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Summary  
This thesis report provides insight into the transferability of data-driven Pedo-Transfer Functions (PTF) 

for the parameter KsatHorFrac in the distributed hydrological model wflow_sbm. KsatHorFrac is 

necessary to determine the horizontal saturated hydraulic conductivity by multiplying it with the 

vertical saturated hydraulic conductivity. PTFs are used to predict the value of a parameter based on 

widely available data, such as soil characteristics. Having a PTF for all parameters in a hydrological 

model is preferable, since good functioning PTFs bypass the need for calibrating each individual 

parameter. As of current, KsatHorFrac does not have a validated PTF in the wflow_sbm model.  

However, Ali et al. (2023) developed a PTF for KsatHorFrac based on seven soil characteristics in Great 

Brittain (GB) using the Machine Learning (ML) technique Random Forest (RF). In this study, the 

transferability of the RF PTF developed by Ali et al. (2023) (original PTF) is evaluated in subbasins in 

central and Western Europe. Additionally, the PTF is updated with topographic predictors (updated 

PTF) in order to evaluate how this impacts the KsatHorFrac prediction and resulting model 

performance on discharge simulations in wflow_sbm.  

First, suitable validation subbasins were selected in the Seine, Loire, Rhone, Rhine, Po and upper 

section of the Danube basins. These subbasins were selected on the level of conformity of the SoilGrids 

variables with the training subbasins in GB: The level of conformity was translated into scoring 

categories 0 to 7, where 7 means all variables are within the range of the GB training subbasins and 0 

indicates no variables are within the range of the GB training subbasins. At first, this selection consisted 

of 102 subbasins. However, after analysing the hydrographs of the discharge simulation, an additional 

26 subbasins were discarded as the simulation results were unrealistic (mostly overestimating the 

measured discharge). Resulting in a selection of 76 subbasins to evaluate the transferability of both 

PTFs. Subsequently, an optimised KsatHorFrac value for each subbasin was calculated using a 

sensitivity analysis. This value and resulting model performance of wflow_sbm in terms of np KGE was 

defined as benchmark, to which the predicted KsatHorFrac and resulting model performance were 

compared. Using a Wilcoxon test it was found that the predicted KsatHorFrac in the scoring category 

0-1 and 2 were significantly lower compared to the optimised value. Furthermore, the np KGE of all 

scoring categories was significantly lower compared to the optimised np KGE, indicating that the 

original PTF does not function well in areas which are different compared to the GB training subbasins.  

To improve the original PTF, the model was trained on more characteristics than only the SoilGrids 

variables as used in Ali et al. (2023). Updating the PTF with the topographic variables elevation and 

slope resulted in overall higher predicted KsatHorFrac in the GB training subbasins. The KsatHorFrac 

prediction and resulting model performance in wflow_sbm in the validation subbasins for updated and 

original PTF were compared. It was found that the predicted KsatHorFrac was significantly higher for 

the scoring categories 0-1, 2 and 5 when the updated PTF was implemented. This resulted in a 

significant increase in wflow_sbm performance in the scoring categories 0-1. For the remaining 

categories, the difference was statistically insignificant.  

The results indicate that the original PTF of Ali et al. (2023) predicts the KsatHorFrac accurately for 

subbasins with a score between 5-7, which have similar soil characteristics compared to the training 

subbasins in GB. This is not the case for subbasins with a low score (0-2), where the predicted 

KsatHorFrac was significantly lower compared to the optimised value. Updating the PTF with the 

topographic predictors: elevation and slope resulted in an overall improvement of KsatHorFrac 

prediction in subbasins with a low score 0-1, since the predicted KsatHorFrac was more similar 

compared to the optimised KsatHorFrac. However, for both PTFs, the np KGE resulting from the 

predicted KsatHorFrac was significantly lower compared to the optimised np KGE. This indicates that 

the predictive capability of a data-driven PTF for KsatHorFrac can still be improved.   
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1. Introduction  
Hydrological modelling is used to simulate runoff in catchments, which is getting more and more 

relevant as climate change can intensify both droughts and extreme rainfall events (Singh, 2018). 

Extreme rainfall events can lead to an increased runoff, which can cause floodings. In order to mitigate 

the potential damage, accurate forecasts are necessary. A hydrological model simulates hydrological 

fluxes and states based on forcing data, such as rainfall and evapotranspiration, and catchment 

properties such as soil characteristics, topography and vegetation (Devia et al., 2015). However, before 

such a model can create reliable simulations for a specific study area, the model should be calibrated 

for that particular area. For fully distributed models, sensitive parameters for all the grid cells need to 

be calibrated. This results in a high-dimensional problem which makes calibrating distributed 

hydrological models not feasible. As a first step to simplify this calibration problem, Samaniego et al. 

(2010) proposed a multiscale parameter regionalization (MPR) technique. Here, relations between 

basin predictors and global parameters were found by calibrating predefined functions. Most often 

these functions were simple transfer functions, as they were hand-picked and only included a few 

predictors.  

As a continuation on this calibration problem, pedo-transfer functions (PTF) were implemented into 

distributed models. A PTF is a function which predicts a soil (hydraulic) related parameter based on 

other soil related predictor variables which are most often widely available in terms of data (Abdelbaki, 

2021). Transfer functions are created empirically within one particular area. Therefore, PTFs are more 

reliable for areas with similar variable values compared to the area where they were developed. 

Parametrisation of the soil using PTFs is also common practice in Land Surface Models (LSM) (Chou et 

al., 2022). LMS’s are mainly focussed on vertical energy fluxes such as heat and water (Scanlon et al., 

2018), whereas hydrological models also incorporate horizontal flows. However, both models are used 

to assess the availability of water resources (Schellekens et al., 2017). Besides the benefits of 

implementing PTFs, Blyth et al. (2021) states that the PTFs regarding surface-subsurface exchange are 

currently limited by the scares number of sets applicable for global modelling. Van Looy et al. (2017) 

concludes that methodological advances are necessary to allow for global modelling, and highlights 

the availability of high resolution soil data to improve the parameter prediction of PTFs.  

1.1. Context 

1.1.1. KsatHorFrac 
Wflow_sbm is a fully distributed hydrological model which makes use of PTFs for parameter 

estimation. Because of the PTFs, wflow_sbm can be used for any catchment (Van Verseveld et al., 

2024). One of the more sensitive parameters of the model is KsatHorFrac (Imhoff et al., 2020), which 

is the ratio between the vertical and horizontal saturated hydraulic conductivity (Eq.1). KsatHorFrac 

can be found in the soil module of wflow_sbm (elaborated in Section 2.1). The vertical flow of the 

water is amongst others dictated by the vertical saturated hydraulic conductivity (𝐾𝑆𝑎𝑡𝑉𝑒𝑟), for which 

the PTF of Brakensiek et al. (1984) is used. Besides flowing downward into the ground, the ground 

water also flows downstream in the saturated zone. This is dictated by the horizontal saturated 

hydraulic conductivity (𝐾𝑆𝑎𝑡𝐻𝑜𝑟). 𝐾𝑆𝑎𝑡𝐻𝑜𝑟 plays a role in the subsurface runoff though lateral flows. 

When KsatHorFrac is equal to one, the 𝐾𝑆𝑎𝑡𝐻𝑜𝑟 is equal to the 𝐾𝑆𝑎𝑡𝑉𝑒𝑟. When the KsatHorFrac 

increases, 𝐾𝑆𝑎𝑡𝐻𝑜𝑟 becomes larger, resulting in a faster subsurface flow and thus a higher baseflow. As 

of currently, no PTF for KsatHorFrac is implemented in wflow_sbm. Hence, the parameter is set to an 

uncalibrated default value of 100. In order to make reliable simulations, this parameter has to be 

calibrated manually.  

𝐾𝑠𝑎𝑡𝐻𝑜𝑟 = 𝐾𝑠𝑎𝑡𝑉𝑒𝑟 ∗ 𝐾𝑠𝑎𝑡𝐻𝑜𝑟𝐹𝑟𝑎𝑐 Eq. 1 
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The effect that KsatHorFrac has on the discharge simulation in wflow_sbm has been investigated by 

multiple studies. Wannasin et al. (2021) manually calibrated KsatHorFrac for different subbasins in the 

upper region of the Greater Chao Phraya River (GCPR) basin in Thailand. In this study different 

KsatHorFrac values between 100 and 800 were considered, which were uniformly applied to the 

subbasins. The authors discussed that this small range of considered KsatHorFrac values affected the 

uncertainty of the discharge series. However, the uncertainty can clearly be seen in the troughs of the 

hydrograph in Figure 1.  

 
Figure 1: Hydrograph of the Nan_natural subbasin in 2011 (section of calibration period). Observed discharge and optimised 

discharge are indicated by a dotted and solid line respectively. The uncertainty band caused by the range of KsatHorFrac 
values (100-800) is shown light coloured (Wannasin et al., 2021) 

Van Verseveld et al. (2024) illustrated the effect of different values for KsatHorFrac (1, 20, 50 and 100) 

on the simulated discharge in the Whanganui River basin (New Zealand). Figure 2 shows the simulated 

discharge which resulted from the four KsatHorFrac values. The figure shows that a KsatHorFrac of 1 

has relatively low baseflow and high peaks. On the opposite, a KsatHorFrac of 100 has higher baseflow 

and lower peaks. The authors expect that changing KsatHorFrac causes a shift in the contribution of 

overland flow and lateral subsurface flow to simulated discharge.      

 
Figure 2: Hydrographs of the Whanganui River basin in 1996. Observed and simulated discharge are indicated by black and 

coloured lines respectively  (Van Verseveld et al., 2024) 

Both studies discuss that the model performance of wflow_sbm can be improved by implementing a 

PTF for the sensitive KsatHorFrac parameter. To add to this, Wannasin et al. (2021) suggest to calibrate 

the KsatHorFrac based on soil types instead of a uniform value across the basin.     

1.2. State of the art 
Ali et al. (2023) investigated the development of a PTF for KsatHorFrac, using Machine Learning (ML). 

The authors applied two different ML algorithms: Random Forest (RF) (explained in Section 2.2) and 
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Boosted Regression Trees (BRT). The algorithms were trained and tested in 459 subbasins in Great 

Brittain (GB). From the total number of subbasins, 344 subbasins were used to train the algorithms 

using seven depth and subbasins averaged SoilGrids variables (elaborated in Section 2.3) and a 

subbasin averaged optimised KsatHorFrac value as target variable. The considered range during the 

KsatHorFrac optimisation was between 1 and 10,000 (Weerts, 2024). This gave satisfactory results 

since no significant difference between the optimized KsatHorFrac value and the KsatHorFrac 

predicted by the algorithms could be observed in the remaining 115 test subbasins. Subsequently, the 

two ML PTFs were validated in the Loire basin (France). On average, the wflow_sbm model performed 

better when using the KsatHorFrac value predicted by the ML PTFs when compared to the default 

KsatHorFrac of 100. However,  no significant difference could be observed between the predicted and 

default parameter values. Furthermore, it was found that the performance was especially low in the 

South-East of the basin. The authors conclude that the study shows the potential of ML to create a PTF 

which relates soil characteristics to soil hydraulic properties, such as KsatHorFrac.  

1.3. Knowledge gap  
As KsatHorFrac it is the ratio between the vertical and lateral saturated hydraulic conductivity it is 

difficult to create a dataset of measured values. This is because these are difficult to measure and thus 

creating an extensive dataset of only one of the two components is costly and time-consuming 

(Abdelbaki, 2021). This highlights the need for a PTF for KsatHorFrac which formed the base of the 

research of Ali et al. (2023). Even though a PTF was created and applied in other subbasin as where 

the PTF was developed for, large scale validation has not been done. Hence, a conclusion about the 

transferability of the PTF cannot be made.  

Furthermore, it was chosen to train the ML algorithm with a limited number of predictors which are 

all related to the soil. Topographic predictors were not included in the research even though these 

could prove to be relevant according to literature (S. Gupta et al., 2021). Since research into this area 

has not been conducted before, it is unclear whether including topographic predictors in the 

development of a PTF for KsatHorFrac will improve the parameter prediction and the resulting model 

performance of wflow_sbm.  

1.4. Research aim and research questions  

1.4.1. Research aim 
The aim of this research consists of two parts: First, the research aims to get more insight into the 

transferability of the Random Forest (RF) KsatHorFrac PTF of Ali et al. (2023) (original PTF). It was 

chosen to focus on this algorithm since it outperformed the BRT algorithm in both parameter 

estimation and resulting wflow_sbm performance. Subsequently, the aim is to evaluate how 

parameter estimation and resulting model performance of wflow_sbm changes in the validation 

subbasins when the RF PTF of Ali et al. (2023) is updated by including topographical predictors in the 

development phase of the PTF (updated PTF).    

1.4.2. Research questions  
In order to achieve the research aims, the following questions need to be answered.  

The first question aims at identifying subbasins for which both the original and updated PTFs can be 

validated. These catchments should be outside of GB, as both PTFs will be trained and tested there.  

