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Abstract 

Estimation of foliar nitrogen and carbon content in crops is critical for assessing the nutrient cycle and optimal 

nutrient management, to improve crop health monitoring, and enhance yield predictions. This study 

investigates the estimation and retrieval of nitrogen and carbon content in healthy and lodged wheat using field 

hyperspectral remote sensing data taken during the field campaign between 30 April and May 18, 2023, and 

Sentinel-2 data of 23 April 2023 was obtained from the European Space Agency's (ESA) Copernicus Open 

Access Hub, covering our study area in Bonifiche Ferraresi farm, Jolanda di Savoia, Ferrara, Italy. 

Wheat field coordinates in lodged and healthy fields, together with leaf samples, were collected and wet 

chemistry analysis was performed to measure nitrogen and carbon content in leaf samples.  Widely used 

vegetation indices known for the estimation of nitrogen and carbon were used to estimate these biochemical 

parameters. Pearsons’s correlation coefficient test was used to determine important bands for the estimation 

and retrieval of carbon and nitrogen in both lodged and healthy wheat plots. The significant bands were further 

analysed using continuum removal and band depth analysis, trimming down the number of significant bands 

to a lower number by selecting the most important bands, for discriminating lodged and healthy wheat samples. 

Partial Least Squares Regression (PLSR) was used further for the estimation of carbon and nitrogen both at the 

field hyperspectral and at Sentinel-2 levels. 

The result of spectral analysis demonstrated significant differences in spectral properties between healthy and 

lodged wheat, with lodged wheat showing higher reflectance across visible, near infrared (NIR), and shortwave 

infrared regions. Among the vegetation indices used, narrowband NDVI was found to provide better predictive 

accuracy for foliar carbon and nitrogen content in lodged and healthy wheat, with lodged biochemical 

parameters having higher prediction values than healthy wheat’s. Using the selected bands from the band depth 

analysis, in the PLSR model, the result showed the highest R² CV value for carbon in lodged wheat (0.41), 

followed closely by nitrogen (0.39), nitrogen and carbon in healthy wheat had R² value of 0.32 and 0.31 

respectively, using venetian blind validation, when randomized validation was used all the biochemical 

parameters in both healthy and lodged wheat experienced higher prediction value, with healthy wheat having 

the highest prediction of 94% and 91% for nitrogen and carbon respectively.  Sentinel-2 data for the PLSR 

model, the highest R² CV value was recorded by lodged nitrogen (0.60), followed by healthy carbon (44), healthy 

nitrogen (0.42) and then lodged carbon (0.37) using venetian blind validation, when randomized validation was 

used, the same trend with increase prediction was noted, but the highest prediction was from lodged nitrogen 

(0.80), followed by lodged carbon (0.78), the healthy wheat biochemicals have same prediction value of 0.72. 

The results showed that lodged wheat has higher reflectance throughout the spectrum due to change in the 

structure of the canopy and plant stress. This leaded to better prediction of the biochemical parameters in 

lodged wheat, although lodging changed the absorption band location for nitrogen and carbon content, when 

compared with healthy wheat. Hyperspectral data proved superior in predicting these biochemical parameters, 

particularly in lodged wheat, due to its ability to capture subtle spectral variations. In contrast, Sentinel-2 data, 

despite its broader spectral bands, also provided valuable insights but showed lower predictive accuracy 

compared to hyperspectral data.  

The findings emphasize the importance of selecting appropriate spectral bands and vegetation indices suited 

for the specific crop condition, and that validation methods play a crucial role in model accuracy. Finally, it 

highlights the superior performance of hyperspectral data over Sentinel-2 data for precise agricultural 

monitoring and management. 
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1. CHAPTER 1:  INTRODUCTION 

1.1 Wheat and crop lodging  

Food security is a paramount concern of our time, posing complex challenges that extend far beyond the simple 

question of food availability, affecting 9% of the world’s population. (Ghosh et al, 2022). The prevalence of 

global hunger has exhibited an upward trend since 2014, despite increased food production over the past three 

decades. In 2019, a staggering two billion individuals, constituting approximately 25.9% of the global 

population, encountered hunger or faced inadequate and insufficient access to nourishing food (Raj et al., 2022). 

According to Grote et al. (2020), 820 million people are under-nourished in terms of energy intake, and 1.3 

billion people suffer from micronutrient deficiencies. Grains occupy a significant position within the global 

food supply, providing essential nutrients, including proteins, carbohydrates, vitamins, and minerals. Wheat, 

rice, maize, oats, and barley are versatile grains that can be used to create a wide range of foods and recipes, 

they are the foundation of basic foods and are widely cultivated worldwide (Albahri et al., 2023). Among these, 

wheat is an important cereal crop, and it is extensively cultivated. It has high nutritional value and has a variety 

of uses. It supports agricultural economies, adds to global food security, has cultural significance and is crucial 

for maintaining human populations (Shewry & hey, 2015; FAO, 2020). The use of wheat is rising globally, even 

in countries where the environment is not ideal for growing wheat. The estimated world production for wheat 

is 790,752 (1000 MT) for the year 2024 (USDA, 2024) Figure 1 shows the world wheat production distribution, 

and despite significant progress in global food production, millions still contend with food insecurity, a situation 

where individuals and communities lack consistent access to safe, nutritious, and culturally acceptable food that 

meets their dietary needs for an active and healthy life (Raphela & Pillay, 2021). Production of wheat is 

susceptible to biotic and abiotic stresses like climate change (Rahman et al., 2017), pests and diseases (Figueroa 

et al., 2017. Nigus et al., 2022, and lodging is one of the challenges in wheat production (Wu et al., 2022: 

Chauhan et al., 2019, 2020, 2021, Li et al., 2023). 

Crop lodging is prevalent in field crops and is characterized by the bending or fracturing plant stems or stalks 

(Chauhan et al., 2019, 2020, 2021; Shrestha et al., 2019; Wu et al., 2022). This phenomenon mostly affects cereal 

crops, including but not limited to wheat, maize (corn), barley, and rice. The adverse impact on plant stability 

leads to the crop collapsing or tilting, resulting in reduced agricultural output (Chauhan et al., 2019; Shrestha et 

al., 2019). When plants become lodged, their ability to absorb nutrients, carryout photosynthesis efficiently, and 

transport nutrients is hampered. Chauhan et al., (2020) also recognized that lodging typically occurs during the 

later part of the booting stage, because of the grains' weight. The booting stage in wheat represents the onset 

of the reproductive phase, indicating the shift from the vegetative phase to the reproductive phase. Lodging 

leads to disease vulnerability, decreased agricultural output, hindered mechanical harvesting and storage, 

increased post-harvest losses, and further strain on food supplies. 

There are two types of crop lodging: root lodging and stem lodging. Root lodging is commonly caused by 

insufficient root development, shallow planting, imbalanced soil fertility, root damage from pests, the impact 

of strong winds and rain. However, stem lodging occurs later in the crop's growth, it is primarily associated 

with unfavourable weather conditions, such as powerful winds, heavy rainfall, or severe storms. These 

conditions exert physical stress on the plants, making them more prone to bending or breaking (Chauhan et al., 

2020; Wu et al., 2022). Aside from environmental conditions, various factors can contribute to stem lodging, 

including pests and diseases, plant variety traits, soil variables, nutrient uptake, topographical features of the 

farmland, excessive plant height, and excessive nitrogen application, among others. 
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Figure 1: Wheat production in tonnes.                                                                        (Sourced: USDA Wheat Explorer )  

 

1.2 Role of carbon and nitrogen. 

Carbon and nitrogen are important nutrients for plant growth, influencing structural integrity and lodging 

resistance. Carbon, obtained through photosynthesis, is important to produce cellulose and lignin, which 

strengthen plant cell walls and enhance stress tolerance. Insufficient carbon reduces cell wall strength and plant 

rigidity, increasing vulnerability to environmental stresses like wind and heavy rainfall (Li et al., 2023). Nitrogen, 

absorbed from the soil, is essential for synthesizing amino acids, proteins, and chlorophyll. However, excessive 

nitrogen can reduce stem quality and increase lodging risk by accelerating stem growth beyond the support 

capacity of stems and roots. Research indicates that high nitrogen levels decrease stem resistance to lodging 

and disrupt the allocation of photosynthetic carbon, impacting yield formation and stem quality (Wu et al., 

2023). 

The interaction between carbon and nitrogen cycles is complex, affecting plant physiology, growth, and 

ecosystem dynamics. Elevated nitrogen levels can enhance carbon sequestration but may also disturb the 

carbon-nitrogen balance, reducing photosynthetic rates and overall growth (Sinto et al.,2022). High nitrogen 

fertilization increases lodging risk in crops like rice and Italian ryegrass, impacting yield and stem strength. 

Appropriate nitrogen management strategies can mitigate lodging without reducing yield, emphasizing the need 

for balanced nutrient management (Svečnjak et al., 2020; Chauhan et al., 2020; Mizuta et al., 2023). 
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Understanding the coordination of carbon and nitrogen is crucial for optimizing plant health and productivity, 

as imbalances can significantly affect plant physiology and growth (Saiz-Fernández et al., 2017; Bicharanloo et 

al., 2021). 

 

1.3 Remote sensing to estimate plant carbon and nitrogen. 

Various remote sensing methodologies and approaches have been used to assess plants' nitrogen and carbon 

composition. Method involving hyperspectral imaging and vegetation indices to track the nutritional status of 

plants and estimate the biophysical content of crops has been found to be effective (Ma et al., 2022). 

Additionally, crop biophysical and biochemical properties have been estimated by using multispectral and 

hyperspectral imaging techniques using satellite, aircraft, and drone platforms (Sharifi, 2020). The use of spectral 

reflectance data extracted from multispectral imagery has proven to be successful in predicting nitrogen and 

carbon content in citrus canopy (Liu et al., 2016). Various models, including partial least squares regression 

(PLSR), multiple linear regression (MLR), and support vector machine (SVM), are used to estimate the nitrogen 

and carbon content in plants (Liu et al., 2016). 

Using remote sensing data to estimate plant carbon and nitrogen levels has both benefits and drawbacks (Silva 

et al., 2008). Multispectral remote sensing offers a broad assessment of vegetation status, but it lacks the precise 

spectral data required for accurate content estimation due to its restricted spectral resolution. Hyperspectral 

remote sensing is well-suited for conducting thorough examinations of certain absorption characteristics 

associated with carbon and nitrogen molecules. It enables the creation of accurate spectral indices for 

quantitative analysis (Lu et al., 2020; Cotrozzi et al., 2018). 

