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Management Summary 
This thesis is conducted at Distribute and investigates the incorporation of solar charging into routing 

problems in both industrial and urban use cases. The industrial area use case is called the SAVED project 

and facilitates the development of an autonomous transport system at the XL business park in Almelo. The 

aim of the SAVED project is to let an autonomous electric truck transport containers between an inland 

terminal and a set of warehouses. The number of container orders per day varies between 10 and 50 with 

an average of approximately 28. The urban area use case is a hypothetical use case at the Campus of the 

University of Twente in which electric drones and street robots deliver packages to different locations at 

the campus. In this hypothetical use case, the number of orders varies between 50 and 400.  

The main similarity between these two use cases is that all vehicles in both use cases have a single-unit 

capacity and can be charged either with energy from the grid or with energy generated by solar panels. 

Therefore, in both use cases, a problem occurs where the vehicles have to be scheduled for both charging 

and operating, and the goal is to charge as efficiently as possible by using as much solar energy as possible. 

The primary objective is to develop a solution approach that integrates solar charging into the routing 

problems at both use cases, which means charging as efficiently as possible, while still meeting the time 

windows of all orders. Therefore, the main research question is: 

How can sustainable charging be integrated into Electric Vehicle Routing Problems in industrial and urban 

areas? 

The first step in answering this question is an extensive literature review. This literature review provides a 

comprehensive overview of relevant topics for this thesis, with emphasis on Electric Vehicle Routing 

Problems, combined with time dependency. The conclusion was that the literature on the combination of 

all relevant concepts was scarce and that based on the solution methods of the closest papers, Adaptive 

Large Neighborhood Search (ALNS) is the best solution approach for our research. 

In the solution approach, a conceptual graph is used in which the nodes represent the trips and the edges 

between two nodes represent the distances between the end and start locations of those specific nodes. 

A problem formulation is provided fitting both use cases combined with a set of necessary assumptions. 

Then, a mathematical model is provided for the problem formulation without the use of solar charging. As 

the main solution approach, a constructive heuristic is used combined with the ALNS. In the constructive 

heuristic, the trips are evenly distributed over the vehicles and each vehicle charges to 100% when it does 

not have enough battery to execute the trip. The ALNS then iteratively destroys and rebuilds the solution 

by including move operations, switch operations, partial charging, charging when it is not necessary, and 

waiting times before charging, with the main objective being the minimization of charging costs. 

Experiments with the ALNS were done with multiple instance sizes, varying in number of orders, number 

of vehicles and number of solar panels, representing both use cases. In most experiments, the time 

windows were considered to be hard, while the objectives to minimize were the overall traveling time and 

the charging costs. First, the parameters of the ALNS algorithm are tuned to ensure that the performance 

balances efficiently between the quality of the solution and the computation time. The ALNS is tested 

against the mathematical model for SAVED instances and the conclusion was that the performance of the 

ALNS was 5.5% worse than the exact approach in terms of traveling time and charging costs, when the 

number of container jobs is 10 while reaching the solution in less than 3 seconds. On the contrary, the 

exact optimization method reaches its solution in 461 seconds. When the instances get larger, the exact 
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optimization does not come to an optimal solution within the time limit, while the heuristic still reaches 

its solution in approximately 3-4 seconds. 

In other scenarios, the ALNS is tested against a ‘No Solar Panel’ policy, in which the use of solar panels is 

neglected. For the SAVED use case, the performance of the ALNS was on average 26.5% better than the 

‘No Solar Panel’ policy in terms of charging costs and traveling time, with the improvements varying 

between 8% and 44% for different instance sizes. It can also be concluded that collaboration between the 

companies at SAVED can lead to a further 8.5% improvement in costs. For the Campus use case, the 

average improvement is 24.8%. In that use case, on average 77% of the energy needed for executing the 

trips, comes from solar panels, while for some instances this goes up to 82%, while it is only 64% when in 

the ‘No Solar Panel policy’. Also, variable time windows and different weather conditions are tested to 

simulate real-world complexities. Furthermore, the option of battery usage is investigated, and a 

sensitivity analysis is executed, in which the influence of soft time windows and the relative weights of the 

penalty costs and the charging costs are tested. 

The conclusion of the thesis is that incorporating solar charging into routing problems can be done with 

the help of an ALNS algorithm, and is beneficial for both the industrial and urban use case. The practical 

contribution of this research is twofold. First, the XL business park can reduce its charging costs by 

incorporating the solution approach, and second, the method is easily generalizable for other use cases by 

changing the parameters of the trips, the vehicles, and the solar panels. The contribution to theory is a 

new mathematical model, which is tested and validated, and an ALNS method incorporating solar charging 

into routing problems. The biggest limitation is that only vehicles with a single-unit capacity are used. Ideas 

for future research include incorporating vehicles with multi-unit capacity, an optimization study for the 

number of solar panels at both use cases, and testing the approach on multiple other but similar use cases, 

to further test the generalizability of the approach. 
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1 Introduction 
This chapter introduces the research of this thesis by first introducing the research context in Section 1.1. 

Section 1.2 explains the research problem of this thesis and states the research goal. Section 1.3 states the 

research questions of our research while Section 1.4 presents the research design of this thesis, combined 

with an outline of the thesis. 

1.1 Research Context 
In this section, we provide the research context for our thesis. This thesis is carried out at Distribute. 

Distribute is a research and innovation company specialized in unmanned systems and smart robotics. It 

was started by two students in 2016. They create and simulate distributed planning and control systems 

for unmanned systems in the logistics and transportation industry. They are currently working on multiple 

projects concerning Industry 4.0, Digital Twinning, and Autonomous Systems (Gerrits, 2016). 

This thesis focuses on two different projects in which Distribute is involved which both cover autonomous 

driving in first- and last-mile logistics in industrial and urban areas. One project is called the SAVED project 

and facilitates the transformation to the use of an autonomous electric truck at the XL business park in 

Almelo, while the other project investigates the option of doing autonomous deliveries with the use of 

electric drones or street robots at the University of Twente.  

In Section 1.1.1, we provide context on autonomous green vehicles and electric vehicles in routing 

problems. In Section 1.1.2 we discuss charging characteristics of electric vehicles because those strategies 

are relevant to the context of our research. In Section 1.1.3 we provide background on the two use cases 

that Distribute is involved in. 

1.1.1 Autonomous Green Vehicles and Electric Vehicles 
This research focuses on the use of AGVs in routing problems. AGVs were introduced in 1955 and are 

driverless transportation systems used for the movement of materials. AGVs have a wide range of benefits, 

such as increased productivity, reduced labor costs, and reduced energy consumption, and have 

application opportunities in manufacturing, healthcare, and logistics (Fragapane et al., 2021). 

An advantage of AGVs in routing problems is that it minimizes human intervention in routing problems. In 

contrast to humans, who need breaks, AGVs can operate 24/7, increasing operational efficiency. It also 

improves safety, since there are no more human errors in the system. It decreases the chances of 

accidents, since AGVs are designed with sensors and avoidance systems, and there are no opportunities 

for human errors such as lack of concentration. They operate more consistently without human operators, 

which leads to more predictable delivery times and overall logistics planning. 

This research also focuses on the use of electric vehicles (EVs) in routing problems. EVs offer a sustainable 

future for transportation and logistics, by reducing gas emissions and minimizing the dependency on fossil 

fuels. In routing problems, the use of EVs introduces new challenges. New characteristics should be 

considered, such as range limitations and the locations of charging stations. However, the inclusion of EVs 

in routing problems reduces environmental impact and contributes to sustainable logistical solutions. 
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1.1.2 Charging Characteristics 
In our research, EVs are charged with the use of solar energy with the help of photovoltaic panels. These 

panels convert solar power into electricity. Incorporating solar energy in the charging system makes the 

system less reliable on the grid because vehicles can be charged without using energy from the grid. Using 

energy from the grid is the most basic method of charging electric vehicles. The power output from the 

grid is constant and the charging rate is equal to the price of electricity at that specific moment. 

The two most common solar panels are 60-cell panels and 72-cell panels. The 60-cell panels are about 165 

by 99 centimeters and have a power output of around 280-320 watts, and the 72-cell panels are about 

196 by 99 inches and have a power output of around 340-400 watts (Solar Photovoltaic Panel Sizes: A 

Complete Guide, 2023). 

However, the output of solar panels depends heavily on the power of the sun. This means that the output 

varies per day and during the day. Figure 1.1 (How Much Electricity Do Solar Panels Produce?, 2022) shows 

the output of a set of solar panels for 2 different days. The blue line shows the power output on a day in 

the summer when there are almost no clouds and then the sun shines at full intensity all day, while the 

orange line shows the power output on a day with a mix of clouds and sunshine. It shows that on a cloudy 

day, the output is lower and more irregular. 

1.2 Two Use Cases 
In this section, we explain the context of the two use cases of our research. The use case representing an 

industrial area is called the SAVED (Samenwerkend Autonoom Vervoer op Bedrijventerreinen) project. 

This project aims to develop an automated transport system at the XL business park in Almelo. The XL 

business park has an inland terminal (CTT), a transport company (Bolk), and two warehouses (Bleckmann 

and Timberland). The goal of the project is to let one AGV transport containers between the inland 

terminal and the warehouses where the AGV picks up full containers at the terminal, delivers those at the 

warehouse, and transports the containers back to the inland terminal when they are empty. The AGV has 

a capacity of one container and therefore has to drive back and forth between the warehouses and the 

terminal. All containers have time windows in which they need to be delivered at the warehouses. Besides 

the truck being an AGV, it is also an EV, which can be charged at the inland terminal with the use of both 

energy from the grid or from solar panels which are located at the inland terminal. This use case is a small 

use case with only 1 or 2 vehicles. However, because of the charging characteristics and the vehicle being 

an AGV, it is perfectly suitable for demonstrating sustainable charging strategies. 

Figure 1.1. Power Output of a Set of Solar Panels for Two Different Days 
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The other use case that Distribute is interested in and shares similarities with the industrial use case 

represents an urban area. This use case is a hypothetical use case at the UT Campus. The UT Campus use 

case is a use case in which we develop a simulation of a heterogeneous fleet of AGVs that delivers small 

packages between locations at the UT Campus. This heterogeneous fleet consists of drones and street 

robots which can also only transport one package at a time. The packages either be distributed from the 

depot to customers, from a customer to the depot or between customers.  

All packages have time windows in which they need to be delivered to the customers, depending on 

customer preferences. We assume that the fleet has a limited range and can be charged at the depot using 

solar energy or energy from the grid. 

Figure 1.2 shows a graphical representation of both situations. It shows that the biggest similarity between 

both use cases is that the vehicle can only transport one unit of demand at a time, which means that we 

can use the same solution approach for both use cases. The industrial area/SAVED use case has fewer 

customers and required trips, and does not include pickups and deliveries between customers. Only 1 

vehicle is used, which can be charged at the depot and has a relatively big range. In contrast, the urban 

area/Campus use case has more different customers and more required trips. In this use case, a 

heterogeneous fleet of AGVs is used which have a relatively smaller range so more charging is required.  

A  

Figure 1.2. Graphical representation of the logistical process at both use cases. 
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1.3 Problem Statement and Research Goal 
The problem that this thesis researches is that a sustainable charging strategy needs to be developed for 

both the industrial use case and the urban use case incorporating solar charging. This problem is related 

to an Electric Vehicle Routing Problem (EVRP). The EVRP is a variant of the normal Vehicle Routing Problem 

(VRP) in which a set of customers orders to be visited by several vehicles as efficiently as possible while 

incorporating constraints such as capacity constraints or time-window constraints. The EVRP is a variant 

with Electric Vehicles (EVs). This means their characteristics need to be taken into account. EVs have a 

limited driving range and there are often limited charging stations available. 

If solar charging is included in routing problems, solutions also depend on the power output of the solar 

cells and the weather forecast for the day. This means that the EVRP model needs to factor in variable 

energy input for the charging stations, which influences the ideal charging moments. There is relatively 

little insight into how to develop a logistical strategy for AGVs incorporating the use of solar energy. 

Although many research has been done on EVRPs (see for example Qin et al. (2021)), there is not much 

knowledge on EVRP in combination with solar charging. 

The main research goal is to integrate sustainable charging strategies in routing problems. This means that 

we want to come up with a logistical strategy for scheduling and routing AGVs while incorporating charging 

on solar energy. This consists of a tool, where the parameters can be filled in, such as charging locations, 

customers, orders, time windows of those orders, and the weather forecast. The output is a strategy 

consisting of a schedule for the AGVs of when to fulfill the orders and when to charge. We want to 

experiment with these charging strategies in two environments. We want to experiment in an industrial 

area and an urban area, since first- and last-mile logistics is an important concept in those two areas. As 

said in the research background, routing in the first- and last-mile logistics is not done very efficiently since 

almost 53% of transport costs arise from these logistics. This makes those areas perfectly suitable for 

experimenting with different sustainable charging strategies.  

1.4 Research Methodology  
In this section, we define the research methodology, including the research questions, corresponding to 

our research goal and research approach. We define a main research question and a set of sub-research 

questions guiding us to provide an answer to the main research question. Our main research question is: 

How can sustainable charging be integrated into Electric Vehicle Routing Problems in industrial and urban 

areas? 

This research question is answered in 4 stages. Figure 1.3 shows a graphical representation of this research 

design with the inputs, research questions, and outputs per chapter. 

Stage 1. Literature review 

To provide an answer to the main research question, we must start with an extensive literature review of 

existing EVRP concepts and problems in combination with solar charging and corresponding solution 

methods. We first explore the classic EVRP, and its relevant concepts and features. We research existing 

charging methods, the use of a heterogeneous fleet, and the use of autonomous vehicles in EVRP. 

Furthermore, we need to expand our knowledge of how solar charging and the time-dependency of solar 

charging influence EVRP models. After we have enough knowledge of all relevant concepts, we examine 
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the closest related researches and their solution methods. This part of the research is executed in Chapter 

2, with the following set of sub questions: 

1. What is proposed in the literature for modeling and solving EVRP with solar charging? 

a. What can the literature teach us on different concepts and problems in EVRP with solar charging? 

b. What can the literature teach us on solution methods for the EVRP with solar charging? 

Stage 2. Problem Formulation & Solution Approach 

After the literature review, we should have enough knowledge to design a solution approach. To design 

this solution approach, we first create a conceptual model and a mathematical formulation of the problem 

that fits both use cases. Then we describe the solution method, which can be an exact optimization 

method or a heuristic. In this phase, we also create our tool, which processes the input (for example the 

locations, the orders, and the weather forecast) to an output with the list of all tasks per vehicle and 

charging moments. This part of the research is executed in Chapter 3, with the following set of sub 

questions: 

2. How should the solution approach be designed? 

a. What are the requirements necessary for designing the solution approach? 

b. Which assumptions have to be made to design the solution approach? 

c. Which solution methods are most suitable for solving the EVRP in both use cases? 

Stage 3. Solution Evaluation 

In this stage, we experiment with our solution approach in both use cases. For the industrial use case, we 

do a small context analysis of the SAVED project. The goal of the context analysis is to conceptualize the 

use case so that we can create parameters and experimentation instances. For the urban use case, we 

have to come up with hypothetical data instances, reflecting different demands at the campus. We can 

then test our solution approach for those instances with different experimentation settings. This research 

stage is executed in Chapter 4 with the following set of sub questions: 

3. How does the solution perform for different experiments in industrial and urban use cases? 

a. How can we parametrize the use cases to input for our simulation? 

b. What are the different experiments for testing our solution strategy? 

c. How does our solution strategy perform for our considered experiments? 

Stage 4. Conclusion 

After experimenting with our designed solution method, we can interpret the results and investigate what 

the benefits of our solution design are quantitatively for both the XL business park and the UT-campus use 

case. After this last step, we should have enough information to draw conclusions about our solution 

approach and provide recommendations regarding the implementation of the solution approach. In this 

step, we also answer our main research question and conclude whether we reached our research goal 

which is implementing sustainable charging in AGV routing and scheduling. This part of the thesis is 

executed in Chapter 5 with the following set of sub questions: 
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What can we conclude from the results of our experiments? 

a. What can be concluded and recommended for the XL business park use case based on the results 

of our experiments? 

b. What can be concluded and recommended for the Campus use case based on the results of our 

experiments? 

c. What should be researched further based on the results of our research? 

 

 

Figure 1.3. Graphical representation of Research Design 
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2 Literature Review 
In this chapter, we answer the following research question and subquestions: 

What is proposed in the literature for modeling and solving EVRP with solar charging? 

a. What can the literature teach us on different concepts and problems in EVRP with solar charging? 

b. What can the literature teach us on solution methods for the EVRP with solar charging? 

In Section 2.1, we discuss the different concepts and problems within EVRP in combination with solar 

charging, autonomous delivery, and truck scheduling, while in Section 2.2 we discuss possible solution 

methods.  

2.1 Concepts and Problems 

2.1.1 Multiple Traveling Salesman Problem 
The Multiple Traveling Salesman Problem (MTSP) is an extension of the Traveling Salesman Problem (TSP). 

In a TSP, the objective is to find the shortest route while visiting a set of customers exactly once and 

returning to the original city. In the MTSP, there are multiple salesmen who each visit a subset of 

customers while making sure that the complete set of customers is visited exactly once, with the objective 

of minimizing the total distance of all salesmen together. This problem differs from the classic Vehicle 

Routing Problem (VRP), because in the VRP other constraints such as capacity constraints are involved. 

Since our use cases consider vehicles with a single-unit capacity, we could model the use cases as a MTSP, 

where the trips are the customers, instead of a VRP. However, because there is relatively little few 

literature on MTSP combined with electric vehicle constraints, we move our focus to the VRP. For an 

extensive literature overview of all MTSP-related problems, we direct the reader to Cheikhrouhou & Khoufi 

(2021). 

2.1.2 Classic Vehicle Routing Problem 
The Vehicle Routing Problem (VRP) was first introduced by Dantzig & Ramser (1959). They created a model 

which is called the Truck-Dispatching problem. This is an extension of the Traveling Salesman Problem 

(TSP). The model aims to find a set of routes for a homogenous fleet of vehicles that visit all customers 

and satisfy all their demands without exceeding the capacity of the vehicle. Clarke & Wright (1964) then 

expanded the research field by developing a heuristic to improve the method used by Dantzig & Ramser.  

The goal of a VRP is to produce a set of routes for a set of vehicles starting at a depot in such a way that 

each customer is served, and no capacity constraints are exceeded. This means that it is an extension of 

the TSP so that the customers can be divided over the vehicles.  

Laporte et al. (1985) introduced a mathematical model of the VRP considering the capacity and distance 

constraints. They also include multiple subtour prevention constraints. Nowadays there are multiple 

formulations for the VRP (Munari et al., 2016). The most common formulations are either vehicle flow 

formulations (Toth & Vigo, 2002, Elatar et al., 2023) or set-partitioning formulations (Agarwal et al., 1989). 
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These models are the basics of many variants in a broad research field. Figure 2.1 shows a taxonomy of 

relevant features for our research. This taxonomy is based on the taxonomy of Eksioglu et al., (2009), but 

only shows the relevant features for our research. We distinguish the features for both use cases. If the 

feature is marked yellow it fits with our industrial use case, if it is marked orange it fits with the urban use 

case and if the feature is marked green it fits with both use cases. The first feature is whether the number 

of stops on the route is known. This is the case for both use cases since we assume that all information is 

known upfront. Feature 2 determines whether the splitting of the load is allowed. This is not the case, 

since the load of our vehicle routing problem consists of containers in the industrial use case and packages 

in the urban use case. Feature 3 specifies whether the demand quantity is deterministic or not. The 

demand quantity in our research is deterministic and also static (Feature 4) since we assume everything is 

known upfront.  

Feature 5 represents the time horizon. In our use case, the time horizon is only 1 period since we only 

solve the VRP for one day at a time. In our experiments, we run multiple days, however, for each day we 

solve the problem independently. We also work with only 1 depot in both use cases (Feature 6). Feature 

7 indicates whether the research involves backhauls. Backhauls occur when customers do not only need 

goods to be delivered but also have goods that should be picked up. This does not happen in our urban 

use case, however, it happens in our industrial use case but not necessarily simultaneously. For a complete 

overview of VRP with backhaul with different variants, we direct the reader to Koç & Laporte, (2018). 

Feature 8 states whether there is a specific number of vehicles and if all vehicles should be used. This is 

the case for both our use cases. In the industrial use case, only 1 or 2 vehicles are used, while in the urban 

use case, multiple vehicles are used. These vehicles are capacitated since they can only transport one 

container/package at a time (Feature 9) and are homogeneous in the industrial use case and 

heterogeneous in the urban use case (Feature 10). We also assume that there are service times included 

in our research because it takes time to couple and decouple containers or packages (Feature 11). These 

service times are deterministic since (de)coupling takes approximately the same time for each 

container/package.  

The last two features contain the involvement of time windows in our research. In this variant, each 

customer has a time window in which it should be visited. Time windows can be soft or hard. Time windows 

are called hard when they cannot be violated. Time windows are called soft if they can be violated, 

however this leads to penalty costs. This means that the problem relaxes to a normal VRP however with a 

different objective, namely including penalty costs (Kallehauge et al., 2005). Our research consists of a mix 

of hard and soft time windows since the beginning of each time window cannot be violated. This would 

lead to an infeasible solution since the containers/packages cannot be transported before they are ready. 

The end of the time windows may be violated in order to create feasible solutions, however, this leads to 

penalty costs.  
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Figure 2.1. Taxonomy with relevant VRP features for our use cases. 
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2.1.3 Electric Vehicle Routing Problem 
Over the last few years, more variants of the VRP have been researched. One of the more recent variants 

is the Electric Vehicle Routing Problem (EVRP). The EVRP is a variant of the VRP, which is an electric vehicle 

with a limited driving range. This means that the charging of those vehicles needs to be included in the 

model. The objectives that have been considered are the minimization of the driving distance or travel 

time, the minimization of the number of vehicles used, or the minimization of costs which include driving 

costs, charging costs, or penalty costs for missing the time windows (Qin et al., 2021). 

Figure 2.2 shows an example of a solution of the EVRP with charging stations. There are three tours and 

that the long tours 2 and 3 need visits at charging stations to keep the battery level positive. In contrast to 

customers, charging stations can be visited multiple times and by different vehicles (Ghorbani et al., 2020). 