1. Which catchments should be considered for validating the original and updated PTF? 
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The second question focusses on the validation of the original PTF in subbasins identified in research 

question 1. The results of this step provide insight in the transferability of the PTF as this proves to be 

problematic for empirically developed PTFs (Zuo & He, 2021).  

2. How does the KsatHorFrac prediction of the original PTF and resulting model performance of 

wflow_sbm change in comparison to the optimised scenario, when the original PTF is 

implemented for subbasins for which it was not developed? 

In the third question, the training set will be updated with topographic predictors. In order to train and 

test the updated PTF, optimised KsatHorFrac values from the Ali et al. (2023) are used. These can be 

used since the same catchments in GB are considered and the optimised values are calibrated.     

3. How does the KsatHorFrac prediction of the PTFs change in the GB training subbasins when 

topographic predictors are implemented in the RF training phase? 

The final question will focus on the validation of the updated PTF. It will be investigated whether the 

prediction of the updated PTF and resulting model performance of wflow_sbm will improve with 

respect to the original PTF. This is done by running wflow_sbm with the updated PTF in the subbasins 

which were identified in question one.   

4. How does the KsatHorFrac prediction of the updated PTF and resulting performance of 

wflow_sbm change, with respect to the original PTF, when the updated PTF is implemented for 

subbasins for which it was not developed? 

1.5. Report outline  
The outline of the remainder of this report are as follows: First Chapter 2 describes the models which 

are considered, together with the necessary data. The methods which were used to answer the 

research questions can be found in Chapter 3. Chapter 4 discusses the results of the study in the same 

format as Chapter 3. Finally, the limitations and interpretations of the results and methods and an 

overall conclusion and recommendations of the study can be found in chapters 5 and 6 respectively.   
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2. Models and data  
This chapter describes the models and materials which are used in the study. First wflow is described, 

which consists of the hydrological model wflow_sbm and the model builder HydroMT. Subsequently, 

the Random Forest algorithm is described together with the research method which was used by Ali 

et al. (2023) to develop the original PTF. Finally, the relevant data are summarised.  

2.1. Wflow 

2.1.1. Wflow_sbm 
Wflow_sbm is a distributed  hydrological model, which means that the model is divided into different 

grid cells. Each grid cell has its own set of parameters, which creates a high resolution model. 

Additional advantages are that distributed models can use the available data to full effect. Not only 

can forcing data be applied to the gridded model, data captured by satellites can function as input as 

well. As a result, physical relations between land cover and soil (hydraulic) properties can more easily 

be made. Instead of calibrating all sensitive parameters for each grid cell individually, PTFs are used for 

sensitive to estimate the optimal parameter value based on environmental data (soil, vegetation, etc.). 

Because of the PTFs, wflow_sbm can be used for any catchment (Van Verseveld et al., 2024). The 

vertical part of soil module of Wflow_sbm is mostly based on the topog_sbm model (Vertessy & 

Elsenbeer, 1999). This includes gravity based infiltration as well as capillary rise. Lateral flows such as 

channel, overland and subsurface flow is based on the following models: TOPKAPI (Benning et al., 

1995), G2G (Bell et al., 2007), 1K-DHM (Tanaka & Tachikawa, 2015) and again, Topog_SBM (Vertessy & 

Elsenbeer, 1999). An overview of the processes of the wflow_sbm model can be seen in Figure 3. 

KsatHorFrac can be found in the saturated store of the soil module. 

 
Figure 3: Overview of processes and fluxes in the wflow_sbm model. Routines: snow and glaciers (blue), interception 

(green), soil module (orange), lateral subsurface flow (brown), surface routing (dark blue)  (Van Verseveld et al., 2024) 
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2.1.2. Subsurface processes 
Before addressing the location of KsatHorFrac within wflow_sbm, the key elements of the soil module 

are described. Before water can flow to the surface water via subsurface flow, water needs to enter 

the saturated store. Prior to the saturated store, the water travels from the surface to the unsaturated 

zone through infiltration. A feature of wflow_sbm is that the unsaturated zone can be divided into 

multiple layers. This becomes relevant for the transfer of water from the unsaturated zone to the 

saturated store. For an unsaturated store layer which is divided into multiple layers, the transfer from 

an unsaturated store to the next is:  

𝑄𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑝𝑜𝑡,𝑛
𝑡 = 𝐾𝑠𝑎𝑡𝑣𝑒𝑟,𝑛 (

𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
)

𝑐𝑛

 Eq. 2 

𝑐𝑛 =
2 + 3𝜆𝑛

𝜆𝑛
 

 
Eq. 3 

Where:  

- 𝑄𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑝𝑜𝑡,𝑛
𝑡  = Potential transfer of water from an unsaturated layer n [mm t-1] 

- 𝐾𝑠𝑎𝑡𝑣𝑒𝑟 = Vertical saturated hydraulic conductivity at layer n [mm t-1] 

- 𝜃𝑠 = Saturated soil water content [mm mm-1] 

- 𝜃𝑟 = Residual soil water content [mm mm-1] 

- 𝑐𝑛 = Brooks-Corey power coefficient at layer n [-] 

- 𝜆𝑛  = Pore size distribution index at layer n [-] 

Wflow_sbm considers a 𝐾𝑠𝑎𝑡𝑣𝑒𝑟 which is variable with depth. The relation between these is negative 

which means that Ksat reduces for an increasing depth (Eq. 4). Which is in accordance with multiple 

studies (Ameli et al., 2016; Águila et al., 2023) . As a result of the variability along the vertical axis, the 

term vertical saturated hydraulic conductivity is applied (𝐾𝑠𝑎𝑡𝑣𝑒𝑟). 

𝐾𝑠𝑎𝑡𝑣𝑒𝑟,𝑛 = 𝑓𝐾𝑣,𝑛𝐾0𝑒−𝑓𝐾𝑣𝑧𝑏𝑜𝑡𝑡𝑜𝑚,𝑛  Eq. 4 

Where: 

- 𝐾0 = Vertical saturated conductivity at surface [mm t-1] 

- 𝑓𝐾𝑣,𝑛 = Optional multiplication factor (default = 1.0) [-] 

- 𝑓𝐾𝑣 = Scaling parameter [mm-1] 

- 𝑧𝑏𝑜𝑡𝑡𝑜𝑚,𝑛 = Soil depth at bottom of layer n [mm] 

Now it is known how the vertical inflow into the saturated store functions. However, the saturated 

store also interacts with neighbouring cells in the horizontal plane. Hence, lateral water transfers are 

also necessary. The route of the lateral subsurface flow is modelled using the kinematic wave 

approach. The water in the saturated store flows towards lower laying grids (downhill). Here, the 

subsurface flow is determined by Eq. 5. An important parameter is 𝐾𝑠𝑎𝑡ℎ𝑜𝑟(Eq. 6), which relates to the 

𝐾𝑠𝑎𝑡𝑣𝑒𝑟.  

𝑄𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =  
𝐾ℎ0𝑐𝑙𝑎𝑛𝑑𝑠𝑙𝑜𝑝𝑒

𝑓𝑠𝑠𝑓,𝐾𝑣
∗ ( 𝑒−𝑓𝑠𝑠𝑓,𝐾𝑣𝑧𝑠𝑠𝑓,𝑤𝑎𝑡𝑒𝑟𝑡𝑎𝑏𝑙𝑒 −  𝑒−𝑓𝑠𝑠𝑓,𝐾𝑣𝑧𝑠𝑠𝑓,𝑠𝑜𝑖𝑙)𝑤 Eq. 5 

𝐾ℎ0 = 0.001𝐾𝑣0𝑓𝐾ℎ0

∆𝑡𝑏

∆𝑡
 Eq. 6 

Where: 

- 𝑄𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = subsurface flow [m3 d-1] 

- 𝐾ℎ0 = Horizontal saturated hydraulic conductivity at surface [m d-1] 
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- 𝑐𝑙𝑎𝑛𝑑𝑠𝑙𝑜𝑝𝑒 = Land slope [m m-1] 

- 𝐾𝑣0 = Vertical saturated hydraulic conductivity at surface [mm t-1] 

- 𝑓𝐾ℎ0 = KsatHorFrac [-] 

- 𝑧𝑠𝑠𝑓,𝑤𝑎𝑡𝑒𝑟𝑡𝑎𝑏𝑙𝑒 = Depth of water table after unit conversion [m]  

- 𝑧𝑠𝑠𝑓,𝑠𝑜𝑖𝑙  = Depth of soil after unit conversion [m] 

- ∆𝑡 = Time step [s] 

- ∆𝑡𝑏 = Base time step of wflow_sbm [s] 

2.1.3. Hydromt 
In this research, all validation subbasins were simulated separately. Hence, all subbasins had an 

independent wflow_sbm model. These models were build using the HydroMT open-source Python 

package (Eilander et al., 2023). HydroMT is used to automate the process of model building and making 

it possible to reproduce results. HydroMT can be divided into three sections: input data, methods and 

workflows, and models. An overview of theses sections can be seen in Figure 4. HydroMT supports 

four different kinds of data: RasterDataset such as forcing data, DataFrame such as conversions 

between parameters, GeoDataFrame such as river location and GeoDataset such as observation 

gauges. The data which was used in this research is described in Section 2.3. All calculations and model 

building is done in the blue area in the figure below. Here the data are converted into model layers 

and parameter maps. In addition to generating the hydrological model, HydroMT creates the model 

components which can be visualised in Qgis.  

 

Figure 4: Schematic overview of HydroMT (Eilander et al., 2023) 

2.2. Random Forest  

2.2.1. Algorithm  
Random Forest (RF) is a Machine Learning (ML) method which can be used for classification and 

regression (Breiman, 2001). As the name suggests, the RF is built up from a large number of individual 

decision trees (representation in Figure 5). Each decision tree is created using a bootstrapped sample 

from the training data. At each split, the decision is made by a random variable from the bootstrapped 

sample. This step needs to be done multiple times in order to create a variety of individual decision 

trees and thus a robust RF. Not all entries in the bootstrapped dataset are used to create the decision 

trees, these samples are called ‘out of bag’ 

The end result is determined by taking the average of all decision trees. Because of this, the method 

is robust against outliers in the data and reduces the chance of overfitting. However, a drawback of the 
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RF algorithm is the poor extrapolation capability (Hateffard et al., 2024).  The performance of the 

algorithm is evaluated using the R2 (Eq. 7) and Root mean Squared Log-transformed Error (Eq. 8). It 

was chosen to use the log-transformed error because of the large range of possible KsatHorFrac values 

(1-10,000). Multiple RFs, with a different number of trees, or different variables at the splits can be 

made. Subsequently, each tree is fed with the ‘out of bag’ samples. The algorithm with the best 

performance indicators is chosen to be the optimal Random Forest.   

𝑅2 = 1 −
∑ [log10(𝑓𝐾ℎ0̂)

𝑖
− log10(𝑓𝐾ℎ0)𝑖]

2
𝑁
𝑖=1

∑ [log10(𝑓𝐾ℎ0
̅̅ ̅̅ ̅̅ )

𝑖
− log10(𝑓𝐾ℎ0)𝑖]

2
𝑁
𝑖=1

 Eq. 7 

𝑅𝑆𝑀𝐿𝐸 =  √
1

𝑁
∑ [log10(𝑓𝐾ℎ0̂)

𝑖
− log10(𝑓𝐾ℎ0)𝑖]

2𝑁

𝑖=1
 Eq. 8 

Where:  

- 𝑅2 = r-squared 

- 𝑅𝑆𝑀𝐿𝐸 = Root Mean Squared Log-transformed Error 

- 𝑁 = Number of observations 

- 𝑓𝐾ℎ0̂ = Predicted KsatHorFrac value from ML algorithms 

- 𝑓𝐾ℎ0
̅̅ ̅̅ ̅̅  = Mean of optimised KsatHorFrac values  

- 𝑓𝐾ℎ0= Optimised KsatHorFrac value 

 
Figure 5: Random Forest model (Blakely et al., 2018) 

2.2.2. Original PTF  
Ali et al. (2023) used the research method in Figure 6 to develop the PTF for KsatHorFrac using a RF 

and BRT algorithm. However, in this research only the RF algorithm is considered. The algorithm has 

two main inputs: The depth and subbasin averaged SoilGrids variables (Table 2) for the GB subbasins 

and optimised KsatHorFrac values for the corresponding subbasins. The optimisation of the 

KsatHorFrac will be elaborated upon in Section 3.2. After randomly splitting the subbasins into a 

training (75%) and test (25%) set, the SoilGrids variables are standardised. This is because the large 
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difference in magnitude between the variables. Multiple RFs are created using different number of 

trees and selection of variables at decision splits.  