While remote sensing can be used to assess plants' nitrogen and carbon content, it comes with certain obstacles 

and limitations. One obstacle arises from the requirement to precisely calibrate and validate remote sensing 

models for specific geographic areas. This is because various vegetation types and environmental factors can 

influence the correlation between the spectral reflectance of nitrogen and carbon content (Ozdogan et al., 2010). 

The spectral resolution of remote sensing data is limited, which means it may not be able to detect slight 

differences in nitrogen and carbon content. This limitation is particularly evident when using broadband images 

(Wu et al., 2023). The resolution of remote sensing data in space and time may not always match the scale and 

timing of nitrogen and carbon changes in plant canopies. Additionally, factors that can cause confusion, such 

as background factors and canopy structure, can introduce uncertainties when estimating nitrogen and carbon 

content (Machwitz et al., 2021). Notwithstanding these difficulties, remote sensing presents a comprehensive 

and non-invasive method to assess the nitrogen and carbon levels in plants, offering vital information for 

enhancing nitrogen and carbon management in agriculture (Kumar et al., 2019). 

Remote sensing has been used to detect and characterise crop lodging, offering various methodologies and 

technologies to enhance agricultural monitoring and management. UAV imagery has been used to identify 

lodging in wheat (Zhao et al., 2020; Yu et al., 2022), highlighting the capability of high-resolution UAV images 

to capture detailed spatial information critical for assessing the extent and severity of lodging. Additionally, 

Chauhan et al. (2021) developed an innovative remote sensing technique using Synthetic Aperture Radar (SAR) 

data to map the vulnerability of wheat to lodging, with SAR's ability to penetrate cloud cover and operate 

independently of weather conditions being particularly valuable for consistent monitoring over large areas. 

Beyond these examples, a broad spectrum of research explores different remote sensing technologies for crop 
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lodging detection, including multispectral and hyperspectral imaging (Lowe et al., 2017), which detect changes 

in crop canopy structure and reflectance characteristics associated with lodging. LiDAR has also been used to 

assess crop height and biomass, providing precise measurements of crop displacement and canopy deformation 

(Li et al., 2017), making LiDAR an important remote sensing method that can be used in detection of lodging. 

The integration of machine learning algorithms with remote sensing data further improves the accuracy and 

efficiency of lodging detection and characterization (Zhang et al., 2020). Hyperspectral remote sensing, this 

technology offers a more detailed spectral resolution compared to multispectral imaging, enabling the detection 

of subtle biochemical and physiological changes in crops (Pascucci et al., 2020), and it can be effective in 

identifying early signs of stress and lodging before they become visually apparent, thereby providing a proactive 

approach to crop management and intervention strategies. 

Hyperspectral imaging spectroscopy is a remote sensing technique that captures detailed spectral information 

across a wide range of wavelengths, compared with multispectral imaging, with a few bands, hyperspectral data 

offers a continuous spectrum (Prabira et al., 2022). Hyperspectral data offers detailed spectral information in 

diverse applications such as agriculture and environmental monitoring (Darvishzadeh et al, 2006; 2010; Pascucci 

et al., 2020). Numerous studies have utilized hyperspectral data to evaluate various biophysical parameters, 

including biomass (Wang et al., 2017), leaf area index (Darvishzadeh et al, 2008), vegetation cover 

(Darvishzadeh et al, 2007; 2009; Chanchí et al., 2023), canopy height (Miraki & Sohrabi, 2022), soil moisture 

(Jiang et al., 2022), and biochemical parameters such as chlorophyll content (Inoue et al., 2016), pathogen or 

plant stress detection (Gold et al., 2020; Galieni et al., 2020), carotenoids (Falcioni et al.,2023), mineral content 

(Wang et al., 2022), nutrient content (Zhang et al., 2023), plant water content (Zhang & Zhou, 2019), and 

lignin/cellulose (Feng et al., 2018). Preprocessing methods, such as noise removal and atmospheric correction, 

play a crucial role in hyperspectral measurements to enhance the precision of information extraction (Li et al., 

2021). 

Other remotely sensed techniques are also important, for example Sentinel-2 mission, operated by the 

European Space Agency, consists of twin satellites (Sentinel-2A and Sentinel-2B) equipped with multispectral 

sensors. These satellites provide valuable data for agricultural research. Sentinel-2 offers frequent revisit times 

(every 5 days) and high spatial resolution (10–20 meters). The spectral bands of Sentinel-2 exhibit sensitivity to 

many vegetative features, rendering it a powerful tool for evaluating biochemical factors in crop plants (Panwar 

et al., 2020; Segarra et al., 2020; Mahathi et al.,2023). The use of Sentinel-2 data in differentiating between 

healthy and lodged wheat, as well as in promptly identifying the occurrence and intensity of lodging, has been 

demonstrated (Chauhan et al., 2020). In addition, Sentinel-2 data can be integrated with other data sources, 

such as Sentinel-1 (Chauhan et al., 2020), drone imagery (Li et al., 2021), hyperspectral measurement (Mielke et 

al., 2014; Transon et al., 2017), used in abiotic and biotic stress detection (Pereira-Pires et al., 2021) to leverage 

the distinct capabilities of various sensors in estimating diverse plant properties. Combining remotely sensed 

data with ground-based measurements ensures accurate results and strengthens the reliability of agricultural 

assessments (Farbo et al., 2022). 

1.4 Vegetation indices 

Vegetation indices are important for assessing various aspects of plant health. The Normalized Difference 

Vegetation Index (NDVI) leverages the absorption of visible light and reflection of near-infrared light by 

healthy vegetation to provide a measure of vegetation health, with values ranging from -1 to 1. NDVI is 

instrumental in evaluating vegetation health, monitoring drought, and estimating biomass due to its robustness 

in indicating photosynthetic activity (Rouse et al., 1974; Zapata et al., 2023). The Enhanced Vegetation Index 

(EVI) improves upon NDVI by reducing atmospheric influences and enhancing sensitivity in high biomass 
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regions, calculated using an advanced formula incorporating blue band. EVI is particularly effective in densely 

vegetated areas, facilitating accurate monitoring of plant vigour and biomass production (Huete et al., 2002). 

The Cellulose Absorption Index (CAI) estimates cellulose concentration by measuring the absorption 

characteristics of cellulose (Daughtry, 2001), which is a major component of plant cell walls, and aiding in crop 

health assessment, disease stress detection, and fertilizer optimization in precision agriculture. Similarly, the 

Lignin Cellulose Absorption Index (LCAI) provides insights into both lignin and cellulose content, further 

refining the understanding of plant structural composition and health (Daughtry et al., 2005). The Normalized 

Difference Lignin Index (NDLI) focuses on nitrogen and lignin content (Serrano et al., 2002), which is inversely 

related to forage quality, and is useful for assessing plant quality. The Plant Senescence Reflectance Index (PSRI) 

indicates the onset of plant senescence by measuring changes in leaf pigment concentrations, crucial for 

managing harvest timing and crop rotation strategies (Merzlyak et al., 1999). Lastly, the Ratio Vegetation Index 

(RVI) uses the simple ratio of near infrared to red band reflectance, offering an alternative method for 

evaluating vegetation density and health (Pearson & Miller, 1972). Together, these indices provide 

comprehensive tools for foliar carbon and nitrogen content monitoring in precision agriculture, giving a clearer 

view in vegetation health monitoring. 

1.5 PLSR in remote sensing 

In remote sensing, various statistical and machine learning techniques are employed to analyze and interpret 

complex datasets, each with distinct advantages and limitations. Partial Least Squares Regression (PLSR) is 

particularly notable for handling multicollinearity effectively and reducing dimensionality by extracting latent 

variables, making it well-suited for datasets with many highly correlated spectral bands (Jin & Wang, 2019). This 

makes PLSR advantageous for predicting vegetation indices, soil properties, and water quality. In contrast, 

Multiple Linear Regression (MLR) is simpler and computationally efficient but struggles with multicollinearity 

and high-dimensional data. Support Vector Machines (SVM) and Random Forest (RF) offer robust handling 

of non-linear relationships and high-dimensional spaces, with RF providing insights into feature importance 

and SVM being less prone to overfitting, though both can be computationally intensive. Neural Networks (NN) 

excel in modeling complex, non-linear relationships and are highly flexible but require large datasets and 

significant computational resources, often lacking interpretability. PLSR is frequently chosen for its ability to 

manage multicollinearity and dimensionality reduction in spectral data, essential for remote sensing applications, 

though the choice of technique should ultimately depend on the specific task requirements, data characteristics, 

and available computational resources (Cheng & Sun, 2017; Shen et al., 2020; Liu et al., 2017). 

The above literature review demonstrates that, there has been no research conducted on the assessment of 

nitrogen and carbon contents in healthy and lodged crops using hyperspectral data. Additionally, no studies 

have yet utilized Sentinel-2 data to monitor the relationship between crop carbon and nitrogen content in 

lodged and healthy wheat. This relationship is crucial for the assessment of plant productivity, plant health, 

quality of grains, and ensuring food security. The outcome of this study is anticipated to enhance precision 

agriculture methods by offering well-informed remedies for crop lodging resulting from excessive nitrogen 

levels and inadequate carbon levels in wheat plants. This will enable farmers to develop more effective 

management plans to prevent lodging and subsequent reductions in crop yield.  
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 1.6 Problem statement 

Lodging presents a significant obstacle for the agriculture industry, for it leads to substantial reductions in both 

yield, crop quality, optimal crop management and yield prediction, as it alters the structural and spectral 

properties of plants. Crop lodging primarily occurs in cereal crops, including wheat, maize, barley, and rice. The 

lodging of crops is influenced by various factors, with nitrogen and carbon levels playing crucial roles in the 

strength and stability of plant stems. Excessive nitrogen usage has been identified as a major contributor to the 

heightened risk of lodging, whereas the presence of carbon is crucial to produce structural elements that 

enhance plant stiffness and ability to withstand environmental pressures. 

 

Previous studies highlight the complex relationship between nitrogen, carbon, and lodging in crops and that an 

uneven distribution of nitrogen fertilizer can decrease the ability of plant stems to withstand stress, hence 

compromising their structural strength (Li et al., 2023). Moreover, the harmonization and equilibrium of carbon 

and nitrogen concentrations in plants are crucial for attaining maximum growth, advancement, ability to 

withstand stress and yield. This underscores the importance of comprehending the different types of plant 

nutrient interactions, especially when it comes to lodging in wheat crops, thereby helping in plant resilience, 

lodging resistance and yield prediction. 

