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Abstract

Bookkeeping can be a complex and time-consuming process for small companies due
to the many ledger codes available. Because of this, Moneybird has created a research
assignment to investigate the possibility of implementing machine learning algorithms to
speed up their customers’ bookkeeping process. In this thesis, we investigate the possi-
bility of implementing a machine learning model that predicts the correct ledger code for
Dutch invoice data using textual descriptions of the invoice lines and contextual data such
as the contact company name. First, we developed classifiers that were trained to classify
invoice lines based only on the textual description. We implemented shallow classifiers
trained on TF-IDF embeddings, a deep neural network trained on FastText embeddings,
and a BERT-based model. The results of this experiment showed that the BERT-based
model achieved the highest Macro F1 score (±60%). Continuing from these results, we
investigated whether the performance could be improved by including contextual infor-
mation such as the company name and the type of legal entity in the classifiers created in
the first experiment. The results of this experiment showed that contextual information
improves classification performance by up to ±14%. Finally, the classification speeds of
the previously developed models are compared to determine which model is best suited
for use in a practical setting. This experiment shows that the deep neural network that
includes both FastText embedded textual descriptions, as well as contextual data in its
input achieved the best results, achieving the highest macro F1 score of ±71% and a pre-
diction speed of 0.0014s for 1000 samples. Using the best-performing model developed
using the research questions, we implemented a prototype to show how machine learning
models could be implemented to suggest ledger codes to customers of the bookkeeping
software. With the results and prototype, we can conclude that it is possible to create
a machine learning classifier that can predict ledger codes based on Dutch invoice data.
Finally, we discuss the limitations of this research, such as the limited number of classes
included in the data set and future research recommendations.

Keywords: Machine learning, Text classification, Bookkeeping, Invoice classification, Ledger
account classification



Chapter 1

Introduction

Bookkeeping is the process of recording transactions. In the Netherlands, every company
is required by law to perform bookkeeping. These transactions are often stored as invoices
that contain one or more lines that describe the product or service the company provides
or receives. A key part of the bookkeeping process is maintaining ledgers. A ledger is a
collection of the income and expenses a company has made. Ledgers can be created by
assigning ledger codes to these invoice lines. A ledger code is a number or a character
combination that is used to group different incomes and expenses based on their use. The
selection of the correct ledger code can be difficult as there are many codes available. For
example, in the Dutch Reference Classification System of Financial Information (RCSFI)1

ledger code system, there are different codes for Office equipment and Small purchases
of office inventory. The subtle differences between ledger codes can make the bookkeep-
ing process time consuming and error-prone, especially for smaller companies that do not
have a dedicated bookkeeper. Furthermore, each line of every invoice needs to be clas-
sified individually, which results in companies spending a lot of time on their bookkeeping.

Since manually keeping track of all invoices can be difficult, some companies choose to
use bookkeeping software. These programmes can provide solutions to easily send outgo-
ing and process incoming invoices to their system, allowing the company to spend more
time on its core business rather than on administrative work. These solutions can keep
track and store invoices in an easily interpretable way and also allow for automation such
as automatically sending reminders for unpaid invoices to simplify the bookkeeping pro-
cess.

1.1 Problem definition

This research assignment was provided by Moneybird. Moneybird is a Dutch company that
develops online bookkeeping software focused on simplifying the invoicing and bookkeeping
process of small to medium-sized companies. Their goal is to ensure that entrepreneurs
can focus on their business instead of their bookkeeping. Since the selection of ledger
codes is still a complicated and time-consuming process, Moneybird wanted to explore the
possibilities of making the selection process faster and more straightforward for its users.
For their research assignment, Moneybird wants to explore an implementation of a machine
learning system to predict ledger codes based on textual and contextual information from

1https://www.referentiegrootboekschema.nl/english
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invoice lines.
Since smaller companies might not have a very large number of invoices that can be
trained on, it is important to create a generalisable model that can classify ledger codes
without being overfitted to a single company. This presents a significant challenge, as a
car dealer’s invoice for a car intended for sale might have the same description as another
company’s invoice for the same car used for transportation, yet the ledger codes would
differ. Another aspect is that the textual data for the invoice lines are very short and
contain little to no context, which can make it difficult for a model to distinguish between
ledger accounts. Contextual data from the invoice could provide more information and
improve the performance of the classifiers, something that has not been researched yet for
Dutch invoice data. Finally, since the invoice creation in Moneybird is performed through
a web form, the classification process mustn’t decrease the responsiveness of the form.
This requirement emphasises the importance of comparing not only classifiers based on
their classification performance but also prediction speed.

1.2 Research questions

To create a system that can predict ledger codes based on textual and contextual data
from Dutch invoices, a set of research questions has been developed. The main research
question is How can classification be applied to predict the correct ledger code for Dutch
invoice lines? This research question can be answered through answering the following
subquestions:

SQ1: How do feature extraction methods for textual data such as word embeddings or
TF-IDF affect the performance of ledger category classification models?

SQ2: What is the impact of the inclusion of contextual data, such as company information,
on the performance of classification models designed to classify ledger codes for
invoice data?

SQ3: How scaleable are the classification models developed and what considerations should
be made before they are deployed?

The goal of the first research question is to research, implement and test different
approaches to transform textual descriptions into an encoding that is better suited for
machine learning. For the first research question, we will also develop deep learning net-
work designs that can be expanded with contextual data in the second experiment.

The second research question will be answered by extending the approaches of the first
research question by examining contextual data and their correlations to the ledger codes.
The contextual data that showed correlation are then included in the classification models
designed in the first research question, after which the performance of the classifiers is
evaluated.

The goal of the third sub-question is to evaluate whether the classifiers developed in
the first two research questions have practical value. An important consideration for this
is the prediction speed, as a model that takes multiple seconds to generate a prediction
will not be able to provide a good user experience when implemented into a web form.
Therefore, it is essential to develop a model that can make fast predictions even when
many users are creating invoices at the same time. Furthermore, it is important to con-
sider factors like the requirement of a GPU for the implementation of a model, as these
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increase the costs of deployment significantly. The relation between the research questions
and their results is described in Figure 1.1.

Figure 1.1: A graphical representation of the subquestions and their relationships
to each other

With the results of the research questions, the best-performing model is selected to use
in the development of a prototype to test the practical value of the results. The prototype
will be integrated into the existing bookkeeping software and evaluated by some of its
developers.

1.3 Document structure

The remainder of the thesis is structured into 5 chapters. In Chapter 2, background
information on bookkeeping and machine learning is defined, as well as related works.
Chapter 3 describes the data set, investigating features and data quality. This chapter
also describes data preparation. Chapter 4 describes the results of the experiment, which
are used in the development of the prototype, described in Chapter 5. Finally, chapter 6
summarises the work, describes limitations, and recommends future work.
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Chapter 2

Background

The purpose of this chapter is to provide a general overview of the methods used to
carry out the research, as well as some background knowledge of the RCSFI standard for
bookkeeping in the Netherlands. Finally, the section will describe related works that in-
vestigated the classification of ledger codes for invoice data, investigating their similarities
and differences to this research.

2.1 CRISP-DM

In our research, we use the CRoss-Industry Standard Process for Data Mining (CRISP-
DM) guidelines described by Wirth et al.[23] to carry out the experiments. Their paper
describes a cycle of six processes that can be applied to perform a data mining project:

1. Business understanding: This phase examines the objectives and requirements
that must be met for the project to be successful.

2. Data understanding: Once data has been collected, the data understanding phase
starts, where the goal is to identify potential data quality issues and discover insights
into the data set.

3. Data preparation: The goal of the data preparation phase is to develop the final
data set that will be used for modelling from the collected data set. This phase
includes feature selection, as well as data preprocessing.

4. Modelling: In the modelling phase, the prepared data is applied to (several) models,
and the results are collected.

5. Evaluation: After results have been generated, the results need to be evaluated to
determine whether the results achieve the requirements stipulated in the first phase
of the experiment.

6. Deployment: Once the evaluation has determined the approach to match all re-
quirements and objectives, the model can be deployed to the customer.

Since new insights are often made during the different phases of a project, the CRISP-
DM guidelines describe these phases in a cycle where (several) phases can be repeated to
update and improve previous steps (described in Figure 2.1).

4



Figure 2.1: The CRISP-DM project cycle, as described in Wirth et al.[23]

2.2 Bookkeeping

The process in which this research is conducted is focused on the selection of ledger codes.
Whenever a company sends or receives invoices, the company has to perform bookkeeping
to ensure that all incomes and expenditures are taxed correctly. Bookkeeping is generally
performed through a system of ledger accounts, where each transaction is recorded, stored,
and grouped by type. These ledger accounts can be combined to generate ledgers, which
can be used to visualise the financial situation of a company over time. These ledgers are
also used when companies file for their taxes.

2.2.1 RCSFI

A ledger is a summary of all revenue and expenses a company makes, including its debts
and assets. To facilitate the generation of ledgers, online bookkeeping software can make
use of a general ledger scheme. These schemes contain standardised codes that are used
to group expenses and income streams into different categories according to the types of
revenue used for tax returns. The standard used in The Netherlands is the RCSFI which
was created by the Dutch government and uses a tree structure to categorise the ledger
codes, an example of which can be found in Table 2.1.

Ref-code Description

WOmz Net turnover

WOmzNoh Net turnover from the sale of trade goods

WOmzNohOlh Net turnover from the sale of trade goods taxed at a high rate

WOmzNohOlv Net turnover from the sale of trade goods taxed at a low rate

Table 2.1: An example of the tree structure of the RCSFI1
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2.3 Machine learning

The goal of machine learning is to use computers to create predictions on unseen data
using a model based on previously seen data. Using a large set of data that represents
the data that needs to be predicted, a large number of variables are tuned to calculate the
correct output given the input.

Machine learning can be divided into two types, namely supervised and unsupervised
approaches. For supervised approaches, each training sample contains a target label, and
the goal of a machine learning model is to predict the label based on the sample. For
unsupervised machine learning, no such labels exist. The goal of the model is to be able
to distinguish between samples and/or group samples together.

2.3.1 Loss function

To be able to train machine learning algorithms, a loss function is used to determine the
difference between the correct output (y) and the predicted class (ŷ). This difference can
be used to determine the direction in which the model needs to be updated so that there is
a smaller difference between the expected and predicted outputs, resulting in a model that
can correctly classify samples. This section describes some common classification losses.

The 0/1-loss is a very simple loss function that is either 0 when a sample is correctly
classified, and 1 if the sample is misclassified.

L0/1 =

{︄
0 if ŷ = y,

1 otherwise,

Where ŷ is the predicted class and y is the actual class

The 0/1-loss function minimises misclassification, but a downside is that it is not differ-
entiable. Differentiable loss functions are preferred because the slope (which is calculated
using the derivative) can be applied to determine how extreme the model updates need to
be. A model with 0/1 loss cannot be trained very effectively, as all weight updates would
be equally large. Alternatives that are be differentiable are the Squared hinge loss[11] and
binary cross-entropy loss[3, 11]:

LHinge2 = max(1− y · p, 0)2

LBCE = −(y · log(p) + (1− y) · log(1− p))

Where y is the expected class and p the probability of class 1

2.3.2 Multi-class classification

Supervised classification algorithms can again be divided into two groups. Binary classifi-
cation is a classification problem where the model divides the samples into two classes, for
example, True or False. In multiclass classification problems, the model has to choose
from more classes when predicting, such as Dog, Cat, or Snake.

Because all the loss functions described above only work with the class being either
True or False, these cannot be used for multiclass classifiers. The binary cross-entropy
loss can be extended to work with more than two classes by summing the loss of all
classes[3]. Given a sample labled x, the loss function sums log2 of (1 − pi) (if the label i
is not correct) or (pi) (if the label i is correct). if the probability of a class is close to 1,
log2(pi) is low and log2(1−pi) becomes a larger negative value. By applying the activation
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function for every label and negating the sum of the results, a number can be calculated
that is high if incorrect classes have a high probability and low if only the correct class
has a high probability. The cross-entropy loss uses the following function:

LCE = −
C∑︂
i

(yi · log(pi) + (1− yi) · log(1− pi))

Where C is the number of classes, yi is the correct output for class i,

and pi is the probability of class i

2.3.3 Hierarchical classifiers

For data sets where the labels contain a hierarchical structure, it can be beneficial to
reflect the hierarchical structure in a classification model. Hierarchical classifiers divide
the larger classification problem into smaller classification problems in each of the layers
of the hierarchical structure. Miranda et al.[16] created the Hiclass library, implementing
three approaches to hierarchical learning (see Figure 2.2).

The first approach is to train a classifier for each possible label of every level of the
hierarchy (see Figure 2.2.D). This model has the largest number of classifiers, each of
which is trained in a one vs rest approach. To classify using the local classifier per node
approach, the top-level labels are queried, after which the label with the highest probability
is selected. Afterwards, only the classifiers that are children of the label selected in the
previous hierarchy are queried. The process is repeated until the final hierarchical layer
has been queried and the prediction is complete.

The second approach creates a classifier for all nodes in the hierarchical tree that have
child nodes (see Figure 2.2.C). This approach trains the individual classifiers to distin-
guish the labels with the same parent node from each other. For the classification, only
one classifier is queried on every layer of the hierarchy.

The final approach implemented by the library trains a single classifier for every layer
of the hierarchy (see Figure 2.2.B). Similarly to the previous implementation, the classi-
fication is also performed top-down; for every layer, only the output with the label with
the highest probability in the parent layer is enabled.

2.4 Classification algorithms

2.4.1 Naive-Bayes

Naive-Bayes is a probabilistic classification algorithm that functions under the assumption
that each input variable is independent (which is also why it is called Naive, as this is
an unrealistic assumption in real-world data)[3]. The algorithm relies on the following
function:

P (c|x) = P (x|c) · P (c)

P (x)

where P (c|x) is the probability of input x belongs to class c, P (x|c) the probability of
input x given that it belongs to class c, P (c) being the probability of class c and P (x)
being the probability of the input x.

7



Figure 2.2: The different types of hierarchical classifiers are visualised, where
each blue square represents a classifier. (A) is a non-hierarchical classifier, (B) is a
local classifier per level, (C) is a local classifier per parent node, and (D) is a local
classifier per node.

If the formula is calculated for all classes c ∈ C, the classifier can predict the class with
the highest probability given the input x.

2.4.2 Support Vector Classifier

A Support Vector Machine (SVM) can be used for binary classification[3]. The the-
ory behind the SVM classification approach is to separate multidimensional data using
a maximum-margin hyperplane. This hyperplane, which is a plane that is 1 dimension
lower than the input data, splits the training data into two subsets, each representing one
class. The hyperplane is created to have the largest distance between the different classes
(see Figure 2.3).

In practice, the distribution of the classes in a data set might have noise and show
some overlap, which would make an exact separation of the data points impractical as the
noise could cause a model to find a hyperplane with very low margins, which can lead
to bad performance on unseen data. A solution that can be applied to ensure that the
model finds a hyperplane with a larger margin is through the implementation of a penalty
for misclassified samples. The penalty enables the model to maximise the margins of the
hyperplane while still allowing the misclassification of some potential outliers, allowing
the model to be more generalisable and preventing overfitting to the training data.

2.4.3 Perceptron

A perceptron is another algorithm to divide data into classes. Initially described by
Rosenblatt[20], perceptrons are sometimes described as artificial neurons because they
function similarly.

An example of a perceptron with three inputs is visualised in Figure 2.4. The input
of the model, as well as the bias, is multiplied by the individual weights, after which the

8



Figure 2.3: Example of an SVC fit to 2-dimensional data

resulting values are summed up and used as the input to the activation function.
For single perceptrons, the activation function is used to map the output value to be

in the range [0, 1], which is done through the sigmoid function:

σ(x) =
1

1 + e−x

The output of the activation function can then be used for binary classification. All inputs
where the output is greater than 0.5 are considered true, and the rest are labelled false.