The EVRP was first studied by Conrad & Figliozzi (2011). They let their vehicles charge the customer during 

their trip. Their problem was called the Recharging Vehicle Routing Problem (RVRP). They created a 

mathematical model for this problem and solved it for small instances with a heuristic. The next research 

was done by Erdoĝan & Miller-Hooks (2012). They called their problem the Green Vehicle Routing 

Problem, and they experimented with a heterogeneous fleet of Alternative Fuel Vehicles (AFVs), with 

different driving ranges and a set of refueling stations. They created a Modified Clarke and Wright 

heuristic, together with a new constructive heuristic and an improvement heuristic. 

The most common extension of the EVRP is the EVRP with time windows. This was first done by Schneider 

et al. (2014). They created a model including time windows and recharging stations. They solved their 

problem using a metaheuristic which combines a Large Neighborhood search with a Tabu Search. Meng & 

Ma, (2020) researched the EVRP with soft time windows. In this case, penalty costs were involved in the 

time windows for customers were not met. For an extensive overview of all problems and models in the 

world of EVRP, we direct the reader to Fernández Gil et al., (2022)   

Figure 2.2. Graphical Representation of a feasible solution to an EVRP 
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In this section, we discuss different features of EVRP which are relevant to our research. First, we discuss 

different charging methods. This is relevant to our research since we experiment with these charging 

methods. Then we provide insight into different types of fleets used in the EVRP. Variants of EVRP exist 

with a homogeneous fleet of EVs, in which all EVs have the same parameters. However, in other variants 

of EVRP, the set of EVs is heterogeneous. This means that EVs have different parameters, such as charging 

rate, speed, and consumption model. We also discuss models in which the fleet consists of a combination 

of conventional vehicles and electric vehicles. Then we discuss the use of solar charging for electric 

vehicles. This is highly relevant to our research since the electric vehicles used in our use cases are charged 

with the use of solar energy. Another feature we discuss in that section is the inclusion of time dependency 

in the EVRP models. This feature is applied in our research since the research takes into account that the 

charging rate is lower at periods with sunshine in contrast to cloudy periods. This means that our EVRP is 

time-dependent.  

Recharging Methods 

There exist multiple recharging methods for the EVRP. In this section, we discuss the full charging method, 

partial charging method, and battery swapping method. We also discuss the difference between linear 

charging and non-linear charging. 

• Full Charging. The most commonly used method is the full recharging method. In this case, the EVs 

are recharged until their battery is completely full (see for example Afroditi et al., (2014)). An 

advantage of this method is that there are fewer decision variables in the model, which leads to a 

shorter computation time. A disadvantage is however that it might not be the most optimal 

solution for an EV to recharge to 100% when it can also recharge less and still complete its tour. 

• Partial Charging. If partial charging is used as a charging method, it means that the battery does 

not have to be fully charged at the recharging station. This means that the charging amount/time 

becomes a decision variable in the EVRP. Felipe et al., (2014) were the first to model an EVRP with 

partial charging. They presented several heuristics, either constructive or local search heuristics 

within a non-deterministic Simulated Annealing framework. Keskin & Çatay, (2016) combined the 

EVRP with partial charging with time windows. They formulated the problem as a Binary Mixed 

Integer Linear Problem and solved it using an Adaptive Large Neighborhood Search. Desaulniers 

et al. (2016) researched four different variants of the EVRP, namely: 

 

1. full recharging policy with one recharge per route allowed 

2. full recharging policy with multiple recharges per route allowed 

3. partial recharging with one recharge per route allowed 

4. partial recharging with multiple recharges per route allowed 

They solved all four different variants to optimality for instances up to one hundred customers 

and twenty-one recharging stations using a branch-and-cut optimization method.  

• Battery Swapping. Another recharging option is the use of battery swapping stations. In these 

stations, the empty battery can be swapped for a full one. This was first considered by Yang & Sun, 

(2015), however they put more emphasis on locating those stations. Verma, (2018) proposed an 

EVRP with battery-swapping stations and time windows. At each charging station, the vehicle 

could be charged traditionally or receive a full battery. In this model, charging was cheaper, while 
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battery swapping was quicker. A model was formulated, together with an algorithm to solve the 

problem.  

Mao et al. (2020) proposed a model in which there were two options at each recharging station, 

namely partial recharging and battery swapping. This was different from the model of Verma 

(2018) because in this new model, the vehicles could be charged partially instead of only full 

charging. They formulated a Mixed Integer Program and used an improved Ant Colony 

Optimization method to solve their problem.  

• Non-Linear Charging. Next to different recharging options, there are also two types of recharging 

functions. Almost all research described until now was executed using a linear charging function. 

This means that the charging speed is independent of the battery level. In real life, this is not the 

case since the charging speed is lower as the battery level approaches 100%. The first research on 

non-linear charging was done by Montoya et al., (2015). They considered a partial charging 

method and modeled a concave function of charging time. They presented a computational study 

of a comparison of this non-linear charging method with the traditional linear charging method. 

Later, Montoya et al., (2017), expanded on their previous study by solving the EVRP with non-

linear charging with the use of a hybrid metaheuristic. They concluded that neglecting the 

nonlinear charging process may lead to expensive or infeasible solutions. 

In our research we use partial charging as the recharging method since it leads to a larger solution space. 

We do not use non-linear charging because the we assume the charging speed to be linear with the 

variability in the charging costs. 

Mixed Fleet 

Another characteristic of the EVRP is whether a homogeneous fleet is used or a mixed fleet. Within the 

mixed fleet category, there exist two subcategories namely a mixed fleet consisting of only EVs and a mixed 

consisting of both EVs and conventional vehicles. 

• Only EVs. The first subcategory consists of a mixed fleet consisting of only EVs. In this case, 

problems combine different types of EVs with different features, such as load capacity or driving 

ranges. Hiermann et al., (2016) combined the mixed EV fleet with the EVRP with time windows. In 

this case, EVs differed on aspects such as load capacity, battery capacity, charging rate, and power 

consumption. They solved their problem to optimality with the use of a branch-and-price method 

and proposed a hybrid heuristic as well, combining an Adaptive Large Neighborhood Search with 

a local search. Sassi et al. (2015) came up with a Tabu Search to solve the mixed fleet EVRP. They 

let their vehicles charge at either the depot or at recharging stations with different charging 

technologies. 

• EVs and Conventional vehicles. The other subcategory is the mixed fleet with different variants of 

vehicles which does not necessarily have to be EVs. Sassi et al., (2014) proposed a formulation 

including a mixed fleet of conventional vehicles and EVs while also considering time-dependent 

charging costs. Lebeau et al., (2015) also developed a model including a mixed EV and conventional 

fleet, consisting of different features such as load capacity, battery capacity, and driving costs, 

while recharging was only possible at the depot. Goeke & Schneider, (2015) created a model with 

a homogenous set of EVs and a homogeneous set of conventional vehicles. They also included an 

energy consumption model, incorporating speed and the weight of the cargo load distribution. 

They used an Adaptive Large Neighborhood Search algorithm to experiment with their model. 
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Macrina et al., (2019) combined the problem of a mixed fleet with time windows and partial 

recharging. They proposed an iterative local search heuristic to optimize the routing and charging 

strategies. 

Solar Charging and Time-Dependency 

In this section, we provide insight on the inclusion of solar charging in the EVRP in combination with time-

dependency and the use of time-of-use pricing in the EVRP models. These concepts are combined in one 

section because they are related to each other because the average output of solar panels over the day is 

time dependent. At noon, the average solar panel output is higher than for example at the end of the 

afternoon. 

• Solar Charging. Figure 2.3 (Hossain et al., 2020) shows the average power production of a 1 kW 

solar panel per hour of the day. It shows that the average peak output is approximately 550 W and 

occurs between noon and 1 pm. This is logical since the sun has the most intensity at those times, 

while solar panels generate almost no energy at all between 7 pm and 6 am. It shows that even in 

the peak moment, the average available solar power is not close to the available power output of 

1 kW. This means that the output is highly dependent on the weather on a certain day, as Figure 

1.1 shows. 

 

Figure 2.3. Average power output for a 1 kW solar panel over the day 

Figure 2.4 shows the seasonal variability of the output of a solar system. As a specific example, the 

solar production from a 5 kW Solar System in Australia is shown. It shows that the output in the 

summer is higher than in the winter and that in the summer the solar system produces output 

from approximately 5 am to 6 pm, while in the winter the output production starts at 8 am and 

ends at 4 pm. A conclusion that can be drawn is that the power output of a solar system, is highly 

dependent on the weather, the time of the day, and the period of the year. Other factors 

influencing the output of solar systems are the location of the system, the incline of the panels, 

and the exposure of the panels (Lugo-Laguna et al., 2021). 
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Figure 2.4. Seasonal difference of the power output of a 5 kW Solar System 

There has been little research on combining EVRP with solar charging. Most research in this 

category has been done on the use of different charging methods in one problem. These methods 

differ in charging speed and charging rate. This has for example been done by Fan et al. (2023). 

They developed a Mixed Integer Model with three different types of energy generation, namely 

traditional electrical energy, wind-based electric energy, and solar-based electric energy. They 

developed an Ant Colony Optimization heuristic to solve the problem. Earlier, Keskin & Çatay 

(2018) developed a model using partial charging considering multiple charging speeds, which they 

solved using a matheuristic.  

 

• Time-Dependency. For our problem, the relevant part of the use of solar charging is the time-

dependency of solar power. This means that Time-Dependent EVRP is a relevant variant of the 

EVRP. In a Time-Dependent EVRP, some parameters of the EVRP are dependent on the time. This 

could be driving costs, speed, charging speed, or charging costs.  

The first to include time-dependency in the EVRP was Sassi et al. (2014). In their case, the 

parameter dependent on the time was the charging costs. They also included different charging 

methods with three different levels of charging, where in the lowest level the charging rate was 

very low, and in the highest charging level, the charging speed was higher. They also included time 

windows for both the customers and the charging stations. They provided a Mixed Integer 

Programming model and developed a couple of heuristics including a Charging Routing Heuristic 

and a Local Search Heuristic with three different insertion strategies.  

Shao et al. (2017) also included time-dependency in the EVRP. They used variable traveling time 

dependent on the time to reflect a dynamic traffic environment. Equally to Sassi, they also use 

three different charging levels. Lu et al. (2020) also modeled a time dependent EVRP including 

time windows. They could solve their problem to optimality for small instances with an Integer 

Linear Problem and created an Iterated Variable Neighborhood Search heuristic to solve bigger 

instances. They also optimize the speed and departure time on each arc of the route. 

Zhang et al. (2022) also used time-dependent travel speeds and included time-dependent 

congestion tolls. They divided their model in only three periods, however, in these periods, the 

time-dependent variables are both the travel speed and the traveling costs. They provided a 

mixed-integer linear programming method, an Adaptive Large Neighborhood Search heuristic, and 

experimentations with this heuristic compared to traditional optimization software.   
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• Time-of-use electricity pricing. Ham & Park (2016) were the first to include time-of-use pricing of 

electricity in the model EVRP. Their retail prices vary hour-by-hour to simulate changes in 

wholesale prices. Their objective is to minimize the electricity costs together with the number of 

used vehicles and total travel distance. In their solution, which they developed with the use of 

constraint programming, the charging of the battery is done mostly in the off-peak periods. Later, 

Liu et al. (2018) used time-of-use pricing in their model as well. They created a reserving charging 

decision model for EVs that are in need of charging services, considering traffic conditions, and 

charging resources with the objective of minimizing driving time and charging expenses. However, 

they did not combine their model with energy-efficient routing. 

Ferro et al. (2018) did combine energy-efficient routing with time-of-use energy prices. They also 

used the possibility of partial charging, time windows, and an energy consumption model including 

the load of the vehicle, the travel speed, and route congestion conditions. They also included a 

maximum power level at the recharging stations to model those stations more real. They 

presented a Mixed Integer Model and a preprocessing algorithm to reduce the problem 

dimension. However, they could only solve small instances of the problem, with a customer limit 

of fifteen, to optimality. They concluded that to increase the instance size, one should switch to 

either a matheuristic or a metaheuristic such as an Adaptative Large Neighborhood Search.  

Kumar et al., (2023) built on the work of Ferro et al. (2018), and included charging flexibility by 

using the possibility of battery swapping and multiple charging levels. This is to the best of our 

knowledge the most integrated model of the Time-Dependent EVRP since it integrates capacity 

constraints, time windows, different recharging methods (battery swapping, partial recharging, 

and different power levels), and time-of-use pricing. They created a Mixed Integer Linear Program 

and solved it for big instances with the use of a matheurstic, which is a variant of the Ant Colony 

Optimization algorithm. 

In our research, the time dependency feature is highly relevant. The reason for this is that the charging 

costs depend on the time of the day. Since there is more solar energy available around noon, charging is 

cheaper around noon and the solution approach has to account for that. So the variable that is time 

dependent is the charging costs. However, these costs do not only depend on time but also on the number 

of vehicles charging at the same time.  
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2.1.4 Autonomous VRP 
This section focuses on autonomous VRP. This is relevant because the vehicles in our use cases are both 

autonomous vehicles. Autonomous vehicles are vehicles that do not need manual driving to deliver their 

packages. Examples of these vehicles include delivery robots and drones.  

Delivery Robots/Vehicles 

The first type of autonomous vehicles we discuss is delivery robots/vehicles. Delivery robots fall into one 

of the following categories: Sidewalk Automated Delivery Robots (SADR), Road Automatic Delivery Robots 

(RADR), and Autonomous Delivery Vehicles (ADV). According to Srinivas et al. (2022), we can divide the 

autonomous VRP into two major categories, namely the autonomous driving-only problem and the hybrid 

problem.  

• Using automated driving robots/vehicles only, customers still need to be present at their location 

to pick up the package from the delivery robot. To model this feature, most problems include time 

windows for the customer. Sonneberg et al., (2019) proposed a MIP formulation for the routing 

problem including hard time windows. In their problem, they used autonomous unmanned ground 

vehicles as the vehicles in their problem. They integrated it with a location problem for the depot 

and they solved a small case study with three depots and ten customers. Gnegel et al., (2021) 

solved the problem using soft-time windows. Their unmanned vehicles were street robots with a 

single-unit capacity. This means that the depot needed to be visited after each trip. They modeled 

the problem as a Mixed Integer Quadratic Problem, and they minimized the sum of the quadratic 

penalty costs to ensure that larger delays are penalized more heavily. They then solved their 

problem with a Branch & Refine algorithm and an Iterative Refinement algorithm. 

Instead of using time windows, Ulmer & Streng, (2019) used pick-up locations as customers in their 

model, where the end-customers can later pick up their package using an unique access code. 

They solved a dynamic problem with autonomous vehicles, to ensure same-day delivery when the 

customer orders their package. They solved their problem with the help of a Policy Function 

Approximation algorithm and can optimize a problem with 10 robots and 1000 orders across 12 

pick-up locations.  

Reed et al. (2022) used autonomous delivery vehicles in their problem to transport delivery 

personnel to places close to customer locations, then the delivery person makes a tour to visit a 

set of customers, and the personnel is later picked up by the autonomous delivery vehicle and 

transported to other customer locations. They modeled their problem as an Integer Problem and 

they showed that using this concept, they could reduce the delivery times by 30%. 

• Hybrid Problem. In the hybrid problem, both conventional vehicles and autonomous vehicles are 

used in one problem, with different variants such as a two-tier model in which a conventional 

truck transports several packages in the first tier to local hubs, from which the autonomous 

vehicles deliver the packages to the end-customers in the second tier. Another variant is called the 

mothership model in which a conventional vehicle transports a set of small autonomous vehicles 

together with the packages, and deploys them at certain locations. The autonomous vehicles then 

transport the packages to the end customer. Another variant is called the platoon model in which 

autonomous vehicles independently deliver packages in zones that are friendly to autonomous 

vehicles, however, they follow a conventional vehicle to guide them through non-autonomous 

friendly zones. In both our use cases, the only vehicles that are used are autonomous vehicles, so 
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there is no hybrid problem. However, for a review of all hybrid problems, including subcategories 

we direct the reader to Srinivas et al., (2022)  

Drone Routing 

The second type of autonomous vehicle relevant to this research is drones. Drones are unmanned aerial 

vehicles. Since they can travel through air, they are quicker than street robots. They most often have a 

limited flying range, which makes them mainly suitable for first- and last-mile delivery. However, 

because of their limited capacity, the routing problems most often become multi-trip problems. Within 

drone routing, there are also two major categories: drone-only routing and drone-truck routing. 

However, in our research, we do not consider a problem with both trucks and drones, so we focus on the 

drone-only routing problem. For an extensive overview of drone-truck routing problems, we direct the 

reader to Liang & Luo (2022). 

Schonfeld & Choi (2017) focused on a drone-only routing problem, where a drone can carry multiple 

packages within a certain limit. They used numerical optimization to optimize the number of drones for a 

service area to minimize the total costs of the system. The study shows that drones are more economical 

in high-density areas. Dorling et al., (2017), proposed two VRP models for the drone routing problem. One 

minimizes costs for a certain delivery time limit, so it minimizes the number of drones and their charging 

costs. In contrast, the other minimizes the overall delivery time for a certain budget. They modeled the 

energy consumption linear with the payload and battery weight and used that approximation to develop 

a Mixed Integer Program for the VRP. They solve their problem with the Simulated Annealing method.  

Cheng et al., (2020) formulated a multi-trip drone routing problem with energy function. This means that 

this problem is a combination of an EVRP and a drone-routing problem. They included a non-linear energy 

consumption function, with the payload and travel distance as parameters. They modeled the problem as 

a 2-index problem and developed a branch-and-cut algorithm to solve the problem. 
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2.1.5 Container Drayage Operations 
Since the transport method at the XL business park is the transport of containers between companies, it 

is relevant to research container drayage operations. In container drayage operations, there are multiple 

customers who either demand a container or have a container ready to be picked up. A set of trucks drives 

across the area to transport the containers as efficiently as possible. This is a variant of the VRP however 

with strict capacity limitations since a truck cannot often transport multiple containers at a time.  

Figure 2.5, made by Schulte et al. (2017), shows multiple variants of the container drayage problem. The 

most basic variant is the bilateral problem. In this variant, containers can only be transported one at a 

time, and only one customer can be served before going back to the depot. In the triangular problem, a 

truck can still not carry more than one container, however, it can visit two containers in one route. It can 

occur that the first customer demands a container from the base, while the second customer has a 

container ready to be picked up and transported back to the depot. This is what happens in the second 

variant shown in. In the third variant, one customer both demands a container from the depot and has a 

container ready to be picked up for another customer. So in this case, intercustomer demand is involved. 

In the fourth case, the rectangular case, there is also intercustomer demand, however, no customer both 

demands a container and has a container ready to be picked up. In the last case, the truck has a capacity 

of more than one container, so it can drive longer routes to visit multiple customers in one tour. (Schulte 

et al., 2017) 

The variant that is most suitable for the XL business park is the second variant. The containers at the XL 

business park either need to be picked up at the depot and delivered to the customer or picked up at the 

customer and delivered at the depot. So there is no intercustomer demand. However, it might be the case 

that customers are both a delivery point and a collection point, so in that way, it fits more with the third 

variant.  

One of the first research on this container drayage problem was done by Wang & Regan, (2002). They 

model the problem as a MTSP with time windows. They considered a set of loads that must be moved in 

a local area, so including intercustomer demand. They consider each trip as a node in a traveling salesman 

Figure 2.5. Graphical representation of multiple variants of the Container Drayage Problem, (Schulte et al., 
2017) 
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problem and develop a mathematical formulation to model the problem on a daily basis. They use an 

iteration heuristic to solve this problem in which time constraints are replaced by binary flow variables.  

Jula et al. (2005) developed a similar model and used multiple approaches to come to a solution. They first 

solved the problem to optimality by using dynamic programming. However, when the problem becomes 

too big, they switched to a metaheuristic including a Genetic Algorithm. Ileri et al., (2006) were the first to 

include the repositioning of empty containers in their model. The repositioning of empty containers was 

required to facilitate the transport of loaded containers. The transport was executed by a heterogeneous 

fleet. They created cost-effective schedules with the use of column generation which is an exact method. 

Xue et al. (2014) solved a similar problem with empty containers. In this case, the truck could be detached 

from its trailer and assigned to a new task. They solved their problem with the use of a Tabu Search 

algorithm.  

Schulte et al., (2017) created a mathematical model of the container drayage problem in a terminal. In 

their case, the jobs were nodes in a graph and the distance between the nodes depended on the start- 

and end location of each job. They divided their container jobs into different categories based on whether 

they were import or export containers and full or empty containers. Then they could calculate the service 

time of each job depending on its category and the travel time. Then they created an asymmetric distance 

matrix based on the different start and end locations of each job and the category of the job. They solved 

their mathematical problem with the use of a commercial solver. 

R. Zhang et al. (2015) solved a problem where a truck could transport more than one container at a time. 

This means that the truck can drive longer routes before returning to the depot. They modeled the 

problem as a multiple traveling salesman problem and solved their problem with the use of a Tabu Search.  

They did however not take time-windows into account. Vidović et al. (2017) addressed a problem in which 

time windows are taken into account and the trucks could carry two containers. They created a mixed-

integer model for small instances and solved larger instances with the use of a variable neighborhood 

search.  

Heilig et al., (2017) connected the container drayage problem with an interterminal transport. Their case 

fits our research as well since our research takes place in a semi-closed environment which can be seen as 

a terminal. They did not take a depot into account, however, their trucks have initial starting locations. 

This means that they only take intercustomer demand into account, with the inclusion of soft time 

windows. They proposed two greedy heuristics and two hybrid simulated annealing algorithms, which they 

tested using real locations in the port of Hamburg.  

2.1.6 Combination EVRP and Container Drayage 
Since the SAVED project involves an electric truck delivering containers, it is relevant to look into the 

combination of EVRP and container drayage problems. The closest research to our problem was done by 

Dessouky & Yao, (2023). They called their problem the mixed fleet drayage routing problem. This means 

that they considered a heterogeneous fleet consisting of both normal trucks and trucks driven by 

electricity. Their work was based on the study of Giuliano et al. (2020). This was a simulation study in which 

trucks might only have one or two stops outside the depot and the depot was the only charging location. 

