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Management Summary 
Company X has been experiencing rapid growth in the production of nutritional healthcare products, a 

trend expected to continue in the coming years. To support this expansion, the company decided to 

construct a new raw materials warehouse, apart from the production location. The goal is to put off 

the pressure from the warehouse department at the production location itself. This new warehouse 

gets an advanced Automated Storage and Retrieval System (AS/RS). This multi-deep AS/RS offers high 

storage density, but presents challenges in accessing storage locations directly. The efficiency of this 

system is largely determined by the way how ingredients are stored, leading to the central research 

question: 

“How do we design an optimal storage assignment for the automated 
storage/retrieval system of Company X such that the travel time efficiency is 

maximized?” 

Solution 

To address this question, we collected and analyzed production data to identify the most frequently 

accessed ingredients. An Linear Programming optimization model was initially developed with as 

objective to minimize the total travel time to handle all storage and retrieval requests. However, this 

proved insufficient for the complexity of the problem. Therefore, we created a simulation model that 

simulates the AS/RS and is able to determine the exact travel times when travelling from a certain 

location to any other location. This simulation model is able to handle the larger problem size, in which 

we mapped initial stock and processed storage and retrieval requests afterwards. We also implemented 

two metaheuristic methods to refine the solutions further.  

 

Results 

Two sets of problem instances were tested, which we call the small problem instance and the complete 

problem instance. The small problem instance was tested using both the optimization model and the 

simulation model, while the complete instance was tested exclusively with the simulation model. The 

purpose of analyzing both instances was to assess the performance of the complete problem instance 

by leveraging insights gained from the small instance through the mathematical model. The following 

characteristics define the small and complete problem instances. 

Type of 
instance 

Initial stock 
(pallets) 

Number of 
products 

Number of 
retrieval requests 

Number of 
storage requests 

Small 1,951 8 40 70 
Complete 4,242 83 8,512 10,122 

 

The results for the small problem instance are shown directly below. The total number of handled 

pallets equals 110, and all numbers are shown in minutes. The optimization method that yielded the 

best results was the Simulated Annealing algorithm, which improved the initial solution of the class-

based storage strategy by 38.58%.  

Storage Strategy 
(small instance) 

Total travel time 
(minutes) 

Average travel time 
(minutes) 

Average travel time 
after optimization 

(minutes) 

Exact 119.33 1.08 - 
Random 295.25 2.68 1.60 

Class-based 233.25 2.12 1.30 
Dedicated 210.53 1.91 - 
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The next set of results are related to the complete problem instance. The total number of handled 

pallets in this case equals 18,634. The percentage improvement after optimization is much smaller for 

the complete instance compared to the small instance. A major reason for this is that retrieval on batch 

number is preferred, with as result that not always the ingredient stored on the closest location is 

retrieved. 

Storage Strategy 
(complete instance) 

Total travel time 
(hours) 

Average travel time 
(minutes) 

Average travel time 
after optimization 

(minutes) 

Random 582.27 1.87 - 
Class-based 504.46 1.62 1.58 
Dedicated 534.63 1.72 -- 

Furthermore, an utilization analysis was performed to assess the capabilities of the AS/RS to store large 

number of pallets at the same time. In accordance with the stakeholders of Company X, it was decided 

that at most 1 type of ingredient can be stored in storage lanes that are accessible from a single side, 

and at most 2 types in storage lanes that are accessible by 2 sides. This ensures that all ingredients 

remain accessible at all times.  

System utilization 

Stored based on Confidence level α Lower bound Upper bound 

Ingredient ID 95% 84.30% 84.74% 
Lot number 95% 82.26% 82.85% 

Another improvement method can be used to increase the utilization level further. We used a swap 

strategy that swaps certain storage lanes in order to create feasible storage locations. With this strategy, 

we are able to utilize the system up to 90.38%. An disadvantage of this is that this method must be 

performed on beforehand. Besides, a significant amount of swaps might be required to create extra 

storage space, which might not be possible within a short time period.  

Recommendations 

Based on the results and conclusions from the research, we are able to set up a list with 

recommendations that are shown below: 

• With a high utilized system, the class-based storage strategy with 3 classes works best.  

• With a low utilized system, the dedicated storage strategy works best, where the closest 

storage lanes are picked first for storage.  

• Storing products based on their lot number does not decrease the maximum utilization rate 

significantly. Therefore, storage based on lot number is preferred over storage on ingredient 

ID, to prevent relocations.  

• Investigate and verify the quality of the collected data. 

• Reconsider the allergen storage constraints, since relaxing this constraint will enable the 

utilization rate to increase even further.  
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1 Introduction 
In this chapter we start with the introduction of Company X. Especially the size of the company and 

what it produces is discussed. Thereafter in Section 1.2, we explain why this research is conducted. In 

Section 1.3, we discuss the problem that is faced by Company X. In the next section, we argue what we 

intend to reach at the end of the research. This research objective is followed by the research questions 

in Section 1.4, while we end with the scope in Section 1.5.   

1.1 Company introduction 
Company X is a pharmaceutical company operating worldwide together with its subsidiaries. Company 

X, hereafter referred to as Company X, develops, manufactures, and sells health care products. 

Company X has more than 120,000 employees worldwide and reaches over 160 countries. In the 

Netherlands, Company X is based at 8 locations, of which Overijssel has two of them. This research is 

conducted at one of the locations in Overijssel, and this location mainly focuses on the production of 

nutritional products. This segment provides adult and pediatric nutritional products.  

The Company X location where this research takes place produces 885 stock keeping units (SKU’s) and 

these products reach 67 different countries. 573 employees in the production plant and 75 regional 

support employees are responsible for the production at Company X. The nutritional products segment 

of Company X can be divided into two subsegments, namely powder and liquid. In 2023, Company X 

produced for 5.7M (Million) Lbs of powder products, while 3.2M Liter of liquid products were 

produced. Examples of powder products and liquid products can be found in Appendix A – Products of 

Company X. 

1.2 Research motivation 
The focus of the research lies at a location nearby the production location, where a new raw materials 

warehouse is built. The engineering department is responsible for this, in combination with the 

warehouse department and the operational readiness department. These latter two are elements of 

the engineering department. The operational readiness department ensures that personnel is trained, 

equipment is on the right place on the right time, and raw materials are present in the correct amounts.  

The reason for the built of this new warehouse is mainly caused by an increase in demand for the 

products that are produced at Company X. To facilitate this increase in demand, Company X is 

expanding its production capacity, by adding an extra production line to the plant. To create enough 

space for this new production line, a part of the storage capacity was used. This resulted in more 

production capacity, but less storage space. Expanding the production location in Overijssel is not an 

option, since this location is landlocked.  

1.3 Problem statement 
Initially, Company X stored their raw materials in-house at the production location in Overijssel. As the 

demand for their products increased, the demand for raw materials increased as well. This increase 

caused that not all raw materials can be stored at the production location anymore. In the first place, 

the solution to this problem was solved by Company X Logistics (XLOG) in Breda. This distribution center 

initially served as a finished product center only, but now stores raw materials as well. XLOG Breda was 

not able to store all the finished products and raw materials at the same time, which caused that a 

Third Party Logistics (3PL) provider in Overijssel also stored some of the raw materials. In addition, a 

special safety warehouse located in Barneveld stores hazardous products which may not be stored at 

regular warehouses. All in all, the raw materials are located at many different locations, which resulted 

in high transportation and storage costs. The decision was made to build a new warehouse, that 

provides a centralized raw material storage and the possibility to prepare batch orders for the 
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production plant. In addition, the new warehouse also gives the opportunity to comply with the 

increasing demand in the future.  

As said, this new warehouse is still under construction. The size of the warehouse is already 

determined, along with the layout of the inside. One of the elements Company X introduces within this 

warehouse is an automated storage/retrieval system, also called an AS/RS or AS/R system. This system 

will occupy approximately two-thirds of the maximum storage capacity of this warehouse. Because 

Company X does not have an AS/RS yet, it wants to gain insight in the working of such a system. The 

physical layout and equipment of the AS/R system is inflexible, which means that it is essential to design 

it right first time. Doing things right at the first time is an important characteristic for Company X. This 

is also one of the “Lean” principles that employees are encouraged to work in accordance with. 

Designing the AS/RS system right at once results in a more resilient warehouse, higher throughput 

times and thus a higher return on investment (ROI). The physical layout of the AS/R system is already 

determined, meaning that the length, width, height, and thus maximum capacity is fixed. Subsequently, 

things that can be optimized are the routing of the storage and retrieval shuttles, and the pallet 

placement positions. Shuttles are small robots that drive autonomously over a movement lane and 

that are able to store and retrieve pallets in the AS/R system. Since the routing of the shuttles is already 

taken care of by the supplier of the AS/R system, we will focus on the pallet placement positions. 

Optimizing the pallet placement is a complex and difficult task, which brings us at the core problem of 

this research: 

“It is unknown how the ingredients must be stored in the AS/R system at the 
new warehouse of Company X” 

 

1.4 Research objective 
The objective of the research is to provide Company X with a detailed advise about where to place 

which raw material within their AS/R system. This is achieved by using a simulation model in which the 

AS/R system is programmed according to parameters and constraints communicated by stakeholders 

of Company X. The positive effects that should be experienced by the management team of Company 

X are lower waiting time for shuttles and a higher overall productivity. Because the products are stored 

in an efficient way, the shuttles need less time on average to store or receive an order. Personnel that 

operate the inbound and outbound process of the AS/R system will be higher utilized. Another 

advantage of a lower storage and retrieval time is visible in the performance numbers during peak 

hours. By lowering the average storage and retrieval time, we increase the number of storage and 

retrieval  requests per hour. If the storage assignment strategy in the AS/R system is not optimized, this 

will not be beneficial for the efficiency and therefore neither for the ROI.   

1.5 Research questions 
In this section, we discuss the research questions that are relevant for this research. Before we start 

with the sub-questions, it is relevant to mention the main research question we want to investigate 

during this research.  

“How do we design an optimal storage assignment for the automated 
storage/retrieval system of Company X such that the travel time efficiency is 

maximized?” 
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In order to determine what products must be considered and why, and how many of these products 

are stored in the AS/RS, we need to collect data. Examples of this data include product data, production 

quantities, and forecast quantities. This must be in line with the expectations of stakeholders at 

Company X. Not only product data, but also characteristics and movement behaviors of the AS/RS must 

be collected from the supplier. The questions related to data collection are discussed in Chapter 2 and 

are: 

1. What are the characteristics of the AS/R system placed in the warehouse of Company X? 

2. According to the stakeholders at Company X, what are the key constraints, and objectives 

that must be considered for the AS/R system optimization? 

3. How do we gather the most relevant SKU types and what are the key findings? 

Hereafter, we need to gather sufficient information about different types of storage policies, space 

allocations, and characteristics of the correct AS/R system. In addition, we also want to gather 

information about mathematical models or algorithms that can be used to solve these kinds of 

problems. To be able to assess the performance of warehouses and AS/R systems, we also look at 

methods and techniques that are appropriate for that. In Chapter 3, the following questions are 

answered: 

1. What types of theoretical frameworks, mathematical methods, or algorithms have been 

proposed for AS/R system optimization, and what are their strengths and limitations? 

2. What different storage policies can be found in literature and what are the advantages and 

disadvantages of these policies? 

3. What are the main points of interest for multi-deep AS/R systems and their implementation?  

4. How is the performance of warehouses assessed and which methods or techniques can be 

used for that? 

In order to determine how the AS/RS performs, we need to program a mathematical model with the 

characteristics and data collected in the previous section. For this, we answer the following questions 

in Chapter 2: 

1. What assumptions do we make regarding characteristics of the model and the input values it 

uses? 

2. How does the optimization model looks like and how do we implement the collected data?  

3. What is the overall working of the simulation model? 

4. What types of storage policies do we use in our model to determine the performance of the 

AS/RS? 

Before we can formulate our conclusions and recommendations, we need to interpret and analyze the 

results from the mathematical model we have created in the previous section. Before we draw 

conclusions and recommendations, we check whether the solution can be improved further. This is all 

done in Chapter 5.  

1. How do we improve the results found so far and which methods can be used for that? 

2. What system utilization level yields the highest efficiency? 

3. What are the results found and what do they say about the performance of the AS/RS? 

Subsequently, in the last chapter of this research, we provide conclusions, recommendations, but also 

limitations of this research. We end with a section that includes suggestions for further research.  
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1.6 Scope  
The optimization process of a warehouse is often complex and depends on several factors. These 

factors are again dependent on the type of industry the company is operating in. Examples of these 

factors could include size, location, flexibility, growth perspectives, and management wishes. With the 

upcoming influence of Industry 5.0 in the past years, automated processes have become more and 

more part of our daily lives. Industry 5.0 combines human intelligence and subjectivity with efficiency, 

precision of machines in industrial production, and artificial intelligence (Leng, et al., 2022). The 

automation of processes does not only increase efficiency of processes, but also the complexity.   

At the moment of writing, Company X is building a new warehouse. Since the location and dimensions 

of the warehouse are already determined, strategic optimization falls outside the scope of this 

research. Besides, the warehouse is still under construction, which means that operational 

optimization is not very applicable either. Another thing that is already determined by Company X is 

that it includes an AS/R system in the warehouse. This AS/R system is covering approximately two-

thirds of the maximum storage capacity of the entire warehouse, and determining where to store what 

pallet with raw materials is a complex problem. This can be classified as a tactical decision, and 

therefore we focus on tactical optimization in this research.  

The goal of the research is to optimize the AS/R system in such a way that the efficiency of the system 

is maximized. This is done by positioning pallets in positions that are as optimal as possible. Things that 

we need to take into account are current stock quantities, product type, pallet heights, allergen 

characteristics, demand rates, and turnover ratio. With this product data we try to create an order list 

that is as representative as possible in order to create valid results. To create a valuable solution for 

Company X, we only focus on the storage assignment within the AS/R system, and not the entire 

warehouse.  

1.7 Conclusion  
This first chapter has introduced Company X and the sector in which it operates. Company X is building 

a new warehouse with a multi-deep AS/R system in it, and the goal of this research is to optimize this 

AS/R system. This is done by looking at production data, forecast quantities, and stock levels, but also 

at characteristics of the supplier of the AS/R system. To optimize this, we look at different storage 

policies and analyze which policy works best so that the total travel time is minimized. In the next 

chapter, we investigate further how the multi-deep AS/R system of Company X works and which data 

we are going to use to model our problem.  
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2 System and data description 
In the upcoming chapter, we discuss and describe the way how data is collected and analyzed, in 

combination with the working and characteristics of the multi-deep AS/R system of Company X. These 

two points are discussed in Section 2.3 and Section 2.1 respectively. Last, the stakeholders vision and 

constraints are discussed in Section 2.2.  

2.1 Characteristics of Company X’s AS/R system 
In this section, the characteristics of Company X’s AS/R system are discussed. First, an explanation is 

given about how a general multi-deep AS/R system works. Thereafter, we mention some definitions in 

combinations with the corresponding characteristics. The following question is answered.  

“What are the characteristics of the AS/R system placed in the 
warehouse of Company X?” 

2.1.1 Working of a general multi-deep AS/R system 
Before we actually describe the characteristics, we first explain the working of a general multi-deep 

AS/R system. Each system has its own configurations, but the general working of each multi-deep 

system remains the same. A multi-deep AS/R system has a high space utilization, since it uses less space 

for aisles. One of the disadvantages of this is that not all products are directly accessible. In such a 

multi-deep system, products are stored in a multi-deep lane behind each other, and storage or retrieval 

actions can be performed by one or multiple handlers. Xu et al. (2018) provide a graphical 

representation of a multi-deep AS/R system, which is presented by Figure 1 below. 

 

Figure 1: Multi-deep AS/R system (Xu et al., 2018). 

As we can see in Figure 1, the vertical green pillar serves as a lift for the automatic vehicle, that is 

indicated by the orange color. This lift moves in front of the storage system, with length 𝐿 and height 

𝐻. Due to the ability of the lift to move horizontal and vertical, it can access all storage points that are 

directly faced at the first row. The number of rows is dependent on the width of the system, indicated 

by 𝑊. If a lane is filled with more than 1 product, not all products are directly accessible anymore. Only 

the first one remains directly accessible, and in order to access pallets that are placed deeper in the 

lane, the pallets in front must be removed first and stored in a special buffer area (Yu & de Koster, 

2009). The advantage of having more storage space in multi-deep systems is at the expense of direct 

access of all products in traditional single-deep storage racks (Xu et al., 2018).  
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2.1.2 System Structure  
To understand the multi-deep system of Company X completely, we elaborate on all the characteristics 

in the upcoming paragraphs. The definitions of certain AS/R system segments are discussed to clarify 

what is meant in the upcoming paragraphs, but also in later sections. The corresponding dimensions 

and velocities of shuttles are mentioned in this section as well. 

Definitions and dimensions 

Since we are considering a 3D multi-aisle AS/R system, this means that we have multiple floor levels. 

The first level differs from the other 4 levels, which is presented in Appendix B – Multi-deep AS/RS 

layout of Company X. Here, Error! Reference source not found. shows the top view of the first level, 

Error! Reference source not found. shows the top view of levels 2 and 5, and Error! Reference source no

t found. shows the top view of levels 3 and 4. The top view of levels 2, 3, 4, and 5 look very similar, but 

there are some minor differences. The biggest difference lies in the heights between the levels. These 

different heights per level are shown in Error! Reference source not found.. The maximum storage 

height for levels 1 and 2 equal 1.5 meters, for level 3 1.8 meters, and for levels 4 and 5 2.25 meters.  

The shuttles need to drive through aisles to store or retrieve products. 3 main aisles and 4 connection 

lanes are used for this. The three main aisles reach over the entire length of the AS/R system, to be 

able to access each pallet lane. These three main aisles have a length of 89.1 meters, and are shown in 

Error! Reference source not found.. The connection lanes provide the ability to move between main a

isles, which are presented in Error! Reference source not found.. Each connection lane has a length of 

10.7 meters, while the total length of the system equals 50,.85 meters. The main aisles and connection 

lanes are located at the same points for all 5 levels. 

Considering Error! Reference source not found., three main aisles separate 4 storage blocks. Of these 4

 storage blocks, the middle two are accessible by both sides, and the other two are accessible by only 

a single side. The most southern block has a storage capacity of 8 pallets per storage lane, and the most 

northern block has a storage capacity of 11 pallets per storage lane.  The most southern block has a 

storage capacity of 8 pallets per lane, and is only accessible from main aisle 1. The most northern block 

has a storage capacity of 11 pallets per lane, and is only accessible from main aisle 3. Preferably, 

products that need to be stored in large quantities, should be allocated to storage lanes that are 

accessible by only 1 side instead of 2 sides. This is due to the reason that an entire lane is occupied by 

the same product, with as result that this product is directly accessible. Smaller storage quantities are 

preferably assigned to the middle two blocks that are accessible from two sides. This minimizes 

relocating products that are blocking the way of the needed product.   

Several pillars are used to keep the massive warehouse standing. A limitation of these pillars is that 

some capacity is lost in the AS/R system. In Error! Reference source not found., the pillars are marked b

y the red circle. Obviously, no products can be stored at these locations and all pillars are located at the 

same place for each level. These pillars obstruct some storage lanes, which means that some storage 

lanes cannot be used completely. The storage lanes are marked by the yellow striped pattern in Error! 

Reference source not found.. There are 4 different storage lanes, where storage lane 1 is present at 

the south side, and lane 4 is present at the north side. These storage lanes are separated by the 3 main 

aisles, and are visible in Error! Reference source not found. as well.  

At some location the products must enter and/or leave the system. This is called the depot or I/O 

station. The AS/R system of Company X has two separate I/O points, both located at the top if seen 

from above. This is indicated by the two red circles in Error! Reference source not found.. The inbound s

tation can also serve as an outbound station if the regular outbound is defective. The outbound station 

is not able to serve as an inbound station if the regular inbound station is defective.  
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The capacity of each level differs due to space restrictions for the inbound and outbound station. The 

total capacity of the entire AS/R system equals 8,680 pallets. This is divided over the 5 levels, which do 

not have the same capacity. Level 2 and 5 have the same capacity of 1,740 pallets, while level 3 and 4 

both have a capacity of 1,736 pallets. Level 1 has the least capacity of 1,728 pallets. For level 1, the 

inbound and outbound have some automation machinery placed, which is at the expense of storage 

capacity. 

If a product needs to be stored or retrieved, a shuttle is requested to perform this task. It is possible 

that an incoming order arrives with a height of more than 1.5 meters. This means that this product 

cannot be stored at storage levels 1 or 2. Storage levels 3, 4, and 5 are higher than 1.5 meters, and 

therefore this product can be stored at these levels. To reach these levels, an elevator is used as 

depicted in green in Figure 1. The difference is that the elevator in Company X’s AS/R system is able to 

move upwards only, and not sideways. The location of the elevators is indicated by the yellow circles 

in Error! Reference source not found.. When a shuttle needs to perform a task that is not on the lowest l

evel, it can start or end its task at the elevator position. This means that the shuttle does not have to 

travel all the way down to the inbound or outbound station, but can stay at its level. As a conclusion 

and overview, below in Table 1, we provide all the information described from the beginning of Section 

2.1.2.  

Part Value 

Storage positions in length 54 
Storage positions in width 38 

Storage levels 5 
Total storage positions 8,680 

Storage height levels 1 and 2 1.5 meters 
Storage height level 3 1.8 meters 

Storage height levels 4 and 5 2.25 meters 
Storage capacity level 1 1,728 pallets 

Storage capacity levels 2 and 5 1,740 pallets 
Storage capacity levels 3 and 4 1,736 pallets 

Number of shuttles 4 
Number of main aisles 3 

Number of connection lanes 4 

Table 1: Overview of the AS/RS characteristics 

Velocity of shuttles 

The velocity of the shuttles has a significant impact on the performance of the system. The values 

described in this paragraph are provided by the supplier of the AS/R system. The speed of the S/R 

shuttles for each scenario in the AS/R system is listed in Error! Reference source not found. in the a

ppendix. These values are equal for all 5 levels. The units of measure are meters per second (m/s) and 

meters per second squared (m/s2) for speed and acceleration respectively.  

In Error! Reference source not found., the speed stands for the maximum velocity that the shuttle is a

ble to reach. The acceleration happens with the stated speed. The deceleration of the shuttle happens 

with the same speed as the acceleration. The total time needed to reach the maximum speed can be 

easily calculated by dividing the difference in starting speed and maximum speed by the acceleration 

speed. For example, to reach the maximum speed of 1.4 m/s from a standstill with an acceleration 

speed of 0.5 m/s2, we need 2.8 seconds. This principle is shown in Figure 2 below, where Vmax indicates 

the maximum reachable speed, T indicates the total time, and tp indicates the time of a transition point.  
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Figure 2: Speed model of the S/R shuttle (Yang et al., 2017) 

The difference between the two types lies in the distance that the shuttle needs to travel. For type I, 

the shuttle travels such a short distance that it must decelerate before the maximum speed can be 

reached. At the point of deceleration, the time equals tp and the velocity equals V(tp). For type II, the 

travel distance is bigger which means that the shuttle reaches its maximum speed. The time that the 

shuttle moves at maximum speed equals T-2tp. Besides, when a shuttle wants to move from connection 

lane 1 to connection lane 2, it has to cross main aisle 2. For safety reasons, the shuttle must slow down 

to a certain speed, which is also shown in Error! Reference source not found.. For type I, the total time 

𝑇𝐼 (in seconds) that is needed to travel a certain distance 𝑋 with an acceleration speed 𝑎 can be 

calculated by using Equation (1). When the formula for type I is used exactly, is explained in Appendix 

E – Supplier-related information as well.  

 

𝑇𝐼 = 2 ∗ √
𝑋

𝑎
 (1) 

For type II, where the maximum speed is reached, the total time 𝑇𝐼𝐼 (in seconds) that is needed can be 

calculated by using Equation (2). Here, 𝑡𝑎 indicates the time to accelerate to maximum speed, 𝑡𝑑 

indicates the time to decelerate from maximum speed to a standstill, and 𝑡𝑚𝑎𝑥 is the time that the 

shuttle travels at maximum speed. Since we have the same constant acceleration as deceleration, we 

know that  𝑡𝑎 is equal to 𝑡𝑑.  

 𝑇𝐼𝐼 = 𝑡𝑎 + 𝑡𝑑 + 𝑡𝑚𝑎𝑥 (2) 

In our case, 𝑡𝑎 and 𝑡𝑑 can be calculated by using Equation (3) below. In this equation, 𝑉𝑚𝑎𝑥 is the 

maximum reachable speed, and 𝑎 is the acceleration speed.  

 𝑡𝑎 = 𝑡𝑑 =
𝑉𝑚𝑎𝑥

𝑎
  (3) 

In order to calculate 𝑡𝑚𝑎𝑥, we need the distance (in meters) that the shuttle travels at maximum speed. 

