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ABSTRACT 

Rainfall surface generation plays a critical role in climate science, providing essential insights into the spatial 

distribution of precipitation. Accurate rainfall data are pivotal for disaster management, water resource 

planning, and understanding regional climate dynamics, particularly in regions with complex topography like 

the Himalayas. Despite advances in spatial interpolation techniques, generating high-resolution rainfall 

surfaces that accurately reflect regional variability remains a challenge. Traditional deterministic and 

stochastic methods often struggle with capturing fine-scale variations, especially in areas with sparse 

observational networks. The advent of deep learning, however, offers new opportunities to enhance the 

precision and efficiency of rainfall surface generation. 

This thesis addresses the problem of generating high-resolution, daily rainfall surfaces for the state of 

Uttarakhand, India, a region characterized by challenging terrain and significant risk of natural disasters. The 

research identifies a gap in existing methodologies, which often fail to integrate the computational power of 

deep learning with traditional spatial interpolation techniques. The objective of this study is to develop a 

novel spatial interpolation framework that leverages deep learning to generate precise, daily gridded rainfall 

data and to compare its performance against traditional methods. 

The methodology involves a comparative analysis of deterministic, stochastic, and deep learning approaches 

to rainfall surface generation. The study uses daily rainfall observations from automatic weather stations 

(AWS) in Uttarakhand, employing geostatistical interpolation methods such as Kriging and Regression 

Kriging. The deep learning model, based on the Graph Neural Network (GNN) framework and Gaussian 

Mixture Model (GMM) convolutions, is trained to predict rainfall surfaces from these observations. The 

model's performance is evaluated using Root Mean Square Error (RMSE) and compared with traditional 

methods and existing gridded data provided by the Indian Meteorological Department (IMD). 

Results indicate that while traditional Kriging methods capture general trends, they often fail in areas with 

sparse data, leading to inaccurate predictions in unobserved regions. The deep learning model, on the other 

hand, shows promising results, particularly in capturing complex spatial patterns and providing moderate to 

high accuracy across the study area. The study also reveals that elevation, while statistically significant, has a 

limited impact on rainfall predictions in this context, suggesting the need to incorporate additional climatic 

variables for improved accuracy. 

The implications of this research are significant for regional planning and disaster management in 

Uttarakhand. The enhanced rainfall surfaces can improve early warning systems for floods and landslides, 

contributing to better risk management and spatial planning. The deep learning model, once further refined 

and trained on larger datasets, could be deployed in real-time applications, providing continuous updates on 

rainfall patterns. 

Future work will focus on expanding the study area, increasing the number of training samples, and 

incorporating additional environmental variables to improve model accuracy. Moreover, integrating satellite- 

based rainfall products with ground observations could offer a more comprehensive approach to rainfall 

prediction on both regional and global scales. 

This research demonstrates the potential of deep learning as a powerful tool in climate science, capable of 

overcoming the limitations of traditional interpolation methods and providing accurate, high-resolution 

rainfall data critical for environmental management. 
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1. INTRODUCTION 

 
1.1. Background 

 
Rainfall surface generation is critical in Climate Science since it provides valuable insights into the spatial 

patterns of precipitation that impact a range of environmental and socioeconomic variables. Robust disaster 

mitigation techniques, efficient management of water resources, and a comprehensive understanding of 

regional climate dynamics depend on precise and comprehensive rainfall data.(F. W. Chen & Liu, 2012) 

Accurately forecasting and interpreting rainfall patterns is essential for tackling various issues, from 

controlling natural disasters to ensuring sustainable water supply. With substantial significance for both 

ecological management and societal development, this predictive capacity is not just an academic 

endeavour.(Ribeiro et al., 2022) For well-informed spatial planning and infrastructure development, 

especially in areas susceptible to natural disasters, reliable rainfall records are especially crucial. For instance, 

the rough terrain and steep elevation gradients of the Himalayas present difficulties for rainfall forecasting. 

These topographical characteristics increase the danger of flash floods and landslides in such geological 

environments.(Delbari et al., 2013) Reliable precipitation data becomes essential for creating efficient early 

warning systems and putting risk reduction plans into action. Increased demand for accurate rainfall data 

due to the growth of human settlements in these risky locations underscores the necessity of techniques that 

can deliver fast and accurate data to enhance disaster preparedness and lessen the effects of natural 

disasters.(Y. C. Chen et al., 2008) 

 

The growing human populations in hilly and mountainous places, such as Uttarakhand, India, emphasise 

the importance of comprehensive rainfall data.(Delbari et al., 2013) These susceptible locations are more 

likely to experience landslides and flash floods due to rapid urbanisation and infrastructure development, 

which can have catastrophic consequences for the surrounding populations, infrastructure, and wildlife. 

Inadequate rainfall data combined with inadequate spatial planning can result in poorly managed 

development, making people more vulnerable to these dangers. High-resolution, daily rainfall datasets can 

give the specific information required for good land use planning, allowing high-risk locations to be 

identified and appropriate preventive measures implemented.(Sati, n.d.) There are also significant ecological 

ramifications to rainfall fluctuation. Variations in precipitation patterns can have an impact on ecosystem 

health and distribution, which can impact biodiversity and the long-term viability of natural environments. 

For instance, changed rainfall patterns may affect soil moisture, which may then impact the development of 

plants and the accessibility of nutrients for wildlife. Accurate rainfall data is essential for comprehending 

and reducing the effects of climate change on these delicate settings, especially in areas like the 

Himalayas, where distinct and diversified ecosystems are present. By guiding management plans that 

consider the variability and trends in precipitation, detailed rainfall data helps preserve natural ecosystems 

and save endangered species.(Goovaerts, n.d.) 

Spatial interpolation techniques have grown greatly as computer technology has advanced, allowing for more 

complex strategies to improve rainfall surface creation.(Rodriguez-Ramirez & Fuentes-Mariles, 2023) In 

climate science, spatial interpolation—especially using geostatistical techniques—has long been a key 

technique for generating continuous surfaces from discrete data points. These techniques have shown to be 

crucial in producing comprehensive and trustworthy datasets that reflect the spatial variability of climatic 

variables like precipitation(Papacharalampous et al., n.d.). They are essential to environmental research and 

climate modelling because of their capacity to handle intricate spatial patterns and offer useful estimates in 
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regions with little observational data.(Meuer et al., n.d.) The incorporation of machine learning, and more 

especially deep learning, has brought strong tools that further improve these methods as computing 

technology has advanced. Machine learning algorithms, with their capacity to learn from extensive datasets, 

enhance the ability to analyze complex relationships and produce high-resolution predictions. (Zhang et al., 

2022)Deep learning, building on this foundation, leverages advanced computational methods to model 

intricate patterns and interactions within climate data, offering new potential to capture detailed spatial 

dynamics that traditional methods might overlook. 

 

 

 

1.2. Research Identification 

 
An enhanced framework that can generate high-resolution rainfall surface data that properly reflects regional 

spatial subtleties while maintaining efficiency and rapid model execution is urgently needed, especially with 

the recent developments in deep learning algorithms and computing capabilities. These techniques 

complement and expand upon the capabilities of traditional geostatistical methods by utilising deep learning 

to improve rainfall estimation precision and drastically cut down on computation time. This research aims to 

create a unique spatial interpolation framework that uses deep learning to generate precise daily gridded 

rainfall data and assess its performance compared to traditional approaches. The research findings have 

significant potential to guide the Uttarakhand government in India, aiding in creating an all-encompassing 

regional rainfall inventory. In places prone to landslides and floods, where accurate and timely rainfall data 

is crucial for effective risk management and planning, this inventory is essential for bolstering catastrophe 

resilience frameworks and optimising spatial design. 