Perceptrons can also be used for multi-class classification problems, which is achieved
through the use of multiple perceptrons alongside each other, where the output of each
perceptron represents the likelihood of a single class. The probability of an input being
part of a class can be calculated using a softmax function[3]. The softmax function scales
the output of all the perceptrons to values that sum up to 1 using the following formula:

σ(x) =
outputi∑︁K
j=1 outputj

for i = 1, ...,K

Where K is the number of outputs.
The perceptron is trained by iterating over a training data set through a process of

weight updates based on the output of the model. The weight update process is called
backpropagation, which works by comparing the model output to the expected output and
updating the weights linked to the incorrect output values in the direction of the expected
result[3]. The process of iterating the training set and performing weight updates is called
an epoch and is usually repeated multiple times before the model is fully tuned to the
data.
When a perceptron model is trained, a model can overfit the data on which it is trained.
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Figure 2.4: A perceptron with 3 inputs

Overfitting is caused by the model aligning itself too closely to the training samples, caus-
ing the model to be sensitive to features that are not specific to the entire class, but only
to the training samples. Overfitting will negatively affect the general performance of the
model, which should be prevented. Multiple approaches can be applied during the training
process to prevent overfitting.

• Dropout disables a percentage of input variables which forces the model to learn
to differentiate classes with different input data features, increasing the model’s
generalisability[22].

• Early stopping is another approach that prevents the model from overfitting the
training data. In early stopping, a comparison is made between the loss of the
validation set to the same loss of the previous epoch. If during the training, the
validation loss does not improve over a predefined number of epochs, the training
process is stopped, as further training will only cause the model to overfit on the
training data[17].

• Weight decay, as described by Krogh et al.[14], implements a method to ensure that
the weights of a model remain small. This helps to prevent overfitting, as large model
weights can cause models to overfit on a single feature as it weighs heavily. Weight
decay is implemented by including a fixed parameter during the weight update stage
of the model training stage that penalises large weights.

2.4.4 Multi-layer perceptron

A limitation of perceptrons is that they can only be used to train data that can be linearly
separated[3]. One way for a model to learn non-linear data is to apply multiple layers of
perceptrons in series to create a multi-layer perceptron (see Figure 2.5). A multi-layer
perceptron consists of an input layer, followed by one or more hidden layers, after which
a final output layer is used to determine the output. By inserting all the outputs of
intermediate layers into an activation function, a nonlinearity is inserted into the model
(see Figure 2.6). The nonlinear activation function allows the network of perceptrons to
learn nonlinear correlations in the training data so that more complicated distributions can
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Figure 2.5: Example of a multi-layer perceptron

also be learned[9]. The multilayer perceptron is also often called a Deep Neural Network
(DNN). The activation functions most commonly used are the Hyperbolic Tangent (Tanh)
and Rectified Linear Unit (ReLU).

Tanh(x) =
2

1 + e−2x
− 1

ReLU(x) = max(0, x) =

{︄
x if x > 0,

0 otherwise,

Figure 2.6: The input plotted against the output of the ReLU and Tanh activation
functions

The networks are trained through the process of backpropagation, where the gradient
of a loss function is calculated for every neuron, starting at the final layer and moving
towards the first layer using the chain rule. Because applying gradient calculations on
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every sample is computationally expensive, most practical implementations of neural net-
works group the samples into batches, performing the backpropagation with the average
gradients of all the samples in the batch. Batching speeds up the training process but
is generally limited by memory usage, as all samples in a batch need to be loaded into
memory at the same time.

An issue with the Tanh activation function is that it suffers from the problem of van-
ishing gradients, especially in networks with a large number of layers. With the vanishing
gradient problem, the gradient of the Tanh activation function can become very small with
very large positive or negative inputs. Since the gradients are multiplied by each other
using the chain rule, the gradients shrink exponentially to the point that the layers at the
start of the model are not updated effectively, which can lead to models not performing
well or training extremely slowly.

The ReLU activation function does not suffer from vanishing gradients, as the gradient
of an activation function is 1 or 0. The simplicity of the gradient also makes the backward
pass of the training process very fast, as the gradient calculation can be performed very
fast. One downside of the ReLU activation function is that it can suffer from the dying
ReLU problem, where a neuron will not be taught anything since all its inputs are 0,
effectively disabling the neuron. This problem is solved by changing the ReLU function to
output a very small negative value when the input is negative. The most commonly used
activation function that does this is the LeakyReLU :

LeakyReLU(x) =

{︄
x if x > 0,

α · x otherwise,

Where α is set to a very small value such as 0.01

2.4.5 Neural network variations

Multi-layer perceptrons can be very effective for the classification of data. Sometimes,
however, the shape of the input data does not (realistically) allow for the implementation
of standard neural network implementations. In, for example, image classification, the
input size of the model would become extremely large (a 128x128 rgb image would require
49.152 inputs). A convolutional layer can be used to reduce the number of trainable pa-
rameters. Compared to a fully connected layer (where every input is connected to each of
the neurons in the next layer), a convolutional layer only connects inputs near each other
to the neuron in the next layer (visualised in Figure 2.7). A neural network that uses one
or more convolutional layers is called a Convolutional Neural Network (CNN)[3]. These
networks can also be used for one-dimensional data, such as text, where the convolutional
element can be useful for giving context to an input word by the words that surround it.

Figure 2.7: An example of a convolution
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2.5 Text processing

Due to the unstructured nature of textual data, it is often necessary to process the raw
text in a numerical form that is more suitable for computer processing. There are a large
number of approaches to text processing, which can generally be split into contextual and
non-contextual text processors. In contextual algorithms, the words surrounding the word
being processed are taken into account when processing words. This can improve the qual-
ity of the algorithm output since words such as right can mean different things depending
on the context (it can mean a direction, as well as something being correct). A down-
side of contextual approaches is that they can be computationally expensive compared to
non-contextual approaches, as the surrounding words must be considered for every word
in a sentence. Non-contextual algorithms do not take the surrounding words into account
when processing sentences, which generally allows non-contextual models to be faster in
their processing.
In the remainder of this section, several text-processing algorithms are described.

2.5.1 TF-IDF

Term Frequency Inverse Document Frequency (TF-IDF)[21] is a non-contextual approach
that counts the occurrences of words in documents and multiplies that by the inverse of
the number of documents in which the word occurs. The formula consists of two parts:

TF (word, sentence) =
frequency(word, sentence)

length(sentence)

IDF (word) = loge(1 +
count(sentences)

count(word ⊂ sentences)
)

TF–IDF (word, sentence) = TF (word, sentence) ∗ IDF (word)

For the invoice lines, each invoice line is seen as a document. To calculate the values, a
sparse bag-of-words matrix of size num words × num documents is created, where each
column represents a word in the data set, and the rows contain all the documents. For
each document, the values of the columns represent the number of times the word occurs in
that document (see Table 2.2). The values of each column representing the words are then
multiplied by the inverse document frequency. The inverse document frequency describes
the number of documents in which a term occurs, making words that occur frequently
weigh less, causing commonly found words to have less impact in the classification.

Sentence I He They like likes dogs cats

I like dogs 1 0 0 1 0 1 0

He likes cats 0 1 0 0 1 0 1

They like cats 0 0 1 1 0 0 1

Table 2.2: Example of a term frequency table.

Since the bag-of-words approach uses the exact spelling of words as unique words, it
will see variations of words through inflection as completely different words (as visualised
with the words like and likes in Table 2.2). Inflection will not only harm the performance
of classification algorithms, but will also increase the size of the matrix and therefore
increase computational complexity. To limit the vocabulary and combine the inflections
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of words, it is common to apply preprocessing to the textual data before performing the
vectorisation to reduce the vocabulary of the data set.

Text regularisation methods

The most simple approach to reduce the number of unique words in a data set is to re-
move special characters and to change all characters to lowercase. This will ensure that,
for example, the first word of a sentence is no longer considered different from the same
word occurring later in a sentence.

Words such as “the” and “that” are very commonly used in the English language; they
occur so often that they cannot be linked to a specific class when applying text classifica-
tion. Therefore, stop words are commonly removed in text preprocessing when applying
TF-IDF.

With lemmatisation, the words are changed to remove inflections. Lemmatisation con-
verts words such as “improving” and “improvements” to “improve”, effectively grouping
them. This is done using a dictionary-based approach because the lemma of a word could
be completely different from the original word (for example, the lemma of “better” is
“good”).

An alternative to lemmatisation is to apply stemming. In stemming, the last few char-
acters of words are removed to get the stem in a rule-based approach. The stem does not
have to be a grammatically correct word. For example, both history and historical would
stem to the word histori. The application of rules is generally faster compared to the
dictionary-based approach applied with lemmatisation, but it is generally less consistent
and more prone to errors.

2.5.2 FastText

FastText is an open source text embedding library developed by Facebook[4]. It is designed
to be a lightweight but performant embedding algorithm.

FastText is trained using a continuous skip-gram model, which calculates the words
that are most likely found in the context of an input word. This is achieved by maximising
the following function:

T∑︂
t=1

∑︂
c∈Ct

log(p(wc|wt))

Where Ct is the set of words surrounding the word wt. The optimisation of this formula
is achieved through several binary classifications of a set of words containing the actual
context words, as well as a set of negative samples.

Furthermore, FastText implements a character n-gram model, which splits words w
into several substrings. For example, taking n = 2 and the word cats, the word is repre-
sented by the following n-grams:

<c, ca, at, ts, s>
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Where < and > are tokens used to represent the start and end of words. Character n-
grams allow the model to learn information about sub-words, which can give information
about words outside of a model’s vocabulary, as well as reduce the effect of spelling errors
and inflections.

2.5.3 BERT

In 2018, Devlin et al.[8] proposed the Bidirectional Encoder Representation Transformers
(BERT) model. BERT is a state-of-the-art ML framework that can be used for many NLP
tasks. The ability for the model to be applied to a large number of tasks is achieved by
splitting the training into two phases, namely, a pre-train phase and a fine-tuning phase.
In the pre-training phase, the model is trained through two different tasks using unlabelled
data. The first pre-training task is to predict masked words in sentences. During training
with this task, 15% of the word tokens are chosen to be replaced by a [MASK] token
(80%), a random token (10%) or the unchanged token (10%). The model is tasked with
predicting the masked token
The second step of the pre-training process is next sentence prediction, which is done
through a binary classification task in which two sentences are placed in the model; the
model is tasked with predicting whether the sentences follow each other or not.

After the pre-training, the model can be used for a variety of NLP tasks through the
application of fine-tuning. The pre-trained model can be adapted to return word vectors
of all the words through the removal of the final layer used for pre-training. With the
final layer removed, any model can be attached to the BERT output, which can then be
fine-tuned on task-specific data. Appending a new head to the pre-trained model allows
the model to keep the original model weights and, with that, knowledge of the language
on which it was trained, making the fine-tuning step relatively quick and simple.

Similarly to FastText, BERT models can also create embeddings for out-of-vocabulary
words. It achieves this through the application of sub-words. If a word does not appear
in the model’s vocabulary, the model looks for sub-words that are in the vocabulary and
splits the word into multiple sub-words. For example:

"That went smoothly"

["That", "went", "smooth", "##ly"]

In the example, the word smoothly does not appear in the vocabulary, but smooth and the
subword ly do appear, allowing for a better representation of the input over the exclusion
of out-of-vocabulary words. (The ## represents that the token is a continuation of the
last word.)
The tokenizer is trained through the process of Byte-Pair encoding (BPE). For a BERT
tokenizer, the words are divided into characters, after which the most common pair of
consecutive characters are grouped. The grouping of characters is repeated until the
desired vocabulary size is reached. The process is visualised by the following example,
where the numbers represent the occurrences of words in the vocabulary.

[("deck", 3), ("buck", 1),

("stuck", 5), ("stun", 3)]

[(["d","e","c","k"], 3), (["b","u","c","k"], 1),

(["s","t","u","c","k"], 5), (["s","t","u","n"], 3)]
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[(["d","e","ck"], 3), (["b","u","ck"], 1),

(["s","t","u","ck"], 5), (["s","t","u","n"], 3)]

[(["d","e","ck"], 3), (["b","u","ck"], 1),

(["st","u","ck"], 5), (["st","u","n"], 3)]

[(["d","e","ck"], 3), (["b","u","ck"], 1),

(["stu","ck"], 5), (["stu","n"], 3)]

...

After the publication of BERT, researchers have worked on further optimisation of
the design. In 2019, Liu et al.[15] proposed the Robustly Optimised BERT Approach
(RoBERTa). They propose changes such as a dynamic implementation of the data masking
during pre-training, a larger batch size, and a byte-level character encoding. These changes
increased performance on the SQuAD data set by a few percent compared to BERT.

In the original BERT implementation, the masking process was applied only once at
the start of the pre-training, causing the model to be trained on identical masks for every
epoch. For RoBERTa, the researchers dynamically applied the masking for every epoch,
resulting in a small performance improvement over BERT.

The researchers also determined that removing the next-sentence prediction task used
in the pre-training of BERT does not decrease the performance of the model on down-
stream tasks. Therefore, they decided to eliminate this step.

The byte-level character encoding for the input tokenisation differs from that of BERT
in that BERT uses a character-based approach. This approach has the downside that
Unicode characters take up a large amount of the vocabulary since there exist 149,1861

different Unicode characters. To increase the number of useful character combinations in
the vocabulary, the researchers developed RoBERTa with a byte-level BPE and increased
the vocabulary size over that of BERT (50K vs. 30K). This change ensures that there are
no “unknown” tokens, as all possible bytes are included in the data set.

Finally, RoBERTa was trained with a larger data set with larger mini-batches. The
batch size was increased to 8K sequences per batch (256 in BERT). The increase in batch
size allowed their model to achieve better performance with 500K steps compared to 1M
steps of BERT training.

Delobelle et al.[6] used the RoBERTa architecture to develop RobBERT, a pre-trained
language model trained on the Dutch subset of the OSCAR[1] data set, a large web-
crawled set of unlabelled documents. Their implementation outperforms other Dutch and
multilingual models such as BERTje[5] in die / dat disambiguation, as well as sentiment
analysis.

1https://www.unicode.org/faq
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2.6 Preprocessing

For some data types, it is important to preprocess the input data in a way that a computer
can interpret. For example, most machine learning algorithms cannot interpret categorical
values, for which one-hot encoding needs to be applied.

In one-hot encoding, a column of categorical variables is converted into multiple true/-
false columns (visualised in Table 2.3) where the number of resulting columns is equal
to the number of unique values for the categorical variable. Intuitively, one might think
that assigning a number (Dog = 1, Lion = 2, Cat = 3) would be a more efficient way to
generate these encodings. However, machine learning algorithms consider the input values
as continuous, which means that the model would consider the class Dog closer to Lion
than to Cat.
A similar approach to one-hot encoding can also be applied to situations where multiple
values are true for each sample. This is called multi-label binarisation and is visualised in
Table 2.4.

Variable encoding

A B C

A 1 0 0

B 0 1 0

C 0 0 1

B 0 1 0

A 1 0 0

C 0 0 1

Table 2.3: The conversion of a
single column of categorical vari-
ables into their one-hot encodings

Variable encoding

A B C

[A,B] 1 1 0

[B] 0 1 0

[A,C] 1 0 1

[B,C] 0 1 1

[∅] 0 0 0

[A,B,C] 1 1 1

Table 2.4: The conversion of a
column containing arrays of cate-
gorical variables into multiple bi-
narised columns

2.7 Evaluation

To be able to evaluate the results of the different approaches, evaluation metrics have to
be selected.