There was no intercustomer demand involved in this problem, however, they did consider a 

heterogeneous fleet consisting of both conventional trucks and EV trucks. 



30 
   

Dessouky & Yao, (2023) formulated their problem as a mixed integer problem. They considered that only 

the electric trucks need to be charged during working hours. The battery consumption rate depends on 

whether the container is empty or loaded and the weight of the load. They also included non-linear 

charging times. The objective of the model is to minimize a combination of the charging costs and the 

emission costs of both types of trucks. The model can be solved with commercial optimization software 

for small instances. For bigger instances, they created a large neighborhood search algorithm, which can 

solve the problem for instances with more than a hundred units of demand.  

2.1.7 Table of Relevant Works 
Table 2-1 shows an overview of all relevant works discussed in this literature review, together with their 

characteristics. The left column shows the authors of the articles together with their year of publication. 

Then the next column shows whether the problem concerns EVRP and/or Autonomous Vehicle Problem 

and/or Container Drayage Problem. For the EVRP papers, the characteristics of the problem are provided 

in the next section of columns, namely the charging method (CM), whether the charging time is linear or 

non-linear (CT), the charging location (CL), the fleet and traditional VRP characteristics (VRPC). The 

Autonomous Fleet Characteristics (AFC) are provided in the column after the EVRP characteristics and the 

Container Drayage Characteristics (CDPC) are presented in the columns after the Autonomous Fleet 

Characteristics. The second-to-last column shows the objective of each column, while the last column 

shows the solving method categorized in either an exact method, a heuristic, a metaheuristic, or a 

matheuristic in combination with a mathematical model (MIP).  

Using this table, we can select the closest works related to our research. In the next section, we look at 

the solution methods of these selected works and choose the solution method for our solution approach. 

From the EVRP problems, we select the work of Ferro et al., (2018), and Kumar et al., (2023). These two 

works took time dependency into account with time-dependent charging costs, which perfectly fits our 

research. They also take partial charging into account as their charging method and hard time windows. 

From the Autonomous Vehicle Problem, we select Cheng et al., (2020) since they incorporate an energy 

function and the recharging option in their problem. From the Container Drayage Problems, we select 

Schulte et al. (2017) as a close work since they also included the repositioning of empty containers as a 

characteristic. This fits with our research since we also take into account empty containers that should be 

transported back to the depot. They also included hard time windows and their problem does not allow 

for transporting multiple containers at the same time, which fits our problem. They also did not include 

intercustomer demand.  

We also select the work of Giuliano et al., (2020) and Dessouky & Yao (2023) since they combined the 

EVRP with the Container Drayage Problem. Giuliano even considered the possibility of partial charging and 

charging at the depot and no intercustomer demand, which perfectly fits our problem for the industrial 

use case.  
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Table 2-1. Table of relevant works 
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2.2 Solution Methods 
In this section, we provide the solution methods for the closest works to our thesis. We first discuss the 

exact approaches, and then the metaheuristics corresponding with the closest works we discussed in the 

previous section.  

2.2.1 Exact Methods 
Exact methods are methods that could be used to solve a problem to optimality. These methods are most 

suitable for small problems since they often require large amounts of computation time. One of the most 

common exact methods for VRP variants is the use of Integer Linear Programs (ILP) which is a 

mathematical program with linear constraints and an objective function. These models can be solved with 

the use of for example the branch and bound method. This method divides the problem into sub-problems. 

Solving these sub-problems leads to bounds of the optimal solution. This bound helps in reducing the 

solution space, because if the bound is worse than the current optimal solution, the whole solution region 

involving that subproblem can be eliminated (Theurich et al., 2021). 

Branch and Cut method is an extension of the branch and bound method, where after a relaxation of the 

problem is solved, for example, a problem without integer constraints, certain inequalities are added to 

narrow down the solution space and eliminate non-integer values.  

Commercial solvers can be used to solve these problems to optimality. These solvers implement branch-

and-bound methods, or branch-and-cut methods to solve problems. Two of the most common solvers are 

CPLEX and Gurobi. They are high-performance optimization solvers employed to solve complex 

optimization problems, including ILP and mixed-integer linear programming. Dessouky & Yao (2023) used 

Gurobi as optimization software for small instances, however, they switched to an Adaptive Large 

Neighborhood Search as instances got bigger. Giuliano et al. (2020) used Gurobi as well, however, they 

divided their optimization problem into 2, a minimum cost circulation problem to determine a set of 

optimal vehicle trips, which is a Linear Program and can be solved to optimality with the use of Gurobi, 

and a bin-packing problem to assign the vehicle trips to the fewest number of trucks as possible. On the 

other hand, Schulte et al. (2017) and Ferro (2018) used CPLEX as their solver after they created a 

mathematical program to display their problem.  

2.2.2 Metaheuristics 
Since VRP variants are NP-hard, the computation time of exact methods increases exponentially with the 

expansion of the problems. Schulte et al (2017), could not reach an optimal solution within two hours if 

the number of trips to be scheduled approached 50. (Meta)heuristics are methods to shorten the 

computation time of solving the problem. Heuristics are methods that do not lead to an optimal solution 

for a problem, however, they lead to good solutions within a reasonable amount of time. Examples of 

normal heuristics are the Nearest Neighbor heuristic in which a vehicle starts at an initial customer and 

then travels to the nearest customer until the capacity constraint is met or all customers are served or the 

Clarke & Wright Savings Algorithm, in which two routes are merged into one if this leads to a feasible 

solution and the most savings in terms of the objective value. 

Metaheuristics are high-level heuristics which are more generic than normal heuristics. Metaheuristics are 

not problem-specific, meaning they are suitable for more problems instead of only routing problems. They 

frequently involve a search through a solution space (Abualigah et al., 2023). In this section, the 

metaheuristics corresponding with our closest works are described, namely the Ant Colony Optimization 

and the Adaptive Large Neighborhood Search.  
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Ant Colony Optimization 

Ant Colony Optimization (ACO) is an optimization algorithm based on the probabilistic behavior of ants. 

The method simulates the movement of artificial ants. They probabilistically travel in the solution space 

while leaving pheromones on the routes. They leave more pheromone on better routes. Then routes with 

more pheromones are visited more often with a higher possibility by other ants, since they can “smell” 

the pheromones on the better route. This means that the ants both explore and exploit routes until they 

improve so much that they are concentrated on the best route. This makes ACO very suitable for global 

optimization. Since the method involves exploring, the chances of ending in a local optimum are relatively 

small. (Y. Wang & Han, 2021) 

Kumar (2023) used the ACO method in their research including time-of-use pricing in their EVRP. In their 

proposed approach they map the EVs as artificial ants and let them travel over the routes with a probability 

based on the level of pheromone on the route, the distance of the route, the time windows of the 

customers, and the battery level of the EV. If they cannot do a route because of their low battery level, a 

trip to a charging station is inserted in the route. After all the customers are visited per ant, the ant with 

the lowest objective value is chosen as the optimum, then all pheromone trails are updated with the use 

of a certain formula, and another iteration is performed until a certain termination criterion is met.  

The advantages of the ACO method are that the chances of ending up at a local optimum are very small, 

it does not need an initial solution, and it is very suitable for routing problems. Disadvantages are that the 

ACO method may converge slowly to a solution in large solution spaces and it requires a significant amount 

of parameter tuning to find the right balance between exploration and exploitation.  

Adaptive Large Neighborhood Search 

The Adaptive Large Neighborhood Search (ALNS) is a metaheuristic that uses destroy and repair methods 

to improve current solutions. It is an improvement heuristic, which means that it starts with an initial 

solution. In a classic Neighborhood Search (NS), a neighborhood is defined as the set of solutions that can 

be obtained by applying a small change to the current solution. In terms of a VRP, this could be swapping 

customers between vehicles or changing the order of when the customers should be visited by the vehicle. 

This neighborhood is then evaluated by calculating the objective value of the neighbor solution and the 

current solution is updated if a better solution is found. All steps are performed iteratively until a 

termination criteria is met. 

In a Large Neighborhood Search, the same procedure as in a NS is followed, however, the neighborhoods 

of a current solution are broader. It often consists of a destruction and a construction phase. In a 

destruction phase, a part of the current solution is destructed, such as the complete route of one vehicle. 

This is the moment in which the neighborhood is explored. Then in the construction phase, the solution is 

constructed again using problem-specific heuristics (Le Colleter et al., 2023). The Adaptive Large 

Neighborhood Search is an extension of the Large Neighborhood Search, in which the destruction phase 

is monitored, to see which neighborhood selection strategies lead to the best improvements of the current 

solution. The approach during the destruction phase is then dynamically adjusted, by intensifying the 

destruction strategies that lead to better objective values and neglecting destruction strategies that do 

not lead to better objective values (Windras Mara et al., 2022). 
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The ALNS method is used in the research of Dessouky & Yao, who combined the EVRP with the Container 

Drayage Problem. They started with the creation of an initial solution by using the nearest-neighbor 

approach. They started by scheduling 1 truck with their nearest neighbor until their working time limit was 

met, and then they scheduled the next until all trips were scheduled. 

In this initial solution approach, they considered the trucks to be fuel-based. In their ALNS method, they 

made the transition to the use of Electric Trucks. They started each iteration by substituting truck types 

and inserting charging trips with the use of a greedy insertion algorithm for each substitution from fuel to 

electricity. Then, trucks that exceed their working time, due to the new inclusion of their charging time, 

lose some of their tasks. They also randomly removed tasks from all the trucks with a certain probability. 

This completes the destruction face. In the construction face, they assigned the tasks back into trucks or 

even employed additional trucks to ensure demand satisfaction, and then they optimized the routes for 

each truck with the use of a commercial solver. This method could solve a problem with 12 customers and 

2 charging stations within 10 seconds, and it also solved scenarios with more than 300 customers to 

optimality with a computation time of two hours. 

Besides their low computation time, other advantages of ALNS that we find are that many neighborhoods 

can be explored in one method and that problem-specific heuristics can be included in the algorithm. 

Disadvantages are that the method may be too dependent on the initial solution and that the algorithm 

might end up in a local optimum if the neighborhood structure is not chosen properly. 

2.3 Conclusion 
In this literature review section, we reviewed concepts and problems in the area of EVRP and Container 

Drayage Problems. We first analyzed the classic VRP, together with features that are relevant to both our 

use cases. Then information is provided on the classic EVRP, with different charging types, such as full 

charging, partial charging, battery swapping, and non-linear charging. We also discussed the inclusion of a 

mixed fleet, with the option of incorporating only EVs or a combination of EVs and conventional vehicles. 

Then a review of the use of solar energy and time-dependent EVRP was provided. After that we discussed 

autonomous vehicle routing problems and Container Drayage Problems and the last problem we reviewed 

was the combination of Container Drayage Problems and EVRP. Then, we combined all reviewed papers 

in a table with an overview of all features and we selected the closest papers to our research. After that, 

we described the solution method of the closest papers in general and for the specific problems of the 

paper. 

To conclude about the problems and concepts in our research field, we can say that there has been an 

extensive amount of research done on EVRP with different features. The most relevant features for our 

research are the different charging types since we can experiment with these charging types in our solution 

design phase and the experiments phase, and the inclusion of solar energy and time-dependency, since 

that is similar to our problem at both use cases.  

The same holds for Container Drayage Problems. Much research has been done on that topic, however, 

not much research has been done on the combination of Container Drayage Problems and EVRP. The 

Container Drayage Problem is suitable to model the industrial use case since that use case involves 

container transport at an inland terminal, however, it is also suitable to model the urban use case. The 

urban use case involves the transport of packages by drones or street robots. Concept-wise, a problem in 

which a truck transports one container at a time, or a problem in which drones transport one package at 

a time, can be modeled the same.  
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Much research has been done on autonomous vehicle routing problems as well. Most of these researches 

include combinations with manual vehicles which is not relevant to our problems since they consist of 

autonomous vehicles only. However, it is important to note that a routing problem for autonomous 

vehicles does not differ from routing problems for manual vehicles, since the concept of the routing 

problem does not change, only the parameters change, which means we can use the concept of a manual 

routing problem for our research as well.  

Concluding about possible solutions, we can say that, by looking at the closest works to our research, small 

instances of problems are solved with an exact method with the help of a commercial solver. This holds 

for problems combining EVRP with container drayage problems, problems regarding autonomous routing, 

and problems where time dependency is included in the EVRP. Since the problem in the industrial use case 

(the XL business park) is relatively small, we try to use an exact method as well to come to the most optimal 

solution for those small instances. Because the problem at the XL business park will be solved on a daily 

basis, an exact method might still be suitable despite its long computation time. After all, the solver is 

allowed to run the whole night to come to an optimal solution, since the input of the problem will not 

change overnight. However, when the problem instances get bigger in the urban use case, we switch to a 

metaheuristic. The metaheuristics that were executed in our closest researches were the ACO method and 

the ALNS method. The metaheuristic that we chose is the ALNS method because of the reason that it is 

used in a container drayage problem, which is closer to our research and also fits the urban use case. In 

this method, we can also include different construction heuristics to experiment with. It also has a very 

low computation time and does converge quickly to a good solution. 

The answer to the main research question of this chapter is that many research has been done on concepts 

close to our research, such as container drayage problems and EVRP with time dependency, however, 

there has been little research done on the specific problem of both our use cases, which includes both 

container drayage problem and time-dependency in an EVRP. However, we find that there are exact 

optimization methods available for small instances with the help of a commercial solver and that we can 

use the ALNS method to come to good solutions in larger instances.  
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3 Solution Approach 
In this chapter, we answer the following research question and subquestions: 

2. How should the solution approach be designed? 

a. What are the requirements necessary for designing the solution approach?  

b. Which assumptions have to be made to design the solution approach? 

c. Which solution methods are most suitable for solving the EVRP in both use cases?  

In Section 3.1, we provide the problem formulation for both use cases. In Section 3.2 we provide a 

mathematical model for our problem formulation and in Section 3.3 we explain our solution methodology. 

3.1 Use cases and Problem formulation 
In this section, we provide information about both our use cases in sections 3.1.1 and 3.1.2. We use this 

information to develop a conceptual graph in Section 3.1.3 Then in Section 3.1.4 we provide our problem 

formulation, while in Section 3.1.5 we discuss the assumptions for our solution approach. 

3.1.1 Industrial Area/SAVED 
The first use case considered in this thesis is the industrial area use case. The industrial area covers a semi-

private environment at the XL business park in Almelo. It consists of a depot and multiple warehouses. In 

the use case, one AGV delivers containers from the depot to the warehouses or from the warehouses to 

the depot. There is no container transportation between warehouses, and there might be more than 1 

container transport order to one warehouse. Figure 3.1 shows an image of the map of the XL business 

park. The CTT location is marked green and the three customers are marked red. The black arrows show 

the route from CTT to Timberland, while the black dotted arrows show the route from CTT to Bleckmann. 

Since Bolk is very close to CTT, the route from CTT to Bolk is not shown.   

Figure 3.1. Map of the XL business park with relevant locations and routes 
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3.1.2 Urban Area/Campus 
The urban area use case covers a use case at the campus of the University of Twente. Figure 3.2 shows a 

map of the University of Twente. The use case consists of a depot and multiple customer locations all over 

the campus. The depot is located close to the numbers 5, 6, 7 and 8 in the figure. The customer locations 

could be student houses or office buildings. A set of drones and street robots deliver packages from the 

depot to one of the customers. It can only transport one package at a time. This means that we make use 

of the same conceptual graph as in Section 3.1.1, in which the nodes represent the trips and the edges 

represent the distance between these trips.  

 

Figure 3.2. Map of the University of Twente 
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3.1.3 Conceptual Graph 
The similarity between both use cases is that they are both EVRP, sharing the same problem graph. In 

both use cases, all vehicles can only transport one container or package at a time, which changes the  

routing graph. A standard routing problem consists of a graph with nodes and edges (G = (V, E)). In that 

case, the nodes are the customers and the edges represent the distances between the customers.  

In our case, however, the nodes are the container transport orders and the edges represent the 

distances between the end location of one trip and the start location of the other trip. The reason for 

this is that the vehicles can only transport one package at a time. If for example, two packages A and B 

need to be transported from the depot to customers X and Y, the vehicle has to go back to the depot in 

between. The goal is to still model the route as Depot-A-B-Depot. This cannot be done using a standard 

routing graph, because then the distance between A and B is equal to the distance between customers X 

and Y. This is not correct, since the vehicle has to go back to the depot in between. So, to still model the 

route as Depot-A-B-Depot, the edges have to represent the distances between the end location of the 

first trip (X), and the start location of the second trip (Depot). 

Figure 3.3 shows an example of how this influences the graph in the industrial area use case. The left graph 

is a conventional graph in which the nodes are locations. In this hypothetical case, we have one depot and 

3 customers as nodes. The edges show the distances in kilometers between these locations. As an 

example, we have 3 container transportation trips. The first trip is from the depot to customer 1, the 

second is from customer 2 to the depot, and the third is from the depot to customer 3. This is represented 

by the arrows in the left graph. 

In the right graph, the nodes represent the trips. Node 1 represents a trip from the depot to customer 1. 

Node 2 represents a trip from customer 2 to the depot and node 3 represents a trip from the depot to 

customer 3. Each node has a certain distance, namely the length of the trip. This is represented by the 

number close to the node. For node 1 this is 5 because the distance between the depot and customer is 

5. It can be seen that there are two edges between each node. This is because our model now has an 

asymmetrical distance matrix. For example, the distance from node 1 to node 2 is 12, since trip 1 ends at 

customer 1 and trip 2 starts at customer 2, and from the left graph, we can see that the distance between 

customers 1 and 2 is 12. However, the distance from node 2 to node 1 is 0. This is because trip 2 ends at 

the depot and trip 1 starts at the depot.   
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3.1.4 Problem Formulation 
The overall problem formulation that covers both use cases, is an EVRP consisting of a graph in which the 

nodes are either the depot or a set of trips (T). Each trip has a certain distance, (disi), time window (stTWi 
and endTWi), and service time (loading and unloading)(si). The start of the time window is a hard 

constraint that cannot be violated while violating the end of the time window leads to penalty costs.  

Furthermore, our problem has a set of vehicles (V), which have a certain speed (𝑠𝑝𝑘). Because each 

vehicle has a constant speed, and each trip has a certain distance, we can say that each trip has a certain 

duration (duik), depending on the vehicle. Furthermore, each vehicle has an energy consumption factor 

per minute without transporting packages (eeck), battery capacity (bck), and battery level at the start of 

the day (bsk) for k in V.  

The energy consumption factor per trip depends on both the weight of the trip and the characteristics of 

the vehicle. To model this, each trip has a certain weight factor (wfi ). The energy consumption per minute 

of the vehicle is then the empty energy consumption factor multiplied by the weight factor. Each vehicle 

can be charged at the depot. This happens with a certain constant charging speed (cs). The charging rate, 

however, depends on the solar power available at that moment and the number of vehicles charging at 

the same time. At the end of the day, the vehicles need to have a certain threshold battery level value, to 

be ready for the next day (be).  

3.1.5 Assumptions 
In this section, we state the list of assumptions that are made to model our electric vehicle routing 

problem. These assumptions are used for the mathematical model and the solution method. 

General Assumptions 

• All demand is known at the start of the day, including time windows. 

• The weather forecast is known at the start of the day. 

 

Figure 3.3. Conceptual graph to model both use cases 
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Vehicle Assumptions 

• All vehicles have a single-unit capacity. 

• All vehicles have a constant speed. 

• All vehicles have a constant energy consumption function. 

• The energy consumption rate depends on the weight of the package transported. 

• The distance between two locations for the vehicles is the Euclidean distance between those 

locations multiplied by a certain distance factor. 

 

Charging Assumptions 

• All vehicles are charged with a constant charging speed. 

• The vehicles can be charged using the partial charging strategy. 

• A vehicle can be charged at any moment. 

• The charging rate depends on the amount of solar energy available and the number of vehicles 

charging. 

• There is no limit on the number of vehicles charged at the same time. 

3.2 Solving Methods 
Table 3-1 shows a comparison of the three solving methods for the problem of Section 3.1. In the rest of 

the chapter, we provide 2 solving methods for the problem. In the next section, we present a mathematical 

model of the problem, which can be solved with an exact optimization method. while in the section 

thereafter we provide the ALNS heuristic for solving the problem. It shows that there are multiple 

objectives for the problem, namely the charging costs (CC), the traveling time (TT), and the penalty costs 

for missing the time window of each trip (PC). It can be seen that both the mathematical model and the 

heuristic can optimize all three objectives, with both hard and soft time windows, but not at the same time 

(orange dots). However, the mathematical model excludes solar charging, since the solar charging rate 

depends on the weather and the number of vehicles charging at the same time, which to the best of our 

knowledge cannot be captured in a mathematical model. Furthermore, it does not consider a mixed fleet. 

The main value in the model lies in the routing component of the problem, since that can be solved to 

optimality. Therefore, it can be seen as a benchmark for the routing component of the heuristic. 

In contrast, the ALNS takes solar charging into account. The heuristic consists of a constructive heuristic 

and an improvement heuristic. The constructive heuristic only accounts for full charging, while the 

improvement heuristic accounts for partial charging. They both take solar charging and the use of a mixed 

fleet into account.  

Table 3-1. Comparison of different solving methods and their characteristics 
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3.3 Mathematical Model 
In this section, we provide a mathematical model that fits both use cases with the characteristics described 

in the previous section. The model is a Mixed Integer Non-Linear Problem (MINLP). 