 

Figure 6: Flowchart of the method to develop a PTF for KsatHorFrac for a Random Forest and Boosted Regression (Ali et al., 
2023) 

The RF with the best  performance can be seen in blue in Figure 7. This is the PTF which will be validated 

in this research and will be referred to as ‘original PTF’. Section 3.2 elaborates on how to implement 

the PTF to the validation subbasins.  

 

Figure 7: Results of the BRT and RF algorithms: (a) relative importance of the predictors, (b) scatterplot of the predicted and 
optimised KsatHorFrac values and corresponding performance indices (Ali et al., 2023) 

2.3. Data   
An overview of the data which is used in the wflow_sbm models can be seen in Table 1. The discharge 

time series of the Global Runoff Data Centre (GRDC) are used. Amongst this data is data of the 

European Water Archive (EWA), which contains long-term daily flow data (European Environment 

Agency, 2011). The forcing data which was used as input for the simulations is the E-OBS dataset 

version 25.0.e. The data consist of measured precipitation data which is retrieved from the weather 

stations of European National Meteorological and Hydrological Services (NMHSs) as well as other data 

institutions. For the temperature and potential evapotranspiration (PET), ERA5 forcing was used. For 

PET, the De Bruin method was used (De Bruin et al., 2016). The topography of the MERIT hydro 

database consists of: flow direction, elevation, slope, stream order, uparea and river width. The 

SoilGrids parameters (Table 2) are used in wflow_sbm as well as the training of the RF Algorithm which 

was used to develop the original PTF for KsatHorFrac.  
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Table 1: Overview of the datasets which were considered for wflow_sbm and the Random Forest algorithm 

Variable Dataset  Resolution  Period  Source  

Dynamic data 

Discharge GRDC, EWA  Daily  1958 to 2017 (GRDC, 2024) 

Precipitation E-OBS v25.0e  Daily  01-01-1950 to 
31-12-2021 

(Cornes, Schrier, 
Besselaar, & 
Jones, 2018) 

Temperature ERA5 Hourly  1950 to 
present 

(Hersbach, et al., 
2020) 

Potential 
evapotranspiration  

ERA5 Hourly 1950 to 
present  

(Hersbach, et al., 
2020) 

Static data 

Topography  MERIT Hydro 3-arc sec (90 m at 
equator) 

- (Yamazaki, et al., 
2019) 

Soil maps SoilGrids v1.0 ( 

Table 2) 

250 m - (Hengl, et al., 
2017) 

Land use  Vito 100 m - (Buchhorn, et al., 
2020) 

 

Table 2: SoilGrids v1.0 parameters (Hengl et al., 2017) which are predictors for the original PTF (Ali et al., 2023) 

Variables  Abbreviation Unit  

Soil organic carbon ORCDRC g kg-1 

pH index (H2O solution) PHIHOX 10-1 

Sand content SNDPPT kg kg-1 

Silt content SLTPPT kg kg-1 

Clay content  CLYPPT kg kg-1 

Bulk density BLDFIE kg m-3 

Depth to bedrock  BDTICM cm 
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3. Research methods 
This chapter describes the steps which were taken to answer the research questions. A flowchart of 

the methods is shown in Figure 8. Here, the different colours represent the research question which 

corresponds to the number at the top.  

 

Figure 8: Flowchart of research methods. The numbers 1-4 indicate the research questions. Purple arrows indicating that RQ 
1 and 2 correspond to the first part of the research aim, while RQ 3 and 4 correspond to the second part of the research. 

3.1. Subbasin selection 
The first part of the research aims at identifying subbasins which are used for the validation of both 

the original PTF and the updated PTF. First a longlist will be created with the help of a set of criteria. 

Subsequently, this longlist will be reduced to a shortlist by implementing a scoring system.  

3.1.1. Longlist 
The focus area of the study is Central and Western Europe. This is because the longlist is partly based 

on the already available wflow_sbm models of the Rhine, Po and Loire. In order to make the study area 

continuous it was chosen to add the Seine and Rhone basins. Finally, the upper section of the Danube 

was added since an additional discharge dataset was available. However, within this study area a large 

number of subbasin can be found. In order to reduce this number to a longlist the following set of 

criteria was used: 

- Potential subbasins should be gauged and historical daily discharge data should be available. 

Since other studies which use wflow_sbm have a calibration period between 2-4 years (Imhoff 

et al., 2020;Wannasin et al., 2021) it was decided that a minimum of 4 years should be 

available.  

- Secondly, the subbasins should be headwaters.  
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The first criteria is the most important. Without historical discharge data no evaluation can be done. 

As the quality of the GRDC data is controlled, and thus reliable (GRDC, 2024) and wflow_sbm model 

can easily import GRDC data such as gauge locations using HydroMT, it was chosen to use the GRDC 

discharge data. Regarding the second criterium: The specific focus on headwaters is important as 

optimising the KsatHorFrac values is faster when the basins do not have an inflow from adjacent basins. 

Additionally, it is less likely that human interventions such as dams or reservoirs are present in the 

headwaters. The subbasin size is also important as it is not only related to computational time, but 

also to the homogeneity of soil. Smaller subbasins result in more homogeneous SoilGrids variables and 

resulting model parameter values when averaged. This will be elaborated upon in Section 3.1.2. Both 

arguments reduce the uncertainty of the discharge measurements. The selection of the headwaters 

within these basins was done manually in the Qgis (desktop 3.34.0) software. During this procedure 

the subbasins without inflow from adjacent subbasins were selected. This resulted in a longlist of 967 

subbasins (Figure 9). As can be seen from this figure, the distribution of headwaters is not equal across 

the basins. In the Po basin, few headwaters can be found. This is caused by a limited number of 

subbasins within the available Po model and GRDC discharge gauges.    

 
Figure 9: Subbasins from the longlist. Covering: Loire, Seine, Rhone, Rhine, Po and upper Danube basin 

3.1.2. Shortlist  
After the first selection round, the goal is to reduce the longlist to a shortlist since not all subbasins are 

suitable for the research. In order to evaluate the transferability of the original and updated PTF, an 

equal distribution of subbasins should be similar and different, in terms of soil characteristics to the 

GB training subbasins. The soil characteristics are represented by the predictors of the original PTF 

(SoilGrids v1.0). Subbasins with both similar and different soil characteristics are needed in order to 

test the following hypothesis: “Subbasins with different soil characteristics compared to the GB training 

subbasins will have a lower model performance compared to  subbasins with similar soil characteristics 

compared to the GB training subbasins when using the original PTF”.   

Reducing the longlist to a shortlist requires multiple actions. Firstly, as the seven SoilGrids variables 

consist of seven depth layers, data processing is necessary in order to compare the potential subbasins 

with the training subbasins in GB. First, the parameters are averaged in depth according to the 

trapezoidal rule (Eq. 9) as stated in Hengl et al. (2017). Subsequently, the parameter values should be 

averaged for each individual subbasin. Which results in a depth and basin-average value for the seven 

SoilGrids variables for every subbasin in Figure 9.  
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 Eq. 9 

Where: 

- 𝑎 = Depth of top of soil layer [cm] 

- 𝑏 = Depth of bottom of soil layer [cm] 

- 𝑁 = Number of depths [-] 

- 𝑥𝑘 = k-th depth [cm] 

- 𝑓(𝑥𝑘) = Value of SoilGrids variable at depth 𝑥𝑘 [Table 2] 

In order to determine whether a subbasin is similar or different compared to the SoilGrids variables of 

the trainings basins, a scoring system is implemented. The depth and subbasin averaged SoilGrids 

variable values of the subbasins in the longlist are compared to the boundaries (explained in following 

paragraph) of each depth and subbasin averaged SoilGrids variables of the GB trainings subbasins. If 

the averaged variable value of a validation subbasin is between the boundaries, one point is awarded. 

Hence, each basin from the longlist receives a score between 0 and 7. Where 0 means that all soil 

variable values are outside of the range of the GB training subbasins, and 7 means all parameter values 

are within that range. However, deciding which basins will form the shortlist depends on the final result 

of the scores: A large contrast between subbasins is preferred to test the hypothesis. Hence, if a 

sufficient number of subbasins remains in the ultimate scoring categories (0 or 7), only the subbasins 

within the ultimate scoring categories are selected. If the number of subbasins in these ultimate scores 

is not found to be sufficient, scoring categories are grouped together (e.g. 0 and 1, 6 and 7).  

A large variety of subbasins is used when training the original PTF. Because of this outliers can be 

included in the training data. However, these outliers will probably not affect the output of the 

algorithm since RF is robust against outliers in the training data (Breiman, 2001). Hence, the outliers 

should not be considered when applying the scoring system. Therefore it was chosen to look at 

different ranges of the SoilGrids variables from the GB training subbasins. Besides the complete 

dataset per parameter, the following subsets are considered: data between the whiskers of a boxplot 

and the 95% and 90% confidence intervals. Here the whiskers of the boxplot are determined by looking 

at 1.5 times the inter quartile range (Q3 +1.5*(Q3-Q1) and Q1 -1.5*(Q3-Q1).   

3.1.3. Final selection 
Instead of randomly selecting subbasins, it was chosen to base the decision on subbasins size. To 

ensure that the sizes of the basins among scoring category are not significantly different, the Kruskal-

Wallis-test with a significance level of 0.02 is used (Kruskal & Wallis, 1952). The Kruskal-Wallis-test is 

used to test a hypothesis for more than 2 samples. Additionally, as this test is non-parametric, the size 

of the basins does not have to be normally distributed. The Null hypothesis states that the size of the 

basins from each sample come from the same population. Whereas the alternative hypothesis states 

that at least one sample comes from a different population. The final selection of subbasins does not 

only depend on the result of research question 1. Subbasins can be discarded if problems are 

encountered during the model building in HydroMT.  The subbasins were selected from basin size 

models. The river network in these models is based on a river geometry dataset (Lin et al., 2020), which 

only covers rivers wider than 30 meters. Since several headwaters do not have rivers which are that 

wide, they are not covered by the dataset. because of this, the rivers are build using another method 

which estimates the geometry based on a power law and the discharge . In order to prevent 

inconsistent model results, all subbasins with an area which deviates from the upstream area 

according to the GRDC gauges with more than 15% (used in State of Global Water Resources report 

2022 (WMO, 2023)) are discarded from the final selection. Additionally, if a problem is encountered 
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during the simulations there is a possibility to discard a subbasin from the validation set. Even though 

subbasins can be discarded, it should be ensured that every scoring category has a similar number of 

subbasins. 

3.2. Transferability of the original PTF  
In order to successfully evaluate the transferability of the original PTF, both the predicted KsatHorFrac 

and resulting performance of Wflow_sbm are compared to the default and a benchmark. However, as 

stated in the introduction, there is no extensive dataset of KsatHorFrac available. An alternative 

method to create a benchmark value is to create an optimised KsatHorFrac value for each subbasin. 

During the sensitivity analysis only KsatHorFrac is varied. This can be done, since the other sensitive 

wflow_sbm parameters (Appendix A.) are predicted using validated PTFs.  

In the sensitivity analysis, KsatHorFrac will be varied between 1 to 10,000 in logarithmic intervals 

(Weerts, 2024), which is uniformly applied in each subbasin. The simulated discharge will be compared 

to the observed discharge and evaluated using the non-parametric Kling Gupta Efficiency (𝑛𝑝𝐾𝐺𝐸) as 

shown in Eq. 10. This adjustment to the conventional 𝐾𝐺𝐸 is sensitive to the baseflow of the 

hydrographs, instead of peak flows (Pool et al., 2018). As KsatHorFrac dictates the subsurface flow, it 

is logical to evaluate the baseflow instead of looking at the complete hydrograph. 𝑛𝑝𝐾𝐺𝐸 defined as 

follows: 

𝑛𝑝𝐾𝐺𝐸 = 1 − √(𝛽 − 1)2 + (𝛼𝑁𝑃 − 1)2 + (𝑟𝑠 − 1)2, Eq. 10 

𝛽 =
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
, Eq. 11 
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2
∑ |

𝑄𝑠𝑖𝑚(𝐼(𝑘))

𝑛𝑄𝑠𝑖𝑚̅̅ ̅̅ ̅̅ ̅
−

𝑄𝑜𝑏𝑠(𝐽(𝑘))

𝑛𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅
|𝑛

𝑘=1 . Eq. 12 

Where: 

- 𝑛𝑝𝐾𝐺𝐸 = Non-parametric KGE [-] 

- 𝑟𝑠 = Spearman correlation coefficient [-] 

- 𝛼𝑁𝑃 = Non-parametric form of discharge variability [-] 

- 𝛽 = Bias between simulated and observed mean discharge  [-] 

- 𝜇 = Mean discharge [m3/s] 

- 𝑄 = Discharge [m3/s] 

- 𝑛 = Length of simulated discharge [s] 

 

The simulation duration for the sensitivity analysis is dependent on the availability of discharge data 

of each individual subbasin. The duration should be at least four years. As this method of creating an 

optimised parameter is time consuming it was chosen to limit the simulation duration to a maximum 

of twenty-two years (including a warm up period of two years). In order to keep a reliable comparison, 

the considered simulation period for each subbasin will be the same throughout the study. The 

KsatHorFrac value with the highest 𝑛𝑝𝐾𝐺𝐸 is considered as optimised value and acts as the benchmark 

value for each individual catchment. The predicted KsatHorFrac form the PTF and resulting 𝑛𝑝𝐾𝐺𝐸 

from the simulation are compared to this benchmark. After the sensitivity analyses has been 

conducted, the original PTF  will be implemented in the wflow_sbm models. The simulation duration 

for the models is the same as during the sensitivity analysis in order to make a logical comparison.  