Most of the methods used to evaluate classification algorithms in machine learning use
true positive (TP), true negative (TN), false positive (FP), and false negative (FN) as a
basis. These values are calculated by comparing the predictions made by a model with the
ground truth values. Table 2.5 shows a confusion matrix which shows which label applies
to the possible combinations of ground truth and predictions. By applying this labelling
to all the predictions made by the model, the total values for the metrics can be calculated.

Accuracy is a metric commonly used in machine learning, which is calculated using
the following formula:

acc =
TP + TN

TP + TN + FP + FN

The accuracy formula takes all the correctly classified predictions and divides them by
the total number of predictions. Although this method generally works well, it would not
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Predicted
label

Actual
label

Positive Negative

Positive TP FN

Negative FP TN

Table 2.5: A confusion matrix

work well when using unbalanced data sets, as the classes that occur infrequently will also
have a very small influence on the result. As an example, if a data set has 100 samples,
of which 99 classes are labelled positive and one negative. A model that naively always
predicts the positive class for all samples would still achieve an accuracy score of 99%,
even though the model does not consider the negative class.

Zhao et al.[24] used metrics such as Recall :

Recall =
TP

TP + FP

which is used to minimise the number of false positives (the number of negative samples
classified as positive) and Precision:

Precision =
TP

TP + FN

which is used to determine the number of positive samples that are correctly classified.
These metrics can be combined to calculate the F-score (with a value β to determine the
importance of recall) using the following function:

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

The value for β is commonly set to 1, giving the following formula for the F1 score:

F1 = 2 · Precision ·Recall

Precision+Recall
=

2 · TP
(2 · TP ) + FN + FP

For ML models that are used to generate recommendations, it can be interesting to
evaluate a model based on its top K most likely classes, which can be done through the
Top K accuracy :

Top K acc = 1(y ∈ ŷ1, ŷ2, ..., ŷK)

Where ŷ is a list of predicted classes, sorted by probability

One of the ways that data can be evaluated through a visualisation is with a boxplot.
Boxplots show how a variable is distributed by plotting the interquartile range, as well as
outliers. An example boxplot is described in Figure 2.8.
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Figure 2.8: An example boxplot and its structure

2.7.1 Evaluation for multi-class classifiers

Both of the evaluation metrics mentioned above have functions that are designed for binary
classification and need some adaptation to use for multi-class classification. For accuracy,
the solution is generally to change the formula to be the following:

Acc =
num correctly predicted

num predicted

For the Fβ-score , a more common approach is to apply an averaging method. These
approaches calculate the Fβ-score for each class individually in a one-versus-rest ap-
proach. With the one-versus-rest approach, the multiclass classification problem is con-
verted to several binary classification problems. For example, given the classes [ dog,

cat, sheep], the one-versus-rest evaluation would calculate 3 binary evaluations, namely:
(dog, [cat, sheep]), (cat, [dog, sheep]) and (sheep, [dog, cat]).

When using Macro averaging for Fβ-score , all scores are averaged. Every class is
counted equally heavily, independent of the number of samples in the class. Alternatively,
weighted averaging calculates the score based on the number of samples in each class. In
practice, the difference between these approaches is that weighted Fβ-score can be high
even if a minority class is never correctly classified by a model, while macro Fβ-score would
better reflect the lower performance on uncommon classes.

2.7.2 Cross validation

To compare multiple approaches, the data set is divided into a train and a test set. The
split allows the approaches to be compared on an identical test set. Afterwards, a K-fold
cross-validation is applied to ensure that the results for individual models are consistent.
Cross-validation divides the train set into multiple sets of training and validation sets, as
visualised in Figure 2.9. By creating multiple splits on the training data, individual results
of the model can be validated while still allowing models to be compared on the same test
set.

2.8 Related works

Recently, researchers have investigated the classification of invoice data into ledger codes
in several countries.
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Figure 2.9: Example of a K-Fold cross-validation split with K = 5

Bergdorf [2] investigated the classification of Swedish electronic invoices comparing
rule-based approaches to random forest and Support Vector Machine (SVM) approaches.
Their work is similar to this work in that it implements a system for the classification
of ledger account codes. However, a major difference is that in their research, Bergdorf
trains a classification model on data from a single organisation, whereas in this thesis a
model designed to function for many organisations is implemented. Another difference
is that their work does not include the use of the textual description of the invoice line,
instead focussing on contextual data such as the financial year and VAT codes. Training a
model for each organisation could lead to improved performance, but would require a large
amount of validated data to be available from every organisation before the model starts
to become effective in its predictions. A consequence of this design choice is that it would
most likely also make the model ineffective for new organisations that are starting with
the software. Training a model specifically targeted towards an individual organisation
also has an advantage. Bergdorf included company-specific information, such as financial
year, in their data set, which could be relevant to an individual organisation, as companies
might have started buying certain types of products starting from a specific year. However,
the financial year of the invoice would not be relevant to a model designed for multiple or-
ganisations, as the number is not generalisable for multiple companies. Bergdorf’s results
show a similar performance between the different approaches, with random forest being
the model that slightly outperformed the alternatives with the highest accuracy and F2

score.

Munoz et al.[18] used a hierarchical classifier to predict ledger account codes in invoice
data in Australia. Similarly to Bergdorf, their research focuses on the classification of
invoices for a single organisation. In their work, they compared different text processing
approaches, comparing Word2Vec, bag-of-words, and two versions of a BERT model. Both
BERT models were pre-trained, but only one of them was further fine-tuned on the target
data. Their research showed that the fine-tuned BERT model performed the best. They
also compared classification methods, comparing a hierarchical deep learning model to a
non-hierarchical deep learning network, a logistic regression model, and a random forest
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model. The hierarchical deep learning model performed the best, with a macro F1 score
of 0.568, followed closely by the non-hierarchical deep learning network which achieved a
score of 0.543. In their work, they also compared the training time of the different deep
neural networks, which showed that the non-hierarchical deep learning network was the
fastest to train. For their classifier, they used a data set consisting of 31.332 invoice lines,
with 239 target classes (±131 samples per class on average). A similarity of their work
to this research is the data imbalance, with some classes occurring only once, while other
classes had more than 3000 samples. The problem of data imbalance was further compli-
cated by the way their data was split into training and test sets, which were performed
by date (before and after September 2020). As a result, 17 classes never appeared in the
training set, which were present in the test set. The approach differs from the approach
taken in this research, where the classes were limited to ensure that each class had a large
enough sample size to prevent the model from overfitting.

Johansson[12] investigated the classification of ledger account codes in Swedish in-
voices. Their research also limited their data set to that of a single company, which used
a total of 39 different ledger account codes. From these account codes, the labels that
occurred more than 50 times were kept for classification, with the other classes grouped to
form an “other” class, which left 21 classes for their classification experiment. In their ex-
periment, Johansson used an n-gram bag-of-words TF-IDF algorithm to create the textual
embeddings for descriptions in combination with “shallow” machine learning algorithms
such as SVM, Naive-Bayes (NB), Logistic Regression (LR) and Random Forest (RF). The
researcher investigated the application of stopword removal and stemming in their data
preprocessing, but claimed that the improvement these steps brought was negligible (up to
1%) and therefore not worth the extra computation time. Their implementation achieved
the highest accuracy using a linear SVM classifier, which achieved a macro F1 score of
0.75. However, because of the low sample size for some of the classes (the minimum was
set at 50 samples), it is uncertain whether these results are representative of the true
performance of the model on a larger data set. Furthermore, in contrast to our research,
the research performed by Johansson only investigated the classification of the textual
description of invoice lines, leaving out potentially important information from contextual
data.

Kiekbusch et al.[13] applied a CNN on the description of invoice lines to predict ledger
codes in Brazilian invoice data. For their experiments, they collected data from multiple
companies, keeping only samples that were labelled with a class that occurred more than
2000 times. The data were then undersampled to balance the data set, which was done by
removing data points from the classes with a high sample count until all classes were of
equal size. For their first experiment, they compared the performance of a single multiclass
CNN to an ensemble network of binary CNNs. The ensemble network contained a binary
classifier for each class, which could classify a sample as positive or negative to be part
of that class. These models were merged into an ensemble approach that was fine-tuned.
The results of their experiment showed that the accuracies of both models were similar
but that the ensemble model achieved a higher precision score, at the cost of a lower recall
score.

In their second experiment, they compared a word-based CNN and a character-based
CNN to a baseline model that uses TF-IDF and an SVM model (the kernel was not
specified). Both CNN models performed significantly better than the SVM approach,
with a minimal difference in accuracy between the character-based and the word-based
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CNN.
Similarly to the work by Johansson[12], their research focused only on the classifica-

tion of invoice lines based on the textual description, leaving out contextual information.
Another difference in our research from theirs is the choice to apply balancing to the data
set, as well as the implementation of a CNN for the classification.

2.9 Research gap

The previous work shows a variety of approaches that have been used for the prediction
of ledger codes in invoice data. The most obvious difference between the related works
and the proposed research is that our research will focus on data in the Dutch language,
as opposed to English, Swedish, and Brazilian. Furthermore, only one of the previous
works investigated the creation of a system that was designed to predict ledger codes
for several companies, as opposed to a model for an individual company. Their research
focused on implementing a CNN and mentioned that future work should investigate an
approach that involved transfer learning, which is investigated in our research through the
implementation of a classifier based on BERT.
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Chapter 3

Methodology

3.1 Data processing

This chapter describes the collection and preprocessing of the data set, as well as the
methods applied for the experiments. For the data mining process, the first five steps
of the CRISP-DM process [23], developed by Wirth and Hipp and described in Section
2.1, are followed. The business understanding, data understanding, and data preparation
phases are described for all of the experiments together, while the modelling (this chapter)
and evaluation (Chapter 4) phases are described individually for each of the experiments.
An overview of the research activities that have been conducted in this research is shown
in Figure 3.1. The diagram is divided into four groups; the first steps are Data collection
and cleaning, where we examine the structure of the data and explore potentially relevant
contextual data. The steps taken for this part of the research are described in Section 3.1.2.
Data collection and cleaning are followed by the Data pre-processing phase, where we clean
up and process the collected data to prepare it for later classification. The pre-processing
steps are described in Section 3.1.3. In the third phase of the research, the models are
developed and the results of the research questions are generated. The methodology for
the development of the model is described in Section 3.2, and the results are described in
Chapter 4. The final phase of this research is the Prototyping phase, where the best model
developed in the model development phase is implemented into the existing bookkeeping
system. The implementation of the architecture is described in Chapter 5.

3.1.1 Business understanding

The research carried out is part of a project created by a bookkeeping software company
to improve and simplify the bookkeeping process of their customers. In their current
implementation, customers have to choose from a list of categories they have created
themselves, which are linked to RCSFI codes. The current implementation, as visualized
in Figure 3.2, shows that the user chooses the category from a drop-down menu containing
all the available options. Since the number of available categories can be very large,
selecting the correct ledger code for an invoice line can be a complicated and error-prone
process. Therefore, the company is interested in innovating by implementing a system
that can aid the user in selecting ledger codes by implementing a machine learning-based
classifier. The classifier could use information such as invoice line descriptions to make its
predictions. Although the bookkeeping software manages both sales and purchase invoices,
this research is focused only on the classification of purchase invoices. The decision was
made to only use purchase invoices for classification because they are significantly different
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Figure 3.1: A research activity diagram showing the steps taken in this research.

from each other in the bookkeeping software. As a result, both types of invoices cannot be
combined in a single model, and the purchase invoices showed a greater variety of ledger
codes per company (visualised in Figure 3.3). The software company focuses its software
on smaller companies that generally use the bookkeeping software only to deliver a single
type of product, which means that only one ledger code is used for all sales invoices of
that company. Since the number of unique ledger codes in purchase invoices is significantly
larger, these are more interesting to create a prediction model for.

3.1.2 Data understanding

In this section, we examine the data set, its features, and data quality. The data set is
collected using the database of the bookkeeping software company that contains invoice
data. The data set was collected using an SQL query that returned one row of data per
line on the invoices. Since the information in the invoice lines could be sensitive, customers
of the bookkeeping software can give explicit permission in the application for their data
to be used for analytical purposes. Therefore, the invoice lines were only collected from
the administrations that have given that explicit permission. The fields collected by the
query are described in Table 3.1.

The results of the query were exported to a Comma Separated Values (csv) file, and
loaded into a pandas DataFrame for analysis. An example invoice describing the origin of
the features, including contextual features, can be found in Figure 3.4.

The complete data set contains 13.318.544 samples, each of which is a single invoice line.
As an invoice can have multiple lines, the total number of unique invoices is 11.133.564,
resulting in an average of ±1.2 invoice lines per invoice.

24



Figure 3.2: The current implementation in the bookkeeping software to select a
category for an invoice. In this example, there are 26 options available for the user
to choose from.

The target variable for the data set is the RCSFI code, of which the data set contains
736 unique values. Upon further examination, it showed that the data set contains a large
imbalance in sample count per label (see Figure 3.5).

For the first experiment, classifiers will be trained using only the invoice line descrip-
tions. These descriptions are used to describe the product purchased by the company.
These descriptions are generally brief or are sometimes just the order number. The word
count of the invoice descriptions is described in Figure 3.6

Data quality

In this section, we describe our analysis of the completeness, uniqueness, and consistency
of the data. The data accuracy is difficult to assess for the data set due to its size and
sometimes abstract product descriptions in the invoice.

A calculation of the null values for each of the columns shows that the data set con-
tains 17 empty descriptions (0.0001% of the full data set), 2.291 empty administration
legal entity type fields (0.0172%), 114.303 empty contact names (0.85822%), and 1.599
empty administration SBI fields (0.0120%). The other columns did not contain empty
values.

The description column was examined for the uniqueness of the data. There are
3.420.817 unique descriptions in the data set (25.6846% of the entire data set). To ex-
amine data consistency, unique combinations of the description and RCSFI columns were
calculated. There are 3.802.139 unique combinations of descriptions and RCSFI. As a con-
sequence, there exist 381.322 rows in which the same description is attached to another
label in the data set. If the other fields in the data set are included in the comparison (ex-
cluding the date values), a comparison shows that there are 76.864 rows in which another
sample existed with the same features but that are labelled differently.

3.1.3 Data preparation

In this section, we describe the steps taken to prepare the data for classification, as well
as the approaches taken to improve the quality of the data.
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Figure 3.3: A boxplot showing the number of unique ledger codes used by each
administration in the data set. This graph shows that companies generally only use
a single ledger code for their sales invoices, whereas the number of unique ledger
codes used for purchase invoices is significantly higher.

As described in Section 3.1.1, the purpose of the proposed model is to predict the
correct ledger code. In the data set, the most frequent code is WBedAlkOal, which can be
translated to “General costs” and is used as the default ledger code by the bookkeeping
software for purchase invoices and receipts. The label does not specify what type of pur-
chase is made, and this label should only be used when there is no other label that matches
the type of purchase. Since the label does not indicate a specific expense category, it is
not relevant to be able to achieve the research goal. As a result, all data samples labelled
with this label have been removed, shrinking the data set from 13.318.544 to 8.234.789
invoice lines.
After this step, the samples that contained an empty description are removed (six occur-
rences). These were removed as the classifiers trained in the first experiment only used
the textual description, meaning that an empty description would make it impossible for
a model to classify the sample. Invoice lines with descriptions longer than 25 words have
been removed because 99.5% of the descriptions contained less than or equal to 25 words
(see Figure 3.7), and manual inspection showed that a large number of invoices with a
higher word count were incorrect data. For example, an entire invoice (multiple invoice
lines and therefore multiple ledger codes) was inserted into the description field of a single
invoice line. The removal of these outliers reduced the data set from 8.234.783 to 8.221.251
samples.

