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ABSTRACT  

 
VL is a fatal neglected tropical disease, and the number of infections in Kenya has increased 

in recent years. Surveillance efforts in endemic areas can be improved through risk maps 

and knowledge of environmental risk associated with the vector and guide the development 

and placement of vector management tools. 

 

The anthroponotic transmission of VL is affected by the proximity to sandfly breeding 

habitats, population densities of the vector, abundance of plant sugar sources for the 

sandflies in the surroundings and presence of ample blood sources for sandfly females 

including host individuals. Understanding these dynamics requires detailed 

characterisation of the environment, particularly at a fine spatial resolution. This study 

aimed to model and predict VL in West Pokot at a fine spatial scale.  

 

We identified vector habitats for sandfly P. martini as termite mounds, animal sheds and 

the banks of seasonal rivers.  Using very high-resolution worldview imagery we trained a 

deep learning model that was able to clearly distinguish animal sheds. However, the method 

was not successful with termite mounds.  

 

We extracted environmental variables at very high resolution. After modelling, NDVI had 

the highest contribution. We were unable to incorporate humidity, high-resolution rainfall 

data, and acacia trees which are crucial for vector survival.  

 

We simulated potential dispersal points for infection cases in Kacheliba using the BAM 

framework to generate input data. We ran a maxent model to predict risk for Visceral 

Leishmaniasis and the best score was an AUC of 0.805.  

. 
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1. Introduction 

1.1. Background  

Visceral leishmaniasis (VL) is a parasitic infection caused by Leishmania donovani or 

Leishmania infantum, and its transmission vector is the female sandfly (Van Dijk et al. 

2023). It is a neglected tropical disease (NTD), and an infected patient will present 

symptoms such as fever, splenomegaly, weight loss, anaemia, coughing and body 

weakness. If not treated, VL can result in death (Ministry of Health Kenya 2017). Globally, 

VL infections are concentrated in a few countries, with 95% of cases occurring in just ten 

countries. It is endemic to parts of East Africa (Kenya, Uganda, Somalia, Sudan, and 

Ethiopia), and the region has a history of severe epidemics (D. Elnaiem, 2011).  

 

In Kenya, endemic areas are low-lying, semi-arid, and often remote, with poor access to 

health facilities. Outbreaks put pressure on the already fragile existing healthcare facilities 

in these areas. Additionally, VL infection cases are underreported due to inadequate 

surveillance systems (Mewara et al. 2022). Populations at risk also experience poverty and 

insecurity from constant conflict (Alvar et al. 2021). One of these regions is West Pokot. It 

is located to the West of Kenya on a semi-arid plateau.  The region is inhabited by the Pokot 

community, which lives in clustered communities, grows crops, and keeps livestock 

(Mueller et al. 2014). 

 

VL is anthroponotic in Africa, meaning humans are the reservoirs of the Leishmania 

donovani parasite (Alves et al. 2018). The transmission begins when a female phlebotomine 

sandfly becomes infected with the parasite while feeding on an infected person's blood. 

Subsequently, the infection is transmitted when the infected sandfly bites and injects the 

Leishmania parasite into the next human host (Ministry of Health Kenya 2017). The main 

vector sandflies in East Africa are Phlebotomus orientalis and Phlebotomus martini 

(Mueller et al. 2014), and the principal vector in Kenya is P. martini (Van Dijk et al. 2023).   

Control and management of VL in Kenya is still challenging, and current methods have not 

been effective as case numbers remain persistent (Mewara et al. 2022).  

 

In previous control studies carried out in endemic areas in Kenya, the risk of contracting 

the disease increased with exposure to the sandfly vector (Kolaczinski et al. 2008). Vector 

dynamics such as density, feeding and resting behaviour affect transmission. Further, the 

density of these vectors is affected by ecological factors such as land cover, vegetation, and 

climatic conditions (Ministry of Health Kenya 2017). Since transmission zones are affected 

by the ecological niche of the sandfly, knowledge of the sandfly habitat, behaviour, and 

favourable environmental conditions can be useful in predicting and controlling VL 

occurrence.  
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Sandflies have various habitats, such as cracks and crevices of soils, caves, termite mounds, 

human habitats, animal sheds, and Acacia trees and each species has its 

preferences(Hassaballa, Torto, et al. 2021).  The sandfly P. martini is thought to lay its 

eggs in termite mounds on ventilation openings (Van Dijk et al. 2023). In field etymological 

studies of sandflies in Baringo County Kenya, the sandfly P. martini was collected in 

animal sheds and termite mounds. Additionally, the female sandfly requires a blood meal 

for the maturation of its eggs and the primary source for this was cattle, but also, humans, 

and dogs, which may explain why it was found in animal sheds. The sandfly also feeds on 

plants in the Fabaceae family, of which Acacia is the most dominant (Hassaballa et al., 

2021a), which may explain the link between sandflies and acacia trees. 

 

The behaviour of sandflies is affected by environmental changes brought about by changing 

weather patterns and consequently affects their distribution, development, and interaction 

with the protozoa Leishmania  (Capucci et al. 2023). In Ethiopia, P. martini was found at 

low altitudes ranging between 500- 1800m asl (Aklilu et al. 2023). In other studies, for VL 

in India and China (different vector species responsible for transmission), the predictor 

variables identified were humidity, NDVI, high temperatures, and rainfall (Jiang et al. 

2021; Sardar et al. 2020). 

 

The risk of VL infection is determined by interactions between humans and the vector 

sandfly, and some socioeconomic activities contribute to these interactions. Pastoralism is 

practised in the Pokot community, and boys and young men herd cattle (Mueller et al. 

2014). During dry seasons, herders and their livestock take shade from the sun under big 

ever-green trees, which also serve as breeding sites for the vectors(Abdullahi et al. 2022). 

Working or playing near acacia trees or termite mounds during the dry season increases the 

risk of infection (Alvar et al. 2021). The migration of pastoralists and refugees with their 

livestock in endemic areas can spread infection to previously unaffected areas (Mewara et 

al. 2022). 

 

Several modelling approaches have been used to describe the spatiotemporal distribution 

of diseases and identify key environmental variables related to the spread of VL. Species 

distribution models and spatial analysis techniques offer a valuable approach to identifying 

environmental patterns of Leishmaniasis vectors. This information is particularly useful in 

areas where data collection is limited (Rajabi et al. 2016).  

 

Predictive models and species distribution models estimate the relationships between 

species occurrence at a location and the environmental characteristics of those locations 

(Elith et al. 2011). These methods range from statistical, such as generalised linear models 

(GLM) and generalised additive models (GAM), to machine learning methods, such as 

Maxent, random forest (RF), support vector machines (SVM) and boosted regression trees 

(BRT) (Grimmett, Whitsed, and Horta 2020).  