The optimised KsatHorFrac is a lumped value. Whereas the predicted KsatHorFrac is distributed. In 

order to compare the values, the predicted KsatHorFrac is averaged for each subbasin. The difference 

between the optimised KsatHorFrac and lumped predicted KsatHorFrac is evaluated in order to 

evaluate the spatial distribution of the results. Subsequently, the difference between 𝑛𝑝𝐾𝐺𝐸 resulting 

from the optimised, predicted and default (=100) KsatHorFrac is evaluated. Both results are combined 
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to identify subbasins which stand out in terms of KsatHorFrac and/or 𝑛𝑝𝐾𝐺𝐸 difference between the 

optimised and predicted values. The hydrographs of these subbasins are further analysed in order to 

evaluate why the subbasins stand out. These subbasins are also addressed in RQ 4.   

The optimised  and predicted KsatHorFrac and resulting 𝑛𝑝𝐾𝐺𝐸 are compared by conducting statistical 

tests on the difference between the two scenarios. First a Wilcoxon test is used to identify whether 

there is a statistically significant difference between the optimised model performance (𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡) 

and model performance resulting from the original PTF (𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔). Subsequently, as the subbasins 

are divided into scoring categories (RQ 1), a Kruskal-Wallis test is conducted in order to identify 

whether there is a statistically significant difference between the different groups.  

The PTF is successful if 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 is similar to 𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡, and higher than the 𝑛𝑝𝐾𝐺𝐸 using the 

default KsatHorFrac (=100) (𝑛𝑝𝐾𝐺𝐸𝑑𝑒𝑓). As the scoring categories (Section 3.1.2) are related to the 

similarities of the SoilGrids parameters, the following hypothesis is set up: ‘The difference between the 

optimised model performance and when the original KsatHorFrac PTF is used is smaller for subbasins 

with a high score (4-7) compared to subbasins with a low score (0-3)’. The motivation behind this 

hypothesis is that the original PTF is trained in GB. Hence, it is expected that the PTF should function 

well on subbasins which have similar SoilGrids variable values as those in GB.  

3.3. Creating an updated PTF 

3.3.1. New predictors  
The original PTF considers the seven SoilGrids variables which were summarised in Table 2.  As other 

research into KsatHorFrac PTFs is lacking, research into 𝐾𝑆𝑎𝑡𝑉𝑒𝑟 formed the basis to consider other 

variables for the updated PTF. Multiple studies concluded that topographical variables are suitable for 

predicting 𝐾𝑆𝑎𝑡𝑉𝑒𝑟 through PTFs (Gupta et al., 2021; Ayele et al., 2020). Two predictors which were 

used in multiple studies are slope [-] and elevation [m]. A final predictor which was considered is 

drainage density [km/km2]. This predictor is defined as the total river length per unit area (Horton, 

1932). Collins & Bras (2010) state that drainage density impacts runoff. Additionally, they compared 

different researches which stated drainage density is related to environmental factors. Environmental 

factors, according to Gupta et al. (2021) impact 𝐾𝑆𝑎𝑡𝑉𝑒𝑟. Prior to creating the updated PTF, the three 

predictors have to be added to the original database which was used within the algorithm. This is done 

by calculating the subbasin average value of the three predictors for all GB training subbasin 

considered by Ali et al. (2023). These three values are then added to the seven SoilGrids predictors in 

the original database, creating a database of ten predictors in total.  

3.3.2. Random Forest training and testing  
Creating the updated PTF is done in the same subbasins in GB as the original PTF. The database of the 

ten predictors, together with the optimised KsatHorFrac values for the GB subbasins retrieved from Ali 

et al. (2023) form the input of the algorithm. Table 3 shows values of important parameters which 

were considered in the training and testing of the algorithm.  

Table 3: Parameter values considered for the RF training and testing in the subbasins of GB, as selected by Ali et al. (2023) 

Variable Value Variable Value 

Training subbasins 344 Portion of input 1, 0.9, 0.8, 0.6, 0.5, 0.3 

Testing subbasins 115 Number of folds 5 

Number of trees 10, 50, 100, 150, 200, 
300, 400, 500 

Random seed 1000 

Max depth  None   
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To get more insight into the behaviour of the RF algorithm, the relative importance of all considered 

predictors will be created and analysed. From these results, it can be seen whether the topographic 

predictors have a large impact on KsatHorFrac or the original predictors are dominant. If a predictor 

has a small relative importance, it can be chosen to discard this predictor from the algorithm. Due to 

the random nature of the RF algorithm, the relative importance of the variables is not the same each 

time the algorithm is run. In order to investigate the sensitivity of this randomness, the algorithm is 

run ten times. After each run, a PTF file is created. If the outputs of the algorithm show different results, 

the ten runs should be averaged in order to get one single input into wflow_sbm. However, these PTF 

files cannot be averaged to one single file. The resulting distributed KsatHorFrac maps can be averaged. 

Which is described in the following section.   

3.3.3. Updated KsatHorFrac map  
Each of the ten PTF files is used to create a distributed map of KsatHorFrac in the GB subbasins and 

validation subbasins from RQ1. Each map is created by combining the 10 input predictors with each 

PTF file, resulting in ten different KsatHorFrac maps. These ten KsatHorFrac maps are averaged to get 

one single map which can be put into wflow_sbm. Prior to creating the KsatHorFrac maps, the input 

maps of the topographic predictors were upscaled from 90 meters to 250 meters to match the 

resolution of the SoilGrids predictors. This is done in Qgis by using the mean value upscaling technique 

from the Saga extension (Conrad et al., 2015). In order to get insight into how the updated PTF will 

behave in the validation subbasins (determined in RQ 1), the predicted KsatHorFrac maps of the 

updated and original PTF are compared for the GB training subbasins.     

3.4. Transferability of the updated PTF  
The map with the KsatHorFrac values which result from the updated PTF is implemented in the 

wflow_sbm model for the validation subbasins from RQ1 in the same way as the original KsatHorFrac 

map. Subsequently, the models of the subbasins are run for the same time periods as considered in 

RQ2. The statistical evaluation follows the same method as applied in RQ2. However, here the updated 

and original predicted KsatHorFrac values, and resulting model performance in wflow_sbm 

(𝑛𝑝𝐾𝐺𝐸𝑢𝑝𝑑) are compared to the optimised benchmark.  

Finally, it is investigated how the hydrographs of the subbasins highlighted in RQ2 have changed as a 

result of the updated PTF. Additionally, the 𝑛𝑝𝐾𝐺𝐸 statistics (r, alpha, beta) and the KsatHorFrac are 

compared. From these statistics, it can be seen whether the updated PTF has improved the 

KsatHorFrac prediction and the  model performance of wflow_sbm in the individual subbasins.  
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4. Results 
The results of this research are described in this chapter. First the selection of the validation subbasins 

is shown in section 4.1. Secondly, the transferability of the original PTF is evaluated in the selected 

validation subbasins in section 4.2. Thereafter, section 4.3 describes how an updated version of the 

original PTF has been created, which is compared to the original PTF in the final section of this chapter.  

4.1. Subbasin selection  

4.1.1. Shortlist 
A dataset covering all considered subbasins in GB (provided by Ali et al., 2023)) with depth-averaged, 

basin-averaged values for the seven SoilGrids variables was analysed, in order to determine the four 

different ranges: min-max, whiskers, 95th percent, 90th percent. After selecting only the 344 training 

subbasins from the dataset, the boxplots in Figure 10 were created. From these boxplots, the min-max 

range and the range of the whiskers can be determined. As can be seen in the boxplots, only bedrock 

depth, organic carbon content and pH index have clear outliers as indicated by the dots beyond the 

whiskers.  

 
Figure 10: Boxplots of the trainings subbasins for the seven SoilGrids parameters which were used to train the ML 

algorithms of Ali et al. (2023). Here the whiskers of the boxplot are 1.5 times the inter quartile range (Q3 +1.5*(Q3-Q1) and 
Q1 -1.5*(Q3-Q1).  

Even though the remaining variables do not have outliers in the data, it is still interesting to investigate 

how the range changes if extremes are removed from the data. Hence, looking at the middle 95 and 

90 percent of the dataset. The boundaries of the four ranges are stated in Table 11 in Appendix B.1.  

All 967 subbasins from the longlist (Figure 9 in Section 3.1) receive a score based on the four ranges of 

the SoilGrids variables as described in Section 3.1.2. The distribution of the scoring categories for the 

four ranges is shown in Table 4. The distribution of the scores is skewed towards the higher half of the 

scores for all four ranges. Especially for the complete range and the whiskers a small number of 

subbasins can be found, with zero subbasins scoring 0 points when the complete range of all SoilGrids 

variables are considered.  
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Table 4: Number of subbasins within a scoring category for the four ranges of the SoilGrids variables of the GB training basins 

Scores Min-max Whiskers 95th  90th  

0 0 2 11 24 

1 3 26 25 40 

2 20 32 42 55 

3 54 45 124 134 

4 85 144 111 102 

5 181 139 181 185 

6 157 209 173 181 

7 467 370 300 246 

In order to investigate the relatively small number of subbasins with a low score (0-2), the SoilGrids 

variables are analysed in more detail. The scoring system assumes that all variables are independent 

from each other. This is not the case for the percentages of clay (CLYPPT), silt (SLTPPYT) and sand 

(SNDPPT) as these form a soil type together. The percentages of the dominant soil types per basin are 

shown in Figure 11. Most of the subbasins share the same soil types with GB: sandy loam, loam and 

clay loam. The Seine has a different distribution with respect to the other basins: with more silt loam 

(22.52%), more silty clay loam (8.11%) and no sandy loam at all. It can be seen that if the complete 

dataset of the training basins in GB is considered in the analysis, no subbasins score 0 points, even 

though these dominant soil types are different compared to GB. Overall, the analysis of the soil types 

did not reveal progression towards a larger selection of subbasins with a low score for the complete 

dataset. However, since the dominant soil type in the Seine is completely different compared to GB, it 

is expected that when the extremes are removed from the dataset, the subbasins with a low score are 

located in the Seine basin.  

 
Figure 11: Distribution of dominant soil types per basin. The percentages are determined by the number  of subbasins within 

a soil category as part of the complete basin. 

If the 90th percentile of the data is considered, the number of subbasins with a score of 0 increases to 

24. This is only 2.5 percent of the subbasins in the longlist. Because of this, the categories with a score 

of 0-2 as well as 5-7 are combined, reducing the shortlist to 731 subbasins.  
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4.1.2. Final selection  
The final selection was made based on the middle 90% of the GB training basins dataset since there 

the most subbasins within the scoring category 0 was found (Table 4). The group with a score of 0 is 

the limiting factor since it includes the least number of subbasins. Hence, from the groups with a score 

of 1, 2, 5, 6 and 7 an equal amount of subbasins is selected (24).  The subbasins are selected based on 

the size of the subbasins from the group with a score of 0. Even though the equal distribution is size 

was the main focus, the location was taken into account in order to ensure an equal spread across the 

basins. Using a Kruskal-Walis test is was made sure that the size of the subbasins are not significantly 

different amongst the scoring categories (H-value(3.576) < chi squared (13.338), with Df = 5). This 

resulted in 144 potential validation subbasins.  

After building the models using HydroMT, it was found that the for several subbasins the size between 

the model domain and reality differed more than 15%. As deviations of this magnitude could result in 

unreliable model results, these subbasins were discarded. This decreased the amount of subbasins to 

107. However, the distribution among the score categories was not equal and ranged between 17 and 

19. Five additional subbasins were discarded to keep the amount of subbasins in all score categories 

equal at 17. This reduced the amount of validation basins from 144 to 102. The subbasins which were 

discarded were selected based on size such that the size of the subbasins among the scoring categories 

remained equal (Kruskal-Wallis test: H-value (12.578) < chi squared (13.338), with Df = 5). The locations 

of the subbasins in the final selection can be seen in Figure 12. Here the colour indicates the score. 

From Figure 12, it can be concluded that the distribution of subbasins within a scoring category is not 

even across the six basins. The subbasins with low scores are primarily concentrated in the Seine basin. 

Which could be attributed to the different soil types in the Seine as shown in Figure 11. Subbasins with 

a high score can be found throughout all basins are spread more evenly.  

