 1, as shown in Figure 23 

and Appendix 4.  

 

For the SRTM 10m × 10m with Sentinel-2, uncorrected CMORPH, CHIRPS and GPM IMERG datasets 

indicated an error increase with CCQS/CCR of 0.97 and 0.803, respectively, which are lower than 1 for 

CMORPH and CHIRPS and MAEQS/MAER of 1.03, which is greater than 1 for GPM-IMERG. The bias 

correction techniques showed a reduction in errors for all SREs except for the distribution transformation 

for GPM-IMERG with a CCQS/CCR of 0.96, which is lower than 1, indicating an increase in errors. Lastly, 

the SRTM 10m × 10m with LandSat-2 combination, the uncorrected CMORPH, CHIRPS, and GPM-

IMERG datasets showed a notable increase in errors with CCQS/CCR of 0.91, 0.78, and 0.97, respectively, 

which are lower than 1, suggesting error augmentation in streamflow simulations, as indicated in Appendix 

4. The bias correction techniques reflected improved performance with error attenuation except distribution 

transformation (DT) for the CHIRPS and GPM-IMERG datasets with CCQS/CCR of 0.91 and 0.93, 

respectively, which are lower than 1, indicating an error increase in streamflow simulations. 

 

Across all the developed models, it is evident that the Local DEM 10m × 10m with the Sentinel-2 model 

generally had lower error propagation ratios than the other models. This indicates that higher-resolution 

DEMs and LULC maps coupled with bias-corrected SREs provide more accurate streamflow simulations. 

Uncorrected SREs generally showed higher error propagation than corrected data. 

5.3.5. Runoff coefficient  assessment in streamflow 

 
Figure 24 presents the runoff coefficient at the outlet in the Nyabarongo catchment area, comparing and 

indicating the outcomes of four models developed with various combinations of Digital Elevation Models 

(DEMs) and LULC data sources. These models were forced with various rainfall data sources, including in-

situ rainfall data (reference) and both uncorrected and corrected SRE data.   

 
The model using the Local DEM 10m × 10m with Sentinel-2 showed varying runoff coefficient values 

across different rainfall data sources. The in-situ rainfall served as a reference, with a runoff coefficient of 

approximately 0.61. Uncorrected CMORPH, CHIRPS and GPM-IMERG data significantly underestimated 

the runoff coefficient compared with in-situ rainfall at 0.40, 0.39 and 0.40 respectively, indicating the need 

for bias correction. The corrected SREs increased the runoff coefficient, with the Power Transform (PT) 

bias correction technique showing most closely runoff coefficient to the reference at about 0.59, 0.57 and 

0.58 for CMORPH, CHIRPS and GPM-IMERG, respectively, indicating its higher performance in this 

model compared to other bias correction techniques. Furthermore, the time space variant and distribution 

transformation improved the runoff coefficient compared to the uncorrected SREs, as illustrated in Figure 

24.  
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Figure 24: Runoff coefficient at the outlet in the Nyabarongo catchment area 

For the Local DEM 10m × 10m with LandSat-2, the in-situ rainfall data generated a different runoff 

coefficient value of approximately 0.57 compared to the previously discussed model, highlighting the impact 

of LULC data. LandSat-8 LULC data, while still having a coarser resolution than Sentinel-2, can affect the 

precision of land cover classifications and subsequently influence runoff coefficient. Uncorrected SRE data 

also underestimated with in-situ runoff coefficient with 0.39, 0.35, and 0.37 for CMORPH, CHIRPS and 

GPM-IMEG, respectively. All bias correction techniques showed improvements, but notably, the Power 

Transform provided higher runoff coefficient compared to other techniques.     

 
In SRTM DEM 30m × 30m with Sentinel-2, the in-situ rainfall data indicated a runoff coefficient of 0.59. 

Uncorrected CMORPH, CHIRPS and GPM-IMERG products still underestimated runoff coefficient 

compared to reference data with values of 0.40, 0.37 mm and 0.38, respectively. The bias correction 

techniques improved the runoff coefficient with the Power Transform, which showed a more runoff 

coefficient than the other techniques in this model. 

 

Lastly, in the model using SRTM DEM 30m × 30m with LandSat-8, the in-situ rainfall showed a runoff 

coefficient of 0.56. Uncorrected CMORPH, CHIRPS and GPM-IMERG data showed lower values of 

runoff coefficient to 0.35, 0.34, and 0.34, respectively compared to in-situ. The bias-correction techniques 

increased the runoff coefficient, and the Power Transform outperformed the other bias-correction 
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techniques in this model. The combination of coarser DEM and LULC data can increase the errors in runoff 

estimations due to less precise representation of topographic features and land cover classifications, which 

may lead to different influences compared with finer resolution datasets.  