Duplicate descriptions have been removed because it would weigh the descriptions
with multiple occurrences heavier as the model is trained on that specific sample multiple
times per epoch, or data leakage if the model sees the same sample in both the training
and testing phase. Due to this, duplicate descriptions are removed. This filtering does
not take the labeling of the sample in account. In practice, the removal results in only
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Feature Description Type

Invoice line descrip-
tion

A piece of text used to describe the product or
service provided for the invoice line

Textual

Invoice line price A field used to express the cost of the individual
invoice line

Numerical

Document type A field that describes whether the document is
either a purchase invoice or a scanned receipt

Boolean

Currency The currency used in the invoice Categorical

Administration lock
date

A field used to describe up until which date the
invoices are locked for an administration

Date

Invoice date The date on which the invoice was sent Date

Administration legal
entity type

A field that describes the type of company that
receives the invoice

Categorical

Contact company
name

The company name of the company that has sent
the invoice

Textual

Invoice line tax rate The rate under which the product or service is
taxed

Categorical

Administration SBI
codes

A set of codes that describe the fields in which
the administration operates

Categorical

Invoice line RCSFI
code

A field that describes the bookkeeping category
of the invoice line

Categorical

Table 3.1: The fields collected from the database

the first sample being kept, an approach that does not consider whether the sample is
labelled correctly, and it is possible that only a mislabelled sample is kept. The removal
of duplicated data reduced the size of the data set from 8.234.783 to 2.040.088 samples.

It is infeasible to manually validate every individual sample for its data accuracy. A
major concern for the data set is the possibility of mislabelled data points, which limits
the potential effectiveness of a model. The problem of mislabelled samples cannot be
completely prevented, but some steps have been taken to improve the quality of the data
set.

In the software, companies enter a ledger code when creating invoice lines. However,
a company can update the invoice lines to correct errors and change the ledger code af-
ter sending the invoice. Consequently, it makes it so that there is no guarantee of the
correctness of the labelling. However, once a bookkeeping year has closed, it should be
impossible to change the ledger codes (since these have already been processed). To ensure
that ledger codes in closed bookkeeping years cannot be changed, bookkeeping software
has made it possible to lock a period of invoices. For some companies, bookkeeping years
are closed after an accountant has validated the invoices and ledgers. This makes it inter-
esting to limit the data set to only invoices for which the creation date is within a locked
period. Since these invoice lines are locked, the assumption can be made that they have
been validated by the company. Verification of these invoices should reduce the number
of mislabelled samples, increasing data quality. The removal of the samples that are not
in a company’s locked period reduced the data set from 2.040.088 to 586.642 samples.

To ensure that the sample size of every class in the data set is sufficiently large, the
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Figure 3.4: An example invoice describing the features collected in the query and
their origin.

Figure 3.5: A boxplot showing the class imbalance in the full data set

classes that occur very rarely are removed from the data set. The same approach was
taken by Kieckbusch et al.[13], where the minimum number of samples required for a class
to be included in the training was set to 2000. However, for our research, the number of
samples required was established at 5000, as the dimensionality of the data set was greater
due to the inclusion of contextual data in the experiments. The removal of uncommon
labels reduces the data set to 518.939 samples and 28 classes. The final ledger codes used
and their hierarchical structure, as well as English descriptions, are described in Appendix
A.

The total number of SBI codes available in the taxonomy is 943. To reduce the unique
number of codes, the choice was made to generalise the codes to their first two digits. The
simplification of the SBI codes limited the total number of unique values to 80 in the data
set.
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Figure 3.6: A boxplot of the number of words in the description field of invoice
lines

Figure 3.7: A boxplot showing the word counts of invoice descriptions, with the
red line set at 25 words

3.2 Experiment setup

The research is divided into three experiments. The goal of the first experiment is to
examine the performance of classification models trained to predict the ledger code that
should be attached to the invoice lines. The input for these models only contains a short
textual description of the product/service. The second experiment continues on the results
of the first experiment by adding contextual information to the input of the models and
researching the performance increase that contextual information can deliver. The final
experiment examines the prediction speed of the different models, examining approaches
to speed up predictions, and their impact on prediction performance. These results are
then used to implement a classification system for the invoice data.

3.2.1 Experiment 1

The objective of the first experiment is to investigate the optimal approach to classifying
invoice lines into ledger codes using only textual descriptions of invoice lines. For this
to work, the descriptions need to be converted to a different representation that is bet-
ter suited for machine learning. Our goal is to compare contextual and non-contextual
approaches. We hypothesise that contextual approaches to text embedding will not signif-
icantly improve the performance of textual classification for invoice data since the pieces
of text are generally very brief, and therefore lack the contextual information that the
contextual embedders utilise. Non-contextual embedders do not rely on contextual data,
which should increase the classification speed of these models, which would also make these
models more suited for a practical implementation where prediction speed is essential.

To test this hypothesis, three embedders were selected for this experiment. A RoBERTa-
based model was chosen to test the performance of contextual embedders, while a FastText
model will be used to test the performance of non-contextual embedders. Finally, a TF-
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IDF embedder was implemented as a baseline embedder.

TF-IDF

TF-IDF has been chosen as a textual data processing approach due to its simplicity and
relatively good performance in classifying invoices, as was shown by Johansson[12]. TF-
IDF benefits from applying preprocessing steps to decrease the number of unique words,
since grouping, for example, inflections of words together through lemmatisation increases
the samples in which the grouped word is found. Another common step taken when
applying TF-IDF is the removal of stop words. Words such as that and the are so common
in the English language that they cannot realistically be used to improve classification
results and are therefore often removed from the data set. To prepare the textual data for
categorisation, the following steps have been taken to reduce the vocabulary size.

• punctuation removal

• lemmatisation

• capitalisation removal

• stopword removal

The punctuation removal was performed in combination with the lemmatisation using
the SpaCy Python library. This library contains text-processing tools for a variety of
languages, including Dutch. The nl core news sm1 pipeline was used as it was relatively
fast, while still performant. Lemmatisation is chosen over stemming, as preliminary test-
ing showed that the lemmatised text achieved a significantly higher classification score
compared to the stemmed text. For the removal of capitalisation, the Python function
str.lower() was used. Finally, the stopwords were removed by matching the words in the
text to a list of Dutch stopwords provided by the NLTK Python library. The final vocab-
ulary size of the data set is 1.209.931.

The resulting data set has been split into a training and validation set, using a Stratified
K-Fold cross-validation. The stratification applied to cross-validation ensures that the
class distribution is the same between the train and the validation set. For each split, a
TFIDFVectorizer() is fitted to the training data and used to transform the training and
validation data into vectors.

FastText

For our experiment, FastText was chosen because it implemented character n-grams to
develop its word embeddings. This approach allows the model to collect information
from out-of-vocabulary words, as well as words with spelling errors, which should increase
the performance of the model over bag-of-words approaches. For the implementation of
FastText in our research, a data set consisting of pre-trained word vectors in the Dutch
language developed by Grave et al.[10] was used in combination with the FastText Python
library. The word embedding model generates word embedding vectors consisting of 300
values. To calculate a sentence vector, each word embedding is divided by its L2 norm2.
Once these values are calculated, the average value of the normalised vectors with a positive
value is calculated to determine the sentence vector that can be used for text classification.

1https://spacy.io/models/nl#nl_core_news_sm
2The L2 norm is the distance of the vector coordinate to the origin
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There is no preprocessing of the text required for FastText to perform well, as the character
n gram approach can use information from infractions and capitalisation to make its
predictions.

BERT

The chosen version of RobBERT is RobBERTje[7], a distilled version of RobBERT that
is faster to train. Knowledge distillation is the process in which a smaller student model
is taught by a larger teacher model. The distillation allows the new model to be smaller
but still have a very similar level of performance. By incorporating the classification head
with the RobBERTje model, the classification network can be trained at the same time
that the BERT-based model is fine-tuned.

The specific model chosen for our research was:
DTAI-KULeuven/robbertje-1-gb-shuffled3. This version of RobBERTje was chosen be-
cause it performed slightly better compared to the non-shuffled version on the Dutch Book
Review data set, a classification task, and while it performed marginally worse compared
to the large RobBERT model, the training and prediction speeds were significantly higher.

Classifiers

For the TF-IDF embeddings, a Complement Naive-Bayes classifier was trained, as well as
two Linear Support Vector classifiers.

Complement Naive-Bayes was chosen as a general baseline as Johansson’s work[12]
showed that Naive-Bayes can be relatively effective for the classification of invoice lines.
For our experiments, however, the choice was made to use the Complement Naive-Bayes
approach as opposed to the Multinominal Naive-Bayes approach taken by the related
work. Complement Naive-Bayes works by calculating the probabilities that a word is not
associated with the classes. The prediction is then made by calculating the class with the
lowest probability of not being the correct class. This approach improves the performance
of the Naive-Bayes models for imbalanced data sets, as described by Rennie et al. [19]

The Linear Support Vector Classifier was chosen as a classification approach due to
its high performance shown in related works[2, 12].
Next to the regular Linear SVC, a hierarchical network of Linear SVC was trained. This
network was chosen to investigate the effectiveness of hierarchical classifiers for this specific
data set. The approach taken in our research differs from the hierarchical deep learning
approach proposed by Munoz et al.[18]. The choice for the current approach is that, in
the available data set, the labels in the data set do not show a balanced hierarchy (as
visualised in Appendix A). Through the implementation of the hierarchical SVC, the hi-
erarchical classifier can be directly compared to the non-hierarchical SVC. This will show
whether the hierarchy present in the data set could be used to increase the classification
performance.

We chose not to implement a deep neural network for the TF-IDF embeddings as the
vocabulary size of 1.209.931 would result in a very large number of trainable parameters
which could not realistically be trained in a reasonable time.

3https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-shuffled
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Figure 3.8: The architecture of the DNN trained on FastText embeddings.

FastText embeddings are used to train a deep neural network, as it showed good
performance in the work of Munoz et al.[18]. FastText was chosen over alternative em-
bedders due to its speed and effectiveness, which was described by Bojanowski et al.[4]
The structure of the neural network is described in Figure 3.8. A possible alternative to
this approach would be to use FastText directly for classification. However, during the
preliminary exploration of the classifiers, this approach did not achieve good results com-
pared to the DNN, while also not allowing for the one-hot encoded contextual data to be
included in the model for the second experiment.

For the BERT based approach, a classification head was attached to the pre-trained
RobBERTje network. The classification head contains a single layer of neurons with 768
inputs (the number of outputs of the RobBERTje network) and 28 outputs (the number
of classes). Then it was trained using a stratified K-fold cross-validation on the training
set, after which the results were verified using the test set. The model architecture for
this model is described in Figure 3.9.

Figure 3.9: The architecture of the DNN trained on the RobBERTje embeddings.

Optimisation

To ensure that optimal parameters were selected for each classifier, a grid search was
performed. With grid search, an exhaustive search is applied for a group of input param-
eters, where each combination is tested. The combination of parameters with the highest
performance was then used to collect the results from the test data set. For the TF-IDF-
based classifiers, the classifiers were fitted using a K-fold cross-validation with K = 5 for
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all combinations of parameters. For the FastText-based DNN and BERT-based classifier,
the classifier was trained for a single train-validation split, after which the highest scoring
classifier was retrained using K-fold cross-validation with K = 5. The choice was made not
to cross-validate every combination of hyperparameters because deep learning approaches
took significantly longer to train (up to multiple hours), in combination with a larger num-
ber of hyperparameters that could be fine-tuned. The full list of the hyperparameters used
in this research can be found in Table 3.2. Figure 3.10 contains a diagram that describes
the steps used to train the models and find the optimal hyperparameter combination.

Figure 3.10: A diagram describing the training process for the machine learning
models
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Classifier Parameters

Linear SVM
TF-IDF

TF-IDF n-gram range = [(1,1), (1,2),(1,3)]
Linear SVM C = [0.3, 0.7, 0.9]

ComplementNB
TF-IDF

TF-IDF n-gram range = [(1,1), (1,2),(1,3)]
ComplementNB alpha = [0.3, 0.7, 1]

Hierarchical SVM
TF-IDF

TF-IDF n-gram range = [(1,1), (1,2),(1,3)]
Linear SVM C = [0.3, 0.7, 0.9]

DNN
FastText

Weight decay = [1e-5, 5e-6, 1e-6]
Learning rate = [1e-3, 5e-4]
Gamma = [0.9, 0.95, 0.97]
Dropout = [0.4, 0.5]

BERT

Learning rate = [1e-4, 5e-5, 1e-5 5e-6]
Weight Decay = [1e-5, 1e-6]
Dropout = [0.3, 0.4, 0.5]
Gamma = [0.85, 0.9, 0.95]

Table 3.2: The parameters used to optimise the trained models

3.2.2 Experiment 2

For the second experiment, contextual information was collected and included in the clas-
sifiers. The following contextual features were chosen to be used in the classification
process.

• Log10 of the price

• Administration SBI-codes

• Administration legal entity type

• Document type

• Invoice line tax rate

• Currency

• Contact company name

The hypothesis under which Log10 of the price was chosen as a feature is that the price
of the invoice line will give information on the type of product or service purchased. For
example, small office supplies will generally have a lower cost compared to property costs.
The prices in the data set range from -1.920.000 to 54.342.428. It is important to note
that for the price value, the currency is not directly taken into account. For the samples
containing the highest value on the price field, the currency attached to the invoice is the
Indonesian Rupiah, where 17.000 Rupias have the same value as one Euro at the time of
writing. To decrease the difference between the largest and smallest values, the Log10 of
the value is used. Through rescaling, the distance between the largest and smallest values
will decrease significantly and also make it so that the value does not have significantly
higher values compared to the other contextual variables. Since the price can be negative,
the Log10 is taken using the absolute value of the price, which is used as the input of
the model in combination with a boolean value indicating whether the original value is
positive or negative.

An Standaard BedrijfsIndeling/Standard Business Categories (SBI) code is used to
describe the activities of a company, which are provided by the Dutch Chamber of Com-
merce. The codes are built in a tree structure and can be either four or five digits long.
An example of the tree structure is visualised in Table 3.3. We think that these codes can
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be relevant for the classification, as the field a company operates in should influence the
types of purchases made by a company. The feature is similar to the industry in which the
company is based, which Bergdorf has successfully used as a feature[2] in their research.
To reduce the dimensionality of the feature in the data set, the codes have been shortened
to the first two characters, after which they have been binarised.

Description SBI code

Retail (not in cars) 47

Supermarkets and warehouses 47.1

Supermarkets 47.1.1

Warehouses (non-food) 47.1.9

Specialised stores in food and beverages 47.2

Stores for potatoes, vegetables and fruits 47.2.1

Table 3.3: An example of the tree structure of SBI codes (the punctuation is
added for clarity)

The legal entity type of an administration describes the type of company that is be-
ing run, which can vary from sole proprietor (eenmanszaak in Dutch) to privately traded
companies (bv in Dutch). The legal entity type was included because it might improve
the classification performance under the hypothesis that different legal entity types have
a different company structure and therefore could make different purchases and use dif-
ferent ledger codes. Furthermore, some ledger codes do not apply to sole proprietors, but
do apply to other business types (as of writing, there are 631 RCSFI codes applicable for
sole proprietors, while there are 791 codes applicable for privately traded companies4).
Initial data investigation showed that some labels were significantly less common for spe-
cific legal entity types. For example, the code for Costs of outsourced work is ±10% of the
total data set. However, for Professional or public partnership (Maatschappen in Dutch)
entities, this is only ±6%.