 

 

 

1.3. Research Objectives 

 
This project seeks to generate gridded rainfall datasets from daily observations recorded by various 

Automatic Weather Stations (AWS) within the study area, employing geostatistical interpolation methods. 

Additionally, the research aims to explore the potential applications of deep learning algorithms for 

producing gridded rainfall data. The effectiveness of these deep learning techniques will be compared with 

traditional geostatistical methods and with the gridded data provided by the Indian Meteorological 

Department (IMD), to assess their relative performance and accuracy. 

Sub-Objectives: 

1. Implementation of Stochastic Interpolation Techniques for Predicted Rainfall Surface 

Generation. 

2. To develop a novel way of Rainfall Prediction model using Deep Learning (DL) 

3. To analyze how changes in Elevation can influence Rainfall Prediction. 

4. To evaluate grid quality with the existing IMD grids. 
 

 

 

 

1.4. Research Questions 

1. Referring to Sub-objective 1: 

a. Which model of Interpolation going to be used? 
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b. How well this model is performing in the prediction? 

2. Referring to Sub-objective 2: 

a. How to implement Deep Learning for Interpolation? 

b. How effectively can Rainfall be predicted using DL? 

3. Referring to Sub-objective 3: 

a. Is it possible to establish a relation between the elevation and Rainfall, in rainfall 

prediction analysis? Can this relation influence the predictive performance of the 

Rainfall Surface Generation? 

4. Referring to Sub-objective 4: 

a. How the newly developed grids are performing alongside with the IMD, for rainfall 

prediction? 

b. Does the application of deep learning provide any significance? 
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2. LITERATURE REVIEW 

 
Rainfall surfaces, mainly those formed daily, are critical for evaluating and managing environmental 

phenomena. These surfaces are created using observational data from many places and show the 

geographical distribution of rainfall throughout an area. These surfaces offer comprehensive insights into 

patterns of precipitation, which are essential for climate professionals working in hydrology, meteorology, 

and disaster management.(Mitra et al., 2009) Daily rainfall surfaces, which record the immediate 

consequences of meteorological events, provide real-time data necessary for precise forecasting and prompt 

decision-making, especially in situations where knowing short-term fluctuations is crucial to reducing the 

effects of floods or droughts. (Navalgund et al., 2018) 

 

The limited distribution of observational networks makes it difficult to estimate climatic variables, 

particularly rainfall, in unsampled places. Precise forecasting is essential for applications like catastrophe risk 

reduction, water resource management, and agricultural planning in areas with limited data.(Martorell et al., 

2009) In this context, the importance of regional studies is highlighted since they offer localised insights on 

climate behaviour, which are essential for creating policies that are particular to environmental issues. 

Rainfall studies contribute vital data to local climate research, helping to anticipate future scenarios and 

influence regional decision-making processes.(Cecinati et al., 2018) 

 

Addressing the challenge of estimating climate variables in unsampled locations, spatial interpolation 

techniques generate continuous surfaces from discrete data points. Stochastic, deep learning and 

deterministic methods improve prediction accuracy and dependability, especially in areas with scant 

observational data. An extensive analysis of these approaches will be provided in the upcoming sections of 

this literature review, with a particular emphasis on their use in regional rainfall studies. 

 

 

 

 

2.1. Review on Spatial Interpolation Techniques 

 
Spatial interpolation methods, whether deterministic or stochastic, are critical for estimating values at 

unsampled locations. While deterministic methods, such spline interpolation and Inverse Distance 

Weighting (IDW), offer computational efficiency, they frequently fail to capture spatial variability and 

uncertainty since they rely their estimations on the spatial connections among known data 

points.(Rodriguez-Ramirez & Fuentes-Mariles, 2023) These drawbacks are overcome by stochastic 

techniques, such as variogram analysis and kriging, which use probabilistic models to take uncertainty and 

spatial dependency into account.(Zsolt Farkas et al., 2017) For instance, kriging yields the best linear 

unbiased predictions; variants such as Ordinary Kriging are helpful in forecasting rainfall patterns, as seen 

by research conducted in Tunisia, where low RMSE and mean error values supported the accuracy of the 

estimates.(Feki et al., 2012) Furthermore, comparing multivariate geostatistical techniques shows that adding 

elevation data to rainfall prediction improves accuracy, especially in areas with moderate rainfall-elevation 
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correlations (e.g., kriging with variable local means and external drift).(Zareifard et al., 2023) It has been 

demonstrated that integrating elevation data greatly improves forecast accuracy, particularly in regions with 

prominent topographic relief. This has been the subject of various research. By incorporating measurement 

uncertainty, advances in kriging, such Kriging for Uncertain Data (KUD), significantly enhance rainfall 

estimate. Applications show improved forecasts when gauge density is sufficient. (Rodriguez-Ramirez & 

Fuentes-Mariles, 2023)Moreover, techniques combining entropy and kriging to optimise rainfall network 

design show data accuracy and network efficiency improvements. The significance of parameter selection 

has also been emphasised by IDW studies, with the best power and radius values improving interpolation 

accuracy, especially in central Taiwan. (Mukhopadhaya, n.d.)Collectively, these developments demonstrate 

the continued relevance and efficiency of both standard and new spatial interpolation approaches for 

properly forecasting rainfall and handling hydrological data. 

 

 

 

 

2.2. Review on Deep Learning Techniques 

 
Deep learning-based interpolation algorithms outperform classic geostatistical techniques by capturing 

complicated, non-linear spatial connections and managing heterogeneity in big datasets. These data-driven 

techniques go beyond the constraints of preset spatial models employed in conventional approaches like 

Kriging and provide flexibility in resolving issues related to non-stationary and sparse data.(Liang et al., 

2022) Deep learning techniques can better incorporate auxiliary information and adapt to geographical 

situations by learning from the data independently.(GlobalSIP : 2014 IEEE Global Conference on Signal and 

Information Processing : 3-5 December 2014, Atlanta, GA, USA, 2014) For example, Bayesian deep learning has 

improved spatial interpolation by learning complex relationships between point-sampled data and auxiliary 

variables like terrain elevation. This has been successfully applied to mapping calcium concentrations in 

stream sediment across the United Kingdom (UK), yielding a strong probabilistic calibration and a high 

coefficient of determination (R² = 0.74)(Johnson et al., n.d.). By integrating numerous algorithms, an 

ensemble technique with nine quantile-based learners has improved probabilistic predictions, surpassing 

conventional quantile regression over a range of quantile levels, with gains in predictions ranging from 

3.91% to 8.95%.(Bronstein et al., 2021) The possibilities of deep learning techniques are further 

demonstrated by the development of the Deep Geometric Spatial Interpolation (DGSI) framework, which 

uses a multilayer perceptron to predict neighbour weights based on distance and orientation. DGSI 

outperformed traditional and advanced interpolators, with an average RMSE decrease of 48% across 

different datasets.(Xiang & Demir, n.d.) All these developments demonstrate how deep learning-based 

approaches may improve spatial interpolation by overcoming the drawbacks of conventional methods and 

increasing accuracy in various spatial situations. 