 

The comparison indicated that the combination of Local DEM 10m × 10m with Sentinel-2 and in-situ 

rainfall produced the highest runoff coefficients across all models. Moreover, the study demonstrated that 

the Power Transform bias correction technique was the most effective in correcting errors in all SRE 

products, resulting in runoff coefficient estimates closest to those obtained from in-situ data. The DEM 

resolution and type of LULC data significantly affect the runoff coefficient. Specifically, this model using 

the Local DEM (10m × 10m) and Sentinel-2 consistently produced higher runoff coefficients compared to 

those using the SRTM DEM (30m × 30m) and LandSat-8 due to more detailed topographic representation 

and good captures land cover details, which can influence water flow and storage estimations and impact 

evapotranspiration rates and surface runoff estimations.  
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6. CONCLUSION AND RECOMMENDATION 

6.1. Conclusion 

 

This study aimed to evaluate how remote sensing data sources affect the performance of the HEC-HMS 

semi-distributed rainfall-runoff model in the Nyabarongo catchment area. One of the main problems 

encountered during this research was the quality of in-situ data, especially discharge data, which are necessary 

for model calibration and validation. The findings of this study show that the performance of rainfall-runoff 

model simulations is highly dependent on the quality and resolution of the input data such as Digital 

Elevation Models (DEMs), Land Use Land Cover (LULC) maps, and both in-situ and SREs.  

 

To achieve the defined objectives of this study, four models were developed such as Local DEM (10m × 

10m) with Sentinel-2, Local DEM (10m × 10m) with LandSat-8, SRTM (30m × 30m) with Sentinel-2, and 

SRTM (30m × 30m) with LandSat-8. Initially, the study assessed the quality and effects of DEMs, LULC 

data, and both in-situ rainfall data and SRE products on rainfall-runoff modelling. The comparison between 

the Local DEM 10m × 10m and SRTM DEM 30m × 30m showed that the Local DEM 10m × 10m with 

higher spatial resolution provided more details on catchment delineation and stream network analysis and 

low-volume water storage, which directly affected the precision of the runoff simulation compared with the 

coarser SRTM DEM 30m ×30m. The LULC data, Sentinel-2 and LandSat-8, which are essential for 

producing the Curve Numbers (CN), were used in the HEC-HMS semi-distributed model. The sentinel-2 

data provided more detailed land cover types, which led to higher model performance in surface runoff 

simulation compared with the LandSat-8 data, resulting in less runoff simulations due to its lower resolution. 

The assessment of in-situ and SREs such as CMORPH, CHIRPS, and GPM-IMERG, showed variations in 

rainfall representation within the Nyabarongo catchment area. The analysis indicated that CHIRPS and 

GPM-IMERG overestimated the in-situ data, and CMORPH generally underestimated rainfall.  

 

Relating to model performance, the study found that the model using the reference scenario, which 

combined Local DEM 10m × 10m, in-situ rainfall, and Sentinel-2 LULC map, showed the best performance 

compared to other developed models. This combination resulted in a high Nash-Sutcliffe Efficiency (NSE) 

of 0.89 and Relative Volume Error (RVE) of 2.9%, indicating a good match between the observed and 

simulated streamflow. Models that used lower resolution data, such as the SRTM DEM or LandSat-8 LULC 

map, showed reduced performance, with lower NSE and higher RVE values, demonstrating the critical role 

of high-resolution data in rainfall-runoff modelling. The study also assessed and compared in-situ rainfall 

data with uncorrected and corrected SREs. The analysis showed that uncorrected SREs generally performed 

less, leading to lower NSE and higher RVE values compared with acceptable ranges and reference scenario.  
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To perform error correction for SREs, the study focused on defining the optimal time window for bias 

correction techniques. After assessing different window sizes using the Sequential Window approach, the 

findings showed that a time window of 7 days was the most effective. Among the bias correction techniques 

tested, the Power Transform (PT) technique was the most effective compared with other techniques, such 

as Time Space Variant (TSV), and Distribution Transformation (DT), consistently improving the correlation 

between SREs and in-situ rainfall data. This technique significantly reduces errors, as indicated by 

improvements in RMSE and ME. 

 

Furthermore, this study assessed how errors in different data sources propagate through the model, affecting 

the precision of streamflow simulations. It was found that uncorrected SREs showed error propagation in 

the model, leading to differences in streamflow simulations. However, after applying the bias correction 

technique, the errors were reduced, and the Power Transform performed well. Finally, the study assessed 

the effect of different data sources on the runoff coefficient in the Nyabarongo catchment area. The results 

indicated that the runoff coefficients varied significantly depending on the data source used. Models that 

received high-resolution local DEMs 10m× 10m, detailed LULC maps from Sentinel-2, in-situ and 

corrected SREs produced high runoff coefficients compared to other combinations.  