The invoice type can be either a purchase invoice or a (scanned) receipt that is entered
into the website. This feature could be relevant because, for example, office supplies might
often be bought in a physical store, after which a receipt is scanned. Larger purchases
might be made online more often, where they are processed through an invoice. In Figure
3.11, the Sankey diagram is used to show the relation between the invoice types and the
ledger codes. The graph shows that, for example, the RCSFI code WBedVkkRep, which
describes Representation costs, is significantly more common for receipts compared to
invoices. An explanation for this can be found by looking into what the representation
costs ledger code is used for, which is commonly used for business lunches and dinners,
where invoices are not commonly used.

The invoice line tax rate describes how a product is taxed. There are several options
ranging from 21% to 0% and other options such as shifting taxes. The feature can give
information on the type of product, as some products are taxed differently than others.
The tax rate was successfully used as a feature by Munoz et al.[18] in their implementation
of ledger code classification.

4https://boekhoudplaza.nl/cmm/rgs/rgs_dashboard.php
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Figure 3.11: A Sankey diagram showing the 2 document types linked to the 10
most common RCSFI codes in the data set.

The invoice currency was chosen as a context feature as it could indicate information
on the origin of the product. The currency was added as a feature because an investigation
of its values showed that some ledger codes were more common with specific currencies.
For example, the ledger code for automatisation has 129.471 instances where the currency
was the Euro (out of a total of 2.040.088 instances), which is around ±6%. For the US
dollar, this ledger code occurred 16.873 times (out of a total of 33.987), occurring a total of
±50%. The difference in the frequency of the ledger codes when the samples are grouped
by currency shows that using the currency as a feature could improve the prediction per-
formance of the classifiers.

The text field containing the company name is included as contextual data under the
hypothesis that company names can contain information that could be useful to determine
the type of ledger codes used for that contact. This field is filled in by the administration,
so there could be some ambiguity in this field. However, some company names may be
often associated with specific ledger codes. For example, KPN B.V. is a very large Dutch
telecom provider and occurs a total of 168.936 times as the contact in the rows of the
data set. 126.024 (±75%) of these samples have been assigned the Telephone costs ledger
code, showing that the company name can be a significant indication of the correct ledger
code. Furthermore, company names can also contain information that suggests the field
in which the contact works, which can be interpreted by models to determine the busi-
ness field in which the contact operates, and which can indicate the ledger code, similar
to the SBI code. For example, Parkmobile Benelux B.V. is a common contact name in
the data set. The company provides, as the name suggests, an app that can be used to
pay for parking spots. The contact name was chosen over the contact SBI code because
the SBI codes are collected through a system that requires the Chamber of Commerce
(CoC) code of a company. However, in contrast to the CoC code for the company using
the bookkeeping software, this field is not filled in for a large number of their contacts
(over 30%). Requiring the contact CoC field for the data samples would significantly re-
duce the number of trainable samples and limit the practical usefulness of the model, since
the number is not a mandatory field and would not be filled in for contacts located abroad.
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Figure 3.12: The model architecture of the DNN using FastText in Experiment
2

Classifiers

For classifiers based on TF-IDF, the company name was embedded with a separately
trained TF-IDF vectorizer, after which all variables are concatenated and used by the
classifiers.

The FastText-based DNN was redesigned for the second experiment. The company
name was transformed using a FastText embedder that had its output dimensionality
reduced to 50. This choice was made because the vocabulary size was significantly smaller
(375.470 for company names and 1.473.822 for descriptions). The other variables were
encoded and passed through one ReLU activated layer that was used to increase the
dimensionality of the categorical variables to 350 (the same as the textual features) before
being concatenated with FastText embeddings. The rest of the network was identical to
that of Experiment 1, and the model architecture is described in Figure 3.12.

For the BERT based approach, the company description was appended to the de-
scription, separating the texts using the [SEP ] token. The other contextual features
were, similarly to the DNN approach, passed through a single ReLU-activated layer be-
fore being concatenated to the embeddings, with a classification head that consists of 2
ReLU-activated hidden layers and an output layer. The model architecture is described
in Figure 3.13.

Optimization

The hyperparameter tuning steps used in Experiment 1 (described in Table 3.2) were
repeated in Experiment 2. To train the classifiers, the approach used in the first experiment
(Figure 3.14) is updated to include the processing of contextual information and the name
of the company name that sent the invoice. The changes are visualised in Figure 3.14.

Ablation study

To analyse the effect of the different contextual features included in the second experi-
ment, an ablation study is performed to determine the effect of the exclusion of individual
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Figure 3.13: The model architecture of the DNN using RobBERTje embeddings
in Experiment 2

contextual features. In Figure 3.15, the steps taken to perform the ablation study are
described. For the ablation study, we choose the model that achieves the highest Macro
F1 score and repeat the training where in each training phase, one contextual variable is
excluded. This process should reveal the importance of individual contextual features.

3.2.3 Experiment 3

In the third experiment, we investigate the optimal approach for a practical implementa-
tion of a classification model. We investigate the prediction speed of the best classifiers
from the previous two experiments. The prediction speed is compared with the classifi-
cation performance, after which a final setup is selected for the practical implementation
of the optimal classifier, which is used to develop a prototype. The prediction speed of
the classifiers is determined by calculating the predictions of the first 1000 samples of the
test set, splitting the total time into preparation and prediction times. The classification
process is repeated 20 times to ensure that the results are valid. The predictions are
performed on the CPU of an Apple MacBook with an Apple M1 Pro processor and 16GB
of RAM. Since models based on a DNN can greatly benefit from the use of a GPU, the
training for these models is also applied on the MacBook GPU, as well as a virtual ma-
chine using an NVIDIA A10G processor and 4 cores of an AMD EPYC 7R32 processor.
It is important to note that for these experiments, the preprocessing of the data is still
performed on the CPU, but the inference is performed on a GPU.

3.2.4 Prototype development

As part of this research, we develop a prototype that implements the best-performing
model into the existing application to validate the results of the research. To implement
the model, we create a web application that hosts an Application Programming Interface
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Figure 3.14: A diagram describing the process of training the machine learning
classifiers for the second experiment
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Figure 3.15: The steps to perform the ablation study

(API) that can be used to request a prediction. This application can then be used by the
existing bookkeeping system to show the user the predictions. A more detailed description
of the implementation of the prototype is described in Section 5.2.

To evaluate the prototype, we use the Network tab in Google Chrome’s5 DevTools
to measure the time it takes for the request to the prediction API to be completed. By
measuring exact timings in a browser, we include any overhead caused by HTTP requests
and the additional processing required to show the prediction to the user in the time it
takes to predict the category. This approach will give a realistic prediction speed in a
practical setting compared to the time it takes to purely predict the category, as is done
in Experiment 3.

Furthermore, we evaluate the prototype by asking developers of the bookkeeping soft-
ware to test the prototype. For this, we create an example invoice (see Appendix D) that
the developers will fill in on the website. The developers can also come up with examples
themselves to allow them to test the accuracy of the predictions. After the developers are
finished with their testing, they are asked the following questions:

• What was your overall experience using the prototype?

• What is your opinion on the responsiveness of the predictions?

• How do you perceive the correctness of the predictions?

• What could be improved about this prototype?

• Do you believe that this concept can be used to improve the user experience of the
bookkeeping software?

5https://www.google.com/chrome/
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The answers to these questions are used to improve the prototype and as future work
to further develop the prototype so that it can be used by the users of the bookkeeping
software.
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Chapter 4

Results and discussion

4.1 Experiment 1

In this section, we describe the results of the first experiment, which are used to answer
the first sub-question of this research described in Section 1.2. Through hyperparameter
tuning, the combinations described in Table 4.1 were found to be the optimal parameters
for the individual models.

Classifier Optimal Hyperparameters

Naive-Bayes {Alpha: 0.5, N gram range: (1,3)}
Linear SVC {C=0.9, N gram range: (1,2)}
Hierarchical SVC {C=0.9, N gram range: (1,2)}
FastText DNN {Weight decay: 1e-05, Learning rate: 0.001, Gamma: 0.95, Dropout: 0.4}
BERT DNN {Weight decay: 1e-06, Learning rate: 0.0001, Gamma: 0.85, Dropout: 0.4}

Table 4.1: The optimal hyperparameters for each of the classifiers trained for this
experiment. The complete results for all the parameter combinations are described
in Appendix C.

In Table 4.2, the results of the classifiers with the optimal hyperparameters on the
test set are described. The table shows that BERT achieves the highest Macro F1 score,
with the Linear SVC achieving a similar score. The full results, including F1 scores on
the validation set for each fold, are described in Appendix B.1.

Classifier Embeddings Macro F1 Accuracy Top 3 acc Top 5 acc

Complement NB TF-IDF 0.5582 0.6139 0.7888 0.8432

Linear SVC TF-IDF 0.5920 0.6458 0.8230 0.8800

Hierarchical SVC TF-IDF 0.5322 0.6020 - -

DNN FastText 0.5604 0.6221 0.8278 0.9001

DNN BERT 0.6020 0.6545 0.8296 0.8961

Table 4.2: The test results for the classifiers. The Top-K acc values for the
Hierarchical classifier could not be generated as the HiClass library does not support
the calculation of probabilities.

Comparing the models based on the TF-IDF embeddings, the non-hierarchical linear
SVC significantly outperforms the other classifiers in all of the metrics chosen. Important
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to note here is that, due to limitations of the HiClass library used for the implemen-
tation of the hierarchical classifier, it was not possible to generate top K accuracies for
this model. However, comparing the Macro F1 and accuracy scores of this model to
the non-linear model, one can reasonably conclude that for this data set, the hierarchy in
the labels does not provide sufficient information to increase the performance of classifiers.

For models based on a DNN, the model based on BERT embeddings achieved the
highest scores on every performance metric except for the Top-K accuracy, where the
FastText embedded model slightly outperforms the BERT embedded model.

4.2 Experiment 2

In the second experiment, we examine whether the performance of the models trained
in Experiment 1 can be improved by including contextual data from the invoice. For
this experiment, the hyperparameter tuning is repeated on the new models. The optimal
hyperparameters are identical to the hyperparameters found in experiment 1 (described
in Table 4.1). The complete results, including F1 scores on the validation set for each
fold and the performance increases compared to the first experiment, are described in
Appendix B.2. The results of the validation set for all combinations of hyperparameters
are described in Appendix C. With the optimal parameters, the results of the test set are
calculated. The results are summarised in Table 4.3.

Classifier Embeddings Macro F1 Accuracy Top 3 acc Top 5 acc

Complement NB TF-IDF 0.6382 0.7045 0.8603 0.9158

Linear SVC TF-IDF 0.6743 0.7089 0.8572 0.9080

Hierarchical SVC TF-IDF 0.5987 0.6549 - -

DNN FastText 0.7092 0.7594 0.9065 0.9490

DNN BERT 0.6808 0.7385 0.8920 0.9404

Table 4.3: The test results for the classifiers using contextual data. The Top-
K acc values for the Hierarchical classifier could not be generated as the HiClass
library does not support the calculation of probabilities.

In this experiment, the FastText-based model outperforms the other models in ev-
ery calculated performance metric and is the only model that achieved a Macro F1 score
greater than 70%. Although Figure 4.1 shows that all classifiers trained in the first exper-
iment benefit from the inclusion of contextual data, some models improved significantly
more compared to others. For example, the Macro F1 score for the hierarchical support
vector classifier increased by ±0.065, while the same score increased by ±0.148 for the
DNN based on FastText embeddings.

4.2.1 Ablation study

The second experiment also includes an ablation study to determine the performance
implications of individual contextual features. We chose the DNN trained on FastText
embeddings using contextual data for this study, as it achieved the highest performance
scores in the earlier part of the experiment. The results for this are described in Table 4.4.
The results of the ablation study show that the exclusion of the features administration
SBI codes and contact company name has the largest impact on classification performance.
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Figure 4.1: A bar chart showing the improvement in classification performance
through the inclusion of contextual data

Although the removal of other individual contextual features does not show a significant
impact on performance, the model trained using only contact company name and admin-
istration SBI codes as contextual data achieved a macro F1 score of ±0.68, showing some
performance degradation.

Excluded Feature Macro F1 Acc Top 3 Acc Top 5 Acc

Invoice line log price 0.7034 0.7548 0.9052 0.9484

Administration SBI codes 0.6377 0.6975 0.8753 0.9318

Administration legal entity type 0.6940 0.7475 0.9011 0.9450

Document type 0.7070 0.7564 0.9061 0.9488

Currency 0.7045 0.7550 0.9061 0.9487

Invoice line tax rate 0.7047 0.7547 0.9063 0.9492

Contact company name 0.6702 0.7230 0.8878 0.9369

Baseline 0.7092 0.7594 0.9065 0.9490

Table 4.4: performance of the DNN using FastText embeddings, performing an
ablation study excluding a contextual feature.

4.3 Experiment 3

In the third experiment, we examine the potential practical value of the developed model
by examining the prediction speed. The prediction speed of a model is relevant for this
research since, for a practical implementation, the model needs to be able to give cus-
tomers a fast prediction so as not to get in the way of the user. The results, as described
in Table 4.5, show that the fastest models to create predictions are the FastText-based
DNN models. Although the prediction speeds of the Linear SVC models are very fast,

44



the preprocessing step takes very long because of the lemmatisation of the sentences. The
BERT-based classification models had the lowest prediction speed when calculating their
predictions on a CPU.

Classifier Processing Prediction Total Std

Complement Naive-Bayes non-contextual 2.7044 0.0601 2.7644 0.1486

Complement Naive-Bayes contextual 2.6608 0.0643 2.7252 0.0848

Linear SVC non-contextual 2.8007 0.0024 2.8031 0.1887

Linear SVC contextual 2.6200 0.0009 2.6209 0.0779

Hierarchical SVC non-contextual 2.6715 0.0325 2.6764 0.0697

Hierarchical SVC contextual 2.6110 0.0051 2.6161 0.0299

FastText DNN non-contextual 0.0131 0.0029 0.0160 0.0011

FastText DNN contextual 0.0240 0.0078 0.0318 0.0014

BERT non-contextual 0.4851 3.2198 3.7047 0.0791

BERT contextual 0.5635 11.8785 12.442 0.1035

Table 4.5: Inference time to calculate 1000 predictions in seconds, averaged over
20 runs.

As described in Section 3.2.3, the prediction speeds for the models using a DNN are
also measured when calculated on a GPU. Using the MacBook GPU, only the BERT
models show a significant increase in prediction speeds. Running the models on an Nvidia
GPU results in a larger improvement, but this effect was somewhat limited by a decrease
in processing speed caused by the slower CPU cores available in the virtual machine. The
results of the classification speed on hardware with a dedicated GPU show only a signif-
icant performance increase when applying large models such as BERT, and for smaller
DNN models, GPU inference does not significantly impact the classification speed. A
possible explanation for this would be that the model inputs need to be moved from the
CPU memory to the memory of the dedicated graphics card. This would explain the im-
provement seen on the large models, as the time it takes to move the inputs is negligible
compared to the increase in processing power.