 
2.2.1. Graph-based Models 

 

A graph can be used to conceptualise the spatial distribution of rainfall, with rainfall measurement locations 

acting as nodes and the spatial interactions between them as edges. Each node in this graph-based structure 

represents a distinct observation of cumulative precipitation or rainfall intensity. These nodes are connected 

by edges created depending on their physical closeness or connectivity; the edge weights indicate the degree 

of spatial correlation or node distance. (Liang et al., 2022) 
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Graph-structured data is handled using specialised neural network topologies called Graph Neural Networks 

(GNNs). GNNs utilise neural network operations to process input through nodes, edges, and global context 

to develop better embeddings for these elements.(Scarselli et al., 2009) GNNs update edges and nodes 

separately at first. Advanced GNN systems, on the other hand, use message transmission mechanisms, 

which let nodes and edges interact with nearby entities and integrate data in accordance with the graph's 

topology.(Kirkwood et al., 2022) Although GNNs can capture complex relationships within the graph 

structure, they may accomplish complicated tasks like node categorisation, edge prediction, and global graph 

analysis through this iterative process of collecting information throughout the graph. 

 

Figure 1 Current Research Flow of GNN 

 

 

There are two types of GNN architectures: spectral and spatial. Using graph Laplacians and eigenvalue 

decomposition, spectral methods—such as Spectral Networks (SCNN) and Graph Convolutional Networks 

(GCN)—perform convolutions in the spectrum domain. Nevertheless, they have difficulties in integrating 

edge characteristics and scaling. Conversely, spatial approaches overcome these drawbacks by directly 

allowing convolutional procedures to be applied by converting non-Euclidean graph data into Euclidean 

space. This change improves efficiency and flexibility.(Monti et al., 2016) Notable spatial techniques include 

Graph Attention Networks (GATs), which incorporate attention mechanisms to dynamically adjust 

convolution parameters based on node interrelationships, and Graph Sample and Aggregate (Graph 

SAGE),(Veličkovi´veličkovi´c et al., n.d.) which uses sampling and aggregation techniques to manage 

unordered neighbour sets. By dynamically allocating significance weights to nodes and their neighbours, 

GATs enhance the model's efficiency by highlighting the most pertinent data for each node's representation. 
 

Figure 2 Framework of Graph SAGE Algorithm(M. Chen et al., 2018) 
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2.2.2. Graph Attention Network 

 

Graph Attention Networks (GAT) use attention mechanisms to dynamically assign importance weights to 

nodes and their neighbours, as opposed to traditional Graph Neural Networks (GNNs) that use fixed 

weights.(Veličkovi´veličkovi´c et al., n.d.) GAT computes node embeddings by evaluating and attending to 

the features of neighbouring nodes, enabling the model to emphasize the most relevant neighbours in each 

node's representation. This adaptive approach improves the model's ability to capture complex relationships 

within graph-structured data. 

In Graph Attention Networks (GAT), the updated feature vector ℎ𝑣 for a node 𝑣 is computed by leveraging 

an attention mechanism to dynamically aggregate and weight the feature vectors of its neighbouring nodes 

𝒩𝓊. The formulation for this process is given by: 

ℎ𝑣 = 𝛟 (𝑥𝑢, ⊕𝑣∈𝒩𝓊 
ψ(𝑥𝑢, 𝑥𝑣)) (1) 

where: 𝜙 denotes a transformation function that maps the aggregated information into a new feature space. 

This function is generally a linear layer followed by a non-linearity, which transforms the combined features 

into the updated representation for node 𝑣. 𝜓 is the attention mechanism that computes the attention score 

between the feature vector 𝑥𝑢 of the central node 𝑢 and the feature vector 𝑥𝑣 of each neighbouring node 

𝑣. This score denoted as ψ(𝑥𝑢, 𝑥𝑣), quantifies the relevance or influence of node 𝑣 on the central node 𝑢. 

Usually, a learnable function—like a single-layer feedforward neural network with a LeakyReLU 

activation—is used to calculate the attention score. This function produces a scalar weight that represents 

the significance of the relationship between nodes 𝑢 and 𝑣. ⊕ represents the aggregation operation that 

combines the attention-weighted features from all neighbouring nodes 𝒩𝓊. This operation 

involves 
computing a weighted sum of the feature vectors 𝑥𝑣 from each neighbour 𝑣 , where the weights are 

determined by the attention scores ψ(𝑥𝑢, 𝑥𝑣). Through this aggregation stage, the model may incorporate 

relevantly weighted data from several neighbours.(Veličkovi´veličkovi´c et al., n.d.) 

 

Figure 3 An example of node 1's multiheaded attention (with K = 3 heads) on its 

neighbourhood. Independent attention calculations are shown by arrow styles and colours 

that differ. ~ h01 is obtained by concatenating or averaging the aggregated characteristics 

from each head.(Veličkovi´veličkovi´c et al., n.d.) 
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3. STUDY AREA AND DATASETS 

 
3.1. Study Area 

 
Uttarakhand, a state situated in the northwestern region of India amidst the Central Himalayas, 

shares its borders with Tibet to the north, Nepal to the east, Himachal Pradesh to the northwest, 

and Uttar Pradesh to the south. The state boasts a varied landscape, ranging from the majestic 

Himalayan mountains and glaciers in the north to the plains in the south. In this state, around 

46,000 sq. km area is hilly out of a total of 53484 sq. km of the geographical area of the state. 

The elevation in the state ranges from 300m to 7000m above mean sea level. The state receives 

an annual average rainfall of 1631mm. Southwest monsoon winds are the primary rain-bearing winds for 

the state, contributing70% of the annual average, or 1162.7mm, between June and September.(Navalgund 

et al., 2018) 

 

Figure 4 The Study Area, State of Uttarakhand, India 

 

 

 

 

 

3.2. Topography 

 
The state has varied landforms, such as deep valleys, high mountains, glaciers, snow-covered peaks, 

perennial rivers, streams, creeks, plateaus, and plains. The state also has the second-highest peak in the 

country, Nanda Devi (7,817 m above mean sea level). The state has different physiographic zones running 

parallelly from northwest to southeast. The fast-flowing rivers denote the steep slope in the region, which 
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usually results in landslides and landslips in the rainy season. (Mitra et al., 2009)The following Digital 

Elevation Model (DEM) is provided by NASA provides SRTM DEM of 30 m spatial resolution. 

 

 

 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Digital Elevation Model 

 

 

 

 

3.3. Datasets 

3.3.1. IMD AWS Data 

 

Automatic weather stations (AWS) are automated versions of regular weather stations. Both single-site and 

networked weather stations are possible. An automated weather station is a variation of a typical weather 

station that is automated to save staffing costs or to allow readings from far-off locations.(AWS, ARG , 

AGRO AWS AND ASG (Surface Instrument Division), n.d.) It offers real-time data recording and offline 

or non-real-time data recording for analysis. Tipping Bucket Rain Gauge, a precise device employed by IMD 

(Indian Meteorological Department) with a sensitivity of 0.5 mm per tip, is used in AWS to measure rainfall. 