 

In the absence or poor in-situ rainfall data, this study showed that SREs, after appropriate bias correction, 

can be effectively applied in the Nyabarongo catchment area. The results indicated that, following Power 

Transform (PT) bias correction, the findings from SREs are relatively close to the outcomes from in-situ 

rainfall data, making them an effective origin of data for rainfall-runoff modelling in regions with limited in-

situ data such as Nyabarongo catchment area.          

6.2. Recommendation 

 

Different limitations were encountered during conducting this study, particularly related to data quality and 

the use of WetSpa modelling tools. Based on the findings of this study, the following recommendations are 

proposed to improve future studies. 

  

• The study faced problems related to in-situ data due to the unequal distribution of rain gauges and 

poor quality of discharge data, which affect the performance of the model during calibration. To 

address this issue, it is recommended that the Government of Rwanda invest in advanced data 

collection systems. This should include increasing the number of rain gauges and improving the 

methods used to record discharge data. Improved data quality and availability will support good 

planning and forecasting of floods occurring in Rwanda using hydrologic and hydrodynamic models 

in Rwanda.  
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• Due to time constraints, the study was unable to fully optimize the α and β coefficients for the 

Power Transform bias correction technique across all years of time series. For future studies, it is 

recommended that sufficient time be allocated to optimize these coefficients. This ensures that the 

bias correction process is more accurate, leading to a better performance of the rainfall-runoff 

model.  

• During this study, I planned to use fully distributed WetSpa model. Therefore, the model failed 

because it was designed and compatible with the older ArcView 3.2 software version and expired 

XP window, which are no longer used. It is recommended that developers update the WetSpa 

model to work and compatible with advanced GIS software such as the latest versions of ArcGIS. 

Additionally, future studies could use other advanced distributed rainfall runoff models that provide 

detailed representations of spatial variations within the catchment compared to a semi-distributed 

model, which will improve the performance of runoff simulations using the model. 

6.3. Ethical statement and considerations 

 
This study was conducted in compliance with the ethical guidelines and policies of the University of Twente. 

It used both confidential and publicly available data on open online datasets, with careful consideration 

given to the ethical handling of these datasets. 

 

Confidential data, such as in-situ rainfall and streamflow related data, were obtained from Rwanda. As citizen 

of Rwanda, I requested these datasets through formal requests from the Rwanda Water Board and Rwanda 

Meteorological Agency. Additionally, the Local DEM 10m × 10m was acquired from the Rwanda National 

Land Authority. These datasets were used in compliance with the legal frameworks governing data use in 

Rwanda. The study also used publicly available datasets, such as SRE products (CHIRPS, CMORPH, and 

GPM-IMERG), soil data from FAO, and LULC maps from Sentinel-2, LandSat-8 and SRTM 30m × 30m. 

These datasets were downloaded from open-source platforms.  

 

Given the recognized limitations and quality issues associated with in-situ data in Rwanda, particularly 

streamflow data, a lot effort has been used to process these datasets to improve them before use in model 

calibration. All data, especially confidential data, were handled carefully with respect of legal compliance of 

the Rwandan government to ensure privacy in line with the ethical standards required.    
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APPENDIX   

Appendix 1: Volume storage at the surface calculated for Local DEM 10m x 10m   

 

 

 

 

 

 

 

 

 

 

 

 

 

Elevation 
for pixel 

in m 

Count Area 
(m2) 

Volume(m3) Elevation 
for pixel 

in m 

Count Area 
(m2) 

Volume(m3) Elevation 
for pixel 

in m 

Count Area 
(m2)  

Volume(m3) 