This distance is indicated by 𝑑𝑚𝑎𝑥, and is calculated by subtracting the acceleration and deceleration 

distance from the total distance. The distance that the shuttle travels during acceleration (𝑑𝑎𝑐𝑐) and 

deceleration (𝑑𝑑𝑒𝑐) is calculated by using Equation (4). 

 𝑑𝑎𝑐𝑐 = 𝑑𝑑𝑒𝑐 = 𝑢𝑡 +
1

2
𝑎𝑡2 (4) 

Where,  

𝑢 is the initial velocity in meters per second. 

𝑡  is the acceleration or deceleration time in seconds. In our case, this equals 𝑡𝑎 or 𝑡𝑑 respectively.   
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𝑎  is the acceleration or deceleration in meters per second squared.  

 𝑑𝑚𝑎𝑥 = 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 2 ∗ 𝑑𝑎𝑐𝑐 (5) 
 

 𝑡𝑚𝑎𝑥 =
𝑑𝑚𝑎𝑥 

𝑉𝑚𝑎𝑥
 (6) 

An important assumption is made here, and that is that no main aisles are crossed. When the main 

aisles are crossed, the total distance is divided into more sub distances. These sub distances indicate 

the distance from a starting point to a main aisle, from main aisle to main aisle, or from main aisle to 

ending point. This is done to ensure that shuttles decelerate to the required crossing speed. If the 

shuttle is 1 or 2 pallet positions away from the main aisle it needs to cross, type I is used. Otherwise, 

type II is used.  

The purpose of deceleration is to bring the shuttles to a standstill situation. This is necessary before 

the shuttles are able to perform certain tasks. Examples of these tasks include wheel set change, pallet 

storage or retrieval, and reshuffling. Changing the wheel sets happens each time when the shuttle 

wants to change its direction to left or right. The reason for this is that the aisles are not wide enough 

to make an actual turn with a square-shaped shuttle. The shuttle is able to change its wheel set 

automatically, without human intervention. The time needed for the abovementioned tasks is shown 

in Error! Reference source not found.. 

Routing 

The routing of the shuttles has a significant impact on the total travel time. The goal of the shuttles is 

to travel a route that is as short as possible, to reduce this travel time. Shuttles are able to move over 

main aisles and connection lanes at all times, but are also able to move through storage lanes. The only 

requirement for this is that the storage lane is empty, and the shuttle carries a pallet. If the storage lane 

is filled, and the shuttle does not carry a pallet, it is also possible for a shuttle to move through storage 

lanes. These storage lane movements are only possible over the width of the system. In a top view 

perspective, this means that the shuttles can only move from above to below, or vice versa. In this 

situation, the storage lane functions as a connection lane between the main aisles. Moving over the 

length of the system cannot be done by using storage lanes, but only over the main aisles. In totality, 4 

shuttles will be moving through the system to perform the storage and retrieval requests. It is possible 

that these shuttles are performing tasks near each other, which could cause waiting times or delays. 

These assumptions are discussed in detail in Chapter 2, Section 4.1.  

2.2 Stakeholders vision 
In this section, several stakeholders were asked to give their independent vision on what is important 

to consider. The goal of this to understand and evaluate what is important to focus on. The following 

question is answered.  

“According to the stakeholders at Company X, what are the key 
constraints, and objectives that must be considered for the AS/R system 

optimization?” 

To answer this question, 4 stakeholders were asked independently, without each other’s proximity. The 

job titles of these stakeholders differ from senior warehouse operator to warehouse and engineering 

managers. Their opinions are summarized in the paragraphs below.  
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2.2.1 Constraints 
The first important constraint that must be taken into account is regarding allergens. Company X 

produces medical nutrition products for people in poor health. These people already have a weakened 

immune system, for who risks must be avoided at all times. The production of both powder and liquid 

products at Company X happens according to strict rules, to minimize unnecessary exposure to 

undesired ingredients or substances to end users. To accomplish this, Company X produces according 

to the Good Manufacturing Practice (GMP). GMP provides descriptions to which medicine 

manufacturers must comply with in their production process (Good manufacturing practice, 2024).  

The 5 principles of GMP are also known as the 5Ps, and include People, Process, Procedures, Premises 

and Equipment, and Products. Since Company X produces medical nutrition products, GMP covers 

every area of production. This starts at the storage of raw materials, to ensure that these materials are 

well suited for production (Hole, Hole, & McFalone-Shaw, 2021). At Company X, the raw materials can 

be roughly classified into two categories. First, raw materials that carry allergens like milk, soy, gelatin, 

or cereals are classified as “allergens”. Second, raw materials that do not carry these types of allergens 

can be seen as “non-allergens”. The constraints are explained next by first giving the definition of the 

constraint, followed by an explanation.  

1. The allergen storage constraint 

The first constraint ensures that different types of allergens cannot be stored directly above each other. 

This minimizes the risks of cross-contamination and thereby potentially jeopardizing the end consumer. 

For example, it is not possible to store milk allergens above soy allergens, or cereal allergens above 

gelatin allergens. Obviously, the same types of allergens can be stored above each other, since these 

have the same allergen characteristics. Storing an allergen above a non-allergen is also not possible, 

but storing a non-allergen above an allergen is possible. Moreover, storing products next to each other 

does not have any limitations. This means that it does not matter whether an allergen is stored next to 

another allergen or a non-allergen. 

2. Storage height constraint 

In Section 2.1.2, we described that the system consists of 5 levels, that are not equal in height. A result 

of this is that it is not possible to store every product at each location. It is therefore important to take 

the height of the incoming pallet into account before a feasible location can be determined. In addition 

to that, IBC containers are able to carry liquid raw materials and must be stored at level 1 at all times. 

Last, each level of the system has a maximum capacity, which of course cannot be exceeded. 

3. Accessibility constraint 

The third constraint takes care of the accessibility of the ingredients. The AS/RS has multi-deep storage 

lanes, which means that not all products will be directly accessible in a fully occupied system. The 

stakeholders of Company X want that at least each type of product is directly accessible, and preferably 

that each batch number is directly accessible.  

4. Cleaning constraint 

An optional constraint could be to consider the cleaning process of the system. During the process of 

storing or retrieving pallets with powder ingredients, it is possible that some bags or boxes are 

unintentionally torn open. After some while it is necessary to clean certain parts of the system to 

comply with the high hygiene standards. This cleaning is done by employees and before this can be 

done the parts that needs cleaning must be empty. Therefore, it needs to be determined where these 

products need to be stored temporarily.  
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2.2.2 Objectives 
The first objective that the stakeholders of Company X want to see is an optimal storage assignment 

strategy. Based on a representative list of SKUs that need to be stored, the total travel times of all 

shuttles must be minimized. How this representative list of SKUs is created is presented in the next 

section. When the total travel times are minimized, this decreases the overall utilization of shuttles. 

This eventually results in a higher system resiliency during peak moments.  

The second objective that must be considered is the First Expired, First Out (FEFO) principle. The 

ingredients arrive at the warehouse and receive a batch number. This number includes size, ingredient 

name, allergen type, but also expiry date. Because of the latter, ingredients cannot be stored for an 

indefinite period of time. A result of this is that the ingredient with the shortest expiry date must be 

retrieved from the system. Hereby, the quality of the ingredients and the end product remains high 

and risks of unnecessary wastes is minimized. 

Another objective that the stakeholders want to see is an analysis on the impact of increasing the 

utilization of the system. In the beginning, the system will not be entirely filled meaning that storage 

and retrieval targets are more easily achieved. As more pallets enter the system, less space remains for 

temporary storage of products. For example, if all 8,680 locations are occupied and a product at the 

end of the lane is needed, the products in front must be removed entirely from the system since no 

locations are available for temporary storage. At some level of utilization the travel times increase 

significantly, and the stakeholders want to know at what utilization level this happens.  

2.3 Data description 
Now it is known how the AS/R system of Company X works, and what is important to consider according 

to the stakeholders, we can gather appropriate data. This data is gathered from the Enterprise Resource 

Planning (ERP) System of Company X, with the assumption that the gathered data is correct. First, the 

data collection process is discussed, whereafter an analysis is given of the gathered data. In this section, 

the following question is answered. 

“How do we gather the most relevant SKU types and what are the key findings?” 

2.3.1 Selection of most relevant SKU types 
First of all, in order to select the most relevant SKUs, we need to know what type of products are 

important to look at. Since only ingredients are planned to be stored in the system, and not finished 

products, we only look at raw materials. The senior warehouse operator suggested to use the current 

stock levels as a representative list. However, the managers explained that Company X does not 

produces all its products in the same quantities over the year. Using the current stock levels could give 

a distorted view of the reality, which means that we cannot simply use this.   

As we cannot just simply use the current stock levels, a careful analysis needs to be done to determine 

the appropriate time interval to collect the data. The stakeholders argued that Company X is an 

innovative company, which resulted in a changing product portfolio over the past years. Production 

data of several years ago does not give an accurate representation of the current operations. An 

estimation was made that the production data of the last 365 days would give an accurate enough 

representation of what is produced nowadays.  

Subsequently, it must be determined what type of data must be collected from the last 365 days. The 

purpose of the new AS/R system is to create more storage space for raw materials, and especially 

ingredients. Therefore, all the incoming pallets from any supplier that carry ingredients only were 

gathered, in combination with all the outgoing ingredient pallets. The incoming pallets were selected 
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carefully in such a way that only the movements to the factory are taken into account. With this action 

we know for sure that the incoming pallets are used for production, and not for relocating or enlarging 

inventory. The result of this analysis was that 106 unique ingredients were found. This enables us to 

create two lists, of which the first one includes all the movements towards the factory, and the second 

one has listed the all the unique products exactly once, resulting in a list length that is equal to the 

number of unique products found. This gives us a clear view on which ingredients were needed more, 

and which ones less.    

2.3.2 Analysis of collected data 
In this section, an extensive analysis is made on the collected data described in the previous section. 

The number of movements for each ingredient were counted over the period from April 2023 until 

April 2024. These movement counts were sorted from largest to smallest, which gave us insight in the 

most needed ingredients and the least ones. In Figure F1 in Appendix F, the histogram depicts the 

frequency of movement occurrences in the list. The horizontal axis represents the intervals of 

movement counts, while the vertical axis displays the corresponding count of ingredients falling within 

each interval. The total number of movements were 37,743 pallets. A remarkable difference can be 

noted, as there are much more products with low movements than with high movements. Besides, a 

large difference between the highest ranked and second-highest product exist. The highest movement 

count equals 3,861, while the second highest count is 2,130.  

Eventually, this total number is used to calculate the individual ingredient contribution to the entire 

movement count. The movement frequencies are ranked from large to small, from which we created  

Figure F2. The orange line in this figure shows the cumulative contribution to the movement count, 

where the number of ingredients is shown on the horizontal axis.  

A further analysis can be done based on the allergen type and height of the products. Why this is 

important to take into account is discussed in Section 2.2. In Table 2 below, the types of allergens that 

occur in the original product list are presented according with their total number of movements. 

Besides, the number of products that carry the specific allergen in the unique product list is presented 

as well.  

Type of allergen Number of products Movement count 

Milk 407 180,273 
Non 230 130,039 
Soy 83 64,414 

Cereals 12 1,744 

Table 2: Number of products and movement count per allergen type 

The majority of the movements of products can be categorized as milk-allergen ingredients, followed 

by the non-allergen ingredients. Soy-allergens are moved 64,414 times in the past 365 days, while 

ingredients with a cereal allergen were only transported 1,744 times. Finally, the height of the products 

was gathered as well. This height only included the product height, and did not take into account the 

height of the pallet. Since this is required for the AS/R system, we added the pallet height to each pallet 

in the list. The subsequent height occurrences are presented in Figure F3 in Appendix FError! Reference s

ource not found.. The horizontal axis presents the height intervals, and the vertical axis shows the 

occurrences.  

2.3.3 Past stock levels analysis 
Now we have determined the most important products based on the movement frequencies, a base 

stock level has to be determined for the AS/R system. This is needed to represent the current state of 



13 
 

Company X in the field of pallet storage as good as possible. A few assumptions are made here, of 

which one of them is that we pick the maximum stock level of each product over the last quarter. As 

introduced in Chapter 1, Company X is building a new production line at the expense of storage space, 

resulting in a higher throughput when this production line is finished. To represent this higher 

throughput, the maximum stock levels of the first 16 weeks of 2024 were used. This is visualized in 

Figure F4 in Appendix F. The total sum over all products equal 7,764. This means that this number of 

pallet positions will be occupied in the AS/R system from the beginning. The highest number of pallets 

we have to store for a single product equals 467, followed by 314 pallets for the second highest number. 

The lowest number of pallets that need to be stored is equal to 2.  

With this information we are able to determine the amount of pallets we need to store that carry 

specific allergens. We use again the maximum stock level over the past 365 days, resulting in a total 

pallet storage for soy-allergen ingredients being 1,208 pallets, for milk 3,235 pallets, for cereals 30 

pallets, and for non-allergen ingredients 3,291 pallets. These results are not very different from the 

results found in Table 2. Interestingly for the movement count, the ingredients carrying milk allergens 

are much more than for non-allergen ingredients. For the storage amount, the number of ingredients 

carrying milk and non-allergens are much closer together than for the movement numbers. On the 

other hand, the number of ingredients that are categorized as non-allergens are more than twice as 

much as milk-carrying products. In proportion, the milk ingredients are moved and stored in higher 

quantities.  

2.3.4 Order list analysis  
Another important element of the data collection part is an order list that reflects the current state of 

Company X as representative as possible, with as purpose to assess the performance of the AS/R 

system as good as possible. The movements from all suppliers to Company X during the past 365 days 

were analyzed again to determine the representativity. The number of pallet movements per week 

were summed, and displayed along with the average in Figure F5 in Appendix F. The average number 

of pallets moved per week is shown by the orange line and equals 724.  

As discussed, Company X is expecting a growth in the near future, which means that we carefully need 

to select representative weeks. Another aspect that must be taken into account is that the production 

schedule happens according production cycles. According to a planning employee at Company X, 

approximately 4 cycles of equal length happen each year. Within each cycle, every product in the 

product portfolio of Company X is produced at least once. At the moment of the data collection, 16 

weeks have passed in 2024. In Figure F5, the first value at the horizontal axis represents week 16 of 

2024. The planning employee indicated that the first 13 weeks of 2024 is a representative production 

cycle. Since we are looking backwards in Figure F5, this production cycle lies between the horizontal 

axis values 3 and 16. For sake for clarity, this is indicated by the vertical red-dotted lines. 

2.4 Conclusion 
To conclude, Company X’s AS/R system can be classified as a multi-deep system with 5 levels, reaching 

a total storage capacity of 8,680 pallets. Each level has its own maximum storage height, meaning that 

not all products can be stored in all places. Pallets that must be stored or retrieved are moved by 

shuttles. These shuttles drive autonomously and have limitations regarding speed and movements. 

Type I and Type II are two movement types that can be used by the shuttles. Preferably, shuttles move 

in 1 direction as long as possible, since this benefits the total travel time. Additional movements as 

changing the wheel set takes additional time, resulting in inefficient routing.  

Besides, several stakeholders were asked about objectives and constraints that must be met. A major 

constraint takes into account the storage strategy of ingredients that carry allergens. These cannot be 
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stored under or above each other, with as goal to minimize contamination risks. In addition, products 

of which the height exceeds the maximum storage height of a AS/RS level cannot be stored at that 

level. The same holds for the capacity, this cannot be exceeded for all levels. One of the objectives that 

must be achieved is an optimal storage assignment strategy. By using the FEFO principle, the products 

with the shortest expiry date are picked first, resulting in less wastes and higher product quality.  

Last, data is gathered and analyzed with as goal to assess the performance of AS/R system. The pallets 

that were transferred to Company X for production purposes during the past 365 days were picked for 

this. This period ranges from April 2023 until April 2024. One of the employees from the planning 

department confirmed that this period would give a representative view of current production 

activities. Allergen types, heights, movement frequencies and lot sizes were determined to visualize 

the distributions of different data.  
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3 Literature Study 
In this chapter, we discuss the first set of sub research questions. In Section 3.1 we discuss several 

methods that can be used to optimize AS/R systems, which is followed by the analysis of several storage 

policies in Section 3.2. Section 3.3 described the main points of interest of a multi-deep AS/R system, 

and eventually we discuss the performance of warehouses and AS/R systems can be analyzed.  

3.1 Optimization methods for AS/R systems 
Once we have now discussed several storage policies, methods, and AS/R types, we move on to the 

optimization methods that are used to optimize the AS/R systems. It is therefore that we answer the 

following question in this section: 

“What types of theoretical frameworks, mathematical methods, or algorithms 
have been proposed for AS/RS optimization, and what are their strengths and 

limitations?” 
 

Before we dive into the theoretical frameworks and methods, we first want to find out what we exactly 

want to know. As discussed in Chapter 1, Company X has already taken care of strategic decisions as 

location and dimensions of the warehouse. The supplier takes care of operational decisions as routing, 

but tactical decisions lies in the hands of the stakeholders at Company X. Tactical decisions include the 

allocation of products to functional areas, determination of manpower for operating the system, and 

the development of replenishment and order picking policies (Heragu, Du, Mantel, & Schuur, 2005).  

The stakeholders at Company X want specifically a optimal storage assignment strategy for the AS/RS 

in the new warehouse. According to Yang et al. (2013), the storage location assignment problem (SLAP) 

is determining the way of assigning incoming products to storage locations, with as goal to maximize 

the order-picking efficiency. In the case of a multi-shuttle AS/RS, the locations for the retrieval requests 

must be determined as well. Ultimately, the efficiency of an AS/RS is maximized when SLAP is combined 

with the location assignment and storage/retrieval scheduling problem, in short LASRSP. Company X is 

producing according to a strict planning, and this means that the sequence of requests cannot be 

simply changed. Hence, the focus lies on SLAP, instead of on LASRSP.  

3.1.1 Mixed Integer Linear Programming 
Mixed Integer Linear Programming, also known as MILP, is a mathematical programming method used 

to optimize a linear objective function. This objective function is usually constrained by a set of linear 

inequalities, with some integer valued variables. MILP has a wide variety of application areas, but is 

one of the most usable methods for process scheduling problems (Floudas & Lin, 2005). Man et al. 

(2019) propose a bi-objective MILP method for optimizing a two-depot AS/R system. The first objective 

is to minimize the total travel time of the storage/retrieval system, and the second objective is to 

minimize the total tardiness of all the tasks.  

The bi-objective problem described by Man et al. (2019) is solved by minimizing the two objective 

functions simultaneously, and the set of solutions correspond to the Pareto front. There are several 

methods to find these Pareto front solutions, among which the goal attain method, the weighted sum 

method, and the 𝜖-constraint method. The latter method can be used to transform a multi-objective 

problem into a series of smaller single-objective optimization problems, with as goal to obtain Pareto 

optimal solutions. The downside of this 𝜖-constraint method is that it is impractical and time-

consuming to solve medium- and large-scale problems (Man et al., 2019).  

One of the main advantages of the MILP method is the computational efficiency, since realistic 

problems often lead to extensive computational efforts. These efforts can be reduced by reformulating 
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the constraints or by decomposition. The goal of reformulation is to generate models with a reduced 

number of binary variables, or tighter integrality gaps. Besides, the most widely employed strategy that 

is used to overcome the computational efforts is by using the so-called decomposition strategy. This 

strategy divides a large problem into smaller subproblems, which reduces the complexity and solution 

time of the problem (Floudas & Lin, 2005). 

If we look at the limitations of MILP in general, but decomposition in particular, it often leads to 

suboptimal solutions. Besides, MILP formulations cannot take into account nonlinear effects, which 

could lead to inaccurate solutions. Second, risks exist due to the high-dimensionality of the problem, 

which is mainly due to the necessity to take into account all the time periods at once (Uranucci, 2018). 

3.1.2 Simulation 
Simulation is one of the most widely used operations-research and management-science techniques 

and is mainly used for the purpose of comparing alternative systems or configurations based on 

capacity and feasibility questions (Savory & Mackulak, 1994). Before these questions can be answered, 

a model needs to be created that gains some understanding about how the corresponding system 

behaves. This model is based on a set of assumptions, that usually take the form of logical or 

mathematical relationships. If these relationships are simple, mathematical methods such as algebra 

or calculus can be used to obtain exact information. However in reality, these relationships are too 

complex for an exact evaluation, which means that simulation must be used to answer the questions 

of interest (Law, 2015). According to Law (2015), some problems for which simulation is a useful and 

powerful tool include: 

• Analyzing and designing manufacturing systems 

• Analyzing supply chains 

• Determining software and hardware requirements for computer systems 

• Reengineering of business processes 

As said, very complex situations cannot be described or evaluated by a mathematical model. As a result, 

simulation is often an appropriate method to investigate certain systems. A major advantage of using 

simulation is that the performance of an existing system can be estimated under a set of different 

operating conditions. These operating conditions can be controlled much better in an computer 

controlled environment, than compared to performing experiments with the real system itself. As a 

result of using these different conditions, the decision maker gets a more clear overview of which 

configurations of conditions meets the required performance. Last, a simulation model allows the 

decision makers to study the behavior of a system over a long time period, by using only a limited 

amount of time. On the other hand, it is also possible to study the behavior of the system under an 

extended period of time.  

When deciding on whether simulation is an appropriate problem solving technique, the limitations of 

this method must be taken into consideration. A simulation study is based on a set of assumptions, and 

therefore only produces estimates of the system’s true characteristics. Simulation models are therefore 

less appropriate for optimization, but more appropriate for comparing a fixed number of different 

system designs. Second, simulation programs are often expensive and it is a time-consuming process 

to develop a model with all appropriate assumptions. Last, a simulation study often generates a large 

volume of numbers. People tend to place a greater confidence in these outcomes than is justified. If 

the simulation model is not a good representation of the real system, the results provide inaccurate 

insights (Law, 2015). If we translate this to warehouses where demand rates are often stochastic, 

simulation is an appropriate method to estimate the consistent performance, especially when different 

zone sizes are considered (Silva, Roodbergen, Coelho, & Darvish, 2022). 
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3.1.3 Metaheuristics 
Metaheuristics are first introduced by Glover in 1986, and is formally defined as an iterative process 

that guides a subordinate heuristic by intelligently combining various concepts to explore and exploit 

the search space. Learning strategies are employed to organize information, enabling the efficient 

discovery of (near) optimal solutions (Blum & Roli, 2001). Besides, metaheuristics are more powerful 

in the sense that they address larger issues, but also solve problems faster. Metaheuristics can be 

further classified as a group of approximate optimization approaches, which has seen a significant 

increase in popularity in the past two decades (Khan, Sinha, & Anand, 2023). In the field of AS/RS 

optimization, Bessenouci et al. (2012) use a taboo search and a simulated annealing approach for its 

flow rack AS/RS. Yang et al. (2015) use a Variable Neighborhood Search metaheuristic for LASRSP 

optimization in a multi-shuttle AS/RS. Another research by Fandi et al. (2022) incorporates a genetic 

algorithm for multi-shuttle AS/RS optimization, with a single S/R machine (Fandi, Kouloughli, & Ghomri, 

2022).  

Simulated Annealing 

Simulated Annealing, in short SA, is a metaheuristic that can be classified as a memory-less algorithm. 

This means that the heuristic only uses information about the current state of search. At each state, a 

new solution is created, also called a neighbor, and checked whether the objective is better than the 

current objective found so far. In our case, the total travel time objective must be minimized. This 

process starts after creating an initial solution based on a starting heuristic. This can be a nearest-

neighbor heuristic, a first-come-first-serve heuristic, or just a random assignment heuristic. When the 

neighbor solution is worse than the current objective, a probability measure decides whether the 

current solution is replaced by the neighbor solution either way. The probability measure can be 

defined by Equation (7) (Gogna & Tayal, 2013).  

 
𝑃 = exp (

−∆𝐸

𝐾𝑇
) (7) 

Where ∆𝐸 indicates the change in energy (objective) between the best objective and the objective of 

the current neighborhood. 𝐾 is the Boltzmann constant, and 𝑇 is the control parameter at a given 

iteration, also known as the temperature. A common value for the Boltzmann constant 𝐾 is 1, which 

we also shall use. This probability measure can allow a selection of a solution that is not improving the 

current solution, and thereby enabling the algorithm to escape from local optima (Gogna & Tayal, 

2013). The pseudocode for the SA algorithm is discussed later, in Chapter 5. Moreover, the parameters 

of the algorithm must be chosen carefully. A higher number of iterations results in a higher running 

time, and a too low number of iterations might result in a solution that is not (near) optimal.  