As of 03 UTC today, the cumulative rainfall reported at 03 UTC today is the amount of rain that fell over 

the 24 hours that ended at 03 UTC today, starting at 03 UTC yesterday. The rainfall value is reset at 03 

UTC and fresh logging and accumulation of the rainfall, if any, takes place as per IMD 

convention.(AWS and ARG Automatic Weather Stations, n.d.) There are 137 AWS across 

Uttarakhand situated in different locations. 
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Figure 6 AWS locations over Uttarakhand 
 

 

 

 

3.3.2. IMD’s Daily Gridded Rainfall Data 

 

The National Data Centre at IMD, Pune, creates and preserves the IMD rainfall gridded using daily rainfall 

data. These datasets feature a 25-kilometre geographical resolution and a one-day temporal resolution. The 

daily gridded rainfall dataset for India, known as IMD4, was created with a high geographical resolution of 

0.25° × 0.25° and covers the years 1901 to 2010, offering essential insights into the rainfall patterns of the 

nation. Incorporating daily rainfall records from 6,955 rain gauge stations—the most significant number of 

stations utilised in such studies—distinguishes this dataset and allows for a more accurate representation of 

rainfall distribution across different areas of India.(Pai et al., 2014) 

These datasets are developed using conventional, deterministic, spatial interpolation techniques, the Inverse 

Distance Weight (IDW). The formulation of this method: 
 

𝑛 
𝑖=1 

  𝑍(𝑥𝑖)  
𝑝 

�̂�(𝑥 ) = 
 𝑑(𝑥0,𝑥𝑖)  (2) 

0 𝑛 1 
𝑖=1 𝑝 

𝑑(𝑥0,𝑥𝑖) 

 
Where, 

�̂�(𝑥0) is the estimated value at location 𝑥0. 

𝑍(𝑥𝑖) is the known value at location 𝑥𝑖. 

𝑑(𝑥0, 𝑥𝑖) is the distance between 𝑥0 and 𝑥𝑖. 

𝑝 is the power parameter, which determines the influence of distance. 

 

In this project, these data are treated as a result of deterministic spatial interpolation method. 

∑ 
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3.3.3. Platform Used 

 

The computational part of this research work is performed using R and Python Programming languages. 

Due to several issues of versions of repositories and individual library issues, the R based works could not 

performed in the RStudio software of the local computing system. So, all the computational works are 

performed in the Geospatial Computing Platform provided by the ITC, University of Twente, developed 

by the Centre of Expertise in Big Geodata Science (CRIB) (https://itc.nl/big-geodata). It has distributed 

and GPU-accelerated capabilities for computation and analysis, out of which, the computation environment 

with 72 virtual CPUs (vCPUs) based on the Intel x86-64 architecture, 768 GB of RAM, and an NVIDIA 

RTX A4000 GPU has been used predominantly for this work. For some code checking and exploration 

purposes, Google Colab, a cloud-based platform provided by Google has been explored. Free version of 

this offers typically offers an Intel Xeon CPU (2-4 cores) with 12-16 GB RAM, and an NVIDIA Tesla K80, 

T4, P100, or similar GPU with 12-16 GB VRAM. 

https://itc.nl/big-geodata
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4. METHODOLOGY 

 
The following diagram shows the overall methodology of this project, respect to each sub 

objectives. 
 

 

 

Figure 7 Overall Framework of Methodology 
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4.1. Data Preparation and Processing 

 
The daily observations of rainfall data are provided in a comma-separated value (CSV) format along with 

the observation sites. However, the elevation values were present in the DEM's raster dataset. Then, those 

values based on their locations were cross-checked with the locations of the rainfall observations. 

Eventually, each day, a combined dataset of rainfall observations and corresponding elevation values was 

made available. Those were converted to CSV, and coarsening modules were used to reduce the accuracy of 

the measurements. 

For have a justified analytical result and following discussion, instead of one or few days, daily data of a 

whole month was considered. Just to be clarified, this decision was taken to analyze the methodological 

insights and benefits of each method mentioned in the following passages, not to consider the temporal 

dependencies or patterns. Detailed discussion about the outcomes is included in Result and Discussion 

section. 

 

From exploratory analysis, it has been found that the raw data were skewed. To reduce the skewness and 

stabilize the variance, Box-Cox transformation function was used. The Box-Cox transformation of a variable 

𝑍(𝑥) is defined as 
 

 

The parameter 𝜆 is chosen to maximize the likelihood function under the assumption that the transformed 

data follows a normal distribution. The transformed data is then geocoded by adding transformed 

coordinate reference system (crs) of UTM 43N zone of WGS 84. 

 

In the Deep Learning module, the input variable, i.e. rainfall values were converted to tensor, a multi- 

dimensional array like NumPy arrays, optimized for PyTorch's deep learning framework. 

 

 

 

4.2. Variogram Modelling 

 
The transformed rainfall values then included for variogram analysis. General expression of variogram 

function: 

𝛾(ℎ) = 
1

 2 ∑ [𝑍(𝑥 ) − 𝑍(𝑥 )] (3) 
 

2𝑁(ℎ) 𝑖,𝑗 𝑖 𝑗 

 
Where: 

γ(h) is the semi variance at lag ℎ. 

𝑍(𝑥𝑖) and 𝑍(𝑥𝑗) are the values of the variable of interest at locations 𝑥𝑖 and 𝑥𝑗. 

𝑁(ℎ) is the number of pairs at distance ℎ. 
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4.3. Maximum Likelihood Estimation 

 
The estimation of variogram parameters were achieved through maximum likelihood estimation (MLE), 

aiming to optimize the likelihood function based on observed spatially correlated data. Starting with a set of 

observations 𝑍(𝑥1), 𝑍(𝑥2), … , 𝑍(𝑥𝑛) at locations 𝑥1, 𝑥2, … , 𝑥𝑛, the variogram model is defined to capture 

the spatial correlation structure of these observations by modelling the relationship between the variance of 

the differences of the data at various locations. 

model includes a deterministic trend expressed as 

𝑚(𝑥) = β0 + β1𝑓1(𝑥) + ⋯ + β𝑝𝑓𝑝(𝑥) (4) 

where 𝑓1(𝑥), … , 𝑓𝑝(𝑥) are basis functions, and a stochastic term represented as 𝑍(𝑥) = 𝑚(𝑥) + 

𝜖(𝑥), where 𝜖(𝑥) is a zero-mean Gaussian random field characterized by a covariance structure dictated by 

the variogram parameters. The covariance matrix 𝛴(𝜃) depends on the variogram parameters 𝜃 (nugget, 

sill, range), and the joint probability density function of the observed data is expressed as 

𝐿(θ) = 
1

 
(2π)𝑛/2|Σ(θ)|1/2 

exp (− 
1 

(𝑍 − 𝑚)𝖳Σ(θ)−1(𝑍 − 𝑚)) (5) 
2 

To facilitate optimization, the log-likelihood function is computed as, 

log 𝐿 (θ) = − 
𝑛 

log(2π) − 
1 

log|Σ(θ)| − 
1 

(𝑍 − 𝑚)𝖳Σ(θ)−1(𝑍 − 𝑚) (6) 
2 2 2 

By maximizing this log-likelihood function using appropriate optimization techniques, the variogram 

parameters 𝜃 can be estimated. 

In R, using the GeoR package, the likfit () function was used to perform MLE on the variogram models. 

 

 

4.4. Covariance Function 

 
The covariance function with the most considerable log-likelihood function or the one with the least 

negative log-likelihood function is chosen as the plausible covariance function in the maximum likelihood 

technique. 

The following are plausible variogram models that were employed in this study: 

 

The Spherical function which is given as: 

𝐶(ℎ) = σ2 (1 − 
3ℎ 

+ 
1 

(
ℎ
)

3
) for ℎ ≤ 𝜙, and 𝐶(ℎ) = 0 for ℎ > 𝜙 (7) 

where: 

2𝛟 2  𝛟 

• σ2 is the sill (variance). 

• 𝜙 is the range parameter. 

• ℎ is the lag distance. 