Sets 

𝑇 = 𝑆𝑒𝑡 𝑜𝑓 𝑇𝑟𝑖𝑝𝑠, 𝑇{0} 𝑖𝑠 𝑑𝑒𝑝𝑜𝑡 

𝑉 = 𝑆𝑒𝑡 𝑜𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 

Parameters 

𝑑𝑢𝑖 =   𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑟𝑖𝑝 𝑖 ∀𝑖 ∈ 𝑇 − {0} 
𝑠𝑡𝑇𝑊𝑖 = 𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑜𝑓 𝑡𝑟𝑖𝑝 𝑖                                                                   ∀𝑖 ∈ 𝑇 − {0} 
𝑒𝑛𝑑𝑇𝑊𝑖 = 𝐸𝑛𝑑 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑜𝑓 𝑡𝑟𝑖𝑝 𝑖                                                                  ∀𝑖 ∈ 𝑇 − {0} 
𝑠𝑖 = 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑡𝑖𝑚𝑒 (𝐿𝑜𝑎𝑑𝑖𝑛𝑔 + 𝑈𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔) 𝑜𝑓 𝑡𝑟𝑖𝑝 𝑖                                                          ∀𝑖 ∈ 𝑇 − {0} 
𝑡𝑖𝑗 =  𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑟𝑖𝑝 𝑖 𝑎𝑛𝑑 𝑡𝑟𝑖𝑝 𝑗      ∀𝑖, 𝑗 ∈ 𝑇     

𝑒𝑒𝑐𝑘 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑙𝑜𝑎𝑑 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘                  ∀𝑘 ∈ 𝑉 
𝑏𝑐𝑘 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘                                                                                 ∀𝑘 ∈ 𝑉 
𝑏𝑠𝑘 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑦                                                     ∀𝑘 ∈ 𝑉 
𝑤𝑓𝑖 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝 𝑖                                                                                                       ∀𝑖 ∈ 𝑇 − {0} 
𝑐𝑠 = 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑  
𝑐𝑟 = 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑟𝑎𝑡𝑒  
𝑐𝑝 = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑐𝑜𝑠𝑡𝑠 𝑝𝑒𝑟 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑏𝑒𝑖𝑛𝑔 𝑙𝑎𝑡𝑒  
𝑐𝑡 = 𝐶𝑜𝑠𝑡𝑠 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑙𝑜𝑎𝑑  
𝑏𝑒 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑦  
𝑀 = 𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑏𝑖𝑔 𝑛𝑢𝑚𝑏𝑒𝑟  

 

Variables 

𝑋𝑖𝑗𝑘 = 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (1 𝑖𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 𝑑𝑟𝑖𝑣𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡𝑟𝑖𝑝 𝑖 𝑡𝑜 𝑡𝑟𝑖𝑝 𝑗, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒) ∀𝑖, 𝑗 ∈ 𝑇, ∀𝑘 ∈ 𝑉 

𝑆𝑖 = 𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡𝑟𝑖𝑝 𝑖       ∀𝑖 ∈ 𝑇 − {0} 
𝐸𝑖 = 𝐸𝑛𝑑 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡𝑟𝑖𝑝 𝑖      ∀𝑖 ∈ 𝑇 − {0} 
𝑌𝑘 = 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  (1 𝑖𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑠 𝑢𝑠𝑒𝑑, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)                                                   ∀𝑘 ∈ 𝑉 
𝐶𝑖 = 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (1 𝑖𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡𝑎𝑘𝑒𝑠 𝑝𝑙𝑎𝑐𝑒 𝑎𝑓𝑡𝑒𝑟 𝑡𝑟𝑖𝑝 𝑖, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)               ∀𝑖 ∈ 𝑇 − {0} 
𝐶𝑇𝑖 = 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 𝑡𝑟𝑖𝑝 𝑖                                                                                                ∀𝑖 ∈ 𝑇 − {0} 
𝐵𝑆𝑖 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑑𝑜𝑖𝑛𝑔 𝑡𝑟𝑖𝑝 𝑖 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑖𝑝                    ∀𝑖 ∈ 𝑇 − {0} 
𝐵𝐸𝑖 = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑑𝑜𝑖𝑛𝑔 𝑡𝑟𝑖𝑝 𝑖 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑖𝑝                        ∀𝑖 ∈ 𝑇 − {0} 
𝑊𝑖𝑗𝑘 =  𝐻𝑒𝑙𝑝 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 1 𝑡𝑜 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒 𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋𝑖𝑗𝑘 ∗ (1 − 𝐶𝑖) ∀𝑖, 𝑗 ∈ 𝑇, ∀𝑘 ∈ 𝑉 

𝑍𝑖𝑗𝑘 = 𝐻𝑒𝑙𝑝 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 2 𝑡𝑜 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒 𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋𝑖𝑗𝑘 ∗ 𝐶𝑖 ∀𝑖, 𝑗 ∈ 𝑇, ∀𝑘 ∈ 𝑉 

                                                                                                             

                                                                                                                 

Objective 

𝑀𝑖𝑛 (𝑐𝑟 ∗ ∑ 𝐶𝑇𝑖

𝑖∈𝑇−{0}

+ 𝑐𝑡 ∗ ∑ ∑ ∑ 𝑊𝑖𝑗𝑘𝑡𝑖𝑗 + 𝑍𝑖𝑗𝑘(𝑡𝑖0 + 𝑡𝑗0)

𝑘∈𝑉𝑗∈𝑇𝑖∈𝑇

+ 𝑐𝑝 ∗ ∑ 𝑃𝑖

𝑖∈𝑇

             (1) 
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Constraints 

∑ ∑ 𝑋𝑖𝑗𝑘 = 1 

𝑘∈𝑉𝑗∈𝑇−{𝑖}

                    ∀𝑖 ∈ 𝑇 − {0} (2) 

∑ 𝑋𝑖𝑗𝑘

𝑗∈𝑇−{𝑖}

= ∑ 𝑋𝑗𝑖𝑘

𝑗∈𝑇−{𝑖}

                      ∀𝑖 ∈ 𝑇 − {0}, ∀𝑘 ∈ 𝑉   (3) 

∑ 𝑋0𝑗𝑘

𝑗∈𝑇

= 1     ∀𝑘 ∈ 𝑉    (4) 

𝑆𝑖 + 𝑑𝑢𝑖 + 𝑠𝑖 ≤ 𝐸𝑖         ∀𝑖 ∈ 𝑇 − {0} (5) 

∑ ∑(𝑋𝑖𝑗𝑘𝐸𝑖 + 𝑊𝑖𝑗𝑘𝑡𝑖𝑗 + 𝑍𝑖𝑗𝑘(𝑡𝑖0 + 𝑡0𝑗) + 𝑋𝑖𝑗𝑘𝐶𝑇𝑖)  

𝑘∈𝑉𝑖∈𝑇−{0,𝑗}

≤ 𝑆𝑗        

∀𝑖 ∈ 𝑇 − {0} (6) 

𝐶𝑇𝑖 ≤ 𝑀 ∗ 𝐶𝑖   ∀𝑖 ∈ 𝑇 − {0} (7) 

𝑌𝑘 ≥ 𝑀 ∗ ∑ 𝑋0𝑗𝑘

𝑗∈𝑇−{0}

        ∀𝑘 ∈ 𝑉 (8) 

𝑆𝑖 ≥ 𝑠𝑡𝑇𝑊𝑖    ∀𝑖 ∈ 𝑇 − {0} (9) 

𝐸𝑖 ≤ 𝑒𝑛𝑑𝑇𝑊𝑖 + 𝑃𝑖 ∀𝑖 ∈ 𝑇 − {0} (10) 

𝐵𝑆𝑖 − ∑ ∑ 𝑋𝑖𝑗𝑘

𝑘∈𝑉

𝑑𝑢𝑖𝑒𝑒𝑐𝑘𝑤𝑓𝑖

𝑗∈𝑇−{𝑖}

≥ 𝐵𝐸𝑖  ∀𝑖 ∈ 𝑇 − {0} (11) 

∑ ∑(𝑋𝑖𝑗𝑘(𝐵𝐸𝑖 − 𝑒𝑒𝑐𝑘(𝐶𝑖(𝑡𝑖0 + 𝑡0𝑗) + (1 − 𝐶𝑖 )𝑡𝑖𝑗 ) + 𝐶𝑇𝑖

𝑘∈𝑉𝑖∈𝑇−{0,𝑗}

∗ 𝑐𝑠)) = ∑ ∑ 𝑋𝑖𝑗𝑘𝐵𝑆𝑗

𝑘∈𝑉𝑖∈𝑇−{0,𝑗}

 

∀𝑖 ∈ 𝑇 − {0} (12) 

𝐵𝐸𝑖 − ∑ ∑(𝑋𝑖𝑗𝑘

𝑘∈𝑉

𝑒𝑒𝑐𝑘𝑡𝑖0

𝑗∈𝑇−{𝑖}

) ≥ 0      ∀𝑖 ∈ 𝑇 − {0} (13) 

∑(𝑋𝑖0𝑘

𝑘∈𝑉

(𝐵𝐸𝑖 − 𝑒𝑒𝑐𝑘𝑡𝑖0  + 𝐶𝑇𝑖 ∗ 𝑐𝑠)) ≥ ∑(𝑋𝑖0𝑘  𝑏𝑒

𝑘∈𝑉

)            ∀𝑖 ∈ 𝑇 − {0} (14) 

∑ ∑ 𝑋𝑖𝑗𝑘(𝑏𝑐𝑘 − 𝐵𝑆𝑖)

𝑘∈𝑉𝑗∈𝑇−{𝑖}

≥ 0   ∀𝑖 ∈ 𝑇 − {0} (15) 

∑ (𝑋0𝑗𝑘

𝑗∈𝑇−{0}

(𝐵𝑆𝑗  + 𝑒𝑒𝑐𝑘𝑡0𝑗)) = ∑ (𝑋0𝑗𝑘

𝑗∈𝑇−{0}

𝑏𝑠𝑘  ) ∀𝑘 ∈ 𝑉 (16) 

𝑊𝑖𝑗𝑘 ≤ 𝑋𝑖𝑗𝑘  ∀𝑖, 𝑗 ∈ 𝑇, ∀𝑘 ∈ 𝑉 (17) 

𝑊𝑖𝑗𝑘 ≤ 1 − 𝐶𝑖 ∀𝑖, 𝑗 ∈ 𝑇, ∀𝑘 ∈ 𝑉 (18) 

𝑊𝑖𝑗𝑘 ≥ 𝑋𝑖𝑗𝑘 − 𝐶𝑖 ∀𝑖, 𝑗 ∈ 𝑇, ∀𝑘 ∈ 𝑉 (19) 

𝑍𝑖𝑗𝑘 ≤ 𝑋𝑖𝑗𝑘  ∀𝑖, 𝑗 ∈ 𝑇, ∀𝑘 ∈ 𝑉 (20) 

𝑍𝑖𝑗𝑘 ≤ 𝐶𝑖 ∀𝑖, 𝑗 ∈ 𝑇, ∀𝑘 ∈ 𝑉 (21) 

𝑍𝑖𝑗𝑘 ≥ 𝑋𝑖𝑗𝑘 + 𝐶𝑖 − 1 ∀𝑖, 𝑗 ∈ 𝑇, ∀𝑘 ∈ 𝑉 (22) 

𝑋𝑖𝑗𝑘 , 𝐶𝑖  =   𝐵𝑖𝑛𝑎𝑟𝑦      ∀𝑖, 𝑗 ∈ 𝑇, ∀𝑘 ∈ 𝑉 (23) 

𝑆𝑖, 𝐸𝑖 , 𝑃𝑖, 𝐶𝑇𝑖, 𝐵𝑆𝑖, 𝐵𝐸𝑖 ≥ 0         ∀𝑖 ∈ 𝑇 (24) 

   

The objective value is the sum of all charging costs, the costs of driving without a container/package, and 

the costs of using each vehicle. Constraint (2) ensures that each trip is done once. Constraint (3) ensures 

that the vehicle that starts with a trip is the same vehicle that ends the trip while constraint (4) ensures 

that each vehicle starts at the depot. Constraint (5) represents the time flow between the start of the trip 

and the end of the trip including service time. Constraint (6) represents the time flow between the end of 
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a trip and the start of the next trip. If there is no charging after trip 𝑖  is executed, 𝑍𝑖𝑗𝑘 is 0, 𝑊𝑖𝑗𝑘  is 1 and 

the time between trips is tij. Else, the time between trips is the charging time and the travel time to the 

depot for charging. Constraint (7) ensures that if the charging time after a trip is higher than 0, the binary 

variable is 1. Constraint (8) ensures that if the vehicle leaves the depot, the corresponding binary variable 

is 1. Constraint (9) guarantees that a trip cannot be started before the start of its time window, while 

constraint (10) ensures that the end of the time window is met, while otherwise leading to penalty costs. 

Constraint (11) represents the battery flow between the start and end of a trip. Constraint (12) represents 

the battery flow between the end of a trip and the start of the next one, including the loss of energy by 

driving between the two trips and the gain of energy by charging. Constraint (13) guarantees that the 

battery level and the end of a trip plus the energy loss from driving to the charging station is always above 

0. Constraint (14) guarantees that the battery level after the last trip including the energy loss from driving 

back to the depot and the charging is above a certain threshold value. Constraint (15) ensures that the 

battery level is always lower than the battery capacity of the vehicle while Constraint (16) ensures that the 

battery level at the first trip of the day is equal to the start battery level of the vehicle minus the energy 

loss of driving to the first trip. Constraints (17-22) linearize the multiplication of 𝑋𝑖𝑗𝑘 ∗ (1 − 𝐶𝑖) and 𝑋𝑖𝑗𝑘 ∗

𝐶𝑖, while Constraints (23) and (24) are the sign restrictions. 

3.3.1 Validation 
In this section, we validate the model. The purpose of the validation is to test whether the model indeed 

provides the best results for the problem without neglecting the constraints. To do this, we created a small 

toy problem for the SAVED use case, consisting of 5 container jobs. The jobs and its specifics are shown in 

Table 3-2 

Table 3-2. List of Container Jobs Toy Problem 

Number Start End StartTW EndTW WF 

1 CTT Timberland 360 380 2 

2 Timberland CTT 580 600 2 

3 CTT Bleckmann 360 600 2 

4 Timberland CTT 360 400 2 

5 CTT Bolk 400 500 2 

The time matrix between the 4 companies can be found in Table 3-3. Furthermore, we use one vehicle, 

with a battery capacity of 100 kWh and energy consumption per minute of 0.1 kWh. The vehicle starts 

with a full battery and has to end with a full battery. The charging speed is 500 W and the charging cost is 

€0.3 per kWh. In this toy problem, we only focus on the minimization of the charging costs. This means 

that the weights of the traveling time, and the number of vehicles are 0. 

Table 3-3. Time Matrix Toy Problem 

 CTT Bolk Bleckmann Timberland 

CTT 0 1 4 10 

Bolk 1 0 3 9 

Bleckmann 4 3 0 7 

Timberland 10 9 7 0 

Because of the difference in time windows between the 5 jobs, the best route is to start with job 1, then 

do job 4 immediately after since the vehicle is already at Timberland. Then it is best to do job 5 and drive 

back empty to CTT, then job 3, continue empty to Timberland to end with job 2. In total, this would lead 

to driving with a container for 35 minutes and without a container for 8 minutes. This leads to a total 

energy consumption of 7.8 kWh, which can be charged for €2.56. Table 3-4 shows that the model reaches 
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the same order of jobs. It shows that the first job is 1 because the cell of row 0 and column 1 displays 1. 

Then it does 4, 5, 3, and 2, as indicated by the time window constraint. The corresponding objective value 

is indeed 2.56 Therefore it can be concluded that the mathematical model is valid for this small toy 

problem. In Chapter 4, we experiment with bigger instances to investigate how the model compares to 

our heuristic. 

Table 3-4. Optimal Solution Toy Problem 

 0 1 2 3 4 5 

0 0 1 0 0 0 0 

1 0 0 0 0 1 0 

2 1 0 0 0 0 0 

3 0 0 1 0 0 0 

4 0 0 0 0 0 1 

5 0 0 0 1 0 0 

 

3.4 Heuristic 
In this section, we explain the heuristic for solving the problem. We provide an explanation of the 

constructive heuristic in Section 3.4.1, then we explain the improvement heuristic in Section 3.4.2. 

3.4.1 Constructive heuristic 
The constructive heuristic is the starting point of the ALNS heuristic. Figure 3.4 shows the pseudocode of 

the constructive heuristic. The input for the algorithm is the set of trips that have to be executed and the 

set of available vehicles (1). The output is the ConstructiveSolution which consists of a set of vehicles each 

having a list of trips that they have to execute. Each trip has a start moment and an end moment. 

Furthermore, the solution consists of a list of charging moments, in which a vehicle is charged to a chosen 

percentage of the battery capacity. In the constructive heuristic, the chosen percentage is always 100%. 

The algorithm starts with initializing the vehicles by starting them at the depot with battery level bs (3). 

Then the trips are sorted by the end of their time window in increasing order and then the duration in 

increasing order (4). 

Then, we loop over all trips (5) and set a boolean EnoughBattery to false (6). We then find the vehicle that 

is available at the earliest moment (8-9). We then calculate the energy needed to reach the starting point 

of the trip, execute the trip, and go back to the depot (10). If the vehicle does not have enough battery left 

to meet the energy needed (11), the vehicle goes to the depot and charges to 100% (12-13). In this case, 

the boolean EnoughBattery remains false and we go back to line 8.  

If this is not the case the trip is appended to the vehicle and the battery level and availability moment of 

the vehicle are updated (16-17). The pseudocodes for charging the vehicle and appending a trip to the 

vehicle are described later in Sections 3.4.3. This process is iterated until all trips are appended to a vehicle 

(20). If this is done, all vehicles are summoned back to the depot and charged if necessary to meet the 

threshold battery level for the end of the day (be) (21). Then the solution can be created. After that we 

check the feasibility of the solution, regarding battery levels and time windows and the statistics and 

objectives can be calculated. 
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Algorithm 1: Constructive Heuristic 

1: Input: Trips, Vehicles 

2: Output: ConstructiveSolution 

3: Initialize Vehicles 

4: Sort Trips on end of TW increasingly and duration increasingly 

5: for Trip in Trips 

6:  EnoughBattery ← false 

7:  while EnoughBattery = false  

8:   Sort Vehicles on Availabilitymoment increasingly 

9:   ChosenVehicle ← Vehicles[0] 

10:   Calculate EnergyNeeded for Trip 

11:   if EnergyNeeded > Vehicle.BatteryLevel  

12:    Charge ChosenVehicle to 100% 

13:    Update ChosenVehicle.BatteryLevel, ChosenVehicle.AvailabilityMoment 

14:   else 

15:    EnoughBattery ← true 

16:    Append Trip to Vehicle 

17:    Update ChosenVehicle.BatteryLevel, ChosenVehicle.AvailabilityMoment 

18:   end if 

19:  loop 

20: end for 

21: Vehicles back to depot and charge until threshold 

22: Create ConstructiveSolution of Vehicles and calculate Statistics 

23: return ConstructiveSolution 

Figure 3.4. Algorithm 1: ConstructiveHeuristic 

3.4.2 Calculation of Objectives 
The charging costs can be calculated by looping over all minutes in a day, checking per minute how many 

vehicles are charged, and checking the available solar energy. We assume that the available solar energy 

per minute is known at the start of the day. We can then calculate the energy needed from the grid to 

charge the vehicles that minute. This amount is then multiplied by the charging rate, and then we know 

the charging costs per minute. If we sum over all minutes, we know the total charging costs. 

We can calculate the total traveling costs per vehicle by looping over all trips per vehicle and determining 

the traveling time between the end location of one trip and the start location of the next trip. If we sum 

over all vehicles, we know the total traveling costs. The penalty costs can be calculated by summing over 

all trips and calculating the difference between the end moment of each trip and the end of the time 

window of that trip and multiplying that by the costs of missing the time window per minute. The end of 

the day can be calculated by finding the trip with the latest end moment and adding the traveling time 

between the end location of that trip and the depot. The waiting time can be calculated by summing over 

all vehicles, calculating the difference between their end moment and start moment, and subtracting the 

number of minutes they are executing a trip, traveling between trips, and charging. Then we can calculate 

the total objective of a solution by adding the objectives multiplied by their weights. 
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3.4.3 Adaptive Large Neighborhood Search 

Overall Heuristic 

Figure 3.5 shows the pseudocode of the overall heuristic. The input for the heuristic is the Constructive 

Solution, the parameters, and the maximum number of worse solutions allowed. The output is then the 

overall solution of the heuristic. It starts with setting CurrentSolution equal to the ConstructiveSolution (3) 

and setting the NRWorseSolutions to 0 (4). 

Then, while NRWorseSolutions is lower than the maximum number allowed (5), the CurrentSolution 

undergoes an improvement iteration, which returns NewSolution (6). The pseudocode for the 

improvement iteration can be found in Section 0. Then we compare the objective of NewSolution with the 

objective of CurrentSolution. If NewSolution is better than the CurrentSolution (7), the NewSolution 

becomes the CurrentSolution (8), the ALNS parameters are updated with the UpdateParam algorithm (9) 

(the pseudocode of the algorithm can be found in Section 0), and the NRWorseSolutions is set to 0 (10). 

Else (11), the NRWorseSolutions is incremented by 1 (12). The heuristic ends when a certain number of 

NRWorseSolutions is reached. This means that after a certain number of consecutive iterations without 

finding a better solution, the algorithm stops. This ensures that the algorithm does not run too long when 

the chance of finding improvements is low while keeping the algorithm running when the potential of 

finding improvements is higher. 

Algorithm 2: Adaptive Large Neighborhood Search 

1: Input: ConstructiveSolution, MaxNRWorseSolutions, param  
2: Output: BestSolution 
3: CurrentSolution ← ConstructiveSolution 
4: NRWorseSolutions ← 0 
5: while NRWorseSolutions < MaxNRWorseSolutions 
6:  NewSolution ← ImprovementIteration(CurrentSolution, param) 
7:  if NewSolution.Objective < CurrentSolution.Objective 
8:   CurrentSolution ← NewSolution 
9:   UpdateParam(CurrentSolution, param) 
10:   NRWorseSolutions ← 0 
11:  else 
12:   NRWorseSolutions ← NRWorseSolutions + 1 
13:  end if 
14: end while 
15: BestSolution ← CurrentSolution 
16: return BestSolution  

Figure 3.5. Algorithm 2: Adaptive Large Neighborhood Search 

Improvement Iteration 

Figure 3.6 shows the pseudocode for the improvement iteration. The input for the improvement iteration 

is the CurrentSolution and the parameters, while the output is the Iterationsolution. The first step of the 

iteration is to destroy a random subset of the Vehicles of the CurrentSolution. (3) In this case, destroying 

means that all trips of the DestroyedVehicles are unscheduled. This means that they do not have a start 

time anymore, however, they are still connected to the vehicle which executes the trip in the 

CurrentSolution. We also create a set IntactVehicles (4) and an empty list of Solutions (5). Because there is 

randomization involved in creating a new solution, we create multiple solutions (6), while we later pick 

the solution with the best objective value (22).  
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To start the reparation of the DestroyedVehicles, we first loop over all destroyed vehicles and their trips 

(7-8) and move the trips to another destroyed vehicle with a certain chance (MovePercentage) (9-10). The 

MovePercentage is one of the percentages that are adapted in the algorithm UpdateParam (Section 0). 