Classifier CPU GPU Processing Prediction Total Std

FastText DNN
non-contextual

Apple M1 Pro
(10 cores)

Apple M1 Pro
(14 cores)

0.0157 0.0004 0.0161 0.0030

FastText DNN
contextual

Apple M1 Pro
(10 cores)

Apple M1 Pro
(14 cores)

0.0268 0.0008 0.0275 0.0009

BERT non-
contextual

Apple M1 Pro
(10 cores)

Apple M1 Pro
(14 cores)

0.4757 3.1907 3.6664 0.0759

BERT contex-
tual

Apple M1 Pro
(10 cores)

Apple M1 Pro
(14 cores)

0.6140 3.1306 3.7446 0.0856

FastText DNN
non-contextual

AMD EPYC
7R32 (4 cores)

NVIDIA A10G
(9216 cores)

0.0214 0.0003 0.0218 0.0021

FastText DNN
contextual

AMD EPYC
7R32 (4 cores)

NVIDIA A10G
(9216 cores)

0.0396 0.0079 0.0475 0.0475

BERT non-
contextual

AMD EPYC
7R32 (4 cores)

NVIDIA A10G
(9216 cores)

0.9328 0.6770 1.6098 0.271

BERT contex-
tual

AMD EPYC
7R32 (4 cores)

NVIDIA A10G
(9216 cores)

1.1364 0.6194 1.7558 0.0068

Table 4.6: GPU inference time to calculate 1000 predictions in seconds, averaged
over 20 runs.

For a practical implementation, the requirement for a GPU to achieve reasonable
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prediction speeds is a significant downside, as servers containing a GPU are more expen-
sive. This makes models that can predict fast on a CPU better suited from a practical
standpoint. This makes the FastText-based DNN from the second experiment the most
suitable classification model to use for further analysis, as the model achieves both the
highest scores for our performance metrics and a very high prediction speed on a CPU.

4.4 Error analysis

In this section, we further analyse the DNN trained on FastText embeddings and contex-
tual data. This model was chosen for analysis as this model achieved both a very high
prediction speed and good classification scores. The confusion matrix (see Figure 4.2)
shows that the ledger codes BMvaBeiVvp “Acquisition of inventory”) and BMvaObeVvp
(“Acquisition of other fixed assets”) are often confused by the model. Examination of the
misclassifications shows that the misclassified samples are very similar. For example, the
description of a sample labelled as BMvaBeiVvp is Apple MacBook Pro 16”Touch Bar,
while another sample labelled as BMvaObeVvp has Macbook Pro touch bar 16 inch as the
description. This does not mean that the samples are mislabelled as the correct label
depends on the practical use of the product purchased. Similarly, samples with labels
WBedAutOak (“Other car costs”) and WbedAutRoa (“Car repair and maintenance”) are
also commonly misclassified.

Manual inspection of the predictions made on the test set shows that there are also a
number of misclassifications in which the provided description does not indicate what the
ledger code could be. For example, the description “Invoice 1847” does not indicate the
product described in this invoice line.

The confusion matrix also shows a vertical coloured line for classesWKprInhInh (“Pur-
chase of trade goods”), WKprKuwKuw (“Outsourced work costs”), and WBedKanKan
(“Office supply purchases”). These classes are commonly predicted as the label and this
can be explained by looking at the sample distribution as these are the three most com-
monly used classes in the dataset. The model has adapted to this, and this has caused
the probability of these classes being predicted to increase.

4.5 Summary

In our experiments, we compare the performance of the TF-IDF, FastText, and BERT em-
bedders on the classification of Dutch invoice data. In our first experiment, we examine the
performance of different classification models using TF-IDF, FastText, and RobBERTje
to embed textual invoice descriptions to determine their ledger code. The results of this
experiment show that a DNN based on BERT embeddings achieves the highest Macro F1
score when predicting only using textual descriptions.

In our second experiment, we incorporated contextual data into the classifiers to ex-
amine whether this information could be used to improve classification performance. The
results show a major improvement in the Macro F1 score when contextual data is in-
cluded. The model with the highest Macro F1 score for this experiment is the DNN based
on FastText embeddings, achieving a Macro F1 score of ±71%. This classifier was then
used in an ablation study to investigate which contextual feature has the largest impact
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Figure 4.2: A confusion matrix showing the amount of misclassifications of the
model. The values are normalised on the true label axis.

on the Macro F1 score. The ablation study showed that Administration SBI codes and
Contact company name had the largest impact on the classification performance.

In our third experiment, we investigated the prediction speed of the previously devel-
oped classifiers. The results of this experiment show that the DNN based on FastText
embeddings was the fastest to make its predictions. The results also show that the lemma-
tisation applied for the TF-IDF approaches requires significant processing time and that
the BERT-based DNN takes the longest to calculate its predictions. The classifiers that
incorporated a DNN are also tested on a GPU, with the BERT based model showing a
significant improvement in prediction speed, whereas the FastText model did not.

Finally, we applied an error analysis to the results of the best-performing model on
the test set. The confusion matrix shows that some hierarchically close classes are often
confused with each other and that the classes that are the most common in the dataset
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are also more commonly predicted compared to the less common classes. Furthermore,
analysis of misclassified samples also shows many samples in which the textual description
does not adequately describe the product or service purchased, making the classification
significantly more difficult.
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Chapter 5

Prototype development

To show the practical value of this experiment, this research includes the development
of a prototype that implements a classification model to recommend ledger categories to
users of the Moneybird bookkeeping software. This chapter is split into two parts; the
first part explains the current system and the requirements of the prototype, while the
second section explains the implemented architecture and the resulting prototype.

5.1 Prototype requirements

When a Moneybird user creates a purchase invoice, the first step is to create or select
the other party in the transaction (called the contact) from a list containing all their
contacts. Once the contact has been selected, the user is shown the form described in
Figure 5.1. In this form, the user enters information required to complete the invoice,
such as description, currency, price, and tax rate. These fields need to be used by the
prediction model. The category field (this is “Vervoerskosten” in the example, which can
be translated to “Transport costs”) is the field where the prediction must be implemented.

The goal of the prototype is to show that it is possible to use the machine learning
models developed to assist users in choosing the correct ledger codes. Because of this, the
model needs to be able to predict the ledger codes for an invoice line based on the users’
input in the fields, updating its predictions when the fields change.

Another consideration is that, for the ledger accounts, each user has a subset of the
ledger codes enabled for their administration. Each of these ledger accounts is linked to a
taxonomy item which contains the RCSFI code that the model can predict. Because of this,
the prototype has to link the predicted ledger code to a taxonomy item and then determine
whether the user has enabled a ledger account using this item. The relationships between
the different database tables are described in Figure 5.2. If no ledger account exists that
is linked to the predicted taxonomy item, the prototype should show the user a suggestion
to create a new ledger account with the predicted ledger code.

5.2 Prototype architecture

For the implementation of the prototype, we decided together with Moneybird to imple-
ment a simple recommendation system that recommends the three most likely ledger codes
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Figure 5.1: A view of the form used to create purchase invoices in Moneybird

Figure 5.2: An Entity Relationship Diagram diagram describing relevant fields in
the Moneybird database structure. Each administration has many ledger accounts,
each of which links to a single Taxonomy item, which contains the RCSFI code.

according to the model. We chose to implement the FastText-based DNN that incorpo-
rates contextual data, as it achieves a top-3 accuracy score of 90% while also achieving a
high prediction speed. This makes this model well suited for a recommendation system
in which the user is shown several options to choose from, since the probability that the
correct label is one of the options is very high. The implementation of the prototype can
be split into three areas, the website front-end and back-end implementation, as well as
the creation of the prediction service. An overview showing the request structure of the
prototype is described in Figure 5.3. Moneybird uses Rails1, a Ruby2 based web frame-
work for their website. In the rest of this section, we explain the structure of the different
parts of the prototype implementation.

1https://rubyonrails.org/
2https://www.ruby-lang.org/en/
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Figure 5.3: A sequence diagram describing the flow of data to show the user a
prediction

5.2.1 Prediction service

The prediction service is developed as a simple Flask3 API. The purpose of this API is
to provide an endpoint where requests can be made containing the (con)textual informa-
tion required by the model to make its prediction. Once the endpoint receives data, it
performs the pre-processing steps such as text embedding using FastText and binarising
the categorical variables. This endpoint will return the ID of the taxonomy item in the
database that corresponds to the predicted RCSFI code.

5.2.2 Back-end implementation

In the back-end implementation, a Rails controller is created that collects all the features
required to make a prediction and sends the request to the prediction service.

Once the controller receives the prediction, the controller searches whether the admin-
istration has the three predicted ledger codes enabled, returning either the ledger account
ID and name if it exists or the name and ID of the taxonomy item if missing.

5.2.3 Front-end implementation

To create the predictions in the front-end, event listeners are created in the fields relevant
to the prediction. Fields such as the contact are already stored in the back-end at this
step of the form and should therefore not be collected by the front-end. For textual fields
such as price and description, the front-end waits until the user has stopped typing for
0.5 seconds before requesting a prediction. For the drop-down fields, the prediction is
requested when the value is changed.

To calculate the prediction, the selected currency, textual description, price, and tax
rate are extracted from the form. These values are sent to the back-end where they are
used to calculate a prediction.

3https://flask.palletsprojects.com/en/3.0.x/
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Figure 5.4: The drop-down after the prediction has been made, showing a section
of predicted codes

Once the prediction is returned, the drop-down is extended to include a section con-
taining the predicted ledger accounts (see Figure 5.4). If one of the predicted ledger codes
is not enabled for the user, a text box is shown containing links to a page where the
ledger code can be enabled (see Figure 5.5). Finally, if the user has not manually chosen a
ledger code before the prediction is made, the most probable ledger code enabled for the
administration is automatically selected for the user.

Figure 5.5: An example of the button to create a non-existing category for a
predicted class

5.3 Prototype results

Although the prototype has not yet been used by Moneybird customers, a lot of useful
information can be obtained from the implementation. Using the Network tab in Google
Chrome, we can see that the request that returns the ledger accounts takes a total time
that ranges from 100 to 200 milliseconds.

Two experienced Moneybird developers, one of which had experience with the struc-
ture of the RCSFI taxonomy, tested the prototype, giving feedback on the functionality
and value of the concept for their product. They were given an example invoice (Figure
D) to fill in on the website, as well as the option to test the predictions of the examples
they came up with themselves. The testers were asked whether they believed the predic-
tions were correct and their opinion on the design of the implementation. The general
feedback on the functionalities was positive. The developers said that the responsiveness
and quality of the predictions were generally good and that they could see the value of the
prototype to the user experience. The developers also noted some points of consideration,
the most important point being that the design of the current implementation should be
improved. An example of an improvement would be to let the user select a non-existing
ledger account and then create it when the invoice is saved. This would remove the step
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of manually creating the ledger account for the user, reducing the number of clicks that a
user would have to make. Another improvement that would greatly increase the practical
value of the concept would be to implement this system into their document scanner. In
the document scanner, users can directly upload their invoices, after which the invoice
data is automatically extracted from the invoice. Currently, users still have to manually
select the category for the scans, but this can be improved by applying the prediction to
the data extracted from the scan.

Finally, the developers mentioned the importance of the correctness of the data. Re-
cently, some work has been performed that has resulted in a larger number of ledger codes
for a company’s possessions becoming available to users. The data used for machine learn-
ing mostly consists of older data, which results in the predictions not reflecting what is
currently considered the correct ledger code by Moneybird.
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Chapter 6

Conclusion

Using the results described in Chapter 4, the main research question can now be answered
by answering the three subquestions.

The first sub-question: How do feature extraction methods such as word embeddings or
TF-IDF affect the performance of ledger category classification models? can be answered
using the results from the first experiment. When comparing classifiers using TF-IDF,
FastText and BERT, the results show that BERT and FastText significantly outperform
the TF-IDF classifiers. One possible explanation is that the BERT and FastText ap-
proaches are pre-trained in the Dutch language which, in combination with the limited
number of words per sample, makes it so that the models have an easier time generating
useful embeddings for the descriptions. Furthermore, the experiment has shown a lower
performance for the hierarchical SVC compared to the non-hierarchical version. This
could be explained through the assumption that the performance of individual layers of
the model is only marginally better compared to the non-hierarchical classifier and that
each layer of the hierarchy causes a further decrease in the performance of the model.

For the second sub-question: What is the impact of contextual data, such as company
information, on the performance of classification models designed to classify ledger codes
for invoice data?, contextual data was collected and used as input to the model to sup-
plement the textual description. The results of the experiment showed an increase in the
classification performance of each of the classifiers trained in Experiment 1. The improve-
ment in the Macro F1 score ranged from ±7% to ±15%, with the DNN model trained
on FastText embeddings improving the most. The BERT-based model showed smaller
improvements compared to DNN, which could be explained by the even lower amount of
contextual information available to the model when embedding the company name. Since
BERT takes context into account for its classification, it may perform badly when that
context is missing.

The final sub-question: How scaleable are the classification models developed and what
considerations should be made before they are deployed? can be answered by examining the
results of the third experiment. This experiment shows that the FastText DNN model is
the fastest model to create predictions from input data. There exists a small performance
difference between the version that includes contextual data and the model that does
not. The experiment showed a marginal difference in performance when the prediction
is performed on a GPU compared to a CPU, which means that it would not be required
for the model to have access to a GPU. This will simplify a potential deployment as the
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costs associated with hosting servers with dedicated graphics cards are significantly higher.

The main research question: How can classification be applied to predict the correct
ledger code for Dutch invoice lines? can now be answered. The analysis showed that it is
possible to predict the ledger codes of Dutch invoice lines using their textual descriptions;
furthermore, the research shows that the addition of contextual data such as price, con-
tact name, and company SBI codes can be implemented to increase the performance of
the models. The results of the experiments show that the FastText embedded DNN that
implemented contextual data was the highest performing model (Macro F1 score of ±71%)
that still achieved a high prediction speed, even on a CPU. Although the proposed model
is still limited in the number of classes, it works well as a proof of concept that, with the
inclusion of more training data, provides an effective way to predict a larger number of
ledger codes. Therefore, we conclude that a DNN that implements invoice descriptions as
well as contextual information, implementing a FastText embedder to process the textual
data, would be the optimal approach for the classification of invoice lines for the Dutch
bookkeeping software company.

The research is followed up by a prototype implementation. The prototype shows
that machine learning is a viable approach to suggest ledger codes. Although the imple-
mentation should be improved before the predictions can be rolled out to customers, the
prototype shows that the predictions are fast enough and generally correct. Feedback on
the prototype from Moneybird developers was generally positive, as they considered the
prediction speed fast enough to not slow down the users. The developers also suggested
improvements and additions to the implementation that should further improve the us-
ability of the model in their software.

6.1 Limitations

The results of the ablation study show that some contextual variables have a very limited
impact on the performance of the classification model. Some contextual features could
have a larger impact if further processed. For the invoice line price, the Log10 was taken
from the absolute value of the variable, which was combined with a Boolean value indi-
cating whether the price is positive or negative. However, this does not take the currency
into account. The data set sample containing the largest value for the price feature had a
value of more than 50 million in Indonesian rupiah which, when converted to euros, would
be just over three thousand. It is possible that the performance of the trained models
would have been better if currency conversion had been applied.

In the first two research questions, we optimised the Macro F1 score of the classifiers.
During the early investigation stages, we examined text pre-processing steps commonly
taken for TF-IDF embedding. In our investigation, we compared the performance of lem-
matisation and stemming and concluded that lemmatisation performs better. However,
in the third experiment, we concluded that the lemmatisation process is computationally
expensive, making the classifiers that implement lemmatisation impractical for use in a
production environment. Due to time constraints, we were unable to test the prediction
speed of the TF-IDF based classifers on stemmed text. Although models using TF-IDF
on stemmed text might perform worse compared to lemmatised text, they are likely to
achieve significantly higher prediction speeds, making them more viable for a practical
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implementation.

A significant limitation found was that it was difficult to ensure that the data set was
of sufficient quality. Although steps were taken to improve the quality, such as keeping
only the locked samples of the data set for classification (as described in Section 3.1.3),
there will still be samples of which it is very unclear whether they are properly labelled.
Even after the removal of many uncertain samples, it was infeasible to determine whether
all remaining samples were correctly labelled. This was not only due to the size of the
data set but also to the ambiguity of the sometimes extremely brief textual descriptions.
As an example, one of the samples that was classified as printwork had “bottle opener”
as a description. The administration may have ordered, for example, a bottle opener that
was engraved with their company logo, but it was impossible to determine whether this
was the case from the description. Instances such as these were often misclassified by the
models, as the textual description did not seem to match the assigned label.