0 9580470 900 0 43 12046 900 38700 86 2960 900 77400 

1 66307 900 900 44 12209 900 39600 87 3088 900 78300 

2 49645 900 1800 45 11656 900 40500 88 2938 900 79200 

3 42693 900 2700 46 11776 900 41400 89 3156 900 80100 

4 38536 900 3600 47 11660 900 42300 90 2858 900 81000 

5 36284 900 4500 48 10221 900 43200 91 2758 900 81900 

6 33782 900 5400 49 9773 900 44100 92 2686 900 82800 

7 34407 900 6300 50 9512 900 45000 93 2475 900 83700 

8 35549 900 7200 51 9017 900 45900 94 2555 900 84600 

9 36012 900 8100 52 9112 900 46800 95 2815 900 85500 

10 38062 900 9000 53 8629 900 47700 96 2572 900 86400 

11 35700 900 9900 54 8209 900 48600 97 2491 900 87300 

12 36166 900 10800 55 8079 900 49500 98 2604 900 88200 

13 35033 900 11700 56 8336 900 50400 99 2787 900 89100 

14 32710 900 12600 57 8037 900 51300 100 2820 900 90000 

15 32836 900 13500 58 8001 900 52200 101 2755 900 90900 

16 33453 900 14400 59 7838 900 53100 102 2512 900 91800 

17 32090 900 15300 60 7399 900 54000 103 2273 900 92700 

18 31032 900 16200 61 7779 900 54900 104 2007 900 93600 

19 30985 900 17100 62 7598 900 55800 105 1508 900 94500 

20 29886 900 18000 63 7040 900 56700 106 1190 900 95400 

21 28533 900 18900 64 7059 900 57600 107 1267 900 96300 

22 27052 900 19800 65 7472 900 58500 108 1266 900 97200 

23 25042 900 20700 66 6933 900 59400 109 928 900 98100 

24 24065 900 21600 67 6396 900 60300 110 864 900 99000 

25 23999 900 22500 68 6442 900 61200 111 642 900 99900 

26 22608 900 23400 69 6132 900 62100 112 514 900 100800 

27 21057 900 24300 70 7059 900 63000 113 573 900 101700 

28 20870 900 25200 71 6720 900 63900 114 481 900 102600 

29 19469 900 26100 72 7304 900 64800 115 572 900 103500 

30 18855 900 27000 73 6462 900 65700 116 649 900 104400 

31 17877 900 27900 74 6621 900 66600 117 496 900 105300 

32 16953 900 28800 75 6934 900 67500 118 325 900 106200 

33 17000 900 29700 76 7346 900 68400 119 221 900 107100 

34 16464 900 30600 77 7653 900 69300 120 256 900 108000 

35 14163 900 31500 78 6586 900 70200 121 192 900 108900 

36 12478 900 32400 79 5600 900 71100 122 100 900 109800 

37 12154 900 33300 80 4684 900 72000 123 33 900 110700 

38 12162 900 34200 81 3805 900 72900 124 9 900 111600 

39 11999 900 35100 82 3276 900 73800 125 1 900 112500 

40 11943 900 36000 83 3107 900 74700 665 35 900 598500 

41 11356 900 36900 84 3066 900 75600 666 36 900 599400 

42 12136 900 37800 85 2903 900 76500 667 15 900 600300         
SUM   8,885,700  
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Appendix 2: Volume storage at the surface calculated for SRTM DEM 30m x 30m   
Elevation 
(m) 

Count Area 
(m2) 

Volume 
(m3) 

Elevation 
(m) 

Count Area 
(m2) 

Volume 
(m3) 

Elevation 
(m) 

Count Area 
(m2) 

Volume 
(m3) 