 

Despite the use of remote sensing techniques in different research for the evaluation of nitrogen or carbon 

content in plants, there remains a notable gap in the exploration of remote sensing data for assessing the 

relationship between nitrogen and carbon contents in healthy and lodged wheat canopies, to overcome the 

challenges that lies in accurately monitoring and managing nutrient levels in lodged wheat to mitigate economic 

losses, enhance yield prediction and optimize crop health. Therefore, the problem addressed in this study is 

how to effectively utilize hyperspectral and Sentinel-2 data to accurately estimate and retrieve nitrogen and 

carbon content in lodged and healthy wheat, thereby improving crop health monitoring and reducing the 

adverse effects of lodging on wheat yield. 

1.7 Aim and objectives of the study. 

The objective of the study is to examine the relationships between lodging occurrence and severity, and 
variations in nitrogen and carbon content in wheat using remote sensing data. To evaluate the influence of 
lodging on nitrogen and carbon variations, hyperspectral measurements and Sentinel-2 data will be used in this 
study. 

1.7.1. Specific objectives  

1. To assess the relationships between spectral reflectance and nitrogen and carbon content in lodged and 
healthy (un-lodged) wheat canopy, using the field hyperspectral measurements. 

2. To analyse the relationships between lodging and nitrogen and carbon variabilities in wheat canopy, 
obtained using the Sentinel-2 data (S2 data). 

1.7.2 Research questions and hypothesis 

1a. What is the relationship between lodging and nitrogen content in wheat canopy estimated using the 
field hyperspectral measurements? 
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Ho:  There are no specific hyperspectral bands that accurately estimate nitrogen content within the lodged 

wheat canopy. 

Ha:  There are specific hyperspectral bands that accurately estimate nitrogen content within the lodged 

wheat canopy, showing a significant relationship with changes in nitrogen levels due to lodging. 

1b. What is the relationship between lodging and carbon content in wheat canopy estimated using the field 
hyperspectral measurements? 

Ho:  Ho:  There are no specific hyperspectral bands that accurately estimate carbon content within the 

lodged wheat canopy. 

Ha:  There are specific hyperspectral bands that accurately estimate carbon content within the lodged wheat 

canopy, showing a significant relationship with changes in carbon levels due to lodging. 

2a. To what extent does lodging affect the retrieval of nitrogen in wheat canopies using S2 data? 

Ho:  There is no significant impact of lodging on the retrieval of nitrogen in wheat using Sentinel-2 data. 
The spectral bands identified for nitrogen can retrieve nitrogen despite lodging in wheat. 

Ha:  Lodging significantly affects the retrieval of nitrogen in wheat using Sentinel-2 data. The spectral bands 
identified for nitrogen cannot retrieve nitrogen in lodged wheat. 

2b. To what extent does lodging affect the retrieval of carbon in wheat canopies using S2 data? 

Ho:  There is no significant impact of lodging on the retrieval of carbon in wheat canopies using Sentinel-2 
data. The spectral bands identified for carbon can retrieve carbon despite lodging in wheat. 

Ha:  Lodging significantly affects the retrieval of carbon in wheat canopies using Sentinel-2 data. The 
spectral bands identified for carbon cannot retrieve carbon in lodged wheat. 
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2. CHAPTER 2: METHODOLOGY  

2.1 Study area 

The research site is situated at the Bonifiche Ferraresi farm, Jolanda di Savoia, Ferrara, Italy (44°52'59"N, 

11°58'48"E). Bonifiche Ferraresi is a major agri-food enterprise in Italy, covering over 6500 hectares (Figure 

2). The primary agricultural produce includes durum wheat (Triticum durum), soft wheat (Triticum aestivum), rice 

(Oryza sativa), corn (Zea mays), barley (Hordeum vulgare), soybean (Glycine max), and potatoes (Solanum tuberosum), 

with several other horticultural and medicinal species. These crops are commonly cultivated in a sequential 

rotation in successive years. The primary crop is wheat (field sizes range from 2.38 to 84.86 hectares) 

predominantly grown in clayey and silty soils. The climate of the region is mild and temperate. 

 

Figure 2: Location of the study area - Bonifiche Ferraresi farm in Jolanda di Savoia, within the Ferrara region of Italy (Zoom-in). 

(Source: Author). 
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2.2 Flowchart of method 

Carbon and nitrogen content estimation and retrieval performed in this research followed detailed steps shown 

in the methodological flowchart (Figure 3) and steps taken to achieve the set objectives according to the type 

of data used. 

 

Figure 3: Methodological flowchart of this research. 
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2.3 Data collection 

2.3.1 Sampling technique 

Stratified random sampling was used for sampling at three levels (Figure 3): sampling at plot level (90m × 90m), 

subplot level (15m × 15m), and microplot level (1m × 1m). A total of 65 plots were sampled, out of which 33 

were lodged wheat plots and 32 were healthy wheat plots (Table 1). Crop biophysical parameters were collected 

during the field campaign held between 30 April and May 18, 2023. The parameters that were measured in the 

field include slant height (cm), lodge area (%), SPAD, plant density, leaf area index (LAI), vertical lodge height 

(cm), fresh biomass (t/ha), leaf area (cm2), canopy height (cm), cover percentage (%), shoot numbers, point of 

line failure (cm) and tillers. Slant height (cm), vertical lodged height was used to assess lodging occurrence and 

severity in the field. Fresh wheat plant samples from one plant within the micro plot were collected, wrapped 

with wet paper, and kept in a Ziplock bag to preserve the sample for subsequent leaf area and fresh weight 

measurements. 

Table 1: The number of sample plots at three different levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Plot level Subplot level Microplot level 

Lodged wheat 33 165 498 

Healthy wheat 32 157 470 

Total 65 322 968 

Figure 4: The Diagram of Stratified Random Sampling  
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2.2.2 Data selection 

The samples used for the hyperspectral part of this study were at microplot level, which was initially 968 samples 

but were reduced to 163 samples and at subplot level from 322 samples to 305 samples (Table 1 & 2) due to 

several constraints. These constraints included the high cost of laboratory analysis, the unavailability of some 

spectral measurements at the microplot level, and practical issues such as missing field values, incomplete leaf 

samples needed for laboratory analysis, incorrect labelling, and spoilage of samples before drying due to adverse 

weather and distance to the laboratory. Consequently, the sample size was significantly reduced, impacting the 

overall data quality and quantity. For the Sentinel-2 part of the study, samples were collected at the subplot 

level. However, some subplots were excluded from the analysis due to incorrect location details that fell outside 

the study area. The total amount of sample data used in the study is summarized in Table 2. 

Table 2: The number of healthy and lodged wheat used at hyperspectral, and Sentinel-2 level.  

 

 

 

2.2.3 Field spectral measurement 

An ASD FieldSpec-3 Full-Range (350–2500 nm) spectrometer (Analytical Spectral Devices, Boulder, CO, USA) 

was used to collect canopy hyperspectral measurements in 74 healthy and 115 lodged micro-plots and 22 healthy 

and 40 lodged subplots. The spectroradiometer was calibrated against the reference white panel before taking 

the canopy spectral measurements in each micro plot. Five canopy spectral measurements were taken at each 

micro-plot and ten readings were recorded to minimise external noise for each measurement. 

2.2.4 Laboratory analysis 

The fresh samples were transferred into labelled paper envelops and were dried in an oven set to 65 degrees 

for 48 hours in ITC laboratory. The dried samples were ground with coffee grinders and the powder was kept 

in labelled envelopes. The envelopes were kept in airtight containers until further process commenced. A Perkin 

Elmer CHN Analyzer-2400 Series was used to quantify nitrogen and carbon content in the powdered samples 

of wheat crops. A detailed description of the methodology used by this instrument is given by Steve (2015). In 

brief, to prepare samples, clean all weighing utensils and use tweezers to handle tin capsules. Weigh an empty 

capsule, tare it using another empty capsule on the Perkin Elmer balance, then add the sample. Weigh again, 

adjust as needed, and note the weight, which should be between 1.700mg to 1.800mg. Clean the preparation 

area between samples. When the capsule has the correct sample amount, flatten, and fold it into a C shape, re-

weigh, record details, and store in a clean tray, avoiding cross-contamination. 

 

 

 Subplot level Microplot level 

Lodged wheat 159 93 

Healthy wheat 146 70 

Total 305 163 
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Figure 5: The sorting process of the sample before it is weighed and placed in the CHN Analyzer-2400 Series (behind the author, at the 
left side). 

Before starting the machine good lighting in ensured in the laboratory and the gases (hydrogen, helium, and 

compressed air) needed for the procedure is checked to be supplied to the machine. The instrument was set on 

‘STANDBY’; operational mode by pressing ‘PARAMETERS’, turning off Gas Saver, and verifying 

combustion, reduction, and detector oven temperatures (925°C, 640°C, 82.6°C, respectively) are within limits. 

If correct, I proceed with purging gas lines to remove diffused N₂ using specified durations for Helium and 

Oxygen. While purging, the PC was started, and I log in to EA 2400 Data Manager, and followed on-screen 

instructions, entering ‘PARAMETERS’, and confirming values as prompted. This setup ensures the instrument 

is ready for use. To save results, a folder named with the analysis date (e.g., 20240130) was created. Excel file 

is opened and filled in the necessary information in "Logbook CHN." The oxygen valve is then switched off 

(‘PARAMETERS’ > 20). A blank sample is run (‘SINGLE RUN’ > 1 BK), during which the sample drop area 

is clean. After running helium-only blanks, the oxygen valve was switched back on and repeat the blank run. 
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The machine is condition using the acetanilide standard. For sample analysis, ‘SINGLE RUN’ or ‘AUTO RUN’ 

modes are used, entering sample ID and weight. After analysis, the system is switched to Gas Saver Mode and 

data output is saved by clicking "Sync to Storage." 

2.2.5 Conversion of nitrogen and carbon content to area-based measurements  

Nitrogen and carbon content that was measured in the laboratory, was in percentage grams of the dry weight 

of the leaf sample. This is multiplied by leaf mass area in grams per centimeter squared to convert to foliar 

nitrogen content at the plot level. The same was done with carbon content using the formula. 

foliar nitrogen(g/cm2)=leaf nitrogen (%) * LMA(g/cm2) 

Where LMA is leaf mass per area. 