The SA algorithm is using both exploitation and exploration to find near-optimal solutions, where 

exploitation is focusing on the local search space to improve existing solutions. This is achieved by 

accepting solutions that have a better objective function. Exploration is used to explore a wide search 

space with as goal to avoid being trapped in local optima. This is done by occasionally accepting 

solutions with a worse objective function. The parameters of the SA algorithm influence the quality of 

the solution, and therefore need careful analyzation before SA can be used. For example, the 

Boltzmann constant determines the speed by which the algorithm is using exploitation to improve the 

solution. On the other hand, a higher number of iterations does not only cause a higher running time, 

it also determines the way the algorithm explores different solutions, rather than exploiting good 

solutions.  
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Variable Neighborhood Search 

Variable Neighborhood Search (VNS), is a metaheuristic that has applications in various fields, such as 

communication, data mining, scheduling, and vehicle routine (Caporossi, Hansen, & Mladenovic, 

2016). VNS can be compared to SA in such a way that both metaheuristic approaches can be used to 

avoid being trapped in local optima with a poor objective value. VNS is a metaheuristic that builds upon 

a local search method, that aim to improve the current solution. On the other hand, the perturbations 

allow the space of explored solutions to be extended. These two principles are often referred to as 

intensification and diversification (Caporossi, Hansen, & Mladenovic, 2016). Unlike traditional 

approaches that follow a specific trajectory, VNS explores progressively larger neighborhoods around 

the current solution. It moves to a new solution only if an improvement is found. This method keeps 

variables that are already optimal, leveraging them to find promising neighboring solutions (Hansen & 

Mladenović, 2001).  

One of the advantages of using VNS is that it usually provides good solutions in a reasonable amount 

of calculation time. Besides, it has few parameters that must be tuned, unlike for SA, in order to get 

good results. The selection of the initial solution has a significant impact on the quality of the solution, 

but also on the computational efficiency. This is important, since often large-scale problems are 

involved. The key operation of VNS is the systematic change of neighborhood structure, in which it is 

possible that more than a single improvement solution is found in the neighborhood of the current 

solution. Choosing the best solution seems logic, but this requires a complete exploration of the 

neighborhood. The computational effort needed for this may be too large for the obtained benefit. This 

makes it more efficient to apply the first improvement that was found (Caporossi, Hansen, & 

Mladenovic, 2016).  

Within VNS, it is possible to classify between different types. Examples of these types are General VNS, 

Reduced VNS, or Basic VNS. General VNS is more suitable for situations where the quality of the 

solution is preferred over computational effort. Here, the local search is replaced by a variable 

neighborhood search descent. On the other hand, it could be possible that the computational effort 

must be reduced, with as goal to handle large-scale problems better. In this case we speak of the 

Reduced VNS (Caporossi, Hansen, & Mladenovic, 2016). These forms of VNS differ somewhat between 

each other, but the basic concept of VNS remains the same. The following steps sketch a basic concept 

of the general working of a VNS (Yang et al., 2015): 

1. Generating an initial solution. 

2. Perform a local search with the current neighborhood. 

3. If an improvement is found, update the current solution. 

4. If no improvement is found, expand the neighborhood and perform a local search again. 

5. Repeat until a certain stopping criterion is met.  

Genetic Algorithm 

The Genetic Algorithm (GA) is a popular metaheuristic research technique for solving optimization 

problems. GAs are a form of stochastic optimization that uses aspects of natural selection and genetics 

to solve the relevant optimization problem (Fandi, Kouloughli, & Ghomri, 2022). The GA starts with an 

initial set of solutions that are represented as chromosomes, which are often generated randomly or 

based on a heuristic. Each chromosome is evaluated on their performance, also called fitness. This 

fitness function indicates how close the obtained solution lies to the desired solution. The best 

chromosomes are picked and selected as parent chromosome for the next generation. The selection of 

parent chromosomes are based on some mechanism, which is more likely to choose better solutions 

since the probability of selecting these better solutions is proportional to the fitness. Once the parent 

chromosomes are selected, it replaces the previous generation. The GA iterates through the selection, 
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reproduction, and replacement steps for a certain amount of generations or until a stopping criterion 

is met (Mirjalili, 2018).  

By iterating over the process steps for multiple generations, the GA gradually generate better solutions 

to the optimization problem. The selection of parent chromosomes are based on a probability that is 

proportional to the fitness. Simultaneously, this process avoids selecting poor solutions, which leads to 

avoiding local optima. If good solutions are trapped in a local solution, it is possible that these are 

pulled out with other solutions (Mirjalili, 2018). The avoidance of local optima means that the entire 

solution space is searched, often resulting in finding a global optimum or a near-optimal solution. In 

general, GAs are suitable for solving large-scale optimization problems. The algorithm is applicable in a 

wide variety of problems, among which strategy planning, robot trajectory planning, and TSP and 

sequence scheduling (Sivanandam & Deepa, 2008).  

The Genetic Algorithm has a limitation in the field of real time applications. For most optimization 

problems this is not a big issue, but if we look at real-time control systems or high-frequency trading, 

using GAs is not suitable. Another disadvantage of using GAs is that it usually takes long to converge to 

the optimal solution. These convergence times cannot be predicted either. Besides, the chosen 

parameters heavily influence the performance of the algorithm. Examples of these parameters are 

population size, mutation rate, and selection method. Choosing the right parameters involves 

experimentation and fine-tuning, which is sensitive to errors and thus the performance of the GA 

(Sivanandam & Deepa, 2008).  

3.1.4 Conclusion 
Several optimization methods are discussed, of which MILP is the only analytic one. Analytic research 

techniques can be used to solve optimization problems exactly. The downside is that it takes a large 

amount of computational effort to accomplish this, especially if the size of the problem becomes larger. 

Simulation is more efficient when dealing with large-scale problems. This method can also analyze 

existing systems under different operating conditions well. Since the design of the AS/R system of 

Company X is already determined, in combination with the fact that it is a large-scale problem, 

simulation is an appropriate method that can be used for the SLAP optimization. In addition to that, 

metaheuristics can handle these larger problem instances efficiently as well. Examples of 

metaheuristics that are used for previous AS/RS optimization are Simulated Annealing, Variable 

Neighborhood Search, and Genetic Algorithm.  

3.2 Storage policies 
In this first section we discuss different types of storage policies. There are multiple of these policies 

treated in literature, and each of these policies has its own application area. This means that a policy 

could be more convenient for pallet warehouses, while the other is more convenient for AS/R systems. 

We want to find out which policies there are and which advantages and disadvantages these policies 

carry. Therefore, the following question is answered in this section.  

“What different storage policies can be found in literature and what are 
the advantages, disadvantages, and challenges of these policies?” 

 

3.2.1 Random 
The random storage policy is one of the most simple forms of storing products, since it does not use 

any information about the product. It ignores the product characteristics and time characteristics, and 

to each available location it assigns an equal probability of having an incoming load (Roodbergen & Vis, 

2009). Storing products randomly has several advantages over the other policies, since it needs the 
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least amount of space to store all the products. This smaller space reduces the travel cost to a particular 

location. On the other hand, using a random storage policy also results in a constantly changing location 

of the products. A result of this is that operators need more time to retrieve a product due to searching 

time. This searching time increases for fast-moving products, since these products are needed more 

frequently. If we translate this to AS/R systems, this means that the number of storage and retrieval 

transactions per unit time are not effectively utilized, and therefore not optimal. In order to use this 

policy in an efficient way, it is necessary to continuously keep track of inventory locations. This requires 

almost always a fully automated system such as an AS/R system with automated cranes (Goetschalckx, 

Storage Systems and Policies, 2012).  

3.2.2 Dedicated 
For the dedicated storage policy, each product type is assigned to a fixed location, and replenishments 

of this product always occur at this same location (Roodbergen & Vis, 2009). This policy is easily 

implementable by companies of all sizes, and does not need any expensive IT investments (Fumi, 

Scarabotti, & Schiraldi, Minimizing Warehouse Space with a Dedicated Storage Policy, 2013). 

Disadvantages of it are the high space requirements, due to the fact that the pre-defined locations are 

reserved for certain products, even if these products are out of stock. A perfect example of this occurs 

when a company faces a lot of seasonal sales. In that way, storage locations remain open for a period 

during the year, while during the selling season these locations are filled. Especially when the selling 

season is short, this is a very inefficient policy (Fumi, Scarabotti, & Schiraldi, 2013). When each location 

can only be occupied by a single product at a time, we can define 𝑀𝑝𝑡 as the number of storage 

locations that are used by item 𝑝 at time 𝑡. Subsequently, 𝑀𝐷𝐸𝐷 is the overall number of locations 

required to allocate all the products in the warehouse: 

 𝑀𝐷𝐸𝐷 = ∑ 𝑚𝑎𝑥𝑡{𝑀𝑝𝑡}

𝑝

 (8) 

This policy clearly does not minimize the number of storage locations needed. 𝑀𝐷𝐸𝐷 is usually seen as 

an upper bound for the number of storage locations needed (Fumi, Scarabotti, & Schiraldi, 2013). 

Another disadvantage can be found in the low space utilization of this policy. The reason for this is that 

for each product enough space must be reserved to accommodate the maximum inventory level that 

could occur (Roodbergen & Vis, 2009). If we compare the dedicated storage policy with the random 

storage policy, the random policy requires less storage space than the dedicated policy, provided that 

the volumes and the frequency of storage and retrieval operations are the same. In addition, this policy 

is advantageous in the field of data-handling efficiency, due to the fixed addressing of storage items 

(Lee & Elsayed, 2005). Most advantages for the dedicated policy, such as matching the layout of stores 

and locating heavy products at the bottom, are related to non-automated order-picking areas and are 

thus not as interesting for AS/R systems (Roodbergen & Vis, 2009).  

3.2.3 Class-based 
According to Roodbergen (2012), the class-based storage policy is the best of two worlds. This policy 

divides the products in different classes, and each class is then assigned to a dedicated location in the 

warehouse. Within that dedicated location, storage happens randomly. The classes are determined 

based on some performance indicator, for example, demand frequency or volume. These performance 

indicators are described in a later paragraph in this section. Products with high demand frequency are 

called fast-movers, while products with low demand frequency are called slow-movers. Fast-movers 

are categorized as A-items, and the next fastest moving category is called B-items, and so on 

(Roodbergen K. J., 2012). A-items usually contain only about 15% of the product portfolio, but it 
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contributes to 85% of the total turnover (De Koster, Le-Duc, & Roodbergen, 2007). Typically, only 3 

classes are used, and in that case we refer to ABC-storage.  

One of the main advantages of the ABC-storage policy is that fast-moving items are stored near the 

In/Out (I/O) point. This increases the efficiency of order picking and storing, since more frequently 

needed items can be reached faster, resulting in a lower traveled distance in the long run. Moreover, 

simple implementation, manageable maintenance, and the ability to cope with product mix and 

demand variability are other advantages of the class-based storage policy (Bahrami, Piri, & Aghezzaf, 

2019). For the ABC-storage policy, there are two commonly known methods for zone positioning, 

namely within-aisle and across-aisle. The difference is shown in Figure 3 below. Clearly, the A-items are 

stored closest to the depot, while the slowest moving items have the greatest distance to the depot.   

 

 

Roodbergen & Vis (2009) discussed in their paper that class-based storage can be applied to several 

situations, among which 3-dimensional storage problems and stochastic environments. Furthermore, 

if the class-based policy is compared to the dedicated policy, the former does not need a fully sorted 

list of SKUs and no comprehensive administration. Therefore, the class-based policy is easier 

implementable than for dedicated policy.  

The number of classes is not always limited by 3, because more classes could give additional gains with 

respect to travel times. Van den Berg and Gademann (2000) performed a simulation study in which 

they simulated an automated storage/retrieval system. The conclusion of this study was that 6 classes, 

combined with the nearest-neighbor rule for selecting open locations, performed well compared to 

other policies. It should be noted that in order to be able to store an incoming load in the designated 

class region, it is necessary to have empty slots available. An increase in the number of classes therefore 

results in an increase of space requirements. Thus, class-based storage needs more rack space than the 

random storage policy, which is therefore an disadvantage of the class-based policy (Graves, Hausman, 

& Schwarz, 1977).  

Implementing the class-based policy is not so obvious as implementing the random storage policy. 

Especially when considering AS/R systems, 3 major decisions are faced during the implementation of 

the class-based policy. The first challenge arises when the decision maker needs to determine the 

number of classes, also called zone divisioning. Second, the decision maker needs to determine the 

number of products that are assigned to each zone, also known as zone sizing. The last challenge that 

arises for decision makers is zone positioning, which means that the location of each zone must be 

determined (Roodbergen & Vis, 2009). In the next paragraphs, we discuss several strategies that 

contribute to solving the problems just described. 

  

Figure 3: Illustration of within-aisle storage and across-aisle storage (De Koster, Le-Duc, & Roodbergen, 2007). 
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Cube-per-Order Index 

The Cube-per-Order Index (COI) is a well-known storage strategy which was introduced by Heskett in 

1963. The COI is a ratio, where items with a lower ratio are assigned to locations nearest to the I/O 

point. The ratio is based on the required storage space to the order frequency of that specific SKU 

(Caron & Marchet, 2010). Formally, Manzini (2012) provide a formula for the COI, and is given by 

Equation ((9).  

 𝐶𝑂𝐼𝑖,𝑇 =
𝑣𝑖,𝑇

∑ 𝑥𝑖𝑗order 𝑗 ∈ 𝑇
 (9) 

Where 𝑣𝑖,𝑇 equals the average storage level of SKU 𝑖 in time period 𝑇, and 

𝑥𝑖𝑗 = {
1  if item 𝑖 occurs in order 𝑗
0  otherwise                            

   

It is important to mention that the COI strategy does not perform equally for single-command cycles 

as double command cycles. The COI is an item oriented strategy that is excellent for minimizing the 

order picking travel time when using single command cycles only. This means that the order picker 

starts at the I/O point, travels to the desired location and retrieves the desired product, and then travels 

back to the I/O point. If dual command cycles are used, i.e. storage and retrieval happens between two 

consecutive I/O visits, the COI approach performs worse than order oriented strategies (Schuur, 2015).  

Turnover time 

The second strategy that can be used is by looking at the average turnover time of the products. The 

turnover time is also known as the dwell time, which refers to the duration that a product stays in the 

shelf. In other words, this is the time between two successive replenishments. With this strategy, all 

the products are ranked based on frequency of requests and all locations are ranked from best to worst. 

The locations that are close to the I/O point are higher ranked than locations that need more time to 

reach (Manzini, 2011). Because the product portfolio of a warehouse is not fixed, it might happen that 

demand shifts occur. It is in that case necessary to relocate the products on time, to guarantee the 

efficiency   

The average dwell time can be estimated by the warehouse manager, but it is also possible to calculate 

it. One necessary aspect for a successful implementation of this strategy is that the turnover 

frequencies need to be known beforehand (Manzini, 2011). Since we know that the time between two 

successive replenishments, i.e. the cycle time, can be determined by dividing the order quantity of SKU 

𝑖 (𝑄𝑖) by the demand of SKU 𝑖 (𝐷𝑖). In practice, the order quantity is often determined by the Economic 

Order Quantity (EOQ) formula. Subsequently, we can determine the average dwell time for SKU 𝑖 (𝑇𝑖) 

by using Equation (10). 

 
𝑇𝑖 =

𝑄𝑖

2 ∗ 𝐷𝑖
 (10) 

Duration-of-Stay 

The Duration-of-Stay strategy is also abbreviated as DOS and classifies every product according to their 

estimated duration of stay. The aim of DOS is to have minimum storage requirements while at the same 

time minimize the labor costs as well. The products with the lowest expected DOS are placed closer to 

the I/O point than the products with a higher expected DOS (Manzini, 2011). If we compare this method 

with the random strategy for example, the DOS method needs significantly more data for a successful 

implementation (Goetschalckx & Ratliff, 1990).  

The performance of the DOS method is directly related to the balance of the warehouse. The balance 

can be described as the ratio between incoming and outgoing SKUs. When a warehouse is perfectly 
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balanced, this ratio equals 1. The DOS method is more efficient in warehouses that are more balanced. 

On the other hand, if a company deals with high demand fluctuations, the system could have problems 

with the adaptation on time (Curry, 2013).  

Family-grouping 

The family-grouping strategy is also known as the correlated strategy, assigns items to a particular 

family if they are ordered together more frequently. As a result, it is convenient to place the products 

that are often ordered together in the same area. The location of each family is to be determined, 

dependent on a combination of the characteristics of all the products in the group. The space 

requirements for grouped storage policy like this one requires more storage space than the random 

storage policy. One of the disadvantages of family-grouping lies in the data collection procedure that is 

necessary to determine the statistical correlation between products. For example, the frequency at 

which products appear in the same order can be used, and should be known or at least predictable (De 

Koster, Le-Duc, & Roodbergen, 2007).  

The two types of family-grouping strategies that are most frequently used are the complementary-

based method, and the contact-based method. The complementary-based method consists of roughly 

of 2 phases. The items are clustered based on correlated demand in the first phase, and the items in 

the same cluster are located as close together as possible in the second phase. The contact-based 

method is very similar to the complementary-based method, only now the contact frequencies are 

used for clustering items. Contact frequencies are obtained by determining the number of times that 

item 𝑖 is picked after item 𝑗, or item 𝑗 after item 𝑖 (De Koster, Le-Duc, & Roodbergen, 2007).  

3.2.4 Greedy Algorithm 
In Section 3.2.1, we discussed the random storage policy, and this policy only works in a computer-

controlled environment. When we do not have such an environment and the operators are responsible 

for storing the products, we probably end up with the Greedy Algorithm, also known as the closest 

open location storage policy (De Koster, Le-Duc, & Roodbergen, 2007). In theory, under the closest 

open location policy the closest, available location to the I/O point is picked for storage (Goetschalckx, 

Storage Systems and Policies, 2012). Park (1987) concludes that in an AS/R system, the locations near 

the I/O point have the highest utilization rates. This leads to racks that are full around the depot and 

gradually become more empty towards the back. Besides, the closest open location policy performs 

similar compared to the random storage policy if the products are moved by full pallets only (De Koster, 

Le-Duc, & Roodbergen, 2007).  

Advantage is easy to implement, no extensive data analysis and preparation are needed. In addition, 

the order pickers need to travel less distance to store the next product. This leads to an increase in 

efficiency, while at the same time increasing the order fulfillment speed and productivity. A 

disadvantage of this policy is comparable to the random storage policy, since comprehensive 

administration systems are needed to keep track of product locations. Besides, an effect of this policy 

is that warehouse activities are concentrated around the I/O point. This can lead to congestion and 

overcrowding. Overall, the closest open location policy benefits in terms of ease of implementation, 

but has limited flexibility (De Koster, Le-Duc, & Roodbergen, 2007).  

3.2.5 Conclusion  
According to Xu et al. (2018), the random storage policy is most frequently used in AS/R systems. An 

advantage of this is that has a high operating efficiency, and human order pickers do not spend a lot of 

time on searching a product when using such an automated system. The dedicated storage policy has 

a high data-handling efficiency, but also requires more space than randomized storage. Class-based 

storage is a combination between randomized storage and dedicated storage. Products are assigned to 
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classes based on some indicator, which could be the Cube-per-Order Index, Duration-of-Stay, Turnover 

time, or Family-grouping. Within that class, randomized storage applies. Eventually, when using the 

Greedy Algorithm the efficiency can increase, but it can also lead to congestion and overcrowding at 

popular locations.  

3.3 Points of interest of a multi-deep AS/R system 
As we have discussed in Chapter 1, Company X is building an AS/R system at the moment of writing. In 

Chapter 2, we have discussed the AS/R system of Company X in detail. The type of AS/R system can be 

classified as a multi-deep system with multiple levels. In this section, we find out what is already known 

on these types of AS/R systems. The following question is answered in this section. 

“What are the main points of interest for multi-deep AS/R systems and its 
implementation?” 

According to Xu et al. (2018), several decisions must be taken for a successful implementation of a 

multi-deep AS/R system. Roughly, these decisions can be divided into two categories, namely system 

structure and operating policies. The system structure refers to the size of the system, or the number 

of robots or shuttles. On the other hand, operating policies are not predetermined and must be 

evaluated. Examples of these operating policies include the type of command cycle, dwell point 

strategy, and the type of storage policy (Xu et al., 2018). 

3.3.1 System structure 
The design of an AS/R system is a crucial step, since the goal of the AS/R is to handle current and future 

demand requirements efficiently, while at the same time avoiding bottlenecks and overcapacity. The 

AS/R systems have inflexibility of layout and it is therefore important to design the system right at once 

(Roodbergen & Vis, 2009). The determination of size is an example of a system structure decision, and 

this is not unimportant since the size can significantly affect the operational efficiency of a warehouse 

(Yang et al., 2017). Determining the optimal rack dimensions involves several objectives, for example, 

the minimization of expected travel times, the minimization of investment costs, but also to anticipate 

on expected future growth.  

When considering an AS/R system, and particularly a shuttle-based AS/R system, warehouse managers 

need to determine the number of S/R machines. For a shuttle-based AS/R system, this involves the 

determination of the number of shuttles. These decisions must be taken carefully, since these shuttles 

have high investment costs and account for a majority of the total investment costs. If a warehouse 

manager decides to use more shuttles, this increases the capacity on the one hand, but it increases the 

probability of collisions and delays on the other hand. The priority of shuttles is to avoid collisions, but 

to accomplish this, other shuttles need to wait until the transaction of the incoming shuttle is done. 

This situation is also called blocking delay and causes significant inefficiency in the system (Ha & Chae, 

2019).   

3.3.2 Operating policies 
Operating policies, also called control policies by Vasili et al., (2014), are methods that determine how 

a AS/R system performs its tasks. A major operating policy decision is the type of storage policy that 

should be used in the system. According to Xu et al., (2018), a class-based storage always outperform 

the random storage policy in a multi-deep AS/R system, based on the expected travel time. Since the 

operating policies are already discussed extensively in Section 3.2, we refer to that section for further 

details.  
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Yu & de Koster (2009) discuss optimal zone boundaries for a multi-deep three-dimensional (3D) storage 

system, which is also called a compared or super high-density storage system. The advantages of such 

systems is that the efficiency of order picking is increased, while using minimum floor space. The 

optimization process for a 3D system is more complex than 2D AS/R systems, due to the larger number 

of variables involved. The authors show that zone dimensions significantly influence the travel time of 

the S/R machine. The results are compared with a random policy and show that travel times of the 

machines are significantly reduced (Yu & de Koster, 2009).   

Another point of interest for an efficient use of a multi-deep AS/R system, but also a AS/R system in 

general, is the dwell point position. The dwell point can be described as the location where the S/R 

machine is waiting after it performed a storage or retrieval request. The goal of this relocation is to 

anticipate on the next request, which can be a storage or retrieval request, based on the relative rates 

of occurrence of each request. According to Meller & Mungwattana (2005), the dwell-point location 

significantly influences the performance of AS/R systems. However, under a high system utilization, 

simple dwell-point location policies do not influence the overall performance of the system in a 

negative way, compared to more complicated policies (Meller & Mungwattana, 2005). According to 

Roodbergen & Vis (2009), the optimal dwell-point position is the input station, given that the 

probability of having a storage request after an idle period is at least 0.5.  

A multi-deep shuttle-based AS/R system like the one of Company X is able to operate according to a 

single command cycle or a dual command cycle. In a single command cycle, the crane performs only 

one storage or retrieval request between two consecutive I/O visits, while a dual command cycle 

performs both storage and retrieval between the two I/O visits. The storage cycle time is defined as 

the time that is needed to travel from the I/O point to the storage location, perform the storage action, 

and travel back to the I/O point again. The retrieval cycle time can be described in a similar way, but 

now the retrieval action is performed. Clearly, the total time that is needed to perform all storage and 

retrieval requests decreases when only dual-command cycles are used. Sequencing rules can be used 

to minimize the total travel time (Roodbergen & Vis, 2009).   

3.3.3 Conclusion 
When looking at designing AS/R systems, but multi-deep AS/R systems in general, roughly two 

categories can be distinguished. System structure involves the physical design of the system, including 

size, number of aisles, and dimensions. Although most of these decisions are definite, the number of 

shuttles can be changed, which is also a system structure decision. On the other hand, operating 

policies determine how the system performs its tasks. Zone boundaries, storage policies, dwell-point 

position, and command cycle strategies can be classified as operating policies.  

3.4 Assessment of performance 
In the previous sections several strategies were discusses that can be used to improve the efficiency of 

warehouses. When decision makers decide to implement one of the mentioned strategies, how do 

they actually know whether it actually improves the performance of the warehouse? Researchers have 

used several methods, ranging from short-term or long-term objectives, to the way how to measure 

these objectives and the type of warehouse system (Staudt et al., 2015). In this section the following 

question is answered that helps the decision makers by determining the warehouse performance.  

“How is the performance of warehouses assessed and which methods and 
techniques can be used for that?” 

Before the methods are discussed, we first focus on what is actually meant by performance. 