 
Figure 12: Final selection of validation basins, yellow highlighted subbasins will be explained in the Section 4.2.1 

4.2. Evaluating the transferability of the original PTF  
This Chapter includes the results of Research Question 2. First, the optimised and predicted 

KsatHorFrac values are presented and discussed. Secondly, the Non-Parametric Kling Gupta Efficiency 

(np KGE) for the default, optimised and RF simulations are described. After the description of the 

results for all validation  subbasins, a number of subbasins will be evaluated and described in more 

detail to highlight causes for observed differences in the both KsatHorFrac value and resulting model 

performance in wflow_sbm.   
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4.2.1. Unsuitable validation subbasins  
After assessing the hydrographs which resulted from the optimised KsatHorFrac in the sensitivity 

analysis, it was found that 26 subbasins provided unreliable simulations. This was based on the np KGE, 

corresponding β, sensitivity curve and visual inspection. In most of the discarded subbasins the 

simulated discharge overestimated the measured discharge. These subbasins were mainly located in 

the Seine subbasin. Furthermore, it was found that several hydrographs displayed recognisable 

patterns which suggested the presence of hydraulic structures which regulated river discharge. The 

subbasins which are eliminated are highlighted in yellow in Figure 12. An overview of the changes per 

scoring category can be seen in Table 5. Here it can be seen that a large number of subbasins is 

removed in the scoring categories 0 and 1. Therefore, it was decided to group these two categories 

together when statistical tests are conducted. After removing the 26 subbasins, the size of the 

subbasins amongst the scoring categories was not statistically significant (Kruskal-Wallis test: H-value 

(11.42) < chi squared (11.67), with Df = 4).  

Table 5: Overview of the number of subbasins after RQ1 and at the start of RQ2 per scoring category 

  0 1 2 5 6 7 Sum 

RQ1 17 17 17 17 17 17 102 

Removed  12 7 3 2 0 2 26 

RQ2 15 14 15 17 15 76 

    

4.2.2. Comparing optimised and predicted KsatHorFrac from the original PTF in the 

validation subbasins 
The optimised KsatHorFrac can be seen in Figure 13 A. This figure shows that the spread of optimised 

KsatHorFrac values covers the complete input range (100-104). Generally the optimised values are of a 

similar magnitude in the same area, which is as expected. Mainly high values (103.5-104) can be found 

in the eastern part of the Seine basin. However, some subbasins in the Danube, Rhone and Po stand 

out where high values can be found in between lower values (KsatHorFrac < 102.5). The subbasin 

averaged KsatHorFrac values resulting from the original PTF are shown in Figure 13 B. From this figure 

it becomes clear that the highest subbasin averaged predicted KsatHorFrac is a power of magnitude 

smaller compared to the highest optimised value: the spread of the predicted KsatHorFrac is between 

10 and 1000, with the majority of the values between 100 and 1000. This upper limit can also be 

observed in the results of Ali et al. (2023). In the GB testing subbasins the predicted KsatHorFrac was 

under-estimated in comparison to the optimised KsatHorFrac for values around 103 and higher (Figure 

7).  Because of this, no clear outliers can be identified in Figure 13 B as generally subbasins in close 

proximity of each other have similar parameter values. The difference between the optimised and 

predicted KsatHorFrac values can be seen in Figure 13 C. Blue indicates the subbasins where the 

predicted KsatHorFrac has a higher averaged value. The optimised KsatHorFrac is higher in the red 

subbasins. A large set of red subbasins can be identified in the east of the Seine basin. For these 

subbasins, the absolute difference between the predicted and optimised KsatHorFrac is in the range 

of 1,000 to 10,000.  
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Figure 13: Subbasin averaged (A) optimised and (B) predicted KsatHorFrac values. (C) Difference between predicted and 

optimised KsatHorFrac values, with values below one  indicating lower KsatHorFrac values for predicted than for the 
optimised values and vice versa. 

The optimised and predicted KsatHorFrac values from Figure 13 A and B are shown in Figure 14 A. 

From this figure it can be concluded that the predicted KsatHorFrac in the subbasins with a high score 

(5-7) is lower compared to subbasins with a low score (0-2). It also appears that the subbasins with a 

high score follow the 1:1 line better compared to the subbasins with a low score. This suggests that 

the KsatHorFrac prediction is lacking in subbasins with different soil characteristics compared to the 

GB training subbasins. Furthermore, it can be seen that an optimised KsatHorFrac of 10,000 (104) is 
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found in several subbasins, but this is not the case for the predicted KsatHorFrac, where the maximum 

value is only 699 (102.84).  Additionally, this highest value only applies to subbasins with a low score. 

The difference between the predicted and optimised KsatHorFrac per scoring category is shown in 

Figure 14 B. Using a Wilcoxon test it was found that the differences of groups 5, 6 and 7 are 

insignificant. The differences of groups 0-1  and 2 are statistically significant with a p-value of 0.0043 

and 0.025 respectively.  This means that the predicted KsatHorFrac is significantly lower compared to 

the optimised KsatHorFrac for subbasins with low score. This difference can be caused by the fact that 

the optimisation in some subbasins with a low score (0-2) is not working to the fullest potential as 

these subbasins tend to have a ‘poor’ model performance in general (described in Discussion Section 

5.2.1). This is caused since the optimised KsatHorFrac value is dependent on the np KGE. Hence, the 

value of KsatHorFrac resulting from the sensitivity analysis could be different from the actual optimised 

KsatHorFrac value for subbasins with a ‘poor’ model performance.   

 
Figure 14: (A) Scatterplot of,  and (B) difference in boxplot between, the predicted KsatHorFrac and  the optimised 

KsatHorFrac per scoring category 

4.2.3. Comparing the model performance of wflow_sbm resulting from different 

KsatHorFrac values   
𝑛𝑝𝐾𝐺𝐸𝑑𝑒𝑓, 𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡, and 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 are shown in Figure 16 A, B and C respectively. Based on a 

visual inspection, the three scenarios show similar results in terms of magnitude and spatial 

distribution. The majority of the subbasins has a 𝑛𝑝𝐾𝐺𝐸 of at least 0.5, with 78%, 79%, and 75% for 

default, optimised and predicted respectively (Figure 15 A). This implies the majority of the basins 

perform intermediate (0.5-0.75) to good (>0.75) (Rogelis et al., 2016). However, the worst performing 

basins in terms of np KGE (0 - 0.4) can be found in and around the Seine, with the exception of the east 

of the Seine basin where the KsatHorFrac is higher compared to the rest of the basin.  

The most prominent improvements of the 𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡 in relation to 𝑛𝑝𝐾𝐺𝐸𝑑𝑒𝑓 can be found in the 

southeast of the Seine basin where several subbasins have crossed the threshold of 0.8. the 

improvement ranges between 0.01 and 0.21 A similar trend can be observed in the east of the Rhine 

basin. For the predicted KsatHorFrac, this improvement is less evident as the 𝑛𝑝𝐾𝐺𝐸 values are mostly 

in the same intervals. The differences in 𝑛𝑝𝐾𝐺𝐸 can also be seen in the boxplots in Figure 15 A. From 

this figure, it can be concluded that that the median 𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡  is the highest, followed by 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 

and 𝑛𝑝𝐾𝐺𝐸𝑑𝑒𝑓 respectively.  

However, in order to validate this, the changes in 𝑛𝑝𝐾𝐺𝐸 between the default, predicted and 

optimised are evaluated. The comparison between optimised and default, predicted and default, and 

predicted and optimised are shown in Figure 16 D, E and F, respectively. As shown in Figure 16 D, nearly 

all basins have increased in performance when the optimised and default scenarios are compared. 

From the 76 subbasins, 14 (18.4%) have an equal KsatHorFrac value of 100 and thus an equal 
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performance. The subbasins with the largest improvement can be seen in the south east of the Seine 

basin, which is in line with the increased predicted KsatHorFrac values showed in Figure 13 B.   

The difference between 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 and 𝑛𝑝𝐾𝐺𝐸𝑑𝑒𝑓(Figure 16 E) is concentrated around zero: 63 

subbasins are in the range of -0.06 and 0.06 (82.9%). In total, the predicted KsatHorFrac outperforms 

the default value in 49 of the 76 subbasins (64.5%). However, in one subbasins the 𝑛𝑝𝐾𝐺𝐸 of the 

default KsatHorFrac outperforms the predicted value by 0.18. This subbasin can be found in the 

upstream part of the Danube basin (orange red) and is described in more detail in Section 4.2.4. 

As shown in Figure 16 F, 𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡  outperforms 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 in a large number of subbasins. This result 

is in line with the expectation, as the optimised KsatHorFrac was derived using observed discharge 

during the sensitivity analysis. However, the predicted KsatHorFrac is not outperformed by the 

optimised value in six subbasins. From these six subbasins the largest increase in terms of np KGE is 

small with only 0.003. However, this difference is negligible and are thus considered equal. In one 

subbasin the optimised KsatHorFrac outperforms the predicted KsatHorFrac by 0.18 in terms of np 

KGE. This is the same subbasin as in Figure 16 E. All previous observations regarding the difference in 

np KGE between two scenarios are summarised in Figure 15 B. 

 
Figure 15: (A) Boxplots of np KGE for the default, RF and optimised simulations. Whiskers represent Q1-1.5*IQR, 

RQ3+1.5*IQR. Dotted line at 0.5 represents the threshold between poor (np KGE <0.5) and  intermediate(0.5< np KGE) 
performance. (B) Boxplots of the difference in np KGE between the default, Predicted and optimised simulations. Dotted line 

indicates the threshold where the np KGE between the scenarios is equal. 
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Figure 16: Left: Non-Parametric KGE for the (A) default, (B)  Optimised, and (C) predicted KsatHorFrac values. Right: Difference in Non-Parametric KGE between (D) optimised and default, (E) 

predicted and optimised and (F) predicted and default KsatHorFrac values 
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𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 and 𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡  are plotted against each other in Figure 17 A for the different scoring 

categories. When focussing on the optimised KsatHorFrac, it becomes evident that the subbasins with 

a poor performance (𝑛𝑝𝐾𝐺𝐸 <0.5) are mainly subbasins with a low score (0-2). 16 subbasins have a 

performance below this threshold. From the subbasins with a low score (0-2), 37,93% also have a poor 

performance. For subbasins with a high score (5-7) this is only 10.62%. This suggests that subbasins 

with a low score generally perform worse compared to subbasins with a high score when using 

wflow_sbm. For the predicted KsatHorFrac, 19 subbasins have a poor performance. Here the split 

between low (0-2) and high (5-7) scoring categories is 41.38 % and 14.90 % respectively, indicating that 

basins with a poor performance generally fall in scoring category 0 - 2.  

The difference between 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 and 𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡  from Figure 16 F, combined with the scoring 

categories is shown in Figure 17 B. Using a Wilcoxon test, it was found that the differences between 

the 𝑛𝑝𝐾𝐺𝐸 are significant in all scoring categories (p ranges from 6.1e-4 to 6.1e-5), indicating that the 

𝑛𝑝𝐾𝐺𝐸 of the simulations with the predicted KsatHorFrac are significantly lower than those of the 

optimized KsatHorFrac. Additionally, a Kruskal-Wallis test was used to prove that the difference 

between the scoring categories are not statistically significant (p = 0.78). This rejects the hypothesis 

that stated that the difference between the optimised model performance and when the original PTF 

is used is smaller for subbasins with a high score compared to subbasins with a low score.  

 
Figure 17: (A) Scatterplot of, and (B) difference in boxplots between, the predicted  np KGE against the optimised np KGE per 

scoring category 

4.2.4. Evaluating stand-out subbasins  

Selzthal subbasin  

The most prominent outlier in terms of both 𝑛𝑝𝐾𝐺𝐸 and KsatHorFrac difference between the 

predicted and optimised scenario is subbasin Selzthal in the Danube basin. The subbasin has a score 

of 7 and an optimised and predicted KsatHorFrac value of 10,000 and 34.17 respectively. The subbasin 

experienced a decrease 𝑛𝑝𝐾𝐺𝐸 when applying the predicted KsatHorFrac (0.40) in comparison to the 

default (0.58) and optimised (0.63) KsatHorFrac. The hydrographs resulting from the optimised and 

predicted KsatHorFrac and a magnified section can be seen in Figure 18 B and Figure 19 B respectively. 

It stands out that the baseflow resulting from the predicted KsatHorFrac is higher compared to the 

optimised hydrograph. This is not logical since a higher KsatHorFrac should result in a higher baseflow.  

Furthermore, it can be concluded that both the optimised and predicted KsatHorFrac simulation  

underestimate the peak discharge. This can be seen in the statistics of the 𝑛𝑝𝐾𝐺𝐸: The Beta values of 

the optimised and predicted are 0.71 and 0.70 respectively, supporting the underestimation of both 

simulations. The optimised simulation has a correlation (r) of 0.77, which is 0.49 for the predicted 

simulation. This difference can clearly be seen in the magnified sections of both hydrographs. The 

optimised simulation in Figure 18 B follow the same trajectory and timing compared to the measured 

discharge. However, the peaks are unrealistically smooth compared to the measured discharge. The 
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smoothness of the predicted discharge in Figure 19 B is more logical besides the period between April 

and June, where the simulated discharge misses the higher discharges completely. It is possible that 

this could be attributed to snowmelt which appears not to be captured by the predicted simulation.    