After that, we shuffle the destroyed vehicles (14) and repair each vehicle independently by using the 

RepairOneVehicle algorithm (16). The pseudocode of this algorithm can be found in Section 0. Then we 

append the repaired vehicle to the list IntactVehicles (17), and after each vehicle is repaired, we create a 

solution consisting of the IntactVehicles and we calculate the statistics and the objective of the solution 

(18). We also check whether the solution is feasible, and if so we append the solution to the list Solutions 

(19). After we have the complete list of Solutions for this iteration, we pick the solution with the lowest 

objective value and return it as the IterationSolution. 

Algorithm 3: ImprovementIteration 

1: Input: CurrentSolution, param 

2: Output: IterationSolution 

3: DestroyedVehicles ← random subset of CurrentSolution.Vehicles 

4: IntactVehicles ← CurrentSolution.Vehicles – (DestroyedVehicles) 

5: Solutions ← () 

6: for Solution in range (param.NrOfSolutions)  

7:  for Vehicle in DestroyedVehicles 

8:   for Trip in Vehicle.TripList 

9:    if RandomNumber < param.MovePercentage 

10:     Move Trip to another random Vehicle in DestroyedVehicles 

11:    end if 

12:   next Trip 

13:  next Vehicle  

14:  Shuffle DestroyedVehicles 

15:  for Vehicle in DestroyedVehicles 

16:   Vehicle ← RepairOneVehicle(Vehicle, param) 

17:   Append Vehicle to IntactVehicles 

18:  next Vehicle  

19:  Create Solution of IntactVehicles and calculate Statistics 

20:  Append Solution to Solutions if feasible 

21: next Solution  

22: IterationSolution ← min(Solution.ObjectiveValue for Solution in Solutions) 

23: return IterationSolution  

Figure 3.6. Algorithm 3: ImprovementIteration 

Repair One Vehicle Algorithm 

Figure 3.7 shows the pseudocode of the RepairOneVehicle algorithm. It has as input the Vehicle and the 

parameters, and the output is the vehicle but then repaired. It starts with initializing the Vehicle (3). This 

means that the location of the Vehicle is set to the depot, the battery level is set to the level at the start 

of the day, and the TripList is disconnected from the Vehicle. We also give the vehicle an empty list of 

ChargingMoments (4). Then we sort the TripList on the end of the time windows increasingly and then the 

duration increasingly (5). We then loop over the TripList and switch some trips with their successors with 

a random SwitchPercentage (6-10). The SwitchPercentage is one of the percentages that are adapted in 

the algorithm UpdateParam (Section 0). After that, we loop over all trips in the TripList (11). Per trip, we 

calculate the EnergyNeeded to go from the current location of the Vehicle to the starting location of the 

trip, then execute the trip, and then return to the depot (12). If the battery level of the vehicle is lower 

than EnergyNeeded (13), then the vehicle automatically has to charge (14). For this, we created the 

algorithm ChargeVehicle (Section 0). The algorithm returns the charged Vehicle and the ChargingMoment, 
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which is then appended to the Vehicle. (15). If the Vehicle has enough battery to execute the trip, it still 

has to charge with a certain RandomChargingPercentage (16). The RandomChargingPercentage is also one 

of the percentages that are adapted in the algorithm UpdateParam (Section 0). After charging, or when it 

does not have to charge, it executes the trip with the algorithm AppendTrip (20). That algorithm is 

explained in Section 0. After all trips are appended, the vehicle goes back to the depot and charges until 

the threshold for the end of the day is met. At the end of the algorithm, the vehicle is returned as output. 

Algorithm 4: RepairOneVehicle 

1: Input: Vehicle, param 

2: Output: Vehicle 

3: Initialize Vehicle 

4: Vehicle.ChargingMoments ← () 

5: Sort TripList on end of TW increasingly and duration increasingly 

6: for Trip in range(length(TripList)-1) 

7:  if RandomNumber < param.SwitchPercentage 

8:   Switch TripList(Trip) with TripList(Trip+1)  

9:  end if  

10: next Trip  

11: for Trip in TripList: 

12:  Calculate EnergyNeeded for Trip 

13:  if Vehicle.BatteryLevel < EnergyNeeded 

14:   Vehicle, ChargingMoment ← ChargeVehicle(Vehicle, param, Trip) 

15:   Append ChargingMoment to Vehicle.ChargingMoments 

16:  elif RandomNumber < param.RandomChargingPercentage 

17:   Vehicle, ChargingMoment ← ChargeVehicle(Vehicle, param, Trip) 

18:   Append ChargingMoment to Vehicle.ChargingMoments 

19:  end if 

20:  Vehicle ← AppendTrip(Vehicle, param, Trip) 

21: next Trip 

22: Vehicle back to depot and charge until end of day threshold 

23: return Vehicle 

Figure 3.7. Algorithm 4: RepairOneVehicle 

Charge Vehicle 

Figure 3.8 shows the pseudocode of the ChargeVehicle algorithm. The input for the algorithm is the 

Vehicle, the parameters, and the trip that has to be executed after charging. The output is the Vehicle and 

the ChargingMoment. The algorithm starts with updating the Availabilitytime of the Vehicle by adding the 

time necessary to travel back to the depot (3). Also, the BatteryLevel is updated by subtracting the energy 

consumed to travel back to the depot (4). The CurrentLocation of the Vehicle is set to the depot (5). After 

that, we calculate the MinimumThreshold which is needed to execute the trip and come back to the depot. 

We then pick a random Threshold above the minimum with the ThresholdDictionary (7). The 

ThresholdDictionary is a dictionary that as keys has partial charging percentages to which the vehicle is 

charged, and as values has the chance percentages that the particular threshold is chosen. In case the 

vehicle is charged during the GreedySolution, the threshold is always 100%. The dictionary is updated by 

the UpdateParam algorithm (Section 0 ). We also pick a random time that the Vehicle has to wait before 

it charges with the WaitingTimeDictionary which as keys has minutes that the Vehicle has to wait and as 

values has the corresponding percentages that the particular waiting time is chosen (8). Then the time 

needed for charging is calculated (9) and a ChargingMoment is created. Then the start and end times of 

the charging moment are created (11-12) and the battery level and availability time of the Vehicle are 

updated (13-14). Then, the algorithm ends with returning the Vehicle and the ChargingMoment. 
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Algorithm 5: ChargeVehicle 

1: Input: Vehicle, param, Trip 
2: Output: Vehicle, ChargingMoment 
3: Update Vehicle.AvailabilityTime 
4: Update Vehicle.BatteryLevel 
5: Vehicle.CurrentLocation ← Depot 
6: MinimumThreshold ← BatteryLevelPercentage needed for executing Trip 
7: Threshold ← random threshold above MinimumThreshold using 

      param.ThresholdDictionary 
8: WaitingTime ← random WaitingTime using param.WaitingTimeDictionary 
9: ChargingTime ← (Threshold*Vehicle.BatteryCapacity) 

      -BatteryLevel)/param.ChargingSpeed 
10: Create ChargingMoment 
11: ChargingMoment.StartTime ← Vehicle.AvailabilityTime + WaitingTime 
12: ChargingMoment.EndTime ← ChargingMoment.StartTime + ChargingTime 
13: Vehicle.BatteryLevel ← Threshold*Vehicle.BatteryCapacity 
14: Vehicle.AvailabilityTime ← ChargingMoment.EndTime 
15: return Vehicle, ChargingMoment 

Figure 3.8. Algorithm 5: ChargeVehicle 

Append Trip 

Figure 3.9 shows the pseudocode of the algorithm AppendTrip. The input for the algorithm is the Vehicle, 

the parameters, and the Trip, while the output is the Vehicle, to which the Trip is appended. The first step 

of the algorithm is updating the AvailabilityTime of the Vehicle, by adding the travel time to the start 

location of the Trip. Then the BatteryLevel of the Vehicle is updated by subtracting the energy consumed 

to travel to the start location. Then the StartTime of the Trip is determined by taking the maximum of the 

AvailabilityTime of the Vehicle, and the start of the time window of the Trip. Then the EndTime of the Trip 

is calculated, and the AvailabilityTime, BatteryLevel, and CurrentLocation of the Vehicle are updated. 

Lastly, the Trip is appended to the TripList of the Vehicle and the Vehicle is returned 

Algorithm 6: AppendTrip 

1: Input: Vehicle, param, Trip,  
2: Output: Vehicle 
3: Update Vehicle.AvailabilityTime 
4: Update Vehicle.BatteryLevel 
5: Trip.StartTime ← max(Trip.StartTimeWindow, Vehicle.AvailabilityTime) 
6: Trip.EndTime ← Trip.StartTime + 

      param.TimeMatrix[Trip.StartLocation][Trip.EndLocation] + param.ServiceTime 
7: Update Vehicle.BatteryLevel 
8: Vehicle.AvailabilityTime ← Trip.EndTime 
9: Vehicle.CurrentLocation ← Trip.EndLocation 
10: Append Trip to Vehicle.TripList 
11: return Vehicle  

Figure 3.9. Algorithm 6: AppendTrip 

Update Parameters 

Figure 3.10 shows the pseudocode of the UpdateParam algorithm. This algorithm takes place at the end 

of one improvement iteration if a better solution is found. In this algorithm, we have 5 parameters for 

creating the solution. These parameters are either percentages or a dictionary with percentages. After a 

new solution is found, the statistics of the solutions are calculated. For the Solution.MovePercentage for 

example, the algorithm calculates what percentage of the trips are actually moved, while the 

param.MovePercentage is the predefined chance of moving each trip. Since the Solution is an 

improvement, we can update the parameters with the actual percentages (4-8). AdaptivityPercentage 
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indicates the proportion of the new values derived from Solution that should influence the updated 

parameters. A higher AdaptivityPercentage means that the new solution's statistics have a greater impact 

on the updated parameters, while a lower AdaptivityPercentage means that the existing parameters retain 

more influence. 

Algorithm 7: UpdateParam  

1: Input: Solution, param  

2: Output: param 

3: Calculate Solution.ThresholdDictionary, Solution.WaitingTimeDictionary, 
      Solution.MovePercentage, Solution.SwitchPercentage, 
            Solution.RandomChargingPercentage 

4: for ALNSParam in param 

5:  param.ALNSParam ← Solution.ALNSParam* 
      param.AdaptivityPercentage + (1-param.AdaptivityPercentage) 
            param.ALNSParam 

6: next ALNSParam 

7: return param 

Figure 3.10. Algorithm 7: UpdateParam 

3.5 Conclusion 
In this chapter, we first described our use cases and then created a problem formulation that is suitable 

for both use case problems. We model our EVRP, with the use of a conceptual graph in which the nodes 

are the trips and the edges represent the distances between the end location of one trip and the start 

location of the other trip. Then we explained the exact problem formulation for both use cases, including 

partial charging and solar charging. After the problem formulation, we stated a list of assumptions 

necessary for our model, such as the assumptions that all information including the weather forecast is 

known upfront and that all vehicles can be charged at the same time. 

Then the solution methods are provided with their characteristics. A mathematical model is provided to 

model the problem as an EVRP, however without the use of solar charging. This mathematical model is 

validated with the use of a small toy problem. To include solar charging, a heuristic is developed including 

a constructive heuristic and an ALNS algorithm. The constructive heuristic only charges a vehicle when it 

is necessary to charge. It then charges automatically to 100% of the battery capacity. The ALNS heuristic 

then destroys parts of the solutions and rebuilds them by including moves between vehicles, switches in 

the order within a vehicle, random charging when not necessary, partial charging, and waiting time before 

charging.   
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4 Evaluation 
In this chapter, we evaluate our solution approach by experimenting with our approach on different data 

instances representing both the industrial use case from SAVED and the urban use case based on the 

Campus of the University of Twente. We start by explaining our experimental design in Section 4.1, then 

we explain the data instances for both use cases in Section 4.2. We tune our parameters in Section 4.3 and 

evaluate the results of our experiments in Section 4.4. 

4.1 Experimental Design 

4.1.1 Experiments 
The experimental design consists of 7 different experiments. Table 4-1 shows the experiments, together 

with a small explanation of the experiments. Each experiment is tested at either one of the use cases or 

both using the data instances which are explained in Section 4.2.  

In Experiment 1 we test our ALNS heuristic against the mathematical model, both described in Chapter 3. 

In Experiment 2, we test the collaboration scenario against the non collaboration scenario. In Experiments 

3 and 4, we test the outcome of our ALNS against a scenario in which the planning does not take solar 

charging into account. In that scenario, we solve the problem with the ALNS as if we have 0 panels, and 

save the policy part of the solution of that scenario. We then calculate the corresponding KPIs of that 

policy implemented in the scenario with solar panels. In Experiment 5, we test a scenario without battery 

usage against a scenario with battery usage and in Experiment 6, we consider soft time windows and test 

different weights of the objectives regarding penalty costs and charging costs. 

Furthermore, each experiment except the first is executed for each of the four seasons, since the efficiency 

of solar panels depends on the season as can be seen in Figure 2.4. For season 1 (winter) we set the 

efficiency to 30%, for season 2 (spring) we set the efficiency to 70%, for season 3 (summer) we set the 

efficiency to 80%, and for season 4 (autumn) we set the efficiency to 60%. Also, each experiment is 

executed 5 times to minimize the variance between experiments and reduce the randomization of both 

the trip instances and the ALNS parameters.  
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Table 4-1. Explanation of the Experiments 

ID Name Use case Explanation 

0 Parameter Tuning Both This experiment aims to identify the optimal settings for the 
ALNS to improve solving efficiency by using a subset of data 
instances. The parameters of the ALNS that are determined 
are the number of worse solutions allowed, the number of 
solutions created per iteration, the initial move percentage, 
the initial switch percentage, the initial random-charging 
percentage, the initial threshold dictionary, the initial 
waiting time dictionary, and the adaptivity percentage of all 
those parameters.  

1 Exact vs Heuristic SAVED This experiment tests the ALNS algorithm against the exact 
optimization using the mathematical model. This 
experiment is executed without the use of solar panels since 
solar charging is not involved in the mathematical model. 

2 Collaboration SAVED This experiment aims to evaluate the advantages of 
companies collaborating. In the non-collaborating scenario, 
import trips from the depot to one company cannot be 
combined with export trips from another company to the 
depot, while in the collaborating scenario, those two may be 
combined.  

3 Variable Time 
Windows 

Both This experiment tests the influence of different time window 
distributions on the algorithm's solution and the solution's 
KPIs. We test a uniform distribution of time windows of the 
orders divided over the day against a distribution with most 
windows at the start of the day, middle of the day, and end 
of the day.  

4 Variable Weather Both This experiment tests the influence of variable weather 
settings on the solution of the algorithm and its KPIs. We test 
an efficiency that is constant all over the day versus a 
situation in which the efficiency is higher in the morning, 
versus a situation in which it is higher around noon, versus a 
situation in which it is higher in the afternoon, versus a 
situation in which it is very low around noon and high in both 
the morning and afternoon. 

5 Battery Usage Campus This experiment tests the influence of using a battery for 
charging. In this case, all solar energy that is not used for 
charging immediately is saved in a battery and can be used 
at the end of the day for charging the vehicles up to 100%. 

6 Soft Time Windows Both This experiment tests the influence of using soft time 
windows on the solution performance. The idea of the 
experiment is to test with multiple weights for both the 
charging costs and the penalty costs, to see how the solution 
changes with these different weights.  
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4.1.2 Key Performance Indicators 
The main Key Performance Indicator (KPI) of our experiments is cost. The main components of costs are 

charging costs and traveling costs. The charging costs consist of two different types of costs, namely the 

costs of using energy from the grid to charge the vehicles and the feed-in costs of delivering back energy 

from the solar panels to the grid. In this research, we focus on the average solar output during the day. 

Based on the works of Shazly, (1996), and Figure 2.3, we assume the distribution of solar output over the 

day to be a normal distribution with a mean of 750 minutes (12.30 pm) and a standard deviation of 150 

minutes. Furthermore, we consider the traveling time in hours as a KPI to minimize. This combination 

covers both the routing aspect as well as the charging aspect for both use cases. 

Except for Experiment 6, the charging costs and traveling time are the only objectives in the algorithm. 

Correspondingly to Woldring, (2024), we consider the costs for using energy from the grid to be €0.3 per 

kWh and the feed-in costs to be €0.1 per kWh. Furthermore, we have extra KPIs per experiment. For 

experiment 2 a KPI is the moment that all trips are executed and the vehicles are charged, so the end of 

the day. This is a relevant KPI because it shows what the advantage is time-wise of collaboration between 

companies at the XL business park. For the other experiments, relevant KPIs are the percentage of energy 

from solar panels as a fraction of the total energy needed for a day. The relevance of this KPI is that we 

can say how self-sustaining either the XL business park or the Campus is using the ALNS algorithm.  

For Experiment 4 a relevant KPI is the percentage of energy from solar panels as a fraction of the total 

available solar energy. This last KPI is important because if for example, all solar energy is used, and the 

charging costs are still relatively high, this does not mean that the algorithm does not reach a good 

solution. It means that there are not enough solar panels, or the weather is not good enough, to charge 

the vehicles with the help of solar energy. Lastly, for experiment 6, a relevant KPI is the penalty costs for 

missing the time windows. Using that KPI combined with the charging costs, we can perform a sensitivity 

analysis on how the solution changes for different relative objective weights for both the charging costs 

and the penalty costs. 
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4.2 Data Instances 
In this section, we explain the data instances that we use to execute the experiments. In Section 4.2.1 we 

provide details on the data instances of the industrial SAVED use case and in Section 4.2.2 the data 

instances of the urban Campus use case are explained.  

4.2.1 SAVED Use Case 
For this research, CTT made a table available with all shipped containers in the year 2022. This table 

consists of rows with their ID, Container type, Start location, End location, whether it was an import or 

export container, the time when it should be at the client (only relevant for import containers), departure 

moment from CTT in case of import container, Arrival moment back at CTT in case of an export container. 

An analysis of this data leads to a distribution of the number of containers (shown in Figure 4.1).  

It can be seen that there are for example 29 containers transported in approximately 3.5% of days and 11 

containers transported on approximately 2% of days. In total, there were 256 days in which containers 

were transported. The average number of containers transported per day is 28.4, however, there is a 

significant amount of variance in this distribution, since there is a significant number of days in which only 

10 containers are transported, and the same holds for days with 50 containers transported. Important to 

note is that import and export trips are counted separately. Each container has two trips over the XL 

business park, one from CTT to a warehouse and one back.  

 

Approximately half of all containers transported are either from CTT to Timberland or from Timberland to 

CTT. Bleckmann accounts for approximately 40% of container trips, while Bolk only has 10% of container 

trips. 

 

Figure 4.1. Graph of the number of containers distributed per day 

The time windows of the trips are distributed as follows. The start of the time window is a whole hour 

between 6 AM and 10 AM, with the probabilities shown in Table 4-2. The earlier hours have a higher 

probability because there is a relatively high chance that the containers are already located at their start 

location at the start of the day. The duration of the time windows are either 3, 4, 5 or 6 hours, uniformly 

distributed.  
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Table 4-2. Distribution of start of time windows for the SAVED use case 

Start Time Window Probability 

06:00 0.3 

07:00 0.3 

08:00 0.2 

09:00 0.1 

10:00 0.1 

 

In terms of vehicles, the goal of the SAVED project is to let one electric AGV transport the containers 

between the depot and warehouses. In our algorithm, we assume that the average speed of the AGV is 20 

km/h. The duration between the locations is then the Euclidean distance between those locations, 

multiplied by a distance factor of 1.2 and then divided by the speed. Furthermore, based on the vehicles 

of (Electric Vehicles, 2024), we assume that the battery capacity of the AGV is 236 kWh, while the energy 

consumption power is 12 kW and the charging power is 32 kW. Each container has a weight factor between 

1 and 3. To experiment with our solution approach we also assume in most instances that the SAVED 

project consists of two vehicles, while also doubling the number of container trips. In our algorithm, each 

vehicle starts with a full battery and has to end with a full battery, enforced by the ALNS algorithm. 

Since a trip on average costs 7 minutes and we need to account for travel time without carrying a 

container, we need approximately 2 kWh per trip. We assume that the SAVED use case uses solar panels 

with a 430-wattpeak (Soly.Nl, 2024), which each delivers approximately 1,2 kWh per day on an average 

day with 60-70% efficiency based on the calculation of GlobalSolarAtlas.Nl (2024). This means that we 

need approximately 1.7 solar panels per trip, however, to have more flexibility in the algorithm and 

account for days with lower solar panel efficiency, we use more solar panels in our data instances. We also 

experiment with different numbers of solar panels while keeping the number of container jobs constant. 

This all combined leads to the following 10 instance sizes (Table 4-3). 

During the experiments (except for experiment 0), we generate a specific instance with a set of container 

jobs randomly per replication. This means that if we do 5 replications for instance size S0, we generate 5 

different instances with 10 container jobs, 1 truck, and 30 panels.  

Table 4-3. Data instances industrial/SAVED use case 

ID Nr of Container Jobs Nr of Trucks Nr of Solar Panels 

S0 10 1 50 
S1 20 1 50 
S2 30 2 100 
S3 40 2 100 
S4 50 2 100 
S5 50 2 150 
S6 60 2 120 
S7 60 2 150 
S8 70 2 150 
S9 80 2 150 
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4.2.2 Campus Use Case 
Since the Campus use case is a hypothetical use case, we have to come up with artificial data. To come up 

with artificial data, we pick 20 customer locations on the campus. These locations are either faculties, 

student houses, or sports associations. These locations are shown on the map in Figure 4.2. The red dot 

shows the depot and the blue dots show the customer locations.  

We assume that the number of trips from the depot to each location or back is uniformly distributed per 

location. The start of the time windows of the trips are whole hours between 7 AM and 3 PM and are 

uniformly distributed while the duration of time windows can either be 30 minutes, 1 hour, 1.5 hours, 2 

hours, 3 hours, or 4 hours. 