In our research, we used a subset of the RCSFI taxonomy, only using 28 different labels
in our classification. Although the taxonomy contains more than one thousand different
ledger codes, only a small subset of these was sufficiently present in the data set. Due to
the large skewness of the data set, only 28 ledger codes had passed the threshold set at
5000 samples. This is a limitation to the research, as well as the prototype. For research,
it is possible that some ledger codes not included in this research could make it more
difficult to distinguish between similar classes in the classification. The small number of
classes is also a limitation for the prototype because when the correct label is not included
in the model’s training data set, the model will confidently misclassify the sample. This
can lead to users making more mistakes in their bookkeeping as they might automatically
assume that the classification is correct.

6.2 Threats to validity

A potential threat to the validity of our research might be in the preprocessing of the
data. For our research, the choice was made to remove samples where it was still possible
for a user to change the ledger code. This eliminated a significant number of samples
that could be mislabelled. However, not every administration uses the feature that locks
periods. This part of the user base has not been included in the training data of the
created models. The removal may have caused a certain part of the user base to be under-
represented in the database, which could lead to lower classification performance for these
users compared to the users of which the data are included in the training process. Simi-
larly, users who have not allowed their data to be used for analytical purposes could also
be distributed differently from users who have given permission, causing the model to not
work well for these users.

In the pre-processing steps of this research, filtering was applied to ensure that identical
descriptions could not appear in both the training and test sets. Only the first occurrence
of samples containing a duplicate descriptions were kept to ensure that the test set could
not contain samples previously seen in training. However, this also removed samples that
have an identical description as the sample that was kept but were labelled differently.
Therefore, it is possible that the label that was kept is mislabelled and that the correct
label for the sample was removed. The choice of filtering using this approach could have

56



caused the data quality to decrease.

6.3 Future works

As part of our research, we developed a prototype that implemented one of the models
to create predictions in the bookkeeping software. Although the prototype is functional,
future works should improve the prototype to further improve the user experience by, for
example, automatically creating the non-existing ledger accounts when they are selected
by the user. This will reduce the effort users have to make in categorising invoice lines
and further improve their experience.

With our research, a baseline application was built that can predict ledger codes based
on invoice data. With an accuracy of up to 75%, it is clear that a distinction can be
made between invoice lines with different ledger codes. However, there is still room for
improvement. For example, future work could investigate a system in which the model
could be fine-tuned for individual (large) administrations. The current system is designed
to work with all administrations in the data set, but this approach could limit the potential
performance of the model compared to a classifier that was adapted to work specifically
with a single administration.

Another process that could be investigated in future work is the inclusion of more la-
bels in the classifiers. Our work has only included ledger codes that have more than 5000
samples after the preprocessing, but as the available data increases as more invoices are
added to the database, more labels might be able to be included in the model. Further-
more, it is interesting to investigate whether the number of samples required for a label
to be included could be lowered, as this could also increase the number of classes that are
included and increase the practical usefulness of the application.

The results of the third experiment showed that the TF-IDF approaches were very fast
at classifying preprocessed samples, but that the preprocessing steps took very long. The
hypothesis behind this is that the lemmatisation step in the text preprocessing is very
long, causing the model to not scale very well. Future research could investigate whether
the application of stemming instead of lemmatisation harms the classification performance
of the TF-IDF based models and the impact on the speed of preprocessing.

Finally, future research should investigate the possibilities to further increase the data
quality of the data set. Currently, it is difficult to determine the correctness of the labelling
of a sample, which causes uncertainty in the true performance of the model. Removing
samples where, for example, the textual description of the invoice line is vague or not
informative might improve the performance of the model.
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Chapter 7

Glossary

API Application Programming Interface. 38, 40, 51

BERT Bidirectional Encoder Representation Transformers. 15, 16, 20, 22, 31–33, 37, 43,
47, 54, 63, 65

BPE Byte-Pair encoding. 15, 16

CNN Convolutional Neural Network. 12, 21, 22

CoC Chamber of Commerce. 36

CRISP-DM CRoss-Industry Standard Process for Data Mining. 4, 5, 23

csv Comma Separated Values. 24

DNN Deep Neural Network. 11, 32, 33, 37, 38, 43–47, 54, 55, 63, 65

LR Logistic Regression. 21

NB Naive-Bayes. 21

RCSFI Reference Classification System of Financial Information. 1, 4, 5, 23, 25, 35, 36,
49, 51, 52, 56

ReLU Rectified Linear Unit. 11, 12, 37

RF Random Forest. 21

RoBERTa Robustly Optimised BERT Approach. 16

SBI Standaard BedrijfsIndeling/Standard Business Categories. 25, 28, 34, 35, 55

SVM Support Vector Machine. 8, 20, 21

Tanh Hyperbolic Tangent. 11, 12

TF-IDF Term Frequency Inverse Document Frequency. 2, 13, 21, 30, 31, 37, 54, 57
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[16] Fábio M Miranda, Niklas Kohnecke, and Bernhard Y Renard. HiClass: a Python
Library for Local Hierarchical Classification Compatible with Scikit-learn. Journal
of Machine Learning Research, 24(29):1–17, 2023. URL: http://jmlr.org/papers/
v24/21-1518.html.
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Appendix A

Label hierarchy

Figure A.1: The label hierarchy in the data set
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Appendix B

Classifier validation and test
scores

B.1 Experiment 1

B.1.1 Naive-bayes classifier

Fold Macro F1

1 0.5696

2 0.5694

3 0.5665

4 0.5678

5 0.5701

mean 0.5687

std 0.0013

(a) Validation Macro F1-scores

Metric Score

Acc 0.6139

Macro F1 0.5582

Top 3 acc 0.7888

Top 5 acc 0.8432

(b) Test scores

Table B.1: The results for the TF-IDF embeddings with a complement naive-
bayes classifier

B.1.2 Support vector classifier

Fold Macro F1

1 0.6042

2 0.6016

3 0.6005

4 0.6021

5 0.6020

mean 0.6021

std 0.0012

(a) Validation Macro F1-scores

Metric Score

Acc 0.6458

Macro F1 0.5920

Top 3 acc 0.8230

Top 5 acc 0.8800

(b) Test scores

Table B.2: The results for the TF-IDF embeddings with a Linear SVC classifier
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B.1.3 Hierarchical Support vector classifier

Fold Macro F1

1 0.5506

2 0.5492

3 0.5494

4 0.5521

5 0.5506

mean 0.5540

std 0.0012

(a) Validation Macro F1-scores

Metric Score

Acc 0.6020

Macro F1 0.5322

(b) Test scores

Table B.3: The results for the TF-IDF embeddings with a Hierarchical Linear
SVC classifier

B.1.4 FastText-based DNN classifier

Fold Macro F1

1 0.5566

2 0.5628

3 0.5595

4 0.5601

5 0.5583

mean 0.5595

std 0.0023

(a) Validation Macro F1-scores

Metric Score

Acc 0.6221

Macro F1 0.5604

Top 3 acc 0.8278

Top 5 acc 0.9001

(b) Test scores

Table B.4: The results for the DNN using FastText embedded descriptions

B.1.5 BERT-based DNN classifier

Fold Macro F1

1 0.5976

2 0.5930

3 0.6045

4 0.5975

5 0.5953

mean 0.5976

std 0.0043

(a) Validation Macro F1-scores

Metric Score

Acc 0.6545

Macro F1 0.6020

Top 3 acc 0.8296

Top 5 acc 0.8961

(b) Test scores

Table B.5: The results for the BERT-based model using textual descriptions

B.2 Experiment 2
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B.2.1 Naive-bayes classifier

Fold Macro F1

1 0.6452

2 0.6462

3 0.6457

4 0.6472

5 0.6468

mean 0.6462

std 0.0007

(a) Validation Macro F1-scores

Metric Score Difference

Acc 0.7045 +0.0906

Macro F1 0.6382 +0.0800

Top 3 acc 0.8603 +0.0715

Top 5 acc 0.9158 +0.0726

(b) Test scores, compared to the results
from Experiment 1

Table B.6: The results for the TF-IDF embeddings with a complement naive-
bayes classifier trained using textual information, as well as contextual data

B.2.2 Support vector classifier

Fold Macro F1

1 0.7055

2 0.7092

3 0.7043

4 0.7035

5 0.7070

mean 0.7059

std 0.0020

(a) Validation Macro F1-scores

Metric Score Difference

Acc 0.7089 +0.0631

Macro F1 0.6743 +0.0823

Top 3 acc 0.8572 +0.0342

Top 5 acc 0.9080 +0.0280

(b) Test scores, compared to the results
from Experiment 1

Table B.7: The results for the TF-IDF embeddings with a Linear SVC classifier
trained using textual information, as well as contextual data

B.2.3 Hierarchical Support vector classifier

Fold Macro F1

1 0.6502

2 0.6521

3 0.6507

4 0.6518

5 0.6531

mean 0.6516

std 0.0012

(a) Validation Macro F1-scores

Metric Score Difference

Acc 0.6549 +0.0529

Macro F1 0.5987 +0.0665

(b) Test scores, compared to the results
from the same classifier in Experiment 1

Table B.8: The results for the TF-IDF embeddings with a Hierarchical Linear
SVC classifier using both textual descriptions and contextual information
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B.2.4 FastText-based DNN classifier

Fold Macro F1

1 0.7107

2 0.7021

3 0.7089

4 0.7092

5 0.7036

mean 0.7069

std 0.0038

(a) Validation Macro F1-scores

Metric Score Difference

Acc 0.7594 +0.1373

Macro F1 0.7092 +0.1488

Top 3 acc 0.9065 +0.0787

Top 5 acc 0.9490 +0.0489

(b) Test scores, compared to the results
from Experiment 1

Table B.9: The results for the DNN trained on FastText embedded textual data
and contextual data

B.2.5 BERT-based DNN classifier

Fold Macro F1

1 0.6906

2 0.6872

3 0.6914

4 0.6809

5 0.6846

mean 0.6869

std 0.0043

(a) Validation Macro F1-scores

Metric Score Difference

Acc 0.7385 +0.0840

Macro F1 0.6808 +0.0788

Top 3 acc 0.8920 +0.0624

Top 5 acc 0.9404 +0.0443

(b) Test scores, compared to the results
from Experiment 1

Table B.10: The results for the BERT-based model using contextual data
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Appendix C

Hyperparameter tuning Results

C.1 BERT without contextual data

learning rate weight decay dropout gamma accuracy F1 score loss
0.0001 1e-05 0.4 0.85 0.6537 0.5938 1.3801
0.0001 1e-05 0.4 0.9 0.6553 0.5916 1.3587
0.0001 1e-05 0.5 0.85 0.6577 0.5929 1.3436
0.0001 1e-05 0.5 0.9 0.6545 0.589 1.2963
0.0001 1e-06 0.4 0.85 0.6593 0.5983 1.388
0.0001 1e-06 0.4 0.9 0.6562 0.5922 1.2875
0.0001 1e-06 0.5 0.85 0.6582 0.5963 1.3908
0.0001 1e-06 0.5 0.9 0.6564 0.5949 1.3417
5e-05 1e-05 0.4 0.85 0.6561 0.5927 1.3204
5e-05 1e-05 0.4 0.9 0.6568 0.5938 1.3102
5e-05 1e-05 0.5 0.85 0.6584 0.5969 1.3118
5e-05 1e-05 0.5 0.9 0.656 0.5896 1.3017
5e-05 1e-06 0.4 0.85 0.6588 0.5934 1.317
5e-05 1e-06 0.4 0.9 0.659 0.5978 1.3177
5e-05 1e-06 0.5 0.85 0.6587 0.5953 1.2994
5e-05 1e-06 0.5 0.9 0.6579 0.5943 1.2998
1e-05 1e-05 0.4 0.85 0.6407 0.5611 1.2704
1e-05 1e-05 0.4 0.9 0.6465 0.571 1.2683
1e-05 1e-05 0.5 0.85 0.6414 0.5623 1.2789
1e-05 1e-05 0.5 0.9 0.644 0.567 1.2745
1e-05 1e-06 0.4 0.85 0.6391 0.5586 1.2715
1e-05 1e-06 0.4 0.9 0.6449 0.5675 1.2691
1e-05 1e-06 0.5 0.85 0.641 0.5611 1.2813
1e-05 1e-06 0.5 0.9 0.6419 0.564 1.2772
5e-06 1e-05 0.4 0.85 0.6209 0.5314 1.314
5e-06 1e-05 0.4 0.9 0.6339 0.5508 1.2861
5e-06 1e-05 0.5 0.85 0.6188 0.5271 1.3246
5e-06 1e-05 0.5 0.9 0.6323 0.5477 1.2936
5e-06 1e-06 0.4 0.85 0.62 0.5301 1.3177
5e-06 1e-06 0.4 0.9 0.6351 0.5529 1.2839
5e-06 1e-06 0.5 0.85 0.6182 0.5268 1.3262
5e-06 1e-06 0.5 0.9 0.6316 0.5474 1.2968

Table C.1: The macro F1 scores for the different hyperparameter combinations
in the BERT-based classifier trained without the contextual data
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C.2 BERT with contextual data

learning rate weight decay dropout gamma accuracy F1 score loss
0.0001 1e-05 0.4 0.85 0.7418 0.6884 1.1307
0.0001 1e-05 0.4 0.9 0.741 0.6871 1.0617
0.0001 1e-05 0.5 0.85 0.7423 0.6875 1.0843
0.0001 1e-05 0.5 0.9 0.7423 0.6856 1.0985
0.0001 1e-06 0.4 0.85 0.7437 0.6868 1.1351
0.0001 1e-06 0.4 0.9 0.7361 0.6821 1.0145
0.0001 1e-06 0.5 0.85 0.7394 0.6829 1.0963
0.0001 1e-06 0.5 0.9 0.7396 0.6855 1.1031
5e-05 1e-05 0.4 0.85 0.7419 0.6809 1.0327
5e-05 1e-05 0.4 0.9 0.7409 0.6862 1.0526
5e-05 1e-05 0.5 0.85 0.7421 0.6854 1.0273
5e-05 1e-05 0.5 0.9 0.7387 0.6795 1.0729
5e-05 1e-06 0.4 0.85 0.741 0.6861 1.0384
5e-05 1e-06 0.4 0.9 0.7427 0.6848 1.0404
5e-05 1e-06 0.5 0.85 0.7432 0.6837 1.0355
5e-05 1e-06 0.5 0.9 0.7419 0.6866 1.04
1e-05 1e-05 0.4 0.85 0.7235 0.6486 0.9823
1e-05 1e-05 0.4 0.9 0.7242 0.6509 0.9807
1e-05 1e-05 0.5 0.85 0.7202 0.6458 0.9914
1e-05 1e-05 0.5 0.9 0.7236 0.6533 0.992
1e-05 1e-06 0.4 0.85 0.7203 0.645 0.9916
1e-05 1e-06 0.4 0.9 0.727 0.6572 0.9849
1e-05 1e-06 0.5 0.85 0.7197 0.6451 1.0001
1e-05 1e-06 0.5 0.9 0.7276 0.6568 0.9946
5e-06 1e-05 0.4 0.85 0.6937 0.604 1.0444
5e-06 1e-05 0.4 0.9 0.7124 0.6337 1.002
5e-06 1e-05 0.5 0.85 0.6918 0.5989 1.0578
5e-06 1e-05 0.5 0.9 0.7064 0.6243 1.0198
5e-06 1e-06 0.4 0.85 0.6933 0.6022 1.0473
5e-06 1e-06 0.4 0.9 0.711 0.6321 1.0033
5e-06 1e-06 0.5 0.85 0.6923 0.6006 1.0561
5e-06 1e-06 0.5 0.9 0.711 0.6321 1.0108

