UNIVERSITY OF TWENTE.

MSc Business Information Technology
Thesis

Designing a Methodology for
the Development of Domain
Specific Languages with both
Graphical and Textual
Elements

Simon van Roozendaal

Luis Ferreira Pires
Renata Guizzardi-Silva Souza
Joao Rebelo Moreira

September, 2024

Master Business Information Technology
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Contents

1 Introduction
1.1 Motivation e
1.2 Problem Statement L
1.3 Research Goals e
1.4 Research Methodology
1.5 Outline
2 Background
2.1 Domain Specific Languages 0
2.1.1 Structure of the DSL
2.1.2 Concrete Syntaxeso
2.2 DSL Development Process
2.3 Related work
2.4 Application of Literature Review
3 Development Methodology
3.1 Overview e
3.2 Decision Phase
3.3 Analysis Phase
3.4 Design Phase
3.5 Implementation Phase
3.6 Deployment Phase
3.7 Documentation
4 Case study
4.1 Ampersand e
4.1.1 Architecture Overview
4.1.2 The RAP Environment
4.2 Developing an HDSL for Ampersand
4.2.1 Decision Phase
4.2.2 Analysis Phase
4.2.3 Design Phase
4.2.4 TImplementation Phase o L
4.2.5 Deployment Phaseo
5 Evaluation
5.1 Expert interviewso
5.2 Usability Test
5.2.1 Assessment of the test
5.3 Discussion e

13
13
14
16
18
20
22
22

23
23
23
25
27
27
29
30
34
36

Q =42 ®H O Q

Conclusion

6.1 Conclusion.o
6.2 Recommendations
6.3 Limitations
6.4 Future Research

Findings from the Literature

Systematic Literature Review

B.1 Findings

Requirements and Objectives Ampersand
Analysis of Ampersand

Design of the RAP environment
Development of the RAP environment

Usability Testing

G.1 Participants demographics Lo
G.2 results

43
43
44
46
47

49

52
54

55

57

63

65

Abstract

In the rapidly evolving field of software development, the need for highly skilled developers is
growing, yet the industry faces a significant shortage of such talent. This gap presents a pressing
challenge for organizations striving to develop complex software systems quickly and efficiently.
A promising solution lies in enabling non-technical domain experts to contribute directly to the
development process through Domain-Specific Languages (DSLs). However, while textual DSLs
offer tailored solutions for specific domains, they can be inaccessible to non-technical users due
to their complexity. This thesis addresses this issue by proposing a comprehensive methodology
for transforming a Textual Domain-Specific Language (TDSL) into a Hybrid Domain-Specific
Language (HDSL) that integrates graphical and textual elements, making the system more
intuitive and accessible.

The proposed methodology guides the entire development process, from the decision phase,
which assesses the feasibility and scope, to the design and implementation of an HDSL that main-
tains the functional integrity of the original TDSL while enhancing usability through graphical
components. The methodology is validated through a case study using the Ampersand plat-
form, a tool for generating information systems based on formal specifications. A prototype
of an HDSL for Ampersand was developed and tested through expert interviews and usability
assessments. The results demonstrate that while the graphical interface improved user accessi-
bility and efficiency, challenges remain in operability and satisfaction compared to traditional
textual interfaces.

This research provides a structured approach to developing HDSLs, contributing to a broader
inclusion of non-technical domain experts in software development processes, and offers insights
into refining HDSLs for future application through iterative testing and validation.

Keywords: Hybrid Domain-Specific Language (HDSL), Textual Domain-Specific Language (TDSL),
Graphical Syntax, Software Development Methodology, Domain-Specific Language (DSL), Am-
persand Platform, Information System, Formal Specifications, Model-Driven Engineering

Chapter 1

Introduction

The objective of this chapter is to provide an overview of the research topic, its significance,
and the goals of this thesis. It discusses the motivation behind the study, the primary research
questions, and the methodology used to address these questions. The chapter sets the stage for
the detailed exploration and analysis presented in the subsequent chapters.

1.1 Motivation

In today’s software development landscape, rapidly creating well-functioning systems is a pri-
ority, while technically skilled developers who can support this fast development are scarce.
Organizations are trying to quickly develop their software and information systems, which leads
to an increase in demand for the professionals able to generate this software [12]. A survey
from 2020 [7] found that 85 percent of recruiters and hiring managers observed a shortage of
software developers on the job, and data trends even indicate growth in the total shortage of
developers worldwide. The shortage of qualified personnel to develop systems leads to pressure
on the existing developers, further increased by the difficulty of managing and using the rapidly
evolving systems.

A method of reducing this shortage is engaging professionals from non-technical sectors in the de-
velopment process. This is strategically complementary to the traditional development practices,
but seems to have a positive effect when applied to appropriate use cases in organizations [12].
It helps facilitate direct business knowledge integration, as people can turn ideas directly into
solutions [32]. However, employing professionals from non-technical sectors is not readily avail-
able; the development process must become more suitable to accommodate this inclusion.

One significant barrier to this suitability is the complexity of software development, especially
when using various text-based syntaxes. These languages often require a detailed understand-
ing of syntax rules and structures, which can be complex and error-prone even for experienced
developers. Writing code in a textual format requires adherence to specific syntax conventions,
making it challenging for beginners or non-experts to grasp and use effectively [9]. Simplified or
more manageable explanations of what specific textual syntaxes entail are essential for under-
standing and applying them. This can be achieved by combining them with other methodologies
to achieve a higher level of abstraction. An example of this is the use of Domain Specific Lan-
guages (DSLs), which provide abstraction by being targeted towards specific domains, known
as abstraction through language [9].

Abstracting through language alone is not sufficient. While DSLs are more accessible to do-
main specialists by leveraging their expertise, the textual barrier remains a significant obstacle.
Other methods to increase accessibility involve converting a DSL with purely textual syntax

(textual DSL or TDSL) into a DSL with purely graphical syntax (graphical DSL or GDSL).
Although developers have historically preferred textual languages to visual ones, graphical al-
ternatives offer advantages in terms of visual communication [1|. By combining both graphical
and textual elements, developers can leverage the strengths of each approach to create more
expressive and effective code representations. Rather than aiming to replace textual syntax, the
goal is to supplement it with interactive and visual programming constructs tailored to specific
problem domains |1, 10].

1.2 Problem Statement

The complexity of TDSL often acts as a barrier in software development, limiting their accessibil-
ity, particularly for domain experts who lack extensive programming knowledge. While TDSLs
offer valuable domain-specific abstractions, they still require users to understand and navigate
complex syntax rules. By utilising visual elements to represent programming constructs, GDSL
offer a potential solution by lowering the entry barrier and enhancing intuitive understand-
ing through visual communication. However, transitioning from a purely TDSL to a Hybrid
graphical-textual domain specific language (HDSL) presents significant challenges. These in-
clude maintaining the expressiveness and functional integrity of the original DSL while making
it more accessible and user-friendly. This thesis delves into the transformation process, focusing
on the design, implementation, and validation of enhancing a TDSL with graphical features to
make it functional and accessible to a broader audience.

1.3 Research Goals

The primary objective of this research is to explore how a HDSL can be developed from a TDSL
to improve its accessibility and usability. To achieve this goal, the research focusses on the
following specific objectives:

o Develop a Comprehensive Methodology: formulate a systematic approach for developing a
HDSL from a TDSLs. This methodology addresses the preservation of functional integrity
while enhancing usability and accessibility.

o [Implement a Prototype: apply the developed methodology to create a HDSL from an
existing TDSL. This prototype has been assessed by using the validation method.

1.4 Research Methodology

This thesis adopts the Design Science Research Methodology (DSRM) to guide the transforma-
tion of a TDSL into a GDSL. The research followed the six stages of DSRM as depicted in figure
1.1, based on the research of [27].

1. Problem Identification and Motivation: this stage has been reported in the previous sec-
tions, highlighting the challenges faced by domain experts due to the complex syntax of
TDSLs and the potential of HDSLs to make the development process more accessible.

2. Define objectives of a Solution: the objective has been set; to develop a comprehensive
methodology that can systematically guide the development of HDSLs from TDSLs. The
aim of the methodology is to lower the entry barrier to programming for non-technical users
by enhancing intuitive understanding through visual representations, and ensure that the
functional integrity and expressiveness of the original TDSL are preserved in the resulting
HDSL.

Process iteration

! I ‘ L |

Identify I Define [=»| Design& |3 D — —| Communication
Problem jectives of a Devel
& Motivate Solution Apply methodology Validate workings of Conclusion and
The methodology to by recommendation
Normal Process Highlight Develop for HDSL usertesting
sequence challenges with for Develop Documentation and

description of the
methodology

Ampersand in a
Prototype HDSL

Validate contentof | |
methodology by
domain experts

HDSL
development

TDSLs

Inference
Theory

Emphasize
potential of HDSLs
for accessibility

How to knowledge
Metrics, Analysis
Knowledge
Disciplinary
knowledge

Design &
Development

Problem- Objective- Client/
Centered Centered Context
Centered

Initiation Solution o Initiated
initiation

Possible Research Entry Points

FIGURE 1.1: Overview of the implemented DSRM based on the work of [27]

3. Design and Development: a methodology for developing a HDSL from a TDSL has been
developed. This methodology acts as a blueprint outlining the necessary steps for the
development .

4. Demonstration: the developed methodology has been applied to a concrete environment
(prototype) to showcase its usability and effectiveness in guiding the development process.
This prototype served to demonstrate the feasibility and effectiveness of the development
process outlined in the methodology.

5. Ewvaluation: the methodology has been validated using a validation approach, including
usability testing with potential users of the demonstrated prototype and assessment of the
methodology itself by domain experts by interviews.

6. Communication: the methodology and demonstration of this research is documented com-
prehensively. Additionally, the conclusion and recommendation of the research, including
summarizing key findings, contributions, and implications for future research are docu-
mented.

1.5 Outline

This thesis is structured following the DSRM as follows: Chapter 2 provides a foundational
understanding of the research environment, highlighting the differences between textual and
graphical formats and reviewing existing transformation methods. Chapter 3.1 details the de-
velopment of a methodology to transform a TDSL into a HDSL. Chapter 4 demonstrates the
application of this methodology through a case study with the Ampersand platform. Chapter
5 evaluates the methodology by assessing the HDSL prototype using expert interviews and us-
ability testing. Finally, Chapter 6 concludes with a synthesis of the research findings, offering
recommendations for future research and discussing the broader implications of the study.

Chapter 2

Background

The objective of this chapter is to provide a foundational understanding of DSLs, emphasiz-
ing the differences between textual and graphical formats and reviewing a prominent existing
methodology for their development. A review of work with similar research question as our re-
search is also included, showcasing various approaches and techniques used in previous research
to development of (H)DSLs. The result is a comprehensive background that sets the stage for the
subsequent development of the methodology for the HDSL. It provides the necessary theoretical
framework and context, enabling a better understanding of the challenges and considerations
involved in developing HDSL from TDSLs

2.1 Domain Specific Languages

DSLs are specialized programming languages designed to address the particular requirements of
a specific application domain. Unlike general-purpose programming languages (GPLs) such as
Java or Python, DSLs are specifically designed to be used in particular domains or fields, thereby
facilitating more effective communication and operational efficiency within those domains. In
contrast to the broad and detailed syntax of GPLs that are designed to handle a wide variety
of programming tasks, DSLs simplify interactions by focusing only on those elements that are
relevant to the specific domain [18].

Even though the term 'Language’ suggests that DSLs consist of written text, they actually
exist in various formats like text-, graphical-, or sound-based. TDSLs have textual syntax but
specifically include syntax and semantics optimized for a particular domain, while GDSLs use
visual representations to specify software solutions or specific problems within a domain. More
types of DSLs exist; for example, Audio DSLs are specifically designed for working with audio
and sound. In this research, however, we will focus on GDSLs and TDSLs.

The use of DSLs is a method of abstraction through language definition [9] since by provid-
ing a higher level of abstraction and domain specificity it simplifies the programming task. This
is particularly beneficial in environments where domain experts may not necessarily be trained
programmers, but are participants in the software development process. The design of DSLs al-
lows these professionals to engage with the development process more intuitively, using languages
that encapsulate the complexity of programming into a more accessible form.

2.1.1 Structure of the DSL

According to [26], a DSL has one Abstract Syntax, (possibly) multiple Concrete Syntaxes and
Semantics.

. DSL

0.1 + 1.*
g:pna:ﬁir:; w1 Concrete Syntax
) ’ Abstract Syntax h /
pecification |, g, 1 +specification |y g1
Concrete Syntax
Metamodel . ification |, 1 Mapping

1
Metamodel

At
AN

FIGURE 2.1: An overview of the elements of a DSL

The Abstract Syntax represents the structural part of a language, independent of any spe-
cific representation or notation. It defines the core concepts of a language and the relationships
between them, but without detailing how these elements are written or displayed. For instance,
in a DSL for a banking application, the abstract syntax would define entities like Account, Trans-
action, and Customer without specifying how these elements are shown in the user interface or
stored in a database.

It is crucial to define the core concepts and constructs of the DSL at an abstract level, helping
to ensure that the DSL captures the essential elements of the domain without being tied to a
specific representation. Abstract syntax serves as the foundation for both the development and
understanding of the DSL.

A Metamodel is essentially a description of the abstract syntax of a DSL. It specifies what
elements are possible in the language and how they can be connected or related. It is a model of
the models that can be built using the DSL. The concrete syntax must conform to the abstract
syntax as defined by the metamodel. This means whatever is expressible in the concrete syntax
should be mapped to the structures and constraints set by the metamodel. For instance, if
the metamodel defines an entity "Account" with attributes "balance" and "accountNumber,"
the concrete syntax must provide a way for users to specify these attributes, whether through
textual commands or graphical inputs. Establishing a metamodel is essential, as it provides a
structured framework that defines the relationships and constraints of the language constructs.
This metamodel acts as the blueprint for the DSL, ensuring consistency and coherence in its
design.

The Semantics involves defining the meaning of the constructs of the language—how they be-
have during execution or simulation, as well as the rules that must be followed at all times.
While DSLs always have semantics to ensure the correct interpretation and behaviour of their
constructs, it is not always explicitly defined. Specifically, this pertains to two main types of
semantics: static and behaviour semantics.

Static Semantics define the rules that must be followed at all times, regardless of execution.
These rules ensure the integrity and validity of the DSL constructs before execution. For ex-
ample, static semantics in a banking DSL might enforce that each account must have a unique
account number and that certain fields cannot be left empty.

Behavioural Semantics describe how the system’s state changes in response to the execution

of DSL constructs. These can be formal or informal:

e Formal Semantics: involves using rigorous methods such as attribute grammars, rewrite
systems, and abstract state machines to define the operational, denotational, and axiomatic
aspects of the DSL. For example, in a banking DSL, formal semantics might specify that
an account balance must always be non-negative.

o Informal Semantics: utilizes natural language descriptions supplemented by illustrative
examples. For example, in a banking DSL, informal semantics might describe that if a
withdrawal exceeds the account balance, the transaction is denied.

A Concrete Syntax refers to the actual notation or representation of the language. It details
how the elements defined in the abstract syntax are expressed, either textually or graphically. A
DSL can have multiple concrete syntaxes, which should all adhere to the same abstract syntax.
For example, whether a Transaction is represented as a table of values in a Ul or as XML
elements in a configuration file.

2.1.2 Concrete Syntaxes
Textual Languages

Textual languages in the context of software development are languages with text-based syntaxes,
which are used to represent models of software systems. These models represent the abstract
structure and behaviour of a system. This method of development is seen as the traditional
way of representing programming constructs using text-based symbols and structure [1|. Often
referred to as ‘programming’ or ‘writing code’, widely used programming languages like Python
or Java are practical implementations of textual syntax-based development. Text is used to
instruct the system to perform tasks, following specific syntactic rules unique to each language.
The core components of textual syntax are its syntax and semantics; the syntax describes the
structure of valid sentences, and the semantics assign meaning to these sentences [10].

Graphical Languages

Graphical languages leverage the manipulation of graphical elements like icons, blocks, diagrams,
and forms to represent program logic and structure in order to construct software applications
[15]. According to Burnett [4], this allows developers to use the spatial relationships between
elements by programming in a multidimensional space, since the y and x-axis of the screen and
even layers of elements are now available. The usage of space and graphical elements are used
to hide the complex implementation details from users and allows them to focus on the logic
and structure of their programs without getting bogged down in technical intricacies [15].

Hybrid graphical-textual languages

While traditionally DSL are either text-based or graphical, they are increasingly being developed
as hybrid graphical-textual languages to harness the strengths of both forms. These hybrid
languages combine the detailed expressiveness of textual syntax with the intuitive clarity of
graphical syntax, creating a versatile tool for domain experts and developers alike. It typically
incorporates an Abstract Syntax that defines the core concepts and relationships independent
of their visual or textual representation. This abstract syntax underlies both the graphical and
textual concrete syntaxes, ensuring that they are semantically aligned and interchangeable:

o Textual Concrete Syntax: involves the traditional text-based representation of models,
where programming constructs are specified using textual symbols within a structured
syntax. This approach is valued for its precision and ability to handle complex expressions
and detailed specifications.

o Graphical Concrete Syntax: utilizes visual elements such as icons, blocks, and diagrams
to represent the components of the DSL. This method emphasizes ease of understanding
and interaction, particularly useful for visualizing relationships and hierarchies within the

domain.
DSL
0.1 1--*;: 1
oy Fa ™y
Behavioral ; Graphic Concrete Textual Concrete
Semantics Syntax Syntax
| —
Abstract Syntax __
+specification |, g 4 +specification), g4 +eped 0.1
Graphical Concrete Textual Concrete
Metamodel %%ﬁpedﬁcaﬁm 1 e Syntax Mapping Syntax Mapping
1 2
\‘2’% Metamodel _— | ‘
p +iangst

FIGURE 2.2: An overview of the elements of a HDSL

The hybrid approach involves a seamless integration between these two syntaxes, often fa-
cilitated by development environments that support live synchronization between the graphical
and textual views. Changes made in the graphical interface are instantly reflected in the textual
code and vice versa, enhancing the coherence and usability of the Hybrid languages.

2.2 DSL Development Process

Developing a DSL involves a process that integrates both theoretical underpinnings and practical
considerations to address specific needs within a domain. Based on the comprehensive work
by [18], the development of a DSL can be broken down into several distinct phases, each requiring
careful attention to detail and a deep understanding of both the domain and the technology.

Decision phase

The decision to develop a DSL should be driven by a clear need to address specific problems
within a domain that cannot be effectively solved by GPLs. This phase involves identifying
potential gains in productivity and expressiveness that a DSL can offer over existing solutions.
[18] emphasize the importance of evaluating the scope and feasibility of a DSL in the initial
stages, including the consideration of the potential user base and the specific tasks that the DSL
will simplify.

Analysis phase

Critical to the success of a DSL is a thorough domain analysis, which involves gathering and
formalizing knowledge about the domain. Most DSLs investigated by [18| use an informal do-
main analysis method for this, but this also can be done formally by following a methodology.
Informal domain analysis typically involves gathering and formalizing knowledge about the do-
main without strictly following any predefined methodology. This approach relies heavily on the
expertise and intuition of domain experts.

o Knowledge Gathering: collecting explicit or implicit domain knowledge from various sources
such as technical documents, domain experts, existing code, and customer surveys.

e Terminology and Semantics: developing domain-specific terminology and semantics, which
can vary in their level of abstraction, to create a shared understanding among stakeholders.

Formal domain analysis involves using structured methodologies to systematically capture
and formalize domain knowledge. Various formal methodologies such as FODA (Feature-Oriented
Domain Analysis) [11], DARE (Domain Analysis and Reuse Environment) [8], and DSSA
(Domain-Specific Software Architectures) [34] are employed. These methodologies provide frame-
works and tools for systematically capturing domain knowledge and guiding the reuse of imple-
mented components. This approach aims to produce a detailed domain model that includes:

e Domain Definition: defining the scope of the domain and its boundaries.

e Terminology: developing a comprehensive vocabulary or ontology that captures the essen-
tial concepts and their relationships within the domain.

e Domain Concepts: detailed descriptions of domain concepts, supported by feature models
that describe the commonalities and variabilities of these concepts and their interdepen-
dencies.