Performance is related to the way how work is done, which can be good or bad. Performance 
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measurement is used to quantify whether work is good or bad, and does this by looking at effectiveness 

and efficiency of a task or activity. If things are not working as they should, performance measurement 

is one of the techniques that help to identify the causes of this incorrect performed work. Reasons for 

performing performance measurement are to improve performance, avoid inconveniencies, and 

maintaining quality (Liviu, Ana-Maria, & Emil, 2009). 

Warehouses have at least one major functionality and that is to store products. Additional activities of 

warehouses include organizing transportation to customers, timely shipments of orders, or value-

added activities. The performance of warehouses has therefore multiple dimensions. Usually, this 

performance is measured by ratios of input and output factors (De Koster, 2008). Input factors are the 

resources that are needed to achieve the output. Examples of these factors are investments in buildings 

and IT infrastructure, but also the process management. Output factors are the amount of shipped 

orders, quality (i.e. error-free and on-time delivery), but also flexibility. The flexibility is the ease by 

which a warehouse is able to cope with changes provided by the customer (De Koster, 2008).  

According to Park (2012), a lot of warehouses use key performance indicators (KPI) to manage the 

functioning and productivity. The most commonly used KPIs for warehouses are productivity, operation 

costs, order accuracy, or order time. Based on these KPIs, a manager is able to carry out a warehouse 

performance gap analysis. This is a graphical representation of the performance of the warehouse in 

each dimension, compared with the industry best. The goal of this analysis is to point out strong and 

weak points in the warehouse (Park, 2011). 

Staudt et al., (2015) provide 4 indicators to assess the performance of warehouses. These indicators 

are time, quality, costs, and productivity, and can be considered in a broad sense. Literature provides 

different measures that contribute to the performance of the indicators. For example, the time KPI is 

influenced by the order picking time, queueing time, dock to stock time, and equipment downtime. 

For a AS/R system, the turnaround time is a convenient indicator for the performance. The turnaround 

time can be defined as the time between the receival of a request and the actual completion of the 

request (Lee H. F., 1997).  

The second performance indicator that a warehouse manager could use is quality. Some indicators 

include order fill rate, storage accuracy, stock-out rate, and cargo damage rate. However, in literature 

the emphasis lies at delivery on time and customer satisfaction. Since the AS/R system at Company X 

is part of a bigger warehouse, the quality of this system contributes to the quality of the entire 

warehouse. Indicators like order picking accuracy are less relevant for automated systems, since they 

do not involve human handling during the storage and retrieval process.  

Costs is the third performance indicator, of which the least can be found in literature. This can be linked 

to that the evaluation of operational-level performance is usually based on non-financial indicators. 

Examples of cost indicators are inventory costs, order processing costs, labor costs, and maintenance 

costs (Staudt et al., 2015). Investment costs are left out of consideration, since Company X is already 

building the system at the moment of writing.  

The last performance indicator is flexibility, and means how well some resources are combined and 

used to achieve desirable results, or the level of asset utilization (Staudt et al., 2015). Some productivity 

indicators are comparable between different situations. For example, even if the number of working 

hours per year in a country differs from another country, it is still possible to compare the labor 

productivity between these countries. Other examples of the flexibility indicator are throughput, 

turnover, transport utilization, and shipping productivity (Staudt et al., 2015).  
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The above mentioned performance indicators can be classified as “hard” metrics, which treats 

quantitative measures. On the other hand, “soft” metrics can be used as well and include qualitative 

measures like the perception of warehouse managers on customer satisfaction and loyalty (Kusrini, 

Novendri, & Helia, 2018). The downside of these soft metrics is that it is much harder to measure and 

thus determine how good a warehouse actually performs.   

To conclude, if we relate the abovementioned indicators to our research problem, where we want to 

find the optimal location for pallets in a AS/R system, it would be convenient to use at least the travel 

time indicator. One of the reasons for this is that the travel time is influenced by the routing distances 

of the shuttles, in combination with the waiting times of shuttles. As the total travel time of all shuttles 

decreases, the efficiency and throughput of the system will automatically increase.   

3.5 Conclusion 
In this chapter, the focus lied on what past literature contributed to optimization methods, storage 

policies, and performance assessments in the field of AS/RS, but also warehouses in general. Mixed 

Integer Linear Programming is an analytic method that is used to solve the problem exactly, but has as 

limitation that it is not an efficient method for solving large problems. Simulation is more efficient when 

dealing with large-scale problems. In addition to that, simulation is an appropriate method when 

performances under different operating conditions must be analyzed. Because of this reason, 

simulation is a suitable method for our research. Metaheuristics are able to handle large-scale 

problems as well, and have as additional benefit that some of them are able to escape local optima. 

Generally, Genetic Algorithms require a larger population size and more iterations to converge to a 

near-optimal or even optimal solution. Hence, Simulated Annealing and Variable Neighborhood Search 

are metaheuristics more suitable for our research.  

Storage policies are examples of operating policies and each of them comes with advantages and 

limitations. The random storage policy uses less space to store all products, but requires higher travel 

times of the S/R machine. The Greedy Algorithm is simple to use, but requires computer systems to 

keep track of product locations. Dedicated Storage uses a predetermined location for each products, 

which has as result that order pickers do not need much time to search for the product. Class-based 

storage assigns products to classes, assigns a location to each class based on the product characteristics 

within that class, and stores products randomly in that class. Different strategies can be used to assign 

products to classes, namely Cube-per-Order Index, Turnover time, family-grouping, or Duration-of-Stay. 

When designing an AS/R system in general, but in particular a multi-deep AS/R system, system structure 

decisions and operating policies decisions arise. System structure decisions involve the size of the 

system, dimensions, number of aisles, and number of robots or shuttles. Operating policies include 

storage policies, dwell-point position, and type of command cycle. Last, warehouse managers need to 

be able to assess the performance of warehouses. So-called KPIs can be used for that, which for 

warehouses include time, quality, costs, and productivity. Specifically for this research, we look at the 

total travel times of shuttles. To put this into perspective, Table 3 provides an overview of research on 

AS/RS control methods and system configurations, with our research included.  
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 Controls  Configuration 

Authors Storage 
assignment 

Storage 
restrictions 

Scheduling Simulation (MI)LP
/DP 

Meta-
heuristics 

 System 
configuration 

Unit-
load 

Single-
deep 

Double-deep 
or Multi-deep 

Cranes Multi-
shuttle 

Multiple 
I/O 

(Randhawa & 
Shroff, 1995) 

×  × ×   
 

 × ×  ×   

(Yang et al., 
2015) 

×  ×  × × 
 

 × ×   ×  

(Bessenouci et 
al. (2012) 

  × ×  × 
 

 × ×  ×   

(Yang et al., 
2013) 

×  ×  × × 
 

 ×    ×  

(Yang et al., 
2017) 

    ×  
 

× ×  × ×   

(Kouloughli & 
Sari, 2015) 

   × ×  
 

×  ×  ×   

(Zhou & Mao, 
2010) 

×   ×  × 
 

 ×   ×   

Our Research × ×  × × ×   ×  ×  × × 

Table 3: Overview of research on AS/RS control methods and system configurations 
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4 Model description 
In this chapter, the focus lies on describing the optimization model in combination with the used data 

and strategies. Specifically, this is discussed in Section 4.2, while the assumptions regarding the 

characteristics of the model and the input data it uses are discussed first, in Section 4.1. In Section 0, 

we discuss several storage policies that can be used in the AS/R system. 

4.1 Assumptions 
In the upcoming paragraphs, the model assumptions are discussed. The goal is to create a model that 

is as representative as possible, but considering the fact that the entire AS/R system has not been built 

yet, it is necessary to make some assumptions. The following question is answered in the paragraphs 

below.  

“What assumptions do we make regarding characteristics of the model and the 
input values it uses?” 

Stochasticity of errors 

In the current warehouse area located at the production plant, Company X is already working with 

automated guided vehicles (AGVs). In the new AS/R system, 4 shuttles will move and operate 

independently without the intervention of warehouse operators. This new situation is to some extent 

comparable with the old situation, in the sense of not using humans to transport pallets between 

locations. The experience of Company X is that these current AGVs malfunction every now and then, 

and although a different type of vehicle is used in combination with a different supplier, it remains 

possible to experience malfunctions or failures of these shuttles in the new AS/R system. We assume 

that the malfunctions of these shuttles occur in such a low rate, that it does not influence the 

performance of the AS/R system in the short term. In the long term, this would be very different. 

However, this is not the purpose of this research.  

Another error that could occur is the malfunction of the outbound station. As discussed, the AS/R 

system does not have a single I/O point, but an inbound station that is separate from the outbound 

station instead. According to the supplier, it is possible to use the inbound station as an outbound 

station when the regular outbound station is not working. Again, we assume that the failure rate of the 

regular outbound station is too low to influence the overall AS/RS performance on the short term.  

Employee availability 

The performance of the AS/R system is not only dependent on the system itself, but also on the way it 

is used and the operations around it. For example, if several pallets are requested from the system, the 

shuttles transport the pallets to the outbound station. At this station, a warehouse operator must pick 

up the pallet with a forklift truck and move it to truck loading area. If there is no warehouse operator 

available to pick up the pallet at the outbound, and the shuttles are continuing with transporting pallets 

to this outbound station, the pallets are stored at the elevator lane. This elevator lane has a capacity 

of 5 pallets, which means that if this elevator lane is completely full, the shuttle needs to wait. We 

assume that there are enough employees available such that the total number of pallets waiting for 

pickup does not exceed 5. This is a realistic assumption, since the outbound station of the AS/R system 

is located near the truck loading area.  

Another point that is not unimportant to mention here is that the employee availability also indirectly 

affects the pallet waiting times at the elevator. The outbound elevator lane has a capacity of 5 pallets, 
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which means that if the elevator lane is fully occupied, pallets need to wait before they can enter the 

elevator.  

Shuttles 

After having several conversations with the supplier of the new AS/R system, the supplier came to the 

conclusion that the requirements with respect to throughput rate and number of requests per hour is 

low enough to keep the shuttles at their base levels. This means that shuttles do not have to move 

between levels to meet the required throughput rate. However, the total number of shuttles equal 4, 

while there are 5 storage levels. As a result, one shuttle must move between 2 levels. Initially, shuttle 

4 is assigned to level 4 and 5. If the production capacity increases in the future, it might be needed to 

let the shuttles move between different levels, with as goal to provide enough supply for the production 

process. However, since this is not the main purpose of this research, we assume that the shuttles 

remain on their base level(s) only.  

Input data 

During the data collection phase, we came to the conclusion that not all the data was complete. In 

particular, the pallet height of a few stored products was missing. Company X uses a simple calculation 

tool to determine the height of pallets, by determining the number of layers there are on a single pallet 

and multiply that by the height of a single layer. In this way, the total height of the pallet is stored in 

the system. However, 6 of the 106 selected products did not have a registered height. Of these 6 

products, 2 of them could be measured physically in the warehouse, whereas the other 4 products 

needed a different approach. The remaining 4 products were all products that could be compared to 

another product of which the height was available. For example, of product “9999”, the height was 

available, while of product “9999B” the height was unknown. In the basis these two products are the 

same, but they have slightly different characteristics. Therefore, we used the height of the one product 

also for the comparable product.  

Regarding the collected data, an additional assumption was made in the sense of the validity of it. The 

assumption was made that all the collected data is correct, with the underlying idea that the purpose 

of the research is not to validate the data, but to use it to determine the AS/R system performance. 

The data collection process was done in collaboration with warehouse operators and employees from 

the IT department, to ensure that the correct data is gathered.  

Size of buffer area 

In the employee availability section, we discussed that at the outbound station of the AS/R system, 

there is a buffer area that has a capacity of at most 5 pallets. This is not the only buffer area that exists, 

since there are buffer areas at each storage level as well. Before the elevator is able to move the pallets 

up and down, it must transport the pallets from the buffer area first. For example, when a pallet must 

be retrieved, the shuttle picks the specific pallet from the desired location, and drops it at the buffer 

area at the elevator at the corresponding storage level. Thereafter, the pallet is transported 

automatically without the use of a shuttle from the buffer area to the elevator, before it moves down. 

The assumption here is that the size of this buffer area is at most 1, with as underlying argument that 

the cycle amount is low enough to support this. 

4.2 Optimization model and implementation 
In order to optimize the storage strategy problem, we use a mathematical optimization model. 

Mathematical optimization, hereafter referred to as optimization, is a powerful tool to find the best 

possible solution in a set of alternative solutions. In this section, the following question is answered. 
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“How does the optimization model looks like and how do we implement the 
collected data?” 

Any optimization model consists of an objective function, which is used to measure or assess the 

performance. In addition, sets include collections of related elements, parameters are fixed values that 

provide input for the model, and decision variables are the values that the model seeks to determine 

in order to optimize the objective function (Csanády et al., 2019). Our objective is to minimize the total 

travel time that is needed to complete all order requests. The relevant sets, parameters, decision 

variables, and objective function with constraints are presented below.  

4.2.1 Rationale and motivation of the SLAP optimization model 
Before we start with the actual formulation of the model, we discuss what requirements it should have 

in order to be an appropriate model. We have first consulted the literature, in which the research of 

Yang et al. (2013) deals with LASRSP for a multi-shuttle AS/R system. In our research we deal with a 

multi-shuttle AS/RS as well, but only consider SLAP instead of LASRSP. Because of this, the research of 

Yang et al. (2013) is a good starting point to formulate our model. Besides, the model by Yang et al. 

(2015) is a more simplified version of our model, and can therefore be used as well. However, we have 

changed the model in such a way, that it fits our purpose.  

A major difference between the model of Yang et al. (2013) and this one, is that Yang et al. (2013) take 

into account both location assignment and storage/retrieval scheduling, while our model only takes 

into account the location assignment problem. If we compare only the storage location assignment 

problems (SLAP), Yang et al. (2013) do not really include any storage restrictions. As mentioned before, 

ingredients that must be stored have different heights, with as result that not all locations are possible 

for storage. Besides, ingredients that carry a specific allergen cannot be stored directly under or above 

an ingredient that carries another allergen. Products that are classified as non-allergens can only be 

stored above and not below products with allergens. Our model needs to take these hard constraints 

into account.  

Third, the locations in the AS/R system considered by Yang et al. (2013) and Yang et al. (2015) are all 

directly accessible, while the locations in our AS/R system have more restrictions with respect to 

accessibility. In addition to that, Yang et al. (2013) use a Dynamic Programming approach, while our 

model can be classified as a Linear Programming model. On the other hand, the model of Yang et al. 

(2015) is an ILP model with operational cycles, which can be applied to our model as well. These points 

distinguish our model to the one of Yang et al. (2013) and Yang et al. (2015), at least for the SLAP case.  

4.2.2 Validation of optimization model 
With all constraints in mind we were able to formulate the complete SLAP optimization model. This 

model is shown in Appendix D – Complete optimization model. When we tried to evaluate the model 

with the complete problem instance, the program indicated that the problem was too large to solve 

exactly. A major limitation of this optimization model is the large number of constraints that we use. 

Allergen limits, heights, and capacity limitations are all hard constraints and therefore cannot be left 

out. As a result, the run time is very high even for a very small problem instance. We used the all the 

storage locations of the AS/RS, and with a run time of 5 hours and 15 minutes, we were able to store 

180 pallets initially composed by 6 different types of ingredients. These 180 pallets are forming the 

initial state of the AS/RS at operational cycle 𝑘 = 0. The retrieval or storage requests start at 𝑘 = 1. 

The results are summarized in Table 4 below. 
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Request 
type 

Operational 
cycle k 

Ingredient Location i Location j Location z Objective 
(seconds) 

Retrieval 1 A 9 28 1 55.55 
Retrieval 2 B 9 26 3 77.94 
Storage 3 B 43 28 3 77.94 
Storage 4 A 43 28 1 55.55 
Storage 5 C 41 26 3 77.94 
Storage 6 D 41 26 1 55.55 

Table 4: Results of SLAP optimization model with 7 cycles 

When we increase the number of operational cycles to 8, the computational effort becomes too big to 

be handled by a regular computer. This is also dependent on the number of products that are stored 

initially, but with the current composition of only 2 products, 8 operational cycles becomes too large. 

In literature, several methods have been proposed to address situations like this one, and especially 

Roodbergen & Vis (2009) propose an extensive literature review on automated storage and retrieval 

systems, with as conclusion that the most common method to deal with large-scale problems is to use 

heuristics. However, before we continue to heuristics, we try to validate our SLAP optimization model 

first, to check whether it works as intended.  

To show that the model works as intended, we create a dummy AS/RS with 2 levels, and each level 

having 3 by 3 storage positions. Storage locations 1 are always directly accessible, where behind 

locations 2 and eventually 3 are located. These are only directly accessible based on whether the 

location in front is occupied. The maximum storage height of level 1 is 1.5 meters and of level 2 is 2.0 

meters. We have two different types of ingredients, that we call ingredient 1 and ingredient 2 for now. 

For both ingredients, 2 pallets must be stored initially. For both ingredients, 3 pallets must be stored 

before 2 pallets must be retrieved. Ingredient 1 is classified as a non-allergen, while ingredient 2 is 

carrying a milk allergen. The characteristics are summarized in Table 5 below. 

Request type Operational cycle 
k 

Ingredient Height (meters) Allergen 

Storage 0 1 1.6 Non 
Storage 0 1 1.6 Non 
Storage 0 2 1.3 Soy 
Storage 0 2 1.3 Soy 
Storage 1 1 1.6 Non 
Storage 2 1 1.6 Non 
Storage 3 1 1.6 Non 
Storage 4 2 1.3 Soy 
Storage 5 2 1.3 Soy 
Storage 6 2 1.3 Soy 

Retrieval 7 2 1.3 Soy 
Retrieval 8 2 1.3 Soy 
Retrieval 9 1 1.6 Non 
Retrieval 10 1 1.6 Non 

Table 5: Dummy problem instance with 2 ingredients 

Figure 4 is a top-view of a 3 by 3 AS/RS where the main aisle is located at the south side, and the I/O is 

at the bottom left. The rectangles are storage locations, and included are numbers that indicate the 

ranking of travel time. The lower the number, the less time that is needed to reach this location. The 

lift time significantly influences the travel time for such a small problem instance, and therefore all the 

locations at level 1 can be reached before the best location at level 2 can be reached.  
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Figure 4: Ranking of dummy storage locations per level (1 for best, 18 for worst). 

The outcome of the model should be clear, in the sense that ingredient 1 must be stored at level 2 and 

ingredient 1 at level 1. This is due to the maximum storage height limitation. The storage locations for 

ingredient 1 must be at locations (1,1,2), (1,2,2), and (2,1,2), indicated by rank 10, 11, and 12 

respectively. It must be noted that location (1,2,2) must be visited before (1,1,2), otherwise it is not 

feasible. The same holds for ingredient 2, that must be stored at level 1 at locations (1,1,1), (1,2,1), and 

(2,1,1). These locations are indicated by rank 1, 2, and 3 respectively.  

Request 
type 

Operational 
cycle k 

Ingredient Location i Location j Location z Objective 
(seconds) 

Storage 0 1 1 3 2 - 
Storage 0 1 2 2 2 - 
Storage 0 2 2 3 1 - 
Storage 0 2 3 2 2 - 
Storage 1 1 2 1 2 78.28 
Storage 2 1 1 2 2 78.02 
Storage 3 1 1 1 2 75.27 
Storage 4 2 2 1 1 58.56 
Storage 5 2 1 2 1 58.30 
Storage 6 2 1 1 1 55.55 

Retrieval 7 2 1 1 1 55.55 
Retrieval 8 2 1 2 1 58.30 
Retrieval 9 1 1 1 2 75.27 
Retrieval 10 1 1 2 2 78.02 

Table 6: Results of the SLAP optimization model with the dummy instance 

As we can see, the results are as expected. The total objective of this dummy instance equals 24.65 

minutes. Ingredient 1 is stored constantly at level 2, while this is not necessarily needed for ingredient 

2. It is not possible to store multiple ingredients in the same row, and that is also not happening. 

Another important thing to mention is that location (1,1,1) is retrieved before (1,2,1), and location 

(1,1,2) before (1,2,2). Besides for storage, location (1,2,2) is visited before location (1,1,2), and location 

(1,2,1) before (1,1,1). This indicates that the accessibility constraint is working as it should be, for the 

storage requests as well as for the retrieval requests. This indicates that the complete SLAP optimization 

model shown in Appendix D – Complete optimization model is working as it should and is thereby 

validated.  

The complete problem instance that covers 13 weeks of operations has a total of 18,634 request cycles, 

of which 10,122 were in the form of storage, and the remaining 8,512 in the form of retrieval. The 

number of initial stored pallets equals 4,242, and comparing this with the small problem instance that 
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needed 5 hours and 15 minutes for 180 initial pallets and 6 requests, this is significantly larger. The 

more pallets and requests we are able to use, the more representative the model becomes. This made 

us decide to leave out some constraints that are not classified as hard constraints, with as goal to 

achieve exact results with a somewhat larger problem instance. The reduced SLAP optimization model 

is shown below, represented by sets first, followed by parameters and decision variables, with the 

objective function and constraints thereafter.  

4.2.3 SLAP optimization model formulation 
Sets 

𝐼 Storage positions in length 𝑖 ∈ 𝐼 

𝐽 Storage positions in width 𝑗 ∈ 𝐽 

𝑍 Storage level 𝑧 ∈ 𝑍 

𝐴 product allergen 𝑎 ∈ 𝐴 

𝑃 Set of products 𝑝 ∈ 𝑃  

𝐾 Set of all operation cycles in the planning horizon 

𝑅𝑃𝑘 Products that must be retrieved 𝑅𝑃 ⊆ 𝑃 in cycle 𝑘 ∈ 𝐾 

𝑆𝑃𝑘 Products that must be stored 𝑆𝑃 ⊆ 𝑃 in cycle 𝑘 ∈ 𝐾 

𝐿 Set of storage lanes 𝑙 ∈ 𝐿 

𝑈 Unavailable storage locations 𝑢 ∈ 𝑈 

Parameters 

ℎ𝑝 height in millimeters of product 𝑝 ∈ 𝑃 

𝑝𝑎 allergen 𝑎 ∈ 𝐴 of product 𝑝 ∈ 𝑃 

ℎ𝑧 maximum storage height of level 𝑧 in millimeters 𝑧 ∈ 𝑍  

𝑠𝑡𝑖,𝑗,𝑧 time to travel from inbound to location 𝑖, 𝑗 at level 𝑧, and back to the inbound 

𝑟𝑡𝑖,𝑗,𝑧 time to travel from outbound to location 𝑖, 𝑗 at level 𝑧, and back to the outbound 

𝑇𝑇 total time for all requests in seconds 

𝑀 A large enough number 

𝐻𝑝
𝑘 Number of pallets of product 𝑝 ∈ 𝑃 stored during cycle 𝑘 ∈ 𝐾 

Variables 

𝑞𝑖,𝑗,𝑧,𝑝
𝑘  = {

1 if location 𝑖, 𝑗 at level 𝑧 is occupied with product 𝑝 during cycle 𝑘 
0 otherwise                                                                                                         

 

 

𝑥𝑖,𝑗,𝑧,𝑝
𝑘  = {

1 if product 𝑝 is retrieved from location 𝑖, 𝑗 at level 𝑧 during cycle 𝑘
0 otherwise                                                                                                         

 

 

𝑑𝑖,𝑗,𝑧,𝑝
𝑘  = {

1 if product 𝑝 is stored at location 𝑖, 𝑗 at level 𝑧 during cycle 𝑘
0 otherwise                                                                                              
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Objective Function  

𝑀𝑖𝑛 𝑇𝑇 = ∑ (∑ ∑ ∑ ∑ 𝑟𝑡𝑖,𝑗,𝑧 ∗ 𝑥𝑖,𝑗,𝑧,𝑝
𝑘

𝑍

𝑧=1

𝐽

𝑗=1

𝐼

𝑖=1

+ ∑ ∑ ∑ ∑ 𝑠𝑡𝑖,𝑗,𝑧 ∗ 𝑑𝑖,𝑗,𝑧,𝑝
𝑘

𝑍

𝑧=1

𝐽

𝑗=1

𝐼

𝑖=1

𝑆𝑃𝑘

𝑝=1

𝑅𝑃𝑘

𝑝=1

)

𝐾

𝑘=1

 

Constraints 

𝑞𝑖,𝑗,𝑧,𝑝
𝑘 ∗ ℎ𝑝 ≤ ℎ𝑧 ∀𝑖, ∀𝑗, ∀𝑧, ∀𝑝, ∀𝑘 (1) 

 

𝑞𝑖,𝑗,𝑧,𝑝𝑎

𝑘 + 𝑞𝑖,𝑗,𝑧′,𝑝𝑎
′

𝑘 ≤ 2 ∀𝑖, ∀𝑗, ∀𝑘, ∀𝑧′ > 𝑧, 𝑎 ∈ {2, 3}, 𝑎′ ∈ {1} (2) 
 