Table C.2: The macro F1 scores for the different hyperparameter combinations
in the BERT-based classifier trained with the contextual data
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C.3 FastText without contextual data

learning rate weight decay dropout gamma accuracy F1 score loss
0.001 1e-05 0.4 0.9 0.6198 0.5486 1.3126
0.001 1e-05 0.5 0.9 0.6082 0.5326 1.3528
0.001 1e-05 0.4 0.95 0.6268 0.5611 1.3135
0.001 1e-05 0.5 0.95 0.6165 0.5479 1.3379
0.001 1e-05 0.4 0.97 0.6190 0.5539 1.3417
0.001 1e-05 0.5 0.97 0.6161 0.5498 1.3494
0.0005 1e-05 0.4 0.9 0.6111 0.5312 1.3370
0.0005 1e-05 0.5 0.9 0.5976 0.5143 1.3853
0.0005 1e-05 0.4 0.95 0.6221 0.5506 1.3149
0.0005 1e-05 0.5 0.95 0.6113 0.5354 1.3514
0.0005 1e-05 0.4 0.97 0.6216 0.5534 1.3215
0.0005 1e-05 0.5 0.97 0.6002 0.5251 1.3856
0.001 5e-06 0.4 0.9 0.6212 0.5534 1.3157
0.001 5e-06 0.5 0.9 0.6089 0.5359 1.3589
0.001 5e-06 0.4 0.95 0.6242 0.5610 1.3300
0.001 5e-06 0.5 0.95 0.6172 0.5480 1.3516
0.001 5e-06 0.4 0.97 0.6172 0.5520 1.3564
0.001 5e-06 0.5 0.97 0.6126 0.5489 1.3661
0.0005 5e-06 0.4 0.9 0.6103 0.5335 1.3373
0.0005 5e-06 0.5 0.9 0.5984 0.5166 1.3838
0.0005 5e-06 0.4 0.95 0.6227 0.5525 1.3151
0.0005 5e-06 0.5 0.95 0.6103 0.5382 1.3531
0.0005 5e-06 0.4 0.97 0.6204 0.5524 1.3330
0.0005 5e-06 0.5 0.97 0.6133 0.5445 1.3592
0.001 1e-06 0.4 0.9 0.6213 0.5535 1.3235
0.001 1e-06 0.5 0.9 0.6083 0.5366 1.3646
0.001 1e-06 0.4 0.95 0.6215 0.5571 1.3466
0.001 1e-06 0.5 0.95 0.6157 0.5511 1.3622
0.001 1e-06 0.4 0.97 0.6130 0.5464 1.3702
0.001 1e-06 0.5 0.97 0.6046 0.5397 1.4019
0.0005 1e-06 0.4 0.9 0.6107 0.5329 1.3376
0.0005 1e-06 0.5 0.9 0.5986 0.5188 1.3858
0.0005 1e-06 0.4 0.95 0.6230 0.5557 1.3219
0.0005 1e-06 0.5 0.95 0.6096 0.5386 1.3608
0.0005 1e-06 0.4 0.97 0.6182 0.5506 1.3403
0.0005 1e-06 0.5 0.97 0.6088 0.5394 1.3694

Table C.3: The macro F1 scores for the different hyperparameter combinations
in the FastText-based classifier trained without the contextual data
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C.4 FastText with contextual data

learning rate weight decay dropout gamma accuracy F1 score loss
0.001 1e-05 0.4 0.9 0.7564 0.7012 0.8504
0.001 1e-05 0.4 0.9 0.7546 0.6986 0.8547
0.001 1e-05 0.4 0.9 0.7581 0.7056 0.8486
0.001 1e-05 0.5 0.9 0.7478 0.6914 0.8636
0.001 1e-05 0.4 0.95 0.7584 0.7077 0.8646
0.001 1e-05 0.5 0.95 0.7564 0.7055 0.8526
0.001 1e-05 0.4 0.97 0.7540 0.7025 0.8853
0.001 1e-05 0.5 0.97 0.7579 0.7061 0.8615
0.0005 1e-05 0.4 0.9 0.7478 0.6917 0.8582
0.0005 1e-05 0.5 0.9 0.7372 0.6749 0.8898
0.0005 1e-05 0.4 0.95 0.7536 0.7015 0.8565
0.0005 1e-05 0.5 0.95 0.7502 0.6961 0.8628
0.0005 1e-05 0.4 0.97 0.7542 0.7013 0.8706
0.0005 1e-05 0.5 0.97 0.7564 0.7044 0.8542
0.001 5e-06 0.4 0.9 0.7583 0.7060 0.8585
0.001 5e-06 0.5 0.9 0.7481 0.6931 0.8661
0.001 5e-06 0.4 0.95 0.7570 0.7064 0.8805
0.001 5e-06 0.5 0.95 0.7572 0.7060 0.8655
0.001 5e-06 0.4 0.97 0.7482 0.6943 0.8988
0.001 5e-06 0.5 0.97 0.7484 0.6955 0.8920
0.0005 5e-06 0.4 0.9 0.7483 0.6908 0.8626
0.0005 5e-06 0.5 0.9 0.7380 0.6781 0.8892
0.0005 5e-06 0.4 0.95 0.7557 0.7039 0.8615
0.0005 5e-06 0.5 0.95 0.7499 0.6946 0.8656
0.0005 5e-06 0.4 0.97 0.7548 0.7035 0.8782
0.0005 5e-06 0.5 0.97 0.7518 0.7005 0.8678
0.001 1e-06 0.4 0.9 0.7548 0.7018 0.8732
0.001 1e-06 0.5 0.9 0.7467 0.6931 0.8748
0.001 1e-06 0.4 0.95 0.7518 0.6995 0.9034
0.001 1e-06 0.5 0.95 0.7556 0.7027 0.8917
0.001 1e-06 0.4 0.97 0.7427 0.6871 0.9208
0.001 1e-06 0.5 0.97 0.7504 0.6977 0.9076
0.0005 1e-06 0.4 0.9 0.7473 0.6915 0.8666
0.0005 1e-06 0.5 0.9 0.7391 0.6788 0.8867
0.0005 1e-06 0.4 0.95 0.7574 0.7067 0.8677
0.0005 1e-06 0.5 0.95 0.7492 0.6949 0.8726
0.0005 1e-06 0.4 0.97 0.7540 0.7031 0.8849
0.0005 1e-06 0.5 0.97 0.7520 0.7000 0.8797

Table C.4: The macro F1 scores for the different hyperparameter combinations
in the FastText-based classifier trained with the contextual data
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C.5 Linear SVC without contextual data

C ngram range fold 1 fold 2 fold 3 fold 4 fold 5 mean std
0.1 (1, 1) 0.5433 0.5448 0.5419 0.5446 0.5427 0.5435 0.0011
0.1 (1, 2) 0.5562 0.5575 0.5558 0.5604 0.5572 0.5574 0.0016
0.1 (1, 3) 0.5509 0.5522 0.5486 0.5537 0.55 0.5511 0.0018
0.3 (1, 1) 0.5692 0.57 0.567 0.5686 0.5681 0.5686 0.001
0.3 (1, 2) 0.5945 0.5934 0.5902 0.5941 0.593 0.593 0.0015
0.3 (1, 3) 0.5893 0.5896 0.5851 0.5897 0.5875 0.5882 0.0018
0.7 (1, 1) 0.5736 0.5744 0.5718 0.5731 0.5736 0.5733 0.0008
0.7 (1, 2) 0.6036 0.6024 0.6001 0.6016 0.6024 0.602 0.0011
0.7 (1, 3) 0.5992 0.5985 0.5965 0.598 0.598 0.5981 0.0009
0.9 (1, 1) 0.5727 0.5742 0.5729 0.5727 0.5731 0.5731 0.0006
0.9 (1, 2) 0.6042 0.6016 0.6005 0.6021 0.6021 0.6021 0.0012
0.9 (1, 3) 0.5998 0.5982 0.5964 0.5989 0.5978 0.5982 0.0011

Table C.5: The macro F1 scores for the different hyperparameter combinations
in the TFIDF-embedded SVC classifier trained without the contextual data

C.6 Linear SVC with contextual data

C ngram range fold 1 fold 2 fold 3 fold 4 fold 5 mean std
0.1 (1, 1) 0.6764 0.6793 0.677 0.674 0.6778 0.6769 0.0017
0.1 (1, 2) 0.6774 0.6802 0.6773 0.674 0.6771 0.6772 0.0019
0.1 (1, 3) 0.6738 0.6762 0.6747 0.671 0.6739 0.6739 0.0017
0.3 (1, 1) 0.6966 0.698 0.6946 0.6939 0.6966 0.696 0.0015
0.3 (1, 2) 0.7 0.7027 0.6992 0.6999 0.7007 0.7005 0.0012
0.3 (1, 3) 0.6977 0.7011 0.6972 0.6979 0.6989 0.6986 0.0014
0.7 (1, 1) 0.6983 0.6991 0.6959 0.6951 0.6998 0.6976 0.0018
0.7 (1, 2) 0.7055 0.7088 0.7037 0.705 0.7065 0.7059 0.0017
0.7 (1, 3) 0.7023 0.7077 0.7036 0.7025 0.7049 0.7042 0.002
0.9 (1, 1) 0.6974 0.6987 0.6952 0.694 0.6978 0.6966 0.0017
0.9 (1, 2) 0.7056 0.7093 0.7044 0.7036 0.707 0.706 0.002
0.9 (1, 3) 0.7021 0.7075 0.7045 0.7028 0.7049 0.7043 0.0019

Table C.6: The macro F1 scores for the different hyperparameter combinations
in the TFIDF-embedded SVC classifier trained with the contextual data
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C.7 Naive-Bayes without contextual data

alpha ngram range fold 1 fold 2 fold 3 fold 4 fold 5 mean std
0 (1, 1) 0.5119 0.5125 0.511 0.5119 0.5128 0.512 0.0006
0 (1, 2) 0.5458 0.5454 0.544 0.5464 0.5475 0.5458 0.0012
0 (1, 3) 0.5369 0.5369 0.5363 0.5369 0.5384 0.537 0.0007
0.5 (1, 1) 0.519 0.5203 0.5179 0.5196 0.5202 0.5194 0.0009
0.5 (1, 2) 0.5674 0.5668 0.5637 0.5665 0.5678 0.5664 0.0014
0.5 (1, 3) 0.5696 0.5694 0.5665 0.5678 0.5701 0.5687 0.0013
1 (1, 1) 0.5199 0.5206 0.5189 0.5214 0.5205 0.5203 0.0009
1 (1, 2) 0.5651 0.5653 0.5605 0.5635 0.5659 0.5641 0.0019
1 (1, 3) 0.568 0.5684 0.5625 0.5662 0.5672 0.5665 0.0021

Table C.7: The macro F1 scores for the different hyperparameter combinations
in the TFIDF-embedded Complement Naive-Bayes classifier trained without the
contextual data

C.8 Naive-Bayes with contextual data

alpha ngram range fold 1 fold 2 fold 3 fold 4 fold 5 mean std
0 (1, 1) 0.6063 0.6091 0.6097 0.6064 0.6079 0.6079 0.0014
0 (1, 2) 0.6152 0.6143 0.6157 0.6154 0.6176 0.6157 0.0011
0 (1, 3) 0.605 0.6036 0.6068 0.605 0.6062 0.6053 0.0011
0.5 (1, 1) 0.623 0.6238 0.6227 0.6214 0.6235 0.6229 0.0008
0.5 (1, 2) 0.6459 0.646 0.6458 0.646 0.6457 0.6459 0.0001
0.5 (1, 3) 0.6452 0.6462 0.6457 0.6472 0.6468 0.6462 0.0007
1 (1, 1) 0.6201 0.6208 0.6188 0.6178 0.6211 0.6197 0.0012
1 (1, 2) 0.6348 0.6362 0.6358 0.6342 0.6369 0.6356 0.001
1 (1, 3) 0.6321 0.6333 0.6322 0.6321 0.6353 0.633 0.0012

Table C.8: The macro F1 scores for the different hyperparameter combinations
in the TFIDF-embedded Complement Naive-Bayes classifier trained with the con-
textual data
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C.9 Hierarchical SVC without contextual data

ngram range C fold 1 fold 2 fold 3 fold 4 fold 5 mean std
(1, 1) 0.1 0.4845 0.4845 0.484 0.4883 0.4843 0.4851 0.0016
(1, 1) 0.3 0.5138 0.5145 0.5117 0.5161 0.5152 0.5143 0.0015
(1, 1) 0.7 0.5235 0.5233 0.5214 0.5245 0.5243 0.5234 0.0011
(1, 1) 0.9 0.5245 0.5234 0.5225 0.5248 0.526 0.5242 0.0012
(1, 2) 0.1 0.4947 0.4916 0.4921 0.4966 0.4933 0.4937 0.0018
(1, 2) 0.3 0.535 0.5333 0.532 0.5349 0.5342 0.5339 0.0011
(1, 2) 0.7 0.5491 0.548 0.548 0.5514 0.5491 0.5491 0.0012
(1, 2) 0.9 0.5506 0.5492 0.5494 0.5521 0.5506 0.5504 0.001
(1, 3) 0.1 0.4877 0.4856 0.4859 0.4902 0.4861 0.4871 0.0017
(1, 3) 0.3 0.5282 0.5286 0.5277 0.5324 0.5283 0.529 0.0017
(1, 3) 0.7 0.5455 0.5436 0.5438 0.5463 0.5446 0.5448 0.001
(1, 3) 0.9 0.5467 0.5445 0.5456 0.5475 0.546 0.5461 0.001

Table C.9: The macro F1 scores for the different hyperparameter combinations
in the TFIDF-embedded Hierarchical SVC classifier trained without the contextual
data

C.10 Hierarchical SVC with contextual data

ngram range C fold 1 fold 2 fold 3 fold 4 fold 5 mean std
(1, 1) 0.1 0.6171 0.6176 0.6174 0.6144 0.6189 0.6171 0.0015
(1, 1) 0.3 0.6395 0.6384 0.6395 0.637 0.6413 0.6391 0.0014
(1, 1) 0.7 0.6444 0.6438 0.6426 0.6427 0.6458 0.6439 0.0012
(1, 1) 0.9 0.6437 0.6428 0.6416 0.642 0.6453 0.6431 0.0013
(1, 2) 0.1 0.6178 0.6181 0.6187 0.617 0.6184 0.618 0.0006
(1, 2) 0.3 0.643 0.6437 0.6438 0.6428 0.6467 0.644 0.0014
(1, 2) 0.7 0.6492 0.6515 0.6504 0.6523 0.6523 0.6511 0.0012
(1, 2) 0.9 0.6502 0.6521 0.6507 0.6518 0.6531 0.6516 0.001
(1, 3) 0.1 0.6145 0.6154 0.616 0.6145 0.6146 0.615 0.0006
(1, 3) 0.3 0.6397 0.6416 0.6414 0.6411 0.6434 0.6414 0.0012
(1, 3) 0.7 0.6478 0.6489 0.6491 0.6491 0.651 0.6492 0.001
(1, 3) 0.9 0.6492 0.6497 0.6498 0.65 0.6509 0.6499 0.0006

Table C.10: The macro F1 scores for the different hyperparameter combinations
in the TFIDF-embedded Hierarchical SVC classifier trained with the contextual
data
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Appendix D

Prototype example invoice

Figure D.1: The invoice given to the developers testing the prototype
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