Design phase

The design of a DSL involves the careful planning of its syntax and semantics. The syntax should
be intuitive and aligned with the domain’s terminology, while the semantics must accurately re-
flect the domain operations. [18] discuss different approaches to DSL design, including the use of
existing language constructs (or language exploitation). In most cases, one would implement a
language by defining a model covering all the necessary concepts together with their attributes.
This language model builds the foundation of the language to model the desired aspects [36].

Identify Domain Concepts:

e Analyse the gathered knowledge on the domain to identify key concepts and operations
that the DSL needs to support.

Define Syntax and Semantics:

e Design the syntax to be user-friendly and aligned with the domain’s terminology, ensuring
that it is intuitive for the end-users. This involves selecting appropriate keywords, symbols,
and notations.

e Design the semantics to accurately reflect the domain operations, ensuring that the DSL’s
behaviour is consistent with domain-specific requirements.

Prototype and Iterate:

e Develop prototypes of the DSL to be used to gather feedback from domain experts. Based
on this feedback, the design is iterated to refine syntax, semantics, and usability.

Implementation phase

The implementation of a DSL is a crucial phase where the theoretical designs are translated
into practical software tools. As described by [18], this process involves coding, integration,
and preliminary testing of the DSL components according to the predefined specifications. The
implementation strategies are chosen based on the DSL’s characteristics, which dictate the most
suitable approach among interpreters, compilers, and embedding within existing environments.

e [nterpretation: consists of creating an interpreter that executes the DSL commands di-
rectly. It allows for quick changes and testing, but might suffer from lower performance
compared to compiled languages.

o Compilation: consists of compiling or translating the DSL into a lower-level language, by
which performance and integration with other systems can be enhanced. This requires a
deep understanding of both the target language and the runtime environment.

o FEmbedding: consists of incorporating the DSL into an existing programming environment
that can leverage existing tools and frameworks, thus reducing development time and
learning curves.

The implementation often includes preprocessing, where DSL code is converted into a format
that existing compilers or interpreters can process. Macros can be used to extend the capa-
bilities of the host language, allowing simpler implementation of complex DSL features. Addi-
tionally, the integration with current development tools is crucial to ensure that the DSL can
be developed, maintained, and used efficiently within the existing software infrastructure. This
integration involves enhancing or creating tools such as syntax-highlighting editors, debuggers,
and automated consistency checkers, which strengthens both the usability and maintainabil-
ity of the DSL. Performance tuning is also a critical component of this phase. It may involve
domain-specific optimizations like partial evaluation, which precomputes invariant parts of the
DSL code, or optimizations that restructure the DSL code to improve performance.

Deployment phase

Although [18] consider the deployment phase outside the scope of their article, the phase has
practical importance. Deployment involves rolling out the DSL to its intended users and ensur-
ing its integration within existing systems and workflows. This phase includes comprehensive
documentation, training sessions, and support mechanisms to facilitate adoption. Moreover,
continuous monitoring and maintenance are required to address any emerging issues and to
update the DSL as the domain and needs of the users changes.

2.3 Related work

To prepare for this project, relevant literature was investigated into that addresses questions
similar topics to the research questions. The literature was identified through multiple searches
using Scopus and Google Scholar, extended with snowballing by an iterative process of selecting
a growing set of papers based on the references of the (already included) set of papers. This
process was iterated until the literature collection was deemed sufficiently, and yielded a set of
literature sources covering various techniques, summarized in Table 2.1. The insights gathered
from the reviewed articles have been used in developing and refining the new methodology for
transforming a TDSL into an HDSL.

TABLE 2.1: Literature sources with similar topics

Article Title

Predoaia et al. 2023 [29] Towards Systematic Engineering of Hybrid Graphical Textual Domain
Specific Languages

Predoaia et al. 2023 [30] Streamlining the Development of Hybrid Graphical-Textual Model Editors
for DSL

Denkers & Vollebregt 2018 [?] Migrating Custom DSL Implementations to a Language Workbench (Tool
Demo)

Cooper & Kolovos 2019 [5] Engineering Hybrid Graphical-Textual Languages with Sirius and Xtext

Pérez Andrés et al. 2008 [28] Domain Specific Languages with Graphical and Textual Views

Krieger 2024 [14] HyLiMo: A Textual DSL and Hybrid Editor for Efficient Modular Dia-

gramming
Scheidgen 2008 [33] Textual Modelling Embedded into Graphical Modelling

Maro 2015 [17] A DSL Supporting Textual and Graphical Views

Toussaint & Baar 2018 [36] Enriching Textual Xtext-DSLs with a Graphical GEF-Based Editor

[30] present a framework to systematize the engineering of HDSLs. The authors identify
key challenges in maintaining the functional integrity of DSLs while introducing graphical com-
ponents. Their methodology employs declarative specifications to designate parts of the DSL
as graphical or textual, facilitating clear delineation and integration of different syntax types.
They propose using the Sirius Viewpoint Specification Model (VSM) for the graphical syntax
and formal grammars for the textual syntax. This combination ensures that each part of the
DSL is optimized for its specific role, thus maintaining consistency across different representa-
tions and enhancing error reporting mechanisms. This approach addresses the complexity of
managing HDSLs by reducing the reliance on handwritten code, automating the generation of
"glue code’ required for integrating textual and graphical components, and establishing methods
for uniform error reporting and model consistency enforcement as the DSL evolves.

In their subsequent work, [29] extend the research to focus specifically on the model editors
used for managing HDSLs. This paper introduces 'Graphite,” a tool designed to streamline the
development of hybrid graphical-textual model editors for DSLs while minimizing manual cod-
ing. This approach integrates the Sirius graphical modelling framework and the Xtext textual
modelling framework, focusing on DSLs that predominantly use graphical elements but are en-
hanced with textual syntax for expressing complex behaviours. They tackle the challenges of
maintaining functional integrity and consistency across the graphical and textual components
through model-driven engineering techniques, aiming to automate the integration and minimize
errors. The Graphite tool is pivotal in facilitating the seamless combination of graphical and
textual elements, ensuring that the DSLs remain robust and user-friendly.

[6] propose a methodology for migrating custom DSL implementations to a language work-
bench, specifically using the Spoofax platform. Their methodology emphasizes maintaining
the integrity of existing DSLs while integrating graphical enhancements. The process involves
transforming existing DSL implementations, which were originally based on XML and processed
through Python scripts, into a more robust and feature-rich environment provided by Spoofax.
This transformation allows for the preservation of existing functionality and backward com-
patibility while introducing improved syntax and integrated development environment (IDE)
support. The approach is demonstrated through the migration of two specific types of DSLs:
Interface Definition Language (IDL) and Océ Interaction Language (OIL), focusing on modular
language definition to facilitate the transition and integration between graphical and textual
components.

[5] discuss the integration of the Sirius and Xtext frameworks to engineer hybrid graphical-
textual languages within the Eclipse Modelling environment. They focus on the requirements
for embedding TDSLs into graphical modelling workbenches to harness the strengths of both
textual and graphical representations. This includes using Sirius for defining graphical nota-
tions and Xtext for embedding textual syntax, aiming to maintain the integrity and enhance the
functionality of DSLs. Key activities involve addressing challenges such as refactoring, code gen-
eration, and synchronization between graphical and textual components, highlighting the need
for comprehensive tool support to manage the complexity introduced by integrating these two
frameworks. The conclusion is that a modelling workbench supporting hybrid graphical-textual
concrete syntaxes is needed to close the gap between models and code.

10

[28] present a methodology for defining DSLs that incorporate both graphical and textual views.
Their approach leverages the metamodel ling tool AToM3 and employs triple graph grammars
(TGG) for transforming and synchronizing the metamodel elements into a DSL that supports
both views. The methodology begins by defining the metamodel of the language, from which
subsets corresponding to different diagram types or viewpoints are derived. Each viewpoint is
then equipped with graphical or textual concrete syntax as needed, using triple graph transfor-
mation systems to ensure consistency and integration of these viewpoints. This method aims to
maintain the integrity of the original DSL while enriching it with graphical and textual capabil-
ities for enhanced usability and expressiveness.

The research by [14] introduces HyLiMo, a framework that supports a modular approach for
hybrid diagramming combining graphical and textual elements. The methodology focuses on
integrating a DSL for textual inputs and a live-syncing graphical editor, facilitating both the
manipulation of diagram layout and the programming of complex layout behaviours. The DSL
allows users to define and manipulate elements graphically and textually, ensuring consistency
and interactivity between both views. This approach utilizes web technologies to create a versa-
tile environment for UML class diagrams, aiming to enhance usability and customization through
programming constructs, while maintaining the visual clarity and functional integrity of the di-
agrams.

[17] explores methodologies for developing a DSL that supports both textual and graphical
views, using a combination of EMF, Xtext, and GMF tools. The methodology focuses on trans-
forming an existing GDSL into a textual format without increasing maintenance efforts. This
process includes the creation of a prototype that operates in both modalities and examines the
ease and efficiency of transitioning between these views. Key elements of the methodology in-
volve the use of model transformations to ensure consistency between the graphical and textual
representations, and the application of Xtext for constructing the TDSL environment. The ap-
proach aims to maintain the functional integrity and synchronization of both DSL forms through
efficient model transformations and integration strategies.

In [36], the authors outline a methodology to enrich TDSLs created with Xtext by integrating a
graphical editor using the GEF (Graphical Editing Framework). They focus on maintaining the
functional integrity of the original DSL while allowing for graphical manipulation. The process
involves using the existing Xtext grammar of a DSL, supplemented with validators and code
generators, and augmenting this with a GEF-based graphical editor. This integration allows
for a hybrid representation, where elements of the DSL can be manipulated both textually and
graphically. The approach ensures that changes in the graphical interface reflect accurately in
the textual model through synchronization, preserving the underlying DSL’s consistency and
functionality.

2.4 Application of Literature Review

Overall, the reviewed studies exhibit a similar structure to the methodology proposed by [18].
Even though they do not explicitly divide the process into the distinct phases outlined by Mernik,
the reviewed studies use comparable steps and approaches. The information and activities from
these studies have been categorized into the various phases of DSL development, which have
subsequently informed the activities in the newly developed methodology.

An explanation of the activities of the papers, separated into the five phases, can be found
in Appendix A in Table A.2. In addition to this, an overview of the software used in the studies

11

is provided in Appendix A in Table A.1. This section offers insights into the technological tools
and frameworks employed in the research, which are critical for understanding the practical
aspects of DSL development.

Finally, the individual requirements for the final HDSL, derived from the various studies, are
also extracted and presented in Appendix A. These requirements serve as a foundation for the
development of the HDSL, ensuring that the final product meets the standards and addresses
the needs identified in the existing research.

12

Chapter 3

Development Methodology

This chapter presents the proposed methodology for deploying HDSLs from TDSLs, integrating
both textual and graphical elements. Building upon the foundational research of [18] outlined
in Section 2.2, this chapter modifies and extends the established methodology to address the
unique challenges and requirements of HDSL development.

The methodology presented in this chapter was designed and developed following an in-
depth examination of [18]’s original framework, as outlined in Section 2.2, and by reviewing
relevant case studies that aimed to integrate textual and graphical DSLs. This chapter focuses
on detailing the design and development of the methodology, building on the foundations laid
in earlier chapters. It forms a critical part of the overall research, as it bridges the theoretical
groundwork discussed in Chapter 2 and the practical demonstration provided in Chapter 4,
ensuring a systematic transition from problem identification to the solution’s implementation.

The result is a blueprint that can serves as a guideline to develop an HDSL for a purely
TDSL. Each phase of the methodology is described in detail and illustrated by activities and
sub-activities involved in each phase. For clarity and guidance, an overview of the methodology
is provided in Figure 3.1, and summaries of the intended outcomes for each phase are included.

3.1 Overview

The methodology focuses on developing TDSLs into HDSLs that integrate both graphical and
textual elements. This systematic approach enhances usability and accessibility, making DSLs
more intuitive for users while preserving the expressiveness and functional integrity of the orig-
inal textual format

The methodology unfolds through several phases, each tailored to achieve specific outcomes.
Initially, in the Decision Phase the feasibility of the transformation is assessed and the scope of
developing the existing TDSL into an HDSL is defined. The activities in this phase include eval-
uating the DSL’s current capabilities, identifying user needs, defining enhancement objectives,
and selecting the development environment. The result is a clearly defined set of requirements
and objectives for the HDSL, aligning the project with user expectations and technological ca-
pabilities.

Following this, in the Analysis Phase a detailed examination of the existing TDSL is performed
to identify components suitable for graphical representation. This phase focuses on examining
domain-specific elements that could benefit from visualization, thereby improving clarity and
user interaction. The outcome is a detailed domain analysis that indicates which elements of the
DSL will be developed into graphical representations, aligned with the overall goals of the HDSL.

In the Design Phase, an integrated syntax and semantics framework is designed to combine

13

Requirements &
Objectives

Decision

Determine the practicality and
scope of transitioning to a hybrid DSL.

Environment
selection

An a lyS | S Domain model Technical
Analyse the current textual DSL to determine annotated Models
elements suitable forgraphical enhancement.

Design Graphical Meta model

i EL t: annotated
Design

R . N Graphical Syntax interaction in
Design an integrated syntax and semantics HDSL
framework for the hybrid DSL.
Implementation Hybrid

Graphical Views .
environment

Textual Views
Develop the hybrid DSL using appropriate
software engineering techniques.

Depl‘oyment Documentation Finished HDSL

F1GURE 3.1: Overview of the language development methodology

textual and graphical elements. The activities in this phase revolve around designing a coherent
structure for the HDSL that supports both graphical and textual syntaxes in a unified environ-
ment. The resulting design specifies the interactions between graphical and textual components,
ensuring that modifications in one are accurately reflected in the other. Additionally, the nota-
tion of the new graphical concrete syntax is designed.

The Implementation Phase is where the designed HDSL is developed into a functional pro-
totype. This involves implementing the HDSL using the selected environment from the decision
phase to ensure seamless integration of textual and graphical elements. The result is a fully
functional HDSL that allows users to switch between or simultaneously use both graphical and
textual components, with real-time synchronization of changes.

Each phase is structured into three sections: goals, activities, and results. The first section
outlines the general objectives of the phase. The second section consists of two main activities,
which are further divided into various steps. These activities are explained and substantiated in
detail. Finally, the results section lists the specific components that should be produced upon
completion of the phase. Important to note that some activities may already be completed
during the initial development of the TDSL. Consequently, certain steps within the activities
may be omitted during the development process if the desired outcomes of those activities have
already been achieved.

The overview of the methodology is depicted in figure 3.1. The rows correspond to the various
phases in the development process, with the expected outcomes of each phase represented within
the blocks. The arrows connecting the blocks illustrate the flow and interdependencies of the
components. For instance, the requirements and objectives derived from the Decision Phase are
subsequently utilized in the Analysis Phase to identify the key concepts that the HDSL must
support, as indicated in the ’Annotated domain model’. Furthermore, these requirements and
objectives also inform the design of the graphical elements for the graphical syntax.

3.2 Decision Phase

Goal: Determine the practicality and scope of transitioning to an HDSL.

The development of an HDSL from a TDSL must be motivated by the need to address specific
challenges that cannot be effectively resolved using only a textual approach. In this phase an
assessment is made on whether the hybrid model is feasible within the current technological

14

and operational constraints and examines the potential improvements it could bring to the
users. Objectives and requirements for the implementation should be defined, and a development
environment must be chosen.

Activities

TABLE 3.1: The “Enhancement Objectives” activity along with the steps it consists of.

Enhancement Objectives: define what improvements the HDSL aims to add com-
pared to the TDSL.

o Gather feedback from stakeholders and users to identify weaknesses of the current
TDSL.

o Evaluate the current DSL tool(s) to identify technological and functional gaps.

o Outline and prioritize enhancement objectives to focus development efforts on key
user experience improvements.

o Conduct a literature review to gather requirements.

Defining the enhancement objectives for an HDSL is critical to direct the development efforts
towards specific improvements that will increase the TDSL. [29], [5], [14], and [36] all emphasize
how these enhancements can streamline the development process and thereby making the HDSL
more effective and complete. [6] emphasizes the importance of only undertaking the develop-
ment of the HDSL with strong business and technical justifications, since the process can lead
to unnecessary complications and resistance from users accustomed to the old systems.

The objectives should be clearly defined to ensure that the HDSL meets the evolving needs
of its users and leverages the strengths of both textual and graphical components effectively.
This is essential for creating a more intuitive and productive environment for developers and
domain experts, enhancing their ability to understand, navigate, and manipulate the HDSL
efficiently. A proper methodology to define the requirements should be used; examples are the
MoSCoW method [2] or Rupp’s method [31].

TABLE 3.2: The “Feasibility and Scope” activity along with the steps it consists of.

Feasibility and Scope: determine whether the desired HDSL can realistically be de-
veloped within the existing constraints and whether it addresses the needs of its intended
users.

o Evaluate existing environments, tools and technology stacks for their capability to
support HDSL integration.

o Assess the integration capabilities of frameworks to ensure compatibility in a unified
development environment.

o Conduct detailed requirement analysis of technical requirements and user needs to
define the scope of the HDSL.

The HDSL must be both feasible and strategically beneficial, aligned with user requirements.
Assessing the existing technological landscape helps determine if the current tools and frame-

15

works can support the nuanced demands of an HDSL, such as the integration of textual and
graphical elements, without losing functionality or degrading the user experience [14|. The in-
tegration capability of frameworks is essential to ensure that the HDSL leverages the strengths
of both textual and graphical components effectively, providing a cohesive user experience and
maintaining the functionality of the DSL [36].

Conducting a detailed analysis of technical and user needs is crucial for defining the scope
of the HDSL. This analysis helps in crafting a DSL that is technically sound, meets the practi-
cal needs of users, and addresses specific operational challenges identified through stakeholder
engagement [14].

Results

The decision phase should result in a clearly defined set of requirements and objectives for the
HDSL. These requirements should be adhered to, and kept in mind, when processing the rest of
the development of the HDSL. Based on the requirements, (a) software tool(s) should be selected
to design the HDSL, and an environment to develop the HDSL in should be selected. The design
tool and development environment can be the same software, but this is not necessary. This
depends on the objectives and requirements of the HDSL. A set of example requirements and
objectives, and software tools identified based on the literature, can be found in appendix C.

3.3 Analysis Phase
Goal: Analyse the current TDSL to determine elements suitable for graphical enhancement

Critical to the success of an HDSL is a thorough domain analysis, which involves gathering and
formalizing knowledge about the domain [18|. For the development of the HDSL, a more specific
look into the domain aspects which would benefit from visual representation is needed. The ob-
jective is to identify core concepts and operations that would benefit from visual representation,
thus simplifying user interactions and improving overall comprehension.

Activities

TABLE 3.3: The “Domain Examination” activity along with the steps it consists of.

Domain examination: examine the domain of the DSL to identify points of interest
on domain level.

o Retrieve analysis of the domain of the current DSL, if not available:
- decide on a domain analysis methodology, or a informal analysis.
- extensively analyse the domain, specifically on relevance to the intended graphical
enhancements.

o Separate key concepts, operations, and relationships within the domain that would
benefit from graphical, textual or a dual representation on a domain level.

As with the development of a TDSL, a thorough domain analysis is essential, this time with
the primary goal of identifying the elements of the domain that benefit the most from graphical
(or dual) representation. If an existing domain analysis is available, it can be utilized for this
purpose. Otherwise, this analysis can be conducted either formally or informally, as mentioned

16

in Section 2.2. A formal domain analysis uses structured methods to systematically capture
and model domain knowledge, resulting in precise definitions and relationships. In contrast, an
informal domain analysis relies on the expertise of domain experts and sources such as technical
documents or interviews, offering more flexibility but less structure. The choice between formal
and informal methods depends on the specific needs and constraints of the project.

Examining the domain lays the foundation for the development of the HDSL. [29] and [36]
emphasize that the choice between textual and graphical syntax should depend on the nature
of the domain elements—textual for detailed, behaviour-oriented aspects, and graphical for vi-
sualizing structural relationships and processes. This strategic differentiation can drastically
improve the usability and effectiveness of the DSL by aligning the representation mode with the
inherent characteristics of the domain content.

TABLE 3.4: The “Technical Examination” activity along with the steps it consists of.

Technical Examination: examine the metamodel and the current concrete syntax of
the TDSL to identify points of interest on model level

o Collect all existing documentation and models related to the TDSL to form a com-
prehensive base for the HDSL development.

o Retrieve or develop the metamodel.

o Identify the elements corresponding to the domain models that would benefit from
graphical or dual representation.

o Clearly define semantics and grammar of the current syntax related to the elements.