 

A defining factor for models is the type of input data they use. In instances where species 

data has been collected, and presence and absence have been established, GLM, GAM, or 

an ensemble of regression trees i.e., RF are used. Data collected from systematic biological 
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surveys to establish absence and presence are rare, and most species records are available 

as presence-only data. Maxent is one of the models that uses presence-only data (Elith et 

al. 2011).  

 

Machine learning models have been found to have a higher predictive performance than 

standard statistical models. They are especially suitable for complex ecological interactions 

between explanatory variables but are prone to overfitting (Chollet Ramampiandra et al. 

2023). Methods like RF and SVM are non-parametric and can model non-linear 

relationships between predictor variables, but they have more errors because they learn 

noise. Maxent performs slightly better than other algorithms, especially with presence-only 

data(Grimmett et al. 2020).  

 

 

1.2. Research Problem 

VL is a fatal neglected tropical disease, and the number of infections in Kenya have 

increased in recent years (Mewara et al. 2022). As suggested by (Alvar et al. 2021) 

surveillance efforts in endemic areas can be improved through risk maps and knowledge of 

environmental risk associated with the vector and guide the development and placement of 

vector management tools. The central research problem is to identify these ecological and 

environmental conditions that influence the dispersal and distribution of the vector, as well 

as the transmission dynamics, and in turn, effectively predict the risk. Findings from this 

research can contribute to elimination strategies in place. 

 

The transmission of VL is a complex socio-ecological system, and identifying risk factors 

presents a wicked problem. Wicked problems are complex issues with uncertain knowledge 

and low stakeholder consensus (Balint et al. 2011). This problem can further be described 

as an analytically complex problem whereby the problem is clear, but the solutions are not 

obvious (Alford et al. 2017). Risk maps are often developed through modelling approaches 

integrating climatic, environmental, and socioeconomic variables. Factors influencing 

sandfly distribution vary from region to region; it is unknown which variables are relevant 

for West Pokot County.  

 

The anthroponotic transmission of VL is affected by the proximity to sandfly breeding 

habitats, population densities of the vector, abundance of plant sugar sources for the 

sandflies in the surroundings and presence of ample blood sources for sandfly females 

including host individuals (Kirstein et al. 2018).  Understanding these dynamics requires 

detailed characterisation of the environment, particularly at a fine spatial resolution. This 

study aimed to model and predict VL in West Pokot at a fine spatial scale. With the absence 

of systematic field data collection of sandfly samples, the choice of modelling approach 

was confined to methods that use presence only VL occurrence as the input data. 
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1.2.1. Objectives 

 This study aims to identify the environmental risk factors associated with Visceral 

Leishmaniasis (VL) transmission in West Pokot and develop a model to predict risk areas 

for the spread of VL. To achieve this goal, the specific objectives are defined below. 

 

1. To map vector microhabitats from satellite imagery. 

2. To determine the key environmental variables and their contribution to the 

prediction of disease occurrence of VL.  

3. To model the identified relationships to predict the geographic distribution risk of 

VL in West Pokot. 

 

 

1.2.2. Research Questions 

The corresponding research questions to the objectives above are. 

 

1. Where are the vector habitats, and how can they be identified from high-resolution 

satellite imagery?  

 

2. What are the relevant environmental variables, what is their contribution to the 

occurrence of VL infections and can they be used to develop an accurate and 

reliable model for forecasting the risk? 

 

3. What is the predictive accuracy of a machine learning model in forecasting the risk 

of VL based on the combination of vector ecology and environmental factors in 

West Pokot, and how can this model be applied to identify risk zones? 
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2. Case Study Area and Datasets 

 

2.1. Case Study Area  

West Pokot is situated in the Northwest of Kenya along the international border of Kenya 

and Uganda and lies between 34° 47'and 35° 49' E and Latitude 1° and 2° N. The county is 

approximately 9169 km2 and has a population of 621,241 people as per the last census of 

2019. It has a rural population, with the urban population making up only 5% of the total. 

Administratively, the county has 4 sub-counties, 20 wards, 16 divisions, 65 locations, and 

224 sublocations. The main economic activities are agriculture and livestock, and the main 

community is the Pokot people (West Pokot n.d.). 

 

 The region has diverse topographic features. The North and Northeastern regions are 

characterised by dry plains and a low altitude of below 900m. At the same time, on the 

Southeastern side lies the Cherangany hills with an altitude of almost 3370 meters. The 

high-altitude areas are highly suitable for agriculture, while the medium-altitude regions, 

ranging from 1,500 to 2,100 meters, receive limited rainfall and are mainly used for pastoral 

activities. The low-lying areas are in Alale, Kacheliba, and Kongelai divisions (West Pokot 

n.d.) which are mostly arid areas with low agricultural potential and are pastoral zones 

(Obwocha et al. 2022). 

 

The chosen study site is in the Kacheliba division within the Pokot North sub-county of 

West Pokot. We selected the study area because of the prevalence of VL in the area and on 

the availability of termite mound data. The data description for the termite mound data is 

in the section 2.3.1. and these locations and the case study area are shown in Figure 1. 

 

The Kacheliba area is characterised by its low elevation and receives an average annual 

rainfall of about 400 mm. The region typically experiences average temperatures of 28°C. 

It has a savannah climate and two rainy seasons between March to June and in October and 

November. The average monthly weather data are shown in Figure 2. 
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Figure 1: Case study area showing the position of West Pokot in Kenya and highlighting the location of Pokot North sub-

county (in purple) where the Kacheliba division is located and termite mound locations. 

 

 

 

 
Figure 2: Weather and climate conditions in Kacheliba from (Climatedata.org n.d.) 
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2.2. VL in West Pokot 

West Pokot County continues to have the highest number of leishmaniasis cases in the 

country, with over six hundred patients affected annually and the burden is still heavy 

(Shanzu 2023). VL infection cases were obtained from Kacheliba Hospital, located in the 

study area, which is a regional centre for treating visceral leishmaniasis (Van Dijk et al. 

2023). A total of 1949 cases were documented at the hospital from 2018 to 2022. 

 

In this period, infections have been on the rise and the year 2022 had the highest number 

of occurrences. Peaks of infection mostly in March, June, and October/November (Figure 

3). Sandfly populations are usually at their peak during the wet seasons (March, August, 

and October to December) and these increase human–vector interactions (Koskei et al. 

2024).  

 

The median age for VL was 10 years and men contributed to 69% of the infections. The 

burden of VL is high in these two subgroups of the population. The incidences of 2019 and 

2022 were termed as outbreaks (Mewara et al. 2022), and the persistent increase shows that 

control is still a challenge. 