 
Figure 18: (A) Hydrograph of subbasin Selzthal  in the Danube basin using the optimised KsatHorFrac (10,000) and (B) 

magnified section between 03-1996 and 03- 1997 

 
Figure 19: (A) Hydrograph of subbasin Selzthal in the Danube basin using the predicted KsatHorFrac (avg. 34.17) and (B) 

magnified section between 03-1996 and 03-1997 

Blaise subbasin  

Another outlier which had one of the largest differences in 𝑛𝑝𝐾𝐺𝐸 and KsatHorFrac values between 

the predicted and optimised scenario is the Blaise subbasin,  located in the Seine basin with a score of 

0. The 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 is 0.69 whereas the 𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡  is 0.82. When comparing both hydrographs in Figure 

20 A and Figure 21 A it can be seen that the predicted KsatHorFrac simulation produces higher peaks. 

Additionally, the baseflow appears to be lower compared to the optimised simulation. This can also be 

seen in the 𝑛𝑝𝐾𝐺𝐸 statistics, as the optimised simulation has a higher correlation, alpha and beta. 

Especially the alpha has a lower value, which indicates the variability of the discharge is larger in the 

predicted KsatHorFrac simulation. These changes become more clear when magnifying a section of 

the hydrographs. Figure 20 B shows that optimised simulation follows both the peaks and baseflow of 

the measured discharge well. This is not the case for the predicted KsatHorFrac simulation in Figure 21 

B where almost every peak is overestimated. The predicted KsatHorFrac is 539.22 whereas the 

optimised KsatHorFrac is 10,000. This causes the baseflow to be underestimated and the peaks over 

estimated. Additionally, sharp drops can be seen after peaks. This is caused by the relatively small 

KsatHorFrac value: the horizontal saturated hydraulic conductivity is small, which results in less 

baseflow and an increase in fast runoff in the form of overland flow.  
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Figure 20: (A) Hydrograph of subbasin Blaise in the Seine basin using the optimised KsatHorFrac (10,000) and (B) magnified 

section between 08-1997 and 08-1998 

 
Figure 21: (A) Hydrograph of subbasin Blaise in the Seine basin using the predicted KsatHorFrac (avg. 539.22) and (B) 

magnified section between 08-1997 and 08-1998 

4.3. Results from an updated PTF that takes into account topographic predictors  

4.3.1. New topographic predictors  
The subbasin-average values of the elevation, slope and drainage density are added to the input 

dataset of subbasin-average SoilGrids variables. The average relative importance of the ten runs is 

shown in Figure 22. The average performance indicators across the ten runs are: RMSLE = 0.2608 and 

r2 = 0.9039. This performance in nearly identical to the performance of the original PTF (Figure 7). The 

details of the ten individual runs are shown in Figure 36 in Appendix C.1. Overall, the SoilGrids variables 

are more important compared to the topographic variables which are added. Even though RF 

algorithms are robust against overfitting (Breiman, 2001), it was decided to discard drainage density 

and absolute depth to bedrock (BDTICM) from the algorithm since their relative importance is only 

2.39% and 2.60% respectively.  
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Figure 22: Ten run average of the relative importance when elevation, slope and drainage density are added to the SoilGrids 

v1.0 variables selected by Ali et al. (2023) 

Running the RF algorithm with the updated selection of variables ten times resulted in the relative 

importance in blue in Figure 23 (comparison with 100 runs is described in the discussion, Section 

5.1.2). Removing the drainage density and depth to bedrock has reduced the spread in relative 

importance. The average performance indicators across the ten runs are: RMSLE = 0.2657 and r2 = 

0.9005. The details of the ten individual runs are shown in Figure 37 in Appendix C.2. The importance 

of bulk density (BLDFIE) has reduced from 22.58 % to 18.01% whereas slope increased from 4.70% to 

7.71% in relation to the relative importance from Figure 22. However, this change could be attributed 

to the removal of the least important predictor: Bedrock depth. Removing the drainage density and 

bedrock depth has also altered the order of importance as elevation has exceeded SLTPPT. Although 

the difference is only fractional: the importance of elevation went from 0.16% below to 0.29% above 

SLTPPT. Therefore, this change could also be attributed to the algorithm only being run 10 times. The 

relative importance of the original PTF can also be seen in Figure 23 (orange). All SoilGrids parameters 

reduced in importance when the updated predictors are implemented, except for ORCDRC. It can also 

be seen that the less important predictors PHIHOX and SLTPPT from the original PTF show a larger 

reduction compared to the more important predictors.   

 
Figure 23: Ten run average of the relative importance of the predictors for the updated PTF (blue) and relative importance of 

the original PTF 

4.3.2. Spatial differences between the original and updated PTF  
Besides the shift in relative importance of the predictors after ten runs, the spatial differences are also 

investigated in the GB subbasins. The average difference between the lowest and highest predicted 

KsatHorFrac value between the ten distributed maps was found to be 33% (map in Appendix C.3.). 

Because of this difference between extremes, it is logical to take the average value of the ten maps.  
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Figure 24 shows the ratio between the predicted KsatHorFrac values from the updated (average from 

ten maps) and original PTF in the training subbasins. As can be seen, most of the area is green, 

indicating the predicted KsatHorFrac is higher for the updated PTF compared to the original PTF. The 

predicted KsatHorFrac of the original PTF exceeds that of the updated PTF only locally. In the extreme 

cases, the updated PTF predicts 5.4 times higher values compared to the original PTF. The original PTF 

on the other hand predicts at maximum 4.3 times higher values compared to the updated PTF. On 

average, the updated PTF predicted 1.27 times higher KsatHorFrac values compared to the original 

PTF. From the figure, it can clearly be seen that overall the updated PTF predicts higher KsatHorFrac 

values compared to the original PTF (validated by evaluating the spread of the histogram (Appendix 

C.4.)). This is a positive change since the original PTF under-estimates the KsatHorFrac in the GB testing 

subbasins for values around 103 and higher.  Since the predicted KsatHorFrac values in the GB training 

subbasins are higher when applying the updated PTF, it is expected that the predicted KsatHorFrac will 

be higher in the validation subbasins as well. Which again is positive as the predicted KsatHorFrac in 

subbasins with a low score (0-2) was underestimated with respect to the optimised KsatHorFrac.  

 

Figure 24: Ratio of predicted KsatHorFrac values between the updated and original PTFs in the GB training subbasins. Green 
indicates the updated PTF predicts a higher parameter value. Pink indicates the original PTF predicts a higher parameter 

value 



35 
 

4.4. Evaluating the transferability of the updated PTF 

4.4.1. Relating the change in predicted KsatHorFrac to the optimised benchmark 
The difference in KsatHorFrac between the updated PTF and the original PTF per scoring category is 

shown in Figure 25 A. Values above zero indicate the updated PTF predicts higher values compared to 

the original PTF. Using a Wilcoxon test it was determined that the updated PTF predicts significantly 

higher values in subbasins with scoring categories: 0-1, 2 and 5. This is in line with expectations based 

on the results from Section 4.3.2. Subbasins with a score of 7 receive a significantly lower KsatHorFrac 

value. Even though the updated PTF predicts lower values in subbasins with a score of 6 compared to 

the original PTF, the difference is not statistically significant. The corresponding p-values can be found 

in the top row of Table 6. These results follow the trend which can be seen in Figure 24 as the updated 

PTF generally predicts higher values in the GB training subbasins compared to the original PTF.  

Figure 25 B shows the difference in KsatHorFrac between the updated PTF and optimised parameter 

values. Values above zero indicate the updated PTF predicts higher values compared to the optimised 

parameter values. The difference of the median between Figure 14 B and Figure 25 B have only 

marginally changed. However, the increase in predicted KsatHorFrac values in scoring categories 0-1 

and 2 from Figure 25 A did increase the spread of the IQR of those scoring categories. Using a Wilcoxon 

test is determined that the differences between predicted and optimised KsatHorFrac are not 

statistically significant, for all scoring categories (p-values in second row of Table 6). This is a change in 

comparison to the difference in KsatHorFrac value between the original PTF and the optimised 

parameter value as described in Section 4.2.2 (Figure 14 B). There, the KsatHorFrac in scoring 

categories 0-1 and 2 were significantly lower for the predicted value compared to the optimised 

KsatHorFrac (p-values in bottom row of Table 6). This suggests the predicted KsatHorFrac values from 

the updated PTF are closer to the optimised KsatHorFrac values.  

Based on these results, it is expected that the model performance of wflow_sbm improves for 

subbasins with scoring categories 0-1, 2 and 5 while it should slightly decrease for scoring category 7 

when considering the updated and original KsatHorFrac. Furthermore, based on the differences 

between Figure 14 B and Figure 25 B it is hypothesised that the most prominent changes in np KGE 

resulting from the updated and optimised can be observed in scoring categories  0-1 and 2.  

 
Figure 25: Boxplot of difference in KsatHorFrac between the updated PTF and (A) original PTF and (B) optimised 

KsatHorFrac, per scoring category 
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Table 6: P-values resulting from a Wilcoxon test for the difference in KsatHorFrac value, bold numbers indicate a statistically 
significant difference 

 0-1 2 5 6 7 

Updated - original 6.10e-5 1.22e-4 0.048 0.31 0.026 

Updated - optimised  0.15 0.15 0.64 0.51 0.45 

Original – optimised  4.27e-3 0.025 0.25 0.40 0.28 

 

4.4.2. Comparing the change in model performance to the optimised benchmark 
The difference between 𝑛𝑝𝐾𝐺𝐸𝑢𝑝𝑑 and 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 per scoring category is shown in Figure 26 A. Using 

a Wilcoxon test, it was determined that there is a statistically significant difference in 𝑛𝑝𝐾𝐺𝐸 for 

subbasins with a score of 0-1. Even though the median value shows that the updated PTF outperforms 

the original PTF in scoring category 2, the difference is found to be insignificant. The difference of the 

remaining scoring categories are closer to zero, also resulting in a statistically insignificant difference 

(p-values in top row of Table 7). The increased 𝑛𝑝𝐾𝐺𝐸 in scoring categories 0-1 and 2 are in line with 

the hypothesis from the previous section even though the increase in scoring category 2 is not 

statistically significant. For scoring categories 5 and 7 the results are not in line with the hypothesis. 

Here it was expected that wflow_sbm performed better when using the updated PTF in comparison to 

the original PTF for scoring category 5. The opposite was expected for scoring category 7 as the 

updated PTF predicted lower KsatHorFrac values.  

Figure 26 B shows the difference between 𝑛𝑝𝐾𝐺𝐸𝑢𝑝𝑑 and 𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡. Using a Wilcoxon test is was 

determined that there is a statistically significant difference in all scoring categories (p-values in second 

row of Table 7). Even though 𝑛𝑝𝐾𝐺𝐸𝑢𝑝𝑑 was significantly higher compared to 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 for the 

scoring category 0-1, the comparison between the updated PTF and optimised values yield nearly the 

same result as in Section 4.2.3 (Figure 17 B). There, the 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 was significantly lower compared 

to 𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡  for all scoring categories (p-values in bottom row of Table 7). Even though the differences 

are significant for both the original and updated PTF, the spread of 𝑛𝑝𝐾𝐺𝐸𝑢𝑝𝑑 is smaller. The bottom 

whiskers in Figure 26 B are closer to 0  compared to Figure 17 B in all scoring categories besides 

category 7. There, two of the three outliers got within the bottom whisker, which caused it to extend 

from -0.05 to approximately -0.1.   

 
Figure 26: Boxplots of difference in np KGE between the updated PTF and (A) original PTF and (B) optimised, per scoring 

category 
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Table 7: P-values resulting from a Wilcoxon test for the difference in np KGE, bold numbers indicate a statistically significant 
difference 

 0-1 2 5 6 7 

Updated - original 0.015 0.068 0.98 0.52 0.41 

Updated - optimised  6.10e-5 1.47e-3 3.05e-4 4.58e-5 1.22e-4 

Original – optimised  6.10e-5 6.10e-4 4.27e-4 7.63e-5 1.22e-4 

 

4.4.3. Overall applicability of updated PTF  
When considering the performance of wflow_sbm it can be concluded that advances are made when 

using the updated PTF compared to the original PTF, although the increase in performance is only 

small: The updated PTF only results in a significant increase of 𝑛𝑝𝐾𝐺𝐸 in the scoring category 0-1 with 

respect to the original PTF. Additionally, no significant decrease in wflow_sbm performance can be 

observed in the validation subbasins when applying the updated PTF. A more promising result can be 

seen in the difference in prediction of KsatHorFrac between the original and updated PTF. It was found 

that the difference in KsatHorFrac value between the original and updated PTF was significantly higher 

in the scoring categories 0-1, 2 and 5. No significant difference was observed in scoring category 6. A 

significant decrease was found in scoring category 7. These results are in line with the results from 

Figure 24, where the updated PTF predicted a higher KsatHorFrac in the GB training subbasins 

compared to the original PTF. The increase in predicted KsatHorFrac between the original and updated 

PTF  is reflected by the R2 and orientation of the trendline in Figure 27. Here it can be seen that the 

trendline of the updated PTF in Figure 27 B follows the 1:1 line more closely compared to the trendline 

from the original PTF in Figure 27 A. This indicates that the KsatHorFrac values predicted by the 

updated PTF are more similar across the complete range compared to the original PTF, where a clear 

deviation from the 1:1 line is observed for higher KsatHorFrac values.  

