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Systematic Literature Review on the Team Formation Problem 

Gratsiela Lyutskanova, University of Twente, The Netherlands 

The success of any team project is heavily influenced by its effective 

formation. However, assembling teams requires careful consideration and 

is often time-consuming due to the high number of aspects that must be 

taken into account such as candidates’ background, skill sets and other 

relevant attributes. The focus of this research is the Team Formation 

Problem (TFP) which is of critical importance to modern society. It is a 

complex issue which aims to allocate people from a large set of potential 

candidates to form an effective team. This study aims to perform a 

Systematic Literature Review (SLR) to identify and classify the most 

commonly used optimization techniques based on their application 

domains (e.g., education, sports, healthcare). Additionally, it contributes 

to the field by providing a taxonomy of these optimization techniques and 

algorithms. In this review, 3539 papers were retrieved from the Scopus 

and Web of Science databases. After duplicate removal, initial screening 

and eligibility assessment, 405 papers were reviewed and classified. The 

findings revealed that (1) the most used optimization techniques are 

Genetic Algorithms (GA) applied in 23% of the cases, followed by Greedy-

based algorithms (9%) and Integer Linear Programming (ILP) approaches 

(8%). (2) The techniques are categorized into three major classes – Exact, 

Approximation and Hybrid approaches. Additionally, each class is further 

divided into multiple subclasses, creating a comprehensive taxonomy. (3) 

The most common application domains are General (60.5%) and Education 

(30.6%) with other domains (Sport, Healthcare, Software development, 

Game teams) constituting 8.9%.  

Additional Key Words: team formation, team composition, group 

formation, group composition, heuristic, metaheuristic, optimization, 

algorithm, exact algorithm, approximation algorithm, systematic literature 

review 

1        INTRODUCTION 

Forming effective teams plays a vital role in the success of every 

project or task. A recent study suggests that effective team 

composition contributes to increased productivity, motivation, 

work satisfaction and positively impacts project success [221]. It is 

a complex topic, fundamental in many areas of our society such as 

education, healthcare, sports, software projects and everywhere 

where groups are composed to solve a certain task. Unfortunately, 

teams often do not perform as expected despite the best efforts 

of their members. Numerous factors may lead to unsuccessful 

projects, including lack of communication, disagreement, 

improper knowledge aggregation, unclear goals and poorly 

defined roles and responsibilities [221].  

        The Team Formation Problem (TFP) is a complex optimization 

problem which aims to form effective groups while considering 

many factors. To begin with, it is complicated to define what an 

effective team in any given context. For instance, in some projects, 

maximizing the aggregate prior knowledge (team skill set) might 

be a priority, while in others, minimizing the chance of conflicts or 

increasing adaptability might be the main concern. Depending on 

the task, one might be interested in composing heterogeneous or 

homogeneous teams based on various attributes such as 

demographics, Belbin roles, previous performance, or personality 

traits. Furthermore, scalability adds another layer of complexity to 

the TFP. For smaller pools of available candidates, we simple 

techniques or even manually team formation might suffice. 

However, as the size of available candidates or the number of 

constraints increases, the computational complexity also 

increases, making the TFP an NP-hard problem, which cannot be 

solved in polynomial time. 

        Numerous solutions exist for the TFP from basic brute force 

algorithms to complex metaheuristics. Popular algorithms include 

Particle Swarm Optimization (PSO), Genetic Algorithms, Greedy 

Algorithms, Integer Linear Programming, Dynamic Programming, 

Simulated Annealing, Hill Climbing, and many more. 

        This research aims to contribute to the field of team 

formation by classifying the most applied optimization techniques 

that solve the TFP based on their approach (exact, approximation, 

hybrid) and application domain (e.g. education, sports, 

healthcare). Despite the emergence of numerous studies over the 

past two decades, the results are so varying that we still do not 

have a clear and composite view of the existing literature. By 

synthesizing and evaluating the literature, this review highlights 

the most effective and commonly used techniques available. 