 

 
Figure 3: Temporal trends In VL in West Pokot showing an increase in the occurrence over the years with peaks from 

March to June, October, and November 

 

We integrated the occurrence data with a sublocation boundary shapefile to assess its 

spatial distribution. The spatial patterns of VL in the period between 2018 to 2022 are 

highlighted in Figure 4. Most of the disease cases are concentrated in the eastern part of the 

county, although infections are widespread and recur in most sublocations. Comparing the 

maps from 2020 to 2022, it is evident that the disease is gradually expanding from the east 

to other regions during this period. In our study area, though the cases are not as high as in 

the East, there has always been constant disease cases presence. 
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Figure 4: Annual cases of VL in West Pokot from 2018 to 2022 
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2.3. Datasets 

2.3.1. Termite Mound Field Data 

The primary goal of the first research question was to develop a method for mapping vector 

habitats, including termite mounds, using high-resolution imagery. To achieve this, we 

utilised GPS location data of termite mounds collected in the Kacheliba Division. During 

fieldwork conducted with (Van Dijk et al. 2023) for his research, 30 termite mound 

locations were randomly sampled, and their coordinates were recorded using GPS. The 

locations of these mounds are shown in Figure 1.  

 

 

2.3.2. Disease Occurrence.  

Patient information for visceral Leishmaniasis (VL) was obtained from records from 

Kacheliba Sub-County Hospital, West Pokot County, Kenya, between 2018 and 2021. The 

data contained the details of the patient’s sex, age, month of infection and location of 

residence. The data was cleaned and geocoded. In the hospital records, the finest resolution 

was at the village level. Villages are administrative regions that comprise a cluster of houses 

and compounds (manyattas) (Mueller et al. 2014).  

 

The initial method involved assigning villages to GPS coordinates collected in West Pokot 

by (Mueller et al. 2014) in 2007. Additionally, infection cases were geocoded to 

enumeration boundaries used by the KNBS in the 2019 census. These boundaries are 

typically designed to encompass settlements, and, in nomadic areas, they are based on 

walking distances, and they are like village boundaries. 

 

 
Figure 5: Location of geocoded disease cases labelled to their date of occurrence. 
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All cases occurring in a village are placed in one geographic coordinate, minimising the 

sample size for the modelling and only five of these locations fall in the study area. In 

presence-absence distribution models, training data with fewer presence samples can 

reduce predictive accuracy (Collart and Guisan 2023; Jiménez-Valverde 2020). It was 

necessary to take extra steps to overcome this pitfall.  

 

2.3.3. Buildings Data  

Buildings often function as indicators of human settlement, representing a more detailed 

resolution than villages. In this study, building footprint polygons were obtained from the 

Google Earth Engine catalogue (Sirko et al. 2021). The dataset is a comprehensive 

collection comprising 1.8 billion building detections, encompassing Sub-Saharan Africa. 

Each polygon is accompanied by a confidence score indicating the reliability of the 

detection and most of the buildings in this dataset were accurate for the case study area.  

 

2.3.4. Remote sensing data 

Very high-resolution imagery 

The study utilised WorldView-2 satellite images acquired on 6 March 2023, covering the 

southern part of Kacheliba in West Pokot County. Worldview-2 images have 8 bands, are 

pan-sharpened to a spatial resolution of 0.5m and were employed to extract vector 

microhabitats in the region. Additionally, high-resolution satellite imagery and 

WorldView-2 satellite images with 3m resolution were used to complement the analysis. 

The data coverage is shown in Figure 1. 

 

Environmental Datasets 

Environmental factors identified in the literature were temperature, NDVI, precipitation, 

land use and land cover, soil, elevation, and humidity (Aklilu et al. 2023; Jiang et al. 2021; 

Sardar et al. 2020). The datasets, derived variables, and resolution information are 

summarised in Table 1.  

 

Table 1: Environmental Datasets used and their specifications. 

Data source Variable Spatial 

res (m) 

Data values Temporal  

properties 

ALOS PALSAR DEM Slope and altitude 12.5 continuous static 

Sentinel 2 Imagery Maximum median and 

minimum NDVI 

10 continuous 2018-2022 

Landsat- OLI LST 30 Continuous 2018-2022 

Worldview -2 imagery Land cover 0.5 Categorical static 

ISDA soil grids Clay content 30 continuous static 

Bioclim precipitation 927 continuous static 
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3. Methodology  

This chapter provides an overview of the methods used to achieve the objectives. All 

processes used in this study are discussed further in subsequent sections and are 

summarised in Figure 6 below. 

 

 
Figure 6: Workflow adapted in the research. 
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3.1. Vector Habitat Extraction 

In previous studies, P. martini was observed to occur in abundance in termite mounds and 

animal sheds. The chances of encountering the sandfly vector were five times higher in 

termite mounds and animal sheds compared to indoor spaces. Additionally, the sandfly 

prefers to feed on acacia trees more than other tree species (Hassaballa, Sole, et al. 2021). 

The sandfly vector favours more humid habitats (Mueller et al. 2014), and riverbank 

fissures and crevices of seasonal rivers create ideal humid zones preferred by the vector for 

hiding and breeding (Abdullahi et al. 2022). 

 

A significant ecological adaptation of sand flies is their selective use of habitats 

(Hassaballa, Sole, et al. 2021), and sandflies in general are weak at flying with reports 

indicating that adults typically fly one hundred meters or less from their larval habitats 

(Cecílio et al. 2022). Without systematically collected field data for sandflies, we 

hypothesised that animal sheds, termite mounds and seasonal river crevices are the vector's 

niche and can be used as indicators of sandfly presence.  

 

3.1.1. Animal Sheds 

Animal Enclosures (sheds) in the savannahs of Kenya can be visually detected on high-

resolution imagery because of spectral contrast with surrounding land and a visible fence 

around the animal enclosure (Vrieling et al. 2022). They have a distinctive colour of manure 

and a continuous fence around them, and they vary in size, usually between 15-25m in 

diameter (Tyrrell et al. 2022) as shown in Figure 7 below. 

 

 
Figure 7: Examples of animal enclosures visible on high-resolution imagery; A is adapted from (Tyrrell et al. 2021) 

showing animal enclosures in the south of Kenya, B and C are in the study area as seen from Google Earth Engine and 

Worldview-2 imagery respectively. 

 

The availability of sub-meter, very high-resolution satellite imagery enables the delineation 

and extraction of boundaries. The methods of extracting boundaries can be categorised into 

edge-based or region-based. Edge detection methods such as Sobel, canny or Scharr extract 

boundaries of all isolated objects and the boundaries are usually not closed (Cheng et al. 

2020). Region-based methods group homogenous pixels, and sometimes, locating linear 

and visible edges in the segmented image is impossible (Cao et al. 2023).  
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Recently, deep learning algorithms have been used for automatic edge and contour 

detection, and they have been instrumental in learning advanced data representation for 

feature extraction, classification, and segmentation (Cao et al. 2023). Mask R-CNN, a state-

of-the-art CNN, for instance, has been used together with very high-resolution imagery to 

detect ships, automatically detect artic ice-wedge polygons, and extract farm boundaries 

(Cheng et al. 2020; Feng et al. 2019; Zhang et al. 2018). So far, no study has used it to 

extract animal enclosures in the savannah and this research trained and extracted polygon 

boundaries for animal sheds.  