2.2.6 Data preprocessing for hyperspectral measurements 

The raw field hyperspectral data collected with the spectrometer on the field undergo a series of essential steps 
to enhance data quality and prepare it for subsequent analysis; removal of the noisy band affected by water and 
atmospheric region; 350nm and 399 nm, 1330nm -1406nm, 1810nm – 1952nm and above 2351nm were also 
removed. A total of 764 bands were removed while the remaining 1736 band were used in the analysis. The 
100-reflectance data collected each microplot were averaged; to reduce the measurement noise and this 
represent a sample. Savitzky Golay filter (Savitzky and Golay, 1964) was used to smooth the data with a frame 
size of 9 (1st degree polynomial) was used, this data was used for further analysis. The reflectance data for 
healthy and lodged wheat are shown in Figure 5. Healthy and lodged wheat spectral was used to calculate the 
mean, minimum and maximum reflectance, and their correspondent 1st derivative (Figure 5) which are 
important for feature differentiation in the field hyperspectral data for wheat. 

2.2.7 Sentinel-2 reflectance acquisition 

Sentinel-2 satellite imagery - atmospherically and geometrically corrected - covering the study area and was 

taken on 23rd April 2023 was used to assess the wheat fields for lodged and healthy crops. The image was used 

during the extraction of the mean reflectance of lodged and healthy wheat on ENVI Classic 5.7 + IDL 8.9 

using NRS toolbox. The data were then used for further analysis. The data were explored to show the difference 

in the spectral signature of the lodged and healthy wheat considering the maximum, mean, and minimum 

reflectance. Then the 1st derivative was also calculated to show the difference between them and this help to 

show the likely bands that can be used to differentiate between the lodged and healthy wheat. 

2.2.8 Outliers removal and normalization of data 

Median Absolute Deviation (MAD) method was used to remove outlies in the data. The MAD is less affected 

by extreme values (leys et al., 2013). This further reduced the used data at the subplot level, healthy wheat are 

109 samples, lodged were 105 samples and at microplot level, healthy wheat are 50 samples, lodged were 82 

samples. To ensure that the data was standardized and comparable across different scales, z-score normalization 

to the carbon and nitrogen content was applied both in field hyperspectral and Sentinel-2 measurements. This 

process involved standardizing the input vector by subtracting the mean and dividing by the standard deviation 

of the data. For example, the normalization function used for lodged carbon was defined as ‘normal_lc = 
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@(carbon) (carbon - mean(carbon)) / std (carbon)’. This transformation centered the data around zero and 

scaled it to have a unit variance, ensuring that each feature contributed equally to the analysis. The normalized 

carbon levels were then used in subsequent analyses to improve the robustness and performance of the 

predictive models. 

 

Figure 6: (a) Mean reflectance of lodged-left wheat (n=82), (b) Mean reflectance of healthy wheat – right (n=50). The image was taken 
after all the preprocessing steps. 

2.3 Data analysis 

Pearsons’s correlation coefficient test was used to analyse the healthy and lodged wheat mean reflectance, to 

determine if there is a significant difference in the correlation. The p-value threshold was set at 0.05 and any 

correlation that has a p-value greater than the set threshold was considered not significant. This help to identify 

the spectral bands or regions that can estimate carbon or nitrogen content in both healthy and lodged wheat. 

Continuum removal was applied to the hyperspectral data to analyze specific absorption features in the last step 

that is related to nitrogen and carbon content in wheat. This technique normalizes the reflectance spectrum by 

fitting and removing a continuum line, thereby highlighting the absorption bands more clearly, in doing so, 

there is a better correlation of the spectral features with biochemical properties of the plants. To isolate specific 

absorption features for analysis, the reflectance spectra were divided by the continuum at each wavelength, 

resulting in the continuum-removed spectra (RCR = R/C). This transformation normalizes the reflectance 
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spectra, with values ranging from 0 to 1, where the first and last points become 1, highlighting absorption 

features. Band depth (BD) was calculated by subtracting the continuum-removed reflectance (R′) from 1. 

Vegetation indices (VI) is a valuable tool for non-destructive and quick assessments of plant health, biophysical 

properties, and physiological characteristics. Vegetation indices such as the Normalized Difference Vegetation 

Index (NDVI) and Enhanced Vegetation Index (EVI), are commonly used to generate a prediction model for 

canopy nitrogen content (Zhonglin et al.,2022). In this research, VI was used in monitoring carbon and nitrogen 

variation in wheat leaf, using the reflectance of the field hyperspectral and Sentinel-2 data. Narrowband indices 

were calculated using the spectral information from the hyperspectral data, finding the best band combinations 

that can be used to predict carbon and nitrogen content using vegetation indices. The indices for nitrogen 

content estimation are normalised difference vegetation index (NDVI), enhanced vegetation index (EVI), and 

ratio vegetation index (RVI), while the indices for carbon content estimation are the cellulose absorption index 

(CAI), plant senescence reflectance index (PSRI), Lignin Cellulose Absorption Index (LCAI), and normalized 

difference lignin index (NDLI) 

Table 3: The vegetation indices used in this study.  

Vegetation indices Formula Purpose 

Normalised Difference 

Vegetation Index (NDVI) 

 

 

NDVI is associated with 

healthy vegetation, and it is 

an indication of nitrogen 

content. Nitrogen shows 

absorption in the red and 

the near infrared bands 

(Rouse et al., 1974). 

Enhanced Vegetation 

Index (EVI) 

 

 

 

EVI is sensitive to high 

vegetation cover, less 

saturation, reduced 

atmospheric and 

contamination due to 

canopy background (Huete 

et al., 2002). 

Plant Senescence 

Reflectance Index (PSRI) 

 

 

PSRI is designed to detect 

plant senescence and stress 

by identifying changes in 

leaf pigments, specifically 

the decrease in chlorophyll 

and the increase in 

carotenoids. It is useful for 

understanding the 

physiological status of 

vegetation (Merzlyak et al., 

1999). 

Cellulose Absorption 

Index (CAI) 

CAI = 0,5 (2020nm+2220) – 2100nm Cellulose  is an 

indication of carbon content 

in plant and CAI is sensitive 
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to cellulose content 

(Daughtry, 2001)  

Normalized Difference 

Lignin Index (NDLI) 

 

NDLI is an index to assess 

Nitrogen and lignin, which 

can be used to predict 

carbon content in plant 

(Serrano et al., 2002). 

Ratio Vegetation Index 

(RVI) 

  

RED/NIR 

 RVI is a simple index used 

in remote sensing to 

measure the relative amount 

of green vegetation. It is 

calculated as the ratio of the 

reflectance in the near-

infrared (NIR) region to the 

reflectance in the red region. 

The RVI is sensitive to 

vegetation density and 

biomass (Pearson & Miller, 

1972) 

Lignin Cellulose 

Absorption Index (LCAI) 

 

 

LCAI is a vegetation index 

specifically designed to 

assess lignin and cellulose 

content in plant material. 

Lignin and cellulose are two 

of the most abundant 

organic compounds in the 

biosphere and are significant 

carbon reservoirs in 

terrestrial ecosystems. It is 

used in monitoring 

vegetation health, maturity, 

and biochemical 

composition (Daughtry et 

al., 2005) 

 

Optimal hyperspectral band combinations for estimating nitrogen and carbon content were assessed through 

the calculation of narrowband indices. The coefficient of determination between the calculated narrowband 

and carbon or nitrogen content was determined for each pair, resulting in an R² matrix. The corresponding 

wavelengths associated with the highest R2 values were then considered as the best band combination. 

To analyze the distribution and variability of carbon and nitrogen content in the lodged and healthy wheat, box 

plots was used. These plots provided a clear visual representation of the central tendency, spread, and potential 

outliers in the data, facilitating a comprehensive understanding of the nutrient status across the wheat samples. 

The box plots were generated using Matlab, ensuring accurate depiction of quartiles and interquartile ranges, 

thereby highlighting the variations of nitrogen and carbon content within the dataset. 



27 | P a g e  

 

In this study, we compared two cross-validation methods, venetian blinds, and randomized validation, to 

evaluate their impact on the retrieval accuracy of nitrogen content in wheat canopies using Sentinel-2 data. The 

venetian blinds validation method involves systematically partitioning the data into equally spaced segments, 

ensuring that each subset maintains the original sequence of the data. This method provides consistent and 

repeatable results, which is critical for reproducibility in sequential data analysis. In contrast, the randomized 

validation method involves shuffling the data before dividing it into training and test sets, aiming to minimize 

sampling bias and ensure that each subset is representative of the entire dataset. While randomized validation 

is typically preferred for its statistical robustness and ability to mitigate bias, it inherently introduces variability 

between runs due to the random shuffling process. 

Partial Least Squares Regression (PLSR) had been used to develop a robust model for the data analysis. PLSR 

establish the relationship between biochemical concentrations and reflectance spectra (Darvishzadeh et al. 

2008c). PLSR combines the features of principal component analysis (PCA) and multiple regression, 

compressing many variables into a few latent variables (PLS factors). This approach incorporates the response 

variable information during decomposition, effectively reducing overfitting. In this study, spectra data and 

normalised data of carbon and nitrogen content were analyzed using PLS Toolbox on Matlab. The lodged and 

healthy wheat had 82 and 50 samples respectively at the field level while at the satellite level, lodged and healthy 

wheat had 105 and 109 samples respectively. The response variable was mean-centred and PLSR model was 

developed using the SIMPLS algorithm, with the number of latent variables determined through cross-

validation. For validation, Venetian blinds cross-validation method was used with varied numbers of splits and 

a blind thickness of 1. In this approach, the dataset was systematically divided into segments, ensuring that 

every sample was used for validation exactly once while maintaining the spatial structure of the data. This 

method helps in reducing the potential bias and variance, providing a more reliable estimate of the model’s 

performance. Model validation was conducted through venetian blinds, where the coefficient of determination 

for cross-validated (R² CV), cross validation bias and root mean square error cross validation (RMSECV) 

between predicted and observed values were calculated to evaluate model predictive performance. 
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CHAPTER 3: RESULTS 

3. Results  

Hyperspectral data statistics are shown in Table 4; the detailed information on the healthy dataset, showing that 

nitrogen ranges between 2.95 and 6.75 g/m2 and 69,22 to 242,07 g/m2 for carbon, while lodged nitrogen and 

carbon ranges between 2.82 to 10.38 g/m2 and 61.97 to 263.48 g/m2 respectively. 

Table 4: Statistical summary of nitrogen and carbon in healthy and lodged wheat at the field level (hyperspectral)   

 

 

 

 

 

 

Sentinel-2 data statistics were shown in Table 5 below; the detailed information on the healthy dataset, showing 

that nitrogen ranges between 2.65 and 8.57 g/m2 and 104.58 to 269.77 g/m2 for carbon, while lodged nitrogen 

and carbon ranges between 1.98 g/m2 to 12.89 g/m2 and 87.38 to 295.10 g/m2 respectively. 