Moreover, the classifications provide by this literature can help 

professionals select suitable algorithms for their projects or tasks 

based on the application domain. 

        To achieve these goals, the paper focuses on the following 

research questions:  

RQ1: What are the most used optimization techniques or 

algorithms applied in the field of the Team Formation Problem 

(TFP)?  

Sub-RQ1.1: How can these techniques be classified?  

RQ2: In which application domains are the techniques identified 

in RQ1 mostly applied? 

        The rest of this paper is organized as follows: Section 2 

describes the methodology applied during this review, including 

the risk of bias assessment. Section 3 reports the results of the 

systematic literature review and answers the research questions. 

It contains a taxonomy of the most used optimization techniques 

and concludes by highlighting some points for the top three most 

applied algorithms. Finally, section 4 proposes some future 

directions and discusses the limitations, while section 5 draws the 

conclusion. 
 

2        METHODOLOGY 
This review follows the guidelines of the PRISMA (Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses) 

methodology for systematic reviews and analysis. PRISMA allows 

researchers to systematically reproduce this work, verify the 

results, and use it as a foundation for other studies [125].  The 

following section details all the steps taken during the research 

and concludes with an assessment of the risk of bias.  
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2.1        Information Databases and Research Criteria  

For this review, the Scopus and Web of Science databases were 

chosen due to their extensive collection of peer-reviewed, high-

quality literature across various disciplines.   
 

2.1.1        Inclusion and Exclusion Criteria 

IC1:  Only peer-reviewed articles, conference papers, reviews and 

book chapters are included.  
 

IC2:  Only papers written in English are included.   
 

IC3:  No specific date range is utilized. 
          

To create a comprehensive literature review that can serve as a 

foundation for future work, no specific date range was applied. 

Additionally, to answer RQ1, the author is interested in the most 

applied optimization techniques used to solve the TFP since its 

inception. This approach will show how techniques have evolved 

and the direction in which the field is moving.    
 

2.2        Search Formula  

The search was conducted in April 2024 in both databases using 

the string shown in Table 1. Papers that only focus on reviewing 

the team formation literature are not of interest. Therefore, an 

additional search condition was introduced to limit the scope to 

records containing optimization techniques or algorithms. As this 

paper aims to provide an extensive review regardless of the 

application domain, readers who wish to narrow the research to a 

specific domain should add an additional category to the search 

formula. 

Table 1. Key words and search formula 

Category Synonyms 

Team 

Formation 

team formation, team composition, team 

forming, formation of team, group formation, 

group composition, group forming, formation 

of group 

Algorithm algorithm, exact algorithm, optimization, 
optimization, heuristic, metaheuristic, local 
search, operations, research, MILP, 
Mathematical Model, ILP,  
combinatorial optimization, linear 
programming, integer programming, 
mathematical programming, game theory, 
algorithmic framework, decision support, 
search, optimization model, optimisation 
model, approximate approach, approximate 
algorithm, decision-making 

Search formula 

("team  formation" OR "group formation" OR "team 

composition" OR "group composition" OR "group forming" OR 

"team forming") AND ("algorithm*" OR "optimization" OR 

"heuristic*" OR "metaheuristic*" OR "meta-heuristic*" OR 

"local search" OR "exact algorithm" OR "MILP" OR 

"Mathematical Model" OR "ILP" OR "optimisation" OR 

"operations research" OR "combinatorial optimization" OR 

"linear programming" OR "integer programming" OR 

"mathematical programming" OR "game theory" OR 

"algorithmic framework" OR "decision support" OR "search" 

OR "optimization model*" OR "optimisation model*" OR 

"approximate approach*" OR "approximate algorithm*" OR 

"decision-making" )  
 

2.2.1      Refinement of the Search Formula 

To ensure the effectiveness of the search formula, a simple and 

highly effective strategy was employed. A “gold list” of highly 

relevant articles that cover the aspects of the research question 

was manually created. The author searched for papers containing 

the term “Team Formation Problem” on Google Scholar. After 

reviewing the first few pages of results, 18 admissible papers were 

added to the list. Next, the formula was tested in Scopus and Web 

of Science simultaneously. After careful refinement, the string 

shown in Table 1 was chosen. It successfully retrieved 72% of the 

highly relevant articles from the gold list, demonstrating the 

formula effectiveness. Additionally, it retrieved 2107 records in 

Scopus and 1432 in Web of Science, which was sufficient given the 

time limits of this paper.    
 