 

 

The Exponential function which is given as: 

𝐶(ℎ) = σ2 exp (− 
ℎ
) (8) 
𝛟 
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𝑖=1 

The Gaussian covariance function is given as: 

 

 

The parameters have the same meaning as in the exponential model. The effective range is given as 

𝑟 ́  = √3𝑎. 

 

 

 

4.5. Spatial Prediction 
 

 
Spatial Prediction was carried out in the 25km grid, using the prediction equation: 

 

�̂�(𝑥0) = μ(𝑥0) + ∑𝑛 𝑤𝑖(𝑥0)(𝑍(𝑥𝑖) − μ(𝑥𝑖)) (9) 

Where: 

 

• �̂�(𝑥0) is the estimated value at location 𝑥0, 

• μ(𝑥0) is the trend or mean value at location 𝑥0, 

• 𝑤𝑖(𝑥0) are the kriging weights for each observation 𝑍(𝑥𝑖), 

• 𝑍(𝑥𝑖) is the observed value at location 𝑥𝑖, 

• 𝑛 is the number of observed data points. 

 

 

 

 

 

4.6. Regression Analysis 

 
The transformed elevation values were treated as the explanatory variables, to the dependent variable of 

transformed rainfall. The Linear Regression Model: 

 

𝑌 = β0 + β1𝑋1 + 𝜀 (10) 

 

 

Where: 

𝑌 is the dependent variable, which is the predicted rainfall. 

β0 is the intercept (constant term) of the regression equation. 

β1 is the coefficient of the explanatory variable, representing the change in 𝑌 for a one-unit change in 

𝑋1. 

ϵ is the error term, which accounts for the variability in 𝑌 not explained by the linear relationship with 

𝑋1. 
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The residual values of the regression were estimated and used into variogram modelling using Maximum 

Likelihood Estimations and then Spatial Prediction was performed, using the previously mentioned 

methodologies. 

 

 

 

4.7. Deep Learning based Interpolation 

 
Here, the distribution of the observations in the bounds of Latitude and Longitude is considered as form 

of a Graph, where each observation is treated as nodes, and links or edges are the proximity between 

those nodes, to understand the influence of rainfall values of each node can influence each other. 

Mixture Model Neural Network (MoNet), which was introduced to effectively manage tasks across 

different domains—specifically image processing, graph analysis, and 3D shape analysis—demonstrating 

its versatility. While Graph Attention Networks (GAT) effectively compute node embeddings through 

adaptive attention scores, MoNet introduces a more sophisticated methodology by employing Gaussian 

Mixture Model (GMM) convolutions.(Zhang et al., 2022) In contrast to GAT’s reliance on a single 

attention mechanism, MoNet leverages a mixture of Gaussian kernels to capture a diverse array of spatial 

patterns and relationships. The core idea behind MoNet is to adaptively model the influence of 

neighbouring nodes based on their spatial relationships, using a mixture of Gaussian kernels. This is 

achieved through a specialized convolution process as described by the following formula: 
 

 

Here, 

ℎ𝑣 is an updated feature vector for node 𝜐 that considers its neighbours' effect. 
1 

 

|𝑁(𝑢)
| 

Assures that the average of the collected data from nodes within proximity balances the 

contributions of each neighbour. 

 

∑𝑣∈𝑁(𝑢) ∑
𝐾
 𝑤𝑘(𝑒𝑢𝑣) Aggregates information from all neighbouring nodes 𝜐 of node 𝑢, with each 

neighbor’s contribution weighted by Κ Gaussian kernels based on the edge feature 𝑒𝑢𝑣. 

 

𝑤𝑘(𝑒𝑢𝑣) ⊙ 𝑊𝑥𝑣 Applies the Gaussian weights to the feature vector 𝑥𝑣 of node 𝜐,transforming and 

combining it with the learned weight matrix 𝑊. 
 

 
4.7.1. Model Architecture 

 

The following is a description of the MoNet-based model's approach for spatial interpolation: To represent 

the node attributes 𝑥𝑢 and target variable 𝑦𝑢, the geographic coordinates (latitude and longitude) and daily 

cumulative rainfall values are first taken out of the dataset and transformed into PyTorch tensors. After that, 

a network structure is created by encoding the spatial interactions between these nodes using the k-nearest- 

neighbors (k-NN) method. The spatial relationships between these nodes are then encoded into a graph 

structure using a k-nearest neighbours (k-NN) approach, where each node 𝑢 is connected to its 𝑘 nearest 

𝑘=1 
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neighbours 𝑁(𝑢) based on Euclidean distance. The resulting adjacency matrix is converted to an edge index 

𝐸, representing the graph's connectivity, and is crucial for capturing the neighborhood structure of the data. 

A PyTorch Geometric Data object is constructed, encapsulating the node features 𝑥𝑢, edge index 𝐸, and 

the target values 𝑦𝑢, which serves as the input to the graph neural network (GNN). To facilitate training 

and evaluation, the dataset is split into training and validation sets, with binary masks 𝑀𝑡𝑟𝑎𝑖𝑛 and 𝑀𝑣𝑎𝑙 

created to specify the nodes used for each purpose. 

 

The model is defined as a two-layer GMMNet, where each layer is a GMMConv 2 operation. The 

GMMConv 2 layers are designed to perform convolution over the graph, where the feature vector of each 

node ℎ𝑢 is updated by aggregating information from its neighbours 𝑁(𝑢). This is done by first computing 

the pseudo-coordinates 𝑒𝑢𝑣, representing the relative spatial positions of neighbouring nodes 𝑢 and 𝑣, i.e., 

𝑒𝑢𝑣 = 𝑥𝑢 − 𝑥𝑣. The first GMMConv layer applies a learned transformation 𝑊1 to the node features, 

resulting in transformed features 𝑊1𝑥𝑣 for each neighbour 𝑣. These transformed features are then weighted 

by Gaussian kernels 𝑤𝑘(𝑒𝑢𝑣 ), where each kernel 𝑘 captures different spatial patterns based on the edge 

feature 𝑒𝑢𝑣, reflecting the spatial dependency between nodes. The weighted contributions from all kernels 

are summed and aggregated across all neighbours 𝑁(𝑢) for each node, resulting in a new feature 

representation ℎ𝑢 for each node. The element-wise multiplication ⊙ of the transformed features and using 

Gaussian weights, the aggregation process is made robust to the spatial relationships represented in the 

graph. After adding non-linearity by applying an ELU activation function to the first GMMConv layer's 

output, a second GMMConv layer refines the node features to get the final interpolated rainfall values. 

 

 

Figure 8 Architecture of MoNET with GMMConv 

 

 

 

 

4.7.2. Model Parameters 

 

Followings are the parameters of the MoNET model: 

a. K neighbourhood value: This hyperparameter determines how many nodes each node is 

linked to, controlling the graph's connection. The value of k = 5 was chosen here to initiate 

the model. 

b. Gaussian Kernel Size (K): The total amount of kernels for the GMMConv layers. Each kernel 

can capture different spatial patterns or connections. In this model, K= 3 is chosen, which 

allows the model to learn and apply three distinct spatial weighting functions. 
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c. No of Hidden Units in GMMConv Layers: Determines the feature representation's size 

following each convolutional layer. The first GMMConv layer transforms the input feature 

dimension from 2 to 16. This decision establishes a compromise between the necessity for 

more detailed feature representation and the danger of overfitting. The feature dimension is 

reduced to 1 by the second GMMConv layer, which corresponds to the target variable 

(rainfall). 

d. Activation Function: Induces the model's non-linearity, which enables it to recognise more 

intricate patterns in the data. Here, we made use of the Exponential Linear Unit (ELU). It is 

the method of choice because ELU may reduce the vanishing gradient issue while preserving 

computing efficiency. It also ensures quick convergence, which accelerates the learning 

process. 

e. Learning Rate: Controls the rate at which the model changes its parameters while being 

trained. Here, a learning rate of 0.01 is employed. Here, the learning rate for each parameter 

is adjusted using the Adam Optimizer based on estimations of lower-order moments. 

f. Number of Epochs: Determines how long the model is trained. 140 epochs has been used. 

g. Weight Decay: It helps keep the model from overfitting the training set and becoming too 

complicated. 0.0005 weight decay is employed. 