 

Table 5: Statistical summary of nitrogen and carbon in healthy and lodged wheat at satellite level (Sentinel-2).   

 

 

 

 

 

 

Hyp_Variables Unit Minimum Maximum Mean Standard 

deviation 

Healthy Nitrogen g/m2 2,95 6,75 5,23 1,02 

Lodged Nitrogen g/m2 2,82 10,38 6,15 1,95 

Healthy Carbon g/m2 69,22 242,07 149,41 37,28 

Lodged Carbon g/m2 61,97 263,48 141,11 50,66 

S2_Variables Unit Minimum Maximum Mean Standard 
deviation 

Healthy Nitrogen g/m2 2,65 
 

8,57 5,82 1,29 

Lodged Nitrogen g/m2 1,98 
 

12,89 7,73 2,11 

Healthy Carbon g/m2 104,58 
 

269,77 176,34 35,66 

Lodged Carbon g/m2 87,38 
 

295,10 181,55 57,26 
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3.1 Mean spectral reflectance of lodged and healthy wheat. 

In the mean reflectance of lodged and healthy wheat (Figure 7) there are distinct differences in the spectral 

signatures at the field level (hyperspectral - left ) and satellite level (Sentinel-2- right),  the different in reflectance 

was much due to broad band nature of the Sentinel-2 data and lots of bands which were present in the field 

hyperspectral data, which were missing in Sentinel-2, leading to missing information in some regions at the 

satellite level spectra (Figure 7 - right). 

 

 

Figure 7: Average spectral signature of lodged and healthy wheat, on the left is the field hyperspectral measurement (lodged n=82, 
healthy n=50) and on the right is the satellite spectra obtained from Sentinel-2 imagery imagery of 23rd of April 2023 (lodged n=105, 
healthy n=109) in Bonifiche Ferraresi farm, Jolanda di Savoia, Ferrara, Italy.        

 

Minimum, and maximum reflectance values was calculated at hyperspectral (Figure 8) and sentinel-2 (Figure 9) 

level, to enhance the differentiation between lodged and healthy wheat. Analyzing the mean, minimum, and 

maximum reflectance values allow for a comprehensive characterization of the spectral properties of both 

lodged and healthy wheat, helping to identify subtle differences that may not be apparent when only considering 

the mean reflectance. Minimum and maximum reflectance values provide insights into the variability within the 

wheat samples, essential for understanding the range of spectral responses and identifying any outliers or 

anomalies indicative of lodging. The first derivative of the reflectance values enhances the sensitivity of the 

analysis to changes in spectral reflectance, helping to identify inflection points and subtle shifts in the spectral 

curve critical for distinguishing between lodged and healthy wheat. 
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Figure 8: Using field hyperspectral (a)Maximum reflectance of lodged vs healthy wheat and the corresponding 1st derivative is shown 
beside it. (b)Mean reflectance of lodged vs healthy wheat and the corresponding 1st derivative is shown beside it (c) Minimum 
reflectance of lodged vs healthy wheat and the corresponding 1st derivative is shown beside it. 
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Figure 9: Using Sentinel-2 (a)Maximum reflectance of lodged vs healthy wheat and the corresponding 1st derivative is shown beside it. 
(b)Mean reflectance of lodged vs healthy wheat and the corresponding 1st derivative is shown beside it (c) Minimum reflectance of 
lodged vs healthy wheat and the corresponding 1st derivative is shown beside it. 

 



32 | P a g e  

 

3.2 Pearson’s correlation coefficient result 

After conducting Pearson’s correlation coefficient to test the significance of difference in the lodged and healthy 

at a 0.05 confidence level on the field hyperspectral data across the entire spectral range, several spectral regions 

were identified where the spectral bands showed significant differences in carbon and nitrogen content of 

lodged wheat (Figure 10), while that of healthy wheat do not show any statistical correlation. These significant 

regions are presented in Table 6, from these spectral regions, specific absorption features that were used for 

further investigation in this study were identified. Sentinel-2 Pearson’s correlation result showed significant only 

in healthy wheat nitrogen, Figure 11 showed this, other parameters were correlated but not significant. 

Table 6: Significant spectral regions at field hyperspectral level (left) which is only noticed in the lodged wheat spectra and at Sentinel-

2 level (right) only in healthy wheat, no significant band is seen in healthy carbon and lodged carbon and nitrogen i.e. p-value < 0.05.   

 

 

 

 

  

 

 

Figure 10: Correlation coefficient of healthy wheat nitrogen (top left) content and carbon (top right), lodged wheat nitrogen (bottom 
left) content and carbon (bottom right) content in field hyperspectral data, this Figure shows significance in some bands (in red 
colour) in the lodged wheat, that can be used in estimate nitrogen and carbon content. Healthy wheat shows correlation, but they are 
not significant. 

Nitrogen wavelength  Carbon wavelength  

range (nm) Range(nm) 

1411-1558 1410-1538 

1951-2350 1951-2229 

 2266-2350 

  

Nitrogen wavelength  

Range (nm) 

740 

783 

865 

1610 
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Figure 11: Correlation coefficient of healthy and lodged wheat nitrogen and carbon using Sentinel-2 data; healthy nitrogen content 
(top left) shows significant band in red colour, healthy carbon (Top right), lodged wheat nitrogen (bottom left) and carbon (bottom 
right) content do not have significant band that can be used for these variables’ retrieval. 

3.3 Absorption features and continuum removal 

The absorption features and continuum removal (Figure 12) steps goes together, as the continuum removal 

was done to determine where the absorption features are located and then band depth analysis was done to 

determine the deference between the lodged and healthy wheat spectra. After the result of the Pearsons 

correlation showing that healthy wheat does not show any significant band, it was decided that the whole 

spectral will be used in this step to really consider which location have high band depth difference. Considering 

the two tables, three of the absorption peaks at field level is close to the located peaks at the plot level. 

Table 7: (a-left) absorption peak band location using field hyperspectral data and (b-right) absorption peak band location using 
Sentinel-2 data. 

 

 

 

 

 

 

 

 

Bands with highest 

absorption peak 

(nm)  

Band 

depth 

Band 

depth 

 Lodged Healthy 

672 0.43 0.37 

714 0.78 0.74 

976 & 977 0.82 0.80 

1164 & 1165 0.76 0.73 

1463 0.55 0.52 

Bands with highest 

absorption peak 

(nm)  

Band 

depth 

Band 

depth 

 Lodged Healthy 

665 0.35 0.38 

705 0.39 0.41 

1610 0.90 0.97 
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Figure 12: Continuum removal reflectance of hyperspectral data. 

 

3.5 Vegetation indices 

The coefficient of determination (R²) for various vegetation indices used to analyze the nitrogen content in 

wheat are used to know the accuracy and effectiveness of each index in predicting or correlating with the foliar 

nitrogen and carbon content in healthy and lodged wheat. Higher R² values indicate stronger relationships 

between the vegetation indices and studied parameters, suggesting that the index is a better predictor. 

Normalized Difference Vegetation Index (NDVI) achieved the highest R² (0.18), followed by Cellulose 

Absorption Index (CAI) and Enhanced Vegetation Index (EVI) both having same R² (0.03), specifically for 

estimating healthy nitrogen content using Sentinel-2 data but its performance in lodged nitrogen estimation was 

too low in the indices used for this study. Additionally, hyperspectral data proved more effective than Sentinel-

2 in estimating nitrogen content in lodged wheat than in healthy wheat. Among the indices, the Lignin Cellulose 

Absorption Index (LCAI) and the Plant Senescence Reflectance Index (PSRI) showed better performance 

(0.10) when compared with other indices used in estimating nitrogen content in lodged wheat. However, the 

results also indicate that hyperspectral data generally underperforms in estimating healthy nitrogen content but 

performed well in lodged nitrogen in most of the indices used, see Appendix (B5 and C5). 
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Estimation of carbon content using hyperspectral data shows that the Lignin Cellulose Absorption Index 

(LCAI) and the Cellulose Absorption Index (CAI) are the most effective indices for estimating carbon content 

0.13 and 0.04 respectively in lodged vegetation. Conversely, the Normalized Difference Lignin Index (NDLI) 

and CAI provide more accurate estimates for carbon content in healthy wheat 0.06 and 0.03 respectively 

compared to other indices. When using Sentinel-2 data, the retrieval rates for both healthy and lodged carbon 

content were generally low. However, the Plant Senescence Reflectance Index (PSRI) proved to be the most 

effective, achieving an R² value barely above 0.1 which is recorded in healthy carbon.  

This low R² values recorded in our study indicate that the vegetation indices used in this study are not well-

suited for estimating carbon and nitrogen content in both healthy and lodged vegetation using the available 

data. The limitations of these indices and the data highlight the need for more robust, multi-faceted approaches 

that consider the complexity of wheat biochemical parameters estimation. So, we took a step further in by using 

narrowband NDVI in prediction of carbon and nitrogen content in wheat. 

 

3.6 Best narrowband  

The study used best narrowband NDVI (Normalized Difference Vegetation Index) to identify two spectral 

bands for predicting carbon and nitrogen content in both lodged and healthy conditions. As described in the 

methodology, the selected bands were occasionally too close in spectral range, potentially reducing the reliability 

of predictions. To address this, a sorting process was implemented to identify alternative bands that, while 

possibly yielding slightly lower R² values, could provide more stable estimations of the variables. Table 8 below 

lists the bands initially chosen by the model along with their corresponding R² values. It also includes the sorted 

bands that have been deemed more reliable for accurately estimating the variables.  

 

Table 8: Best narrowband NDVI analysis in lodged and healthy wheat using field hyperspectral. The sorted bands are selected band 
that are more likely to give a more reliable result.   

 

 

 

Variables Model Band (nm) 
R² Sorted Band (nm) R² 

Lodged wheat nitrogen 1463 & 1469 
0.29 1460 & 1470 0.27 

Healthy wheat nitrogen 2330 & 2332 
0.15 2003 & 2337 0.14 

Lodged wheat carbon 1462 & 1470 
0.32 1457 & 1471 0.31 

Healthy wheat carbon 401 & 403 
0.25 2085 & 2095 0.21 
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3.7 Carbon and nitrogen estimation 

Healthy wheat nitrogen content shows a median value is 5.4 g/m2, with a tight interquartile range (IQR) 

suggesting less variability in nitrogen content levels. The data points are quite concentrated. Lodged wheat 

reveals a higher median nitrogen content is 5.9 g/m2 and has a wider IQR, indicating more variability, suggesting 

that lodged wheat nitrogen content is more varied when compared with healthy nitrogen content. In healthy 

wheat carbon content, the median carbon content is 127 g/m2 with a narrow IQR, implying consistent carbon 

levels among healthy carbon, while lodged carbon median is 136 g/m2, but with a slightly wider IQR, suggesting 

slightly more variability in carbon content in lodged wheat compared to healthy wheat (Figure 13). Lodged 

wheat exhibits higher nitrogen content and more variability in nitrogen and carbon content compared to healthy 

wheat. 