2.3      Papers Selection 

The following section outlines the inclusion and exclusion criteria 

for each stage of the PRISMA methodology. It describes the 

process of paper selection during the Identification, Screening and 

Eligibility stages.  
 

2.3.1     Duplicates Removal  

A total of 3539 papers were retrieved and combined from Scopus 

and Web of Science. Duplicate records were removed according 

to the following exclusion criteria: 

EC1:  If two records are duplicated, the one from Scopus is 

removed.  

EC2:  If two records from the same database are present, the 

newly published one is excluded.  
 

2.3.2     Screening  

After duplicates were removed, a total of 2374 unique papers 

(from the year 1971 till 2024) were identified for screening based 

on their title, abstract, and keywords. During this stage, the 

following exclusion criteria were applied: 

EC3:  Articles without basic data such as author, year, title, or 

source are removed (Total = 3).  

EC4:    Articles with fewer than three author or indexed keywords 

are removed (Total = 145).  

EC5:    Articles unrelated to the TFP are removed.  

EC6: Articles that do not use algorithms, optimization, or 

mathematical techniques are also removed. 

 

2.3.3     Eligibility  

After the screening stage, 519 papers were selected for full-text 

reading based on following eligibility criteria:  

EC7:    Systematic literature reviews are excluded.  

EC8:  Reports that do not use an algorithm, optimization, or 

mathematical technique to solve the TFP are excluded.  

EC9: Articles describing, developing, or reviewing a team 

formation tool or its user interface are excluded. This criterion also 
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applies to papers that evaluate algorithms of a specific tool (e.g., 

CATME) but do not describe their attributes, objectives, or 

functionality. 
 

Table 2. Example of a paper categorization 

ID Title Technique Domain 

id_1  …  Genetic Algorithm (GA)  education  

id_2  …  exact algorithm  general  

Id_3  …  DISCARDED - reason    
 

Table 2 above demonstrates how the 519 papers retrieved after 

the screening stage are categorized in a spreadsheet based on the 

following criteria:  
 

C1:   Optimization technique or Algorithm 

C1.1:   If an article uses an algorithm to solve the TFP, the name of 

the algorithm is recorded (e.g., id_1).   

C1.2:   If the name is unspecified but the (sub)class of optimization 

technique is mentioned, then the (sub)class is recorded (e.g., 

id_2).  

C1.3:  If the paper falls under one of the exclusion criteria EC7 – 

EC9, it is marked as DISCARDED and a reason is provided.  
 

C2:  Domain - Identified application domains for this review 

include General (not specified), Education, Sport, Healthcare, 

Software Development, Game Teams, Military and Space (e.g., 

id_1, id_2).  
 
 

The full article selection process from retrieval to classification, 

according to PRISMA guidelines is presented in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

2.4      Risk of Bias Assessment  
Since the screening stage was performed by a single reviewer, 

there is a risk of bias in this study. To address it, two independent 

reviewers (including the author) systematically coded the same 75 

randomly selected articles following the exclusion criteria EC3 – 

EC6. The matrix below demonstrates the agreement between the 

two coders.  

         The matrix (Table 3) reveals a high prevalence in the data. 

The high majority (71%) of the papers exhibit the same 

characteristic - being excluded. Therefore, the Kappa statistic, 

which measures the interrater agreement between coders might 

be influenced by this prevalence [216]. Consequently, the Kappa 

statistic cannot be calculated in this case, as it might lead to 

misleading results [217].   
 