Gathering or developing the TDSL components is essential for ensuring that the HDSL is
built on a robust foundation. A well-defined metamodel, along with clear abstract syntax and
semantics, provides the structural integrity needed for effective integration of graphical elements.
This solid groundwork prevents potential conflicts and inconsistencies that could arise during
the transition from textual to hybrid representations, thereby maintaining the HDSL’s integrity
and functionality [18]. Additionally, identifying elements within the domain models that would
benefit from graphical or dual representation allows for targeted enhancements that improve
usability and comprehension without overcomplicating the system.

The software used to represent the TDSL components should be considered carefully, since
often the software used to develop this can be combined with software used in the design phase.
The designing of the HDSL in the next phases will require, among other things, adjustments in
these models, so when deciding on the proper environment in the decision phase, both phases
should be taken in consideration.

Results

The Analysis phase should result in a clear understanding of the problem domain, which can
serve as the cornerstone for understanding the constructs and relationships inherent in the
HDSL. From the domain analysis, the points of interest for transformation into a graphical
syntax should be identified. Additionally, the metamodel and the current concrete syntax(es)
and semantics of the DSL should be drawn up or gathered, combined with notations on the
elements which would benefit from graphical or dual syntax the most.

17

3.4 Design Phase
Goal: Design an integrated syntax and semantics framework for the HDSL

The Design Phase focusses on the designing the internal workings and new syntax of the
HDSL, which involves defining the appearance of the textual and graphical elements, how coexist
and interact within the HDSL. Continuing on the understanding of the domain and its textual
representation from the analysis phase, the selected components best fitting the graphical syntax
must be redesigned to fit the requirements for the HDSL. These elements must visually represent
the underlying domain concepts while still ensuring coherence with the textual syntax.

Activities

TABLE 3.5: The “Framework Design” activity along with the steps it consists of.

Framework Design: define a clear and systematic framework for the hybrid language
that specifies the integration points and dependencies between graphical and textual
components

o Outline the roles and interactions of each syntax type within the DSL, ensuring
effective complementarity and seamless integration.

o Specify the elements in the metamodel which correspond to graphical representations.

o Outline the different viewpoints based on the metamodel and the interactions between
them

o Specify the semantics and grammar rules that these graphical parts must adhere to.

The elements in the metamodel should be specified with the type of representation (graphi-
cal, textual, or both) to provide a clear development guideline that maintains semantic integrity
across modalities. This process ensures that changes in the model are consistently reflected in
both textual and graphical representations, which is vital for preserving the HDSL’s coherence
as it evolves. Additionally, this specification simplifies the development process by providing
clear mappings that guide the integration and synchronization of different syntax types [30].

A detailed outlining of roles and interactions within the HDSL ensures that graphical and textual
elements complement each other effectively. By clearly defining how these components interact
and depend on each other, the framework supports a coherent DSL architecture where every
element serves a purpose, enhancing the overall functionality and user experience. For example,
a diagram of the outline can be useful to visually represent these interactions, making it eas-
ier to understand and communicate the relationships between different components. Based on
these interactions, the different viewpoints for the DSL and the subset of the metamodel they
cover should be outlined [28]. A top-down overview on the interaction of the viewpoints and
syntaxes can clarify the workings. A clear language pipeline architecture to outline the language
transformation is a method of clarifying these interactions [6].

While the actual design of the framework depends on the varying needs of each case, it is
important to acknowledge existing guidelines that support the development of effective and con-
sistent syntaxes. For instance, Moody [19] provides principles for designing cognitively effective
graphical syntaxes, and foundational ontologies help ensure semantic alignment with the do-
main. Although this thesis does not explore these frameworks in detail, their application is

18

recommended to enhance the robustness and clarity of both the graphical and textual represen-
tations within the HDSL.

Finally, establishing the semantics and grammar rules ensures that the graphical syntax is not
only visually intuitive but also semantically correct and aligns with the domain’s requirements
and operational logic. An overview (either visually or textually) of the rules the relevant el-
ements of the HDSL should adhere to ensures that all elements adhere to the same rigorous

standards as the original textual elements, maintaining the overall integrity and functionality of
the HDSL.

TABLE 3.6: The “Graphical Concrete Syntax Design” activity along with the steps it
consists of.

Graphical Concrete Syntax Design: design the graphical notation of the selected
components

o Map out and categorise the different (to be) graphical elements.

o Design graphical elements that reflect these categories, ensuring that each symbol or
notation is meaningful and semantically accurate.

o Implement this into design specifications for the concrete graphical syntax.

Map out the graphical elements together with their attributes and features, and categorize
them based on the findings from the domain analysis. This ensures that the graphical represen-
tations are deeply rooted in the domain’s ontology, providing a clear and intuitive reflection of
the domain’s structure and semantics. This foundation is essential for developing a DSL that is
both useful and meaningful to its users, aiding in better comprehension and easier navigation
of the domain concepts. For example, different shapes might be used to represent various types
of entities, while colours could indicate their states or relationships. This visual differentiation
helps users quickly grasp complex relationships and hierarchies within the domain, facilitating
easier navigation and understanding. To make the transition to a new syntax easier for devel-
opers, it should also look similar to well-known languages [6].

These concrete components should be designed in a meaningful way. For this purpose, the
set of visual cognitive principles outlined by [19] can be implemented to establish a cohesive and
effective visual notation system. This approach ensures that the graphical elements are designed
to be clear, distinct, and intuitive, enhancing the user’s ability to interact with and comprehend
the DSL efficiently. By applying these principles universally, the design process systematically
addresses the cognitive needs of the users, ensuring the graphical syntax is accessible and man-
ageable. Based on these principles, the visual specifications of each graphical element must be
designed defined. This includes dimensions, colours, shapes, and any other attributes that were
decided upon to represent various domain concepts distinctly and intuitively. The principles can
be found in Table 3.7

TABLE 3.7: Principles and Explanations for Designing Graphical Elements

Principles Explanation

Semiotic Clarity Use unique symbols for each element, avoiding redundancy and overload.

Perceptual Discriminability Design symbols that are easily distinguishable through shape, colour, and
size.

Semantic Transparency Use intuitive icons that visually represent their function or relation.

Complexity Management Employ modularization and hierarchy to manage complex information.

19

Cognitive Integration Provide navigational aids and consistent views across different diagrams.

Visual Expressiveness Utilize a range of visual variables to encode information distinctly.

Dual Coding Supplement graphical elements with text to enhance understanding.

Graphic Economy Limit the number of symbols to keep the design cognitively manageable.

Cognitive Fit Design adaptable interfaces that cater to both novice and expert users.
Results

The design phase should result in a detailed framework showcasing the interactions between tex-
tual and graphical syntaxes, where modifications in one syntax directly and instantly affect the
other. This includes the layout of the mechanisms for synchronization to ensure consistency and
real-time feedback within the HDSL environment. Additionally, an overview of the annotated
metamodel to specify the representation modes for each element—textual, graphical, or both.
These annotations are accompanied by directives on how changes in one representation should
propagate to the other, ensuring that the HDSL remains coherent when switching between or
integrating both views. The representation of the HDSL elements has been developed, defining
the different elements in a visually meaningful way. Finally, combining these results, the visual
specifications of the complete concrete graphical syntax is developed.

3.5 Implementation Phase
Goal: Develop the HDSL using appropriate software engineering techniques

The objective in the implementation is to achieve the integration between the textual and
graphical elements, by realizing the HDSL and integrating it into the selected programming
environment. The design and implementation phases can be very close to each other, as some
tools used during the design of the HDSL components, automatically generate the components.

Activities

TABLE 3.8: The “Hybrid environment Implementation” activity along with the steps it
consists of.

Hybrid environment Implementation: develop the design of the HDSL from the
previous phases into a single development environment.

o Implement the designed framework to both support graphical and textual editing.

o Establish rules and mechanisms inside the environment that enforce consistency
across graphical and textual representations to prevent discrepancies.

o Customize the environment to fit the stakeholder requirements

The development of a foundational environment that supports the HDSL is essential for
the usage of the HDSL. This environment, based on the designed framework from the design
phase, ensures that all components of the HDSL are integrated into a cohesive development
environment, which should facilitate user interaction and enhance the overall usability of the
HDSL. According to [18], having a robust foundational environment helps in maintaining the
consistency and integrity of the HDSL, enabling users to switch between graphical and textual

20

representations effortlessly.

Ensuring consistency between graphical and textual representations is crucial for the functioning
of the HDSL. Consistency can be achieved through mechanisms like synchronization with a cen-
tral repository [28] or parsing the syntaxes against the language’s grammar for validation [17].
The semantics identified in the design phase must be implemented to ensure that changes in
one representation are accurately reflected in the other, maintaining the overall coherence of the
HDSL.

Finally, unique requirements for the environment, defined in the decision phase, should be im-
plemented in the system. Customizing the environment to fit stakeholder requirements ensures
that the HDSL meets the specific needs of its users. The interpretation and implementation of
these requirements depend on the specific needs and objectives identified during the decision
phase. This customization enhances the relevance and usability of the HDSL for its intended
users.

TABLE 3.9: The “Development of views” activity along with the steps it consists of.

Development of views based on the designs made in the previous phase, develop the
views enabling the concrete syntax

o Create a graphical component library based on the design specifications

o Implement interactive features that enable users to manipulate graphical elements
directly, enhancing the interactivity and engagement with the HDSL.

o Integrate visual feedback mechanisms to provide immediate validation of user actions,
improving the learning curve and usability of the HDSL.

The graphical component library is a collection of reusable graphical elements, such as icons,
shapes, and widgets, that are used to build the graphical interface of the DSL. It serves as a
central repository of standardized graphical components, ensuring all graphical elements within
the HDSL are consistent with the design specifications. By using predefined components, the
development process becomes more efficient, and the resulting HDSL is more cohesive and easier
to maintain.

Developing views that allow for the editing of the concrete syntax is essential to the overall goal
of creating a versatile and user-friendly HDSL. Views, particularly graphical editors, provide
interfaces that facilitate the understanding and manipulation of complex constructs. According
to [28], integrating both graphical and textual views enhances the DSL by providing multiple
ways to represent and interact with the language’s elements. This dual representation supports
users in different roles, from domain experts to developers, making the DSL more effective in
capturing and communicating domain-specific knowledge.

Results

The result of the implementation phase is a fully integrated hybrid development, synthesizing
the graphical and textual components envisioned in the design phase into a cohesive, interactive
system. This should allow users to seamlessly toggle between graphical and textual views,
ensuring consistency and real-time synchronization of changes across both formats. This hybrid
environment includes the additional requirements specified in the decision phase.

21

3.6 Deployment Phase

the deployment phase entails releasing the HDSL to its users and ensuring its integration into
existing systems and workflows. The primary goal of this phase is to ensure that the HDSL
operates reliably, meets user expectations, and can be distributed in line with the specified re-
quirements.

However, this research will not delve into the detailed activities of the deployment phase, since
deployment is beyond the scope of this thesis. This research focuses on the design, development,
and initial implementation of the HDSL. Detailed deployment strategies, including extensive
testing, validation, and user training, require significant resources and a tailored approach that
are not feasible within the limits of this research. These activities are best handled by dedicated
deployment teams within organizations.

Potential activities to be considered in this phase include extensive testing and validation to
ensure functionality across diverse scenarios. This involves verifying that the integrated envi-
ronment operates reliably by performance testing under load conditions, ensuring the editor
remains stable and responsive during extended use [36]. Additionally, comprehensive documen-
tation must be created, providing detailed instructions on using the HDSL editor, descriptions
of the graphical and textual components, and troubleshooting tips [36]. User training sessions
can be organized to help users understand and efficiently use the new HDSL, familiarizing them
with both the graphical and textual aspects of the HDSL.

The desired results for the deployment phase include the creation of comprehensive documen-
tation and a complete HDSL. Comprehensive documentation is crucial, providing detailed in-
structions on using the HDSL editor, descriptions of the graphical and textual components, and
troubleshooting tips [36]. This documentation must be clear, accessible, and regularly updated
to reflect any changes or enhancements in the DSL. Future work should focus on developing
a detailed deployment framework, addressing specific organizational requirements, and estab-
lishing comprehensive training and support systems to ensure the successful integration and
distribution of the HDSL into real-world environments.

3.7 Documentation

In addition to the overview and phases detailed in this chapter, a comprehensive artifact in
the form of a PowerPoint presentation was created to facilitate a better understanding and
explanation. This presentation serves as an educational and explanatory tool, providing a visual
and structured overview of the entire process.

The PowerPoint presentation [37] includes an overview of the methodology used in this re-
search, outlining the key phases and objectives. It provides the structured descriptions of the
various activities undertaken during each phase, offering clarity on the processes involved. This
documentation artifact enhances the accessibility and comprehensibility of the research, mak-
ing it easier for stakeholders, future researchers, and practitioners to understand and replicate
the methodology. By providing a clear and concise visual representation of the research pro-
cess, the PowerPoint presentation supports the communication of the project’s objectives and
methods. This additional documentation ensures that the methodology is practically applicable,
facilitating its adoption and implementation in real-world scenarios.

22

Chapter 4

Case study

The chapter demonstrates the practical application of the HDSL methodology through a case
study involving the Ampersand platform. We start by introducing the Ampersand platform,
describing its purpose, functionality, and the DSL it uses. The case study then outlines the
process of developing an HDSL for Ampersand by using the methodology from Chapter 3.
This chapter illustrates how the phases were executed, detailing the decisions made and the
tools used. The result is the implemented Ampersand HDSL that integrates both textual and
graphical components. This case study provides an example of how the proposed methodology
can be applied in practice.

4.1 Ampersand

Ampersand is an open-source tool designed to automate the process of software development for
information systems, making use of the requirements of the intended system. The tool requires
input on the desired information system in the form of its own formal language called Ampersand
language. This syntax is based on the ideas of relational algebra and combines formal specifi-
cations and natural language, to allows users to define complex business rules and relationships
between data. From the input, a complete and functioning information system is generated in
the form of a monolithic, web-based application equipped with a structured database (Figure
4.2). The architecture of this created information system can be easily altered by simply chang-
ing the input code and compiling a new system.

The system can be used to easily design an information system for practical use, but it also
provides an efficient way to quickly develop a prototype. Currently, both students and develop-
ers utilize this prototyping capability to explore potential structures for information systems and
test their functionalities without investing significant time in developing them. In educational
settings, it is used as a teaching tool to help students understand the principles of information
system design and formal specifications. In professional environments, developers leverage Am-
persand to prototype and validate information systems efficiently, ensuring that business rules
and relationships are correctly implemented before full-scale development

4.1.1 Architecture Overview

The Ampersand platform has a single input mechanism to instruct the development platform on
the desired application, namely textual syntax. By using a DSL based on formal specification
written in Ampersand Language scripts (with file extension .ADL), the desired application can
be specified. The language is a declarative, meaning developers define “what” results they want
without specifying “how” to achieve those results. The scripts ensure that the database maintains
certain conditions or rules, automatically handling data consistency through generated code that

23

Compiler |

B8 B = N
A_Context FSpec script.pdf

P

Prettyprinter F """ P_Context

i o D

! | . Q| | Documentat|or|@| R e code"
Grind _ generator

— Application]

Front end

‘ makeFSpec

‘ Type checker

E ‘ Parser | Generator Q|

A 5.3

i] s

| R G e /—A;)
| | : i _Oi
b 2
= frontend files e
di etamodel
script.a metamodel
J Backend Engine
5 >
backend files =

FIGURE 4.1: Overview of the Ampersand platform.

Ampersand scripis

a
&-model
=)

FIGURE 4.2: Overview of an application generated by the Ampersand platform.

preserves these rules during data manipulation tasks in the database. At compile-time, Amper-
sand processes the script to set up the database structure and initial rule validations. During
runtime, interactions with the database (such as updates and queries) are managed to ensure
all rules are continually satisfied, rolling back changes that violate rules [13].

Ampersand is rooted in relational algebra, a branch of Mathematics that deals with the theory
of relations and the operations that can be performed on them. The language itself allows for
the specification of information systems in a formal, precise, and unambiguous manner. This
formal specification ensures that the behaviour of the system is well-defined and verifiable. The
core of the language is composed of a set of rules, relations, and concepts, represented as a triple

(H,R,C)

e Concepts (C): The fundamental types of data items within the system, which are used
to classify data elements into meaningful categories. For example, a concept might be
“Person” or “Order”. Concepts represents entities within the database, essential for defining
the structure and types of stored data. They are expressed via CONCEPT ConceptName
“Definition”.

e Relations (R): Define how concepts are related to each other. A relation is a set of ordered
pairs, each representing a connection between instances of two concepts. Relations are used
for modelling the interactions and dependencies within the system. They are expressed
via RELATION RelationName[Concept1*Concept2] [PROP] MEANING "Description".

24

e Rules (H): The constraints or conditions that must be satisfied by the data in the system.
They are expressed as logical statements involving concepts and relations, which ensure the
integrity and correctness of the data by enforcing specific conditions that must always hold
true. They are expressed via RULE RuleName : expression MEANING “Explanation”.

These triples are used to construct the underlying algebraic structure that powers the Am-
persand platform. The algebraic implementation of these triples is the driving force behind the
generator, enabling it to manipulate sets and relations effectively. Functions applied to these
relations can, for example, remove pairs from relations or modify the structure of data to ensure
consistency and adherence to the specified rules. This approach allows the generator to main-
tain the integrity of the information system automatically. By leveraging relational algebra,
Ampersand can perform operations such as selection, projection, and join. These operations are
abstracted in the Ampersand language, allowing users to focus on the high-level design of their
information system without needing to understand the underlying mathematical details.

4.1.2 The RAP Environment

The Rapid Application Prototyping (RAP) is a component of the Ampersand platform used
to make the input mechanism of Ampersand accessible. This web-based application facilitates
a method for designing and compiling .ADL scripts by using the .ADL Script Editor to allow
developers to modify the .ADL scripts directly, facilitating rapid prototyping and iterative refine-
ment. Changes made to the script are reflected in the generated application upon recompilation,
enabling developers to quickly incorporate feedback and adjust specifications. The ATLAS Vi-
sualization Tool provides a graphical representation of the application model, illustrating the
relationships and structures defined in the .ADL script. This visualization helps developers and
stakeholders understand the system’s architecture and verify if it meets the specified require-

ments.

L 3 Ata: B

Nieuw script

indiener opdracht ingediend

Mo109 Enroliment 2024-07-29 16:12:35 +0200

Browse... | No file selected
1 CONTEXT Enrollment IN ENGLISH

a
6 CONCEPT Studen
7 CONCEPT Study "A stru ic
CONCEPT Course "Specific unit of teaching tha

17 RELATION takes [Stu
18 MEANING "A student

: 760 SR R— |
rse] 7.6 budtime: 26.Feb-23 1328.41 UTC

compile

Compiler message This script of Enroliment contai

controls Functional spec. document Prototype Message

Functional spec. document Open prototype

links to your results Download document Prototype

FIGURE 4.3: Interfaces in RAP: the script editor (back) and the ATLAS (front)

RAP is a highly advanced and customized system generated by the Ampersand platform
itself. The workflow within RAP involves several key steps, each contributing to the efficient
development and deployment of a prototype. Developers begin by editing the necessary scripts
using the RAP editor tool. The tool provides a plain text interface for creating and modifying
ADL scripts. RAP uses the Ampersand platform’s compiler to transform the .ADL scripts

25

into a prototype, along with two key outputs: the functional specification document and AT-
LAS. The functional specification document provides a breakdown of the system’s architecture,
highlighting its core components, relationships, and business rules summarised in a document.
ATLAS generates graphical representations of the system’s architecture visible in the RAP ap-
plication itself. During compilation, users have the flexibility to either generate the complete
working prototype or, if needed, focus solely on producing the functional specification document
and ATLAS to review and refine the system’s architecture.

Developer % User %

f ! ' | ! !