 

3.1.1.1. Feature extraction 

To develop an object detection algorithm, the first step was the generation of labelled data. 

Shed polygons were manually digitised from the pan-sharpened image labelled 'B' in Figure 

8, based on size, visual characteristics, and the presence of a clear boundary. A total of 151 

polygons were digitised and using the ArcGIS Pro tool ‘create labels for deep learning 

model’ (ESRI n.d.), they were converted into labels for the deep learning model. This 

resulted in 569 labels, which served as the input to train a Mask R-CNN model. 

 

 
Figure 8: Location of train and test areas. Image B was used to generate labels (from digitising polygons) to train the 

model and it was tested on images A and C 

 

Afterwards, we trained a model with the labels generated from the previous step. Mask R-

CNN models are developed on top of a faster R-CNN. The architecture of a faster R-CNN 

works in two stages. The first stage consists of two networks a backbone and a regional 

proposal network.  The selected backbone was Resnet-50 which is a convolutional neural 

network that is 50 layers deep. Once these two networks run, a set of proposals are formed. 

These proposals are regions in the feature map that contain the object. In the second stage, 

the network predicts bounding boxes and object classes for the regions in stage one. The 

size of these regions is fixed using RoI pooling or RoIAlign method. This is illustrated in 

Figure 9.  
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We trained an instance detection Mask R-CNN model with a Resnet-50 backbone. We set 

up the training procedure to run the model twenty times (20 epochs) and to stop training 

when the model was no longer improving, to save time and processing power. 

 

 
Figure 9: Faster RCNN architecture showing the 2 stages (ESRI n.d.). 

 

 

3.1.2. Termite Mounds 

The same extraction method using a deep learning model and satellite imagery was to be 

applied to the extraction of termite mounds. XY locations were collected in the field, and 

they were to serve as training data to delineate labels. Termite mounds, characterised by 

their crevices and occasional large openings, typically rise from 1 to 5 meters in height. To 

identify artillery craters in Ukraine (Duncan et al. 2023), used very high-resolution 

Worldview-2 imagery data and a U-Net model. We hypothesised that termite mounds, like 

artillery craters, would be recognisable on high with unique visual characteristics, such as 

lighting, shadows, and angles. However, each termite mound appeared different, and 

generating training labels for the locations was impossible.  

 

 

3.1.3. Seasonal Riverbanks 

The study area has a prominent main river alongside several seasonal tributaries, though 

these tributaries are challenging to identify since the Worldview-2 satellite images are for 

the dry season. An alternative for this is drainage feature extraction from a digital elevation 

model. To identify and extract river networks in the study area, the ALOS PALSAR digital 

elevation model (DEM) with 12.5 m resolution, was downloaded from the Alaska Satellite 

Facility (ASF) Distributed Active Archive Center (DAAC). Stream delineation was 

conducted using the Archydro tool on ArcGIS Pro which uses a DEM for watershed 

delineation and stream network generation by calculating flow direction and accumulation 

(ESRI 2013). 
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From a visual inspection to assess the correctness of the output, the drainage networks 

extracted did not align accurately when overlaid with very high-resolution satellite imagery 

as seen in Figure 10. With the guide extracted drainage network from the DEM, a new 

drainage network was digitised to eliminate the positional errors that arose from the 

extracted network.  

 

 
Figure 10: Comparison of the output of the methods used to extract seasonal rivers. The drainage lines were obtained 

using stream delineation with Archydro tools and they served as a guide for digitising seasonal rivers. 

 

 

3.2. Environmental Variables Derivation 

 

3.2.1. NDVI 

Normalized Difference Vegetation Index (NDVI), an index derived from the red and near-

infrared spectral bands of satellite imagery and measures green vegetation abundance. We 

utilized the European Space Agency’s (ESA) Sentinel-2 Level 2A surface reflectance data 

to calculate the maximum, mean, and minimum NDVI indices for the period between 2018 

and 2022. The satellite image has a high resolution of 10m. These indices were generated 

using built-in tools on the Google Earth Engine (GEE), a cloud-based platform for 

geospatial analysis.  
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3.2.2. Temperature 

In previous ecological studies, Land Surface Temperature (LST) has been used as a proxy 

for air temperature (Chabot-Couture et al, 2014). Land Surface Temperature (LST) is the 

temperature estimated using satellite imagery, accounting for the temperature at the top of 

the canopy. The highest spatial resolution for freely available satellite imagery with a 

thermal band is provided by the Landsat 8 Operational Land Imager (OLI) instrument, 

which offers a resolution of 30 meters.  

 

LST was estimated using Landsat-8 OLI on the GEE using the procedure from (Jimenez-

Munoz et al. 2009). This process involves calculating LST from the brightness temperature 

derived from the thermal band and a fractional green cover estimated from NDVI. Median 

LST for the period between 2018-2022 was generated and resampled to 10 m spatial 

resolution for further analysis. 

 

3.2.3. Land Cover 

 To prepare the classification, training datasets containing six classes present in the study 

area was created. The classes that represent the land cover features in the study area were, 

grasslands, bare land, water, forests, herbaceous and built-up and they were extracted from 

Worldview-2 images.  

 

We used the Random Forest (RF) algorithm for classification. RF is made up of many 

decision trees. Each tree is built using a random subset of training features. When 

classifying a data point, each tree votes for the most likely class. We found that using 

around 400 trees gives stable results, but we opted for 500 trees for caution. Additionally, 

we did not decide the number of features used for predictions, ensuring a minimum 

branching depth of 2 in the trees. 

 

3.2.4. Topographic  

The digital elevation model used for the study area was the ALOS PALSAR digital 

elevation model DEM with 12.5 m resolution images. The DEM was used to calculate the 

slope on ArcGIS Pro. Additionally, the elevation data from the DEM was used in 

modelling. Both datasets were resampled to a 10m pixel size for the modelling process. 

 

3.2.5. Clay Content 

We obtained a dataset for soil properties from ISDA soil data, specific to Africa, accessible 

through the GEE catalogue. The product contains information on soil properties and one of 

them is clay content (Miller et al. 2021). The dataset has a resolution of 30 meters and 

includes four layers: 0-20 cm and 20-50 cm depths, each with predicted mean and standard 

deviation values. We extracted the predicted mean clay content for the 0-20 cm layer and 

resampled it to 10m. 
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Additional data for annual precipitation weather data was obtained from the Worldclim 

database (https://www.worldclim.org/). 

 The variables were then all projected to the same coordinate system (UTM zone 36N), 

clipped to the extent of the regions, resampled and stored as .asc files for modelling. 