Table 3. Agreement matrix between the reviewers  

 

 

 

 
K.A. Hallgren suggests using an alternative to Kappa, called PABAK 

(Prevalence-Adjusted Bias-Adjusted Kappa) [217]. PABAK 

accounts for the prevalence in the data and adjusts for bias 

between reviewers accordingly. 

The observed agreement with PABAK is calculated as follows:  
  

𝑃𝑜 =
17 + 53

17 + 4 + 1 + 53
= 0.933 

 

𝑃𝐴𝐵𝐴𝐾 = 2 × 𝑃𝑜 − 1 = 0.866 
\ 

As a result, the two reviewers agreed on 86.6% with each other, 

which significantly reduces the risk of bias.   
 

3        RESULTS  
After the eligibility stage, 405 papers (from 1996 to 2024) were 

successfully classified according to their optimization technique 

and application domain.   
  

3.1     On Research Question 1  
Research Question 1 (RQ1) focuses on the most used optimization 

techniques and algorithms applied in the field of TFP and their 

classification. This section begins by addressing Sub-RQ1.1, which 

is interested in the classification of these techniques and 

algorithms. 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Selection flow adopted by the PRISMA methodology 

        Figure 2 below provides a taxonomy of optimization 

techniques and algorithms used in the field. These can be divided 

into three major categories – Exact, Approximation, and Hybrid 

algorithms.   
 

Exact algorithms: These algorithms are designed to find the best 

solution to a problem. In comparison to other popular techniques, 

they exhibit a deterministic nature, which means that they always 

return the same output for the same input. Given the NP-hardness 

of the TFP, Exact algorithms are less frequently applied due to 

being more computationally expensive. This review shows that 

Approximation algorithms are used four times more frequently 

than Exact algorithms, as illustrated in Figure 3. Additionally, this 

 Included Excluded 

Included 17 4 

Excluded 1 53 
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Figure 2. Classification taxonomy per optimization technique
 

class of algorithms can be further categorized into two main 

subclasses: Mathematical Programming (MP) and Dynamic  

Programming (DP). MP includes various types of Integer 

Programming (IP) such as mixed, linear, non-linear, or binary. 

Additionally, Exact algorithms can be subdivided into Constraint 

Programming, Goal Programming, and others. 
 

 

 

Figure 3. Distribution of algorithms per classes  
 

Approximation algorithms: This is the largest class of techniques 

used to solve the TFP due their lower computational complexity. 

Rather than looking for the best solution, Approximation 

algorithms look for an optimal one. They are non-deterministic 

and often run in polynomial time, making them preferred in cases 

with a large pool of possible solutions. As illustrated in Figure 3, 

79% of the articles use this type of algorithms. This class can be 

divided into two major subclasses: heuristics and metaheuristics 

(MH). Metaheuristics are further categorized into single-solution 

MH and population-based MH. Single-solution algorithms modify  

one solution each iteration and aim to converge to a local 

optimum around this solution [218]. These are suitable single-

team formation problems. In contrast, population-based 

algorithms modify different solutions simultaneously. Even 

though they converge more slowly than single-solution 

algorithms, they are more suitable for multi-team formation 

problems (e.g., project groups in collaborative learning) [218]. 

Population-based techniques can be further divided into 

Evolutionary algorithms, where one of the most popular 

algorithms – the Genetic Algorithm – resides, Swarm-based or 

Animal-inspired algorithms such as Ant Colony Optimization 

(ACO), Bee Colony Optimization (BCO), and Crow Search Algorithm 

(CSA).  
 

Hybrid algorithms: This class refers to algorithms that combines 

elements of Exact and MH or different MH techniques. For 

instance, [219] proposes a hybrid Particle Swarm Optimization –  

 

Genetic Algorithm (PSO-GA) approach. The evaluation of this 

algorithm demonstrates its effectiveness and suitability for 

heterogeneous groups.  
 