[Generate (1] Generatea (]
Edit a script Compile a script Generate a prototype ATLAS functional Run the prototype Use the prototype
specification

Bfowser 2]
rap container Prototype coptainer
RAP 2] Prototype ppp &
editor = compile build A benepte Q generatefunctionm deplo m{l—b =
P ATLAS spec. oy Prototype
Front end :-\7 ’3 4 L froml: end
Back end . H | Prntot).rpe;f\lffD
i |managescripts & I
b d i =
Prototype
£ 3 T r = back end
e I Wy
Prototype 5 f . 1
source code i : Grloyes |ma§
File store _i: Docker repo
rap-db container e ;
;]
Script
Prototype data

MariaDB

FIGURE 4.4: Overview of the workings of the RAP environment

When the scripts are ready, the prototype can be generated by RAP. The deployment sets up
the necessary containers to host the application components, ensuring they are properly config-
ured and ready for use. The prototype container includes the frontend, backend, and associated
database component. End-users can now interact with the deployed prototype through the pro-
vided web interfaces. These interfaces allow for data entry, updates, queries, and reporting, all
governed by the rules and constraints defined in the .ADL scripts.

(Re)design application =
T Fy i [y
| ! ! !
I if insufficient if insufficient if insufficient
| t t t
¥ L 1 % 1
Specify the = Verify application = Validate application => Verify application =
Application @ --——-—————————— -+ using visualizations —-—————— - using protoype design
Generate (1) Generatea [
Edit a script Cornpile a script ATLAS functional Generate a prototype Run the prototype Use the prototype

specification

FIGURE 4.5: RAP usage workflow

26

4.2 Developing an HDSL for Ampersand

Ampersand struggles with the issue that users find it too difficult to use. Since text based
systems can be seen as a complex development mechanism [9]; the now textual syntax based
Ampersand language must be developed to HDSL.

The Ampersand platform currently has a component, the ATLAS, which visualizes the ele-
ments of a formal specification for users. The main goal of this transformation is to design
and develop into a graphical language editor for Ampersand, allowing users to create functional
specifications without having to use them directly.

4.2.1 Decision Phase

Goal: Determine the practicality and scope of transitioning to an HDSL.

Enhancement Objectives

To establish the enhancement objectives for Ampersand, we performed a brief literature review
focused on understanding how an interactive editor can be designed to make formal specifications
more accessible. This review was essential as the formal specifications need to be converted from
textual syntax to a graphical format. An overview of this literature review can be found in the
Appendix B. The requirements identified from the literature review were expanded and merged
with the example requirements and objectives mentioned in Appendix A. This was extended with
requirements arisen from an investigation into the workings of Ampersand. This list was defined
using the MoSCoW method as described by [2]. An excerpt of the most relevant requirements
included below, categorised in functional and non-functional requirements. The full list can be
found in Appendix C.

TABLE 4.1: Excerpt of the Functional (F) and Non-functional (NF) requirements

Sig Requirements Justification

F1 The system must become less difficult for user to This is the main reason why the HDSL is developed
use

F2 The system must enable a unified compilation This ensures synchronization and compilation of
process. changes across formats.

F3 The system must support hybrid-syntax editing Both the graphical and textual syntaxes should be sep-

arately adjustable [36] [29].

NF1 The existing compiler must be used to handle in- This ensures synchronization and compilation of
puts from both graphical and textual sources. changes across both formats

NF2 The system must use Graphviz to visualize the This application is already in use by the environment
graphical syntax

NF3 The system must use the existing RAP environ- This leverages existing infrastructure and reduces the
ment need for additional training

Feasibility and Scope

Previous developers of the TDSL were consulted to examine the integration frameworks and
environment. For the Ampersand, this environment is RAP. Since one of the requirements
we captured explicitly mandates the use of RAP, alternative technologies were not considered.
Furthermore, it was decided that the implementation of the HDSL should only encompass a pro-
totype to ensure a manageable scope for the initial implementation and to focus on the aspects
of the TDSL that would benefit the most from a graphical representation.

The integration capabilities of the frameworks were investigated into by developing an overview

27

of both the workings of the RAP environment (Figure 4.4) and the Ampersand platform itself
(Figure 4.1). This overview was developed based in cooperation with previous developers. The
results of this investigation can be seen in Section 4.1. Additionally, the desired workflow of
the usage of RAP was developed with help of an Ampersand user (Figure 4.6). Combining this
desired workflow and the current workings of RAP, the shortcomings of the current environment
were examined.

Analysis of assessment

The decision phase resulted in a detailed assessment of both the current and desired func-
tionalities of the RAP environment for the successful implementation of an HDSL. Figure 4.6
presents an overview of the desired workflow for RAP. When compared to the current opera-
tional overview shown in Figure 4.5 certain enhancement requirements were apparent, which
are added to the requirements list. Most importantly, it is necessary to develop interfaces that
allow simultaneous interactions with both the graphical component (ATLAS) and the textual
editor within the RAP database. This ensures the user can simultaneously but independently
make changes graphically and see those changes reflected in the textual script (and vice versa),
thereby maintaining the two representations consistent and synchronised.

(Reldesign application =

T [) EY

{ | |

! i [

| if insufficient if insufficient

| 4 ’

Developer i % Us:er %
Specify the = Verify application = Validate application Verify application =
Application 1———; using visualizations using protoype design

Edit in m Generate a Q m Q
modules functional Generate a prototype Run the prototype Use the prototype
specification
Edit Atlas () Edit Script ()

FIGURE 4.6: Desired development workflow using the RAP environment

RAP uses textual input to populate the database, which subsequently generated prototypes
and visual representations. However, for the system to support two-way synchronization, it is
necessary to implement functionality that allows for the generation of the textual scripts di-
rectly from the database. This ensures that both textual and graphical representations can be
consistently derived from the same underlying data model. This capability would ensure that
any modifications made in the database, whether through graphical or textual interfaces, can
be automatically updated in the script. This integration is vital for maintaining the integrity
and accuracy of the system, as it allows for a seamless flow of data and rules across different
components of the DSL. An important additional finding is the integration of Graphviz in the
Ampersand platform. Graphviz is a visualization tool which enables the automatic generation
of schematic diagrams that represent Ampersand scripts.

The final product of this phase is a set of functional and non-functional requirements, based
on the user and stakeholder feedback, as well as comprehensive literature review findings. Each
requirement is assessed based on the value towards the main business goals using the MoSCoW
analysis technique [2]. Additionally, an explanation of its significance and the sources that jus-
tify its inclusion provided. This structured presentation aids in ensuring a holistic view of what
is needed for the successful development and implementation of the HDSL. The resulting lists

28

can be found in Appendix C.

4.2.2 Analysis Phase

Goal: Analyse the current TDSL to determine elements suitable for graphical enhancement

Domain examination

A comprehensive examination of the existing domain of Ampersand was conducted to identify
the key concepts and operations that would benefit from graphical representation. This process
coincided partly with the research from the decision phase, and included engaging with users
of Ampersand to gather insights into their experiences, challenges, and expectations for the
HDSL. This engagement provided valuable practical insights to how users interact with the
system, and identified areas where graphical elements could enhance usability. The Ampersand
platform (and mostly RAP) was used to gain first-hand experience of its functionalities and
user interactions. This practical usage ensured a deeper understanding of the workings of the
program. Finally, the existing literature and documentation [25] on the Ampersand platform
was studied extensively. A summary of this research can be seen in section 4.1. The result of
this investigation was a comprehensive understanding of the language, and the selection of core
elements in need of graphical representation.

Technical examination

The documentation review also served to deepen the understanding of the technical aspects.
Additionally, using the Ampersand platform, the metamodel was automatically generated with
Graphviz, accurately reflecting the current state of the TDSL and capturing all relevant compo-
nents and relationships. This metamodel was then analysed to pinpoint the key elements related
to the database, as identified during the domain examination.

The concrete syntax of Ampersand, as detailed in the official syntax reference, was reviewed.
This documentation provided a clear explanation of how the core elements are expressed textu-
ally within the DSL. The insights from the concrete syntax documentation were then combined
with the generated metamodel to provide a precise breakdown of the core elements identified
during the domain examination, both in their textual form and potential graphical representa-
tion. Additionally, the grammar of the textual syntax was investigated to ensure the resulting
HDSL adheres to the same rules.

Analysis of assessment

Through a detailed analysis conducted by the researcher, it became evident that certain ele-
ments—specifically those defining the database structure and enforcing its rules—would benefit
from graphical representation. This conclusion was reached based on user feedback and techni-
cal evaluations, which suggested that a graphical interface for those components would improve
usability by simplifying complex interactions and providing a clearer, more intuitive visualiza-
tion of the system’s core functionalities. The selected components from the metamodel include
concepts, relations, and rules. These elements correspond to specific statements in Ampersand’s
concrete syntax. An example of textual input for Ampersand can be seen in Figure 4.7.

The semantics and grammar rules related to these elements have also been analysed and
summarized. These include, but are not limited to:

e A Concept must have exactly one Name.

e Each Relation must have a signature consisting of a source and target concept

29

11 CONCEPT MameQfConcept "This is the definition of a CONCEPT"

13 RELATICON nameQfRelation [Conceptl*®Concept2] [PROP]
14 MEANING "this is the meaning of the RELATIOM namelfRelation™

15

16 RULE MamelfRule: relationl |- relation?;relation3~

17 MEANING "this is the meaning of a RULE, specifically -NameOfRule"
18 MESSAGE "this iz the message desplayed when this rule is violated"

FIGURE 4.7: Example of textual input for Ampersand

e Each Rule must have a unique name (RuleName).

A description of these components and their respective sections of the metamodel, concrete
syntax, and semantics can be found in appendix D.

4.2.3 Design Phase

Goal: Design an integrated syntax and semantics framework for the HDSL

Framework Design

The first objective in the Design Phase was to establish an effective framework for the Ampersand
HDSL that integrates both textual and graphical components through a unified backend, rather
than direct interactions between the concrete syntaxes. This approach aimed to leverage the
strengths of each modality while ensuring system integrity and coherence. Based on the insights
gathered during the Analysis Phase, it was decided that the HDSL would be designed with two
separately operating syntaxes, instead of the textual and graphical directly being connected.
These syntaxes interact indirectly through shared modifications in an underlying database. This
design choice minimizes the complexity associated with directly linking graphical and textual
representations, facilitating maintenance and scalability. A simplified version of the design of
the workings of the syntax and the eventual design of our implementation can be seen in Figure
4.8.

While the framework ensures semantic correctness and usability, it should be noted that no
formal ontology was explicitly applied to guide the semantics of the HDSL during the design
phase. The semantic integrity was maintained through the internal consistency of the DSL’s
elements, but a foundational ontology was not referenced in this case study. The focus was more
on the practical implementation of the DSL, with an emphasis on making sure that textual and
graphical elements remained synchronized and coherent.

While the framework ensures semantic correctness and usability, no formal ontology was ex-
plicitly applied during the design phase to guide the semantics of the HDSL. Semantic integrity
was maintained through internal consistency within the DSL, but a foundational ontology was
not referenced in this case study. The focus remained on practical implementation, ensuring syn-
chronization and coherence between textual and graphical elements. Similarly, while principles
of effective syntax design were important, frameworks such as Moody’s [19] were not directly
applied. Usability and clarity were emphasized, but the use of formal syntax design principles
was implicit rather than structured. These guidelines could be considered in future iterations to
further improve the cognitive effectiveness of the graphical syntax, especially for more complex
use cases.

The textual and graphical syntaxes interact indirectly via model transformations handled
by the compiler. Changes made in the textual editor are compiled into an intermediate model,
a data structure stored in the database, which serves as the foundation for both syntaxes. The
data in the database acts as the central source of truth, storing the system’s state, and ensur-
ing consistency between the two representations. When modifications occur in the graphical
interface, they are translated back into changes in the database, which can then be reflected in

30

— 7
Graphical Concrede Teadual Concnehe
Synka { Syl Lﬁd’aphlcalEdnl:t] t Textual Editor]
F F 3 F1
hd
s
' Mooed by Mode] —
Graphical Model uan.ﬂumﬁ:ﬁi Testual Moded ‘l‘ v
—
— Profotype
Database

FIGURE 4.8: Schematic overview of the interaction between the separate syntaxes and
views

L J

F 3

the textual syntax upon recompilation. This ensures that both representations are synchronized
and compliant with the system’s semantics. The compiler is responsible for ensuring that the
rules and constraints defined in the textual syntax are preserved in the graphical syntax, and
vice versa. As a result, even though the content in the graphical interface is generated from the
underlying model, the consistency, and integrity of the system are maintained across both inter-
faces. As outlined in the decision phase, one of the requirements is the ability to generate textual
scripts directly from the database, enabling two-way synchronization. This enables any modifi-
cations made within the graphical interface to be reflected into the textual scripts, maintaining
consistency across both syntaxes. Further details on the development of this functionality are
provided in the Appendix E.

Graphical Concrete Syntax Design

The graphical elements for Concepts, Relations, and Rules, identified during the analysis phase,
were designed during the metamodel analysis. Following the principle of modularity, as sug-
gested by [14], the graphical syntax was developed with two distinct but related views. The first
syntax provides a high-level overview of the entire project. This project-level view simplifies the
understanding of the system by clearly illustrating the relationships and interactions between
key elements. With functionality similar to that of an ER diagram, it offers users a broad per-
spective, making it easier to comprehend the overall structure.

The second syntax offers a more detailed view, focusing on individual elements and closely
aligning with the textual syntax to support development tasks. This component-level view is
designed to visually represent the relationships between the elements within the script, helping
users better understand how different concepts are interconnected

Both syntax designs build upon the foundational work of previous developers and have been
refined to address the current requirements of the HDSL. The dual approach aims to make the
HDSL both comprehensive and user-friendly, accommodating the diverse needs of its users. The
graphical notation for both views adheres to the design principles outlined in Table 3.7.

Analysis of assessment

The design of the ATLAS tool is organized into two main areas: sub-views for each individual
element (for each Concept, Relation, or Rule) and an overview of the entire system. The sub-
views (categorised by the type of element) include both an editor and a visualizer. These views
allow users to work on the different parts of the final script independently. The overarching view
summarizes the entire system, integrating all the sub-views. Changes made in the graphical
interface are compiled if they meet the semantic requirements, and from there, the textual syntax

31

Developer %
.T\

Edit in modules m

¢ ¢

Edit Atlas (2 Edit Script () Sync views ()
Edit (7]
Concepts
Edit Relations [~)] Edit Rules (7]
Atlas |
£
O .
atlas tool Script editor
x
: A
I dul
i edit terms () R T
Atlas front end; H A
T S T
8 Script 5

Module data

MariaDB

FIGURE 4.9: Detailed design of the workings of the ATLAS tool in RAP

is generated. This ensures that any adjustment made in one syntax is immediately reflected in
the other, maintaining synchronization. A simplified illustration of ATLAS’s operation is shown
in Figure 4.9.

This integrated system allows developers to edit concepts, relations, and rules within the
ATLAS tool, either graphically or textually. The synchronization between these views ensures
that any update in one view is consistently reflected in the other, providing a seamless and effi-
cient development experience. The architecture also supports the validation of changes, ensuring
that only semantically correct modifications are propagated across both syntaxes, maintaining
the integrity and functionality of the DSL.

Syntax

The graphical notation for the syntaxes was built on the existing graphical syntax generated by
Graphviz, ensuring that all key elements and relationships were accurately captured. To achieve
a complete syntax for the Ampersand Language, the existing graphical notation was extended
to include missing elements. For example, additional notations for relationships within the
conceptual models were added based on established design principles. This ensures that the
graphical representation is comprehensive and capable of depicting all relevant relationships
within the DSL.

Two different visualizations were chosen to meet the distinct needs of users at different
levels of interaction with the system. The project-level syntax provides a high-level overview
of the entire project. This view shows all concepts and their relations in a simplified format,
focusing on how they fit into the larger system architecture. Here, the same elements—such as
concepts and relationships—are visualized in a more abstract and generalized way to highlight
their interactions and structural roles. This broad overview is particularly useful for system
architects or users who need to understand the overall flow and dependencies within the system.
Figure 4.10 demonstrates this, where the focus is on depicting key relationships and properties
clearly and simply.

32

endoRelation relation

r#f“ o relationUNI : Concept3x
relationSUR
: | C t
+ relationUNITOT : Concept2x| - i]

S MelationTOT

1 Conceptl

FIGURE 4.10: Example of the Project Level Syntax

In contrast, the component-level syntax offers a more detailed, granular view of the same
elements. At this level, concepts and relationships are visualized with all their specific attributes
and detailed interactions. This view is essential for users directly involved in development,
where understanding the exact behaviour and configuration of each element is critical. In this
syntax, relationships between components are shown with greater specificity, such as cardinality,
constraints, or other properties that need to be addressed during detailed development tasks.
Figure 4.11 illustrates how these detailed relationships and interactions are visualized, helping
users to edit and refine the system accurately.

Concept3

endoRelation
[sym]

relationTOT

[tot]
#» Conceptl

relationSUR
[sur]

Concept2

FiGURE 4.11: Example of the Detailed Syntax

The reason for visualizing the same elements differently across these two syntaxes is that they
serve different purposes: at the project level, users need an abstracted, high-level view to focus
on overall structure and interactions; at the component level, users need precision and detail to
effectively manage the intricacies of individual elements. This dual representation allows users
to engage with the system at varying levels of abstraction depending on their task, ensuring
both a high-level understanding of the system’s architecture and the ability to perform detailed,
component-specific work.

By visualizing the same elements differently, the system remains flexible and adaptable to
various roles and needs, providing both a bird’s-eye view for planners and detailed insights
for developers. Furthermore, the design leveraged existing distinctions between relationship
properties. By clearly differentiating these properties in the graphical syntax, the design phase
ensured that the visual elements are both informative and easy to interpret.

33

4.2.4 Implementation Phase
Goal: Develop the HDSL using appropriate software engineering techniques

Hybrid environment Implementation

In the first part of the implementation phase we developed the environment by creating trans-
formation functionalities in both RAP and the Ampersand platform, as show in an overview
in Appendix F. This comprehensive effort resulted in the environment depicted in Figure E.1.
Following this, the identified rules and mechanisms for consistency enforcement were developed
within the RAP environment.

To ensure smoother interface operations, the grammar was extended to include rules that au-
tomatically populate elements of the graphical syntax, facilitating adherence to semantic rules.
For example, if every concept must have a definition, a definition is automatically created when
the concept is created. The user is then notified that this definition needs to be completed. This
approach maintains semantic integrity without compromising user convenience. Additionally,
error messages when the semantic integrity is violated were implemented, to notify the user of
their error. These rules were added to RAP using the existing rule framework of the environ-
ment. An extensive explanation can be found in the Appendix F. These rules also were used to
implement the environment customizations required from the requirements.

Development of views

Based on the designs made in the previous phase, the interfaces enabling the concrete syntax
were developed. The graphical syntax, developed in Graphviz, was implemented making use of
functionalities already in the existing structure of the environment. The graphical components
are defined in the Graphviz generator, which serves as the graphical component library. Dia-
grams of the implemented graphical syntax are automatically generated during the compilation
of the new RAP database.

In addition to the diagrams, separate editors were developed for each of the core elements:
Concepts, Relations, and Rules. These editors were implemented across three distinct views,
with each view dedicated to one specific element. The editors were designed to ensure that all
the features available in the textual syntax are also fully supported in the graphical interface,
allowing users to manage each element—Concepts, Relations, and Rules—with the same level
of functionality. The editors can be seen next to the graphical notation in the viewpoints in
Figure 4.13 and Figure 4.14.

Visual feedback mechanisms were implemented using the existing message system of the Am-
persand Rules. These mechanisms provide immediate validation of user actions, ensuring that
any modifications adhere to the defined rules and enhancing the overall usability of the system.

Analysis of assessment

The implementation phase resulted in a fully functional RAP environment that integrates both
the existing textual syntax editor and the newly developed graphical interfaces, in line with the
design objectives outlined in Chapter 4 and the blueprint detailed in Appendix E.

e The first module is the existing textual syntax editor, which has remained unchanged.
This editor continues to provide users with a reliable and familiar interface for textual
DSL development. This view can be seen in figure 4.3

34

e The second module is the Global overview in the ATLAS tool, providing a comprehen-
sive view of all elements of the desired application. It includes a linked table listing all
individual components, allowing users to easily navigate and manage different parts of the
application. This view serves as an entry point for accessing detailed information about
each component. This view can be seen in figure 4.12.

e The third module is the detailed editing environment, which is organized into three tabs,
each dedicated to each specific element type: CONCEPT, RELATION, and RULE. Users
can navigate these tabs to define and edit these elements, utilizing the detailed graphical
syntax designed for each type. This graphical syntax allows for an intuitive and visually
clear representation of the DSL components, enhancing user interaction and understanding.
This view can be seen in Figure 4.13 and Figure 4.14.