 
4.7.3. Training and Validation 

 

The whole dataset is the size of [106,2], where 106 are unique rainfall observations, with their location values. 

Data is divided into training and validation sets, to train and evaluate the model. Size of training set is [84,1] 

and validation sets is [22,1]. 

 
4.7.4. Application 

 

The model is applied over the observations of all days of the month July 2023. The Observations are made 

into graphs, followed by the prediction grid is made, with 0.25-degree spatial resolutions. The prediction is 

done on the combined grid or graph of observations and the prediction grid. 

 

 

 

4.8. Comparison 

Statistical comparison of the results of the Deterministic (IDW), Stochastic (Kriging and Regression 

Kriging) Spatial Interpolation methods, and Deep Learning based interpolation methods, is done using 

Root Mean Square Error (RMSE) analysis. The general formula to calculate RMSE 

 
 

1 
RMSE = √ 

𝑛 

𝑛 

∑(𝑦𝑖 − �̂�𝜄 ) 2  
𝑖=1 

𝑛 is the total number of observations. 

𝑦𝑖 is the actual value. 

�̂�𝜄 is the predicted value. 
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Range of RMSE values between 25 to 75 is treated as Moderately Performing, below 25 is Good 

Performance and above 75 is Low Performance.(Mitra et al., 2009) 

 

 

 

4.9. Reproducibity 

 
Separate parts of the methodology are performed in Python and R language consecutively. Alongside with 

the domain knowledge of statistical analysis, Spatial Interpolation techniques, Machine Learning and Deep 

Learning algorithms, rigorous studies on the documentation of the used libraries like PyTorch, SciPy, 

GSTools in Python and Gstats, GeoR, Caret and Raster in R is needed, to reproduce the work. With the 

availability of advanced cloud computing facilities in free of costs, the methodology can be carried out over 

any samples. However, for complex and huge data, there is need of High-Performance Computing facilities 

to run these methods. The codes of the mentioned methods in this section can be found out in this GitHub 

repository (https://github.com/GrassHopper97/MSc-Thesis). 

https://github.com/GrassHopper97/MSc-Thesis


21  

5. RESULTS 
 

In this chapter, the results from the works of the different parts of the methodology has been presented. 

The daily distribution of observed rainfall data over the whole month of July 2023 is illustrated here: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9 Daily Distributions of Rainfall over all the days 
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5.1. Data Preprocessing 

 
The input daily rainfall data are sorted out by removing any faults and then transformed using the 

transformation function mentioned in the methodology section. The outcomes of the transformed daily 

rainfall data are as follows 
 

Figure 10 Histogram Distribution of Transformed Rainfall 

 

 

5.2. Variogram Generation and Maximum Likelihood Analysis 

 
The transformed daily rainfall data is the input for the variogram generation. The parameters of those 

variograms are estimated using MLE, and then used to fit the empirical variogram models. Estimated 

parameters are shown here: 
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Table 1: Variogram Parameters and Covariance models used for Kriging 
 

Date Nugget Partal Sill Practical Range (km) Covariane Model 

01-07-2023 1.04 1.94 23.6 Exponetial 

02-07-2023 0.09 4.52 29.13 Exponetial 

03-07-2023 0.07 1.59 10.6 Exponetial 

04-07-2023 0.037 1.44 28.3 Gaussian 

05-07-2023 0.052 5.59 30.22 Exponetial 

06-07-2023 4.38 2.81 98.7 Exponetial 

07-07-2023 0.46 0.96 78.7 Spherical 

08-07-2023 0.49 1.019 82.73 Spherical 

09-07-2023 16.3 1.078 86.76 Spherical 

10-07-2023 0.647 0.419 103.4 Exponetial 

11-07-2023 2.015 1.966 85.5 Exponetial 

12-07-2023 3.383 3.513 92.53 Exponetial 

13-07-2023 7.751 0.86 27.23 Spherical 

15-07-2023 0.261 2.28 29.04 Spherical 

16-07-2023 0.794 2.51 37.5 Exponetial 

17-07-2023 0.401 7.145 44.89 Exponetial 

18-07-2023 0.657 2.94 44.23 Exponetial 

19-07-2023 0.664 3.16 46.85 Gaussian 

20-07-2023 0.772 1.59 44.44 Exponetial 

21-07-2023 0.744 3.13 36.35 Exponetial 

22-07-2023 0.806 3.34 38.86 Exponetial 

23-07-2023 0.166 2.9 43.37 Exponetial 

24-07-2023 0.283 3.3 49.49 Exponetial 

25-07-2023 1.144 1.45 32.21 Exponetial 

26-07-2023 0.457 2.51 27.25 Exponetial 

27-07-2023 1.146 3.11 42.98 Exponetial 

28-07-2023 0.476 2.63 38.25 Exponetial 

29-07-2023 0.172 2.84 49.27 Gaussian 

30-07-2023 0.628 1.36 34.17 Gaussian 

31-07-2023 0.595 1.48 47.2 Exponetial 

 

 

 

Based on the estimated parameters, the modelled variograms are shown here: 
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Figure 11 Fitted Variograms 
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5.3. Spatial Prediction 

Following Variogram models are used for the spatial prediction into the kriging model. The daily predicted 

rainfall maps or surfaces are shown: 

 

Figure 12 Spatial Predicted Maps from Kriging 
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5.4. Regression Work and Prediction 

With the transformed elevation data, the linear regression analysis is performed. The results of the 

regression coefficients and intercepts are shown here 

 

Table 2: Regression Coefficients and intercepts 
Date Regr Coefficient Intercepts 

01-07-2023 0.254 2.61 

02-07-2023 0.137 1.522 

03-07-2023 -0.182 2.054 

04-07-2023 0.193 2.343 

05-07-2023 0.274 2.306 

06-07-2023 -0.196 1.81 

07-07-2023 0.257 2.622 

08-07-2023 0.151 1.899 

09-07-2023 -0.198 2.649 

10-07-2023 0.266 2.035 

11-07-2023 0.166 2.326 

12-07-2023 -0.137 2.777 

13-07-2023 0.286 1.625 

15-07-2023 0.279 2.245 

16-07-2023 -0.243 1.25 

17-07-2023 0.153 2.107 

18-07-2023 0.228 1.585 

19-07-2023 -0.139 1.204 

20-07-2023 0.287 2.591 

21-07-2023 0.165 1.192 

22-07-2023 -0.166 1.874 

23-07-2023 0.26 2.422 

24-07-2023 0.26 1.729 

25-07-2023 0.221 1.969 

26-07-2023 0.282 1.411 

27-07-2023 0.136 2.368 

28-07-2023 -0.191 2.759 

29-07-2023 0.162 2.262 

30-07-2023 -0.243 2.68 

31-07-2023 -0.22 2.185 

 