        Out of the 405 papers that passed the eligibility criteria and 

were selected for classification, 324 articles were successfully 

categorized according to the taxonomy provided in Figure 2. The 

remaining 81 papers did not specify the names for their algorithms 

or a classification. As a result, one limitation of this review is the 

inability to further classify these papers. In order to keep the 

review consistent and accurate, and due to time constraints and  

inexperience in the field, the author has chosen not to categorize 

these papers.   

        Table 4 provides a list of the top eight most frequently used 

techniques for solving the TFP, including references to the papers  

that applied them. Additionally, the Genetic Algorithm, which 

appears in 93 articles (roughly 23% of all eligible papers), is further 

divided into articles about the Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) or novel modifications like the Enhanced 

Genetic Grouping Algorithm [28], Improved Adaptive Genetic 

Algorithm (IAGA) [35], and GA-enabled Insert Virtual Members 

(IVMGA) algorithm [38]. For additionally details on the most used 

techniques within each (sub)category, the reader can refer to 

Figure 2. Notably, the top eight algorithms shown in Table 4 are 

used in more than half (53.6%) of all reviewed articles. 
 

3.2     Most Used Optimization Techniques  
 

3.2.1     Genetic Algorithm  

The Genetic Algorithm (GA) is a well-known metaheuristic used to 

generate quality solutions to various search and optimization 

problems [23]. Inspired by the natural selection and genetics, the 

algorithm begins by generating an initial population of solution, 

also called chromosomes. Each chromosome is assigned a fitness 

value based on how effectively it solves the problem. The higher 

the value, the higher the chance for it to be selected [23]. After a 

fitness value is associated with each chromosome, the algorithm 

selects parent chromosomes to create offspring. This is followed 

by the crossover operation, where genes from parent 

chromosomes are recombined to produce new solutions. Finally, 

the mutation operation alters random genes in chromosomes to 

maintain diversity and explore the solution space [23]. According 

to the result of this systematic literature review, the Genetic 

Algorithm and its variations are the most used optimization 

techniques in the field of team formation. Its robustness to 

change makes it suitable for dynamically changing teams [25]. Its 

ability to explore the research space over time without getting 

stuck in a local search makes it ideal for adaptive team formation 
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problems [25, 35]. Moreover, with control over mutation and 

crossover, the GA effectively forms both homogeneous and 

especially heterogeneous groups [52].   
 

3.2.2      Greedy Algorithm  

Greedy algorithms are the second most frequently used 

optimization technique, taking around 9% of the share. These 

algorithms build the solution each iteration, making the most 

beneficial choice at each step without considering the global 

problem. Furthermore, they exhibit a lower computational 

complexity since the current solution is focused only on the local 

optimum. Due to their simplicity and lower computational cost, 

greedy algorithms are often preferred for problems involving large 

datasets [222].   
  

3.2.3      Integer Linear Programming (ILP)  

According to the results of this review, ILP ranks third among the 

most used optimization techniques, with a 1% difference in shares 

compared to Greedy algorithms. ILP is a type of mathematical 

programming used to find the best solution given some 

constrains. All variables must be integers, and the objective 

function linear. Although ILP can accommodate various objectives 

and is suitable for complex TFPs, it is an exact approach which aims 

to find the best solution, making it computationally expensive 

[220].   
  

3.3      On Research Question 2  
The last research question (RQ2) focuses on identifying the 

application domains where the techniques from RQ1 are mostly 

applied. This review identified six primary application domains: 

General, Education, Healthcare, Sport, Software Development, 

and Game teams. As expected, most papers use optimizations for 

general team formation no matter the domain. The education 

field follows, comprising a significant 30.6% of all papers. This 

domain includes teams in higher education, pre-higher education, 

various learning contexts, and any kind of teams formed for 

educational purposes. After Education, Software Development 

and Sport and the next most frequently occurring domains with 

shares of 3.2% and 2.5%, respectively. Figure 4 below illustrates 

the distribution of papers per context. The following results are  

 

not surprising, as effectively forming educational teams promotes 

collaboration and knowledge sharing. Successful groups formed in 

an educational context are of crucial importance to the society.    
 