Additionally. the integrated error message system of the RAP environment has been utilized
to make users aware of potential errors or missing elements during the development process.
This system provides real-time feedback, displayed prominently at the top of the page, ensuring
that users can address issues promptly and maintain the integrity of their DSL models.

ATLAS overview

has Building

+ isLocated : Adres

o managedBy : Coordinator

isTechnica

isControlledBy

Submit changes Script editor >

Elements

FIGURE 4.12: The RAP overview module

Concept Editor

info diagram Add new Concept+

El
mn
mn

, definition

the university itself -

FIGURE 4.13: The RAP detailed viewpoint for CONCEPT

35

Relation Editor

info diagram Add new Relation 4

ame E E a
nas
sign prop
Source Target
University ~ Building = -
o
meaning
=
% £ = a
isControlledBy - -
TsContrMladby [

Source Target SUR

TOT ‘
University Boardmeml -
— |
|

FIGURE 4.14: The RAP detailed viewpoint for RELATION

Figure 4.12, Figure 4.13 and Figure 4.14 provides an example of how a university system
can be modelled, by defining key entities and the relationships between them. Concepts include
Courses (university courses), a Coordinator (who manages courses), Buildings, and the Univer-
sity itself. The relationships describe how these entities interact. For example, a University can
have multiple Buildings, and each building must be located at a specific address, ensuring that
every building has an address, and each address is unique. Similarly, each course is managed by
a coordinator, with the UNI constraint ensuring that a course is managed by only one coordina-
tor. In essence, this script establishes a structured model of a university, detailing how entities
like courses, coordinators, and buildings relate within the system.

4.2.5 Deployment Phase

In this research, no specific activities were deliberately undertaken to fit into the deployment
phase. The primary focus was on the design, development, and initial validation of the HDSL.
However, recognizing the importance of deployment, some preparatory steps were naturally in-
corporated during the implementation phase to facilitate future deployment efforts. A somewhat
deployable version of the new RAP environment was developed to be used for the usability test
described in Chapter 5. This version ensured that the HDSL could be practically tested and
evaluated, providing valuable feedback for further refinement.

Additionally, the case study described in this thesis serves as a form of documentation on the
development of the Ampersand HDSL. By detailing the process and outcomes of developing
and testing the HDSL, this Chapter 4 provides valuable insights and guidance that can support
future deployment efforts.

36

Chapter 5

Evaluation

This chapter evaluates the HDSL methodology and its implementation, assessing both the the-
oretical framework and its practical application. Given the scope and constraints of a master’s
thesis, comprehensive validation through multiple system implementations is not feasible. There-
fore, the methodology has been reviewed by domain experts for potential improvements and
validated through usability testing of the case study results. This usability test will evaluate the
suitability of the HDSL produced using the methodology compared to the original TDSL, The
result of this is an evaluation highlighting the strengths and weaknesses of the HDSL method-
ology. These insights provide valuable feedback for refining the methodology and enhancing the
usability of the HDSL

5.1 Expert interviews

The expert interviews aimed to review the proposed methodology. For this, we gave a presen-
tation to the expert, in which we also explained an overview of the methodology and gave a
detailed description of the activities. Additionally, we also explained the steps undertaken in
the case study. This allowed the experts to gain a better understanding of the implementation
process. The interviews were designed to be open-ended: guiding questions were prepared to
steer the conversation slightly, but the core idea was to allow the experts to provide unprompted
feedback. These guiding questions were intended to steer towards feedback on the quality of the
content. The following questions were posed:

e Would you update any activity or steps in the artifact? If so, please explain what and
why.

e [s the method explained of the presentation understandable, assuming the reader has a
basic understanding of the concepts? (Understandability)

e Does the method explained in the presentation sufficiently cover the development of an
HDSL? (Sufficiency)

e Is the method explained the presentation useful for understanding the development of an
HDSL? (Usefulness)

The feedback gathered from the expert interviews was analysed to identify areas for improve-
ment in the methodology. The experts’ insights helped refine the process and ensure its practical
applicability and robustness. The expert interviews were conducted with two professionals who
are experienced in the development of a DSL, namely Ampersand. Both experts have extensive
knowledge and practical experience with the Ampersand platform, which facilitated a smooth
understanding of the implementation and allowed for more in-depth discussions regarding the
strengths and weaknesses of the current methodology.

37

We received the following feedback:

e Introduction of the Artifact

Both experts noted that the artifact itself needed a better introduction. They recommended that
the ultimate goal of the methodology should be clearer upfront, including a concise explanation
of what HDSL and TDSL mean. They suggested that the purpose of the different steps in the
methodology should also be explicitly stated at the beginning to provide context and improve
understandability. Additionally, for the PowerPoint, they recommended creating a table that
matched concepts with their concrete instances in Ampersand to enhance clarity.

e Logical Sequence of Steps

The experts agreed that all steps in the methodology were logical and followed a clear sequential
order. This structured approach was appreciated, as it provided a coherent flow from one phase
to the next. However, they emphasized the need for a more detailed explanation of each step’s
purpose and how it contributes to the overall goal of developing an HDSL.

o Validation in Methodology

A significant point raised by both experts was the absence of a specific step aimed at validating
the HDSL in the methodology. While the methodology ensures the requirements for the HDSL
are defined in the decision phase, there was no clear mechanism to demonstrate that the re-
sulting HDSL meets those requirements. They pointed out that a feedback loop is essential to
ensure that the HDSL developed aligns with the initial goals and user needs. One expert sug-
gested incorporating a validation phase where the developed HDSL is tested against the defined
requirements, with adjustments made as necessary based on feedback.

o Agile Approach

Continuing on the need for validation, one expert recommended designing the methodology with
an Agile approach in mind rather than a traditional waterfall model. They argued that using
short-cycle user stories could facilitate continuous feedback and iterative improvement in the
development process of the HDSL. By structuring the methodology to encourage this approach,
it would allow for regular validation of progress against the requirements, ensuring that the
development stays aligned with user needs and expectations throughout the process.

5.2 Usability Test

The usability test has been conducted by engaging software developers and domain experts to
test result of the case study. To quantify user satisfaction, an enhanced version of the System
Usability Scale (SUS) by Brooke [3| has been utilized. The SUS is a widely used tool that pro-
vides a reliable measure of system usability, which consists of a ten-item questionnaire with five
response options ranging from “Strongly agree” to “Strongly disagree.” The SUS yields a single
score representing a composite measure of the overall usability of the system. This score helps
compare the usability of different systems and identify areas needing improvement [3].

In their research, [35] developed a framework that addresses some limitations of the traditional
SUS by incorporating additional criteria from ISO 9126 and ISO 9241-11 standards, which are

38

crucial for evaluating the user experience in an interactive editing environment. Their version
of the SUS adds nine additional questions to the survey, aimed at measuring the efficiency, ef-
fectiveness, usability compliance, and attractiveness of the system. This is expected to provide
a more complete assessment of the renewed tool [35].

To ensure a proper evaluation, both the TDSL and the HDSL tool has been assessed using
the Enhanced SUS survey. The test subjects were asked to perform the same tasks on both sys-
tems, after which they were filled in the survey and explain their choice. The results from these
assessments were compared to identify improvements and areas that still require enhancement.
By comparing the usability scores of the old and new versions, we can quantify the effectiveness
of the redesign and ensure that the interactive editor significantly enhances the learnability and
usability. By testing both tools, it was possible to measure whether the methodology success-
fully guided the development of the HDSL toward meeting its goals of improving usability and
accessibility. If the HDSL showed measurable enhancements over the TDSL, it confirmed that
the methodology had been successful in achieving its objectives.

The usability test consisted of four steps: collecting demographics, familiarizing participants
with Ampersand, assessing the TDSL, and assessing the HDSL.

e Step 1: Collect Demographics

Participants were first asked to complete a brief questionnaire to gather demographic information
and obtain their consent to use their feedback. The questions aimed to collect data relevant to
the study, focusing on their programming experience, type of experience, and familiarity with
programming languages. Participants described their overall programming experience (ranging
from no experience to expert), elaborated on the nature of their experience (such as work or
study), and selected the programming languages they have used from a predefined list, with an
option to specify other languages.

e Step 2: Familiarization with Ampersand

To ensure participants could provide meaningful input, they were given an introduction to Am-
persand, covering the basics of information systems and how Ampersand facilitates their devel-
opment. This included an overview of information systems and an explanation of Ampersand’s
textual syntax.

e Step 3: Assessment of the TDSL

In the third step, participants assessed the TDSL by modifying and improving a piece of code
in the textual editor. They were tasked with adding functionalities to the code. During this
exercise, participants could request explanations about the workings of the TDSL as needed.
Upon completing the task, they were asked to fill out the Enhanced SUS questionnaire and
provide any additional comments.

o Step 4: Assessment of the HDSL

The assessment of the HDSL followed a similar process to that of the TDSL. Participants were
asked to perform the same task as in the TDSL assessment, along with an additional task specific
to the HDSL. Again, they could request explanations if necessary. After completing these tasks,
participants filled out the Enhanced SUS questionnaire once more and had the opportunity to
offer further feedback.

39

Result

In Appendix G, the Enhanced SUS is displayed, containing a column that states the categories
of each question. Each category was calculated to determine how well both the TDSL and HDSL
performed, which were compared between the TDSL and HDSL assessment. The comparison
of the SUS scores for the TDSL and HDSL provided insights into the areas where the HDSL
improved usability and where further enhancements are needed. It allowed for a comprehensive
evaluation of the user experience, highlighting the strengths and weaknesses of the HDSL com-
pared to the original TDSL. The result of the calculated scores of both DSLs can be found in
Table 5.1. Six users participated in the usability testing.

TABLE 5.1: Calculated SUS Score by Category of the TDSL and HDSL

Category TDSL HDSL Delta
Efficiency 4.6 5.6 +1.0
Effectiveness 6.0 5.0 -1.0
Satisfaction 6.6 5.5 -1.1
Understandability 6.5 6.7 +0.2
Learnability 6.0 6.7 +0.7
Operability 7.2 3.1 -4.1
Attractiveness 4.9 5.0 +0.1
Usability Compliance 7.1 6.1 -1.0
Total 6.1 5.5 -0.6

In addition to the Enhanced SUS scores, participants provided verbal feedback during the
usability testing. Several key themes emerged from these discussions:

e Participants recognized the potential benefits of the graphical syntax introduced in the
HDSL. They appreciated the idea of visual representations, which can offer a more intuitive
understanding of complex systems. However, they found the current implementation of
the graphical syntax to be neither smooth nor intuitive enough for practical use, indicating
that further refinement is needed to enhance its usability.

e Multiple participants expressed a preference for the textual syntax, not because they were
familiar with the specific TDSL, but because they were more accustomed to working in
textual syntaxes in general. While they also had experience with graphical syntaxes,
their greater familiarity with coding in textual formats made them more comfortable and
efficient in that environment. This highlighted a significant challenge in transitioning users
to the new graphical interface.

e Participants noted that the graphical interface often required more steps to accomplish
tasks that were quicker to execute in the textual interface. This increased complexity
negatively impacted their overall satisfaction and perceived usability of the HDSL. As a
result, while the graphical syntax holds promise, it currently falls short in delivering a
seamless and efficient user experience compared to the more familiar textual syntax.

5.2.1 Assessment of the test

The usability test produced mixed results when comparing the TDSL and HDSL systems, as
shown in Table 5.1. Overall, HDSL received a lower total score (5.5) compared to TDSL (6.1),

40

suggesting that the new system, while offering some advantages, also posed challenges in terms
of operability and user satisfaction.

HDSL performed better than TDSL in Efficiency (+1.0) and Learnability (+0.7). One pos-
sible explanation for the higher efficiency score is that the graphical syntax allowed participants
to manage complex relationships more easily, as visualizing these elements may have provided
clearer insights. Furthermore, participants indicated that once they became familiar with the
graphical syntax, they found certain tasks faster and more intuitive, which could explain the
improved learnability score.

However, HDSL scored lower in Effectiveness (-1.0) and significantly lower in Operability (-
4.1). The larger drop in operability could indicate that while the graphical syntax was beneficial
for specific tasks, it introduced additional steps or complexity when compared to the simpler,
more direct interactions available in the textual syntax. This might have led participants to
struggle with performing certain operations as quickly or efficiently as they could in TDSL.

Participants also rated HDSL slightly higher in Understandability (40.2), suggesting that,
despite some challenges in operation, the graphical elements were not particularly confusing or
difficult to understand. This score indicates that the graphical interface may have potential for
improving comprehension, especially for more complex tasks, although it did not dramatically
outperform TDSL in this regard.

Despite the improvements in efficiency and learnability, HDSL scored lower in Satisfaction
(-1.1) and Usability Compliance (-1.0). This suggests that while participants found certain
aspects of the HDSL system helpful, they may have experienced frustration with other parts of
the interface or the overall experience. The complexity added by the graphical interface might
have been a factor contributing to this lower satisfaction score.

Regarding the relative importance of different categories, while all categories contributed
equally to the total score, Learnability and Understandability could be considered more signif-
icant in this context, especially for users who are new to the DSL environment. As the HDSL
system is designed to introduce graphical syntax, higher scores in these categories suggest that
it could potentially lower the barrier to entry for less experienced users. However, since oper-
ability remains a critical factor in daily use, the low score in this category points to areas for
improvement

5.3 Discussion

The evaluation of HDSL methodology has yielded several significant conclusions. The expert
interviews focused on the methodology itself, while the usability tests evaluated the implementa-
tion of the case study, providing a comprehensive perspective on both the theoretical framework
and practical application of the HDSL.

The expert interviews indicated that the steps outlined in the methodology were generally suffi-
cient. However, a critical gap identified by the experts was the lack of a validation phase and/or
iterative testing within the methodology. They emphasized the importance of incorporating iter-
ative design and validation cycles to ensure continuous feedback and improvement. Specifically,
experts noted that final validation steps were missing, and shorter iterations over the design of
the HDSL were necessary to refine the system progressively.

This gap in iterative testing and validation could explain the negative usability scores ob-
served in the usability tests. The final users were not involved early enough in the design process
of the HDSL, which might have led to a disconnect between the theoretical benefits and the prac-
tical usability of the system. Participants in the usability tests recognized the overarching value
of the HDSL, particularly the potential of graphical syntax to enhance understanding and ease of
use. However, they found the specific implementation lacking in smoothness and intuitiveness,
which negatively impacted their overall user experience.

41

The usability test results demonstrated that while the HDSL offers potential, it underperformed
compared to the TDSL in several key areas, including Effectiveness, Satisfaction, Operability,
and Usability Compliance. Participants preferred the familiar textual syntax, which allowed for
quicker task completion. The graphical interface, although visually appealing, required more
steps for certain operations, introducing complexity that diminished user satisfaction. Notably,
Operability scored significantly lower for HDSL, reflecting the increased complexity and number
of steps required in the graphical syntax.

At the same time, HDSL scored higher in Efficiency and Learnability, suggesting that once
users adapted to the graphical interface, it became easier to navigate and allowed for faster
execution of specific tasks, particularly those involving complex relationships or visual data
management. This indicates that HDSL has long-term potential, especially for novice users or
those unfamiliar with textual syntax. However, the lower Operability and Satisfaction scores
indicate that the graphical interface requires further refinement to make it more intuitive and
efficient for everyday use.

In conclusion, the evaluation revealed that while the HDSL methodology holds promise, there is
a need for significant improvements, particularly in the design and validation phases. Introduc-
ing iterative testing and continuous feedback loops throughout the methodology would allow for
user feedback to be integrated at each stage of development, ensuring the system evolves based
on real user experience. By addressing these gaps, the HDSL can be refined to meet usability
standards more effectively, ultimately improving its accessibility and effectiveness for a wider
range of users.

42

Chapter 6

Conclusion

This chapter aims to summarise the research findings and provide recommendations for future
work. The chapter outlines the key conclusions drawn from the methodology and prototype
evaluation, highlighting areas for improvement and potential enhancements. The concrete result
of this chapter is a set of actionable recommendations to refine the HDSL development process
and ensure its practical applicability and effectiveness in real-world scenarios.

6.1 Conclusion

This thesis presents a methodology for designing an HDSL for an existing TDLS, with the goal
of improving accessibility and usability for non-technical users while maintaining the functional
integrity of the original language. The structured approach suggested in the thesis provides
clear guidance on each phase of development, from the initial decision-making to the final im-
plementation, ensuring that both textual and graphical elements are aligned and optimized for
usability.

One key finding from the development of the methodology is the need to balance the graph-
ical and textual syntax. While graphical elements are valuable for improving usability and
comprehension, they can also introduce complexity, particularly for users already familiar with
textual syntax. The usability tests demonstrated that although the HDSL improved efficiency
and learnability, it negatively impacted operability. This suggests that the methodology should
provide clearer guidance for which elements graphical representations should be defined to en-
sure that they enhance the user experience without adding unnecessary steps or confusion.

A key contribution of the methodology is its structured approach to HDSL development, of-
fering a blueprint of clear phases —from decision-making to design and implementation— each
guided by specific activities and outcomes. However, the evaluation highlighted the need to
incorporate iterative testing and validation phases within this structured framework. Continu-
ous feedback loops allow the methodology to be more responsive and adaptive, ensuring that
both graphical and textual components can be refined based on user input. Without regular
validation phases, there is a risk that the final product may not align with user expectations.
By integrating iterative design cycles, the methodology shifts from a linear process to one that
evolves with each new iteration, making it more robust and user-centred. This was demon-
strated in the Ampersand case study, where the systematic, step-by-step process successfully
guided the development of an HDSL for an existing TDLS, which it also revealed areas for
further refinement, particularly in the operability of the graphical components.

43

Research Questions

The primary research goals set forth in this thesis have been systematically evaluated to deter-
mine their successful fulfilment and the contributions made toward the development of an HDSL
from a TDSL.

1. Develop a Comprehensive Methodology: formulate a systematic approach for developing an
HDSL from a TDSLs. This methodology addresses the preservation of functional integrity
while enhancing usability and accessibility.

The design and development stages focused on creating a structured methodology, of which
the successful application was demonstrated by means of a use case. This showed that it was
effective in guiding the development process and enabled the creation of a functional HDSL
prototype. However, while the methodology worked as intended, the evaluation phase revealed
that there were several improvements opportunities. Specifically, incorporating iterative testing
and validation cycles is necessary to address usability issues and ensure continuous improvement.

2. Implement a Prototype: apply the developed methodology to create an HDSL from an
existing TDSL. This prototype has been assessed by using the validation method.

A prototype was realized during the case study, where the methodology was practically
applied to develop a functional prototype using the Ampersand platform. This prototype inte-
grated both textual and graphical components, demonstrating the feasibility and effectiveness
of the methodology. The usability tests conducted as part of the evaluation phase revealed that
while the HDSL holds promise, it currently underperforms compared to the TDSL in several
areas.

In summary, the research goals of developing a comprehensive methodology, designing a val-
idation framework, and implementing a prototype have been successfully addressed. However,
the evaluation highlighted areas for improvement, particularly in incorporating iterative testing
and validation to enhance the methodology and the resulting HDSL’s usability and effectiveness.

6.2 Recommendations

The evaluation indicates the need for improvements in the methodology by incorporating iter-
ative testing throughout the development and/or a dedicated validation phase. Adding a test
phase to the methodology is a potential solution for ensuring systematic testing and thus feed-
back is implemented in the development of the HDSL. This phase must be constructed in such
a way that allows for shorter development and design cycles, adopting a more agile approach
instead of the current waterfall model. By integrating continuous feedback loops and itera-
tive refinements, the HDSL can be progressively improved to better meet usability standards,
ultimately enhancing its accessibility and effectiveness for its users.