 
Figure 27:  Scatter plot of predicted KsatHorFrac values by the (A) original PTF and (B) Updated PTF  compared to the 

optimised KsatHorFrac values. The scoring categories are included, as well as a trendline with corresponding performance 
indicator R2 

4.4.4. Re-evaluating stand-out subbasins  

Selzthal subbasin  

From the results in the previous section it can be presumed that the updated PTF did not significantly 

impact the results of the KsatHorFrac and np KGE since the Selzthal subbasin has a score of 7. Slight 

changes can be seen in the zoomed in section of the hydrograph in Figure 28 B. The peaks are higher 

and the baseflow lower compared to the original PTF in Figure 19 B. This can be attributed to the 

decrease in KsatHorFrac. The statistics of the 𝑛𝑝𝐾𝐺𝐸 are shown in Table 8. Here it can be seen that 

the np KGE is slightly lower compared to the original PTF. However, as stated in Table 7, this difference 

is not statistically significant.  
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Figure 28: (A) Hydrograph of subbasin Selzthal in the Danube basin using the updated PTF and (B) magnified section 

between 1996-03 and 1997-03 

Table 8: np KGE statistics (np KGE, r, alpha, beta) and KsatHorFrac values of the optimised scenario, original PTF and 
updated PTF for the Selzthal subbasin 

 Np KGE R Alpha Beta KsatHorFrac  

Optimised 0.63 0.77 0.97 0.71 10,000 

Original PTF  0.40 0.49 0.91 0.70 34.17 

Updated PTF 0.39 0.48 0.91 0.70 28.48 

Blaise subbasin  

The hydrograph with the updated PTF in Figure 29 A has changed slightly compared to the hydrograph 

with the original PTF (Figure 21 A). The peaks have slightly decreased and the baseflow has slightly 

increased. This in line with expectation as the updated KsatHorFrac has increased significantly w.r.t. 

the original KsatHorFrac. The increase of the baseflow has also increased the 𝑛𝑝𝐾𝐺𝐸. Even though the 

increase is only small, it is significant according to the Wilcoxon test (Table 7)  

 
Figure 29: (A) Hydrograph of subbasin Blaise in the Seine basin using the updated PTF and (B) magnified section between 

1977-08 and 1978-08 

Table 9: np KGE statistics (np KGE, r, alpha, beta) and KsatHorFrac values of the optimised scenario, original PTF and 
updated PTF for the Blaise subbasin 

 Np KGE R Alpha Beta KsatHorFrac  

Optimised 0.82 0.87 0.94 0.89 10,000 

Original PTF 0.69 0.81 0.81 0.85 539.22 

Updated PTF  0.71 0.82 0.83 0.85 884.08 
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5. Discussion 
The discussion consists of two main sections. First, the limitations of the data and research methods 

are stated in Section 5.1. Subsequently, results which require extra discussion are addressed in Section 

5.2. Where possible, comparisons with existing literature is made.  

5.1. Limitations  

5.1.1. Data and models  

SoilGrids v1.0   

The SoilGrids variables played a significant role in this research as they were used to create the original 

and updated PTF. Additionally, they were used to determine the set of validation subbasins. The maps 

of the SoilGrids variables are predicted by combining soil samples and observations with multiple 

machine learning methods such as Random Forest, Gradient Boosting and Neural Networks, etc. 

(Hengl et al., 2017). Furthermore, the dataset only encompasses information about the first two 

meters of soil thickness at maximum. Even though the developers of the SoilGrids v1.0 database claim 

they reached the effective limit of software and remote sensing data, improvements in the dataset can 

still be made. The soil thickness limitation of two meters plays a large role in basins with deep 

groundwater dynamics such as the Seine. For several subbasins in the Seine the soil depth does not 

even reach two meters, such as in the discarded subbasin Blennes (Figure 30). The simulated discharge 

in this subbasin overestimated the observed discharge. A reason for this could be that in reality the 

water infiltrates beyond the limit of the soil thickness, while in the model, this water ends up in the 

river.     

 
Figure 30: Soil thickness of the discarded subbasin Blennes  in the Seine basin 

Discharge data 

Even though GRDC cooperates with the World Meteorological Organization (WMO) and claims the 

global discharge timeseries is quality controlled (GRDC, 2024), there can be uncertainties in the 

measurements. This uncertainty can affect the optimized KsatHorFrac value since the sensitivity 

analysis is related to the model performance of wflow_sbm in terms of 𝑛𝑝𝐾𝐺𝐸. Hence, the 

hydrographs should manually be checked and anomalies such as showed in Figure 31 should be 

addressed accordingly. Here the optimised KsatHorFrac was 6,000 according to the sensitivity analysis. 

However, since the complete period was considered this value is not representative as it appears an 

intervention was applied around 1974 which reduced the measured discharge.     



40 
 

 
Figure 31: Measured and observed discharge in the discarded subbasin Le Moulin de L'Etang in the Seine basin with 

optimised KsatHorFrac = 6000 

5.1.2. Methods 

Basin selection  

Early in the research it was unknown how many potential subbasins would be discarded after the 

selection. Since the selection was a time-consuming step in the research,  it was decided to focus on 

the already available wflow_sbm models (Rhine, Po, Loire) and their neighbouring basins. The 

drawback of this decision is that the number of potential validation subbasins is largely reduced 

compared to an even larger study area. Especially the subbasins with a low score, when comparing the 

SoilGrids variables to the GB training subbasins. To overcome this limitation more basins could be 

included in the longlist. However, it is important that these basins have sufficient and reliable discharge 

and forcing data such that less subbasins are to be removed throughout the study. Another important 

factor which plays a role in extending the study area is the build-up of the soil. During the investigation 

of the dominant soil types per basin in Section 4.1.1 it became clear that the subbasins in the Seine 

basin have are different compared to the other subbasins, which translated in generally low scores in 

that basin. Subbasins with a low score were the bottleneck throughout the study. Hence, in order to 

mitigate this limitation it would be wise to select subbasins with similar dominant soil types as can be 

found in the Seine basin.   

When determining the scoring categories of the subbasins, different ranges of the SoilGrids 

parameters were analysed. Eventually it was chosen to only consider the 90th percentile of the data. 

Because of this, there is a possibility that too much representative data is discarded, meaning  that the 

subbasins with a low score (0-2) were sufficiently included into the RF algorithm. If this is the case, the 

differences between the original PTF and results from the sensitivity analysis in terms of both 

KsatHorFrac predictions and 𝑛𝑝𝐾𝐺𝐸 are conservative for those scoring categories.    

Model building  

Al subbasins were handpicked from the six basins considered in the research, the river system in these 

basins are based on a river geometry dataset (Lin et al., 2020). During the building phase of the models 

it was discovered that not all subbasins could be build due to a limitation in coverage of that river 

geometry dataset, which only covers rivers which are wider than 30 meters. Which is a problem as this 

research only considers headwaters, with most often a low stream order and thus smaller rivers. 

Hence, not all discharge gauges are located in a river within the dataset. In order to bypass this 

problem, an alternative method was used to generate the river geometry. This method makes an 

estimate of the geometry based on a power law and the discharge.  
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A drawback of applying this method is that the river geometry is slightly different compared to the 

network from the rivers_lin2019 database. This change can clearly be seen in Figure 32 A and B. Here 

the blue rivers are from the rivers_lin2019 database and the orange rivers are created using the 

alternative method. Because of this, the geometry and location of the subbasins also changes. For 

most subbasins this change is minimal (Figure 32 A). However, some subbasins change as the GRDC 

gauges snap to an adjacent river. As a result, some subbasins did not correspond with the upstream 

area attributed to the GRDC gauges (Figure 32 B). As the river_lin2019 dataset is only limited to a 

number of subbasins, it would be preferred to create the Rhine, Seine, Loire, Rhone, Po and Danube 

basins also with the alternative method instead. Because of this, when generating the subbasins 

separately, they would be within the 15% margin when selecting them from the basins they are in.  

 
Figure 32: Example of (A) sufficiently overlapping models from Pontgibaud subbasins in Loire basin and (B) insufficiently 
overlapping model form subbasin Pont de la Borie in the Loire basin. Here green is the subbasin selected from the Seine 

basin (using river_lin2019) and grey is subbasin generated as separately (using alternative method) 

Sensitivity analysis  

In order to determine the optimized KsatHorFrac, the non-parametric Kling Gupta Efficiency (Pool et 

al., 2018) was chosen as performance indicator. It was found that the 𝑛𝑝𝐾𝐺𝐸 was less sensitive to 

changes in KsatHorFrac compared to the 𝐾𝐺𝐸 (H. V. Gupta et al., 2009).  This means that the maximum 

difference between the lowest and highest values is smaller for 𝑛𝑝𝐾𝐺𝐸 compared to 𝐾𝐺𝐸. There could 

be a possibility that the sensitivity analysis would result into a different optimized KsatHorFrac if the 

𝐾𝐺𝐸 was used, instead of the 𝑛𝑝𝐾𝐺𝐸. The difference for the Souspierre subbasin, located in the Rhone 

basin can be seen in Figure 33. In the example below, the optimised KsatHorFrac reduces from 10,000 

to 4,000 when using 𝐾𝐺𝐸. Since the predicted KsatHorFrac is generally underestimated compared to 

the optimised value for lower subbasins, using the 𝐾𝐺𝐸 instead of the 𝑛𝑝𝐾𝐺𝐸 could result in a smaller 

difference.  

 
Figure 33: Optimisation curve when (A) np KGE and (B) KGE  is the performance indicator for the Souspierre subbasin in the 

Rhone basin 
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Randomness of the Random Forest algorithm 

Due to the random nature of the RF algorithm, the relative importance of the predictors changed after 

each run of the algorithm. Because of this, it was decided to run the algorithm ten times and take the 

average of the resulting KsatHorFrac maps. Figure 34 shows the spread of the relative importance for 

the predictors of the updated PTF after 100 runs (blue) together with the ten run average values which 

were used during the study (orange). From the figure it can be concluded that the spread of the 

predictors can be large, especially for the bulk density (BLDFIE). However, the median values of the 

boxplots correspond with the ten run average value for most of the predictors. Only fraction of silt 

(SLTPPT), elevation and slope are slightly overrepresented. Since no predictors show large differences 

between the ten run average and the mean value of the 100 runs, the choice to use a ten run average 

is substantiated.   

 
Figure 34: Spread of relative importance for the predictors of the updated PTF after conducting 100 runs (boxplot) and the 

10 run average value (bar graph). 

5.2. Interpretation of results 

5.2.1. Removal of subbasins  
In Research Question 2, 26 subbasins were removed from the validation set as a result of incorrect 

discharge simulations. The majority of these subbasins were removed because of a large 

overestimation of the observed discharge (Figure 35). Especially the scoring categories 0 and 1 were 

affected by this. The majority of these subbasins are located in the Seine basin (Figure 12).  A possible 

explanation is that the Seine basin has a dominant interaction between the river and groundwater. 

Most of the basin lies within the Paris river basin, which is the largest ground water reservoir of Europe 

(Flipo et al., 2023).  According to Flipo et al. (2020) more than 50% of the effective rainfall is infiltrated 

towards deeper groundwater. During the simulation in wflow_sbm no leakage towards deeper 

groundwater was considered. Hence, explaining the large overestimation. Additionally, the Seine basin 

is exposed to a large anthropogenic pressure on the groundwater as the area includes industries and 

agriculture. Flipo et al. (2020) also state that the functioning of the interaction between the surface 
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and subsurface water is significantly affected by the groundwater withdrawal. Pryet et al. (2015) states 

that the groundwater supplies 82% of the main stream network. Additionally, the groundwater 

withdrawals reduce the groundwater to stream flow by 19% and even causes a stream to groundwater 

flow near pumping facilities. These processes are not simulated in wflow_sbm. This explains the 

relatively poor performance in the Seine basin independent from the KsatHorFrac values.  