  
 

Figure 4. Distribution of papers per application domain  
  

3.4    Reviewing Some Relevant Papers in the Field  
 

Table 5 provides information from some highly relevant papers on 

the top three most frequently used optimization techniques – 

Genetic Algorithm, Greedy algorithm and ILP. This table aims to 

offer a comprehensive understanding of the field by presenting 

examples and comparing different approaches.  

        One key finding related to the Genetic Algorithm is that all 

three selected papers apply it within the educational context, 

reinforcing the results of RQ2 that education is the most 

frequently addressed specific application domain. Interestingly, 

although all three articles apply the GA, they modify different 

aspects of it to achieve different objectives. For instance, [23] 

modifies the mutation function, [15] alters the crossover function, 

while [19] introduces an additional penalty function, which is not 

a standard component of the GA. These modifications allow the 

GA to target different objectives or group types.   

        Furthermore, the greedy algorithms proposed in these papers 

select one expert at each iteration. They build the team iteratively 

based on the most beneficial choice at each step, without 

considering the global problem. In both cases, the objective is  

 

Table 4.  Grouping of articles based on their optimization technique 

№ Optimization technique or algorithm Total References 

1 Genetic algorithm (GA)  58 [14 – 18, 20 – 22, 24, 27, 31 – 33, 36, 37, 41 - 44, 46, 48 – 53, 55, 57 – 

59, 61, 64, 66, 68, 69, 71, 72, 76, 77, 79 – 81, 83, 85, 89, 90, 93 - 106]  

1а Variations of GA  21 [19, 23, 28, 35, 38, 40, 42, 45, 47, 54, 56, 63, 65, 70, 73, 75, 78, 86, 87, 

88, 92]  

1b NSGA-II  14 [25, 26, 29, 30, 34, 39, 42, 60, 62, 67, 74, 82, 84, 91]  

2 Greedy-based algorithms   36 [105, 152 – 187]  

3 Integer Linear Programming (ILP)  32 [83, 107 – 124, 126 - 133, 205 - 209]  

4 Clustering algorithms  18 [148, 188 - 204]  

5 Particle Swarm Optimization algorithm (PSO)  13 [1 – 13]  

6 K-means clustering algorithm  9 [140 - 148]  

7 Simulated Annealing   9 [22, 134 – 139, 150, 151]  

8 Dynamic programming  7 [179, 210 - 215]  
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Table 5.  A comprehensive review of some highly relevant papers for the top three most frequently used algorithms 

Title and reference Short description of the algorithm 
Team type & 

Experiment 
Main findings (Strengths and Weaknesses) 

Genetic Algorithm  

An improved 

Genetic approach 

for composing 

optimal 

collaborative 

learning groups 
[23] 

The paper proposes an Improved GA by 

implementing a second mutation 

operation and elitist strategy. The elitist 

strategy ensures that the best 

chromosomes always propagate to the 

next generation. On the other side, the 

second mutation ensures higher 

diversity of the population. 

Team type: 
Heterogeneous, 

homogeneous, 

mixed and 

balanced 
Groups 

 

Experiment: 

Empirical study 

and Simulation 

The result from the empirical study indicate that the 

algorithm outperforms other methods such as random 

selection or self-selection, in terms of group and 

individual grades as well as student satisfaction. The 

proposed method is stable and meets all group 

requirements. Moreover, the simulation is run 10 times 

across 8 databases, successfully finding solution for each 

database within a reasonable time frame. However, the 

computational complexity increases with the problem 

size, limiting its scalability to no more than 180 students.  
A genetic  
algorithm 

approach for group 

formation in  
collaborative 

learning 

considering 

multiple student 

characteristics  
[15] 

The article proposes a versatile 

algorithm that can work with an 

unlimited number of characteristics of 

various types (e.g., demographic, 

cognitive). It employs a modified 

crossover operation with multiple 

random crossover points. 