 

 

 

 

Using the residuals of the regression model, the variogram parameters are estimated, in the same way as 

earlier, using MLE. Estimated Variogram parameters are shown here 
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Figure 13 Fitted Variograms, used in Regression based Kriging 
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The modelled parameters of these variograms are : 

 

 

 
Table 3: Variogram Parameters and Covariance model, used in Regression based Kriging 

 

Date Nugget Partial Sill 
Practical Covariance 

Range Model 

01-07-2023 1.04 1.94 23.6 Exponetial 

02-07-2023 0.09 4.52 29.13 Exponetial 

03-07-2023 0.07 1.59 10.6 Exponetial 

04-07-2023 0.037 1.44 28.3 Gaussian 

05-07-2023 0.052 5.59 30.22 Exponetial 

06-07-2023 4.38 2.81 98.7 Exponetial 

07-07-2023 0.46 0.96 78.7 Spherical 

08-07-2023 0.49 1.019 82.73 Spherical 

09-07-2023 16.3 1.078 86.76 Spherical 

10-07-2023 0.647 0.419 103.4 Exponetial 

11-07-2023 2.015 1.966 85.5 Exponetial 

12-07-2023 3.383 3.513 92.53 Exponetial 

13-07-2023 7.751 0.86 27.23 Spherical 

15-07-2023 0.481 2.28 48.14 Spherical 

16-07-2023 0.846 2.51 48.39 Exponetial 

17-07-2023 0.703 7.145 27.43 Exponetial 

18-07-2023 1.029 3.02 31.59 Exponetial 

19-07-2023 0.383 2.29 28.63 Gaussian 

20-07-2023 0.341 2.62 49.71 Exponetial 

21-07-2023 0.868 3.88 46.07 Exponetial 

22-07-2023 0.687 1.56 41.46 Exponetial 

23-07-2023 1.104 2.39 34.56 Exponetial 

24-07-2023 0.114 3.39 32.55 Exponetial 

25-07-2023 0.275 4.06 39.63 Exponetial 

26-07-2023 0.163 3.66 32.38 Exponetial 

27-07-2023 1.013 1.93 45.23 Exponetial 

28-07-2023 0.475 1.74 33.08 Exponetial 

29-07-2023 0.924 1.46 46.56 Gaussian 

30-07-2023 0.174 4.04 47.48 Gaussian 

31-07-2023 0.579 1.25 41.95 Exponetial 
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The variograms generated from the residual values of the regression model, are used for the 

kriging model for the spatial prediction. The daily rainfall surfaces generated from the regression 

analysis are shown here: 

 

Figure 14 Spatial Predicted Rainfall maps from regression-based kriging 
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5.5. Deep Learning based Interpolation 

 
The MoNET model, is trained and validated over the input datasets. This step is essential to understand 

the performance of the model. The loss curve, which is representation of model’s loss or error changes 

over time with training and validation. 
 

Figure 15 Loss Curve 

 

 

The 𝑅2 score, which also helps to evaluate the model’s performance over time. This represents 

how well the predicted value matches with the actual values. 
 

Figure 16 : 𝑅2 curve 
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The model is applied over the distributions of each day’s rainfall observations, to get the daily 

rainfall surfaces. 
 

Figure 17 Predicted Rainfall Maps using MoNET 



32  

5.6. Daily Grided Maps from IMD 

As mentioned in the dataset section, the daily grided data, which are freely available from the IMD, is used 

here as a result of the deterministic spatial interpolation. 

 

Figure 18 IMD’s Daily Rainfall Maps 
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5.7. Comparison of the Results 

The results from the 2 geostatistical spatial interpolation methodologies and MoNET, the deep learning 

interpolation technique, along with the grided data of IMD, are compared with the actual rainfall 

observations from the AWSs. There are 7 different AWS only, which had the continuous records over the 

whole month. Location of those stations are: 

Figure 19 Distinct Locations with continuous records 

 

 

 

 

 

The results are compared with the values of those stations. The plot of RMSE values is shown here. 

The red lines represent RMSE associated with MoNET model, green is with Kriging model, orange is with 

Kriging with Regression model and blue is with the IMD data, which represents the IDW model. 
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Figure 20 RMSE values of Comparisons between Deterministic, Stochastic and Deep Learning Methods 
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6. DISCUSSION 

 
This chapter is based on the interpretation and discussion of the results of the 3 different models and the 

results of the comparison. Following sections are to be framed to discussion of results to help to answer the 

different subobjectives. Final section is to highlight the common findings. 

 

 

 

 

6.1. Sub-Objective 1 

Overall, analysis of almost all days shows very small amounts of nugget, which indicates there are very small 

amounts of variability in the very short ranges. From the Table 1 values of partial sill and ranges, it can be 

understood that the spatial auto correlation is low and quickly diminishing, from the values between 20 to 

40 km of the range, as both the partial sill and range values are less. In few cases, the range values are 

significantly high, with a low partial sill value, which, also, shows the very low autocorrelation between 2 

distant pairs. The effect of the weak spatial structure can be visible on the kriging results, where it can be 

seen, the portion, with very less and almost no observations, predicted results are not proper. 

 

 

 

6.2. Sub-Objective 2 

From the figure 16, The 𝑅2 values of the training and validation phase, over time, shows that the model has 

a good convergence, as the validation 𝑅2 values keep increasing and ideally follows the stable training curve. 

But the model can be still improved, as the validation 𝑅2 eventually should reach to the positive side of the 

plot. From the figure 15, The loss curve shows continuous pattern in training and validation curve and 

ultimately, they converge, showing the use of Learning Rate and Decay Function values with the Optimizer 

is justified. With the K neighbour value of 5 and the 3 gaussian kernels, it effectively carried the detailed 

relationship, where the observations are relatively closed. But the model is not able the show the effect of 

higher individual rainfall observations, on a few days. Overall, the outputs make the model applicable 

enough to be an additional computational methodology for spatial interpolation. 

 

 

6.3. Sub-Objective 3 

From the significance analysis, it has been found that the Elevation is a highly significant predictor of rainfall, 

as the p- values lies between 0.001 to 0.01 in the different days of analysis. However, from Table 2 the 

coefficient of regression is very less, which make the trend, that added by the regression, is not strong 

enough, and that’s why the values of variogram parameters in Table 1 and Table 2 are almost similar, 

similarity can be seen in the figures 12 and 14 also. 
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6.4. Sub-Objective 4 

In the figure 20, the green and orange lines are overlapped, as the RMSE values of both Kriging and Kriging 

with regression has very less differences. For the first seven days, these both models have the least RMSE 

values, showing better representation of the actual data. However, for the rest of the days, all the models 

show approximately similar patterns of RMSE values, ranging from 30 to 60. Which implies that all the 

models are moderately able to capture the accurate rainfall values. Out of 106 unique locations, where the 

rainfall values were observed the month, only 7 stations were available to perform the comparison with the 

accurate data. Which is not capturing the whole workability and assessment of the individual models over 

the study area. 

 

 

 

 

6.5. Overall Discussion 

From the visual inspection, it can be seen that the results of the MoNET tends to have a similar pattern 

over some part of the study area over some certain days, which resembles with those regions where the 

observed data were having the similar values on those days, which shows the lack of capturing different 

spatial patterns, with less no of use of the kernels. The IMD data has very less visual resemblance with the 

results of Kriging methods as well as with MoNET results. 

In terms of daily predictions, incorporating a model like MoNet with GMMConv layers is helpful since it 

allows for training a model that can be applied consistently to fresh daily data as it becomes available. 