𝑞𝑖,𝑗,𝑧,𝑝𝑎

𝑘 + 𝑞𝑖,𝑗,𝑧′,𝑝𝑎
′

𝑘 ≤ 1 ∀𝑖, ∀𝑗, ∀𝑘, ∀𝑧′ > 𝑧, 𝑎 ∈ {1, 2, 3}, 𝑎′ ∈ {2, 3}, 𝑎 ≠ 𝑎′ (3) 
 

𝑞𝑖,𝑗,𝑧,𝑝
𝑘 = 0 (𝑖, 𝑗, 𝑧) ∈ 𝑈, ∀𝑝, ∀𝑘 (4) 

 

∑ 𝑞𝑖,𝑗,𝑧,𝑝
𝑘

𝑃

𝑝=1

≤ 1 ∀𝑖, ∀𝑗, ∀𝑧, ∀𝑘 (5) 

 

∑ ∑ ∑ 𝑞𝑖,𝑗,𝑧,𝑝
𝑘

𝑍

𝑧=1

𝐽

𝑗=1

𝐼

𝑖=1

= 𝐻𝑝
𝑘 ∀𝑘, ∀𝑝 (6) 

 

𝑥𝑖,𝑗,𝑧,𝑝
𝑘 ≤ 𝑞𝑖,𝑗,𝑧,𝑝

𝑘  ∀𝑖, ∀𝑗, ∀𝑧, ∀𝑘, ∀𝑝 ∈ 𝑅𝑃𝑘 (7) 
 

𝑀 ∗ (1 −  𝑑𝑖,𝑗,𝑧,𝑝′
𝑘 ) ≥ ∑ 𝑞𝑖,𝑗,𝑧,𝑝

𝑘

𝑃

𝑝=1

 ∀𝑖, ∀𝑗, ∀𝑧, ∀𝑝′ ∈ 𝑆𝑃𝑘 , 𝑘 ≥ 1 (8) 

 

∑ ∑ ∑ 𝑥𝑖,𝑗,𝑧,𝑝
𝑘 = 1

𝑍

𝑧=1

𝐽

𝑗=1

𝐼

𝑖=1

 ∀𝑘, ∀𝑝 ∈ 𝑅𝑃𝑘 (9) 

 

∑ ∑ ∑ 𝑑𝑖,𝑗,𝑧,𝑝
𝑘 = 1

𝑍

𝑧=1

𝐽

𝑗=1

𝐼

𝑖=1

 ∀𝑘, ∀𝑝 ∈ 𝑆𝑃𝑘 (10) 

 

∑ ∑ ∑ 𝑞𝑖,𝑗,𝑧,𝑝
0

𝑍

𝑧=1

𝐽

𝑗=1

𝐼

𝑖=1

= 𝑃𝑝
0 ∀𝑝 (11) 

 

𝑞𝑖,𝑗,𝑧,𝑝
𝑘 = 𝑞𝑖,𝑗,𝑧,𝑝

𝑘−1 + 𝑑𝑖,𝑗,𝑧,𝑝
𝑘−1 − 𝑥𝑖,𝑗,𝑧,𝑝

𝑘−1  ∀𝑖, ∀𝑗, ∀𝑧, ∀𝑝, ∀𝑘 ≥ 1 (12) 
 

𝑞𝑖,𝑗,𝑧,𝑝
𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑧 ∈ 𝑍, 𝑝 ∈ 𝑃, ∀𝑘 ∈ 𝐾 (13) 

 

𝑥𝑖,𝑗,𝑧,𝑝
𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑧 ∈ 𝑍, 𝑝 ∈ 𝑅𝑃𝑘 , ∀𝑘 ∈ 𝐾 (14) 

 

𝑑𝑖,𝑗,𝑧,𝑝
𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑧 ∈ 𝑍, 𝑝 ∈ 𝑆𝑃𝑘 , ∀𝑘 ∈ 𝐾 (15) 

 

4.2.4 Explanation of constraints 
In this section the constraints of the mathematical model are explained. These constraints influence 

the objective function, that minimizes the total travel time to handle all storage and retrieval requests. 

At each operational cycle 𝑘, a single retrieval or storage request is handled. In the objective function, 

the parameter 𝑥 indicates the retrieval requests, and the parameter 𝑑 indicates the storage requests. 

The first constraint ensures that if a pallet with product 𝑝 is placed at location 𝑖, 𝑗 at level 𝑧, the height 
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of this pallet cannot exceed the maximum storage height of level 𝑧. Constraint (2) allows products 

classified as non-allergens to be placed above allergen-products. Constraint (3) only allows the same 

allergen types above each other, when 𝑝𝑎′ is not equal to 1 (Non-allergen). The exact rules are 

described in Section 2.2.1. Besides, for sake of simplicity we use sets 𝐼, 𝐽, and 𝑍 to indicate storage 

positions in length, width, and height respectively. However, main aisles, pillars, and elevators cannot 

be used for storage, and are therefore not classified as storage locations. All these unavailable locations 

are given by the set 𝑈, and constraint (4) guarantees that no product can be stored at these locations.  

In addition to that, constraint (5) ensures that all locations cannot be occupied by more than one 

product at the same time. The reason for this is that at most a single product can be stored at a single 

pallet, and therefore this constraint ensures that not more than 1 type of product can be stored at a 

single location. Constraint (6) keeps track of the amount of pallets stored of a specific product during a 

specific cycle 𝑘, and constraint (7) allows a product to be picked from a location only if that product is 

actually stored at that specific location. Constraint (8) is making sure that the location is empty if a 

product is stored at that location. Constraint (9) and (10) ensure that all the retrieval requests and 

storage requests are fulfilled. Constraint (11) indicates that a starting stock level must be stored. 

Eventually, constraint (12) is the inventory balance equation, that ensures that the inventory level of a 

certain product is updated when a storage or retrieval request is performed. This is necessary when 

multiple operational cycles are considered. In our case, we start at 𝑘 = 0 with a starting stock, and 

perform storage and retrieval requests from 𝑘 = 1 onwards. Constraints (13), (14), and (15) are sign 

constraints, and can only take value 0 or 1.  

4.2.5 Model input data 
This section is an extension on Section 4.2.3, primarily to discuss the relevant data that is needed as 

input for the optimization model. Below, a summation is made with the used input data. Set 𝐼 is used 

to represent storage positions along the length of the system, while set 𝐽 is used for storage positions 

over the width. In Error! Reference source not found., the values of set 𝐼 start of the left hand side and e

nd at the right hand side, while the values of set 𝐽 start at the bottom and end at the top. Practically, 

this means that coordinate (𝑖, 𝑗) = (1,1) is located at the bottom left hand side, and coordinate (𝑖, 𝑗) = 

(54,38) is located at the top right corner. We also include the level 𝑧, resulting in a coordinate format 

of (𝑖, 𝑗, 𝑧). Besides, for the allergen set 𝐴, we include non-allergens, milk allergens, and soy allergens. 

To simplify the use of this set, we use index 1 for non-allergens, 2 for milk allergens, and 3 for soy 

allergens.  

Sets 

Storage positions in length 𝐼 = {1, 2, … , 54} 

Storage positions in width 𝐽 = {1, 2, … , 38} 

Storage level 𝑍 = {1, 2, … , 5} 

product allergen 𝐴 = {1 (𝑁𝑜𝑛), 2 (𝑀𝑖𝑙𝑘), 3 (𝑆𝑜𝑦)} 

The next few sets are related to the ingredients that are stored and/or retrieved. The ingredients are 

also called products, and all have an unique name. However, for sake of simplicity we just use numbers. 

Initially, we had 83 unique products, but the model was able to evaluate exactly up to only 8 unique 

products. For the storage requests and retrieval requests, these are both sets with products from the 

original product set 𝑃, and are therefore both called multiset 𝑅𝑃 and 𝑆𝑃. Again, for sake of simplicity 

we use numbers instead of product names. Again, we could not use the entire storage and retrieval 

instance, and therefore both sets are reduced to 70 storage requests, and 40 retrieval requests.  
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Stored products 𝑃 = {1, 2, 3, 4, 5, 6, 7, 8} 

Products that must be retrieved 𝑅𝑃 = {1, 2, … , 40} 

Products that must be stored 𝑆𝑃 = {1, 2, … , 70} 

Since only a single product can be stored or retrieved at a time, this would mean that we need to 

combine both 𝑅𝑃 and 𝑆𝑃 into a single set. This would give us the number of operation cycles 𝐾, but 

this brings a lot more complexity. In order to be able to evaluate the model exactly, 𝐾 is reduced to a 

set of length of only 2.  

Operation cycles 𝐾 = {0, 1} 

For the unavailable storage locations, denoted by 𝑈, a short explanation is desired. The size of set 𝑈 

equals 1,580, which refers to the number of unavailable storage locations. We can check whether this 

approach is correct, by multiplying the maximum number of 𝐼, 𝐽, and 𝑍, and subtract 1,580 from that. 

The multiplication of these three numbers equal 10,260, and after subtracting 1,580 from that we end 

up with 8,680. This is exactly the maximum capacity of the AS/R system, and hence we have verified 

that the size of set 𝑈 is correct. To present 1,580 values in an efficient way, we have created Table 7. In 

this table, 4 columns are presented with several rows containing sets. In order to find all unavailable 

coordinates, we take the Cartesian Product of 𝑖𝑛, 𝑗𝑛, and 𝑧𝑛 for all 𝑛. The Cartesian Product or 

Unrestricted Join of sets 𝐴′ and 𝐵′ is denoted by 𝐴′ × 𝐵′ and results in a set of all ordered pairs (𝑎′, 𝑏′) 

such that 𝑎′ belongs to 𝐴′ and 𝑏′ to 𝐵′ (Halpin & Morgan, 2008). In our case, we use 3 sets at a time 

for the Cartesian Product, and create coordinates with format (𝑖, 𝑗, 𝑧).  

Number 𝒏 Length 𝒊 Width 𝒋 Level 𝒛 

1 {1, 2, … , 54} {9, 18, 27} {1, 2, 3, 4, 5} 
2 {10, 42} {10, 11, … , 26}\{18} {1, 2, 3, 4, 5} 
3 {13, 27, 41} {1, 2, … , 7}, {16, 25} {1, 2, 3, 4, 5} 
4 {27, 41} {34, 35, … , 38} {1, 2, 3, 4, 5} 
5 {10, 11, … , 14} {28, 29, … , 38} {1, 3, 4} 
6 {10, 11, … , 13} {28, 29, … , 38} {2, 5} 
7 {14} {32, 33, … , 38} {2,5} 
8 {42} {28, 29, … , 38} {1, 2, 3, 4, 5} 
9 {43, 44} {29, 30, … , 38} {1} 

10 {45} {33, 34, … , 38} {1} 
11 {43, 44, 45} {33, 34, … , 38} {2, 3, 4, 5} 
12 {13} {26} {1, 2, 3, 4, 5} 

Table 7: Combination of sets representing unavailable storage locations 

Parameters 

Maximum storage height of level 𝑧 in centimeters. ℎ1 = ℎ2 = 150, ℎ3 = 180, ℎ4 = ℎ5 = 225 

Maximum pallet capacity of level 𝑧. 𝑐1 = 1,728, 𝑐2 = 𝑐5 = 1,740, 𝑐3 = 𝑐4 = 1,736 

4.2.6 Mutations made on optimization model 
As said, the optimization model needs extremely much time to evaluate an exact solution, even for a 

very small problem instance. In order to have a more representative view of reality, a larger problem 

instance is desired.  

Mixed storage lane constraint 
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The original model shown in Appendix D – Complete optimization model ensures that we cannot store 

more than 1 type of ingredient in storage lanes 1 and 4, and at most 2 different types of ingredients in 

storage lanes 2 and 3 at the same time. This is something that the stakeholders of Company X want to 

see, but it is not specifically a hard constraint. When leaving this constraint out, the outcome remains 

feasible, but according to the stakeholders at Company X, this is unlikely to happen in reality. Later in 

Chapter 5, we see what time is needed for relocating pallets compared to storing them separately with 

as result that all ingredients are directly accessible. The constraints we are referring to are shown 

directly below. The numbers at the end correspond to the constraint numbers in Appendix D – 

Complete optimization model. 

∑ 𝑜𝑖,𝑙,𝑧,𝑝
𝑘 ≤ 1

𝑃

𝑝=1

 ∀𝑖, ∀𝑧, ∀𝑘, ∀𝑙 ∈ {1, 4} (14) 

 

∑ 𝑜𝑖,𝑙,𝑧,𝑝
𝑘 ≤ 2

𝑃

𝑝=1

 ∀𝑖, ∀𝑧, ∀𝑘, ∀𝑙 ∈ {2, 3} (15) 

 

∑ 𝑞𝑖,𝑗,𝑧,𝑝
𝑘 ≤ 𝑀 ∗ 𝑜𝑖,𝑙,𝑧,𝑝

𝑘

𝑗∈𝐽𝑙

 ∀𝑖, ∀𝑧, ∀𝑙, ∀𝑝, ∀𝑘 (16) 

 

∑ 𝑞𝑖,𝑗,𝑧,𝑝
𝑘 ≥ 𝑜𝑖,𝑙,𝑧,𝑝

𝑘

𝑗∈𝐽𝑙

 ∀𝑖, ∀𝑧, ∀𝑙, ∀𝑝, ∀𝑘 (17) 

 

If we look at the constraints above, we see that all constraints must hold for each operational cycle 𝑘. 

If we increase the number of storage and retrieval requests, and thereby the number of operational 

cycles, it becomes harder for the model to solve it exactly. Besides, when a higher number of 

operational cycles is used, more different types of products are used as well. Because the constraints 

sum over all products 𝑝, it becomes harder for the model to solve it exactly as well.  

Accessibility constraint 

The second set of constraints we omitted are the accessibility constraints. In a multi-deep AS/RS, one 

challenge is that not all storage locations are directly accessible, especially when the system is highly 

utilized. Ignoring this issue is unrealistic because, in reality, pallets that block certain locations must be 

relocated first, which can negatively affect the overall efficiency. However, we chose to leave this set of 

constraints out anyway, and the reason why can be found in the results that are obtained afterwards.  

While initially, it might seem unrealistic to omit these accessibility constraints, our approach 

compresses multiple operational cycles into a single cycle. Although this does not perfectly reflect 

reality, it is a reasonable assumption under certain conditions. One of these conditions is that all 

storage and retrieval requests are handled at adjacent locations. In the original model, the system 

checks whether a location is accessible, but in this simplified approach, it only needs to verify if a 

location is empty (for storage) or occupied by the specific product (for retrieval). By processing requests 

at adjacent locations starting from a main aisle, we ensure that the handled requests remain feasible. 

The key assumption here is that we do not prioritize one request over another since we are using a 

single operational cycle. The specific constraints that were omitted correspond to those listed in the 

optimization model in Appendix D – Complete optimization model, and are shown directly below. 
 

∑ ∑ 𝑞𝑖,𝑗′,𝑧,𝑝
𝑘

𝑗′∈𝑅𝐽𝑙
1

≤ 𝑀(1 − 𝑑𝑖,𝑗,𝑧,𝑝
𝑘 )

𝑃

𝑝′=1

 ∀𝑖, ∀𝑧, ∀𝑝, ∀𝑘, ∀𝑙 ∈ {1, 4} ∀𝑗 ∈  𝐽𝑙 (18) 
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∑ ∑ 𝑞𝑖,𝑗′,𝑧,𝑝
𝑘

𝑗′∈𝑅𝐽𝑙
1

≤ 𝑀(1 − 𝑥𝑖,𝑗,𝑧,𝑝
𝑘 )

𝑃

𝑝′=1

 ∀𝑖, ∀𝑧, ∀𝑝, ∀𝑘, ∀𝑙 ∈ {1, 4} ∀𝑗 ∈  𝐽𝑙 (19) 

 

𝑑𝑖,𝑗,𝑧,𝑝
𝑘 ≤ 𝑏𝑖,𝑗,𝑧

𝑘  ∀𝑖, ∀𝑗 ∈ {𝐽2, 𝐽3}, ∀𝑧, ∀𝑘, ∀𝑝 ∈ 𝑆𝑃𝑘 (20) 
 

𝑥𝑖,𝑗,𝑧,𝑝
𝑘 ≤ 𝑏𝑖,𝑗,𝑧

𝑘  ∀𝑖, ∀𝑗 ∈ {𝐽2, 𝐽3}, ∀𝑧, ∀𝑘, ∀𝑝 ∈ 𝑅𝑃𝑘 (21) 
 

∑ ∑ 𝑞𝑖,𝑗′,𝑧,𝑝
𝑘

𝑗′∈𝑅𝐽𝑙
1

≤ 𝑀 ∗ 𝑏𝑖,𝑗,𝑧
𝑘

𝑃

𝑝=1

 ∀𝑖, ∀𝑧, ∀𝑝, ∀𝑘, ∀𝑙 ∈ {2, 3}, ∀𝑗 ∈ 𝐽𝑙  (22) 

 

∑ ∑ 𝑞𝑖,𝑗′,𝑧,𝑝
𝑘

𝑗′∈𝑅𝐽𝑙
2

≤ 𝑀(1 − 𝑏𝑖,𝑗,𝑧
𝑘 )

𝑃

𝑝=1

 ∀𝑖, ∀𝑧, ∀𝑝, ∀𝑘, ∀𝑙 ∈ {2, 3}, ∀𝑗 ∈ 𝐽𝑙  (23) 

 

Similar to the mixed storage lane constraints, these constraints hold for all operational cycles, and 4 

out of 6 constraints are also using a sum over all products that are present in the AS/R system. This 

means that when we increase the problem size, it becomes harder for the mathematical model to solve 

the problem exactly. With this approach, we hope to be able to increase the problem size significantly, 

at least to have a somewhat more better representation of reality. The results of the reduced SLAP 

optimization model are discussed in the next section.  

4.2.7 Reduced SLAP optimization model outcomes 
In the previous sections we discussed the smaller product instance that was used to be able to assess 

the optimization model. We started with an initial stock of 8 unique products, with a total number of 

occupied locations to be equal to 1,951. These 8 products were the ones that were moved most often 

during the past 12 months. Next to that, at 𝑘 = 1, both storage requests and retrieval requests were 

added. At this operation cycle, 6 different products must be stored in a total quantity of 70 pallets. Next 

to that, 7 different products must be retrieved in a total quantity of 35 pallets. In the current model, 

we have incorporated that we do not take into account any storage time to store the initial stock at 

𝑘 = 0. The reason for this is that this is not a very everyday operation, as we consider a system that is 

replenished continuously rather than once in a while.  

The optimal objective function for this set up equals approximately 1.99 hours. This time both includes 

storage and retrieval time, of which the latter is equal to 0.78 hours. This means that the total storage 

time equals 1.21 hours. All the locations for both request types are adjacent to each other, which means 

that for a single operation cycle, this is a feasible solution. When considering all the possible storage 

locations, and not only the lowest storage level as in Section 4.2.6, it is possible that some actions are 

performed at the same locations, but only at a different level. This is somewhat difficult to show, but 

22 storage requests are handled at level 3, 2 are handled at level 4, and the remaining 46 are all handled 

at level 1. For the retrieval requests, 8 are handled at level 3, 5 at level 4, and the remaining 27 at level 

1. In Figure 5, the initial storage map is shown without any further storage or retrieval requests. To 

highlight where the storage and retrieval requests take place exactly, we have created Figure 6. Here, 

we clearly see that the storage requests are handled near the inbound station, and the retrieval 

requests are handled near the outbound station.  
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Figure 5: Storage map top view of level 1  

 

Figure 6: Indication of storage requests (red) and retrieval requests (blue)  

4.3 Working of the simulation model 
In this section, we describe the working of the simulation model that was established after we found 

out that the mathematical optimization model was not solvable exactly for the complete problem 

instance. The following question is answered in this section: 

“What is the overall working of the simulation model?” 

The first part of the simulation model imports data from several Excel files. These Excel files contain 

the most important information about the ingredients that are relevant, but also the characteristics 

such as the height of the pallet, the allergen of the ingredient, Identification, and batch size. On the 

other hand, we also have files that contain information about outgoing ingredient quantities, and 

incoming replenishment orders of ingredients. These latter two lists also contain dates and times.  We 

have created the simulation model in such a way that it is able to handle both the complete problem 

instance and the small problem instance. Subsequently, we created a blank 3-dimensional area that 

represents the AS/RS. Here, we create 54 storage positions in length, 38 storage positions in width, and 
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5 storage levels. This, in combination with the unavailable storage locations creates exactly 8,680 

storage positions for the AS/RS of Company X.  

The majority of the simulation model is working the same for different storage strategies. The following 

points work the same for any storage policy. The simulation starts with initializing variables such as the 

number of pallets handled, the storage time and retrieval time, and the storage map. The storage map 

is initialized in order to create a feasible starting solution. This is necessary, since the 13-week period 

starts with retrieval requests. Besides, having an initial storage map before the request period begins 

is more representative than using an empty storage map.  

Thereafter, the storage and retrieval requests are initialized and transformed in the correct format. 

Since the storage and retrieval requests both include date and time, we can create a single list that 

combines both request types and sort them from oldest to youngest. The simulation model handles 

these requests from oldest to youngest, and deletes the request from the list if it is complete. This 

enables us to check whether no request is skipped. The major difference between the format of the 

storage requests and the retrieval requests is that the retrieval requests are handled by one, and the 

storage requests are handled by replenishment batch size. This ensures that we are able to store the 

products based on batch number, as requested by Company X.  

The simulation starts with first request, and thus handles the one with the oldest date. When the 

request is done, it moves to the next one until no requests are left. The model checks the type of 

request and based on that it determines where the shuttle should go. For example, when the next 

request is a retrieval request, it must send an empty shuttle, but if the next request is a storage request, 

the model must ensure that the shuttle is present at the inbound station first before the request can 

be handled. Based on the type of strategy, it determines where to store a pallet.  

On the other hand, the retrieval of pallets is not dependent on the type of strategy, and always happens 

according to the same rules. This is due to the fact that the ingredients carry an expiry date, and to 

reduce waste, the ingredients with the fastest expiry date must be retrieved first. An assumption is 

made here, and that is that products that are stored earlier have a shorter expiry date than products 

that are stored later. This comes down on the FIFO principle. The simulation model searches for the 

ingredient that has the oldest storage date, and tries to retrieve this specific ingredient. If this is not 

possible, it checks the product with the second oldest storage date, and so on.    

When a storage request consists of a large number of pallets, it could be possible that the next request 

already arrives when the current request is not done yet. If this next request is a retrieval request and 

the current request is a storage request, it pauses the current request to handle the next retrieval 

request first. This ensures that the simulation model also handles dual command cycles. The routing of 

the shuttles is dependent on the state of the storage map. This means that travelling from location A 

to location B does not always yield the same travel time. In a completely empty system, the shuttles 

will always travel the shortest route to the target location. The same yields for empty shuttles, because 

these can travel underneath the stored pallets. When a shuttle is carrying a pallet, it checks whether 

the shortest route is possible, otherwise it uses the main aisles and connection lanes.  

The time a shuttle needs to travel a specific distance, and the way how this is calculated is the same for 

all storage strategies. After a single request is done, the travel time is calculated by keeping track of the 

travelled distance, in combination the handling operations the shuttle has performed. For example, if 

the shuttle has travelled a distance of 100 meters, made 4 turns, picked and dropped a pallet, we know 

exactly how much time was needed for this request. When a storage request comes in and the shuttle 

is not present at the inbound, the model inserts an additional request in which the travel time to the 

inbound is included for this request.  
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In the end, all the storage and retrieval requests are saved and an additional calculation enables us to 

see the total travel times of all shuttles per day. Besides that, we can see the difference between the 

total retrieval time and the total storage time in combination with the number of pallets handled. When 

all the simulation runs are completed, the simulation model transforms the collected results into an 

Excel file for visualization purposes. The general working of the simulation is constructed in pseudocode 

shown in Algorithm 1 below. 

Algorithm 1 Pseudocode for the simulation model 

1 for i = 1 to num_simulations do: 
2 initialize storage_time, retrieval_time, pallets_handled, requests_handled to 0 
3 initialize rejected_requests as empty lists 
4 initialize total_travel_time_per_day as empty dictionary 
5 clear the storage map 
6 create empty DataFrame with columns LocationX, LocationY, LocationZ, and TotalTime 
7 if improvement phase is equal to False then: 
8  if strategy is “Dedicated” then: 
9   initialize dedicated storage map 
10  else:  
11   initialize normal storage map 
12 else:   
13  copy candidate_map to storage_map 
14  if improvement_strategy is “Normal” or “1full” or “2full” or “Partial” then: 
15   propose swap with selected improvement_strategy 
16   copy storage_map to store_map_after_swap 
17 initialize storage_list and retrieval_list 
18 create combined_list from storage_list and retrieval_list and sort it based on date and time 
19 while combined_list is not empty do: 
20  initialize stored_amount to 0 
21  pop the first element from combined_list as current_request 
22  if combined_list is not empty then: 
23   set next_request to the first element in combined_list 
24  else 
25   set next_requets to None 
26  evaluate current_request 
27  if current_request has no valid coordinates then: 
28   append current_request to rejected_requests 
29  if request_amount is valid then: 
30   assign shuttle to handle the request 
31   determine travel path and calculate total travel time 
32   update shuttle start times and end times, and track total travel time per day 
33   if request_type is “Storage” then: 
34    update storage map with new storage coordinates 
35    increment counters 
36   else:  
37    clear storage map entry for retrieval 
38    increment counters 
39   check next_request and adjust if arrival time < current time 
40 calculate total pallet amount 
41 generate new results from simulation 
42 return final results in Excel file 
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4.4 Storage policies used 
In this section we elaborate on the chosen storage strategies and their results. The following question 

is answered: 

“What types of storage policies do we use in our model to determine the 
performance of the AS/RS?” 