   

Figure 13:Boxplot comparison of lodged and healthy wheat nitrogen (left) and carbon (right) content using hyperspectral data; note that 
nitrogen and carbon content unit are in g/m2. 

In the boxplot in Figure 14, healthy nitrogen using Sentinel-2 data shows a median nitrogen content of 5.8 

g/m2 with a narrow interquartile range (IQR), indicating low variability and a consistent nitrogen content level 

in healthy wheat. Lodged nitrogen has a slightly higher median nitrogen content of 6.4 g/m2, but the range is 

more compressed compared to the healthy wheat. suggests that lodging may affect nitrogen retrieval or 

estimation. Healthy wheat shows a median carbon content of 1.8 g/m2, with a compact IQR. This reflects 

uniformity in carbon content among the healthy samples, lodged wheat shows a lower median carbon content, 

around 1.7 g/m2, with a broader IQR than the healthy samples. This indicates a greater variability and lower 

carbon levels in lodged wheat, which could reflect stress or damage. Lodged wheat exhibits higher nitrogen 

content but lower carbon content, variations between healthy and lodged wheat in terms of carbon content is 

notable and it is suggesting significant impacts of lodging on carbon content. 
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Figure 14: Boxplot comparison of lodged and healthy wheat nitrogen (left) and carbon (right) content using Sentinel-2 data; note that 

carbon and nitrogen content unit are in g/m2. 

  

3.8 Partial least square regression analysis 

3.8.1 Estimation of carbon and nitrogen content using field hyperspectral data 

The Partial Least Squares Regression (PLSR) models were evaluated using both venetian blinds cross-validation 

and randomized validation methods to assess their predictive performance on hyperspectral data for lodged 

and healthy carbon and nitrogen content estimation. The significant bands were determined during band depth 

analysis and all the identified bands (17 bands) were used in healthy wheat because the Pearson’s correlation 

did not show significant correlation throughout the spectrum, while in the lodged wheat category, the bands 

identified after band depth analysis, that is in the region that was significant in Pearson’s correlation (6 bands) 

were used. The PLSR prediction of lodged carbon and nitrogen where higher than that of healthy carbon and 

nitrogen when venetian blinds validation is used while in randomized validation, healthy nitrogen, and carbon 

prediction are higher than lodged nitrogen and carbon estimate. The RMSE-CV of lodged carbon has the 

highest of 1.007 while healthy nitrogen has the lowest with the value of 1.004 using venetian blinds validation 

but in the randomized validation, healthy nitrogen has the highest RMSE-CV of 1.012 followed by healthy 

carbon with the value of 1.010, while lodged carbon has the lowest value of 1.005. Detailed information is in 

Table 9, comparing R² CV of both validation methods, the randomization method consistently has a higher 

result in all biochemical components, indicating that the randomized validation method suggesting better 

predictive performance and model robustness compared to the venetian blinds’ validation method. 
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Table 9: Performance of PLSR prediction at field hyperspectral level, using venetian and randomized validation method and their 
results. Preprocessing method used in the PLSR for the reflectance data is 1st Derivative (order: 2, window: 9 pt)   

 

 

3.8.2 Retrieval of carbon and nitrogen content using field Sentinel-2 data 

The significant bands that have the highest absorption peaks (665nm, 705nm and 1610nm) in the band depth 

analysis were used to estimate nitrogen and carbon retrieval in both lodged and healthy wheat using Sentinel-2 

data. To assess the predictive performance of Sentinel-2 data (Table 10), PLSR models were evaluated using 

both venetian blinds cross-validation and randomized validation methods. The retrieval prediction of lodged 

nitrogen was the higher with R² CV of 0.60 and lodged carbon was the lowest with 0.37 R² CV, healthy carbon 

and nitrogen were 0.44 and 0.42 respectively when venetian blinds validation is used. While randomized 

validation for healthy nitrogen, and carbon R² CV have the same value of 0.72, which is lower than lodged 

nitrogen and carbon estimate of 0.80 and 0.78 respectively. The RMSE-CV of lodged nitrogen has the highest 

of 1.007 while lodged carbon was the lowest and healthy carbon and nitrogen shared the same value of 1.004 

using venetian blinds validation but in the randomized validation, lodged carbon and nitrogen sheared same 

and highest RMSE-CV of 1.006, while healthy nitrogen has the lowest value of 1.004. Detailed information is 

in Table 10, comparing R² CV of both validation method, it is seen that randomized consistently have a higher 

result in all biochemical components, just as shown in the predictive model for hyperspectral data above. 

At Sentinel-2 level, it was only healthy nitrogen that have bands that were significant in retrieval after running 

a Pearson’s correlation (740nm, 783nm, 865nm, 1610nm, 2190nm), others like heathy carbon, lodged nitrogen 

and carbon were correlated but the correlation is not significant. So, the bands with significant correlation in 

healthy nitrogen were also used for a PLSR analysis to compare it performance, with the bands from band 

depth analysis, detailed result is in Table 11. 

 

 

 

 

 

 

Parameters  Venetian blinds validation Randomized validation 

R² CV RMSE-                       

CV 

CV-Bias R² CV RMSE-

CV 

CV-Bias 

Lodged wheat carbon 0.41 1.007 -0.035 0.71 1.005 -0.034 

Healthy wheat carbon 0.31 1.005 0.021 0.91 1.010 0.021 

Lodged wheat nitrogen 0.39 1.005 0.031 0.73 1.006 -0.031 

Healthy wheat nitrogen 0.32 1.004 0.020 0.94 1.012 0.020 
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Table 10: Performance of PLSR prediction at Sentinel-2 level, using venetian and randomized validation method and their results.    

 

 

Table 11: Comparing healthy nitrogen retrieval using Pearson’s correlation significant bands (PCSB) and recommended band from the 

band depth analysis (BDA) t Sentinel-2 level used in PLSR prediction, using venetian and randomized validation method.   

 
  

Parameters Venetian blinds validation Randomized validation 

R² CV RMSE-

CV 

CV-Bias R² CV RMSE-

CV 

CV-Bias 

Lodged wheat carbon 0.37 1.003 -0.004 0.78 1.006 -0.005 

Healthy wheat carbon 0.44 1.004 -0.014 0.72 1.005 -0.014 

Lodged wheat 

nitrogen 

0.60 1.007 -0.006 0.80 1.006 -0.006 

Healthy wheat 

nitrogen 

0.42 1.004 0.019 0.72 1.004 0.019 

       

Variables_S2 data Venetian blinds validation Randomized Validation 

  

R² CV RMSE-CV CV-Bias R² CV RMSE-CV CV-Bias 

Healthy nitrogen (PCSB) 0.40 1.004 0.025 0.71 1.004 0.025 

Healthy nitrogen (BDA) 0.42 1.004 0.019 0.72 1.004 0.019 
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 CHAPTER 4: Discussion 

4. Discussion 

The relationship between carbon and nitrogen in healthy and lodged wheat reveals critical insights into their 

biochemical interactions under varying physiological conditions (Zhang et al., 2017a & 2017b). Understanding 

the relationship is vital for optimizing crop health, enhancing yield, enabling precision agriculture, reducing 

economic losses, and fostering agricultural research and development. The primary objective of this study was 

to evaluate the effectiveness of hyperspectral data for estimating nitrogen and carbon content in both healthy 

and lodged wheat and if Sentinel-2 data is effective in retrieval of nitrogen and carbon content in both healthy 

and lodged wheat. To discriminate between healthy and lodged wheat, spectral signature was used and the 

relationship between heathy and lodged wheat and carbon and nitrogen were determined by considering the 

significant bands for carbon and nitrogen using Pearson’s correlation coefficient test. This study found that 

lodging significantly alters the spectral properties of wheat and impacts the estimation of these nutrients, 

consequently, the models developed were able to predict nitrogen and carbon content more accurately in lodged 

wheat than in healthy wheat, particularly because the reflectance changes made lodged wheat more 

distinguishable in hyperspectral analysis. In healthy wheat, the uniformity and stability in the plant structure 

result in consistent reflectance patterns, with specific spectral bands around 2003nm and 2337nm being crucial 

for nitrogen prediction and 2085nm & 2095nm to be crucial for carbon prediction, these regions had been 

identified to be important as nitrogen and carbon absorption bands (Curran, 1989; Mutaga et al., 2004). On the 

contrary, lodged wheat exhibits increased reflectance across various wavelengths due to structural changes and 

stress responses, making bands around 1460nm and 1470 nm more relevant for nitrogen estimation and 

1457nm and 1471nm to be more relevant for carbon estimation, the band region noted for nitrogen in lodged 

wheat in this study shows that this region noted for carbon content (Curran, 1989; Curran et al., 2001). This 

difference showed in the important bands in both lodge and healthy wheat highlights how lodging alters the 

spectral properties of wheat, making certain wavelengths informative depending on the plant's condition. 

4.1 Spectral reflectance of lodged and healthy wheat 

The comparative analysis of reflectance properties between healthy and lodged wheat reveals significant spectral 

differences, with lodged wheat consistently showing higher reflectance (Chauhan et al., 2019) across visible 

(400-700 nm), near-infrared (700-1400 nm), and shortwave infrared (1400-2400 nm) regions. This increased 

reflectance in lodged wheat is likely due to structural changes (altered leaf structure and increasing leaf area 

exposed to the sensor) and orientation of the leaves and stems after lodging, loss of chlorophyll or changes in 

leaf angle (expose more leaf area to incident light), and reduced water content (Sun et al., 2021). The first 

derivative of the reflectance spectra further differentiates healthy from lodged wheat by highlighting specific 

wavelengths associated with chlorophyll absorption (around 680 nm and 730 nm) and water absorption (around 

1450 nm and 1950 nm). These spectral characteristics were used to effectively distinguish between healthy and 

lodged wheat using both hyperspectral data and Sentinel-2 data, differentiation of the lodged and healthy wheat 

will support better crop management and yield optimization by allowing early detection of lodging and 

associated stress. 
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4.2 Spectral region analysis 

This research revealed that lodging significantly impacts the spectral properties of wheat, which is more noted 

when hyperspectral data was used. Using Pearson’s correlation coefficient, we identified specific wavelengths 

closely linked to carbon and nitrogen content in lodged wheat, while healthy wheat showed no significant 

correlations, indicating more uniform reflectance patterns. While using Sentinel-2 data, healthy nitrogen showed 

significant, but others have correlation that is not significant. The identification of specific absorption features 

through continuum removal and band depth analysis confirmed their utility in highlighting significant spectral 

regions. Continuum removal helps in isolating the absorption features, while band depth analysis quantifies the 

extent of these features, providing a clearer understanding of the spectral properties (Mutanga et al., 2004; Zhao 

& Lifu, 2013). Continuum removal and band depth analysis is not common in Sentinel-2 studies, but it was 

done so we can compare the results output of these bands after building our model. 