In this hypothetical use case, we can use two vehicle types, namely drones and street robots. We assume 

that drones fly with an average speed of 20 km/h, while their distance factor is 1.2. Their battery capacity 

is 0.75 kWh based on the drones used during the research of (Figliozzi, 2017), while their energy 

consumption power is 500 W when empty. This means that they can fly without a package for 90 minutes.  

The street robot has an average speed of 10 km/h, while its distance factor is 1.5. The battery capacity is 

0.5 kWh, while its energy consumption power is 250 W when empty. The charging power for both vehicles 

is 500 W and each trip has a weight factor between 2 and 3. Each vehicle starts with a full battery and also 

has to end with a full battery. Since we do not use heavy electric trucks, but lighter drones, we need fewer 

solar panels. We also experiment with different fleet sizes for the same number of trips. This all combined 

leads to the following 10 data instances. (Table 4-4). Identically to the SAVED use case, we generate an 

exact instance per replication of the experiments. 

  

Figure 4.2. Map of the University with artificial 
customer locations 
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Table 4-4. Data instances urban/Campus use case 

ID Nr of Jobs Nr of Drones Nr of Street Robots Nr of Solar Panels 

C0 50 3 0 5 

C1 75 4 0 8 

C2 75 3 1 8 

C3 100 5 0 10 

C4 100 4 1 10 

C5 100 3 2 10 

C6 200 9 3 20 

C7 200 8 4 20 

C8 200 7 5 20 

C9 400 18 6 40 

 

4.3 Parameter Tuning 

4.3.1 Experiment Design 
This experiment is dedicated to tuning the parameters of the ALNS method. This is crucial for balancing 

the accuracy and efficiency of our solution approach. The goal of the experiment is to identify the optimal 

settings for the ALNS to ensure that a near-optimal solution is reached within a reasonable computation 

time. The tuned parameters are the number of worse solutions allowed, the number of solutions created 

per iteration, the initial move percentage, the initial switch percentage, the initial random-charging 

percentage, the initial threshold dictionary, the initial waiting time dictionary, and the adaptivity 

percentage of all those parameters. 

The first parameter that is optimized is the initial value of the battery threshold probabilities for partial 

charging. We test three different configurations as Table 4-5 shows, a uniform distribution, a distribution 

that focuses more on lower thresholds, and a distribution with more emphasis on higher thresholds. For 

example, if Configuration 2 is chosen, and a vehicle has to charge, the probability that the algorithm 

chooses 0.4 as the battery threshold is 0.3, except when the minimum threshold is higher than 0.4, then 

the probability is 0. 

Table 4-5. Configurations for battery threshold parameter 

Thresholds Configuration 1 Configuration 2 Configuration 3 

0.4 1/7 0.30 0.05 

0.5 1/7 0.20 0.05 

0.6 1/7 0.20 0.10 

0.7 1/7 0.10 0.10 

0.8 1/7 0.10 0.20 

0.9 1/7 0.05 0.20 

1 1/7 0.05 0.30 

 

The second parameter is the initial probability distribution of the length of voluntary waiting times before 

charging (Table 4-6). We test a uniform distribution against a distribution that has higher probabilities for 

the lower waiting times.  
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Table 4-6. Configurations for waiting times parameter 

Waiting times Configuration 1 Configuration 2 

0 1/5 0.4 

10 1/5 0.2 

20 1/5 0.2 

30 1/5 0.1 

60 1/5 0.1 

The other parameters are shown in Table 4-7, and are the initial probabilities of moving a trip between 

vehicles, switching a trip with the next trip in the order within a vehicle, and the probability of going to a 

charging station while it is not necessary to charge (Move/Switch/Random Charging percentage). These 

three probabilities start on the same initial value, however, they will be adapted separately in the updating 

phase of the ALNS. The next parameter is the adaptivity percentage of all parameters described in this 

section. Per accepted solution, we calculate the actual percentages of for example the move percentage 

and update the parameter with the calculated actual percentage. The adaptivity percentage is then the 

weight we give to the actual percentage related to the parameter percentage.  

The next parameter is the number of solutions created per iteration and the last parameter is the number 

of worse solutions. This is the termination criterion of our heuristic. If for example, the value is 5, this 

means that the algorithm stops after there are 5 successive iterations in which no better solution is found. 

All these parameters and values are tested using the full factorial method for six instances (S2, S5, S8, C2, 

C5, C8) with 5 replications per experiment so that we can come up with the best parameter settings for 

both use cases independently. However each replication is for the exact same data instance, so the exact 

same jobs/trips. In total this means we have 3*2*3*3*2*4 = 432 different parameter settings. To reduce 

the computation time, we can combine the values for the number of worse solutions in one experiment, 

since we can save our KPIs the first time 3 successive worse solutions are found and continue with the 

experiment. 

Table 4-7. Configurations for remaining parameters 

ID Name Values 

0 Move/Switch/RandomCharging 
Percentage 

(0.1, 0.2, 0.3)  

1 Adaptivitypercentage (0.2, 0.3, 0.5) 

2 NrSolutionsPerIteration (50,100) 

3 NrWorseSolutions (3; 5; 8; 10)  

 

4.3.2 Experiment Results 

SAVED Use Case 

After running for all 432 different parameter settings, we know the objective values and the running times. 

The next step is to determine which setting is suitable for our research. For this we filter the settings, in 

order to only show the solution settings which are not dominated by another setting. Dominated settings 

are outperformed by another setting in both the objective value and the running time, and are therefore 

not suitable for the thesis. (Ngatchou et al., 2005) Table 4-8 shows the 17 solutions that are not dominated 

by any other solution. The table shows per parameter setting the configuration for the battery threshold 

(BT), the configuration for the voluntary waiting times (WT), the Move/Switch/RandomCharging 
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Percentage (MSRC), the Adaptivity Percentage (AP), the NrSolutionsPerIteration (NRS), the 

NrWorseSolutions (NRW) the average of the best objective per instance, the average objective per 

instance, the average of the worst objective per instance, and the average running time (T(s)). The table is 

increasingly sorted on the average objective, and because it only shows non-dominated solutions, it is also 

decreasingly sorted on the running time 

Table 4-8. Non-Dominated Solutions for Parameter Tuning SAVED use case 

ID Parameter Settings Experimental Results 

BT WT MSRC AP NRS NRW Best Obj Average Obj Worst Obj t(s) 

1 3 2 0.1 0.2 100 10 22.59 24.28 27.00 18.43 

2 3 2 0.1 0.2 100 8 22.61 25.04 27.61 13.62 

3 3 2 0.1 0.2 100 5 23.55 25.97 31.03 10.8 

4 1 2 0.1 0.2 100 5 24.52 26.56 30.21 9.93 

5 1 2 0.1 0.2 50 3 25.13 27.29 32.43 8.78 

6 1 1 0.1 0.5 100 3 26.61 28.66 33.98 7.46 

7 3 2 0.1 0.2 100 3 27.74 30.19 35.44 5.97 

8 3 2 0.1 0.5 50 3 30.54 32.83 36.45 3.43 

9 1 2 0.1 0.3 50 3 32.18 35.33 41.49 3.28 

10 1 1 0.1 0.2 50 3 33.64 37.24 42.24 2.78 

11 1 1 0.1 0.3 50 3 36.23 39.90 44.13 2.45 

12 1 2 0.1 0.5 50 3 37.82 41.92 48.34 2.34 

13 1 1 0.2 0.5 50 3 39.49 43.85 50.69 2.09 

14 2 2 0.2 0.2 50 3 40.30 44.78 49.73 2.02 

15 3 1 0.2 0.5 50 3 42.59 46.67 53.24 1.76 

16 3 1 0.2 0.5 50 3 44.81 49.09 56.12 1.35 

17 3 1 0.3 0.2 50 3 46.42 51.39 57.03 1.23 

It can be seen that the parameter setting which leads to the best objectives, achieves this goal in 18.43 

seconds. This is a relatively short computation time, so it can be considered the best parameter setting for 

this algorithm in the SAVED use case. However, in this thesis, we have 6 experiments for multiple efficiency 

settings, various instances, and numerous replications, so the emphasis for the experiments lies on 

reaching reasonably good solutions with a very short computation time. This means, that for the rest of 

this thesis, we chose the parameter setting with ID 8. This leads to a 35.2% worse objective than the setting 

that leads to the best objective, however, it reaches this solution in only 18.6% of the running time of the 

earlier setting.  
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Campus Use Case 

For the parameter selection at the instances at the Campus use case, we use the same procedure as for 

the SAVED use case. The first step is to determine the list of settings that are not dominated. These 

solutions are shown in Table 4-9. 

Table 4-9. Non-Dominated Solutions for Parameter Tuning Campus use case 

ID Parameter Settings Experimental Results 

BT WT MSRC AP NRS NRW Best Obj Average Obj Worst Obj t(s) 

1 1 1 0.1 0.3 100 10 1.90 1.95 2.07 37.27 

2 2 2 0.2 0.2 100 10 1.86 1.97 2.08 29.66 

3 1 1 0.2 0.3 100 10 1.81 1.99 2.27 28.68 

4 1 2 0.1 0.2 50 10 1.91 2.00 2.07 17.07 

5 1 2 0.1 0.2 50 8 1.98 2.01 2.08 13.84 

6 2 2 0.2 0.2 100 3 1.93 2.03 2.35 10.07 

7 1 2 0.1 0.3 50 5 1.90 2.04 2.21 9.28 

8 2 2 0.2 0.2 50 5 1.90 2.06 2.25 8.62 

9 1 2 0.1 0.2 50 5 2.01 2.08 2.29 8.53 

10 1 1 0.2 0.3 100 3 1.90 2.09 2.37 7.12 

11 2 2 0.2 0.2 50 3 1.98 2.12 2.40 3.69 

12 2 2 0.2 0.3 50 3 2.06 2.15 2.25 3.61 

13 1 2 0.1 0.2 50 3 2.01 2.18 2.35 3.33 

14 2 2 0.1 0.3 50 3 2.10 2.20 2.34 3.13 

15 3 1 0.1 0.2 50 3 2.12 2.22 2.31 2.24 

16 2 1 0.3 0.5 50 3 2.01 2.31 2.85 2.03 

 

It can be seen that the parameter setting which leads to the best objectives, achieves this goal in 37.27 

seconds. This is again a relatively short computation time, so it can be considered the best parameter 

setting for this algorithm in the Campus use case. However, we chose a setting that is more focused on 

efficiency. In this case that is the setting with ID 11. This leads to a 8.7% worse objective than the setting 

that leads to the best objective, however, it reaches this solution in only 10.0% of the running time of the 

earlier setting.  
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4.4 Scenario Evaluation 

4.4.1 Exact versus Heuristic 
In this experiment, we test the performance of our developed ALNS against the mathematical model. Both 

the model and the ALNS are described in Chapter 3. The goal is to measure how well our ALNS performs. 

This experiment is performed for the SAVED use case however, the data instance sizes are changed. We 

create smaller instances, to have a smaller computation time for the Gurobi solver. Table 4-10 shows the 

7 instance sizes which are used in this experiment. The maximum running time for the exact optimization 

method is set to 10 minutes. Per instance size, we perform 5 replications. The instances also have 0 solar 

panels, because the mathematical model does not account for solar charging. Therefore all energy is taken 

from the grid.  

Table 4-10. Data Instances Exact vs Heuristic Experiment 

ID Nr of Container Jobs Nr of Trucks 

0 5 1 

1 10 1 

2 20 1 

3 20 2 

4 30 2 

 

Table 4-11 shows the results of this experiment. It can be seen that the objective value of our heuristic is 

relatively close to the objective value of the exact optimization for the smallest two instances (the average 

difference is 5.6%), however, the running time for instance 1 is already 461 seconds, while the heuristic 

reaches its solution in 1.82 seconds. From instance 2 the heuristic outperforms the exact optimization in 

both the objective and running time. The reason for this is that the exact optimization did not come to the 

optimal solution within the maximum running time. 

Table 4-11. Experimental Results Exact vs Heuristic 

 
Exact Heuristic 

ID Obj Gap (%) t(s) Obj t(s) 

0 5.77. 0 0.16 6.01 0.77 

1 6.70 0 461 7.15 1.82 

2 22.83 90.2 600 16.26 2.07 

3 20.87 92.3 600 15.95 2.28 

4 - - 600 23.28 2.47 

 

From this experiment, we can conclude that the objective value of the ALNS is very close to the objective 

value of the exact optimization, while the computation time of the heuristic is much shorter than the 

computation time of the exact optimization. However, it should be noted that there is no solar charging 

involved in this experiment and the instances are very small with also only 3 different warehouses, so we 

cannot draw significant conclusions about the performance of our ALNS when solar charging is included 

and the instance sizes increase.   
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4.4.2 Collaboration 
In the collaboration experiment, we test the influence of companies collaborating in the SAVED use case. 

The purpose of this experiment is to see how companies in the XL business park can reduce their charging 

costs and operating time by collaborating. Therefore, we compare the scenarios in which the companies 

do not collaborate with the scenarios in which they do collaborate.  

In the scenarios in which the companies do not collaborate, it means that the vehicle cannot deliver a 

container from the depot to one company and then pick up another container at a different company and 

deliver it back to the depot. Instead, the vehicle first delivers a container from the depot to the company, 

then drives back to the depot empty, then drives to the second company and picks up the container to 

deliver it at the depot. However, the vehicle is allowed to deliver a container to one company and 

immediately pick up another container at the same company if there is a container ready to be picked up.  

In the scenario in which the companies do collaborate, the vehicle is allowed to deliver a container to one 

company and immediately drive to another company to pick up a container there. The difference between 

these scenarios is modeled in the time matrix between companies. In the collaborating scenario, the time 

matrix is the normal matrix. In contrast, in the non-collaboration scenario, the time matrix values between 

the companies are equal to the travel time between the first company and the depot plus the travel time 

between the depot and the second company. 

The experiment is executed for all data instances in the SAVED use case, with five replications and 4 

seasons per instance size. Per replication, we generate a new set of container jobs and solve the instance 

for both the non collaboration scenario and the collaborating scenario.  

Table 4-12. Experimental results Collaboration Experiment per instance size 

 

 

 
Non Collaboration Collaboration 

ID Min Obj Max EOD t(s) Min Obj Max EOD t(s) 

S0 7.47 8.23 9.12 12:43 1.39 6.41 7.40 8.70 12:42 1.63 

S1 16.53 16.34 19.95 14:06 1.78 15.73 16.21 18.69 14:04 1.75 

S2 13.17 15.21 18.25 14:30 2.74 12.39 14.11 14.37 14:28 2.67 

S3 20.45 24.07 24.22 14:41 1.92 18.36 22.53 25.34 14:33 2.51 

S4 33.00 34.88 36.35 15:19 2.89 30.29 32.36 34.00 15:15 2.34 

S5 26.37 26.91 28.72 15:39 3.05 22.41 24.89 27.31 15:24 3.02 

S6 39.96 42.78 45.83 16:12 2.84 36.37 41.42 43.77 15:59 2.81 

S7 38.40 39.41 43.36 16:21 2.79 35.72 37.40 43.50 16:13 2.85 

S8 50.70 56.34 66.64 17:17 2.21 46.25 54.67 61.98 17:01 3.04 

S9 76.84 83.24 86.85 18:13 1.72 77.05 81.35 85.92 18:06 1.63 

AVG 32.29 34.74 37.95 15:30 2.33 30.10 32.01 36.36 15:21 2.42 
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Table 4-12 shows the experimental results of both scenarios for all instance sizes. It shows per scenario 

the minimum objective (Min), the average objective value (Obj), the maximum objective (Max), the 

makespan of the operation, and the running time of the complete algorithm. It can be concluded that 

there is relatively little difference in terms of the overall average charging costs. The average difference is 

2.94, which is 8.5% of the objective in the non collaboration scenario. The difference in time is only 10 

minutes. The difference in objective value is low for the small instances. The reason for this might be that 

the vehicle is done operating at the start of the afternoon, and can start charging to get its battery level 

back to 100%. Charging around this time is very cheap since there is much solar energy available. 

4.4.3 Variable Time Windows 
In this section, we test the influence of different time window weights on the quality of the ALNS algorithm 

against a situation where solar charging is not taken into account in the algorithm. This means that we test 

two policies in this experiment. The ‘Solar Panels’ policy is just the standard policy of our ALNS algorithm, 

while in the ‘No Solar Panels’ policy, the algorithm solves the scenario as if there were 0 solar panels, then 

saves the policy and calculates the objective as if there are the standard number of solar panels.  

The purpose of this experiment is to investigate the robustness of the algorithm for different experiment 

settings regarding time windows. We perform the experiment for both use cases. The variable that we 

experiment with is the probabilities of the start moment of the time window of each order. We experiment 

with one setting in which the probabilities are the highest for the earliest hours of the use case, one in 

which the probabilities are the highest for hours in the middle of the use case, one where the probabilities 

are the highest for hours at the end of the use case, and one where the probabilities are uniform. The 

exact probabilities per scenario can be found in Table 4-13. With these probabilities, we cannot compare 

the exact same job/trip instances per scenario. The consequence of this is that we generate new instances 

per scenario. This leads to more randomization between experiments, so we do 10 replications per 

experiment to reduce the variance of randomization. 

Table 4-13. Probability Distribution Start Time Window per Experiment 

SAVED use case Campus use case 

StartTime Start Middle End Uniform StartTime Start Middle End Uniform 

06:00 0.3 0.1 0.1 0.2 07:00 0.3 0.05 0.05 0.11 

07:00 0.3 0.2 0.1 0.2 08:00 0.2 0.1 0.05 0.11 

08:00 0.2 0.4 0.2 0.2 09:00 0.1 0.1 0.05 0.11 

09:00 0.1 0.2 0.3 0.2 10:00 0.1 0.15 0.05 0.11 

10:00 0.1 0.1 0.3 0.2 11:00 0.1 0.2 0.1 0.11 

     12:00 0.05 0.15 0.1 0.11 

     13:00 0.05 0.1 0.1 0.11 

     14:00 0.05 0.1 0.2 0.11 

     15:00 0.05 0.05 0.3 0.11 

  

Table 4-14 and Table 4-15 show the experimental results for the 4 different time window scenarios in the 

SAVED use case. It shows per time window scenario and instance size and per policy the average objective 

(Obj), the average percentage of solar energy used relative to the total amount of energy used (PSE) and 

the average running time (t(s)). The extended results including the minimum and maximum per instance 

can be found in Appendix A. It also shows the relative difference between the two policies per time window 
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scenario.  It can be seen that the average ALNS objective is the lowest when in the “Start” scenario. The 

reason for this is that, if the time windows are all at the start of the use case, the vehicle completes its 

operations earlier, and can charge in the middle of the day, when there is the most solar energy available.  

It can also be seen that for all scenarios, the difference between the objectives of the policies is relatively 

the same. The difference is the largest when the time windows are uniformly distributed, namely €11.08 

or 28.5% compared to the ‘No Solar Panels’ policy, while the relative difference is the lowest in the 

“Middle” scenario, with 24.2%. 

Table 4-14. Experimental Results Time Windows SAVED use case 1/2 

  Start Middle 

No Solar Panels Solar Panels Dif No Solar Panels Solar Panels Dif 

ID Obj PSE t(s) Obj PSE t(s) 
 

Obj PSE t(s) Obj PSE t(s) 
 

S0 9.65 0.33 0.76 8.27 0.38 1.44 -14.3% 8.64 0.34 0.72 7.13 0.37 1.41 -17.5% 

S1 15.40 0.39 0.75 14.09 0.39 1.29 -8.5% 18.23 0.35 0.73 16.66 0.36 1.29 -8.6% 

S2 22.99 0.45 0.79 13.52 0.72 1.54 -41.2% 22.54 0.43 0.74 12.80 0.73 1.61 -43.2% 

S3 32.05 0.43 0.76 20.92 0.68 1.18 -34.7% 32.53 0.42 0.74 21.07 0.67 1.41 -35.2% 

S4 40.38 0.39 0.77 27.73 0.62 1.30 -31.3% 43.90 0.32 0.73 30.45 0.57 1.51 -30.6% 

S5 32.96 0.56 0.76 18.45 0.82 1.57 -44.0% 33.67 0.53 0.74 18.85 0.80 1.55 -44.0% 

S6 52.52 0.34 0.76 36.96 0.56 1.76 -29.6% 54.57 0.28 0.75 41.90 0.47 1.76 -23.2% 

S7 44.95 0.45 0.74 29.76 0.68 1.58 -33.8% 50.60 0.35 0.71 38.29 0.52 1.61 -24.3% 

S8 61.46 0.31 0.71 49.48 0.45 1.51 -19.5% 62.92 0.26 0.64 58.04 0.33 0.92 -7.8% 

S9 81.73 0.18 0.61 75.37 0.23 0.91 -7.8% 84.56 0.13 0.50 78.47 0.21 0.50 -7.2% 

AVG 39.41 0.38 0.74 29.46 0.55 1.41 -26.5% 41.22 0.34 0.70 32.37 0.50 1.36 -24.2% 

 

Table 4-15. Experimental Results Time Windows SAVED use case 2/2 

  
  

End Uniform 

No Solar Panels Solar Panels Dif No Solar Panels Solar Panels Dif 

ID Obj PSE t(s) Obj PSE t(s) 
 

Obj PSE t(s) Obj PSE t(s) 
 

S0 9.02 0.37 0.73 7.63 0.39 1.32 -15.5% 9.20 0.35 0.76 7.66 0.39 1.32 -16.7% 

S1 16.46 0.36 0.75 14.99 0.38 1.36 -8.9% 17.92 0.36 0.74 15.57 0.38 1.44 -13.1% 

S2 23.69 0.46 0.78 14.56 0.72 1.28 -38.5% 23.74 0.46 0.75 13.75 0.73 1.58 -42.1% 

S3 35.61 0.37 0.74 23.55 0.64 1.65 -33.9% 32.35 0.41 0.75 20.41 0.68 1.54 -36.9% 

S4 44.61 0.30 0.74 29.73 0.58 1.48 -33.4% 41.40 0.35 0.78 27.34 0.61 1.65 -34.0% 

S5 38.43 0.43 0.74 18.43 0.80 1.56 -52.0% 34.64 0.51 0.76 16.62 0.85 1.77 -52.0% 

S6 61.20 0.22 0.75 43.66 0.46 1.58 -28.7% 54.80 0.30 0.76 38.53 0.54 1.67 -29.7% 

S7 60.17 0.25 0.72 43.99 0.48 1.65 -26.9% 49.74 0.39 0.75 33.94 0.62 1.44 -31.8% 

S8 70.52 0.19 0.66 60.63 0.31 1.10 -14.0% 67.73 0.25 0.72 52.50 0.43 1.44 -22.5% 

S9 82.13 0.15 0.59 76.84 0.20 0.84 -6.4% 87.38 0.13 0.67 81.80 0.17 0.96 -6.4% 

AVG 44.19 0.31 0.72 33.40 0.50 1.38 -25.8% 41.89 0.35 0.74 30.81 0.54 1.48 -28.5% 
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Figure 4.3. Example of Energy Graph No Solar Panel Policy SAVED use case 

Figure 4.3 shows the solar output of the ‘No Solar Panel’ policy from an instance of the category S5. The 

green area is the solar energy used to charge a vehicle, while the orange area shows the energy not used. 