44

Requirements &
Objectives

Decision

Environment

selection

H Domain model Technical
Ana I.ySI S annotated Models

Design Graphical N Meta model
= Notation annotated
Design P‘]_ ramevart
Graphical Syntax interaction in
i Hybrid
Implementation o

Graphical Views Ve

H Graphical Syntax Functionality
Te Stl n g Testing Testing

Textual Views

Deployme nht Documentation Finished HDSL

FIGURE 6.1: Extended methodology containing a phase dedicated to testing

The proposed test phase as depicted in Figure 6.1 should be divided into two main cat-
egories: Functionality Testing and Graphical Syntax Testing. Functionality Testing involves
engaging stakeholders to gather feedback on the HDSL performance and usability, ensuring the
integration of textual and graphical elements functions seamlessly. Graphical Syntax Testing,
on the other hand, focuses on refining the graphical components based on user feedback to
ensure they are intuitive and effectively communicate complex information. It is crucial that
the graphical notation is tested separately to address any specific usability issues and ensure it
enhances user understanding.

Incorporating these testing phases will ensure that the HDSL meets both functional and us-
ability standards. The iterative process of testing and refinement will make the methodology
more circular and agile, as insights gained during the test phase will feed back into the other
phases.

e Decision Phase: Feedback from the test phase can inform future decisions regarding the
scope and objectives of the HDSL. If certain functionalities are not meeting user needs,
the decision phase can be revisited to adjust goals and priorities.

o Analysis Phase: Issues identified during testing may highlight gaps or errors in the initial
domain analysis. Revisiting this phase can ensure a more accurate and comprehensive
understanding of user requirements and domain-specific needs.

e Design Phase: Feedback from the graphical and functionality tests can lead to modifica-
tions in the design phase. This ensures that the design of the HDSL evolves based on
practical user experiences and identified usability issues.

o Implementation Phase: Insights gained from testing can lead to minor refinements in the
implementation phase. This might involve code adjustments, integration improvements,
or enhancements in the development environment.

By validating through continuous feedback and refinement, the HDSL can be tailored to
better align with user needs and expectations. This iterative process will enhance the DSL’s
accessibility and effectiveness, making it a more robust tool for a broader range of users.

45

6.3 Limitations

While this thesis provides a comprehensive methodology, several limitations were identified
throughout the process that affect the generalizability and implementation of the methodol-

ogy.
e Scope of the Case Study and Limited Testing

One of the main limitations of this thesis is the narrow scope of the case study. The Ampersand
platform was the sole environment used to demonstrate the feasibility of the proposed method-
ology. While this case study offers valuable insights, it limits the generalizability of the results.
The applicability of the methodology to other domains or DSL environments remains untested.
This limitation is particularly important when considering the potential diversity of DSLs in
real-world scenarios, where the nature of the domain and user requirements may differ signifi-
cantly from those explored in this study. Additionally, while the prototype was developed and
tested, the user group involved in the usability testing was small, which may limit the robust-
ness of the findings related to the effectiveness and usability of the HDSL. Future work should
involve multiple case studies and a broader range of participants to validate the methodology’s
adaptability and effectiveness across different contexts.

e Lack of a Comprehensive Deployment Phase

The research focuses on the design, development, and initial validation of the HDSL but does not
explore the deployment phase in detail. The deployment of HDSLs in real-world environments
involves various factors such as scalability, integration with existing systems, and user train-
ing—all of which were beyond the scope of this thesis. Without examining these aspects, it is
difficult to determine how easily the HDSL can be adopted in practical applications, especially
in complex organizational settings. The absence of detailed deployment strategies may limit
the methodology’s applicability when transitioning from prototype development to large-scale
implementation.

e Limited Integration of Syntax Design Principles

Although principles from graphical syntax design, such as those provided by Moody [19], were
referenced in the methodology, their integration could have been explored in more depth. This
limited exploration may affect the cognitive effectiveness of the graphical syntax, particularly
in complex or technical use cases. A deeper application of such design principles could further
optimize the graphical components for clarity and usability, ensuring they meet the cognitive
needs of users.

e Usability Issues with Graphical Syntax

The usability testing results revealed challenges with the graphical syntax, specifically in terms of
operability. While graphical elements improved efficiency and learnability, participants found the
graphical interface cumbersome for certain tasks compared to the textual syntax. This suggests
that the graphical syntax design requires further refinement to ensure smoother interaction,
especially for users accustomed to textual programming. These usability issues highlight the
need for ongoing improvements to the methodology to ensure that graphical components enhance
rather than hinder the user experience.

e Lack of Iterative Testing and Validation

46

A critical limitation identified by both expert interviews and usability testing is the absence of a
dedicated validation phase within the methodology. Without iterative testing and validation, it is
difficult to ensure that the methodology is continuously refined based on real-time user feedback.
The current process is more linear and does not provide opportunities for frequent adjustments,
which may lead to gaps between the intended design and actual user needs. Incorporating
iterative feedback loops into the methodology would improve its responsiveness and adaptability,
helping to address usability and functionality issues earlier in the development process.

6.4 Future Research

Future research should thoroughly explore and develop the test phase, ensuring it includes com-
prehensive Functionality Testing and Graphical Syntax Testing. This phase must be designed
to incorporate continuous feedback loops, allowing for iterative refinements based on user inter-
actions and feedback. Researchers should investigate best practices for engaging stakeholders
throughout the testing process to gather meaningful insights and ensure the HDSL aligns with
user needs.

One area for future exploration is the application of formal ontologies to guide the design of
the HDSL’s semantics. While this research relied on internal consistency, formal ontologies
could offer a more rigorous way of structuring domain knowledge, improving the clarity and
semantic alignment of the HDSL. Investigating how formalized ontologies enhance semantic ro-
bustness could be valuable for more complex or technical use cases.

Another critical area for future research is the development and investigation of the deploy-
ment phase. This phase is essential for ensuring a smooth transition from development to
practical use. It should address issues such as scalability, integration with existing systems,
and user training. Detailed guidelines for deployment, including troubleshooting and support
mechanisms, should be established to facilitate widespread adoption. By thoroughly exploring
the deployment phase, researchers can ensure that the HDSL is not only well-developed but also
effectively implemented in real-world scenarios.

Increasing the number of test cases is also paramount for the comprehensive validation of the
HDSL methodology. While one demonstration is beneficial for an initial iteration of the method-
ology’s design process, multiple case studies across different domains are necessary to test the
versatility and robustness of the HDSL methodology. Future studies could focus on applying
the methodology to domains beyond Information Systems, such as healthcare, manufacturing,
or education. Each domain comes with its own specific requirements and challenges, and testing
the HDSL methodology in these diverse contexts will provide insights into its adaptability and
highlight any domain-specific adjustments that may be required.

Moreover, expanding research into Domain-Specific Languages (DSLs) for domains other than
Information Systems is an important next step. While this research primarily focused on trans-
forming DSLs in the context of Information Systems, many other fields, such as healthcare,
cybersecurity, financial services, and artificial intelligence, could benefit from tailored DSLs that
integrate graphical and textual syntaxes. Investigating how the HDSL methodology can be ap-
plied to DSLs in these fields would provide a broader perspective on its usefulness and potential.
For instance, DSLs in healthcare might focus on visualizing patient data flows or treatment
protocols, while in cybersecurity, graphical representations of network security structures could
help domain experts manage and understand complex systems more effectively. Research into
these fields could identify new opportunities for HDSLs to enhance usability and efficiency across
a wide range of sectors.

47

Increasing the number of test cases is also paramount for the comprehensive validation of the
HDSL methodology. While one demonstration is sufficient for an initial iteration of the method-
ology’s design process, multiple case studies across different domains are necessary to test its
versatility and robustness. Research should focus on applying the methodology to diverse do-
mains beyond Information Systems. Each domain presents unique challenges, and testing the
HDSL methodology in these varied contexts will provide insights into its adaptability and high-
light any domain-specific adjustments needed.

Finally, expanding the use of DSLs in fields like healthcare, cybersecurity, and artificial in-
telligence will demonstrate the broader potential of the HDSL methodology. These fields could
benefit from tailored DSLs that integrate graphical and textual syntaxes to address specific chal-
lenges, such as visualizing complex data flows or managing intricate system relationships. Future
research could explore how the HDSL methodology can enhance the usability and efficiency of
DSLs in these diverse sectors, identifying new opportunities for improving domain-specific work-
flows and decision-making processes.

48

Appendix A

Findings from the Literature

An overview of the software used in the investigated articles.

TABLE A.1: Software Tools used for DSL Development

Software Purpose articles
Sirius Used to define and manage graphical representations [30]
within DSLs, particularly for enhancing graphical
syntax.
Xtext Employed for managing textual components of [30], [28], [36]
DSLs, providing features like syntax highlighting
and error detection.
Spoofax Integrated for DSL development to support mod- [5]
ular syntax definition, transformations, and cross-
language references.
AToM3 Applied to design and implement frameworks inte- [28]
grating textual and GDSL components.
GEF (Graphical Utilized to develop rich graphical editor applications [33], [36]
Editing Framework) integrated into Eclipse, supporting DSL modelling.
EMF (Eclipse Mod- Used as a basis for creating modelling frameworks [33], [14], [36]
elling Framework) and DSLs, providing infrastructure for model defini-
tion and manipulation.
Web-based editor implemented for developing and testing the HyLiMo [14]

framework, facilitating integration of textual and
graphical editing.

49

Hdal
osdIpoy oY) ojul poeIS)
-ur st I03ps TSAH PUL

“yuotAordop

UOTHULUI J0U Op pue UuoIje)
-uowe[dwit jo serjIiqissod
91e31)SAUT SO[OIYIR O[T,
‘poAdIOR

A[[eoryewwio)ne sem JuUOUI
-fordep Clegl ‘1091pe
poseq-qom & Ul YIOMaUIelj
o) Sunpuowordwr Ag

"9100H
yym pojerdojur pue pado
-[oASp Sem I0}Ipe Uy

"SOTJURTOS JO
dnjes oy} Surpnpur ‘peje
-I19Ue8 A[[eoljRUIOINE SIoM
siosred ‘@NOLY Suls()

"S[opowW OJUI Pappaq
-we 9q 0} sedengdur] MO|
-[® 0} POPodU ST YOUS{IOM
Suiepow pLIqAY e ety
POPN[OU0D [DIBISAI Y],

‘popraoid orom jusUx
-Ao1dep a1 uo soyroads oN

sutsnyd osdrpogy
Sursn SIUSWUOIIAUS JUS
-dofoaap aremyjos Sur)sIxo
ojur JSAH Y} seyerdanu]

‘S[epow IS Jo uore|

-ndruewr [eorydeld mofe 03)Xoy
9 SurjerSejur ‘qHn Susn
1031po [eoryderd oyj sjuowe[dwi]
*SYI0MOUIRT)

Surepowr [eoryders pue Jxe01¥
O¥I[S[00} SUISN SOAIJRUIS)@ UOS
-oyo Jo uorjejuewordul oY) S[reIa (]

‘soniqedes Jul
-91po Teorydeld pue [enjixo) 3uryerd
-9Jul ‘I0}Ipe Poseq-qom ® Sse YIom
-owrelj ONUTAH oy} sjuswe[duuy

"seanyes) uryps eoryderd
pue [en)xe) SUIPeIFIIUT ‘IOMBUIRI]
Surepowr [eoyderd e ur sIor
-po [enjxa) poppeoquie sjyustrerduy

‘squouodwod TSI YUSISPIP JO
uoryeIda)ul o) SuryeIIOR] ‘CINOLY
ur syIomowretj TS oY) syuowo[dury

TSAH
o} Juowo[dwl pue UIISop A[Snoou

-e)[NUIlS 0} SNLIIG pPUR)Xa3¥ 3uIs

seSen3ue] om} 9y}
9yeI3Iu /100un0d 01 pajuswedur st
uorjeidiua agengue] 1oy aulfedid

XYY pue snig
1] S[00} Paseq-(NH) dIomoures]
Surepoy osdiporf Suisn juewt
-uortAaue TS(IH oyl sjuowsduuy

‘S[opout
TS [eNYX0) Paseq-1Xa1Y M SOZIUOIYIUAS
1R() I0)Ipe paseq-JHY) [eoryders e sulsa(]

's9ss9001d UOTYRULIOJSURIY
uo SUuIsNO0j ‘STG(IL) OJUI SMAIA [eN)Xs) Sul
-)eI30Ul 10 SOAIjRUIo)[e [eIoAds sosodolg

‘suoryendrueur [eor
-ydesd pue renjxey syroddns get) (ONITAH)
JyIomewrej SurweISeIp PLIqAY @ su3Ise(]

"AIND pue JINH Sulsn sio0g
-1po Teorydels uryiim SIO)Ips [9pouw [enjxoy
poquia 0} Iomduwelj paseq-i.], & SuSIso(]

‘ssurddewr [epowrejowr Jurziseyd
-we ‘syusuoduwod TG(IY) PUR [BRN)XS) 9)eIZa)
-ut 0y (INOLY Sulsn) spTomourel] ® suliso(]

"PareISOIUT 9Q URD SHUOUID[D
[eorydeid ‘urerdelp snuig o} SUULISRI A
"TRYHIIM 9 TeD 9P0d TSI © ‘10)TPd SNIIIG
oY) UI pappaquue I0}Ipa 1X03X oY) Suisn Ag

pousisep st suorjerdiuu sjrod
-dns jey) einjoojyole ur pue ‘sedengue]
[j0q I0jJ pouSIsop SI XejuAs TG(9SIOU0D Y

"SOUO [eN)X9} I0J }X9)Y pue SJUSWo
-1° reorydeis 1oj snuirg 3ursn sG] 10§ £3070
-POT[}oU J1JeUINISAS © SUIUSISOP UO SOSNOIO]

‘A[renyxey Aeand
sopowt Jurssoxdxo Ul suor}
“ejul] JIeyl pue SIS
poseq-1x93Y soyenyear]

‘uonel

-0U [RN)X9) JO UOIYRIFIIUI
SULIOPISUOD ‘UOSSOLIY e
posn TSY) Oy} SesA[euy
‘Sururergerp

pPLIqAY 10J spesu oyeads
-Urewop uo 3uIsnooj ‘sAoA
-INS pue SMIIAIUI J10dxo
RIA sjuemIOIINbaI $109[[0))
"SI0)IPd

1x07 poajesrysiydos jo uor}
-e1doqur Terjuejod oY) pue
s1011pe [epou [eosrydeisd jo
SUOTYR}IWI] 97} SOUTUIRXS]
‘sjuewaInbal urewop uo
SuIsSnO0J ‘UOIyRISIUT [RN)
-X99 I0J SPOdU SOSSIsse pue
STSAY) SUI)SIXo SMOIADY

aseyd uoIsIep oY)

wogy aserd ajeredss ® JON
sBurjiom

IPY) Uuo posA[eue A[mj
-oIed ole sodendue] yjog

Apyor[dxe paresap j0N

*SHUOUIOOURTY]
-o Teorydersd 10] gHY) ojerodiod
-Ul 0} PapIoep ‘suorjejrul] AJuspr
07 YIOMOUIRIJ)X01X OYj) Pojenyesr]

orqpesy 1eoproy
-o)B)S pUR I9SN UO paseq ‘J§(TY) Jul
-1STX0 UIIIM SMOIA [BNIX) JO SOl
-[iqrssod worpeIdojur oY) poasAreuy

'S[00} SurtwwrerdeIp prqAy
I0] poou oy} SUIAJIIUepI ‘Yorqpos]
pue sjusweInbar oyes 0} skoains
JOSTL PUR SMOTAIONUIT }1odXe PozI[II()

“Ayqe
-sn pue Ajeuorniouny ut sdes Sutdjy
-1YUoPI ‘S[00} SUIIPS [OPOW [BNIX)
pue [eorgdeis juarnd Jo SISATeuy

‘[PpPOW UTRWOP 9} Ul SoJUS[[eYD
[eororid pue JorqpPed] Iesn JULIO
-pISu0D ‘STG(IY) SUI)SIXD MOIAdY

09Ul PaYeSI)SOAUT ST JIoM

pojedy ‘syueweImbor jo uoIR
-910 pue (91007 SNLIG ‘1X071Y) Jueul
-UOIIAUS [ROIIZO[OUYD9) JO SISA[RUY
suoryejuotoduur

SuIIsIxo JO SIsA[eur pue UOI}eIYI}
-uep! we[qold YSnoiy) pejonpuo))
"SOITIq

-eded Sur[epowr vouRYUL IR} STS
-(IH 10§ pesu oty jutodurd oy sjooy
3ur)sIxo JO SISA[eUR puB UOIIROIYIY
-uopl wv[qoad ySnoiy) pejonpuo))

[9€]

[21]

[71]

leg]

[s]

[¢]

[9]

log]

aseyJ jyuowiLordaq

aseydq uoljejuswadwy

aseyq ulise(q

aseyJ SIsATeuy

aseyJ uoIsma

s[oQ, pue soseyq yuomdopPad(TSAH JO MIIAIOA() gV ATAV],

50

Example objectives and requirements from the papers.

TABLE A.3: Example objectives and requirements from literature

Requirements

Purpose

Article

Syntax-Aware
Editing Features

Cross-Referencing
Model Elements

Enhanced Usabil-
ity through GUIs

Modular
Approach

Design

Dynamic Interac-
tion Integration

Uniform Error Re-
porting

Live Synchroniza-
tion

Unified Model
Management

Flexibility and Ex-
tensibility

Backwards
patibility

com-

Integrate features like syntax highlighting, auto-
completion, refactoring, and error detection markers
to enhance the coding experience

Allow users to navigate between textual expressions
and referenced graphical model elements, enhancing
navigability and understanding of complex relation-
ships

Support drag-and-drop functionalities, multi-
selection, and other interactive features to make the
user interface more intuitive

Enable independent development and testing of dif-
ferent parts of the DSL, facilitating easier mainte-
nance and upgrades

Allow users to switch between or use both textual
and graphical editing features simultaneously, pro-
viding a more flexible and efficient workflow

Implement consistent error reporting across both
textual and graphical components of the model,
making it easier for users to identify and rectify is-
sues

Establish live synchronization between textual and
graphical components to reflect changes instantly,
improving interaction patterns and expressiveness

Utilize an abstract syntax graph (ASG) that inte-
grates elements from both the textual and graphical
parts of the model, ensuring consistency and coher-

ence in the DSL

The implementation should allow for easy modifica-
tion and extension of the DSL

The syntaxes should be back and forwards compati-
ble. This lowers the boundary for industry to adopt
language workbenches for custom DSL implementa-
tions

(301, [5]

[30]

[36]

[14]

[36]

301, [5]

[14]

(301, [5]

28]

[14]

51

Appendix B

Systematic Literature Review

To establish the enhancement objectives and requirements for Ampersand, a brief literature
review focused on "understanding how an interactive editor can be designed to make formal
specifications more accessible" was conducted. This review was essential as the formal specifi-
cations need to be converted from textual syntax to a graphical format.

Theoretical Framework

To address the research goal of understanding how an environment can be designed to make
formal specifications more accessible, a systematic literature review was conducted. This review
aimed to explore and analyse the existing knowledge on formal languages, interactive editors,
and their integration. By examining case studies and empirical evidence, the review sought to
identify best practices, design principles, and user experience considerations that can inform the
development of more accessible interactive editors for formal specifications.

The framework used is based on Wolfswinkel [38|, aimed at exploring and analysing the
combined knowledge on formal languages and interactive editors in the area of software devel-
opment. The review follows the PRISMA methodology [24], which outlines a flow diagram to
handle the same steps as Wolfswinkel B.1. Scopus was chosen as the primary database due
to its extensive coverage of academic works across numerous disciplines and its reputation as
a dependable resource for academic research. The search query was designed to find academic
literature focused on case studies in the problem domain. This resulted in the identification of
a significant number of documents, initially yielding 2526 articles. The search terms used in the
query included combinations of keywords related to formal methods, system design, specification

) [entincatin)

Records screened ecords exclu
(n=84) n=66)

Reporls sought for retrieval
(n=18)

Reports assessed for eligibilty
(n=13) —

Screening

Studies included in review
(n=5)

([inetugea] |

[H]

FIGURE B.1: Identification of studies

52

languages, and rigorous specifications (see Table 1 for the keywords used in the query).

((Formal AND Languages) OR (Formal AND Specifications) OR
(Formal AND System AND Design) OR (Specification AND Languages) OR
(Formal AND Syntax))
AND
((Interactive AND Editor) OR ((Interactive OR Integrated) AND Development AND Environment) OR
(Visual AND Editor) OR (Graphical AND Editor) OR (Interactive AND Tool) OR
(GUI) OR (Interactive AND Interface) OR (Live AND Editor))
AND
((Software AND Development) OR (Software AND Design) OR
(Application AND Development) OR (Systems AND Development) OR
(Software AND Programming))

Articles must be peer-reviewed, written in English, and directly related to the research ques-
tions. To narrow down the amount of articles, another keyword filter was implemented on
“formal Languages”, “Specification Languages” and “formal Specification”. This resulted in 382
documents. In order to keep the research relevant, these results were filtered on the past 7 years.
This resulted in 84 documents.