0 7919803 900 0 70 20743 900 63000 140 4025 900 126000 

1 77126 900 900 71 20146 900 63900 141 3616 900 126900 

2 58197 900 1800 72 19997 900 64800 142 3459 900 127800 

3 50007 900 2700 73 20271 900 65700 143 3457 900 128700 

4 45471 900 3600 74 20006 900 66600 144 3454 900 129600 

5 43365 900 4500 75 19871 900 67500 145 3111 900 130500 

6 41690 900 5400 76 19633 900 68400 146 2935 900 131400 

7 39841 900 6300 77 19464 900 69300 147 3018 900 132300 

8 39660 900 7200 78 18814 900 70200 148 2934 900 133200 

9 39208 900 8100 79 19194 900 71100 149 3079 900 134100 

10 38406 900 9000 80 21235 900 72000 150 2866 900 135000 

11 39616 900 9900 81 22235 900 72900 151 2670 900 135900 

12 40119 900 10800 82 20458 900 73800 152 2631 900 136800 

13 41324 900 11700 83 19112 900 74700 153 2586 900 137700 

14 40338 900 12600 84 18695 900 75600 154 2361 900 138600 

15 39539 900 13500 85 17474 900 76500 155 2275 900 139500 

16 39699 900 14400 86 17800 900 77400 156 2325 900 140400 

17 39429 900 15300 87 17540 900 78300 157 2163 900 141300 

18 37892 900 16200 88 17929 900 79200 158 2250 900 142200 

19 37222 900 17100 89 17727 900 80100 159 2239 900 143100 

20 35491 900 18000 90 17126 900 81000 160 2215 900 144000 

21 33520 900 18900 91 16341 900 81900 161 2203 900 144900 

22 32605 900 19800 92 16508 900 82800 162 2314 900 145800 

23 32049 900 20700 93 16687 900 83700 163 2339 900 146700 

24 31665 900 21600 94 16856 900 84600 164 2520 900 147600 

25 31873 900 22500 95 17063 900 85500 165 2449 900 148500 

26 31428 900 23400 96 16052 900 86400 166 2369 900 149400 

27 30534 900 24300 97 14392 900 87300 167 2249 900 150300 

28 29556 900 25200 98 13860 900 88200 168 2121 900 151200 

29 29529 900 26100 99 13792 900 89100 169 1919 900 152100 

30 28566 900 27000 100 13215 900 90000 170 1778 900 153000 

31 28639 900 27900 101 13180 900 90900 171 1541 900 153900 

32 28299 900 28800 102 13112 900 91800 172 1304 900 154800 

33 28288 900 29700 103 13077 900 92700 173 995 900 155700 

34 27972 900 30600 104 12998 900 93600 174 955 900 156600 

35 28383 900 31500 105 12886 900 94500 175 952 900 157500 

36 28355 900 32400 106 12625 900 95400 176 1012 900 158400 

37 28691 900 33300 107 12397 900 96300 177 1038 900 159300 

38 27922 900 34200 108 12273 900 97200 178 1063 900 160200 

39 27556 900 35100 109 11884 900 98100 179 1147 900 161100 

40 26982 900 36000 110 12076 900 99000 180 1032 900 162000 

41 26094 900 36900 111 12796 900 99900 181 953 900 162900 

42 25355 900 37800 112 12835 900 100800 182 758 900 163800 

43 24997 900 38700 113 11982 900 101700 183 614 900 164700 

44 24980 900 39600 114 11845 900 102600 184 566 900 165600 

45 25039 900 40500 115 10619 900 103500 185 492 900 166500 

46 24841 900 41400 116 10070 900 104400 186 483 900 167400 

47 24709 900 42300 117 9988 900 105300 187 484 900 168300 

48 24442 900 43200 118 9488 900 106200 188 475 900 169200 

49 24134 900 44100 119 9347 900 107100 189 460 900 170100 

50 23910 900 45000 120 9741 900 108000 190 451 900 171000 

51 23854 900 45900 121 9699 900 108900 191 453 900 171900 

52 23785 900 46800 122 10321 900 109800 192 482 900 172800 

53 23290 900 47700 123 10369 900 110700 193 515 900 173700 

54 23550 900 48600 124 10221 900 111600 194 563 900 174600 

55 23255 900 49500 125 10262 900 112500 195 515 900 175500 

56 22974 900 50400 126 10233 900 113400 196 508 900 176400 

57 22883 900 51300 127 10635 900 114300 197 365 900 177300 

58 22916 900 52200 128 10976 900 115200 198 227 900 178200 

59 22701 900 53100 129 11067 900 116100 199 150 900 179100 

60 22588 900 54000 130 11601 900 117000 200 73 900 180000 

61 22516 900 54900 131 12407 900 117900 201 46 900 180900 

62 22346 900 55800 132 13099 900 118800 202 22 900 181800 

63 22057 900 56700 133 12643 900 119700 203 7 900 182700 

64 21994 900 57600 134 11828 900 120600 204 4 900 183600 

65 21669 900 58500 135 10609 900 121500 205 3 900 184500 

66 21232 900 59400 136 9182 900 122400 206 2 900 185400 

67 21111 900 60300 137 7602 900 123300 207 1 900 186300 

68 21162 900 61200 138 5963 900 124200 208 1 900 187200 

69 20868 900 62100 139 4749 900 125100 
    

        
SUM 

  
19562400 
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Appendix 3: Performance of various developed models with different data sources inputs 