 

 

3.3. Multicollinearity 

Before fitting species distribution models, multicollinearity between the environmental 

variables is assessed. Multicollinearity arises when the explanatory variables are highly 

correlated, leading to misleading results and hindering analysis. With environmental 

variables, multicollinearity can lead to underestimation or overestimation of the effects of 

variables, causing misleading information (Kim 2019). The environmental variables were 

assessed using the variance inflation factor (VIF). High VIF values indicate 

multicollinearity, and following the rule of 10, variables with a score above 10 are dropped 

(O’Brien 2007).  

 

 We also conducted a Pearson correlation analysis to compare the remaining variables. This 

statistical method allowed us to measure the strength and direction of the linear relationship 

between two variables and detect multicollinearity among the variables. Variables with 

high correlation coefficients (0.8) were eliminated and not used for modelling. 

 

 

3.4. Training data  

As mentioned in the section 2.3.2, only five location occurrences were available for the 

three locations in the study area. Since these locations were the centroids of villages, there 

was a need to reformulate assigning the xy coordinates.  

 

The distribution of disease is limited to the dispersal capacity or the “niche” of the parasite 

and the transmitting vector species (Escobar and Craft 2016). Niche can be further 

described using the Biotic Abiotic Movement (BAM) diagram in Figure 11. We first define 

the geographic and environmental space where the environmental space is the ENM, and 

geographic space is the real and georeferenced space (Sillero et al. 2021).  

 

In the geographic space represented by G in Figure 11, A represents the abiotic factors that 

influence the growth of the species, B is the region where the species can coexist with its 

competitors and M represents sections in the environmental space the accessible areas for 

the parasite and their intersection Jo is the potential occupied area The species can disperse 

beyond Jo and go anywhere within the region of M so the niche can be defined as Jss and  

M ≈ JSS. (Soberon et al. 2005).  

https://www.worldclim.org/
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Figure 11: BAM model, G represents the total study area, A the region growth rate of species would be positive, B where 

the species can coexist with competitors and M where the species may be found. 

 

 

For the sandfly P. martini, we defined Jss in terms of its dispersal range. Since the sandfly 

vector can only move a few hundred meters from its preferred habitat, we defined Jss using 

the ecological variables derived: the animal sheds, and the seasonal rivers together with the 

field data termite mounds. We created a buffer zone around these features for 200m and 

we defined this region as M.  

 

The transmission of VL requires an infected human host. To represent human presence, we 

utilized the buildings dataset. We simulated potential XY coordinates for the modelling 

input by using the centroids of these buildings. Subsequently, we filtered out centroids 

located in enumeration areas with zero reported cases. Centroids that were in M formed the 

initial dataset. The study sites will be referred to as Region 1 and Region 2 as labelled in 

Figure 5. No locations were available for Region 3.  

 

Defining M and selecting these locations leads to an uneven distribution of sampling points 

and might cause overfitting, biased significance, and inflated accuracy. Several bias 

correction methods exist such as adjusting the presence of data through geographic and 

environmental filtering or adjusting the background data through restrictions (Xu et al. 

2024). We selected the geographic filtering using the spThin package in R. Figure 12 shows 

the distribution of the data for both the full and subset in both regions. 
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Figure 12: Simulated Occurrence data for VL in the two regions. 

 

3.5. Model building.  

 

3.5.1. Maximum entropy 

Maximum entropy (maxent) is a machine-learning technique that originated from statistical 

methods. It can be used to estimate the probable distribution of a target by finding its 

maximum entropy which is the most spread out and closest to uniform distribution, subject 

to a set of conditions that represent the incomplete information of the distribution. This 

model requires presence-only data and environmental variables, can use continuous and 

categorical data, and incorporates the interaction between different variables (Phillips et al. 

2006). 

 

Model parameters. 

The main parameters to be determined for model training are the feature classes (FC) and 

regularisation multiplier (RM). The feature class is the statistical transformation of the 

environmental variables on which the model constraints will be built. There are five feature 

types namely linear (L), quadratic (Q), product (P), threshold (T), hinge (H), and 

categorical features. The random multiplier (RM) is used to penalise for the inclusion of 
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additional parameters and prevent overfitting and underfitting. Low RM values will result 

in a model with many predictors and high RM values will lead to smoother more general 

models (Jiménez-Valverde 2020; Phillips et al. 2006).  

 

To determine the feature class for the Maxent model, we used the ENMval package in R. 

It provides six ways to split the input training data which are variations of the K-fold cross-

validation(Muscarella et al. 2014). The selected method for this study was the random K-

fold. The evaluation method metrics are summarised in Figure 13. 

 

 
Figure 13: Adapted from (Muscarella et al. 2014), evaluation metrics that will be useful to select the model parameter 

FC and RM 

 

 

The FC and RM combination with the best AUC difference and AIC are selected to run the 

Maxent model. The variables used are shown in Table 2.  

 

 

Table 2: Maxent model parameters 

  RM FC 

Region 1 Full 1 H 

Subset 2 LQHP 

Region 2  Full 1 H 

Subset 1 H 

 

The Maxent Java application was used to run the model. The xy datasets and raster layers 

were loaded to the interface. Model parameters were adjusted. Other settings changed were 

the random seed to ensure consistent data splits, resampling techniques set to a ten-fold 

cross-validation and doing a jack-knife to estimate variable importance. Due to the size of 

the area, background points were sampled from a bias file created with ENMeval and 

reduced to 5000 points.  
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Figure 14: workflow for modelling with maxent. 
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4. Results 

This chapter provides findings of the study based on the proposed methodology. 

 

4.1. Vector habitat extraction.  

We trained a deep learning model with the Detect object using a deep learning tool in 

Arcpro and used the generated model to detect animal enclosures. The average precision 

score was 0.705. The training and validation loss are shown in Figure 15.  

 

From a visual inspection, the model successfully delineated animal enclosures in the study 

area and generated a polygon shapefile. There were no false positives, but larger enclosures 

were not captured by the model. A limitation of this process was the lack of ground truth 

validation data for animal enclosures. 

 

 
Figure 15: Training and validation loss. The lower the loss, the more reliable the model 

 

4.2. Selection of Predictor Variables 

We conducted a (VIF) test and retained the relevant environmental variables that had VIF 

values below 10. Only the median NDVI in Region 1 (highlighted red in Table 3 ) had a 

score of above 10 and it was not used in the modelling process. 

 

Table 3: VIF scores 

Environmental Data  VIF  

Region 1 Region 2 

Median NDVI 10.612029 9.279748 

LST 3.516447 2.972034 

Land cover 1.371782 1.680830 



RISK MAPPING OF VISCERAL LEISHMANIASIS INFECTIONS IN WEST POKOT, KENYA: CHARACTERISATION OF LOCAL 

ENVIRONMENTAL RISK FACTORS 

  23 

DEM 2.261939 2.451430 

Soil 4.057682 2.724596 

Slope 1.173661 1.057714 

Min NDVI 2.670555 2.255488 

Precipitation 2.044766 1.948943 

Max NDVI 6.130484 5.337984 

 

We also did a Pearson correlation, and the results are shown below in Figure 16 and Figure 

17. There were no values above 0.8 for Region 1 and Region 2, Maximum and median 

NDVI were highly correlated and maximum NDVI was dropped from the modelling 

process. 