 
Figure 35: hydrograph of discarded subbasin Poilcourt Sydney in the Seine basin with a score of 0 

5.2.2. Relation between KsatHorFrac and model performance 
When looking at Figure 16, it can be said that overall, the 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 appears to be between the default 

and optimised np KGE, which suggests the algorithm seems to function as expected. In 26 subbasins, 

the 𝑛𝑝𝐾𝐺𝐸𝑑𝑒𝑓(uniformly = 100) outperforms 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔. However, in 14 of these cases the difference 

is less than 0.01. Additionally, in 14 subbasins, the default KsatHorFrac is equal to the optimised 

KsatHorFrac resulting from the sensitivity analysis. In those subbasins the 𝑛𝑝𝐾𝐺𝐸𝑑𝑒𝑓 outperforms that 

of the predicted KsatHorFrac, as the 𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡  always outperforms that of the predicted KsatHorFrac.  

Furthermore, it can be seen that in the subbasins where the optimised KsatHorFrac is much higher 

compared to the predicted KsatHorFrac (Figure 13 C), the model performance follows the same 

observation (Figure 16 F). However, this mainly occurs where the optimised KsatHorFrac value 

approaches the upper regime of the range (2,000-10,000). Figure 14 A shows that the predicted 

KsatHorFrac of the original PTF does not exceed 699 (102.84), This is in line with the research of Ali et 

al. (2023), where the predicted KsatHorFrac in the test subbasins is lower compared to the optimised 

KsatHorFrac and appears to be limited to 1000 (103). As shown in  Figure 33, the optimised KsatHorFrac 

reduces when 𝐾𝐺𝐸 is used instead of 𝑛𝑝𝐾𝐺𝐸. Therefore, it is uncertain how the 𝐾𝐺𝐸 resulting from 

the optimised and predicted KsatHorFrac will compare.    

5.2.3. Relative importance of the predictors  
As can be seen in Figure 23, the order of importance for the predictors has changed between the 

original and updated PTF. Percentage of clay and pH index got less important while organic carbon 

content and percentage of sand got more important. Both the topographic predictors: elevation and 

slope are amongst the least important predictors. Even though KsatHorFrac and  Ksat are not the same, 

similar results have been found by Gupta et al. (2021) who studies the latter. The researchers found 

that over all soil predictors were more important compared to topographic predictors. However, Gupta 

et al. (2021) did not consider the exact same predictors. Additionally, they found that elevation 

contributed more compared to slope. Which has also been found in this research.  
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6. Conclusion and recommendations 
In this study, the transferability of data-driven PTFs for KsatHorFrac were evaluated. The aim of the 

research consisted of two parts: First, the aim is to get more insight into the transferability of the 

original PTF of Ali et al. (2023), Subsequently, the transferability of an updated PTF which includes 

topographic predictors is evaluated. The transferability was evaluated by looking into KsatHorFrac 

prediction and resulting model performance of wflow_sbm in subbasin throughout central and 

Western Europa. In this chapter, the conclusions for each research question are stated. Subsequently, 

it is concluded how these questions relate to the knowledge gap and research aim.  

6.1. Conclusion  

6.1.1. Subbasin selection  
‘Which catchments should be considered for validating the original and updated PTF?’ 

The study area included the following basins in central and Western Europa: Seine, Loire, Rhone, Po, 

Rhine and upper section of the Danube. These basins were selected for the research since it was known 

a reliable and sufficient amount of discharge time series were available through GRDC (GRDC, 2024). 

After selecting only the headwaters in the basins, each subbasin received a score depending on how 

the SoilGrids variables compared with the GB training subbasins. After analysing the hydrographs in 

RQ2 and removing subbasins with unrealistic simulation results, the set of validation subbasins 

consisted of 76 subbasins divided into five scoring categories: 0-1, 2, 5, 6 and 7.  

6.1.2. Evaluating transferability of the original PTF  
‘How does the KsatHorFrac prediction of the original PTF and resulting model performance of 

wflow_sbm change in comparison to the optimised scenario, when the original PTF is implemented for 

subbasins for which it was not developed?’ 

When evaluating the KsatHorFrac prediction, it was found that there was no statistically significant 

difference between the optimised and predicted KsatHorFrac for subbasins with a high score (5-7). 

However, there was a statistically significant difference for subbasins with a low score (0-2). This was 

as expected since subbasins with a high score share the same soil characteristic with the GB training 

subbasins, whereas subbasins with a low score do not. However, this observation could not be seen in 

the difference in model performance between the optimised simulation and when applying the 

original PTF. There, it was found that the 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 was significantly lower compared to the 

𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡, for all scoring categories.   

6.1.3. Creating an updated PTF  
‘How does the KsatHorFrac prediction of the PTFs change in the GB training subbasins when 

topographic predictors are implemented in the RF training phase?’ 

The updated PTF showed a negligible improvement in terms of performance indicators RMSE and R2 

with respect to the original PTF. The first iteration (including elevation, slope and drainage density) and 

second iteration (including elevation and slope, but excluding drainage density and bedrock depth) 

also matched in terms of performance indicators. However, since two predictors (bedrock depth and 

drainage density) had a low contribution towards the prediction, it was decided to continue with the 

second iteration. Even though, the change in performance  between the original and updated PTF was 

negligible, the overall increase of predicted KsatHorFrac was clearly visible in the GB training 

subbasins. On average, the updated PTF predicted 1.27 times higher KsatHorFrac values compared to 

the original PTF.  
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6.1.4. Comparing the original and updated PTF  
‘How does the KsatHorFrac prediction of the updated PTF and resulting performance of wflow_sbm 

change, with respect to the original PTF, when the updated PTF is implemented for subbasins for which 

it was not developed?’  

The overall increase in predicted KsatHorFrac values in the GB training subbasins was translated to the 

validation subbasins. Significantly higher KsatHorFrac values were predicted in three out of the five (0-

1, 2 and 5) scoring categories compared to the original PTF. As a result, no significant differences 

between the predicted and optimised KsatHorFrac values could be observed anymore. When 

comparing the 𝑛𝑝𝐾𝐺𝐸𝑢𝑝𝑑 and 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 , it was found that the updated PTF significantly increased 

the model performance for subbasins with a score of 0-1. The change in 𝑛𝑝𝐾𝐺𝐸 was not statistically 

significant in the remaining scoring categories. Overall, the model performance resulting from both 

the original and updated PTF were significantly lower compared to the optimised simulation. However, 

the KsatHorFrac prediction in the validation subbasins was better when comparing the updated PTF to 

the original PTF, suggesting that including topographic predictors in the RF algorithm improves the 

predictive capability.   

6.2. Recommendations  

6.2.1. Practical recommendations for hydrological modelling using data-driven PTFs for 

KsatHorFrac  
Both results of RQ 2 and RQ 4 show that the 𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡 outperforms the 𝑛𝑝𝐾𝐺𝐸𝑜𝑟𝑔 and 𝑛𝑝𝐾𝐺𝐸𝑢𝑝𝑑   

in almost every situation. Therefore it would be recommended to conduct a sensitivity analysis in order 

to find the optimised KsatHorFrac when time allows. This would be suitable for small subbasins which 

have short computational times. However, for large subbasins or on basin scale, it is not advised to 

conduct the sensitivity analysis to find the optimal KsatHorFrac value as this is too time consuming. 

Even though the default KsatHorFrac value of 100 resulted in similar model performance compared to 

the 𝑛𝑝𝐾𝐺𝐸 resulting from both PTFs and 𝑛𝑝𝐾𝐺𝐸𝑜𝑝𝑡, it is advised not to conduct simulation with the 

default KsatHorFrac without orientation on beforehand.  

When it is chosen to use a data-driven PTF instead of creating an optimised KsatHorFrac value it is 

recommended to use the updated PTF as presented in this study. The reason for this is that the 

updated PTF results in significantly a higher 𝑛𝑝𝐾𝐺𝐸 compared to the original PTF for subbasins with a 

low score, without sacrificing model performance for subbasins with a high score. This makes the 

updated PTF more widely applicable. 

6.2.2. Recommendations for future research  
If a similar type of research were to be conducted, it would be advisable to evaluate both the 

𝑛𝑝𝐾𝐺𝐸 as well as the 𝐾𝐺𝐸. As highlighted in the discussion, the result of the sensitivity analysis is 

dependent on the type of performance indicator. In the discussion it could also be seen that the 𝐾𝐺𝐸 

is more sensitive to the KsatHorFrac. This suggests that the differences in 𝐾𝐺𝐸 resulting from the 

predicted and optimized KsatHorFrac could different compared to the 𝑛𝑝𝐾𝐺𝐸.  

Even though this research provided relevant information about the transferability of RF based PTFs for 

the parameter KsatHorFrac, further improving the performance of the PTF will improve the model 

performance of wflow_sbm. First of all, the area in which the PTF is trained and tested could be 

extended to not only include GB. This would create a more diverse training set for the RF algorithm 

and hopefully create a wider range of KsatHorFrac predictions. This extension of the training set could 

for example include subbasins with different soil or topographic characteristics compared to GB, 

bypassing the limitation that PTFs are only applicable in a small representative area (Abdelbaki, 2021).   
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Finally, further investigation into the type and amount of predictors for the KsatHorFrac PTF could be 

conducted. The inclusion of topographic predictors was inspired by a PTF for Ksat developed by Gupta 

et al. (2021).  Since the study has shown that including topographic predictors in the RF training phase 

has a positive effect on the prediction, experimentation with other predictors which are related to Ksat 

could be done. Both Gupta et al. (2021) and Ayele et al. (2020) included environmental and/or climate 

related predictors in the PTF training. Subsequently, different sets of the predictors can be tested. Leij 

et al. (2004) found that the PTF performance (RMSE) changes when different combinations of the 

predictors are made.  
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Appendices  

Appendix A: Sensitive parameters wflow_sbm  
Table 10 shows the results for a sensitivity analysis of wflow_sbm for three sub-catchments in the 

Rhine basin (Imhoff et al., 2020). The sub-catchments were selected based on soil type, location and 

catchment size. It was made sure these three variables were different amongst the sub-catchments in 

order to mimic the variety in the Rhine basin.  

Table 10: Results of the parameter sensitivity analysis of wflow_sbm for three sub-catchments the Rhine basin (Imhoff et al., 
2020) 
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Appendix B: Basin selection  

B.1.  SoilGrids ranges 
The ranges corresponding to the boxplots in Figure 10 are stated in Table 11. The upper and lower 

bounds per range are shown for each SoilGrids variable in the GB training subbasins.   

Table 11: Four ranges of the seven SoilGrids variable of the GB training subbasins 

Variable BDTICM 
[cm] 

BLDFIE 
[kg m-3] 

CLYPPT 
[kg kg-1] 

ORCDRC 
[g kg-1] 

PHIHOX [-
] 

SLTPPT 
[kg kg-1] 

SNDPPT 
[kg kg-1] 

Complete dataset 

Max 2226.65 1504.47 31.97 162.72 72.91 46.27 66.80 

Min 550.77 1110.41 7.45 9.95 50.15 23.66 30.06 

Box plot whiskers 

Upper 1680.29 - - 123.26 69.66 - - 

Lower 770.79 - - - - - - 

Middle 95 % 

97.5th  1939.65 1486.08 29.56 118.34 70.08 42.25 65.00 

2.5th  916.76 1159.54 10.09 12.12 51.84 24.86 32.55 

Middle 90 % 

95th  1801.00 1476.77 28.31 100.49 68.39 41.32 63.38 

5th  947.46 1191.42 10.77 12.64 52.25 26.21 33.07 
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Appendix C: Updated PTF  

C.1. Randomness of the RF algorithm containing seven SoilGrids variables in addition to 

elevation, slope and drainage density  

 
Figure 36: Distribution of relative importance for the predictors for ten runs of the first iteration of the updated PTF 
including the seven SoilGrids variables and elevation (wflow_dem), slope and drainage density (wflow_riverlength) 
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C.2. Randomness of the RF algorithm containing six SoilGrids variables in addition to elevation 

and slope  

 
Figure 37: Distribution of relative importance for the predictors for ten runs the final selection of the updated PTF. Including 

the six SoilGrids variables (bedrock depth removed) and elevation (wflow_dem) and slope 
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C.3. spatial sensitivity of ten run KsatHorFrac map 
Figure 38 shows the percentual difference between the lowest and highest value of KsatHorFrac for 

each grid cell across the ten distributed KsatHorFrac maps in the GB training subbasins. On average 

the difference between the extremes is 33% with 3% and 340% as minimum and maximum 

respectively.  

 
Figure 38: Percentual difference between the lowest and highest KsatHorFrac value per grid cell out of the ten runs  for the 

GB training subbasins. Using the updated PTF 
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C.4. Ratio between updated and original PTF   
The ratio of predicted KsatHorFrac between the updated and original PTF for the GB training subbasins 

can be seen in Figure 39. Here it can clearly be seen that the majority of the area under the histogram 

is above 1. Indicating that the updated PTF predicts higher KsatHorFrac values.  

 

Figure 39: Histogram of the ratio of predicted KsatHorFrac between the updated and original PTF in the GB training subbasins 