Before we continue, we have described several storage policies in Chapter 3, each with their own 

advantages and disadvantages. Therefore, it would be nice to see which storage policy performs most 

closely, if not the same, to the optimal solution found by the mathematical optimization model. If this 

is done, we can test the complete problem instance as well, since a simulation model is a suitable 

method to deal with a larger problem instance like this one. This enables us to assess the performance 

of the AS/R system on the complete problem instance as well, and not only the smaller instance used 

for the optimization model. The most common storage strategies applied in literature are random, 

class-based, and dedicated. For the random and class-based strategies, randomness is involved. This 

means that we have to be careful with drawing conclusions directly after the first run. Statistically, it is 

possible that a single outcome turns out extraordinary high or low, and therefore does not represent 

the actual performance well. In the next section, the number of replications is discussed. In the sections 

thereafter, the 3 storage policies are discussed. Within these sections, we start with the small problem 

instance that corresponds to the one used in the mathematical optimization model, and continue with 

the complete problem instance.  

4.4.1 Number of replications 
The results are dependent on multiple factors, but one is of major importance when doing a simulation 

study. The number of replications confirms the reproducibility of the simulation, and refers to the 

independent verification of prior findings. Moreover, replication refers to the ability to independently 

replicate and reproduce computations (Arifin & Madey, 2019). Therefore, the number of replications 

directly affects the quality of the results. The higher number of replications is, the more accurate the 

results are. A higher number of replications brings as disadvantage that a longer runtime is required. 

To determine the least amount of replications with the highest possible accuracy of results, we use the 

confidence interval approach. The goal of the confidence interval approach is to find a number of 

replications after which the confidence interval (CI) becomes sufficiently small. To calculate the 

confidence interval, Equation (11) is used.  
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Where 𝑋̅ is the moving average over the number of replications, 𝛼 is the level of significance, 𝜎 is the 

moving standard deviation, and 𝑛 is the number of replications. A value for the level of significance 

that is often used is 0.05, and using this 𝛼 means having a Z-score of 𝑧0.975, which equals 1.96. In order 

to determine when the confidence interval is sufficiently small, we initialize the number of replications 

to 50. We expect to see the confidence interval width decrease, and at some point, the rate of decrease 

will become so low that it is not worth the effort to use additional replications for a minor reduction in 

interval width. The results of the interval width calculations are shown in Figure 7 below.   
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Figure 7: Confidence Interval widths based on the number of replications 

Before the data was analyzed, we converted the end results from seconds to minutes. The graph above 

clearly visualizes that the rate of decrease is much higher in the beginning, while it becomes much 

lower towards the end. This means that the outcome is in line with the expectations we sketched 

before. The graph above does not show a very fast decay, with as result that a higher number of 

replications is needed to get accurate results. However, if we look at the data and calculate the relative 

change per replication, we see that after 20 replications the relative change becomes less than 5% for 

the first time. Therefore, we set the number of replications equal to 20.  

4.4.2 Random strategy 
The first storage policy that was used is the random storage policy, and both the small problem instance 

as well as the complete problem instance are analyzed.  

Small instance 

We began by analyzing the small problem instance to compare it with the optimal solution provided by 

the mathematical optimization model. This resulted in a total travel time of 3.73 hours. For the retrieval 

requests, on average 1.3 hours were needed, while for the storage requests 2.42 hours were needed. 

This means that on average, 2.03 minutes were needed to handle a single pallet. If we compare this to 

the optimal solution found, this is roughly 87% higher. Of course, with a small problem instance there 

is a lot more room for improvement, but this indicates that a random storage solution could lead to a 

far from optimal solution.  

Complete instance 

Since we are using a simulation model, we are able to assess the performance of the AS/R system on a 

complete instance as well. The first trial was based on the product set described in Section 2.3.3, but 

we came rapidly to a conclusion that this was not feasible as well. We started with the products that 

have the highest movement occurrences, and continued until all the 106 products were stored. 

However, it was not possible to store all the products, mainly due to the restrictions with respect to 

storage height and allergens. This enforced us to use a different approach again.  

In accordance with the stakeholders at Company X, the product list in Chapter 2 was created to 

represent the future stock level as good as possible. The total stock amount of this list equals 7,764 

pallets, which could not be stored completely with the current heights and allergens configuration. 

Next to that, the pallet movements were analyzed as well, and resulted in a list that covered a time 
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span of 13 weeks. The starting date of this list was the first of January 2024, and ended at the last day 

of March 2024. This made us decide to look at the stock levels of the first of January 2024, with as goal 

to reduce the size of the product list. This list might not be averages or the best representative for an 

entire year, but this enables us to retrieve what is needed, since we are looking at an order list that 

starts at January 1. We also incorporate a replenishment list over the same time span, to maintain stock 

levels. At the first of January 2024, there were 83 different types of ingredients on stock, while the 

initial data had 106. The total number of pallets on stock at the first day of 2024 was 4,242. This should 

enable us to create a feasible initial solution. 

The allergen and height restrictions again caused an unwanted outcome. When assigning products 

completely random to the AS/R system, approximately 250 pallets were not stored on a constant base. 

The reason for this was simple, namely that the approach did not take into account any logic when 

placing pallets. A simple example illustrates this. A product classified as a non-allergen forbids placing 

any allergen-carrying products above it. When level 1 of the AS/R system is completely filled with non-

allergen products, not a single allergen-carrying product can be placed in the system anymore. Even if 

the system is for approximately 20% occupied, this situation results in an initial solution that is only 

partly feasible.  

In order to create a solution that is completely feasible, we incorporated a small storage assignment 

logic. This small logic ensures that the emphasis of placing non-allergen products lies at the higher 

levels, and for the allergen-carrying product at the lower levels. Moreover, this does not mean that 

allergen-carrying products cannot be placed at the highest levels, but it focuses on placing these types 

of products on lower levels. Eventually, this resulted in an initial solution where all the 4,242 pallets 

were placed.  

The small storage assignment logic ensured that we first check the higher levels for the non-allergen 

products, and first the lower levels for the allergen products. Specifically, this includes that for non-

allergen products we select a random lane at level 4 first, and check if it is feasible. If not, we continue 

to level 5, and eventually to level 3, level 2, and level 1. With this approach, it is more likely that non-

allergen products are placed at higher levels. Allergen-carrying products started a random search at 

level 1, and then continue sequentially to levels 2, 3, 4, and 5. Considering the initial random solution 

and all operations over a time span of 13 weeks and running 20 simulations, the average total time that 

was needed to process all the requests equals 582.27 hours. For the all the retrieval requests, 294.54 

hours were needed, while for all the storage requests 287.73 hours were needed. These outcomes are 

based on the simulation model that takes into account the possibility of having dual command cycles.  

4.4.3 Class-based strategy 
The second storage strategy that was used is the class-based strategy. We apply an ABC-strategy where 

we both assign locations and products to class A, B, or C. The classes given to the locations are not 

based on single locations, but on the entire storage lane. The reason for this is that we prefer to store 

a single item in a single lane, especially the lanes that are accessible from one side only. It would 

therefore not be convenient to assign class A to locations at the beginning of the lane, while the 

locations at the end of the lane have class B. Besides, the product classes are determined based on the 

movement count. The number of times an ingredient is needed for production is counted and sorted, 

and the cumulative contribution per ingredient is calculated. The first 75% of the movements belong 

to class A, which is achieved by 23 different products. The next 20%, thus covering 95% of the 

movements in total, belong to class B. The last 5 cumulative percentages are assigned to class C. The 

class B movements are achieved by 23 different products as well, while 69 different products belong to 

class C. 
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Small instance 

The small problem instance included only 8 unique products, and since we do not use a real retrieval 

list, it is hard to determine the actual class of the products. In addition to that, with a total capacity of 

8,680 pallets, and only 1,951 of these locations are used, assigning classes A, B, or C to the closest 1,951 

locations would not make a major difference. Last, since we are using single command cycles only for 

the small instance, the locations classified as A, B, and C can be different than for dual command cycles. 

For retrieval requests, A locations would lie more towards the top left corner of the storage map, while 

for storage requests A locations lie more at the top right corner. To conclude, these points made us 

decide to classify all 8 products to class A.  

Subsequently, this leaves us with the question which locations to classify as class A locations. Since we 

consider single command cycles, for both storage and retrieval operations, no single location is better 

than another for all operations. For sake of simplicity, we use storage lanes 3 and 4 only, as indicated 

by the green marked lanes in Error! Reference source not found.. Again, 20 replications are used since r

andomness is involved, and the average total travel time ended up to equal to 2.99 hours. Of this total 

objective, 1.01 hours were spent on retrieving products, while the other 1.98 hours were spent on 

storing products.  

Complete instance 

The complete problem instance covered 83 unique products with a total stock level of 4,242 pallets. 

With this in mind, we decided to enable the entire AS/RS, rather than only storage lanes 3 and 4. Since 

the complete instance is able to handle dual command cycles, we cannot use the same strategy for 

assigning classes to ingredients and locations as we did for the small instance. To determine the most 

preferred locations, we started from the inbound station, traveled to each location, and traveled then 

to the outbound. The result of this is that we are now able to distinguish storage positions that take 

more time to reach than others. To visualize this, Error! Reference source not found. is created. In this f

igure, the locations that need less time to reach are indicated by red colors, and evolve to yellow, green, 

blue, and purple for locations that need more and more time to reach. This helped us to identify the 

storage lanes for class A, B, and C. In Error! Reference source not found., the red locations are classified 

as class A locations, the green locations as class B, and the purple locations as class C.  

The incoming ingredients need to have a classification as well, since we are then able to assign a certain 

location to it. The entire order list of the first 13 weeks of 2024 was checked and the number of 

retrievals per product was counted. The list was sorted in descending order based on retrieval 

frequency. In total, 20 unique products contributed to more than 75% of all the retrievals. These 

products are classified as A products. The next 21 products contributed approximately 18% of the total 

retrievals, and were classified as B products. The last 33 products contributed for less than 4% to the 

total retrievals, and are therefore classified as C products.  

The next step is to create an initial solution again with the proposed class-based strategy. This was done 

according to the same small logic proposed for the initial random solution, where allergen-carrying 

products were checked for the lower levels first, while the non-allergen products were checked for the 

higher levels first. When a product needs to be placed, we check the class type of the corresponding 

product and randomly select a storage lane within the relevant class. When no lane is available at a 

certain level, we move up or down dependent on the allergen characteristics, and try to select another 

random storage lane within the class. This resulted in an entire feasible initial solution where 4,242 

pallets were stored. The same replenishment list and order list in combination with the request 

sequence handling logic was used and this resulted in an average total travel time of 504.46 hours over 

20 simulation runs, of which 249.24 hours were assigned to retrieval requests, and 255.22 hours to 

storage requests.  
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4.4.4 Dedicated strategy 
The third implemented strategy is the dedicated policy. Previously, we mentioned that storing almost 

8000 pallets is not feasible with the current product portfolio. A major disadvantage of the dedicated 

strategy is that it needs a number of storage locations equal to the maximum inventory per ingredient 

over the relevant period. In our case, this period ranges from the first of January 2024 until the end of 

March 2024. In the previous sections, two different storage policies were discussed that both 

incorporate randomness to obtain a solution. However, for the dedicated strategy this is not the case, 

since predetermined locations are used for storage and retrieval. Besides, no randomness is involved 

in the storage and retrieval list, and therefore we only need a single simulation run instead of 20.   

Small instance  

For the small instance, we checked the maximum stock level per product and used that to 

predetermine the locations. To find these maximum stock levels, we added the 6 storage requests to 

the corresponding stock level, and ended up with a total number of pallets of 2,021. Thereafter, we 

stored the initial stock levels and assessed the performance based on the storage and retrieval 

requests. For the latter, 1.09 hours were needed to retrieve 40 pallets. The other 1.72 hours were 

needed for storage requests. Thus, the total time needed to handle all requests equals 2.81 hours. 

Complete instance 

The complete instance requires more attention for a successful implementation. The main reason for 

this is that the maximum stock levels over a period of 13 weeks fluctuate a lot more compared to the 

small instance. Where initially at the first of January 2024 only 4,242 pallets needed to be stored, 

adding up the maximum stock levels of all the products over the 13-week period resulted in a total 

stock level of 7,820 pallets. When we tried to store the product list established in Chapter 2 before, this 

resulted in an infeasible solution.  

Even when using the small storage assignment logic, where the emphasis of storing allergen products 

lies at the lower levels, and for storing non-allergen products at the higher levels, this resulted in an 

infeasible solution. In addition, we have incorporated an additional assignment logic that starts with 

assigning products that are moved most frequently to the locations that need the least travel time to 

reach. Eventually, this did not result in a feasible solution as well. At this point, we have implemented 

different assignment logics with as goal to create a feasible solution, however without a success. 

Therefore, we introduce a different method that might help. 

We started again with an empty map and started to reserve the locations for each product. The two 

assignment logics from the paragraph above were used for this, in combination with a function that 

keeps track of the number of locations reserved for each product. When this number of reserved 

locations is less than the predetermined maximum storage amount, this means that there are no 

storage lanes available anymore for a feasible storage solution. When this happens, we enable a swap 

function, that swaps two random storage lanes and then checks whether a lane becomes available.  

The swap function works as follows. We randomly select a single storage lane and then try to swap it 

with a randomly selected other storage lane. It is possible to use different swaps, for example, it could 

be the case that we swap two fully occupied lanes with each other, an empty lane with a fully occupied 

lane, or an empty lane with a partial occupied lane. When two lanes are selected for a potential swap, 

we first check whether restrictions exists that make the swap infeasible. If not, the swap is performed 

and the storage map is updated and checked on potential new storage positions afterwards. When the 

swap is not feasible, it can select up to 500 times a new storage lane with the original one. If after 500 

trials there is still no swap available, we randomly select another storage lane and check potentially up 

to 500 new storage lanes for swaps. This process can take up to 500 times, which means that potentially 
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5002 swaps are possible. This resulted in a feasible solution, which meant that we can also assess the 

incoming storage and retrieval requests. This resulted in a total objective value of 673.13 hours.  

4.5 Conclusion 
To end this chapter we provide a concise conclusion about the findings and results from this chapter. It 

was clear from the beginning that a set of assumptions was desired, especially when we found out that 

the mathematical optimization model for SLAP could not solve the complete problem instance exactly. 

We have confirmed that the complete optimization model works, whereafter we decided to omit 2 sets 

of constraints. This enabled us to use a larger problem instance, and thereby providing more reliable 

results. The SLAP optimization model without the 2 sets of constraints resulted in an optimal solution 

of 1.99 hours to handle all 110 pallets. Thereafter, we have assessed the performance of the simulation 

model with 3 types of storage strategies, namely, random, class-based, and dedicated. The class-based 

storage strategy performed the best here, with a total time of 3.89 hours to perform all requests. This 

is significantly higher than the optimal solution found by the optimization model, and therefore we 

continue with an improvement phase in the next chapter. 
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5 Improvement phase and analysis of results 
In this chapter, we evaluate the performance of the used storage strategies from the previous chapter, 

and potentially improve the results. This is all done in Section 5.1. Thereafter, we perform an utilization 

analysis in Section 5.2. Last in Section 5.3, we analyze the results to be able to determine whether the 

improvement phase actually worked or not. 

5.1 Improvement phase 
In this section, we shortly look back at the results found so far, and try to improve the solutions in such 

a way that it benefits the efficiency of the AS/R system. The purpose of using the mathematical 

optimization model with a small instance is to determine the optimal performance based on this small 

instance. Subsequently, the simulation model can be used to evaluate the entire problem instance, 

since it uses a heuristic to create a solution. Solutions that are created heuristically are not necessarily 

optimal, and therefore it is important to check how good the solution actually is.  

“How do we improve the results found so far and which methods can be used 
for that?” 

We are able to determine the performance of the heuristic solutions, since we did not only use the 

simulation model on the complete problem instance, but also on the small instance. This enables us to 

check the performance of the heuristic solution compared to the optimal solution, and thereby also 

draw a careful conclusion about how good the heuristic approach performs on the complete problem 

instance. To make this conclusion more precise, we can try to improve our heuristic solution by using a 

metaheuristic approach. Genetic Algorithms usually need more computational effort to reach near 

optimal or even optimal solutions. Hence, Simulated Annealing and Variable Neighborhood Search are 

more suitable options. Since we are working with a minimization problem, we aim to find an objective 

value that is as small as possible.  

Simulated Annealing 

Simulated Annealing, hereafter referred to as SA, is a probabilistic metaheuristic technique that uses 

this to be able to escape local optima. But before SA uses this probabilistic approach, it first generates 

an initial solution with a starting temperature. From this initial solution, a perturbation is made to 

create a neighborhood solution. If this neighborhood solution is better, it is always accepted. If it is 

worse, it is accepted based on a probability that decreases as the quality of the neighborhood solution 

declines and as the temperature lowers. This temperature gradually decreases based on a cooling 

constant (𝛼), with as goal to reduce the probability of accepting worse solutions over time. We have 

implemented this approach, and this is presented by the pseudocode in Algorithm 2 (Leeftink, 2022): 
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Algorithm 2 Simulated Annealing 

1 Temperature = StartingTemperature 
2 Solution = CreateInitialSolution 
3 CurrentBest = 9,999,999 
4 while not stopping_criteria do 
5 for i = 1 to NumberOfIterations do 
6  NeighborSolution = CreateNeighborSolution(Solution) 
7  if NeighborSolution < Solution then 
8   if NeighborSolution < CurrentBest then 
9    CurrentBest = NeighborSolution 
10   end if 
11    Solution = NeighborSolution 
12  else 

13   if RandomNumber ≤ exp(
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
) then 

14    Solution = NeighborSolution 
15   end if 
16   end if 
17  end for 
18 Temperature = α * Temperature 
19 end while 
20 Result = CurrentBest 

For the SA approach, the quality of the end solution is not only dependent on the initial solution, but 

also on the chosen parameters. The decisions must be made for the number of iterations, the starting 

temperature, and the cooling constant. We have tested several combinations of parameters, of which 

the results are shown in Table 8 below. To increase the computational efficiency, we used the small 

problem instance instead of the complete problem instance. In addition, the class-based storage 

strategy performed best for the small problem instance, what made us decide to choose this strategy 

as starting solution. Besides, the results are related to the retrieval times only, and thus are not 

influenced by storage requests. The initial solution and best solution values are both shown in minutes.  

Iterations Starting 
Temperature 

Cooling 
Constant 

Initial 
Solution 

Best 
Solution 

Improvement 

1000 10 0.99 56.17 52.07 7.30% 
1000 100 0.99 56.60 52.57 7.12% 
1000 200 0.99 57.01 50.12 12.09% 
500 10 0.99 54.73 51.84 5.28% 
500 100 0.99 54.92 50.25 8.50% 
500 200 0.99 57.36 50.42 12.10% 

1000 10 0.995 56.49 52.99 6.20% 
1000 100 0.995 54.32 50.11 7.75% 
1000 200 0.995 57.79 50.11 13.29% 
500 10 0.995 56.81 51.49 9.36% 
500 100 0.995 54.95 51.31 6.62% 
500 200 0.995 60.68 50.50 16.78% 

Table 8: Results of the simulated annealing parameter analysis 

From the results above, we clearly see that a higher starting temperature ensures that we more likely 

end up with a better solution. The highest improvement is achieved by 500 iterations in combination 

with a starting temperature of 200 and a cooling constant of 0.995. However, this configuration does 

not lead to the best solution found so far. The best found solution equals 50.11 minutes in retrieval 
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time, which equals 1.25 minutes per request on average. This solution is achieved by using 1000 

iterations and a cooling constant of 0.995, in combination with a starting temperature of 100 or 200.  

The results from Table 8 above are obtained by using the class-based storage strategy with 3 classes. 

We also tested the random storage strategy with 1000 iterations, a starting temperature of 200, and a 

cooling constant of 0.995. The initial solution for this configuration equals 4.15 hours, of which 1.45 

hours were spent on retrieval requests. After the SA algorithm improved the solution, we ended up 

with a solution that equals 2.95 hours. The total travel time is reduced from 1.45 to 1.10 hours, which 

is equal to a decrease of 23.87%. The solution found for the retrieval time is significantly higher than 

the solution found by using the class-based strategy. This implies that the solution is dependent on the 

quality of the initial solution, despite the fact that solution is improved by 23.87%.  

The optimal objective found by the optimization model equals 1.99 hours, of which 0.78 hours were 

spent on retrieval requests. If we compare that with the solutions found after using the SA algorithm, 

we observe an optimality gap of 41.45% for the random strategy, and for the class-based strategy a gap 

of 7.19%. An important remark has to be made here, and that is that in the simulation model we stick 

to the preference of Company X to store at most a single lot number in storage lanes 1 and 4 and at 

most 2 lot numbers in storage lanes 2 and 3. Comparing this to the optimal value from the optimization 

model, we see that in the optimization model more than a single type of product is stored in storage 

lane 4. This most likely is the cause of still having a small optimality gap after the SA algorithm was 

used.   

Additionally, the time it takes to retrieve a product is dependent on the current state of the system. 

Especially locations in storage lanes 2 and 3, i.e. the lanes that are accessible by 2 sides, could have 

different travel times when the lane is empty or not. In the mathematical optimization model, we used 

the shortest possible path to the specific location for both storage and retrieval requests. In the 

simulation model, the shuttle determines the shortest possible path, by taking into account the current 

occupied locations. Dependent on whether the shuttle is empty or not, it determines the shortest 

possible path that is possible to reach the target location.  

The next analysis is done on the complete problem instance, where 4,242 pallets were stored initially, 

8,512 pallets must be retrieved, and 10,122 pallets must be stored. We used the parameter 

configuration that was determined earlier, with 1000 iterations, a starting temperature of 200, and a 

cooling constant equal to 0.995. The initial retrieval time equals 248.28 hours, and after improvement 

the total retrieval time needed was 243.54 hours. The improvement made is only equal to 1.95%, but 

there is a likely reason for this. 

First of all, the basic idea behind retrieving products in the warehouse of Company X is that the 

products with the shortest expiry date are retrieved first, in order to prevent expired ingredients. By 

using an initial stock level of 4,242 pallets, and a 13-week order period in which 8,512 pallets must be 

retrieved, and 10,122 pallets must be stored, this results in that at least 4,270 (8,512 minus 4,242) 

pallets that must be retrieved were on the storage list as well. Therefore, the retrieval objective is not 

only influenced by the way how products are located in the initial state, but also on the way how 

products are stored. When the retrieval objective is only dependent on the initial state, for example for 

the small problem instance, the improvements by the SA algorithm are potentially higher.  

Variable Neighborhood Search 

The second metaheuristic approach that was used is Variable Neighborhood Search, in short VNS. The 

first step is to initialize a starting solution, in combination with determining the different neighborhood 

structures that are going to be used. From this starting solution, a neighborhood solution is created by 

using a specific neighborhood structure. A local search method is used to find the local optimum in the 



52 
 

current neighborhood solution. If an improvement is found, the solution is updated and the 

neighborhood structure is reset to the first one. If no improvement is found, the neighborhood 

structure is incremented until it exceeds the maximum number of neighborhood structures. The steps 

of the VNS algorithm are shown in Algorithm 3 below:  

Algorithm 3 Variable Neighborhood Search 

1 Solution = CreateInitialSolution 
2 CurrentBest = 9,999,999 
3 Neighborhoods = [Type I, Type II, Type III] 
4 for i = 1 to NumberOfIterations do 
5 k = 1 
6 while k ≤ k_max do 
7  Strategy = Neighborhoods(k) 
8  Solution = LocalSearch(Strategy) 
9  if Solution ≤ CurrentBest then 
10   CurrentBest = Solution 
11   k = 1 
12  else 
13   k = k + 1 
14  end if 
15 end while 
16 end for 
17 Result = CurrentBest 

As discussed before, the VNS algorithm uses a local search method for exploring the current 

neighborhood. The process of exploring the current neighborhood solution is referred to as 

intensification, while creating different neighborhoods is referred to as diversification. For clarity, the 

pseudocode of the local search method is given by Algorithm 4 below.  