 
Figure 16: Pearson correlation matrix for region 1.  All values are below 0.8. 

 

 
Figure 17: Pearson correlation matrix for region 2. Maximum and minimum NDVI are highly correlated and Maximum 

NDVI is dropped. 
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4.3. Model Performance 

The predictive performance of the models was assessed using the area under the receiver 

operating characteristic curve (AUC) metric. The AUC is a valuable measure of a model's 

ability to distinguish between the presence and absence of a condition. Models with AUC 

scores between 0.75 and 0.9 are deemed highly effective. Our model demonstrated robust 

discriminatory power across both regions, except the subset in Region 1. A decrease in 

sample size corresponded to a reduction in AUC scores. The complex model performed the 

worst in this test.  

 

Table 4: Model performance 

  AUC 

Region 1 Full 0.769 

Subset 0.662 

Region 2  Full 0.805 

Subset 0.788 

 

 

4.4. Predicted risk areas.  

The model was reclassified into equal intervals with classes to see the general trend in the 

entire study area. The probability of risk ranges from ranges from 0-1 and the higher the 

value, the higher the risk.  

 

As seen in Figure 18, with a reduction in sample size, larger areas were predicted as having 

more risk. In Region 1, our predictions indicated that risk was widespread in the full dataset 

but predominantly concentrated in the eastern part of the subset prediction. The high-risk 

areas were primarily located in the central region, characterised by rural communities living 

in 'manyattas' and numerous animal sheds. 

 

In Region 2, the distribution of high-risk areas is similar for both datasets. The predicted 

risk areas for Region 2 were mainly in the Northern Region. This region is low-lying, with 

low NDVI, high temperatures and low rainfall. The south of this region is mainly 

agricultural, and it was predicted to have little to no risk. While there were no disease 

occurrences in the centre right of the region, this location was predicted to be high risk, 

meaning it may have conditions favouring vector survival. 
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Figure 18: Predicted risk maps. 

 

4.5. Variable importance  

The Jackknife test gave information about predictor variables' contribution and relative 

importance to generate a MaxEnt model. The summaries are in Table 5. All the variables 

were different for each of the model runs. For all models, the percentage contribution on 

NDVI was quite high and it tested well for each subset. This is a proxy for vegetation, and 

it may indicate the relevance of the presence of acacia vector occurence. 
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Table 5: Variable contribution 

  Variable  Percentage contribution 

Region 1 Full Maximum NDVI 53.6 

Subset Precipitation 50.5 

Region 2  Full Median NDVI 37 

Subset Median NDVI 58.2 

 

 

 

Risk Map  

 

The goal was to be able to predict risk at the house level. The pixels of the output map are 

10m which covers a building. In Figure 19, in a section of Region 2, the pixel values are 

extracted for locations with buildings and in the top left corner, it is possible to see how 

risk values change with proximity to an animal shed. 

 

 
Figure 19: Risk map. 

  



RISK MAPPING OF VISCERAL LEISHMANIASIS INFECTIONS IN WEST POKOT, KENYA: CHARACTERISATION OF LOCAL 

ENVIRONMENTAL RISK FACTORS 

  27 

5. Discussion 

This section aims to evaluate the results obtained from the modelling and the resulting 

predictions.  

 

 

5.1. Uncertainty 

 

This study had the challenge of having few input datasets, which informed the model choice 

and necessary steps to redistribute the model input. To map disease risk, occurrence data is 

usually in the form of disease cases, and in this case, only five locations were mapped, and 

this was insufficient. 

 

When modelling cutaneous leishmaniasis, (Chavy et al. 2019) used the BAM framework 

for random redistribution to assign infection locations to regions where they are more likely 

to occur. The cutaneous leishmaniasis cases in his study region were georeferenced to cities 

and the disease is sylvatic, meaning it occurs near wild areas. He found that his results were 

robust and reliable in comparison to other studies. The modelling in this study had reliable 

results too, however, assessing their reliability was challenging due to the absence of 

existing maps or validation data for comparison. 

 

The validity of the model predictions will be affected by the positional accuracy of the 

georeferenced locations. There may be variations in the environmental conditions of the 

simulated locations and the true location of the disease occurrence. The effect of this 

difference depends on the standard deviation of the explanatory variables in the spatial unit, 

and they can be minimised by using central tendency (mean, mode, median) values (Cheng 

et al. 2021). True presence is unknown, and it is impossible to quantify the distance away 

from true presence. This brings about uncertainty in the risk prediction we made.  

 

The method chosen for this study for point redistribution was defining the full range of the 

species dispersal. In defining the BAM boundaries, only two variables were used. The 

inclusion of other ecological variables such as termite mounds, or acacia trees could have 

greatly affected the dispersal range generated.  

 

With other simulated species, researchers often rely on bioclimatic variables or the species' 

real-world distribution (Xu et al. 2024). However, there is limited research on the suitable 

climatic conditions of sandflies in East Africa and we were only able to obtain 3 records 

from sandfly collection conducted by (Koskei et al. 2024) in 2016 which was insufficient 

for analysis. Consequently, the BAM approach, despite its uncertainty, was the only viable 

alternative for our study.  
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This approach additionally introduced movement into the risk model. The novelty of this 

study was the incorporation of movement at the local scale specific to this area. West Pokot 

is 95% rural and the choices for movement variables had to match the dynamics of the area. 

The predictions were more fine-tuned to the region. 

 

5.2. Sample size 

It is recommended that the input dataset of an SDM should contain at least 20 records per 

species, preferably more than 50, to ensure a robust model or accurately represent species 

with low occurrences, including those that are endemic and have naturally limited ranges. 

(Benavides Rios et al. 2024). In his study (Lamboley and Fourcade 2024) mentioned that 

model performance is worse in large, biased data than in smaller biased data. The simulated 

data for Region 1 had 600 locations and for Region 2, 229. We opted for filtering to 

compare the results of the full range to subset data.  

 

Filtering the locations reduced the AUC score of the model. This was also the case with the 

study by (Fourcade et al. 2014). Alternatives for filtering are either in the environmental 

space or the geographic space but (Xu et al. 2024) found environmental filtering to be more 

effective. With validation data, other filtering methods could be explored to see which 

works best for the variables in this study.   

 

 

5.3. Environmental data 

This research attempted to make predictions at very fine scale and extracted variables that 

affect the distribution of the species. Variable selection is a source of model inaccuracies 

(Hanberry 2024)and we were careful not to include many correlated variables. We 

conducted a dual multicollinearity process to ensure the right predictor variables were 

chosen for the modelling process.  