4.3 Vegetation indices and best narrowband 

The result of our analysis showed that using Lignin Cellulose Absorption Index (LCAI) and Plant Senescence 

Reflectance Index (PSRI) vegetation index predicts lodged nitrogen content better than healthy nitrogen, 

although the prediction of both indices is low with R² value of about 0.10 and 0.03 respectively, while in healthy 

nitrogen the best prediction is by using NDLI with just 0.02 predictability, using hyperspectral data. For carbon 

LCAI predicts lodged carbon content better and NDLI predict healthy carbon the best, with the value of 0.13 

and 0.06 respectively. At Sentinel-2 level, the best predictive vegetation index for healthy nitrogen was NDVI 

with predicts value of 0.18, for lodged nitrogen content, the value was less than 0.02. Predicting healthy carbon 

content was difficult when compared with healthy nitrogen, the best is PSRI with the prediction value barely 

over 0.01. For lodged carbon and nitrogen prediction using Sentinel-2 data, the prediction was difficult, and 

the best prediction was for lodged nitrogen with 0.01 using NDVI and RVI. These findings suggest that 

different vegetation indices are better suited for specific conditions and highlight the importance of selecting 

appropriate indices based on the health status of the crop, as different indices offer varying levels of 

predictability for nitrogen and carbon content with in healthy and lodged wheat. Sentinel-2 data showed lower 

predictive accuracy for both healthy and lodged wheat compared to hyperspectral data, as indicated by lower 

R² values. For instance, the best predictive value for healthy nitrogen using Sentinel-2 data was achieved with 

the NDVI index at 0.18, while for lodged nitrogen content, the value was less than 0.02. This contrast suggests 

that S2's broader spectral bands are less sensitive to the subtle spectral differences needed for accurate 

biochemical parameter estimation compared to the narrower bands used in hyperspectral imaging. 

The best narrow band result showed a higher predictive model for lodged and healthy wheat carbon content 

when compared with the normal vegetation indices. Some of the bands selected by the model were too close 

together and using closely spaced spectral bands for predictive model can lead to redundancy, over-fitting, noise 

sensitivity, and computational inefficiency, leading to unreliable result, selecting a broader range of bands can 

improve model performance and generalization. The R² value for best narrowband were showed in Table 8 

and the prediction of lodged wheat for carbon and nitrogen performed better than that of healthy wheat. 

4.4 Nitrogen and carbon content estimation 

The box-plot analysis revealed distinct differences in nitrogen and carbon content between healthy and lodged 

wheat. Healthy wheat exhibited a narrower inter-quartile range (IQR) for nitrogen content, suggesting lower 

variability and more consistent nitrogen levels, but lodged wheat showed higher median nitrogen content and 
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greater variability, indicating that nitrogen significantly affects wheat lodging. The same trend is seen in carbon 

content, with healthy wheat having a narrow IQR and lodged wheat exhibiting higher median values and greater 

variability. Higher nitrogen and carbon content can contribute to lodging by promoting rapid and heavy growth 

without necessarily strengthening the plant’s structure adequately. Therefore, it’s crucial to manage nutrient 

levels carefully to ensure optimal plant health and minimize the risk of lodging. 

4.5 PLSR model  

Estimating carbon and nitrogen content using hyperspectral data was achieved by using bands identify from 

band depth analysis and the highest accuracy recorded using R² CV   was found in lodged carbon followed 

closely by lodged nitrogen, with the value of 0.41 and 0.39 respectively, using venetian blind validation. Healthy 

nitrogen and carbon with the value of 0.94 and 0.91 respectively was the highest prediction when randomized 

validation was used. At Sentinel-2 level, the retrieval of carbon and nitrogen in lodged and healthy wheat was 

predicted better in lodged wheat carbon in both model validation and nitrogen and carbon have more accurate 

results in lodged wheat when randomized validation was used. Both models; using hyperspectral and Sentinel-

2 data reveals that model accuracy for predicting nitrogen and carbon content in wheat varies significantly, and 

this depends on the validation method used. The inconsistency in model results noted in randomized validation 

at each run of the model suggests the need for a more robust evaluation approach. This inconsistency may 

highlight the importance of carefully selecting validation techniques to ensure a comprehensive and accurate 

assessment of our model's performance. Venetian blinds validation systematically covers the entire dataset, 

making it effective in capturing patterns and variances associated with lodged wheat, while randomized 

validation ensures a more generalized model. Considering the information on RMSEcv on Table 9, it should 

be noted that randomized validation has higher error values when compared to venetian blinds in healthy 

carbon and nitrogen, and in lodged nitrogen, but the bias in both validation is the same. At Sentinel-2 level, 

RMSEcv on Table 10, showed that randomized validation has higher error values when compared to venetian 

blinds in healthy carbon and nitrogen, and in lodged carbon, and bias is also a bit higher in randomized 

validation in both healthy and lodged carbon content while they have same RMSEcv value in healthy nitrogen. 

Comparing healthy nitrogen retrieval using Pearson’s correlation significant bands (PCSB) and important bands 

from the band depth analysis (BDA) at Sentinel-2 level, results of both validation method showed a better 

retrieval prediction when band depth analysis bands are used for the prediction. 

This study shows an overall result that hyperspectral remote sensing can estimate carbon and nitrogen content 

in lodged wheat using our models, provided the bands identified to have high absorption peak during the 

process of band analysis is used. This is evident from the higher variability in nitrogen and carbon content in 

lodged wheat in our boxplot analysis and significant difference shown by the Pearson’s correlation coefficient 

affirm that remote sensing techniques can be effectively used in carbon and nitrogen estimation and 

management even in lodged areas within a field. Although there was no significant band identified in lodged 

wheat using Sentinel-2 data, our model was still able to retrieve carbon and nitrogen in lodged wheat. 

The use of two different models in this study also reveal the importance of comparing different validation for 

accurately predicting the more stable conditions of wheat biochemical content. Using both methods allows for 

a robust evaluation, ensuring that the model is reliable across different conditions and providing valuable 

understandings for wheat health monitoring and nutrient management. The variability showed in randomized 

validation can be a disadvantage when exact reproducibility of results is required, as observed in our repeated 
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analyses where the randomized validation produced slightly different results each time. On the other hand, the 

venetian blinds method yielded consistent results across multiple runs, making it a more reliable choice for 

studies where reproducibility and consistency are paramount. Therefore, in the context of our research, where 

the goal is to achieve reproducible and comparable results with the same dataset and methodology, the Venetian 

blinds validation method is more suitable. This ensures that any observed differences in model performance 

are due to actual changes in the data or methodology, rather than variability introduced by the validation process 

itself. 
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 CHAPTER 5: CONCLUSIONS 

This research confirmed the effectiveness of hyperspectral in estimating nitrogen and carbon content in wheat, 

highlighting the spectral differences between healthy and lodged wheat plays a key role in retrieval and 

estimation of carbon and nitrogen content. Lodged wheat consistently exhibited higher reflectance and greater 

variability in nitrogen and carbon content compared to healthy wheat. The analysis result indicated that the 

spectral properties of lodged wheat significantly differed from those of healthy wheat, making it more 

responsive to hyperspectral analysis. The structural changes and stress responses associated with lodging 

increased reflectance across various wavelengths, thereby enhancing the model's ability to predict nitrogen and 

carbon content in lodged wheat. 

The key finding in this research is that lodging affected the estimation of biochemical parameters by making 

certain spectral features more prominent, which in turn improved the accuracy of predictions for lodged wheat. 

The structural and physiological changes due to lodging made the nitrogen and carbon content more detectable 

using hyperspectral imaging. Specific spectral bands were identified as crucial for nitrogen and carbon 

prediction in both healthy and lodged wheat. For healthy wheat, bands around 2003 nm and 2337 nm were 

important for nitrogen, and bands around 2085 nm and 2095 nm for carbon. For lodged wheat, bands around 

1460 nm and 1470 nm were relevant for nitrogen, and bands around 1457 nm and 1471 nm for carbon. 

In the Sentinel-2 nitrogen and carbon content retrieval from wheat, it was confirmed that Sentinel-2 is effective 

in retrieving nitrogen and carbon content in both lodged and healthy wheat. This study identified specific 

wavelengths significantly associated with nutrient content estimation (1463nm, 2001nm, 2270nm, 2276nm, 

2309nm, and 2312nm) in lodged wheat, and the whole 17 bands derived from the continuum removal (check 

appendix B10) was used in healthy wheat; using hyperspectral data and for nutrient content retrieval (665nm, 

705nm, and 1610nm) in both lodged and healthy wheat using Sentinel-2 data, enhancing the precision of remote 

sensing applications in agricultural monitoring. 

Vegetation indices, particularly the Lignin Cellulose Absorption Index (LCAI) and Plant Senescence 

Reflectance Index (PSRI), were better predictors for lodged nitrogen content, while the Normalized Difference 

Lignin Index (NDLI) was more suitable for healthy carbon content using hyperspectral data. The use of 

narrowband NDVI provided higher predictive accuracy for both conditions, with lodged carbon having the 

highest R² followed by lodged nitrogen. Sentinel-2 data showed lower predictive accuracy compared to 

hyperspectral data due to its broader spectral bands, which are less sensitive to subtle spectral differences. 

PLSR models further validated the findings, showing that model accuracy varies significantly with the validation 

method used. venetian blinds validation proved more effective for lodged wheat, capturing the complexities 

associated with lodging. On the contrary, randomized validation provided a more generalized model, better 

suited for healthy wheat conditions. 