The screening involved reviewing the titles and abstracts of the retrieved articles to exclude
those that were clearly irrelevant. This process was done by hand and reduced the number of
articles to 18.

Following the initial screening, a full-text review of the remaining articles was conducted to
ensure they met the inclusion criteria. This in-depth review focused on the relevance of the
studies to the integration of formal specifications and interactive editors, the quality of the re-
search methodology, and the significance of the findings. Studies that did not meet these criteria
were excluded from the final analysis. This resulted in the inclusion of 5 documents.

Analysis of the Papers

The selected papers were carefully reviewed to answer the question:

e What design principles and features should an interactive editor incorporate to enhance
the usability and accessibility of formal specification languages?

These questions guided the analysis, helping to identify the essential design principles and
requirements that can improve the usability and accessibility of formal specification languages.
Additionally, other relevant requirements mentioned in the texts were documented to ensure
a comprehensive understanding of the factors necessary for designing an effective interactive
editor. The selected articles can be found in Table B.1

TABLE B.1: Resulting articles form the literature review

Reference Title

[20] A Case Study of a GUI-Aided Approach to Constructing Formal Specifications

[21] A Comparative Study of a GUI-Aided Formal Specification Construction Ap-
proach

[16] A GUI-Aided Approach to Formal Specification Construction

93

B.1

Based on the findings from the reviewed papers, the following requirements are identified for
developing an interactive editor to enhance the accessibility and usability of formal specification

Reference

Title

(23]

22]

A Formal Modelling Tool for Exploratory Modelling in Software Development

ViennaTalk and Assertch: Building Lightweight Formal Methods Environments

on Pharo 4

Findings

TABLE B.2: Requirements and Explanations

Explanation

Article

languages:
Requirement
Intuitive User
Interface
Dynamic GUI

Animation

Continuous
User Feedback

Clear Hierarchi-
cal Structure

Iterative Re-
finement

Cost-Effective
Integration

Enhanced Com-

munication
Code Genera-
tion

The editor should provide an easy-to-use interface that allows
users to visualize and interact with the specification, making
it accessible to those without deep technical knowledge

Incorporate dynamic GUI animations to illustrate potential
system behaviours, enabling users to understand and validate
specifications effectively

Implement mechanisms for continuous feedback, allowing
users to receive real-time updates on their inputs and the
evolving specification. Live editing and visualization can be
an extension to this.

Maintain a clear and logical hierarchical structure to organize
functions, data resources, and constraints systematically

Support rapid prototyping and iterative refinement to contin-
uously improve the specification based on user feedback

Ensure that the integration of the interactive editor with for-
mal specification languages is cost-effective, reducing devel-
opment time and minimizing errors

Facilitate improved communication between developers and
clients through interactive GUI models, ensuring that user
requirements are accurately captured and reflected in the for-
mal specifications

Incorporating automatic code generation from formal speci-
fications can reduce manual effort and errors, enhancing the
efficiency of the development process

[16] Chapter 3;
[23] Chapter 4.2;
[22] Chapter 2.2

[16] Chapter 3.2

[20] Chapter 2;
[21] Chapter 3.4;
[16] Chapter 3.2;
[23] Chapter 4.5;
[22] Chapter 2.2.1

[20] Chapter 4;
[21] Chapter 3.4;
[16] Chapter 4

[20] Chapter 3;
[21] Chapter 3.1;
[23] Chapter 4.3;
[22] Chapter 2.2

[21] Chapter 6;
[23] Chapter T;
[22] Chapter 2.5

[20] Chapter 5;
[16] Chapter 6;
[23] Chapter 3.2;
[22] Chapter 2.4

[22] Chapter 2.6

54

Appendix C

Requirements and Objectives
Ampersand

The final product of this phase is a set of functional and non-functional requirements, based
on the user and stakeholder feedback as well as comprehensive literature review findings. FEach
requirement is assessed based on the value towards the main business goals using the MoSCoW
analysis technique (Brennan, 2009). Additionally, an explanation of its significance and the
sources that justify its inclusion is provided. This structured presentation aids in ensuring a
holistic view of what is needed for the successful development and implementation of the HDSL.

Must (M) — requirements that must be satisfied in the final solution for the solution to be
considered a success.

Should (S)— high-priority items that should be included in the solution if it is possible.
This often a critical requirement which can be satisfied in other ways if strictly necessary.

Could (C) — the requirement, which is considered desirable but not necessary. This will
be included if time and resources permit

Won’t or Would (W) — the requirement that will not be implemented in a given release, but
may be considered for the future. The fulfilment of such requirements does not directly
affect the solution of the priority problems identified in the analysis, and the value of
implementing them more likely.

The source in the tables refer to where the requirements originate from. This can be the
Technical Examination (TE), the Stakeholder Needs (SN) or one of the various articles in both
the systematic literature review of the example objectives from the methodology.

TABLE C.1: Non-functional requirements

Sig Requirements Justification Source

F1 The system must become less diffi- This is the main reason why the HDSL is developed SN
cult for user to use

F2 The system must enable a unified This ensures synchronization and compilation of TE
compilation process changes across formats.

F3 The system must support hybrid- Both the graphical and textual syntaxes should be sep- SN, TE [36]
syntax editing arately adjustable [29]

F4 The system must ensure data in- The changes made in either syntax must be realized SN, TE
tegrity without data loss or inconsistency.

F5 The system must provide simultane- The user must be able to seamlessly switch or simulta- SN, [36] [29]

ous display of views neously display the views

95

F6 The system must provide (unified) Consistent error reporting across both textual and SN, [29] [5]
error reporting graphical components of the systems makes it easier
for users to identify and rectify issues
F7 The system must have intuitive user ~ Users with less technical knowledge also need to be able SN, [23] [22]
interfaces to use the interfaces [36]
F8 The system must enable rapid proto- This continuously improves the program based on user [20] [21]
typing and iterative refinement feedback (23] [22]
F8 The system should have a modular This enables the independent development and testing — [14]
design approach of different parts of the DSL, facilitating easier mainte-
nance and upgrades
F9 The system should allow for extensi- The HDSL will be modified and extended in the future. (28]
bility
F10 The system should allow for contin- Real-time updates on inputs and the evolving prototype [20] [21]
uous feedback on the final product [16] [23] [22]
F11 E'hfﬂ.sy}ft.em could integrate syntax Additional features to
ighlighting enhance the
F12 The system could integrate auto- development experience [29]
completion are useful to help the 5]
ser developing the
F13 The system could integrate refactor- prlica:ionlsjl &
ing
F14 The system could integrate error de-
tection markers
F15 The system could allow Live editing
TABLE C.2: Non-functional requirements
Sig Requirements Justification Source
NF1 The existing compiler must be used This ensures synchronization and compilation of
to handle inputs from both graphical changes across both formats
and textual sources.
NF2 The system must use Graphviz to vi- This application is already in use by the environment SN, TE
sualize the graphical syntax
NF3 The system must use the existing This leverages existing infrastructure and reduces the SN, TE
RAP environment need for additional training
NF4 The current error reporting of the Ensures comprehensive error detection and resolution TE
system must be extended to cover across all input types
both syntaxes
NF5 The system should implement the ex- Maintains consistency with current practices, facilitat- SN
isting syntaxes ing user adoption
NF6 The system should only encompass a A working prototype is developed to test the function- SN
part of the Ampersand Language alities and limit the scope
NF7 The system must include multiple in- This provides flexibility for users to choose the interface
terfaces for different syntaxes that best suits their needs, enhancing usability
NF8 The system could be enhanced by Drag-and-drop functionalities, multi-selection, dynamic [36] [16]

GUT functionalities

GUI animations and other interactive features to make
the user interface more intuitive

56

Appendix D

Analysis of Ampersand

The technical examination of Ampersand’s metamodel focuses on the key elements identified
during the domain analysis that need to be implemented into the graphical syntax. This analysis
is structured around the Concept, Relation, and Rule. Each section will follow a consistent
format to ensure a comprehensive understanding of these elements:

e Element Explanation: - A detailed description of the element, its purpose, and its role
within the Ampersand platform.

e Concrete Syntar and Relevant Grammar: - An explanation of the concrete syntax associ-
ated with the element, including relevant grammar rules that govern its use and ensure its
proper implementation.

e Metamodel: - An overview of the parts of the metamodel that are relevant to the element,
illustrating how it fits within the broader structure of Ampersand.

e Semantics: a table containing the relevant semantics displayed.

Concept

Concepts are the core entities within the domain, representing key data types or objects that hold
significant meaning in the business context. Each concept is uniquely defined and contextualized
to ensure clarity and relevance across various scenarios.

Concrete Syntax and Grammar

11 CONCEPT NameQfConcept “"this is the definition of a CONCEPT®

FIGURE D.1: Textual Syntax Concept

In the Ampersand Language, a concept is defined within a Pattern or Context by using the
“CONCEPT” statement followed by the desired name of the Concept. The definition (or mean-
ing) of the concepts must be placed between quotation marks on the row of the CONCEPT.

e The name of a concept starts with an uppercase.

e A concept should be used for immutable concepts. E.g. use a concept Person to express
that a person will always be a person and will not change in, let us say, a table. However,
don’t use Employee, because termination of an employee’s contract causes a person to be
an employee no longer. So employees are not immutable. To be an employee is a dynamic
property, so model it as a relation.

o7

e The description will be printed in the functional specification, so please check that your
definition is a complete sentence.

e Concepts need not be defined.

If you use a concept without a definition, Ampersand

defines it for you (regardless of whether you defined it or not).

Metamodel

ConceptDef

meaning

o > / ing
o meaning : Meaning, ——meamnd o
"% |+ markup : Markup

+ concept : Concept

IsE
+ genspc : Concep
+ context : Context

+ target : Concept E
+ source : Concept f
o sign : Signature

o relsDefdIn : Context

+ name : RelationName

o decprR : String
o decprM : String

concept

engen

genspc

o urlEncodedName : EncodedName

RelationName

Relation target
| et o Contont Context

1 |t versionInfo : AmpersandVersion|

4 context

source

genspc

o decprL : String
o ctxds : Context

Isa

+ genspc : Concept

+ gengen : Concept,
+ context : Context

Semantics

‘0 name : ContextName ‘

FiGURE D.2: Relevant metamodel Concept

TABLE D.1: The semantics related to Concepts

Rule

Description

Implication

A concept must have ex-
actly one Name.

A concept must be associ-
ated with exactly one Con-
text or Pattern.

Each concept may have one
urlEncodedName.

A concept may participate
in multiple generalization
relationships.

A concept can have mul-
tiple meanings (Meaning),
each potentially with
markup.

Ensures each concept is iden-
tified by a unique, human-
readable label.

Each concept exists within a
specific contextual boundary.

Optional attribute for web-
friendly referencing of con-
cepts.

Allows concepts to be both su-
perclasses and subclasses in hi-
erarchical structures.

Concepts can be described or
annotated in various detailed
ways.

Facilitates clear identification and referencing
within the system, crucial for usability and clar-
ity.

Ensures concepts are interpreted and managed
correctly in their respective scenarios, enhancing
accuracy and relevance.

Supports systems that interact with web inter-
faces, ensuring concepts can be safely encoded in
URLs.

Supports complex inheritance and classification
schemes, mimicking real-world relationships and
hierarchies.

Enhances the semantic richness and versatility of
concept descriptions, allowing for comprehensive
documentation.

Relation

Relations specify the associations between concepts, describing how different entities interact
or are connected within the domain. These can be directional, showing the flow of data or
dependency, and can vary in type, such as one-to-many or many-to-many relationships.

o8

Concrete Syntax and Grammar

167 RELATION nameQfRelation [Conceptl®*Concept2] [PROFP]

F1GURE D.3: Textual Syntax Relation

In the Ampersand Language, a relation is defined within a Pattern or Context by using the
“RELATION” statement followed by the desired name of the relation. The signature of the
relation, consisting of a source and a target concept, must be specified within square brackets
connected by an asterisk [.. *.. |. The multiplicity (e.g., one-to-many, many-to-many) is defined
using properties in a comma separated list between square brackets ’|” and ’|’. E.g. [UNIL,TOT].
The full list of properties can be found in Table D.2.

TABLE D.2: Property rules of the Relations

[.-] Property Semantics

The following properties can be specified on any relation r[A x B]

UNI univalent For any a in A there can be not more than one b in B in the
population of r. This implies that every a occurs not more
than once (is unique) in the source of r.

TOT total For any a in A there must be at least one b in B in the
population of r.

INJ injective For any b in B there can be not more than one a in A in the
population of r. So, every b occurs not more than once in the
target of r.

SUR surjective For any b in B there must be at least one a in A in the

population of r.
There are additional relations that can be specified on endo relations. An endo relation is a relation

where the source and target concepts are equal. T[A * A].

SYM symmetric For each (a,b) in r, (b,a) is in r.

ASY antisymmetric If (a,b) and (b, a) are both in r, then a = b.

TRN transitive If (a,b) and (b, c) are both in r, then (a,c) is in r.

RFX reflexive For each a in A, the pair (a,a) is in the population of .
IRF irreflexive For each a in A, the pair (a,a) is not in the population of 7.
PROP [SYM, ASY] S.hortcut for the combination of symmetric and antisymmet-

Tic.

e The name of a relation starts with a lowercase.

Metamodel

Name

Signature ot

- @
[

+ target : Concept /—"‘—/‘" i —r [0 context : Context

+ source : Concept

o sign : Signature Context
e o rolDordln Cortert =<4 ¥ Verioninio- AmpersandVorsion
- OT [name : RelationName 0 name : ContextName

o decprR : String
o decprM : String — prop Property
o decprL : String

o ctxds : Context

FIGURE D.4: Relevant metamodel Relation

99

Semantics

TABLE D.3: The semantics related to Relation

Rule

Description

Implication

Each relation must have
a signature consisting of a
source and target concept.

Each relation can have
multiple properties.

A relation must be defined
within a specific context
(relsDefIn).

Relations must have a de-
scriptive name (Relation-
Name).

Relations can have descrip-
tions (decrpR, decrpM, de-
crpL).

Establishes a directed connec-
tion between two concepts.

Specifies the nature of the rela-
tionship (e.g., many-to-many,
one-to-many).

Contextualizes the relation-
ship, indicating where it is rel-
evant.

Provides an identifiable and
meaningful label for the rela-
tionship.

Offers detailed explanations or
notes about the relationship.

Essential for modelling interactions or dependen-
cies between concepts, aligning with real-world or
logical relationships.

Helps define the cardinality and constraints of the
relationship, guiding implementation and usage
within the system.

Ensures that the relationship’s applicability and
relevance are clearly defined, preventing misinter-
pretation.

Aids in documentation and clarity, enhancing un-
derstandability for users and developers alike.

Enhances the semantic richness of the relation-
ship, allowing for comprehensive documentation
and understanding.

Rule

Rules enforce constraints or define behaviours within the model, ensuring data integrity and
enforcing business logic. They influence how data elements interact and behave under various
conditions.

Concrete Syntax and Grammar

189 RULE NameOfRule: relationl relation2;relation3~

Ficure D.5: Textual Syntax Rule

In the Ampersand Language, a rule is defined within a Pattern or Context by using the “RULE”
statement followed by the desired name of the rule. Term itself consist of a mathematical /alge-
braical expressions that relate directly to the concepts and their relationships.

e The term of a rule must be correct

60

Metamodel

AN

+ target : Concept

+ source : Concept

o sign : Signature

o relsDefdIn : Context

propertyRule

= 7 PropertyRule

+ name : RelationName

o decprR : String

o decprM : String

o decprL : String

o ctxds : Context

Pattern

o urlEncodedName : EncodedName

+ name : PatternName

o context : Context

Rule

o urlEncodedName : EncodedName

meaning

o udefrules : Context

o rrviol : PairView

o origin : Origin

o name : RuleName

o identityRules : Context

o formalTerm : Term

formalTerm
A o1

o ctxrs : Context

o context : Context

declaredthrough

Meaning

+ markup : Markup

Markup

;—ﬂge—f o text : MarkupText

o language : Language

Term

o sign : Signature

o0 showADL : ShowADL

+
. chrs
+ *
context
0T |+ versionInfo : AmpersandVersion
o urlEncodedName : EncodedName

|0 name : ContextName |

|o context : Context

Semantics

FIGURE D.6: Relevant metamodel Rule

TABLE D.4: The semantics related to Rule

Rule

Description

Implication

Each rule must have a
unique name (RuleName).

Rules must be defined
within a context (ude-
frules).

Rules must have a (formal-
Term).

Rules may include a
user-friendly message
(message).

Rules can influence or be
linked to specific properties
(PropertyRule).

Identifies the rule distinctly
within the system.

Specifies the scope or domain
where the rule is applicable.

Defines the logical condition or
computation the rule enforces.

Offers an explanation or error
message when the rule is trig-
gered.

Connects rules to specific at-
tributes or properties of enti-
ties.

Facilitates easy referencing and discussion of spe-
cific rules, essential for maintenance and compli-
ance monitoring.

Ensures rules are applied correctly in relevant
contexts, enhancing system integrity and func-
tionality.

Provides the mechanism for enforcing constraints
or behaviours, crucial for maintaining business
logic and data integrity.

Enhances user experience by providing clear feed-
back on rule violations, aiding in correct data en-
try and operations.

Directs the impact of rules to particular aspects of
the model, specifying how and where rules enforce
constraints.

61

Full data model

FiGURE D.7: Full model of the Ampersand metamodel

62

Appendix E

Design of the RAP environment

The revision of the RAP and Ampersand platform is critical to integrating textual and graphical
syntaxes into a cohesive development environment. As highlighted in the design and decision
phases, the RAP environment needs functionalities to generate textual scripts directly from its
database, in addition to the generation of the RAP database from the scripts. This capability
would ensure that any modifications made in the database, whether through graphical or textual
interfaces, are automatically updated in the script. This integration is vital for maintaining the
integrity and accuracy of the system, as it allows for a seamless flow of data and rules across
different components of the DSL.

3
Editinmodules A

EditAtas () Edit Script (3

Brjwser g
Atlas container Prototype coftainer
Atlas g Prototype bpp]
% erate . o

atlas tool Seript editor

Atlas front end

Atlas back end

atlas-db container

MariaD8 Module data

FIGURE E.1: An overview of the workings of the redesigned RAP environment to fit the
requirements for the HDSL

The revised RAP architecture, depicted in the figure E.1, illustrates how both the script ed-
itor and the ATLAS tool interface with their respective script or database. After modifications,
a compilation process via the ’compile module’ can be triggered. This setup ensures that both
databases—the script and the ATLAS database—are synchronized, preventing loss of edits when
switching between the two systems. Each editing tool can independently compile data into the
system, where editing in one tool requires recompilation before switching to the other, main-
taining consistency across the environments.

To enable this change, certain technical architectural modifications should be made. The
RAP environment must allow the future interfaces to alter the underlying database instead
of just displaying the data from the database This capability is crucial for enabling ATLAS to
function not just as a visualization tool but also as an active editing tool within the development
environment. Additionally, an interface must be developed to send the data to the Ampersand

63

Compiler

Compiler A 5] =] =
=) AASimport +—ffm . Contert AContext FSpec sciptpdt
Prettyprinter < P_Context A_Context FSp scriptpdf o -
¥
i P T A & T 7 A
¥ H iy i A Grind
[i Document nation| | [Brotaiype source cod S
Grind generatc 2 Type checker makeFSpec
v v 4 Application £
Parser Type checker makeFSpec Genrtor A s do A'm o
= A Module data ptad | | metamo del fiovbend fes z
O Backend Engine
o= > frontend filg T backend files
scriptadi metamodel H o ATLAS exporter (3
i Backend Engine
>
2| backend il et
L]
sapt 5

FIGURE E.2: The change in architecture in the development of the Ampersand platform

platform. Next to that, the Ampersand platform must have an interface to receive the data
from RAP. This data must in turn be printed upon an .ADL script. To integrate ATLAS with
Ampersand effectively, a new pathway from ATLAS to the Ampersand platform is necessary.
This involves several components:

o ATLAS Ezporter: This component is responsible for extracting module data from ATLAS
and storing it in a temporary file (the module data file). This file acts as an intermediary
storage that holds the data before it is processed by the compiler in the Ampersand
platform. For this file, the .json format is chosen.

o ATLAS Import: A new parser that reads from the module data file and integrates this
data into the Ampersand platform. This allows the graphical data manipulated within
ATLAS to be translated into textual script within the Ampersand platform.

e PrettyPrinter: A printer which prints the data generated by the compiler in the Ampersand
platform to the script editor.