The red area shows the energy used from the grid. It can be seen that the strategy for the vehicles is to 

only charge one time, at the end of the operation. They are both at the same time done with operating 

(approx. 12:20) and go both to the charging station. This means that a relative high amount of energy 

needs to be used from the grid. Figure 4.4 shows the solar output of the ‘Solar Panel’ policy for the same 

instance. It can be seen that the first vehicle already starts charging at approximately 10:00. There is also 

only one small moment in which the two vehicles charge at the same time. This policy leads to a much 

smaller read area and therefore less energy used from the grid. 

 

Figure 4.4. Example of Energy Graph Solar Panel Policy SAVED use case 

Table 4-16 and Table 4-17 show the experimental results for the 4 different scenarios in the Campus use 

case. Again, the extended results can be found in Appendix A. It can be seen that the charging costs are 

the lowest in the “Start” scenario, and the percentage of solar energy used is the highest in the “Start” 
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scenario, with 84%. This is logical, because when most trips have to be executed in the morning, most 

charging can take place after those trips when there is the most solar power available. The biggest relative 

difference between the objectives of the two policies is in the “Start” scenario and in the “Uniform” 

scenario with 25.2% and 24.8% respectively, while the difference is the lowest in the “End” scenario with 

only 16.8%. The reason for this is most probably that in the “End” scenario, the vehicles are done operating 

relatively late, and still have to charge for the next day. The algorithm can do nothing to prevent that from 

happening, so therefore the algorithm cannot make a difference. 

Table 4-16. Experimental results Time Windows Campus use case 1/2 

  Start Middle 

No Solar Panels Solar Panels Dif No Solar Panels Solar Panels Dif 

ID Obj PSE t(s) Obj PSE t(s) 
 

Obj PSE t(s) Obj PSE t(s) 
 

C0 0.72 0.60 1.46 0.48 0.88 2.26 -33.9% 0.75 0.65 1.88 0.54 0.83 2.14 -29.1% 

C1 0.95 0.64 2.18 0.69 0.89 2.38 -27.7% 1.10 0.65 1.07 0.83 0.80 2.01 -24.2% 

C2 1.14 0.64 1.96 0.83 0.89 3.63 -27.0% 1.16 0.70 0.94 0.92 0.84 1.35 -20.7% 

C3 1.41 0.59 1.70 1.09 0.81 2.44 -22.9% 1.39 0.69 1.19 1.07 0.83 1.84 -22.8% 

C4 1.52 0.62 1.54 1.16 0.84 2.19 -23.3% 1.82 0.62 1.02 1.53 0.71 0.93 -15.8% 

C5 1.88 0.58 1.48 1.40 0.74 1.60 -25.4% 2.04 0.62 1.05 1.73 0.70 1.12 -15.1% 

C6 2.93 0.66 3.54 2.30 0.82 2.18 -21.7% 3.53 0.66 1.51 3.02 0.74 1.47 -14.4% 

C7 3.17 0.64 2.06 2.37 0.84 2.16 -25.4% 3.51 0.68 1.33 2.91 0.76 1.46 -17.2% 

C8 3.07 0.67 2.26 2.31 0.86 2.48 -24.7% 3.72 0.66 1.84 3.08 0.75 1.39 -17.2% 

C9 6.02 0.65 2.89 4.81 0.81 1.77 -20.2% 6.75 0.68 1.55 5.84 0.76 1.81 -13.4% 

AVG 2.28 0.63 2.11 1.74 0.84 2.31 -25.2% 2.58 0.66 1.34 2.15 0.77 1.55 -19.0% 

 

Table 4-17. Experimental Results Time Windows Campus use case 2/2 

  End Uniform 

No Solar Panels Solar Panels Dif No Solar Panels Solar Panels Dif 

ID Obj PSE t(s) Obj PSE t(s) 
 

Obj PSE t(s) Obj PSE t(s) 
 

C0 1.10 0.45 1.10 0.84 0.59 1.77 -23.8% 0.84 0.59 2.39 0.58 0.82 3.87 -31.0% 

C1 1.63 0.47 1.35 1.39 0.52 1.18 -14.5% 1.23 0.62 2.06 0.89 0.82 3.53 -27.4% 

C2 1.87 0.52 0.98 1.55 0.59 1.15 -17.2% 1.34 0.65 1.82 0.99 0.80 2.88 -26.1% 

C3 2.04 0.49 1.23 1.48 0.68 1.67 -27.7% 1.51 0.67 2.57 1.09 0.79 2.77 -27.6% 

C4 2.21 0.52 1.49 1.95 0.54 1.60 -11.8% 1.80 0.64 2.02 1.35 0.76 2.27 -24.7% 

C5 2.31 0.56 1.28 1.96 0.62 1.73 -15.3% 1.92 0.67 1.53 1.46 0.78 2.16 -24.0% 

C6 4.95 0.45 1.74 4.33 0.45 1.60 -12.6% 3.65 0.65 2.70 2.80 0.76 2.56 -23.2% 

C7 5.17 0.45 1.25 4.40 0.52 1.64 -14.9% 3.90 0.64 2.31 3.04 0.73 2.53 -22.0% 

C8 5.25 0.44 1.23 4.54 0.49 1.50 -13.5% 4.09 0.64 2.38 3.19 0.73 2.48 -21.9% 

C9 10.52 0.44 1.28 8.76 0.44 1.32 -16.7% 7.03 0.67 1.45 5.61 0.75 1.71 -20.2% 

AVG 3.71 0.48 1.29 3.12 0.54 1.52 -16.8% 2.73 0.64 2.12 2.10 0.77 2.68 -24.8% 
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From this experiment, we can conclude that for the SAVED use case, the ALNS algorithm leads to relatively 

even improvements for all tested scenarios regarding the variability in the start of the time windows, while 

the overall charging costs are the lowest if in the “Start” scenario. For the Campus use case, we can 

conclude that the charging costs are the lowest if most trips have to be scheduled at the start of the day. 

The ALNS algorithm, however, works best in both the “Start” and “Uniform” scenario.  

4.4.4 Variable Weather 
In this experiment, we test with different weather settings. In the first experiments, we assumed the solar 

energy curve to be a normal distribution curve. However, in the real world, this is not the case. That is why 

we have to experiment with multiple weather types. In this experiment, we first investigate the influence 

of the overall efficiency of the solar panels on the charging costs. We experiment with 4 different overall 

efficiencies (0.3, 0.7, 0.8, 0.6) representing the 4 seasons. 

In this section, we also experiment with different efficiencies during the day, since the solar power output 

can also vary during the day. We experiment with 5 different scenarios that reflect 5 different types of 

daily weather to see the quality of our algorithm compared to the ‘No Solar Panel’ policy. The efficiencies 

for the five experiments can be found in Table 4-18. The numbers in for example the ‘Afternoon’ scenario 

mean that in the afternoon the efficiency is 0.5 of the total daily efficiency. Figure 4.5 shows how the daily 

solar output looks in the ‘Afternoon’ scenario. 

Table 4-18. Variable Weather Efficiencies per Hour per Experiment 

Hour Overall Morning Noon Afternoon SunnyNoon 

6-7 1 0.5 1 1 0.5 

7-8 1 0.5 1 1 0.5 

8-9 1 0.5 1 1 0.5 

9-10 1 0.5 1 1 0.5 

10-11 1 0.5 1 1 0.5 

11-12 1 0.5 0.3 1 1 

12-13 1 0.5 0.3 0.5 1 

13-14 1 1 0.3 0.5 1 

14-15 1 1 1 0.5 0.5 

15-16 1 1 1 0.5 0.5 

16-17 1 1 1 0.5 0.5 

17-18 1 1 1 0.5 0.5 

18-19 1 1 1 0.5 0.5 

 

 

Figure 4.5. Example Solar Output Curve Afternoon Scenario 
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Saved Use Case 

Table 4-19 shows the experimental results per efficiency setting for the SAVED use case. The table shows 

the averages of all instance sizes combined for both policies. It shows the average objective value of the 

ALNS (Obj), the percentage of solar energy relative to the total energy needed (PSE), the percentage of 

solar energy relative to the total energy available (PSA), and the running time of the algorithm (RT). The 

table shows that the efficiency and the objective of our algorithm are negatively correlated, which is 

logical. A higher efficiency leads to more solar energy available and therefore less use of energy from the 

grid. 

The table shows that our algorithm performs relatively better as the efficiencies are higher. This makes 

sense, since the higher the efficiency, the more solar energy is available, which makes charging during the 

operation cheaper, and therefore the ‘Solar Panels’ policy, with its random charging, works relatively well. 

Table 4-19. Experimental Results per Efficiency SAVED use case 

 

 

 

 

 

Table 4-20 shows the experimental results for the different weather types. It can be seen that both policies 

perform best when there is the most solar energy available (‘Overall’), which makes sense because then 

less energy from the grid is needed. It also shows that in that scenario, our algorithm performs significantly 

better than the ‘No Solar Panel’ policy, while that difference is lower in the other weather scenarios. This 

is logical since the more energy there is available, charging during the operation is an increasingly better 

strategy and therefore the difference between the two policies is higher.  

Table 4-20. Experimental Results per Weather Type SAVED use case 

 

 

Campus Use Case 

Table 4-21 shows the experimental results per efficiency for the Campus use case. It can be seen that the 

algorithm relatively performs best (the relative difference is higher) when the efficiency is lower. The 

reason for this is that the ‘No Solar panels’ policy already delivers good results when the efficiency is 

higher. The average solar percentage is already 83%, which makes it more difficult to improve the solution. 

When the efficiency is lower there is more room for improvement, therefore our ALNS algorithm works 

relatively better when the efficiency is lower.  

Efficiency 

No Solar Panels Solar Panels Dif(%) 

Obj PSE PSA t(s) Obj PSE PSA t(s) 
 

0.3 60.84 0.23 0.41 1.02 50.52 0.37 0.64 2.58 -17.0 

0.6 44.83 0.46 0.42 0.99 34.82 0.66 0.58 2.94 -22.0 

0.7 40.2 0.50 0.37 1.13 30.2 0.76 0.56 3.07 -27.4 

0.8 37.8 0.54 0.34 1.45 24.1 0.80 0.49 3.15 -36.2 

 
No Solar Panels Solar Panels Dif(%) 

Obj PSE PSA RT Obj PSE PSA RT 
 

Afternoon 43.35 0.25 0.36 0.99 34.35 0.41 0.42 1.92 -20.7 

Morning 38.95 0.30 0.43 1.02 31.30 0.43 0.46 2.00 -19.6 

Noon 43.22 0.22 0.37 0.90 34.53 0.38 0.42 1.75 -20.1 

Overall 39.17 0.40 0.45 0.74 29.03 0.58 0.49 1.41 -25.8 

SunnyNoon 38.80 0.33 0.44 1.15 30.85 0.49 0.47 2.18 -20.5 
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Table 4-21. Experimental Results per Efficiency Campus use case 

 

 

 

 

 

Table 4-22 shows the experimental results per weather type for the Campus use case. It shows that the 

objective of the ALNS is the highest in the “Afternoon” and in the “SunnyNoon” scenario, while the relative 

difference between the two policies is also significantly lower in those scenarios. The reason for this is that 

both scenarios have less solar energy available in the afternoon, when most charging takes place, so, 

therefore, the operation has to use energy from the grid, regardless of the policy. The relative difference 

between the two policies is in the “Noon” scenario, mostly because in that scenario, the ALNS leads to a 

percentage of solar energy use of 75%, therefore having low feed-in costs. 

Table 4-22. Experimental Results per Weather Type Campus use case 

 

 

 

 

 

From this experiment in the SAVED use case, we can conclude that the ALNS algorithm performs relatively 

best when the efficiency is the highest, while in the Campus use case the algorithm performs best when 

the efficiency is the lowest. We can also conclude that the algorithm in the SAVED use case, performs 

relatively the same for the tested weather types, while for the Campus use case, the algorithm performs 

not so well when there is little energy available in the afternoon compared to the other scenarios. 

4.4.5 Battery Usage 
In experiment 5 we modify our solution approach to include the option of using a battery to store the 

energy not directly used. This battery can be used at the end of the day to charge the vehicles to their 

battery threshold to prepare them for the next day. The purpose of this experiment is to see whether we 

can reach the same performance with fewer solar panels since we can save the energy we do not use, so 

we can use all solar energy available. 

This experiment is executed only for the Campus use case. The reason for this is that if a battery is used in 

the SAVED use case, there is enough battery capacity to execute all trips without intermediate charging, 

so with the use of a battery, all solar energy is stored and therefore running the ALNS algorithm has no 

purpose. This means that if the XL Businesspark wants to use a battery on a daily basis, it needs a battery 

of 236 kWh and enough solar panels to generate 236 kWh, which is on average 196 panels. 

Efficiency 

No Solar Panels Solar Panels Dif(%) 

Obj PSE PSA t(s) Obj PSE PSA t(s) 
 

0.3 2.43 0.61 0.72 1.03 1.73 0.77 0.83 2.26 -28.8% 

0.6 2.02 0.71 0.42 1.08 1.48 0.87 0.50 2.45 -26.7% 

0.7 1.75 0.8 0.41 1.11 1.36 0.88 0.45 3.35 -22.2% 

0.8 1.63 0.83 0.35 1.07 1.32 0.94 0.40 2.56 -19.0% 

 
No Solar Panels Solar Panels Dif(%) 

Obj PSE PSA t(s) Obj PSE PSA t(s) 
 

Afternoon 2.21 0.71 0.51 2.08 2.02 0.77 0.57 2.98 -8.5 

Morning 2.25 0.67 0.55 2.07 1.68 0.83 0.65 3.05 -25.3 

Noon 2.43 0.63 0.56 2.11 1.75 0.83 0.75 4.09 -28.0 

Overall 2.03 0.76 0.45 2.15 1.58 0.88 0.53 3.75 -22.2 

SunnyNoon 2.44 0.64 0.48 1.99 2.21 0.72 0.55 3.12 -9.4 
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In the scenario that a battery is used, the vehicles in the ALNS algorithm do not have to be charged to 

100% at the end of the day. All solar energy not used immediately during the day, is stored in a battery 

and is used after the algorithm to charge the vehicles to 100%. If there is not enough energy in the battery, 

energy from the grid is used, and if there is energy left in the battery, it is delivered back to the grid. We 

test this scenario against the scenario in which no battery is used, therefore the vehicles have to be 

charged to 100% in the algorithm. Since this experiment purely focuses on the difference in charging costs 

between the two scenarios, the only objective are the charging costs and not traveling time. 

With the use of a battery, fewer solar panels are needed to charge the vehicle, since all energy from the 

solar panels can be used if necessary. Therefore, we also experiment with half the number of solar panels 

per instance size and three-quarters of the number of solar panels per instance size.  

Table 4-23 shows the experimental results for the scenarios with and without the use of the battery when 

the normal number of solar panels is used. It shows the objective of the ALNS (Obj) and the running time 

t(s). For the “Battery” scenario, it also shows the percentage of instances in which the Campus is self-

sustaining (PSS), which means that no energy from the grid has to be used at the end of the day. It can be 

seen that the objective of the algorithm with the use of a battery is on average €0.35 or 23.2% better 

compared to the scenario where no battery is used. It can also be seen that on average in 98% of instances, 

the campus is self-sustaining. 

Table 4-23. Experimental Results Battery use Campus use case 

 
No Battery Battery 

ID Obj t(s) Obj PSS t(s) 

C0 0.56 2.70 0.26 1.00 1.64 

C1 0.81 3.49 0.59 1.00 2.62 

C2 0.86 2.83 0.60 1.00 2.80 

C3 1.04 1.55 0.89 1.00 1.60 

C4 1.06 3.08 0.67 1.00 2.32 

C5 1.07 3.17 0.76 1.00 1.72 

C6 1.76 1.83 1.45 0.85 2.10 

C7 2.08 3.76 1.52 0.9 2.64 

C8 2.07 4.10 1.53 1.00 3.21 

C9 3.85 0.71 3.31 1.00 1.37 

AVG 1.51 2.72 1.16 0.98 2.20 

 

Table 4-24 shows the average objective value, the average self-sustaining percentage, and the average 

running time for different percentages of solar panels used in combination with a battery. The values are 

the averages of all instance sizes. It can be seen that the objective value is the lowest when three-quarters 

of the solar panels are used. While the self-sustaining percentage is lower than when all panels are used, 

leading to more costs for energy used from the grid, less solar energy is delivered back to the grid, so 

overall it results in lower charging costs.  
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Table 4-24. Experimental Results Battery use Percentage Solar Panels Campus use case 

Solar Panels Obj PSS RT 

50% 1.75 0.16 2.71 

75% 0.83 0.68 2.29 

100% 1.16 0.98 2.20 

 

From this experiment, it can be concluded that the use of a battery would lead to a 23.2% improvement 

in costs if the same number of solar panels is used. Also in 98% of experiments, the Campus would be self-

sustaining if a battery is used. However, because the costs without battery usage are already relatively 

low, buying a battery is not rewarding. It can also be concluded that the overall objective is lower when 

only 75% of solar panels are used. The reason for this is that there are on average fewer feed-in costs.  

4.4.6 Soft Time Windows 
In this experiment, we test the influence of soft time windows on the outcome of the solution. This means 

that time windows can be violated, leading to penalty costs. This means that our algorithm will have two 

objectives, namely the charging costs and the penalty costs per minute of time window violation. Again, 

the traveling time is not considered as an objective. Table 4-25 and Table 4-26 show the weights of both 

costs in the experiments in both use cases. The reason that the weights for the charging costs are much 

higher in the Campus use case than for the penalty costs is that if we want the costs of charging one minute 

at the Campus use case to equal the costs per minute of missing the time window, we already need to set 

the weight for the charging costs to 400 since charging for a minute costs 1/400 of a euro. In the SAVED 

use case, charging for a minute costs 1/6.25 of a euro. 

Table 4-25. Objective Weights for Charging Costs and Penalty Costs per Scenario SAVED use case 

ID Weight Charging Costs Weight Penalty Costs  

ES0 0 1 

ES1 1 1 

ES2 2 1 

ES3 5 1 

ES4 6.25 1 

ES5 10 1 

ES6 1 0 

 

Table 4-26. Objective Weights for Charging Costs and Penalty Costs per Scenario Campus use case 

ID Weight Charging Costs Weight Penalty Costs  

EC0 0 1 

EC1 1 1 

EC2 10 1 

EC3 100 1 

EC4 400 1 

EC5 1000 1 

EC6 1 0 
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Table 4-27 and Table 4-28 show the average penalty costs, the average charging costs, and the average 

running time per experiment. It shows, logically, that the bigger the relative weight is for the charging 

costs, the lower the charging costs and the higher the penalty costs. It can also be seen that the difference 

in charging costs when the objective weight of the charging costs is 1, is €17.14 or 44.3% in the SAVED use 

case €0.22 or 12.5% in the Campus use case of the charging costs when the objective weight is 0. The 

reason for this significant change is that when the objective for the charging costs is 0, the algorithm stops 

when the penalty costs become 0 (after all, the total objective is then 0 and cannot be improved). When 

the objective weight is 1, the algorithm continues after the penalty costs become 0, to find improvement 

in the charging costs while keeping the penalty costs 0. This can also be concluded from the difference in 

running time between the two experiments, where the experiment in which the charging cost weight is 1, 

runs for 46% in the SAVED use case and 42% in the Campus use case longer than when the objective weight 

is 0. It can also be concluded that the penalty costs only start to rise significantly when the weight of the 

charging costs reaches the point where one minute of charging from the grid is as expensive as missing 

the time window by one minute.  

Table 4-27. Experimental Results Soft Time Windows Experiment SAVED use case 

ID Charging Costs Penalty Costs t(s) 

ES0 38.62 0 2.43 

ES1 21.48 0.05 4.44 

ES2 21.18 0.08 4.98 

ES3 18.29 0.23 5.22 

ES4 15.18 7.04 6.34 

ES5 14.83 7.32 6.78 

ES6 12.92 392.62 8.31 

 

Table 4-28. Experimental Results Soft Time Windows Experiment Campus use case 

ID Charging Costs Penalty Costs t(s) 

EC0 1.76 0.22 2.66 

EC1 1.54 0.22 3.79 

EC2 1.54 1.30 2.64 

EC3 1.51 1.41 2.67 

EC4 1.43 11.18 3.34 

EC5 1.41 39.24 3.60 

EC6 1.36 293.90 7.01 
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Figure 4.6 and Figure 4.7 show two different usage graphs for different objective weights for instance C10 

when the efficiency is 0.8. In Figure 4.6, the weights of Experiment EC0 are used, while in Figure 4.7 the 

weights of Experiment EC5 are used. It can be seen in Figure 4.6 that there is a significant energy peak at 

the end of the day, which almost completely has to be energy used from the grid. This is because the 

emphasis lies on meeting the time windows, and therefore a significant amount of charging is still required 

after the last trips. In contrast, when the emphasis only lies on the charging costs, there is no peak at the 

end of the day. At the end of the day, the energy usage line tries to follow the energy available line as close 

as possible to minimize the charging costs, and therefore accept the consequential penalty costs. 

 

Figure 4.6. Example of Energy Graph High Penalty Costs Weight Campus use case 

From these experiments, it can be concluded that the relatively different weights for the objectives 

charging costs and penalty costs have a significant impact on the outcome of the algorithm. The 

differences are the highest when the costs of one minute of charging with energy from the grid exceed 

the costs of missing the time window by one minute because if that is the case, the algorithm focuses 

more on the minimization of the charging costs than on meeting the time windows. 