Compared to Kriging, which lacks a generalisable variogram model appropriate for all days and necessitates 

evaluating the spatial structure of each day and fitting variograms appropriately, this is far less complex. The 

findings of this work illustrate the usefulness of GMMConv-based MoNet in spatial prediction tasks, a 

unique approach that offers a beneficial alternative to the frequently utilised methods. However, while the 

pre-training of such models can be highly beneficial, their success heavily depends on the availability of a 

robust and sufficient training dataset. In the present work, the sparse availability of data poses a challenge, 

limiting the potential of the model to fully capture the spatial patterns across different days. 
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7. CONCLUSION 

 
This chapter is divided into 3 sections. Firstly, the Research Questions related to each sub-objectives have 

been reviewed and discussed with the probable answers. Next, is about the Recommendation about the 

future development of the current thesis work. Lastly, the conclusion of the project has been presented. 

 

 

 

7.1. Discussion on Research Questions 

 
From the 1st Sub Objective: 

1. Which model of Interpolation going to be used? 

Ans: This work has been done using Ordinary Kriging and Universal Kriging models. Ordinary Kriging was 

used with only rainfall values. Universal Kriging was used with the calculated residuals of the regression 

model between rainfall and elevation. 

 

2. How well these models are performing in the prediction? 

Ans: The discussion about the performance of those model has been highlighted in the 6.1 and 6.3 

sections. 

 

From the 2nd Sub Objective: 

1. How to implement Deep Learning for Interpolation? 

Ans: In this study, a framework of Graph based neural networks is used, where the distribution of rainfall 

is treated as individual nodes over the axes between Latitude and Longitude. The relationship between each 

node is tried to find out using K Neighborhood mechanism. These relationships have been used in the 

learnable Gaussian kernels, to identify spatial patterns in the following data. This model is GMMConv based 

MoNET model, which can be used in the specified spatial grid, generate interpolated surface over the 

learned spatial patterns. 

 

2. How effectively can Rainfall be predicted using DL? 

Ans: This has been discussed in the 6.2, 6.4 and 6.5 sections. 

 

From the 3rd Sub Objective: 

1. Is it possible to establish a relation between the elevation and Rainfall, in rainfall prediction 

analysis? Can this relation influence the predictive performance of the Rainfall Surface 

Generation? 

Ans: From the present study, based on the significance score, it is clarified that Elevation can be a significant 

predictor of rainfall, in the regression work. However, the influence of elevation over the rainfall in the 

present study is very less, so ultimately, it does not impact the overall rainfall prediction is a great way. 

 

From the 4th Sub Objective: 

1. How the newly developed grids are performing alongside with the IMD, for rainfall prediction? 

Ans: This has been visually represented in the figure 20 and discussed in the 6.4 section. 

 

2. Does the application of deep learning provide any significance? 

Ans: Yes, for the present study, the Deep Learning based model gave significant results. The results were 

moderately accurate for almost every day, with RMSE values between 30 to 50, in some days it has values 
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around 20, where it gave the best prediction of the actual data. However, evaluation of the predicted maps 

by the model needs to be done with a significant amount of actual data, which are not available in this work. 

 

 

 

 

 

7.2. Recommendations and Future Scope 

 

• This model needs to be compared with more continuous datasets, to know more about the 

predictive capabilities of the models. Satellite based rainfall product can be good option for 

validating. However, area of the study may need to be extended based on the availability of the 

satellite-based rainfall products. Also, the incorporation of satellite-based rainfall products, ground 

data-based rainfall prediction models can be a great addition to a finer predictive rainfall dataset, 

from regional to global scale. 

• The Mo-NET model can be modified with a good computing facility to use it the web platforms 

directly, so that it can work in real time with daily input of the rainfall data. 

• As the Elevation parameter, doesn’t have any serious impact on the prediction in the current study, 

it is highly recommended to add the local climate variables in the prediction, along with elevation, 

specially in the mountain regions, like Uttarakhand, where the micro climatic effects are significant. 

• Increase in the training dataset is a need as in this study only 106 data are used to train the model. 

With increasing the study area, training samples, changing the parameters like no of kernels and no 

of K neighbourhood values, the more detailed analysis of the performance of the model can be 

deduced. 

 

 

 

7.3. Conclusion 

 
The study conducted a comparative analysis of rainfall surface generation using deterministic, stochastic, 

and deep learning approaches, focusing on Uttarakhand, India, with the primary objective of developing a 

high-resolution rainfall surface model that accurately reflects the region's spatial patterns using techniques 

such as Inverse Distance Weighting (IDW), kriging, regression kriging, and the deep learning-based MoNET 

(Mixture Model Network). The methodologies encompassed data preprocessing, variogram modeling, 

regression analysis, and the application of MoNET, followed by a statistical comparison of results using 

Root Mean Square Error (RMSE) analysis. The findings revealed that while kriging and regression kriging 

captured spatial variability moderately well, they struggled in areas with sparse observational data, resulting 

in less accurate predictions. The MoNET model, despite its innovative use of graph-based neural networks 

and Gaussian Mixture Models, demonstrated only moderate predictive accuracy, with RMSE values mostly 

between 30 to 60, due to the limited training dataset and weak spatial structure of the rainfall data, 

particularly in regions with high elevation variability. Although elevation was statistically significant, its 

impact on improving rainfall prediction accuracy was minimal within the study area. The study's limitations, 
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including the sparse availability of continuous observational data and the lack of integration of additional 

climate variables, constrained the models' predictive capabilities. The comparison with IMD's gridded 

rainfall data, derived using the deterministic IDW method, further emphasized the challenges in achieving 

high accuracy across diverse topographical regions. Nonetheless, the research underscores the potential of 

deep learning models like MoNET in rainfall surface generation, particularly in regions with complex spatial 

patterns, while highlighting the necessity of larger and more diverse datasets, and the incorporation of 

additional environmental variables to fully realize the benefits of these advanced techniques. Future research 

should focus on expanding the dataset by incorporating satellite-based rainfall products and additional 

climate variables, especially for mountainous regions where microclimatic effects are significant. Enhancing 

the MoNET model's architecture, including adjustments to the number of kernels and neighborhood values, 

could improve its ability to capture spatial patterns more effectively. Moreover, developing web-based 

applications that leverage MoNET for real-time rainfall prediction could offer practical benefits for disaster 

management and water resource planning in vulnerable regions like Uttarakhand. Ultimately, while this study 

advances the understanding of rainfall surface generation, it also highlights ongoing challenges and 

opportunities for improving spatial interpolation techniques in complex environments. 

 

 

 

 

 

 

7.4. Use of AI in this Project 

 
“During the preparation of this work, the author(s) used [Grammarly / Sentence Correction and Grammar correction] to 

[Present and maintain the structure of meaningful sentences]. After using this tool/service, the author(s) reviewed and edited 

the content as needed and took (s) full. responsibility for the content of the work.” [1] 

Students using AI, without the explicit consent of the instructor and acknowledgement of the tool in an appendix should 

therefore be considered to have committed academic misconduct. 

 

 

 

 

[1]. Elsevier. The use of AI and AI-assisted writing technologies in scientific writing. Accessed 02- 05- 

2023. Available at: https://www.elsevier.com/about/policies/publishing-ethics/the-use-of-ai- and- ai 

assisted-writing-technologies-in-scientific-writing 

http://www.elsevier.com/about/policies/publishing-ethics/the-use-of-ai-
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