Run Rain Soils Local DEM 
10m × 10m 

SRTM 30m 
× 30m 

Sentinel-
2 

LandSat-
8 

Initial runs Calibrated 

NS RVE NS RVE 

1 In-Situ (ref case1) + +   +   0.90 3.9 0.89 2.9 

2 In-Situ (ref case 2) + +     + 0.89 -8.6 0.89 -7.4 

3 In-Situ (ref case1) +   + +   0.90 -7.1 0.89 -6.1 

4 In-Situ (ref case 2) +   +   + 0.89 -9.5 0.90 -8.5 

5 CMORPH-Uncorrected + +   +   0.24 -9.6 0.38 -7.8 

6 CMORPH- Uncorrected + +     + 0.23 -13.0 0.30 -10.1 

7 CMORPH- Uncorrected +   + +   0.23 -11.9 0.35 -8.9 

8 CMORPH- Uncorrected +   +   + 0.20 -14.2 0.30 -11.2 

9 CMORPH- PT + +   +   0.71 1.4 0.77 0.4 

10 CMORPH- PT + +     + 0.61 12.0 0.69 10.0 

11 CMORPH- PT +   + +   0.69 4.5 0.77 2.5 

12 CMORPH- PT +   +   + 0.61 13.8 0.70 10.8 

13 CMORPH- DT + +   +   0.33 -1.0 0.43 0.0 

14 CMORPH- DT + +     + 0.30 10.4 0.33 9.4 

15 CMORPH- DT +   + +   0.33 2.4 0.43 1.3 

16 CMORPH- DT +   +   + 0.29 12.4 0.30 10.4 

17 CMORPH- TVS + +   +   0.38 -8.6 0.49 -7.4 

18 CMORPH- TVS + +     + 0.40 -11.4 0.50 -9.4 

19 CMORPH- TVS +   + +   0.40 -9.2 0.49 -8.3 

20 CMORPH- TVS +   +   + 0.39 -12.5 0.49 -10.4 

21 CHIRPS - Uncorrected + +   +   0.17 0.3 0.28 -1.3 

22 CHIRPS - Uncorrected + +     + 0.22 -10.7 0.27 -10.2 

23 CHIRPS - Uncorrected +   + +   0.20 -14.3 0.26 -13.3 

24 CHIRPS - Uncorrected +   +   + 0.16 -15.7 0.20 -13.7 

25 CHIRPS -PT + +   +   0.73 7.2 0.79 6.3 

26 CHIRPS -PT + +     + 0.63 8.1 0.69 8.7 

27 CHIRPS -PT +   + +   0.68 10.3 0.70 8.4 

28 CHIRPS -PT +   +   + 0.60 11.3 0.60 10.7 

29 CHIRPS – DT + +   +   0.20 12.2 0.29 1.3 

30 CHIRPS – DT + +     + 0.30 10.0 0.31 10.1 

31 CHIRPS – DT +   + +   0.28 14.1 0.31 12.4 

32 CHIRPS – DT +   +   + 0.23 18.3 0.31 12.2 

33 CHIRPS-TVS + +   +   0.30 -2.8 0.43 -1.2 

34 CHIRPS-TVS + +     + 0.37 -10.0 0.41 -7.3 

35 CHIRPS-TVS +   + +   0.36 -7.0 0.42 -6.0 

36 CHIRPS-TVS +   +   + 0.36 -11.3 0.41 -9.4 

37 GMP-IMERG- Uncorrected + +   +   0.38 16.8 0.41 14.0 

38 GMP-IMERG- Uncorrected + +     + 0.34 -17.5 0.40 -11.5 

39 GMP-IMERG- Uncorrected +   + +   0.37 -11.1 0.40 -10.1 

40 GMP-IMERG- Uncorrected +   +   + 0.36 -25.4 0.40 -22.4 

41 GMP-IMERG-PT + +   +   0.70 9.0 0.72 8.0 

42 GMP-IMERG-PT + +     + 0.62 12.7 0.67 10.2 

43 GMP-IMERG-PT +   + +   0.70 10.4 0.71 9.1 

44 GMP-IMERG-PT +   +   + 0.51 24.5 0.65 19.0 

45 GMP-IMERG-DT + +   +   0.50 14.3 0.54 12.8 

46 GMP-IMERG-DT + +     + 0.44 15.9 0.50 10.6 

47 GMP-IMERG-DT +   + +   0.48 10.3 0.54 9.5 

48 GMP-IMERG-DT +   +   + 0.43 20.8 0.49 18.8 

49 GMP-IMERG-TVS + +   +   0.52 0.9 0.62 2.0 

50 GMP-IMERG-TVS + +     + 0.60 -10.1 0.60 -10.1 

51 GMP-IMERG-TVS +   + +   0.53 -4.9 0.61 -3.8 

52 GMP-IMERG-TVS +   +   + 0.57 -15.8 0.62 -12.2 
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Appendix 4: Error propagation effects on streamflow simulations 