The implications for precision agriculture in our study area are that by selecting appropriate spectral bands and 

validation methods, it is possible to enhance the accuracy of nitrogen and carbon content estimation and 

retrieval predictions, having a comprehensive assessment of model performance. Venetian blinds validation 

provided more consistent and reliable results compared to randomized validation, which exhibited higher 

variability. The variability in nitrogen and carbon content between healthy and lodged wheat, as revealed by 
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box-plot analysis, emphasizes the need for careful nutrient management to minimize lodging risks. Higher 

median nitrogen and carbon content in lodged wheat suggest that excessive nutrient levels can promote rapid 

growth, potentially leading to lodging. 

The implication of this study is that the ability to accurately estimate nitrogen and carbon content in wheat 

through hyperspectral remote sensing supports more precise crop monitoring and management. This can lead 

to optimized nutrient application, reducing waste and improving yield. Early detection of lodging and associated 

nutrient stress can facilitate timely interventions, optimize fertilization practices, and improve yield and crop 

quality. Using of multiple validation methods ensures robust model performance, providing reliable tools for 

agricultural researchers and practitioners to monitor and manage crop health under varying conditions. 

This study emphasizes hyperspectral remote sensing is a powerful tool for estimating biochemical parameters 

in wheat, particularly in distinguishing and managing the effects of lodging and that it is importance of 

integrating advanced remote sensing techniques with robust validation methods to achieve reliable and 

actionable insights for agricultural productivity and sustainability, supports optimal nutrient management, 

improves crop health monitoring, enhances yield predictions, and facilitates precision agriculture practices. 

Additionally, it contributes to environmental sustainability and economic benefits for farmers. Retrieval of these 

nutrients can be achieved more accurately, enabling farmers to adopt more efficient and sustainable farming 

practices. 
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Appendix  

A. Field and laboratory information 

1. Pictures taken on the field during the field campaign in May 2023 
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2. The wheat samples taken on the field were kept and taken to the laboratory for further processing. 

 

 

 

 

 

 

 

 

 

3. Samples were dried in the oven (top), the  Perkin Elmer CHN Analyzer-2400 Series used for nitrogen and 

carbon analysis (bottom). 
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B. Hyperspectral information 

1. Scattered plot of carbon (left) and nitrogen (right) content in healthy and lodged wheat  

  

 

2. Histogram plot of nitrogen and carbon content in healthy (left - blue) and lodged (right - red) wheat.  
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3. The raw spectral reflectance of healthy wheat samples beforeremoval of noisy bands 

 

 

4. Average mean, minimum, maximum, and standard deviation of lodged (right) and healthy (left) 

wheat samples. 
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5. The result of vegetation indices used in estimation and retrieval of carbon and nitrogen using 

Sentinel-2 data 

 

 

 

 

 

 

 

 

6. Vegetation indices used in this study that showed the best correlation result when used in prediction 

of lodged or healthy carbon and nitrogen content 

  

 

Vegetation indices  Lodged 

carbon 

Healthy 

carbon 

Lodged 

nitrogen 

Healthy 

nitrogen 

EVI 0.0006 
0.0054 0.0016 0.0121 

NDVI 0.00001 
0.0039 0.0054 0.00042 

PSRI 0.0022 
0.0120 0.028 0.0051 

RVI 0.0016 
0.0055 0.0198 0.0016 

CAI 0.00053 
0.0029 0.0194 0.0011 

LCAI 0.00051 
0.00046 0.1026 0.0029 

NDLI 0.00054 
0.0021 0.013 0.018 
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7. Best narrowband correlation graph for healthy carbon 

 
 

 

8. Best narrowband correlation graph for lodged carbon 
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9. Best narrowband correlation graph for healthy nitrogen 

 

 

 

10. Best narrowband correlation graph for lodged nitrogen 
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11. Continuum removal bands of importance in both lodged and healthy wheat throughout the spectrum 

 

12. Most important bands from feature selection 

Most important 

bands 

Healthy wheat 

carbon 

Lodged wheat 

carbon 

Healthy wheat 

nitrogen 

Lodged wheat 

nitrogen 

1 705 1347 682 1347 

2 704 1346 680 1346 

3 703 1345 681 1345 

4 706 1348 683 1348 

5 702 1344 679 1344 

6 701 1343 684 1343 

7 707 1349 678 1349 

8 700 1342 677 1342 

9 699 1350 685 1350 

10 697 1341 676 1341 

11 698 1351 686 1351 

12 696 1340 675 1352 

13 708 1352 674 1353 

14 695 1353 687 1340 

15 694 1354 673 1354 

16 709 1339 688 1355 

17 693 1355 672 1356 

18 692 1356 689 1357 

19 710 1357 690 1387 

20 691 1358 671 1386 
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C. Sentinel-2 information 

1. Scattered plot of carbon (left) and nitrogen (right) content in healthy and lodged wheat  

  

 

2. Histogram plot of nitrogen and carbon content in healthy (left - blue) and lodged (right - red) wheat.  

 

 

 

3. Average mean, minimum, maximum, and standard deviation of lodged (right) and healthy (left) 

wheat samples. 
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4. Vegetation indices used in this study that showed the best correlation result when used in prediction 

of lodged or healthy carbon and nitrogen content 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Vegetation indices used in this study that showed the best correlation result when used in prediction 

of lodged or healthy carbon and nitrogen content 

Vegetation indices  Lodged 

carbon 

Healthy 

carbon 

Lodged 

nitrogen 

Healthy 

nitrogen 

EVI 0.0041 
0.0080 0.0016 0.0121 

NDVI 0.0256 
0.0011 0.0054 0.00042 

PSRI 0.0071 
0.0030 0.028 0.0051 

RVI 0.0049 
0.0071 0.0198 0.0016 

CAI 0.0383 
0.0257 0.0194 0.0011 

LCAI 0.1277 
0.00075 0.1026 0.0029 

NDLI 0.0282 
0.0625 0.013 0.018 
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Data management plan  

Section 1: Organisation and documentation  

Name of the main folder(s): MSC_THESIS 

Name of secondary and tertiary 

folders (if applicable): 

- HYPERSPECTRAL SPECTROSCOPY  

             -2023 

-SLANT HEIGHT (cm) 

            -2023 

-LODGE AREA (%) 

            -2023 

-SPAD 

            -2023 

-PLANT DENSITY 

             -2023 

-LEAVE AREA INDEX (LAI) 

             -2023 

-VERTICAL LODGE HEIGHT (cm) 

               -2023  

-FRESH BIOMASS (T/HA) 

               -2023 

-CANOPY HEIGHT (cm) 

               -2023 

-COVER PERCENTAGE (%) 

               -2023 

-SHOOT NUMBERS 

               -2023 

-POINT OF LINE FAILURE (cm) 

               -2023 

-TILLERS 

               -2023 

- SENTINEL 2 

                -2023 

- ITALY SHAPE FILE 

                -2023               

 

Version control strategy THE SPATIO-TEMPORAL ANALYSIS WAS SPLIT INTO DIFFERENT 

WHICH ACCORDING TO THE DIFFERENT VERSIONS CREATED, WILL 

HAVE THE FOLLOWING NAMES: 

 

NAME OF FOLDER ANALYSIS_NAME OF ORIGIN DATASET 

(SENTINEL 2) _V1…... 

THE MINORS VERSIONS WILL BE NAMED AS V1.1, V1.2…... 

Metadata standards used: ISO 191155-1 

Readme file contents: This M.SC_THESIS_DATASET NAME readme.txt file was generated on 20240631 

by NAME. 

Oyetoun Olatorera, Alonge 

--------------------------------- 

GENERAL INFORMATION  
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---------------------------------  

Title of Dataset: M.SC_THESIS_DATASET  

Author Information (OYETOUN M-GEO WO, ITC, Hallenweg 8, 7522 NH 

Enschede)  

 

         Principal Investigator: 

Alonge, O.O. (Oyetoun, Student M-GEO-WO) 

<o.o.alonge@student.utwente.nl>; 

 

Date of data collection (multiple datasets, 

 From 2023.09.05-2024.05.18) 

 

Geographic location of data collection: ITALY, GCS_WGS_1984 

< 44°52'59”N, 11°58'48”E> 

------------------------------------------  

--------------------------------- 

 DATA & FILE OVERVIEW  

--------------------------------- 

 

File list: 

M.SC_THESIS_DATASET 

- HYPERSPECTRAL SPECTROSCOPY  

             -2023 

-SLANT HEIGHT (CM) 

            -2023 

-LODGE AREA (%) 

            -2023 

-SPAD 

            -2023 

-PLANT DENSITY 

             -2023 

-LEAVE AREA INDEX (LAI) 

             -2023 

-VERTICAL LODGE HEIGHT (CM) 

               -2023  

-FRESH BIOMASS (T/HA) 

               -2023 

-CANOPY HEIGHT (CM) 

               -2023 

-COVER PERCENTAGE (%) 

               -2023 

-SHOOT NUMBERS 

               -2023 

-POINT OF LINE FAILURE (CM) 

               -2023 

-TILLERS 

               -2023 

-SENTINEL 2 

                -2023 

-ITALY SHAPE FILE 

                -2023                
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Usage 

These datasets are free to use for research and non-commercial purposes. If you use 

these datasets in your work, please cite the original source of the data. 

Sources 

The datasets were collected from various sources, including government agencies, 

non-governmental organizations, and research institutions. The specific sources for 

each dataset are listed in the file headers. 

Contact 

If you have any questions or comments about these datasets, please contact the 

above-mentioned email address. I welcome any feedback or suggestions for 

improving the datasets or this repository. 

Section 2 | Storage and sharing of research data.  

Data Storage Location  Back-up location and 

frequency 

Strategy to prevent 

unauthorized access to 

data during research  

Plan for 

pseudonymization or 

anonymization of data (if 

applicable) 

     

MASTER FILES To ensure data security 

and accessibility, the 

work will be stored on 

the local disk of my 

personal computer. A 

folder on the ITC cloud 

was also used for storage. 

However, I have decided 

to store the work on my 

local disks to protect the 

data from any 

unauthorized access by 

third parties. 

The backup files will 

be securely stored in 

two locations: on 

Google Drive and on a 

hard disk. To ensure 

the safety and integrity 

of the data, a copy of 

the analysis will be 

saved at every stage of 

the work. This 

approach will help to 

minimize the risk of 

data loss or corruption 

and enable easy 

retrieval of previous 

versions if needed. 

I will be responsible for 

working on my 

computer, which means 

that I will prevent 

unauthorized access to 

data during the research 

by securing my PC.  

N/A 

Copy of the Data I will keep a copy of the 

data on my computer 

systems, as well as on 

Microsoft Teams and 

Google Drive for backup 

purpose. 

To ensure that the 

project updates are 

safely backed up, a 

weekly backup will be 

conducted and stored 

in Google Drive 

N/A N/A 

  

 

 