Algorithm 4 Local Search 

1 NumberOfIterations = 100  
2 NoImprovementLimit = 50 
3 NoImprovementCount = 0 
4 BestSolution = 9,999,999 
5 while not NoImprovementCount ≥ NoImprovementLimit do 
6  for i = 1 to NumberOfIterations do 
7  Solution = CreateNeighborhoodSolution(Strategy)   
8  if Solution ≤ BestSolution then 
9   BestSolution = Solution 
10   NoImprovementCount = 0 
11  else 
12   NoImprovementCount = NoImprovementCount + 1 
13  end if 
14 end for 
15 end while 
16 Result = BestSolution 

A common neighborhood structure for the VNS algorithm when dealing with an integrated storage and 

retrieval problem, is to intercept or interchange storage and or retrieval requests in existing request 

cycles. This is incidentally applied by Yang et al. (2015) as well. For our research, this approach is less 

useful. In the first place, only single command cycles in combination with a single operational cycle are 

used. This means that we cannot change storage and or retrieval requests, since these are all handled 
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separately in a single cycle. Second, the production planning department of Company X sends orders 

to the warehouse with required ingredient quantities for production. A request that comes in at the 

beginning of the day cannot be interchanged with an order at the end of the day, because that messes 

up the production schedule. Third, incoming truck loads that replenish the stock quantities must be 

handled according the first-come-first-serve (FCFS) principle, and can therefore not be interchanged 

without consequences. Therefore, this neighborhood structure for the VNS drops as suitable option.  

An additional method that is commonly used in VNS to explore the solution space is repair and destroy. 

As the name suggests, the destroy method destructs a part of the initial solution, and thereby enabling 

the repair method to rebuild the destroyed part. The destroy method typically contains some form of 

stochasticity, such that not the same parts are destroyed in every invocation of the method (Pisinger & 

Ropke, 2010). In our research, destroy and repair methods are not used, but rather different types of 

swaps as discussed above.  

Yang et al. (2015) propose an optimization model for a storage/retrieval problem, in combination with 

a VNS heuristic for SLAP. We know that the quality of the initial solution affects the quality of the end 

solution. Therefore, we select the solution obtained with the class-based storage strategy as the initial 

solution. The next step is to determine different neighborhoods, for which we selected 3 types. Two of 

these neighborhoods are to some extent applied by Yang et al. (2015) as well, and these are swapping 

an empty storage lane with an fully occupied storage lane, and second swapping two fully occupied 

storage lanes. The third neighborhood is created by swapping a part of an occupied storage lane with 

a part of another occupied storage lane. This principle is shown in Figure 8 below, where 2 storage 

lanes next to each other are shown from above. The colors represent a type of product, and the white 

cells indicate an empty storage location. Obviously, finding a neighborhood is not restricted to two 

storage lanes that are located next to each other.  

 

 

 

 

 

For the small instance, we tested the VNS metaheuristic with the 3 neighborhood structures described 

above. We set the number of iterations equal to 5, and the local search iterations equal to 100. The 

first results were obtained for the small problem instance by using the class-based storage strategy. 

The result of this approach is that we ended up with a minimum total travel time that was needed for 

all requests of 2.66 hours. 0.9 hours of this total objective was needed to handle the retrieval requests, 

and the remaining 1.76 hours were spent on storage requests. Besides, we tested the random storage 

strategy as well, and after using the VNS algorithm, the total travel time that was needed equals 3.12 

hours. Of this total objective, 1.13 hours were spent on retrieving products, and the other 1.99 hours 

were used for handling storage requests.  

The last analysis was done on the complete problem instance. Since the class-based strategy resulted 

in the best solution for the small problem instance, we used this strategy again for the complete 

problem instance. The end result of this approach was that 245.58 hours were needed for the 8,512 

retrieval requests, and 246.21 hours for the storage requests. This means that 491.79 hours were 

needed to handle all the requests.  

Figure 8: Visualization of neighborhood structures 

          Type I      Type II              Type III 
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5.2 Utilization analysis 
In this section, we elaborate on the utilization rate of the system, and try to find an optimal value. In 

AS/R systems that have aisles with single-deep storage racks, all the stored products are directly 

accessible. The one product requires less time to reach than another, but in the end all the products 

are directly accessible. In a multi-deep AS/R system, like the one of Company X, this is not the case. 

Therefore, the amount of pallets and where these are stored significantly impacts the efficiency of the 

AS/R system, and hence we try to answer the following question in this section.  

“What system utilization level yields the highest efficiency?” 

Until now, we have assumed that it is most efficient to put a single type of product in storage lanes 1 

and 4, and at most 2 different product types in storage lanes 2 and 3. Hereby, all the products remain 

accessible at all times. However, the next issue arises in the sense of the storage dates or the products. 

Ideally, ingredients that are stored the earliest must be retrieved first, before ingredients that are 

placed later. However, it sometimes happens that a product with a specific lot number must be 

retrieved, even when this is not the ingredient with the longest duration-of-stay (DOS). In this latter 

case we refer to the FEFO principle.  

The first strategy we implemented was to store products based on their product name. By using this 

strategy, we ensure that each unique product is directly accessible. The first step was to pick the 

representative product list from Chapter 2, and collected the corresponding replenishment lot size for 

each product. Subsequently, we divided the maximum stock level of each product over the past 365 

days by the replenishment lot size. The outcome is rounded up and we used that number as the number 

of orders for the specific product on the total order list. Thereafter, the total order list is randomized, 

to ensure that we evaluate different products with respect to allergens, heights, and replenishment 

size.  

We tested 20 simulation runs to see what happens with the amount of products that can be stored. 

Since randomness is involved, we can set up a confidence interval to be, for example 95 percent, sure 

about the true value of number of products that can be stored. With these 20 simulation runs, we have 

a mean equal to 7,336 pallets, in combination with a standard deviation of 52. This means that we can 

say that we are 95 percent sure that the true value of the number of pallets that can be stored in the 

current composition lies between 7,317 and 7,355 pallets. This is equivalent to a maximum utilization 

level that lies between 84.30% and 84.74%.  

The second strategy that we implemented was giving products a location based on lot number. This 

means that only products with the same lot number can be stored in the same storage lane, while 

before also different lot number could be stored in the same lane. In storage lanes 2 and 3, at most 2 

different lot numbers can be stored. An advantage of storing product per lot number is that every 

product and lot number is accessible. Sometimes, products with specific lot numbers are requested, 

and this method ensures that all these products are directly accessible.  

We started with an empty system again and tried to add a random lot size to the system one by one. 

The same approach was used as before, but now we created an unique ID for each replenishment 

within each unique product. This means that if 100 pallets of a certain product needs to be stored with 

a replenishment size of 30, we have 4 unique lot numbers for this product. 3 lot numbers have size 30, 

and 1 lot number has size 10. The lot sizes that occurred most in the list were of size 24, 26, 10, and 1. 

Eventually we calculated the average maximum utilization over the 20 runs, and this resulted in 7,166 

pallets. With a standard deviation of 69 pallets, we are able to set up a 95% confidence interval, that 
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ranges from 7,141 pallets as lower bound, and 7,191 pallets as upper bound. This is equivalent to a 

maximum utilization level that lies between 82.26% and 82.85%.  

An additional analysis can be done on the utilization of the system, which incorporates swaps in order 

to create more storage space when no suitable location can be found anymore. This swap strategy is 

initiated when no storage location can be found, with as goal to create more storage space. This 

eventually results in a higher utilization level of the AS/R system. However, a disadvantage of this 

method is that it needs to be done on beforehand, since sometimes a lot of swaps are needed to create 

more storage space. With an already highly occupied system, this method is very hard to implement. 

With this method, we are able to store up to at most 7,845 pallets, which equals 90.38% of the 

maximum capacity.  

Furthermore, we want to see what happens when we compare the time of relocating pallets with the 

time the shuttles could travel if they do not handle relocations. The main issue with relocating pallets 

is that it needs to find a suitable location, which could be difficult. Especially when the system is highly 

utilized, finding a free spot is more challenging than when the system is low utilized. If a free spot can 

be found, this spot must also be checked on allergen constraints, which means that it makes it even 

harder to find a suitable relocation. In Figure 9 below, we see 2 red cells located at location (30, 28, 1) 

and at location (26, 25, 1). When a pallet needs to be relocated from one of the locations to the other, 

it takes just as much time than compared to when the shuttle continues to drive forward. Thus, the 

locations that are marked green can be reached in the same time as the time it takes to relocate a pallet 

from one indicated location to the other.    

 

Figure 9: Relocations (red) compared to reachable locations (green) 

From these results we can conclude that it would be efficient to store at most a single lot number in 

storage lanes 1 and 4, and at most 2 lot number in storage lanes 2 and 3. One of the main reasons for 

this is that it occasionally happens that specific lot numbers must be retrieved. Besides, Company X is 

planning to highly utilize the system with ingredients, and therefore it becomes much harder, if not 

impossible, to find a suitable location to relocate pallets. If no suitable location for relocating can be 

found, the pallet must be removed from the system in order to access the wanted products. This results 

in additional handling actions for the warehouse operators, which the stakeholders of Company X 

preferably want to prevent.   
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5.3 Analysis of results 
In this section, we analyze all the results that are related to the AS/R system. In this way, we provide a 

clear overview on which methods and results are good, and which ones are less good. The following 

question is answered in this section: 

“What are the results found and what do they say about the performance of 
the AS/RS?”  

The first result that we obtained is related to the mathematical model formulated in Section 4.2.3. The 

total time that was needed to handle 70 storage requests and 40 retrieval requests equals 1.99 hours. 

That is equal to an average handling time per pallet of 1 minute and 5 seconds. This value is unrealistic 

low over the long run, and we can pinpoint a major reason for this. Because we are dealing with 

ingredients in the AS/R system, we have to take into account the expiry date. Products with a faster 

expiry date must be retrieved before products with a later expiry date. This means that eventually the 

products that are stored near the inbound station must be retrieved and transported to the outbound. 

Approximately twice as long is needed to retrieve a product near the inbound compared to retrieving 

it near the outbound. In reality, this is also dependent on whether a single or dual command cycle is 

used, but in the mathematical optimization model we only consider single cycles.  

In Table 9 and Table 10 below, we only show results for the small problem instance. Later, the complete 

problem instance is handled. Both tables include the exact strategy, which is obtained by the SLAP 

optimization model of Section 4.2.3. The objective values for the other strategies are obtained by the 

simulation model. Table 9 shows the total travel time for the small problem instance. This time includes 

storage operations and retrieval operations. Table 10 on the other hand, shows only the retrieval time. 

The first column shows the strategy that is used, followed by the total time in Table 9, and the retrieval 

time in Table 10. Both of these values are transformed into averages.  

The last two columns include the SA and VNS metaheuristic approaches that were used to improve the 

solution found so far. We know from literature that the quality of the meta heuristic solution is 

dependent on the quality of the initial solution. For the small problem instance, the class-based 

solution performed best for the retrieval times, and therefore we selected this storage strategy as 

starting point. The random storage strategy does not need a lot of computational effort for the small 

problem instance, and therefore we tested this storage strategy with both metaheuristic approaches 

as well. All values in the tables are in minutes.  

Storage 
strategy 

Total time Average travel 
time 

Average travel 
time after SA 

Average travel 
time after VNS 

Exact 119.33 1.08 - - 
Random 295.65 2.68 1.60 1.70 

Class-based 233.25 2.12 1.30 1.45 
Dedicated 210.53 1.91 - - 

Table 9: Total travel time results for the small problem instance (in minutes). 

Storage 
strategy 

Retrieval time Average retrieval 
time 

Average retrieval 
time after SA 

Average retrieval 
time after VNS 

Exact 46.75 1.17 - - 
Random 78.23 1.96 1.65 1.68 

Class-based 60.53 1.51 1.25 1.35 
Dedicated 65.35 1.63 - - 

Table 10: Retrieval time results for the small problem instance (in minutes). 
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The second set of results are related to the complete problem instance. This complete problem 

instance has 4,242 pallets stored initially, with 8,512 retrieval requests and 10,122 storage requests. 

The same format is used here as for Table 9 and Table 10. The major difference is that the complete 

problem instance handles 18,634 pallets, compared to 110 pallets for the small problem instance. This 

made us decide to change the total time and retrieval time format to hours. The average times are 

shown in minutes. The complete problem instance needed an extraordinary amount of time for the 

metaheuristic approach. For the class-based storage strategy, approximately 24 hours were needed to 

obtain the results with the SA approach, and approximately 18 hours were needed to obtain the results 

for the VNS method. This made us decide to only use the storage strategy that performed best before 

optimization. The exact solution is not shown in Table 11 and Table 12, since this was not possible with 

the SLAP optimization model.  

Strategy Total time (hours) Average travel 
time 

Average travel 
time after SA 

Average travel 
time after VNS 

Random 582.27 1.87 - - 
Class-based 504.46 1.62 1.58 1.58 
Dedicated 534.63 1.72 - - 

Table 11: Total travel time results for the complete problem instance (in minutes, unless stated otherwise). 

Strategy Retrieval time 
(hours) 

Average retrieval 
time  

Average time after 
SA 

Average time after 
VNS 

Random 294.54 2.08 - - 
Class-based 249.24 1.75 1.72 1.73 
Dedicated 257.06 1.80 - - 

Table 12: Retrieval time results for the complete problem instance (in minutes, unless stated otherwise). 

A major difference between the small problem instance and complete problem instance can be noted 

and that is that the percentage improvements for the total travel times are significantly higher than for 

the retrieval times. On the other hand, the initial solution for the total travel time was also much higher 

than compared to the retrieval times, which leaves less space for improvement for the retrieval results. 

Besides, the metaheuristic approaches improve the small problem instance more than compared to 

the complete problem instance. One of the major reasons for this is that the influence of the expiry 

dates of the ingredients is higher for the complete problem instance than for the small problem 

instance. From the results we can see that the class-based storage strategy in combination with the SA 

method results in the best solution here, where the VNS method is good as well, but slightly worse 

than the SA method.  

To conclude, 2 metaheuristic approaches were used to improve the initial solution. For the small 

problem instance, using the class-based storage strategy in combination with the SA method results in 

the most near optimal solution. The optimality gap for this result equals 7.14%. For the complete 

problem instance, the best strategy to use is the class-based storage strategy in combination with the 

SA approach as well.   

5.4 Conclusion 
Eventually when all 3 storage strategies were tested, we were able to implement an improvement 

phase to make the best storage strategy even better. Two metaheuristic approaches are used for this, 

of which the first one is Simulated Annealing, in short SA. The SA method uses a combination between 

exploration and exploitation, with as goal to escape from local optima. The second metaheuristic 

approach that was used was the Variable Neighborhood Search method, in short VNS. VNS uses 

diversification to change from neighborhood structure, in combination with intensification to find the 
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local optimum of the current neighborhood structure. Both methods were tested to improve the small 

and complete problem instance. The SA method appears to be better for the smaller problem instance, 

where we were able to improve the solution up to an average retrieval time of 1.25 minutes. This is 

7.14% above optimal, but the most likely reason for this is that in the simulation model we use, it is 

allowed to store only a single type of ingredient in storage lanes 1 and 4, while the optimization model 

does not take this into account. For the complete problem instance, both SA and VNS perform almost 

equally well. The improvements made by the metaheuristic approaches are better for the smaller 

problem instance compared to the complete problem instance.  
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6 Conclusion and recommendations 
In this last chapter we provide a conclusion and recommendations for the stakeholders at Company X. 

In Section 6.1, a conclusion is provided in which an answer is given on the main research question. In 

Section 6.2, we provide specific recommendations to the stakeholders, after which we also discuss the 

limitations of this research in Section 6.3. Eventually, points for further research are mentioned as well 

in Section 6.4.  

6.1 Conclusion  
In this section, we give an answer to the proposed research question from Chapter 1. The main research 

question is: 

“How do we design an optimal storage assignment for the automated 
storage/retrieval system of Company X such that the travel time efficiency is 

maximized?” 

Company X is building a new warehouse in which it wants to use an AS/R system to automate processes. 

The efficiency of this system is dependent on the way it is used, and one of the decisions that must be 

made is the way in which products are stored in the system. To solve this problem, several methods 

and theoretical frameworks are proposed in literature. One of these methods is the analytic technique, 

that is able to solve optimization problems exactly. A major disadvantage of this method can be found 

in the computational effort that is needed for a successful implementation, and in addition this 

technique is only useful for small to medium-sized problem instances. On the other hand, simulation 

models and heuristics are an effective method to deal with problems that are of larger size.  

Before the performance of the automated storage/retrieval system can be determined, we first need 

to analyze an important factor that influences this performance significantly. The production data plays 

an important role in what decisions must be made or not, to keep the operational efficiency of the AS/R 

system high. Specifically, the raw materials will occupy the system and therefore this becomes the focus 

point of the data collection phase. All the movements of ingredients during the past 365 days were 

collected, and the unwanted movements are omitted. The stakeholders at Company X were asked 

about their vision of this data to keep in line with their expectations. Eventually, we came to the 

conclusion that we only need the production movements of the ingredients. In other words, all the 

ingredients that are moved from a storage location to the batch area must be taken into account, and 

movements from one storage location to another not. This method ensures that we accurately visualize 

the number of movements for production per ingredient. Thereafter, we determined the maximum 

stock level over the past 365 days of each ingredient, with as goal to create a representative list with 

ingredients and stock levels. Since the expectation of Company X is to grow in the upcoming years, this 

method provides a good starting point for the expected stock levels in a few years.  

When the relevant ingredients were selected, a representative replenishment list with storage requests 

and a list with retrieval requests is created in order to be able to determine the performance of the 

AS/R system. An employee from the planning department was asked about the production schedule, 

and provided insights in the production cycles. In a period of 13 weeks, all the products produced by 

Company X are produced at least once. This means that this period is a representative period in which 

all storage and retrieval requests can be gathered. At this stage, we were able to set up the optimization 

model, but the problem instance was too complex to evaluate exactly.  

Subsequently, we created a simulation model that is able to determine the travel times of the shuttles 

in the AS/R system precisely. After trying to store all the 7,764 pallets from the representative product 

list, this was not feasible as well. The main reason for this was that the current product composition 
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with allergens and heights was too restrictive. Despite that from this situation a conclusion can be 

drawn on the limitations of the AS/R system, it is not the desired outcome. The initial product list with 

stock levels of each ingredient was reduced from 7,764 to 4,242 pallets. This resulted in an feasible 

starting point. The next steps of the simulation model are the initialization of the storage and retrieval 

requests, processing of the requests, and eventually the calculation of the objective function. The 4,242 

pallets represent the stock level at the first day of the production cycle of 13 weeks. We implemented 

3 storage strategies that were frequently used in literature. These strategies are random, class-based, 

and dedicated. For the complete problem instance, the results are shown in Table 13 below.  

Strategy Average total time Average retrieval 
time 

Average storage 
time 

Random 1.87 2.08 1.70 
Class-based 1.62 1.75 1.52 
Dedicated 1.72 1.80 1.65 

Table 13: Average results for the complete problem instance (in minutes). 

From the results above, we can conclude that the class-based storage strategy performs best, by 

performing 6.19% better than the dedicated storage strategy, and 15.46% better than the random 

storage strategy. To improve the results, 2 metaheuristic methods were used. The Simulated Annealing 

approach is the first one, and this method manages to bring down the average total time from 1.62 

minutes to 1.58 minutes. For the average retrieval time, this is decreased from 1.75 minutes to 1.72 

minutes. The second approach that was used is the Variable Neighborhood Search approach. After 

using this method, the average total time is decreased from 1.62 minutes to 1.58 minutes, and the 

average retrieval time from 1.75 minutes to 1.73 minutes.  

The percentage decrease for the 2 metaheuristic approaches is higher for the smaller problem instance 

than for the complete problem instance. A likely reason for this is that the system has a lower utilization 

rate and thereby having more possibilities for improvement. A second reason is that the ingredients 

must be retrieved based on lot number, meaning that ingredients with a shorter expiry date are 

preferred over ingredients with a longer expiry date. Having an initial stock level for the complete 

problem instance of 4,242 pallets, in combination with 8,512 retrieval requests and 10,122 storage 

requests, at least 4,270 pallets must be retrieved that are on the storage list as well. Therefore, not 

only the initial state influences the retrieval times, but also the way in which products are stored. For 

the small problem instance, the retrieval times are only influenced by the initial state and not by any 

storage requests.  

Last, an analysis was done on the occupation rate of the AS/R system, since we initially were not able 

to store 7,764 pallets. The storage preferences of having at most 1 type of ingredient in storage lanes 

1 and 4 and at most 2 different ingredients in storage lanes 2 and 3 are taken into account. The first 

analysis was done on storing ingredients according to their ingredient ID, and after 20 simulation runs 

and the current product composition, we can say with 95% certainty that the maximum achievable 

utilization rate lies between 84.30% and 84.74% if the pallets are stored based on ingredient ID. We did 

the same analysis but then storing on lot number, which resulted in a 95 percent confidence interval 

of utilization rate ranging from 82.26% to 82.85%.  

6.2 Recommendations 
This section gives a summation of recommendations, based on the findings and conclusions from this 

research 
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• For a highly utilized system the class-based storage strategy performs the best, in combination 

with using 3 classes.  

• With a highly utilized system, it is not necessary to use the metaheuristic approach to improve 

the travel time. 

• With a low utilized system, the dedicated storage strategy works best, where the closest 

storage lanes are selected first for storage.  

• Use at most a single lot number in storage lanes 1 and 4, and at most 2 lot numbers in storage 

lanes 2 and 3.  

• With a highly utilized system, it is not necessary to update the product classes on a regular 

basis. Updating the classes might be useful when a production cycle is finished, thus once every 

quarter.  

• Investigate the validity of the collected data. During the data collection process, several 

thoughts about the quality of the data were shared, and all stakeholders should agree on the 

used data. 

• Reconsider the allergen storage constraints, because by relaxing this constraint an even higher 

system utilization can be reached.  

6.3 Limitations 
It is not unimportant to mention some limitations that are linked to this research, in order to show 

awareness on the decisions made and which affects these decisions had.  

• First of all, the improvement phases where the SA method or the VNS method are used takes 

significant time to evaluate. In practice, this is not really convenient since sometimes quick 

solutions are needed for unforeseen circumstances.  

• Second, during the research only static data was used. This means that the height and stock 

levels do not change, which could be the case in reality. 

• The AS/R system of Company X is still under construction, which limits us to test certain results 

or conclusions in reality.  

• This research does not take into account the way the software of the AS/R communicates with 

the software of Company X. In order to implement conclusions or recommendations from this 

research, it might be needed to connect the simulation model in python to the software of the 

AS/R system.  

6.4 Further Research 
In the following paragraphs we look ahead on what can be done more to improve the quality of the 

results, and increase the efficiency of the AS/R system even further if possible. First of all, during the 

research different stakeholders were asked and involved in the data collection process, with as goal to 

create a complete and accurate view of reality. We assumed that the collected data is correct, and 

therefore the validation of collected data is not in the scope of this research. However, in order to 

increase the accuracy of the results, this data must be validated in such a way that all the stakeholders 

agree with each other.  

Second, we collected data in such a way that it represents the reality as accurate as possible. This data 

includes movement numbers, incoming and outgoing pallet numbers, lot sizes, pallet heights, and stock 

levels. All the data that was used is not updated in the meantime, and to increase the accuracy, this 

can be updated periodically. When this data list is frequently updated and very accurate, a correlation 

analysis can be done as well. In this research, we assumed that only a single product can be placed in 

storage lane 1 and 4, and at most 2 in storage lanes 2 and 3. However, some types of ingredients might 
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be on the same order list all the time, and can therefore, in the appropriate quantities, be placed in the 

same storage lane.  

On the other hand, when different types of products are stored in a single storage lane that is only 

accessible from a single side, and an urgent requests comes in for ingredients at the end of the storage 

lane, the products in front must be relocated. It is experienced that relocating ingredients take a lot of 

time, especially due to the wheel set change time that is needed to make a turn. Furthermore, finding 

a suitable location that does not violate the storage rules can be difficult and time consuming, 

dependent on the distance between the original location and the location after relocation. Especially 

when the system is highly utilized, it can become more and more complex to find a suitable location 

for the relocating process.  

Besides, due to restrictions in available data, we used a single pallet height for each product. The height 

that was used corresponds to the pallet height at the moment when the pallet arrives at the warehouse 

for the first time. It is possible that during the picking process only not the entire pallet is needed, but 

only a part of it. As a result, the height of the pallet is becoming lower than it was when it came in for 

the first time, and can therefore potentially be placed back in the system at a lower level than were it 

was located initially. Placing pallets at a lower level can increase the efficiency, since it is more likely to 

have a lower storage or retrieval time, especially for the lowest level.  