Local DEM 10m x 10m with Sentinel-2 

SREs  RMSER MAER CCR RMSEQS MAEQS CCQS RMSEQS/ 
RMSER 

MAEQS/ 
MAER 

CCQS/ 
CCR 

CMORPH-Uncorrected 3.8 2.3 0.61 3.2 2.5 0.70 0.8 1.1 1.14 

CMORPH-PT 1.6 0.5 0.94 1.2 0.4 0.99 0.8 0.7 1.06 

CMORPH-TSV 3.4 2.1 0.68 2.8 1.8 0.77 0.8 0.9 1.13 

CMORPH-DT 3.4 2.1 0.70 2.9 1.9 0.78 0.9 0.9 1.11 

CHIRPS- Uncorrected 4.0 2.4 0.58 3.3 2.6 0.67 0.8 1.1 1.15 

CHIPS-PT 1.6 0.5 0.94 1.3 0.4 0.97 0.8 0.8 1.04 

CHIPS-TSV 3.7 2.3 0.61 3.0 2.0 0.71 0.8 0.9 1.15 

CHIPS-DT 3.8 2.6 0.61 2.6 1.8 0.83 0.7 0.7 1.36 

IMERG- Uncorrected 3.4 1.9 0.71 3.5 1.8 0.79 1.04 0.9 1.11 

IMERG-PT 1.9 0.7 0.94 1.6 0.6 0.96 0.8 0.9 1.02 

IMERG-TSV 2.7 1.7 0.8 1.98 1.3 0.88 0.7 0.8 1.11 

IMERG-DT 3.0 1.95 0.76 2.6 1.8 0.83 0.8 0.9 1.1 

Local DEM 10m x 10m with LandSat-2 

CMORPH- Uncorrected 3.8 2.3 0.61 3.9 1.7 0.69 1.01 0.8 1.13 

CMORPH-PT 1.6 0.5 0.94 1.3 0.5 0.94 0.8 1.0 1.003 

CMORPH-TSV 3.4 2.1 0.68 2.3 1.5 0.77 0.7 0.7 1.13 

CMORPH-DT 3.4 2.1 0.70 2.4 1.6 0.77 0.7 0.8 1.11 

CHIRPS- Uncorrected 4.0 2.4 0.58 2.8 1.8 0.53 0.7 0.7 0.91 

CHIPS-PT 1.6 0.5 0.94 1.3 0.5 0.96 0.8 0.9 1.02 

CHIPS-TSV 3.7 2.3 0.61 2.5 1.6 0.70 0.7 0.7 1.15 

CHIPS-DT 3.8 2.6 0.61 3.2 2.1 0.56 0.8 0.8 0.92 

IMERG- Uncorrected 3.4 1.9 0.71 2.2 2.0 0.79 0.7 1.03 1.11 

IMERG-PT 1.9 0.7 0.94 1.6 0.7 0.95 0.8 0.9 1.01 

IMERG-TSV 2.7 1.7 0.79 1.6 1.1 0.88 0.6 0.6 1.11 

IMERG-DT 3.0 2.0 0.76 2.1 1.5 0.83 0.7 0.7 1.09 

SRTM 30m x 30m with Sentinel-2 

CMORPH- Uncorrected 3.8 2.3 0.61 2.7 1.7 0.59 0.7 0.8 0.97 

CMORPH-PT 1.6 0.5 0.94 1.3 0.5 0.94 0.8 0.9 1.003 

CMORPH-TSV 3.4 2.1 0.68 2.3 1.5 0.76 0.7 0.7 1.13 

CMORPH-DT 3.4 2.1 0.70 2.4 1.6 0.77 0.7 0.8 1.11 

CHIRPS- Uncorrected 4.0 2.4 0.58 2.7 1.8 0.47 0.7 0.7 0.803 

CHIPS-PT 1.6 0.5 0.94 1.2 0.5 0.96 0.8 0.9 1.02 

CHIPS-TSV 3.7 2.3 0.61 2.5 1.6 0.70 0.7 0.7 1.15 

CHIPS-DT 3.8 2.6 0.61 3.1 2.1 0.68 0.8 0.8 1.12 

IMERG- Uncorrected 3.4 1.9 0.71 2.2 2.0 0.79 0.7 1.03 1.11 

IMERG-PT 1.9 0.7 0.94 1.6 0.7 0.95 0.8 0.9 1.01 

IMERG-TSV 2.7 1.7 0.79 1.6 1.1 0.88 0.6 0.6 1.11 

IMERG-DT 3.0 2.0 0.76 2.1 1.4 0.73 0.7 0.7 0.96 

SRTM 30m x 30m with LandSat-8 

CMORPH- Uncorrected 3.8 2.3 0.61 2.6 1.7 0.56 0.7 0.7 0.91 

CMORPH-PT 1.6 0.5 0.94 1.3 0.5 0.94 0.8 0.9 1.003 

CMORPH-TSV 3.4 2.1 0.68 2.3 1.5 0.77 0.7 0.7 1.13 

CMORPH-DT 3.4 2.1 0.70 2.4 1.5 0.77 0.7 0.8 1.11 

CHIRPS- Uncorrected 4.0 2.4 0.58 2.7 1.7 0.46 0.7 0.7 0.78 

CHIPS-PT 1.6 0.5 0.94 1.2 0.5 0.96 0.8 1.0 1.03 

CHIPS-TSV 3.7 2.3 0.61 2.5 1.6 0.70 0.7 0.7 1.15 

CHIPS-DT 3.8 2.6 0.61 3.1 2.0 0.56 0.8 0.8 0.91 

IMERG- Uncorrected 3.4 1.9 0.71 2.2 1.4 0.69 0.7 0.7 0.97 

IMERG-PT 1.9 0.7 0.94 1.6 0.7 0.95 0.8 0.9 1.01 

IMERG-TSV 2.7 1.7 0.79 1.6 1.1 0.88 0.6 0.6 1.11 

IMERG-DT 3.0 2.0 0.76 2.1 1.4 0.71 0.7 0.7 0.93 
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Appendix 5: Runoff coefficient at the outlet in the Nyabarongo catchment area 