 

In socioeconomic studies for VL in West Pokot, sandflies have been observed to mostly 

bite at night(Abdullahi et al. 2022). Further, termite mounds have high humidity. We were 

not successful in retrieving datasets for humidity. Nighttime Land Surface Temperature 

(LST) data from MODIS, available at a 1 km resolution, was considered, however, 

including this dataset could have influenced our results or possible inaccuracies.  

 

Notably, the poorest-performing model primarily relied on precipitation data with a 

resolution of 1km as the main predictor. Vector abundance is affected by rainfall (Koskei 

et al. 2024) and we chose to include it because of its importance in literature. 
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5.4. Extent 

 

The size and boundaries of the study area greatly affect how well models can predict 

environmental suitability. Models perform well no matter how big the study area is, but 

larger areas show more differences in suitability across regions (Amaro et al. 2023). 

Modelling at larger geographic extents such as the county level could have reduced the 

amount of predicted risk areas in the current study area or caused a shift in where these 

suitable places were. 

 

Where most models identify risk at a lower resolution (municipality or region), this does 

not allow for variation in risk within these regions. In this study, we attempted to develop 

an approach to model risk at a high resolution. The level of prediction is very high 

resolution and risk can be identified at the house level. We did not explore model 

transferability; however, we believe the model can be used to predict VL applied to predict 

visceral leishmaniasis (VL) in East Africa due to similar climatic, environmental and 

ecological conditions. 

 

 

5.5. Wickedness of the Study.  

The transmission of VL presents a wicked problem and with limited information on the 

true location of occurrence, few sample points to account for seasonal variation, and limited 

information on vector abundance and dispersal, the complexity of predicting VL in West 

Pokot was challenging. We also did not account for socio-economic dynamics such as 

pastoralism.  

 

The study reduced some of the wickedness by exploring point redistribution and obtaining 

proxies for vector data. Defining M reduced uncertainty on vector presence, but it is still 

necessary to validate the output. There was no stakeholder input for the study apart from 

government reports and their measures to eradicate the disease through vector control 

(Mewara et al. 2022; Ministry of Health Kenya 2017). M 

 

 

5.6. Limitations of the study 

5.6.1. Occurrence data 

Disease cases served as input data for the study, but its resolution was limited. Enhanced 

precision would have improved the spatial granularity of the research; however, ethical and 

privacy concerns prevented the collection of this dataset. Further, a lot of VL cases go 

unreported in endemic areas due to poor risk perception of the community, and the data 

collection might have not been the full range. Incorporating additional data, such as the 

geographical distribution of sandflies in the area, could have further refined the results. 
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5.6.2. Model validation. 

An essential step in validating the model results would be to compare it to possibly other 

predictions in literature or systematically collected field data. The was no way of 

confirming the extent of the risk of VL predicted. Further, the predictions made were from 

simulated data which introduces uncertainty in the prediction.  

 

5.6.3. Data unavailability 

The study was also affected by the unavailability of data to quantify some risk factors, such 

as acacia trees, humidity, and higher resolution for rainfall data.  These factors affect the 

life cycle of the transmitting vector and would have been important predictor variables. 
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6. Conclusions 

6.1. Conclusion  

This research developed an ENM and predicted risk for VL in West Pokot and in doing so 

we answered the following research questions.  

 

1. Where are the vector habitats, and how can they be identified from high-resolution 

satellite imagery?  

 

The identified vector habitats for sandfly P. martini were termite mounds, animal sheds 

and the banks of seasonal rivers.  Using very high-resolution worldview imagery we trained 

a deep learning model that was able to clearly distinguish animal sheds. However, the 

method was not successful with termite mounds.  

 

We used two proxies for vector habitats (seasonal riverbanks and animal shelters), a third 

vector habitat proxy (termite mounds) could not be derived from images. These proxies 

replaced actual habitat data. 

 

2. What are the relevant environmental variables, what is their contribution to the 

occurrence of VL infections and can they be used to develop an accurate and reliable model 

for forecasting the risk? 

 

We extracted environmental variables at very high resolution. After modelling, NDVI had 

the highest contribution. We were unable to incorporate humidity, high-resolution rainfall 

data, and acacia trees which are crucial for vector survival. We used NDVI as a proxy for 

vegetation.  

 

3. What is the predictive accuracy of a machine learning model in forecasting the risk of 

VL based on the combination of vector ecology and environmental factors in West Pokot, 

and how can this model be applied to identify risk zones? 

 

We simulated potential dispersal points for infection cases in Kacheliba using the BAM 

framework to generate input data. We ran a maxent model and the best score was an AUC 

of 0.805. 
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6.2. Recommendations  

There are quite a few research topics that are logical follow-ups or relevant to this research. 

They are, but are not limited to the following topics: 

- Systematically collect presence and absence points for sandflies in the case study 

areas and compare their extent to the ones derived from the BAM. 

- Stakeholder engagement to assess their perceptions of environmental risk and 

control studies to obtain locations of susceptible individuals.  

- Correction of sampling bias and its applicability to a BAM-derived dataset. We only 

applied one method of bias sampling correction; other methods may perform better 

than geographic filtering. 

- Incorporating the movement of the nomadic people into the risk prediction.  
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Appendix 1 

AI guidelines  

In line with the AI guidelines from the University of Twente. 

 

During the preparation of this work, the author used ChatGPT to debug the codes used in 

the thesis. After using this tool/service, the author reviewed and edited the content as 

needed and take(s) full responsibility for the content of the work.” 

 

Reproducibility  

All relevant data and scripts will be added to the UT SurfDrive folder.  

 

- The deep learning model can be used for transfer learning and can detect shed boundaries 

on base maps with <50cm resolution such as ESRI imagery. 

- All environmental datasets used are freely available and can be obtained from Google 

Earth Engine 

- The Maxent model is reproducible and can predict other regions with the correct 

environmental dataset. 
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Appendix 2 

 
Figure 20: Temporal relationship of NDVI and VL occurrence, which may explain its dominance as a predictor 

variable. 