After redesigning the architecture of the RAP environment, the architecture of the function-
ing of the ATLAS tool itself could be addressed. It was decided to use multiple views to display
the elements, resulting in the design shown in Figure E.3.

Developer 2

Editinmodules (A

Edit Atlas) Edit Script (2] Sync views 0

Edit Relations () EditRules ()

FiGUrE E.3: Enter Caption

64

Appendix F

Development of the RAP environment

The initial step in implementing the design involved developing the environment by creating
three transformation functionalities. Although the PrettyPrinter already existed, it required
enhancements to meet the new requirements. Additionally, an exporter needed to be developed
within RAP to facilitate data exportation.

Atlas Exporter

To export, information from ATLAS via a .json file, modifications to the original RAP system
were necessary. A new .adl interface was created specifically to retrieve data from the database.
This interface is invoked through an API call, structured as follows:

api/vl/resource/ScriptVersion/[SCRIPTVERSION] /atlas_32_population?"

This API call enables the extraction of data from the RAP environment, transforming it into a
.json format for external use.

Compiler

A [S] =]
ATLASimport -~ fp------eeeeses P_Context A_Context FSpec script.pdf

,,,,,,,,,,,,,,,,,,

AKX 1 A I A TN 7

£ i H i i H R
Al | | Documentation
Grind i i i generator
X . ¥ i H Application £]

Prototype source code

Parser Type checker makeFSpec Genertor i

:
A ©
frontend files !

H .
* Module data =2 scriptadl metamodel

- i |||, Backend Engine
. " backend files
ATLAS exporter ()

8
8 Scipt B

Terms

MariaDB Module data

FIGURE F.1: The change in the development of the Ampersand platform

Atlas Exporter

The ATLAS import function involves a Haskell function designed to read the instances from
the .json input file using the parseJSON functions. These instances are then parsed into the
P _structure of Ampersand through the Build function, after which the data enters the Amper-
sand platform.

65

Routing

To facilitate the functionality of these API calls, modifications were made to the ExecEngine of
RAP. This involved implementing additional functionalities that allow API calls to store data in
a .json file within the database, resulting in the creation of the ATLAS DATA json file. This file
is structured similarly to the aforementioned interface. Additionally, a command was created in
the Ampersand platform to process the .json file using the AtlasImport function. These steps are
orchestrated within the ExecEngine of RAP by adding new functions to handle these operations.

Semantics and Grammar Rules

In the RAP environment, the semantic and grammar rules described in the analysis phase were
implemented. Since RAP is essentially an Ampersand-generated application, these rules had to
be implemented using the Ampersand Language. This was achieved by creating 'rules’ that are
either executed or enforced by the ExecEngine or the front-end system, referred to as 'User’.
Rules executed by the ExecEngine are authoritative and will trigger an error if violated. If a
rule enforced by ’User’ is violated, it will only generate a notification. Additionally, rules can
be defined to trigger specific actions upon violation. For example, the rule depicted in Figure
F.2 ensures that any CONCEPT without a defined name receives a temporary name, ensuring
compliance with semantic rules without reducing user convenience.

ROLE MAINTAINS

RULE
MESSAGE " of CONCEPT was not defined, automat
VIOLATION

FiGURE F.2: Example of a rule in Ampersand Language

66

Appendix G

Usability Testing

The Enhanced System Usability Scale is an advanced version of the traditional SUS 3], developed
by Thamilararasan et al. [35] to provide a more comprehensive evaluation of system usability.

It adds nine additional questions to the original ten, resulting in a total of 19 questions.

TABLE G.1: Enhanced SUS Questionnaire

No Questions Category
1 I think that I would like to use this system frequently SameaCt.lC.m’ Understandability,
Learnability
2 I found the system unnecessarily complex Operability
3 I thought the system was easy to use Satisfaction, Understandability
4 I think that I.would need the support of a technical person to be Operability
able to use this system
5 I found the various functions in this system were well integrated Unders.tandablhty’ Usability
Compliance
6 I thought there was too much inconsistency in this system Operability
7 I Wouldilmagme that most people would learn to use this system Satisfaction, Learnability
very quickly
8 I found the system very cumbersome to use Operability
9 I felt very confident using the system Satisfaction
10 I needed to learn a lot of things before I could get going with this Satisfaction
system
11 Tasks can be performed in a straightforward manner using this Effectiveness
software
12 I’'m unable to complete my work effectively using this system Effectiveness
13 I found the interface design of the system follows the usability Usability Compliance
standards
14 I found this system does not fulfil the usability standards Attrac?lveness, Usability
Compliance
15 I can use it successfully every time Effectiveness
. , . L .
16 I found this system’s colour and graphical design is not attractive Attractiveness
enough
17 I found this system’s user interface is very user-friendly Attractiveness
18 This system responds too slowly to inputs Efficiency
19 This system helps me to do my job efficiently Efficiency

67

Calculating the Score for Each Attribute

To calculate the scores for each usability category, the following steps were undertaken:

1. Collect Responses: Each of the 19 questions in the Enhanced SUS has five response
options ranging from "Strongly agree" to "Strongly disagree," scored from 1 to 5.

2. Convert Scores: For positively worded questions, subtract 1 from the response value to
get the adjusted score (0 to 4). For negatively worded questions, subtract the response
value from 5 to get the adjusted score (0 to 4).

3. Sum the Scores: Add up the adjusted scores for all questions to get a total score.

4. Multiply by 2.5: Multiply the total score by 2.5 to convert it to a scale of 0 to 100. This
gives the overall usability score.

5. Calculate Attribute Scores: To calculate scores for specific attributes, sum the adjusted
scores for the questions corresponding to each attribute and then multiply by 2.5. The
mapping of questions to attributes is as follows:

e Efficiency: UQ18, UQ19
e Effectiveness: UQ11, UQ12, UQ15
e Satisfaction: UQ1, UQ3, UQ7, UQ9, UQ10
e Understandability: UQ1, UQ3, UQ5
e Learnability: UQ1, UQ7
e Operability: UQ2, UQ4, UQ6, UQS
e Attractiveness: UQ14, UQ16, UQ17
e Usability Compliance: UQ5, UQ13, UQ14
6. Interpret Scores: Higher scores indicate better usability for each attribute. The overall

score and the attribute-specific scores can help identify strengths and areas for improve-
ment in the system.

G.1 Participants demographics

For this usability test, the primary focus was on recruiting newer programmers who already
have some coding experience. The aim was to ensure that participants had a technical or
mathematical background, enabling them to grasp the concepts behind Ampersand effectively.
This demographic was chosen to evaluate how well the HDSL would be understood and utilized
by individuals who are not experts but have a foundational understanding of programming and
technical systems.

These questions helped to identify participants’ levels of programming expertise, the nature
of their experience, and their familiarity with different programming languages. The gathered
data provided a comprehensive understanding of the participants’ backgrounds, which is crucial
for interpreting the results of the usability testing. An overview of demographics can be seen in
Table G.2.

68

TABLE G.2: Programming Experience of the Participants

Level Elaborate on the type of experience Languages

Competent Tk heb econometrie gestudeerd, hier heb ik in Java, Ren Python;Java;R;SQL;Matlab
python data analytics en machine learning geleerd. Bij
m’n studie Technische Geneeskunde heb ik in Matlab
leren beeld bewerken. Nu werk ik in het Al-team van
PwC. Ik zit in een intern development team waarin we
bouwen aan een Al tool om ESG wetgeving automatisch
te checken voor bedrijven.

Competent Work and study JavaScript;C;SQL
Competent Study Python;R

Proficient Within my studies, we have had multiple projects to Python;R;SQL
utilise modern techniques, such as machine learning and
artificial intelligence, to find solutions to difficult prob-
lems. Using a variety of neural networks for the use
of financial forecasting has been the biggest example of
this. Additionally, this also returns in my day-to-day
work in my job

Competent I use it for study regularly Python;VBA

Novice Study Python

G.2 results

The data collected from the Enhanced SUS) questionnaires can be found in table G.3 to provide
a clear picture of the usability performance of both the TDSL and HDSL. "Strongly agree" to

"Strongly disagree,'

" scored from 4 to 0.

TABLE G.3: All data of the tests

No Type Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 TOT
1 TOSL 2 1 2 3 1 1 1 2 1 1 o0 1 1 1 0 0 0 0 O
HDSL 3 1 3 o0 3 2 3 1 2 o 3 1 3 1 3 1 3 1 3
2 TDPSL 3 3 1 3 3 1 2 2 3 3 3 4 3 1 1 0 2 1 3
HDSL 3 3 1 2 3 1 3 1 2 1 3 1 2 3 1 1 2 1 3
3 TDSL 1 4 4 3 4 4 4 4 4 4 4 4 4 3 4 4 4 2 2
HDSL 1 2 2 3 2 1 3 1 2 2 3 1 3 1 2 2 3 1 2
4 TDSL 3 4 4 3 3 4 4 4 4 3 3 3 3 4 2 0 3 2 3
HDSL 1 1 3 1 3 1 3 2 1 1 1 1 3 1 1 3 3 3 3
5 TDSL 3 3 3 3 4 4 4 3 3 3 4 4 3 3 3 2 3 2 3
HDSL 3 0o 3 1 4 1 3 1 3 o 4 1 3 1 3 2 3 2 3
6 TDSL 1 3 2 1 3 3 1 3 2 3 1 2 3 3 1 3 3 1 1
HDSL 3 1 3 2 4 1 3 o0 4 1 3 2 2 2 1 3 3 3 2

69

Bibliography

[1]

2]

3]

4]

[5]

6]

7]

18]

9]

[10]

[11]

[12]

[13]

[14]

Leif Andersen, Michael Ballantyne, and Matthias Felleisen. Adding interactive visual syntax
to textual code. Proceedings of the ACM on Programming Languages, 4(OOPSLA):1-28,
2020.

Kevin Brennan et al. A guide to the Business Analysis Body of Knowledger. Tiba, 2009.

John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in industry,
189(194):4-7, 1996.

Margaret M Burnett and David W Mclntyre. Visual programming. COmputer-Los
Alamitos-, 28:14-14, 1995.

Justin Cooper and Dimitris Kolovos. Engineering hybrid graphical-textual languages with
sirius and xtext: Requirements and challenges. In 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems Companion (MODELS-
C), pages 322-325. IEEE, 2019.

Jasper Denkers, Louis van Gool, and Eelco Visser. Migrating custom dsl implementations to
a language workbench (tool demo). In Proceedings of the 11th ACM SIGPLAN International
Conference on Software Language Engineering, pages 205-209, 2018.

DHI Group (Firm). Dice tech job report: the fastest growing hubs, roles and skills. 2020.

William Frakes, Ruben Prieto-; Diaz, and Christopher Fox. Dare: Domain analysis and
reuse environment. Annals of software engineering, 5(1):125-141, 1998.

Hans Gronniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Volkel.
Monticore: a framework for the development of textual domain specific languages. In
Companion of the 30th international conference on Software engineering, pages 925-926,
2008.

Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian Wende.
Derivation and refinement of textual syntax for models. In Model Driven Architecture-
Foundations and Applications: 5th Furopean Conference, ECMDA-FA 2009, Enschede, The
Netherlands, June 23-26, 2009. Proceedings 5, pages 114-129. Springer, 2009.

James A Hess, E William, and A Novak. Feature-oriented domain analysis (foda) feasibility
study kyo c. kang, sholom g. cohen. no. September, 1990, 2020.

Doortje Hoogsteen and Hans Borgman. Empower the workforce, empower the company?
citizen development adoption. 2022.

Stef Joosten. Relation algebra as programming language using the ampersand compiler.
Journal of Logical and Algebraic Methods in Programming, 100:113-129, 2018.

Niklas Krieger. Hylimo: a textual dsl and hybrid editor for efficient modular diagramming.
In SE 2024-Companion, pages 185-186. Gesellschaft fiir Informatik eV, 2024.

70

[15] Mohammad Amin Kuhail, Shahbano Farooq, Rawad Hammad, and Mohammed Bahja.
Characterizing visual programming approaches for end-user developers: A systematic re-
view. IEEE Access, 9:14181-14202, 2021.

[16] Shaoying Liu. A gui-aided approach to formal specification construction. In Interna-
tional Workshop on Structured Object-Oriented Formal Language and Method, pages 44-56.
Springer, 2015.

[17] Salome Maro. A dsl supporting textual and graphical views. 2015. doi:http://hdl.
handle.net/2077/40135.

[18] Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop domain-
specific languages. ACM computing surveys (CSUR), 37(4):316-344, 2005.

[19] Daniel Moody. The “physics” of notations: toward a scientific basis for constructing visual
notations in software engineering. IEEE Transactions on software engineering, 35(6):756—
779, 2009.

[20] Fumiko Nagoya and Shaoying Liu. A case study of a gui-aided approach to constructing
formal specifications. In Structured Object-Oriented Formal Language and Method: 6th
International Workshop, SOFL+ MSVL 2016, Tokyo, Japan, November 15, 2016, Revised
Selected Papers 6, pages 74-84. Springer, 2017.

[21] Fumiko Nagoya and Shaoying Liu. A comparative study of a gui-aided formal specification
construction approach. In Computational Science and Its Applications—ICCSA 2017: 17th
International Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part I 17, pages 273—
283. Springer, 2017.

[22] Tomohiro Oda, Keijiro Araki, and Peter Gorm Larsen. Viennatalk and assertch: building
lightweight formal methods environments on pharo 4. In Proceedings of the 11th edition of
the International Workshop on Smalltalk Technologies, pages 1-7, 2016.

[23] Tomohiro Oda, Keijiro Araki, and Peter Gorm Larsen. A formal modeling tool for ex-
ploratory modeling in software development. IEICE TRANSACTIONS on Information
and Systems, 100(6):1210-1217, 2017.

[24] University of North Carolina at Chapel Hill Libraries. Prisma: Transparent reporting
of systematic reviews and meta-analyses. https://guides.lib.unc.edu/prisma, 2024.
Accessed: 2024-6-20.

[25] Open University of the Netherlands and Ordina. Ampersandtarski: Building information
systems. https://ampersandtarski.github.io/, 2024. Accessed: 2024-07-28.

[26] Richard F Paige, Dimitrios S Kolovos, and Fiona AC Polack. A tutorial on metamodelling
for grammar researchers. Science of Computer Programming, 96:396-416, 2014.

[27] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. A design
science research methodology for information systems research. Journal of management
information systems, 24(3):45-77, 2007. doi:10.2753/MIS0742-1222240302.

[28] Francisco Pérez Andrés, Juan De Lara, and Esther Guerra. Domain specific languages
with graphical and textual views. In Applications of Graph Transformations with Industrial
Relevance: Third International Symposium, AGTIVE 2007, Kassel, Germany, October 10-
12, 2007, Revised Selected and Invited Papers 3, pages 82-97. Springer, 2008. doi:10.
1007/978-3-540-89020-1_7.

71

https://doi.org/http://hdl.handle.net/2077/40135
https://doi.org/http://hdl.handle.net/2077/40135
https://guides.lib.unc.edu/prisma
https://ampersandtarski.github.io/
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1007/978-3-540-89020-1_7
https://doi.org/10.1007/978-3-540-89020-1_7

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Ionut Predoaia. Towards systematic engineering of hybrid graphical-textual domain-specific
languages. In 2028 ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C), pages 153-158. IEEE, 2023.

Ionut Predoaia, Dimitris Kolovos, Matthias Lenk, and Antonio Garcia-Dominguez. Stream-
lining the development of hybrid graphical-textual model editors for domain-specific lan-
guages. Journal of Object Technology, 22(2):2:1-14, July 2023. The 19th European Confer-
ence on Modelling Foundations and Applications (ECMFA 2023). URL: http://wuw. jot.
fm/contents/issue_2023_02/article8.html, doi:10.5381/jot.2023.22.2.a8.

Chris Rupp. Requirements templates: The blueprint of your requirements.
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/
RE6/Webinhalte_Buchteil_3/Requirements_Templates_-_The_Blue_Print_of_your_
Requirements_Rupp.pdf, n.d. Accessed: 2024-09-14.

Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pierantonio. Sup-
porting the understanding and comparison of low-code development platforms. In 2020
46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
pages 171-178, 2020. doi:10.1109/SEAA51224.2020.00036.

Markus Scheidgen. Textual modelling embedded into graphical modelling. In Furopean
Conference on Model Driven Architecture-Foundations and Applications, pages 153—168.
Springer, 2008.

Richard N Taylor, Will Tracz, and Lou Coglianese. Software development using domain-
specific software architectures: Cdrl a0ll—a curriculum module in the sei style. ACM
SIGSOFT Software Engineering Notes, 20(5):27-38, 1995.

Yarshini Thamilarasan, Raja Rina Raja Ikram, Mashanum Osman, Lizawati Salahuddin,
Wan Yaakob Wan Bujeri, and Kasturi Kanchymalay. Enhanced system usability scale
using the software quality standard approach. Engineering, Technology € Applied Science
Research, 13(5):11779-11784, 2023.

Marcel Toussaint and Thomas Baar. FEnriching textual xtext-dsls with a graphical gef-
based editor. In Perspectives of System Informatics: 11th International Andrei P. Ershov
Informatics Conference, PSI 2017, Moscow, Russia, June 27-29, 2017, Revised Selected
Papers 11, pages 394-401. Springer, 2018.

Simon van Roozendaal. Methodology for the development of domain specific languages
with both graphical and textual elements. https://docs.google.com/presentation/d/
111nQGnt7z6Agtp118oWyyqLS-GIKrV3z/edit#slide=id.p5, 2024.

Joost F Wolfswinkel, Elfi Furtmueller, and Celeste PM Wilderom. Using grounded theory
as a method for rigorously reviewing literature. Furopean journal of information systems,
22(1):45-55, 2013.

72

http://www.jot.fm/contents/issue_2023_02/article8.html
http://www.jot.fm/contents/issue_2023_02/article8.html
https://doi.org/10.5381/jot.2023.22.2.a8
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/RE6/Webinhalte_Buchteil_3/Requirements_Templates_-_The_Blue_Print_of_your_Requirements_Rupp.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/RE6/Webinhalte_Buchteil_3/Requirements_Templates_-_The_Blue_Print_of_your_Requirements_Rupp.pdf
https://www.sophist.de/fileadmin/user_upload/Bilder_zu_Seiten/Publikationen/RE6/Webinhalte_Buchteil_3/Requirements_Templates_-_The_Blue_Print_of_your_Requirements_Rupp.pdf
https://doi.org/10.1109/SEAA51224.2020.00036
https://docs.google.com/presentation/d/111nQGnt7z6Agtp1l8oWyyqLS-GIKrV3z/edit#slide=id.p5
https://docs.google.com/presentation/d/111nQGnt7z6Agtp1l8oWyyqLS-GIKrV3z/edit#slide=id.p5

	Introduction
	Motivation
	Problem Statement
	Research Goals
	Research Methodology
	Outline

	Background
	Domain Specific Languages
	Structure of the DSL
	Concrete Syntaxes

	DSL Development Process
	Related work
	Application of Literature Review

	Development Methodology
	Overview
	Decision Phase
	Analysis Phase
	Design Phase
	Implementation Phase
	Deployment Phase
	Documentation

	Case study
	Ampersand
	Architecture Overview
	The RAP Environment

	Developing an HDSL for Ampersand
	Decision Phase
	Analysis Phase
	Design Phase
	Implementation Phase
	Deployment Phase

	Evaluation
	Expert interviews
	Usability Test
	Assessment of the test

	Discussion

	Conclusion
	Conclusion
	Recommendations
	Limitations
	Future Research

	Findings from the Literature
	Systematic Literature Review
	Findings

	Requirements and Objectives Ampersand
	Analysis of Ampersand
	Design of the RAP environment
	Development of the RAP environment
	Usability Testing
	Participants demographics
	results