Local DEM 10 × 10m with Sentinel-2 

Rainfall  Rainfall  Discharge Runoff coefficient NSE RVE 

In-situ 6058.9 3695.9 0.61 0.89 2.9 

CMORPH-Uncorrected 4205.7 1687.1 0.40 0.38 -7.8 

CMORPH-PT 6635.8 3902.1 0.59 0.77 0.4 

CMORPH-TSV 4384.5 1901.2 0.43 0.49 -7.4 

CMORPH-DT 6610.5 2795.5 0.42 0.43 0.0 

CHIRPS- Uncorrected 5942.8 2288.0 0.39 0.28 -1.3 

CHIPS-PT 6717.7 3800.2 0.57 0.79 6.3 

CHIPS-TSV 5996.6 2496.5 0.42 0.43 -1.2 

CHIPS-DT 6985.7 2852.2 0.41 0.29 1.3 

IMERG- Uncorrected 6037.4 2408.3 0.40 0.41 14.0 

IMERG-PT 6658.7 3850.3 0.58 0.72 8.0 

IMERG-TSV 6033.5 2548.2 0.42 0.62 2.0 

IMERG-DT 6579.0 2703.5 0.41 0.54 12.8 

Local DEM 10m ×10m with LandSat-2 

In-situ 6058.9 3478.7 0.57 0.89 -7.4 

CMORPH- Uncorrected 4205.7 1659.9 0.39 0.30 -10.1 

CMORPH-PT 6635.8 3702.9 0.56 0.69 10.0 

CMORPH-TSV 4384.5 1784.0 0.41 0.50 -9.4 

CMORPH-DT 6610.5 2648.3 0.40 0.33 9.4 

CHIRPS- Uncorrected 5942.8 2070.8 0.35 0.27 -10.2 

CHIPS-PT 6717.7 3621.0 0.54 0.69 8.7 

CHIPS-TSV 5996.6 2379.3 0.40 0.41 -7.3 

CHIPS-DT 6985.7 2735.0 0.39 0.31 10.1 

IMERG- Uncorrected 6037.4 2241.1 0.37 0.40 -11.5 

IMERG-PT 6658.7 3643.1 0.55 0.67 10.2 

IMERG-TSV 6033.5 2471.0 0.41 0.60 -10.1 

IMERG-DT 6579.0 2656.3 0.40 0.50 10.6 

SRTM 30m × 30m with Sentinel-2 

In-situ 6058.9 3585.6 0.59 0.89 -6.1 

CMORPH- Uncorrected 4205.7 1666.7 0.40 0.35 -8.9 

CMORPH-PT 6635.8 3809.8 0.57 0.77 2.5 

CMORPH-TSV 4384.5 1820.9 0.42 0.49 -8.3 

CMORPH-DT 6610.5 2705.2 0.41 0.43 1.3 

CHIRPS- Uncorrected 5942.8 2177.7 0.37 0.26 -13.3 

CHIPS-PT 6717.7 3727.9 0.55 0.70 8.4 

CHIPS-TSV 5996.6 2486.2 0.41 0.42 -6.0 

CHIPS-DT 6985.7 2801.9 0.40 0.31 12.4 

IMERG- Uncorrected 6037.4 2308.0 0.38 0.40 -10.1 

IMERG-PT 6658.7 3710.0 0.56 0.71 9.1 

IMERG-TSV 6033.5 2537.9 0.42 0.61 -3.8 

IMERG-DT 6579.0 2703.2 0.41 0.54 9.5 

SRTM 30m × 30m with LandSat-8 

In-situ 6058.9 3372.2 0.56 0.90 -8.5 

CMORPH- Uncorrected 4205.7 1453.3 0.35 0.30 -11.2 

CMORPH-PT 6635.8 3636.3 0.55 0.70 10.8 

CMORPH-TSV 4384.5 1677.5 0.38 0.49 -10.4 

CMORPH-DT 6610.5 2591.8 0.39 0.30 10.4 

CHIRPS- Uncorrected 5942.8 2004.3 0.34 0.20 -13.7 

CHIPS-PT 6717.7 3514.5 0.52 0.60 10.7 

CHIPS-TSV 5996.6 2272.7 0.38 0.41 -9.4 

CHIPS-DT 6985.7 2628.5 0.38 0.31 12.2 

IMERG- Uncorrected 6037.4 2074.6 0.34 0.40 -22.4 

IMERG-PT 6658.7 3556.6 0.53 0.58 19.0 

IMERG-TSV 6033.5 2324.5 0.39 0.62 -12.2 

IMERG-DT 6579.0 2549.8 0.39 0.49 18.8 

 