 

ENM Evaluation 

 

 
Figure 21: Samples ENM Eval results for region 2 subset data. Model with delta.AIC = 0 is selected. In this case RM=2, 

features LQHP 
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2019 2020 2021 2022

Sum of Cases Sum of NDVI

fc rm tune.args auc.train cbi.train auc.diff.avgauc.diff.sd auc.val.avgauc.val.sd cbi.val.avg cbi.val.sd or.10p.avg or.10p.sd or.mtp.avg or.mtp.sd AICc delta.AICc w.AIC ncoef
1 L 1 fc.L_rm.1 0.658891 0.799 0.039479 0.026481 0.620681 0.019536 0.5052 0.278799 0.100615 0.084065 0.015385 0.034401 3231.661 23.69325 4.80E-06 9
2 LQ 1 fc.LQ_rm.1 0.673406 0.739 0.041676 0.030426 0.635447 0.022982 0.5818 0.183635 0.124923 0.062968 0.023077 0.051602 3228.579 20.612 2.24E-05 14
3 H 1 fc.H_rm.1 0.7355 0.982 0.080386 0.050698 0.659452 0.04465 0.661 0.11384 0.210462 0.074376 0.039077 0.027209 3235.582 27.61511 6.76E-07 32
4 LQH 1 fc.LQH_rm.10.734672 0.965 0.082644 0.043951 0.657002 0.037917 0.6868 0.252376 0.202769 0.062912 0.031385 0.032374 3232.414 24.44627 3.30E-06 32
5 LQHP 1 fc.LQHP_rm.10.733547 0.965 0.083294 0.043985 0.657643 0.037909 0.6914 0.232686 0.202769 0.062912 0.046769 0.042 3225.15 17.18281 0.000125 30
6 LQHPT 1 fc.LQHPT_rm.10.745188 0.978 0.110015 0.035103 0.64714 0.034166 0.5682 0.249387 0.257846 0.052821 0.054154 0.06427 3234.077 26.10991 1.43E-06 34
7 L 2 fc.L_rm.2 0.653094 0.701 0.033704 0.022627 0.622684 0.017503 0.5426 0.281456 0.100923 0.074434 0.015385 0.034401 3231.656 23.68866 4.81E-06 9
8 LQ 2 fc.LQ_rm.2 0.656891 0.894 0.033336 0.026323 0.629207 0.018836 0.5692 0.289787 0.092923 0.084136 0.023077 0.051602 3238.019 30.05158 2.00E-07 14
9 H 2 fc.H_rm.2 0.695883 0.944 0.056255 0.032671 0.647446 0.024461 0.5452 0.158464 0.156 0.046251 0.038462 0.054393 3213.749 5.781234 0.03725 16

10 LQH 2 fc.LQH_rm.20.700703 0.943 0.053062 0.031411 0.650436 0.024542 0.4808 0.349752 0.164 0.070279 0.015385 0.034401 3214.164 6.196962 0.030259 18
11 LQHP 2 fc.LQHP_rm.20.701047 0.941 0.051984 0.031847 0.652406 0.025682 0.5582 0.312517 0.140308 0.064049 0.015385 0.034401 3207.967 0 0.670659 16
12 LQHPT 2 fc.LQHPT_rm.20.702328 0.947 0.059193 0.033035 0.648527 0.026615 0.5102 0.322818 0.148308 0.056711 0.023077 0.051602 3212.921 4.953607 0.056343 18
13 L 3 fc.L_rm.3 0.647719 0.674 0.025202 0.020183 0.624119 0.016485 0.5746 0.235373 0.100923 0.074434 0.015385 0.034401 3227.75 19.78306 3.39E-05 7
14 LQ 3 fc.LQ_rm.3 0.647203 0.909 0.025848 0.020402 0.6285 0.016968 0.6064 0.231436 0.092923 0.079239 0.023077 0.051602 3227.191 19.22353 4.49E-05 9
15 H 3 fc.H_rm.3 0.675492 0.903 0.040531 0.021197 0.631619 0.016346 0.4898 0.363389 0.116308 0.071141 0.038462 0.054393 3211.832 3.864378 0.097132 8
16 LQH 3 fc.LQH_rm.30.677766 0.943 0.040585 0.027651 0.635999 0.022398 0.5144 0.334843 0.108308 0.078149 0.015385 0.034401 3215.325 7.357721 0.016935 12
17 LQHP 3 fc.LQHP_rm.30.679234 0.957 0.038729 0.028836 0.639063 0.024509 0.5338 0.2993 0.108923 0.073769 0.015385 0.034401 3214.33 6.362829 0.02785 12
18 LQHPT 3 fc.LQHPT_rm.30.679234 0.957 0.041624 0.025973 0.637527 0.022474 0.5254 0.290019 0.108923 0.073769 0.015385 0.034401 3214.33 6.362829 0.02785 12
19 L 4 fc.L_rm.4 0.642078 0.695 0.022704 0.019391 0.620892 0.017343 0.5498 0.218583 0.085231 0.06264 0.007692 0.017201 3226.523 18.55557 6.27E-05 6
20 LQ 4 fc.LQ_rm.4 0.640516 0.905 0.020935 0.017754 0.627502 0.018237 0.6446 0.200207 0.085231 0.06264 0.007692 0.017201 3223.499 15.53185 0.000284 7
21 H 4 fc.H_rm.4 0.644148 0.898 0.027053 0.017484 0.618599 0.011941 0.4876 0.478864 0.116615 0.046517 0.015385 0.021066 3225.129 17.16143 0.000126 7
22 LQH 4 fc.LQH_rm.40.656594 0.949 0.025756 0.026258 0.629699 0.022909 0.5716 0.320793 0.092923 0.063717 0.015385 0.034401 3217.229 9.2621 0.006535 8
23 LQHP 4 fc.LQHP_rm.40.658813 0.936 0.026227 0.025524 0.632821 0.024596 0.569 0.27588 0.100923 0.074434 0.015385 0.034401 3216.428 8.460144 0.009759 8
24 LQHPT 4 fc.LQHPT_rm.40.658813 0.936 0.025845 0.025917 0.632085 0.023614 0.5586 0.260204 0.100923 0.074434 0.015385 0.034401 3216.428 8.460144 0.009759 8
25 L 5 fc.L_rm.5 0.634516 0.675 0.022268 0.01599 0.619359 0.018207 0.5248 0.253762 0.085231 0.06264 0.007692 0.017201 3227.688 19.72015 3.50E-05 6
26 LQ 5 fc.LQ_rm.5 0.635813 0.91 0.021574 0.015726 0.62399 0.020339 0.613 0.199059 0.085231 0.06264 0.007692 0.017201 3220.272 12.30441 0.001428 5
27 H 5 fc.H_rm.5 0.627617 0.741 0.018213 0.015493 0.616136 0.01879 0.4046 0.447831 0.108923 0.056771 0.023077 0.021066 3222.547 14.57988 0.000458 4
28 LQH 5 fc.LQH_rm.50.639016 0.932 0.02378 0.020058 0.623475 0.022371 0.5862 0.234253 0.092923 0.063717 0.007692 0.017201 3221.793 13.82551 0.000667 7
29 LQHP 5 fc.LQHP_rm.50.641906 0.93 0.023794 0.020918 0.627083 0.024339 0.5866 0.231301 0.109231 0.063953 0.007692 0.017201 3218.668 10.70061 0.003183 6
30 LQHPT 5 fc.LQHPT_rm.50.641906 0.93 0.022863 0.020942 0.627115 0.024392 0.5858 0.229832 0.109231 0.063953 0.007692 0.017201 3218.668 10.70061 0.003183 6