Team type: 
Inter-

homogeneous 
and intra- 

heterogeneous 

groups 
 

Experiment: 
Empirical study 

The results of the study suggest that the algorithm 

outperforms other generic approaches in terms of 

average grades of both collaborative activities and 

individual exams. The results indicate that the algorithm 

effectively creates heterogeneous groups which can 

collaborate successfully. However, it does not 

outperform other exhaustive approaches when the 

number of characteristics or students is small. 

An optimized 
group formation 
scheme to 
promote 
collaborative 

problem-based 

learning [19] 

The algorithm proposed in this study 

accounts for the heterogeneity of 

students' knowledge and learning 

roles, and the homogeneity of their 

social interactions. It incorporates a 

penalty function that considers 

imbalances in the fitness function. 

Team type: 
Heterogeneous 

Groups 
 

Experiment: 

Empirical study 
and quasi- 

experimental 

research 

The result of the study demonstrates that the algorithm 

effectively forms collaborative groups based on students’ 

knowledge level, learning roles, and existing social 

interactions. Additionally, while the algorithm 

outperforms random group formation, there is no 

significant difference compared to a self-selection 

approach. The experiment was conducted for a short 

period and therefore, the algorithm’s effectiveness may 

not extend to long-term collaborative groups.  
ILP 

Synergistic team 

composition: A 

computational 

approach to foster 

diversity in teams 

[108]  

The ILP algorithm is effective for 

forming small synergistic teams, with 

the objective of creating teams that are 

diverse in gender and personality while 

covering all required skills. 

Team type: 

Heterogeneous 

and balanced 

Teams 
 

Experiment: 

Simulation 

For small instances of the problem, it is computationally 

efficient and can satisfy all constraints. However, one 

limitation is that this ILP algorithm does not scale well for 

larger instances of the problem, such as teams with more 

than three people. 

Group 

Optimization to 

Maximize Peer 

Assessment 

Accuracy Using 

Item Response 

Theory [115] 

The algorithm utilizes team formation 

based on Item Response Theory to 

enhance the accuracy of peer 

assessment. Additionally, it 

incorporates external raters to further 

improve the accuracy of the results. 

The algorithm considers five 

constraints and aims at maximizing the 

lower bound of the Fisher information 

for each learner.  

Team type:  

Depends on 

the objective 

 

Experiment: 

Simulation 

Without the external rater selection model, the 

algorithm cannot increase the peer assessment accuracy 

and fails to meet its objectives. However, introducing the 

model significantly enhances assessment accuracy. The 

experiment is run ten times with varying number of 

external raters, demonstrating that the accuracy 

improves as more raters are added. 
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creating one team. This approach is the standard for greedy 

algorithms, which focus on local optima and are therefore more 

suitable for single-team formation problems. In contract, Genetic 

Algorithms, as population-based metaheuristics, are ideal for 

problems involving the formation of multiple teams. This is why 

the authors of [15, 19, 23] went for GAs rather than greedy-based 

approaches multiple-team formation problems.  
 

4      LIMITATIONS AND FUTURE DIRECTIONS  

Out of the 405 papers that passed the initial eligibility criteria, 81 

did not specify the names or classification of their algorithms. As 

a result, one limitation of this review is the inability to further 

classify these papers. To maintain consistency and accuracy, and 

due to time constraints and limited experience in the field, the 

author chose not to categorize these papers. This resulted in 20% 

of all reviewed articles being unclassified, which might have an 

influence on some of the reported statistics. 

        There are several future directions that could extend the 

scope of this study. First, another literature review can be 

conducted focusing on the attributes used in the specified 

optimization techniques. While reading the papers, the author 

observed various attributes such as skill set, preferences, 

personality traits, Belbin roles, experience, past collaborations, 

workload, salary, past performance, demographics, academic 

grades, location, rank, level of expertise, and education level. This 

is a small example of all possible attributes that can be used to 

form teams. It would be worth identifying which attributes are 

mostly frequently used in different techniques or application 

domains. This could help professionals select the most 

appropriate algorithm for their project or task based one the 

application domain and attributes at hand.   