Last, as also mentioned by Yang et al. (2013), the efficiency of an AS/R system is maximized when SLAP 

is combined with the storage and retrieval scheduling problem. This is called the location assignment 

and storage/retrieval scheduling problem, in short LASRSP. What happens when the storage and 

retrieval request schedule is optimized, certain requests are handled earlier or later, dependent on the 

outcomes. Since Company X is producing according to a strict planning, we cannot simply change the 

order of requests. This was also one of the main reasons why this is not included in the scope of this 

research. However, a further research can assess the feasibility of changing the request schedule in 

such a way that even a higher efficiency can be achieved.  
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Appendix D – Complete optimization model 
In this Appendix D, we show the complete optimization model that most accurately represents the real 

system. However, this still remains a simplified version, since in reality stochasticity’s and unexpected 

situations could occur. The main difference is that in this model, the number of operation cycles, 

indicated by 𝐾, is much larger than in the simplified version. By using the operation cycle indicator 𝑘, 

we are able to prefer certain operations over others, and thereby making the model a more accurate 

representation of the reality.  

Sets 

𝑆 Shuttles 𝑠 ∈ 𝑆 

𝐼 Storage positions in length 𝑖 ∈ 𝐼 

𝐽 Storage positions in width 𝑗 ∈ 𝐽 

𝑍 Storage level 𝑧 ∈ 𝑍 

𝐴 product allergen 𝑎 ∈ 𝐴 

𝑃 Set of products 𝑝 ∈ 𝑃  

𝑅𝑃𝑘 Products that must be retrieved 𝑅𝑃 ⊆ 𝑃 in cycle 𝑘 ∈ 𝐾 

𝑆𝑃𝑘 Products that must be stored 𝑆𝑃 ⊆ 𝑃 in cycle 𝑘 ∈ 𝐾 

𝐾 Set of all operation cycles in the planning horizon 

𝐿 Set of storage lanes 𝑙 ∈ 𝐿 

𝑁 Shuttle level combinations 𝑛 ∈ 𝑁 

𝐽𝑙 Set of storage positions 𝑗 ∈ 𝐽 in lane 𝑙 ∈ 𝐿 

𝐹 Type 𝑓 ∈ 𝐹 of a storage lane 

𝑅𝐽𝑙
𝑓

 Range of lane 𝑙 ∈ 𝐿 of type 𝑓 ∈ 𝐹 

𝑈 Unavailable storage locations 𝑢 ∈ 𝑈 

Parameters 

ℎ𝑝 height in millimeters of product 𝑝 ∈ 𝑃 

𝑝𝑎 allergen 𝑎 ∈ 𝐴 of product 𝑝 ∈ 𝑃 

ℎ𝑧 maximum storage height of level 𝑧 in millimeters 𝑧 ∈ 𝑍  

𝑐𝑧 total pallet capacity for level 𝑧 ∈ 𝑍 

𝑠𝑡𝑖,𝑗,𝑧 time to travel from inbound to location 𝑖, 𝑗 at level 𝑧, and back to the inbound 

𝑟𝑡𝑖,𝑗,𝑧 time to travel from outbound to location 𝑖, 𝑗 at level 𝑧, and back to the outbound 

𝑇𝑇 total time for all requests in seconds 

𝑀 A large enough number 
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𝐻𝑝
𝑘 Number of products 𝑝 ∈ 𝑃 stored during cycle 𝑘 ∈ 𝐾 

Variables 

𝑞𝑖,𝑗,𝑧,𝑝
𝑘  = {

1 if location 𝑖, 𝑗 at level 𝑧 is occupied with product 𝑝 during cycle 𝑘 
0 otherwise                                                                                                         

 

 

 

𝑥𝑖,𝑗,𝑧,𝑝
𝑘  = {

1 if product 𝑝 is retrieved from location 𝑖, 𝑗 at level 𝑧 during cycle 𝑘
0 otherwise                                                                                                         

 

 

𝑜𝑖,𝑙,𝑧,𝑝
𝑘  = {

1 if lane 𝑙 at location 𝑖 at level 𝑧 is occupied with product 𝑝 during cycle 𝑘
0 otherwise                                                                                                                     

 

 

𝑑𝑖,𝑗,𝑧,𝑝
𝑘  = {

1 if product 𝑝 is stored at location 𝑖, 𝑗 at level 𝑧 during cycle 𝑘
0 otherwise                                                                                              

 

 

𝑦𝑖,𝑗,𝑧,𝑠  = {
1 if location 𝑖, 𝑗 at level 𝑧 can reached by shuttle 𝑠
0 otherwise                                                                       

 
 

𝑏𝑖,𝑗,𝑧
𝑘   = {

1 if location 𝑖, 𝑗 at level 𝑧 is accessible from at least one side during cycle 𝑘
0 otherwise                                                                                                                       

 

Objective Function  

𝑀𝑖𝑛 𝑇𝑇 = ∑ (∑ ∑ ∑ ∑ 𝑟𝑡𝑖,𝑗,𝑧 ∗ 𝑥𝑖,𝑗,𝑧,𝑝
𝑘

𝑍

𝑧=1

𝐽

𝑗=1

𝐼

𝑖=1

+ ∑ ∑ ∑ ∑ 𝑠𝑡𝑖,𝑗,𝑧 ∗ 𝑑𝑖,𝑗,𝑧,𝑝
𝑘

𝑍

𝑧=1

𝐽

𝑗=1

𝐼

𝑖=1

𝑆𝑃𝑘

𝑝=1

𝑅𝑃𝑘

𝑝=1

)

𝐾

𝑘=1

 

Constraints 

𝑞𝑖,𝑗,𝑧,𝑝
𝑘 ∗ ℎ𝑝 ≤ ℎ𝑧 ∀𝑖, ∀𝑗, ∀𝑧, ∀𝑝, ∀𝑘 (1) 

 

𝑞𝑖,𝑗,𝑧,𝑝𝑎

𝑘 + 𝑞𝑖,𝑗,𝑧′,𝑝𝑎
′

𝑘 ≤ 2 ∀𝑖, ∀𝑗, ∀𝑘, ∀𝑧′ > 𝑧, 𝑎 ∈ {2, 3, 4}, 𝑎′ ∈ {1} (2) 
 

𝑞𝑖,𝑗,𝑧,𝑝𝑎

𝑘 + 𝑞𝑖,𝑗,𝑧′,𝑝𝑎
′

𝑘 ≤ 1 ∀𝑖, ∀𝑗, ∀𝑘, ∀𝑧′ > 𝑧, 𝑎 ∈ {1, 2, 3, 4}, 𝑎′ ∈ {2, 3, 4}, 𝑎 ≠ 𝑎′ (3) 
 

𝑦𝑖,𝑗,𝑧,𝑠 = 1 ∀𝑖, ∀𝑗, ∀(𝑧, 𝑠) ∈ 𝑁 (4) 
 

𝑞𝑖,𝑗,𝑧,𝑝
𝑘 = 0 (𝑖, 𝑗, 𝑧) ∈ 𝑈, ∀𝑝, ∀𝑘 (5) 

 

∑ 𝑞𝑖,𝑗,𝑧,𝑝
𝑘

𝑃

𝑝=1

≤ 1 ∀𝑖, ∀𝑗, ∀𝑧, ∀𝑘 (6) 

 

∑ ∑ ∑ 𝑞𝑖,𝑗,𝑧,𝑝
𝑘

𝑍

𝑧=1

𝐽

𝑗=1

𝐼

𝑖=1

= 𝐻𝑝
𝑘 ∀𝑘, ∀𝑝 (7) 

 

𝑥𝑖,𝑗,𝑧,𝑝
𝑘 ≤ 𝑞𝑖,𝑗,𝑧,𝑝

𝑘  ∀𝑖, ∀𝑗, ∀𝑧, ∀𝑘, ∀𝑝 ∈ 𝑅𝑃𝑘 (8) 
 

𝑀 ∗ (1 −  𝑑𝑖,𝑗,𝑧,𝑝′
𝑘 ) ≥ ∑ 𝑞𝑖,𝑗,𝑧,𝑝

𝑘

𝑃

𝑝=1

 ∀𝑖, ∀𝑗, ∀𝑧, ∀𝑝′ ∈ 𝑆𝑃𝑘 , 𝑘 ≥ 1 (9) 

 

∑ 𝑦𝑖,𝑗,𝑧,𝑠 ≥ 𝑥𝑖,𝑗,𝑧,𝑝
𝑘

𝑆

𝑠=1

 ∀𝑖, ∀𝑗, ∀𝑧, ∀𝑘, ∀𝑝 ∈ 𝑅𝑃𝑘 (10) 
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∑ 𝑦𝑖,𝑗,𝑧,𝑠 ≥ 𝑑𝑖,𝑗,𝑧,𝑝
𝑘

𝑆

𝑠=1

 ∀𝑖, ∀𝑗, ∀𝑧, ∀𝑘, ∀𝑝 ∈ 𝑆𝑃𝑘 (11) 

 

∑ ∑ ∑ 𝑥𝑖,𝑗,𝑧,𝑝
𝑘 = 1

𝑍

𝑧=1

𝐽

𝑗=1

𝐼

𝑖=1

 ∀𝑘, ∀𝑝 ∈ 𝑅𝑃𝑘 (12) 

 

∑ ∑ ∑ 𝑑𝑖,𝑗,𝑧,𝑝
𝑘 = 1

𝑍

𝑧=1

𝐽

𝑗=1

𝐼

𝑖=1

 ∀𝑘, ∀𝑝 ∈ 𝑆𝑃𝑘 (13) 

 

 

∑ 𝑜𝑖,𝑙,𝑧,𝑝
𝑘 ≤ 1

𝑃

𝑝=1

 ∀𝑖, ∀𝑧, ∀𝑘, ∀𝑙 ∈ {1, 4} (14) 

 

∑ 𝑜𝑖,𝑙,𝑧,𝑝
𝑘 ≤ 2

𝑃

𝑝=1

 ∀𝑖, ∀𝑧, ∀𝑘, ∀𝑙 ∈ {2, 3} (15) 

 

∑ 𝑞𝑖,𝑗,𝑧,𝑝
𝑘 ≤ 𝑀 ∗ 𝑜𝑖,𝑙,𝑧,𝑝

𝑘

𝑗∈𝐽𝑙

 ∀𝑖, ∀𝑧, ∀𝑙, ∀𝑝, ∀𝑘 (16) 

 

∑ 𝑞𝑖,𝑗,𝑧,𝑝
𝑘 ≥ 𝑜𝑖,𝑙,𝑧,𝑝

𝑘

𝑗∈𝐽𝑙

 ∀𝑖, ∀𝑧, ∀𝑙, ∀𝑝, ∀𝑘 (17) 

 

∑ ∑ 𝑞𝑖,𝑗′,𝑧,𝑝
𝑘

𝑗′∈𝑅𝐽𝑙
1

≤ 𝑀(1 − 𝑑𝑖,𝑗,𝑧,𝑝
𝑘 )

𝑃

𝑝′=1

 ∀𝑖, ∀𝑧, ∀𝑝, ∀𝑘, ∀𝑙 ∈ {1, 4} ∀𝑗 ∈  𝐽𝑙 (18) 

 

∑ ∑ 𝑞𝑖,𝑗′,𝑧,𝑝
𝑘

𝑗′∈𝑅𝐽𝑙
1

≤ 𝑀(1 − 𝑥𝑖,𝑗,𝑧,𝑝
𝑘 )

𝑃

𝑝′=1

 ∀𝑖, ∀𝑧, ∀𝑝, ∀𝑘, ∀𝑙 ∈ {1, 4} ∀𝑗 ∈  𝐽𝑙 (19) 

 

𝑑𝑖,𝑗,𝑧,𝑝
𝑘 ≤ 𝑏𝑖,𝑗,𝑧

𝑘  ∀𝑖, ∀𝑗 ∈ {𝐽2, 𝐽3}, ∀𝑧, ∀𝑘, ∀𝑝 ∈ 𝑆𝑃𝑘 (20) 
 

𝑥𝑖,𝑗,𝑧,𝑝
𝑘 ≤ 𝑏𝑖,𝑗,𝑧

𝑘  ∀𝑖, ∀𝑗 ∈ {𝐽2, 𝐽3}, ∀𝑧, ∀𝑘, ∀𝑝 ∈ 𝑅𝑃𝑘 (21) 
 

∑ ∑ 𝑞𝑖,𝑗′,𝑧,𝑝
𝑘

𝑗′∈𝑅𝐽𝑙
1

≤ 𝑀 ∗ 𝑏𝑖,𝑗,𝑧
𝑘

𝑃

𝑝=1

 ∀𝑖, ∀𝑧, ∀𝑝, ∀𝑘, ∀𝑙 ∈ {2, 3}, ∀𝑗 ∈ 𝐽𝑙  (22) 

 

∑ ∑ 𝑞𝑖,𝑗′,𝑧,𝑝
𝑘

𝑗′∈𝑅𝐽𝑙
2

≤ 𝑀(1 − 𝑏𝑖,𝑗,𝑧
𝑘 )

𝑃

𝑝=1

 ∀𝑖, ∀𝑧, ∀𝑝, ∀𝑘, ∀𝑙 ∈ {2, 3}, ∀𝑗 ∈ 𝐽𝑙  (23) 

 

∑ ∑ ∑ 𝑞𝑖,𝑗,𝑧,𝑝
0

𝑍

𝑧=1

𝐽

𝑗=1

𝐼

𝑖=1

= 𝑃𝑝
0 ∀𝑝 (24) 

 

𝑞𝑖,𝑗,𝑧,𝑝
𝑘 = 𝑞𝑖,𝑗,𝑧,𝑝

𝑘−1 + 𝑑𝑖,𝑗,𝑧,𝑝
𝑘−1 − 𝑥𝑖,𝑗,𝑧,𝑝

𝑘−1  ∀𝑖, ∀𝑗, ∀𝑧, ∀𝑝, ∀𝑘 ≥ 1 (25) 
 

𝑞𝑖,𝑗,𝑧,𝑝
𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑧 ∈ 𝑍, 𝑝 ∈ 𝑃, ∀𝑘 ∈ 𝐾 (26) 

 

𝑥𝑖,𝑗,𝑧,𝑝
𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑧 ∈ 𝑍, 𝑝 ∈ 𝑅𝑃𝑘 , ∀𝑘 ∈ 𝐾 (27) 
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𝑜𝑖,𝑙,𝑧,𝑝
𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝐿, 𝑧 ∈ 𝑍, 𝑝 ∈ 𝑃, ∀𝑘 ∈ 𝐾 (28) 

 

𝑑𝑖,𝑗,𝑧,𝑝
𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑧 ∈ 𝑍, 𝑝 ∈ 𝑆𝑃𝑘 , ∀𝑘 ∈ 𝐾 (29) 

 

𝑦𝑖,𝑗,𝑧,𝑠 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑧 ∈ 𝑍, 𝑠 ∈ 𝑆 (30) 
 

Explanation of constraints 
The first constraint ensures that if a pallet with product 𝑝 is placed at location 𝑖, 𝑗 at level 𝑧, the height 

of this pallet cannot exceed the maximum storage height of level 𝑧. Constraint 2 only allows the same 

allergen types above each other, when 𝑝𝑎′ is not equal to 1 (Non-allergen). Constraint 3 allows products 

classified as non-allergens to be placed above allergen-products. The exact rules are described in 

Section 2.2.1 Constraints. For constraint 4, the shuttles are assigned to a predetermined level. This is 

based on the advice given by the supplier, since the requested number of cycles per hour is not high 

enough for the shuttles to move between different levels. However, we have 4 shuttles for 5 levels, 

meaning that one shuttle must serve two levels. These shuttle and level combinations are given by set 

𝑁. Moreover, not every location in the AS/R system can be used for pallet storage. The unavailable 

storage locations are given by set 𝑈, and constraint 5 guarantees that no products can be stored at 

these locations. Moreover, constraint 6 ensures that all locations cannot be occupied by more than one 

pallet at the same time. Constraint 7 keeps track of the amount of pallets stored of a specific product 

during a specific cycle 𝑘. Constraint 8 allows a product to be picked from a location only if that product 

is actually stored at that specific location.  

Constraint 9 is making sure that the location is empty if a product is stored at that location. Constraint 

10 and 11 ensure that locations can be reached by at least one shuttle when a product must be 

retrieved or stored respectively. Besides, constraint 12 and 13 ensure that all the retrieval requests and 

storage requests are fulfilled. Eventually, storage lanes of type 1 can only store a single type of product 

at the same time, while storage lanes of type 2 can store up to 2 different products at the same time. 

Constraints 14 and 15 indicate this respectively, but with the help of constraints 16 and 17. These two 

constraints help to indicate whether a certain product 𝑝 is stored in a specific storage lane 𝑙.  

Constraints 18 and 19 ensure that when a storage request or retrieval request is performed in storage 

lane 1 or 4, this location is accessible. When the first position seen from the main aisle is occupied and 

the positions behind it are empty, these empty positions are not directly accessible for storage 

operations. The same yields for retrieval requests, where the specific location must be accessible as 

well in order to be able to perform this retrieval request. Constraints 20, 21, 22, and 23 ensure that 

positions located in storage lanes 2 and 3 are accessible from at least one side. Constraint 24 indicates 

that a starting stock level must be stored. Eventually, constraint 25 is the inventory balance equation, 

that ensures that the inventory level of a certain product is updated when a storage or retrieval request 

is performed. Constraints 26, 27, 28, 29, and 30 are sign constraints, and can only take value 0 or 1.  

Model input data 
This section is an extension on the previous section, primarily to discuss the relevant data that is 

needed as input for the optimization model. Below, a summation is made with the used input data. To 

indicate the storage positions, we use set 𝐼 for positions in length, and set 𝐽 for positions in width. If 

we look at Error! Reference source not found., the first value of set 𝐼 starts at the left hand side and e

nds with the last value of set 𝐼 at the right hand side. The same applies for set 𝐽, where the first value 

of this set starts at the bottom and the last value ends at the top. If we apply this in practice, we see 

that coordinate (𝑖, 𝑗) = (1,1) is located at the bottom left hand side, and coordinate (𝑖, 𝑗) = (54,38) is 
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located at the top right hand side. Additionally, we include level 𝑧 as well, resulting in a format with 3 

coordinates: (𝑖, 𝑗, 𝑧). Besides, for the allergen set 𝐴, we have a non-allergen, a milk allergen, a soy 

allergen, and a cereal allergen as possible values. To simplify the use of this set, we use index 1 until 4 

to indicate the allergen type.  

Sets 

Shuttles 𝑆 = {1, 2, 3, 4} 

Storage positions in length 𝐼 = {1, 2, … , 54} 

Storage positions in width 𝐽 = {1, 2, … , 38} 

Storage level 𝑍 = {1, 2, … , 5} 

product allergen 𝐴 = {1 (𝑁𝑜𝑛), 2 (𝑀𝑖𝑙𝑘), 3 (𝑆𝑜𝑦), 4 (𝐶𝑒𝑟𝑒𝑎𝑙𝑠)} 

The next few sets are related to the ingredients that are stored and/or retrieved. The ingredients are 

also called products, and all have an unique name. However, for sake of simplicity we just use numbers. 

For the storage requests and retrieval requests, these are both sets with products from the original 

product set 𝑃, and are therefore both called multiset 𝑅𝑃 and 𝑆𝑃. Again, for sake of simplicity we use 

numbers instead of product names. This means that we have 8,512 retrieval requests, and 10,122 

storage requests in total.  

Stored products 𝑃 = {1, 2, … , 106} 

Products that must be retrieved 𝑅𝑃 = {1, 2, … , 8,512} 

Products that must be stored 𝑆𝑃 = {1, 2, … , 10,122} 

To incorporate operation cycle 𝑘, we have to combine 𝑅𝑃 and 𝑆𝑃 into a single set. This is due to the 

fact that the shuttles can only carry a single pallet at a time, and therefore can only store or retrieve a 

single product at a time. A single operation cycle can therefore only include only one storage request 

or one retrieval request. If both 𝑅𝑃 and 𝑆𝑃 are added together, we end up with 18,634 operation 

cycles.  

Operation cycles 𝐾 = {1, 2, … , 18,634} 

Set of storage lanes 𝐿 = {1, 2, 3, 4} 

Shuttle level locations 𝑁 = {(1,1), (2,2), (3,3), (4,4), (5,4)} 

Storage positions 𝑗 in lane 𝑙. 𝐽1 = {1, 2, 3, 4, 5, 6, 7, 8}, 𝐽2 = {10, 11, 12, 13, 14, 15, 16, 17}, 𝐽3 =

{19, 20, 21, 22, 23, 24, 25, 26}, 𝐽4 = {28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38} 

For the storage lane, two types are present in the AS/R system of Company X. The first one is a storage 

lane that is accessible by only a single side, and the second one is a storage lane that is accessible by 

two sides. Storage lane 1 and 4 are only accessible by a single side, and are therefore classified as type 

1 lane, and storage lane 2 and 3 are accessible by two sides, and are therefore classified as type 2 lanes.  

Type of storage lane 𝐹 = {1, 2} 

Range of lane 𝑙 ∈ 𝐿 of type 𝑓 ∈ 𝐹, 𝑅𝐽𝑙
𝑓

: 

𝑅𝐽1
1(𝑗′) = { 𝑗′′ ∣∣  𝑗′ ≤ 𝑗′′ ≤ 8 } 
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𝑅𝐽4
1(𝑗′) = { 𝑗′′ ∣∣  𝑗′ ≤ 𝑗′′ ≤ 28 } 

𝑅𝐽4
2(𝑗′) = 𝑅𝐽1

1(𝑗′) = {} 

𝑅𝐽2
1(𝑗′) = { 𝑗′′ ∣∣  10 ≤ 𝑗′′ ≤ 𝑗′ } 

𝑅𝐽2
2(𝑗′) = { 𝑗′′ ∣∣  𝑗′ ≤ 𝑗′′ ≤ 17 } 

𝑅𝐽3
1(𝑗′) = { 𝑗′′ ∣∣  19 ≤ 𝑗′′ ≤ 𝑗′ } 

𝑅𝐽3
2(𝑗′) = { 𝑗′′ ∣∣  𝑗′ ≤ 𝑗′′ ≤ 26 } 

For the unavailable storage locations, denoted by 𝑈, a short explanation is desired. The size of set 𝑈 

equals 1,580, meaning that we have 1,580 unavailable storage locations in total. We can check whether 

this approach is correct, by multiplying the maximum number of 𝐼, 𝐽, and 𝑍, and subtract 1,580 from 

that. The multiplication of these three numbers equal 10,260, and after subtracting 1,580 from that we 

end up with 8,680. This is exactly the maximum capacity of the AS/R system, and hence we have 

verified that the size of set 𝑈 is correct. To present 1,580 values in an efficient way, we have created 

Table D1Error! Reference source not found.. In this table, 4 columns are presented with several rows c

ontaining sets. In order to find all unavailable coordinates, we take the Cartesian Product of 𝑖𝑘 , 𝑗𝑘, and 

𝑧𝑘 for all 𝑘. The Cartesian Product or Unrestricted Join of sets 𝐴′ and 𝐵′ is denoted by 𝐴′ × 𝐵′ and 

results in a set of all ordered pairs (𝑎′, 𝑏′) such that 𝑎′ belongs to 𝐴′ and 𝑏′ to 𝐵′ (Halpin & Morgan, 

2008). In our case, we use 3 sets at a time for the Cartesian Product, and create coordinates with format 

(𝑖, 𝑗, 𝑧).  

Number 𝒏 Length 𝒊 Width 𝒋 Level 𝒛 

1 {1, 2, … , 54} {9, 18, 27} {1, 2, 3, 4, 5} 
2 {10, 42} {10, 11, … , 26}\{18} {1, 2, 3, 4, 5} 
3 {13, 27, 41} {1, 2, … , 7}, {16, 25} {1, 2, 3, 4, 5} 
4 {27, 41} {34, 35, … , 38} {1, 2, 3, 4, 5} 
5 {10, 11, … , 14} {28, 29, … , 38} {1, 3, 4} 
6 {10, 11, … , 13} {28, 29, … , 38} {2, 5} 
7 {14} {32, 33, … , 38} {2,5} 
8 {42} {28, 29, … , 38} {1, 2, 3, 4, 5} 
9 {43, 44} {29, 30, … , 38} {1} 

10 {45} {33, 34, … , 38} {1} 
11 {43, 44, 45} {33, 34, … , 38} {2, 3, 4, 5} 
12 {13} {26} {1, 2, 3, 4, 5} 

Table D1: Combination of sets representing unavailable storage locations 

Parameters 

Maximum storage height of level 𝑧 in centimeters. ℎ1 = ℎ2 = 150, ℎ3 = 180, ℎ4 = ℎ5 = 225 

Maximum pallet capacity of level 𝑧. 𝑐1 = 1,728, 𝑐2 = 𝑐5 = 1,740, 𝑐3 = 𝑐4 = 1,736 
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Appendix E – Supplier-related information 
Confidential 
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Appendix F – Ingredient related information of Company X 
Confidential 
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