        Another direction could involve extending the taxonomy from 

Figure 2 to include a broader range of algorithms such as Bee 

Colony Optimization (BCO), Ant Colony Optimization (ACO), Firefly 

Algorithm, Sine-cosine Algorithm, Artificial Neural Networks, Hill 

Climbing Algorithm, Local Search algorithm, Hungarian algorithm, 

Branch and bound algorithm, Tabu Search, and many others 

observed during this study.   

        A third, more interesting future direction would explore how 

Artificial Intelligence (AI) and Machine Learning (ML) are used in 

the field of TFP and what optimization techniques are proposed. 

As AI has gained more popularity in recent years, it could play a 

crucial role in team formation in the near future.   

        Finaly, another study could be done focusing exclusively on 

TFP in higher education. As the results showed, around 30% of the 

papers focused on algorithms used to form learning teams, 

highlighting the importance and relevance of this application 

domain.  
 

5 CONCLUSION 

The focus of this research is the Team Formation Problem (TFP), 

which is critically important for our society. The TFP is a complex 

optimization problem, which aims at forming effective groups 

while considering various factors. The aim of this paper was to 

conduct a Systematic Literature Review (SLR) to identify the most 

frequently used optimization techniques and classify them based 

on their application domain.   

        In summary, a taxonomy table was provided in Figure 2, 

demonstrating how the most used optimization techniques in 

team formation can be classified. Three major categories were 

identified: Exact, Approximation and Hybrid algorithms, each 

divided into subcategories. For each subcategory, examples are 

provided, along with the total number of papers found. 

Greedy algorithm 

T-shaped grouping: 

Expert finding 

models to agile 

software teams 

retrieval [155] 

The algorithm selects the best 

candidate at the i-th iteration who 

possesses the i-th required skill. It is 

designed for T-shaped experts, who are 

experts in one required skill and have a 

general knowledge in other necessary 

skills. The algorithm proposes two 

models – one based on the 

StackOverflow profiles of the 

candidates (XEBM), and one based on 

their skill sets (RDM). These models are 

particularly suitable for forming agile 

teams.  

Team type: 

Depends on the 

objective 
 

Experiment: 

Simulation 

Both greedy algorithms were tested against three other 

baseline algorithms. The results indicate that the 

proposed models outperform the baseline methods. 

Although the XEBM performs significantly worse than 

the RDM model, it still runs better than the baseline 

algorithms. In contrast, RDM algorithm surpasses in over 

78% of the cases the comparison algorithms. 

Profit maximizing 

Cluster Hires 

[153] 

The article proposes two greedy 

algorithms that select individuals one 

at a time while aiming to satisfy the 

budget constraint, maximize the profit, 

and achieve the objective. Both 

proposed algorithms allow 

adjustments to how many times an 

expert. 

Team type: 

Depends on the 

objective 
 

Experiment: 

Simulation 

The algorithms were tested with data from two large 

datasets, each iteration under varying budget 

constraints. Both algorithms outperform competitors 

with a $200 budget constraint, where the maximum is 

$1000. However, beyond a certain threshold of budget 

constraints and profit, the algorithms become 
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Furthermore, a comparison between different (sub)categories 

explains why certain algorithms are preferred in specific 

situations. The top eight most used optimization techniques were 

identified. The main takeaway of this review is that the Genetic 

Algorithm has been used in roughly 23% of all reviewed articles, 

making it the most frequently used technique overall. It is 

followed by Greedy-based algorithms (9%) and Integer Linear 

Programming (ILP) approaches (8%). Another important finding is 

that the most common application domains are General (60.5%) 

and Education (30.6%) with other domains (Sport, Healthcare, 

Software development, Game teams) barely constituting 8.9%.  
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