 

Figure 4.7. Example of Energy Graph High Charging Costs Weight Campus use case 
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4.5 Conclusion 
In this chapter, we first defined 7 different experiments for one or both the industrial and urban use cases. 

The goal of these experiments was to test how well our solution approach performed in multiple scenarios. 

Then we parametrized our industrial use case by doing a context analysis, to come up with multiple 

instance sizes with either 1 or 2 vehicles. For the urban use case, artificial data instances were created 

representing the Campus area. 

The first experiment was dedicated to tuning the parameters of our ALNS algorithm to be as efficient as 

possible. The goal was to balance between the quality of our solution and the computation time reaching 

that solution. For both use cases, we did a full factorial experiment regarding the parameter settings and 

found a setting that comes up with reasonably good solutions in a very short computation time. 

In the second experiment, we tested our algorithm performance against the mathematical model. The 

goal was to see how close our algorithm could come to the optimal solution for small instances in the 

SAVED use case without the use of solar energy. It showed that in those instances, the performance of the 

ALNS is slightly worse than the exact optimization, while the computation time of the algorithm is 

significantly shorter. However, this cannot be used to draw conclusions about the ALNS performance when 

solar energy is used or when the instance sizes get as large as in the Campus use case.  

In the third experiment, we tested for the SAVED use case the benefits in terms of charging costs and total 

duration of collaboration between the companies at the XL business park. The benefits are only significant 

in the large instance sizes.  

In the fourth experiment, we tested the robustness of the algorithm by varying the time window 

distribution. We tested our ALNS algorithm against a “No Solar Panel” policy in which solar charging was 

not taken into account. For the SAVED use case, we conclude that ALNS leads to relatively even 

improvements for all tested scenarios compared with the “No Solar Panel” policy, while for the Campus 

use case, the conclusion is that the ALNS works best when the trips have a higher probability of being 

scheduled in the morning or uniformly.  

In the fifth experiment, we tested what the influence of the weather was on the solution outcome of the 

ALNS. We can conclude for the SAVED use case, that a higher efficiency leads to more relative 

improvement of the ALNS in comparison to the “No Solar Panel” policy, while for the Campus use case, 

the ALNS method performs relatively better for lower efficiencies. We can also conclude that in the SAVED 

use case, the algorithm performs relatively the same for all tested weather types, while for the Campus 

use case, the algorithm performs relatively worse when there is little solar energy available in the 

afternoon. 

In the sixth experiment, we tested how the use of a battery influenced the solution performance in the 

Campus use case. The conclusion is that a battery does have an influence on lowering the charging costs, 

however, it still leads to a significant amount of feed-in costs at the end of the day. This could be improved 

by saving energy for other days with low efficiencies. In the last experiment, we performed a sensitivity 

analysis on the influence of soft time windows and the relative weights between the penalty costs and the 

charging costs for both use cases. The conclusion is that the relative weights have a significant influence, 

but only after the weight of charging one minute from the grid exceeds the weight of missing the time 

windows by one minute. 
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5 Conclusion 
This chapter ends this thesis by drawing conclusions regarding this research, together with 

recommendations, contributions, limitations, and ideas for future research. In Section 5.1, we summarize 

the outcome of this research by providing insights based on the outcome of the experiments with the 

ALNS in both the industrial and the urban use cases and answering the main research question. In Section 

5.2, we discuss the contributions of this thesis to both the practice and theory. In Section 5.3, 

recommendations are provided based on our conclusions, while in Section 5.4 we acknowledge the 

limitations of our research and provide ideas for further research. 

5.1 Conclusions 
This research started with an introduction to the use cases, a research goal, and corresponding research 

questions and research methodology. Then the first step was an extensive literature review of different 

routing concepts and problems. Concepts that were discussed were classic VRPs, autonomous VRPs, 

Container Drayage Operations, and EVRP. In the world of EVRP, we reviewed different charging strategies, 

mixed fleets, and time dependencies. Then, we discussed the closest papers to our research and looked at 

possible solution methods. From the literature search, we conclude that much research had been done on 

these different concepts, but not on the combinations of those concepts for our specific use cases. 

Furthermore using the closest papers, the conclusion was that an ALNS algorithm would be best suitable 

as a metaheuristic for the solution approach to include solar charging in routing problems. 

The next step was to design the solution approach. First, insights on the use cases were provided together 

with a conceptual graph that models the container jobs and trips as the nodes and the distances between 

the end location of one trip and the start location of another trip as the edges. This was the basis for the 

exact problem formulation which fits both our use cases. Also, a list with assumptions necessary to model 

our problem was stated. Then a mathematical model was provided for the problem without the use of 

solar charging and validated using a small toy problem representing the SAVED use case. To include solar 

charging in the solution approach, a Constructive Solution together with an ALNS was introduced. The 

ALNS iteratively destroys parts of the solution and rebuilds it using move operations, switch operations, 

partial charging, random charging when it is not necessary, and waiting before charging.  

Then, multiple experiments were performed with our solution approach in the industrial area and urban 

area use cases. We first defined the parameter settings for both use cases, to ensure that the approach 

works as efficiently as possible, balancing between good solutions and computation time. After this, 

multiple experiments were executed to test the ALNS approach against either the mathematical 

formulation or the “No Solar Panel” policy. 

From the experiments in the industrial area use case, it can be concluded that the ALNS delivers slightly 

worse solutions compared to the mathematical model in the small instances, in a shorter computation 

time, if solar charging is neglected. However, for the larger instances, the heuristic did outperform the 

exact optimization in both running time and objective value, because the exact optimization did not reach 

the optimal solution within the time limit.  

In the comparison between the “No Solar Panel” policy and our heuristic, our heuristic performed on 

average 25.2% better in terms of costs than the “No Solar Panel” policy, while for some instance sizes, the 

number increases to 44%. number was for some instance sizes. Another conclusion is that collaboration 

between the companies at the XL business park leads to an improvement in terms of charging costs and 

the total duration of the logistical operation. In the smaller instances, the improvement is relatively small, 
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while in the bigger instances, the improvements are more significant. The conclusion is also that the 

algorithm is robust for multiple scenarios regarding time windows, with each scenario delivering the 

approximate same relative improvement. The ALNS is also robust for different weather setting 

experiments, because the improvement is relatively equal for all those tests, while it performs relatively 

best in high efficiencies. 

From the experiments in the Campus use case, it can also be concluded that the ALNS leads to significant 

improvements compared to the ‘No Solar Panel’ policy. On average, when the time windows are uniformly 

distributed, 77% of the energy needed for executing the trips, comes from solar panels, while for some 

instances this goes up to 82%, while the ‘No Solar Panel’ policy only reaches 64%. The relative 

improvements of the ALNS are the lowest when most trips have to be executed at the end of the day 

because there is less solar energy available at that moment to charge the vehicles. Our heuristic works 

better when the efficiency is the lowest, while in terms of weather types, it performs relatively worse if 

there is less solar energy available in the afternoon. Another conclusion is that the usage of a battery does 

lead to lower charging costs and a higher self-sustaining percentage since all available energy can be used, 

however, this also leads to higher feed-in costs. Since the charging costs in the Campus use case are low 

without using a battery, buying a battery is not rewarding. The last conclusion for both use cases is that 

when time windows are soft, choosing the relative weights of the penalty costs and the charging costs is 

very important because a change in those weights can significantly alter the solution. 

To answer our main research question, sustainable charging can be integrated into electric vehicle routing 

problems in industrial and urban use cases using a metaheuristic approach. In this thesis, the chosen 

metaheuristic was a constructive heuristic combined with an ALNS. In the ALNS, sustainable charging is 

included with the use of partial charging, random charging when it is not strictly necessary, or waiting 

before charging. This leads to a sustainable solution, in which the emphasis lies on minimizing charging 

costs, which consists of using energy from the grid or delivering energy back to the grid. The solution 

approach is tested for multiple scenarios in both an industrial use case and an urban use case and leads to 

significantly better solutions compared to the “No Solar Panel” policy in a short computation time.  

5.2 Contributions 

5.2.1 Contribution To Practice 
The main contribution to the practice of our research lies in the SAVED use case. The research has shown 

that the XL business park can reduce its charging costs with the help of the ALNS algorithm, and charge 

during the operation instead of after the operation. This is the difference between the ‘No Solar Panel’ 

policy and the ALNS algorithm. The results show that on average the XL-businesspark can save 25.2% of 

its costs with the ALNS algorithm compared to the “No Solar Panel” policy. It also shows that the 

companies can save charging costs by collaborating, mainly if many containers need to be transported 

during the day.  

The other contribution to the practice is to algorithm itself and the generalizability to other use cases. The 

method can be easily adapted to other use cases, by changing the parameters of the locations, container 

jobs/trips, vehicles, and/or solar panels. In the research, we experimented solely with autonomous 

vehicles, however this is not necessary. The only two conditions for the vehicles are that they should be 

electric vehicles and that they have single-unit capacity constraints, the algorithm can be used to make 

tactical and operational decisions with the logistical schedule of when to charge and when to transport, 

corresponding with the chosen objective weights.   
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5.2.2 Contribution To Theory 
The first contribution to theory is an extensive literature review, which maps the concepts in the world of 

EVRP, combined with other VRP problems such as autonomous VRP and Container Drayage Operations. 

Furthermore, to the best of our knowledge, the exact problem of our research, which is a combination of 

EVRP with solar charging and Container Drayage operations, is new in the literature. Therefore, the created 

mathematical and the solution approach in the form of a constructive heuristic combined with an ALNS 

contribute to the theory. Also, a detailed analysis of the ALNS for different scenarios and a parameter 

tuning experiment show the quality of the solution approach in both the objective value and the 

computation time. 

5.3 Limitations 
The main limitations of this research lie in the assumptions. The first assumption that limits the scope of 

the research is that the vehicles have a single-unit capacity. This fits with the use cases in this thesis since 

the trucks at the XL business park can only transport one container at a time, and the drones and street 

robots at the hypothetical Campus use case can also only transport one package at a time. However, this 

limits the generalizability to other routing problems in which vehicles can transport more packages at a 

time, such as delivery vans. An idea for further research would be to include this option in the solution 

approach, to research how the solution approach would impact these routing problems. 

Another assumption that limits this research is the assumption that all vehicles can be charged at the same 

time. In the larger Campus use case instances, this could lead to solutions in which more than 10 vehicles 

charge at the same time, to use the available solar energy as effectively as possible. In most real-world 

instances, there is a limit to the number of charging stations, which has a significant impact on the charging 

schedule of the vehicles. We also assumed that the vehicles would charge linearly. In future research, an 

idea is to use non-linear charging, in which the vehicles can charge relatively quickly to 80% and then the 

charging speed slows down for the last 20%.  

5.4 Recommendations and Further Research 
Based on the outcome of the experiments regarding the industrial use case, the recommendation to the 

XL business park is to use this solution approach daily to use the available solar energy as effectively as 

possible and reduce the charging costs. Although only one vehicle is used to transport the containers over 

the park, an efficient combination of charging and transporting can lead to a significant reduction of costs. 

Furthermore, it is a recommendation for the companies at the XL business park to collaborate to reduce 

operating time and charging costs. This can be done by the warehouses communicating, to the planners 

at CTT at the start of the day about the number of containers ready to be picked up and the status of other 

containers. The planners at CTT can then use that information to create a schedule to operate as efficiently 

as possible.  

The next recommendation is to use our heuristic as a starting point and expand it with for example real-

world data. Using real-world data such as accurate weather forecasts or travel routes would further 

improve the accuracy of the approach. In this research, we only used average efficiencies of solar panels 

per day or per hour as input for the experiments, while in terms of distances, we used the Euclidean 

distance between locations combined with a distance factor. Changing these two parameters to real-world 

data would improve the approach and therefore lead to more accurate results. 

Another idea for further research is to use this approach to make strategic decisions for both use cases in 

terms of the number of vehicles and the number of solar panels needed to minimize overall costs. For the 
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number of solar panels, there exists an optimum that minimizes the total costs of using energy from the 

grid and feed-in energy to the grid. Furthermore, it would be interesting how other parameter settings, 

which lead to better solutions in a longer computation time, would influence the solution's objective value 

in the experiments. The last idea for further research is to test this solution approach on other but similar 

use cases, to further test the robustness of the approach.  
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Appendix A. Experimental results time windows 
Table 5-1. Extended Experimental Results Time Windows SAVED use case 1/2 

  Start Middle 

  No Solar Panels Solar Panels Dif No Solar Panels Solar Panels Dif 

ID Min Obj Max PSE t(s) Min Obj Max PSE t(s) 
 

Min Obj Max PSE t(s) Min Obj Max PSE t(s) 
 

S0 7.90 9.65 11.40 0.33 0.76 7.90 8.27 10.44 0.38 1.44 -14.3% 7.25 8.64 10.27 0.34 0.72 5.82 7.13 8.09 0.37 1.41 -17.5% 

S1 12.44 15.40 17.49 0.39 0.75 12.44 14.09 15.90 0.39 1.29 -8.5% 12.44 18.23 23.07 0.35 0.73 11.33 16.66 21.83 0.36 1.29 -8.6% 

S2 19.21 22.99 26.41 0.45 0.79 19.21 13.52 16.33 0.72 1.54 -41.2% 18.19 22.54 24.48 0.43 0.74 9.30 12.80 15.66 0.73 1.61 -43.2% 

S3 29.29 32.05 35.23 0.43 0.76 29.29 20.92 25.02 0.68 1.18 -34.7% 24.41 32.53 43.22 0.42 0.74 15.90 21.07 27.98 0.67 1.41 -35.2% 

S4 35.20 40.38 50.61 0.39 0.77 35.20 27.73 41.29 0.62 1.30 -31.3% 35.18 43.90 51.20 0.32 0.73 22.00 30.45 40.35 0.57 1.51 -30.6% 

S5 23.56 32.96 42.57 0.56 0.76 23.56 18.45 24.56 0.82 1.57 -44.0% 27.55 33.67 46.99 0.53 0.74 10.85 18.85 29.20 0.80 1.55 -44.0% 

S6 45.07 52.52 65.61 0.34 0.76 45.07 36.96 56.91 0.56 1.76 -29.6% 46.16 54.57 66.26 0.28 0.75 27.86 41.90 56.77 0.47 1.76 -23.2% 

S7 37.65 44.95 51.81 0.45 0.74 37.65 29.76 39.33 0.68 1.58 -33.8% 43.16 50.60 61.89 0.35 0.71 30.81 38.29 51.05 0.52 1.61 -24.3% 

S8 40.52 61.46 72.89 0.31 0.71 40.52 49.48 65.23 0.45 1.51 -19.5% 55.79 62.92 73.84 0.26 0.64 44.05 58.04 72.95 0.33 0.92 -7.8% 

S9 68.96 81.73 96.46 0.18 0.61 68.96 75.37 85.62 0.23 0.91 -7.8% 72.38 84.56 104.24 0.13 0.50 72.38 78.47 96.29 0.21 0.50 -7.2% 

AVG 31.98 39.41 47.05 0.38 0.74 31.98 29.46 38.06 0.55 1.41 -26.5% 34.25 41.22 50.55 0.34 0.70 25.03 32.37 42.02 0.50 1.36 -24.2% 

 

Table 5-2. Extended Experimental Results Time Windows SAVED use case 2/2 

  End Uniform 

  No Solar Panels Solar Panels Dif No Solar Panels Solar Panels Dif 

ID Min Obj Max PSE t(s) Min Obj Max PSE t(s) 
 

Min Obj Max PSE t(s) Min Obj Max PSE t(s) 
 

S0 6.81 9.02 11.76 0.37 0.73 5.41 7.63 9.80 0.39 1.32 -15.5% 8.57 9.20 9.82 0.35 0.76 6.98 7.66 8.49 0.39 1.32 -16.7% 

S1 13.22 16.46 19.33 0.36 0.75 12.25 14.99 17.71 0.38 1.36 -8.9% 13.30 17.92 25.51 0.36 0.74 11.63 15.57 19.10 0.38 1.44 -13.1% 

S2 20.47 23.69 26.94 0.46 0.78 11.92 14.56 19.23 0.72 1.28 -38.5% 18.66 23.74 28.43 0.46 0.75 11.42 13.75 16.35 0.73 1.58 -42.1% 

S3 29.13 35.61 51.72 0.37 0.74 18.18 23.55 37.74 0.64 1.65 -33.9% 26.98 32.35 36.20 0.41 0.75 17.07 20.41 22.91 0.68 1.54 -36.9% 

S4 37.58 44.61 57.99 0.30 0.74 23.86 29.73 37.00 0.58 1.48 -33.4% 33.56 41.40 48.21 0.35 0.78 21.48 27.34 32.87 0.61 1.65 -34.0% 

S5 26.16 38.43 52.26 0.43 0.74 11.10 18.43 24.80 0.80 1.56 -52.0% 25.06 34.64 40.63 0.51 0.76 10.24 16.62 22.70 0.85 1.77 -52.0% 

S6 52.29 61.20 67.54 0.22 0.75 28.99 43.66 54.86 0.46 1.58 -28.7% 40.63 54.80 66.66 0.30 0.76 27.97 38.53 52.73 0.54 1.67 -29.7% 

S7 47.13 60.17 77.19 0.25 0.72 26.64 43.99 63.69 0.48 1.65 -26.9% 38.04 49.74 61.07 0.39 0.75 25.53 33.94 50.04 0.62 1.44 -31.8% 

S8 61.32 70.52 78.41 0.19 0.66 44.67 60.63 71.40 0.31 1.10 -14.0% 50.89 67.73 76.50 0.25 0.72 34.27 52.50 65.35 0.43 1.44 -22.5% 

S9 71.22 82.13 93.37 0.15 0.59 62.35 76.84 91.95 0.20 0.84 -6.4% 79.72 87.38 91.71 0.13 0.67 76.91 81.80 86.43 0.17 0.96 -6.4% 

AVG 36.53 44.19 53.65 0.31 0.72 24.54 33.40 42.82 0.50 1.38 -25.8% 33.54 41.89 48.48 0.35 0.74 24.35 30.81 37.70 0.54 1.48 -28.5% 
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Table 5-3. Extended Experimental Results Time Windows Campus use case 1/2 

  Start Middle 

  No Solar Panels Solar Panels Dif No Solar Panels Solar Panels Dif 

ID Min Obj Max PSE t(s) Min Obj Max PSE t(s) 
 

Min Obj Max PSE t(s) Min Obj Max PSE t(s) 
 

C0 0.53 0.72 0.85 0.60 1.46 0.34 0.48 0.54 0.88 2.26 -33.9% 0.57 0.75 0.98 0.65 1.88 0.41 0.54 0.63 0.83 2.14 -29.1% 

C1 0.55 0.95 1.08 0.64 2.18 0.47 0.69 0.90 0.89 2.38 -27.7% 0.93 1.10 1.41 0.65 1.07 0.68 0.83 1.14 0.80 2.01 -24.2% 

C2 0.89 1.14 1.39 0.64 1.96 0.74 0.83 1.06 0.89 3.63 -27.0% 1.09 1.16 1.23 0.70 0.94 0.86 0.92 0.99 0.84 1.35 -20.7% 

C3 1.00 1.41 1.79 0.59 1.70 0.81 1.09 1.41 0.81 2.44 -22.9% 1.31 1.39 1.52 0.69 1.19 0.87 1.07 1.21 0.83 1.84 -22.8% 

C4 1.18 1.52 2.05 0.62 1.54 1.00 1.16 1.28 0.84 2.19 -23.3% 1.71 1.82 1.93 0.62 1.02 1.48 1.53 1.58 0.71 0.93 -15.8% 

C5 1.46 1.88 2.27 0.58 1.48 1.31 1.40 1.79 0.74 1.60 -25.4% 1.87 2.04 2.21 0.62 1.05 1.62 1.73 1.88 0.70 1.12 -15.1% 

C6 2.41 2.93 3.67 0.66 3.54 2.10 2.30 3.07 0.82 2.18 -21.7% 3.18 3.53 3.86 0.66 1.51 2.71 3.02 3.34 0.74 1.47 -14.4% 

C7 2.47 3.17 3.82 0.64 2.06 2.08 2.37 3.45 0.84 2.16 -25.4% 3.26 3.51 3.85 0.68 1.33 2.83 2.91 3.21 0.76 1.46 -17.2% 

C8 2.55 3.07 4.16 0.67 2.26 2.22 2.31 3.00 0.86 2.48 -24.7% 3.37 3.72 3.92 0.66 1.84 2.91 3.08 3.45 0.75 1.39 -17.2% 

C9 4.53 6.02 6.84 0.65 2.89 3.95 4.81 5.90 0.81 1.77 -20.2% 6.55 6.75 7.17 0.68 1.55 5.67 5.84 6.20 0.76 1.81 -13.4% 

AVG 1.76 2.28 2.79 0.63 2.11 1.50 1.74 2.24 0.84 2.31 -25.2% 2.38 2.58 2.81 0.66 1.34 2.00 2.15 2.36 0.77 1.55 -19.0% 

 

Table 5-4. Extended Experimental Results Time Windows Campus use case 2/2 

  End Uniform 

  No Solar Panels Solar Panels Dif No Solar Panels Solar Panels Dif 

ID Min Obj Max PSE t(s) Min Obj Max PSE t(s) 
 

Min Obj Max PSE t(s) Min Obj Max PSE t(s) 
 

S0 1.01 1.10 1.27 0.45 1.10 0.72 0.84 1.00 0.59 1.77 -23.8% 0.68 0.84 0.95 0.59 2.39 0.41 0.58 0.67 0.82 3.87 -31.0% 

S1 1.61 1.63 1.65 0.47 1.35 1.30 1.39 1.49 0.52 1.18 -14.5% 1.02 1.23 1.47 0.62 2.06 0.77 0.89 1.01 0.82 3.53 -27.4% 

S2 1.87 1.87 1.87 0.52 0.98 1.55 1.55 1.55 0.59 1.15 -17.2% 1.04 1.34 1.68 0.65 1.82 0.85 0.99 1.12 0.80 2.88 -26.1% 

S3 2.04 2.04 2.04 0.49 1.23 1.48 1.48 1.48 0.68 1.67 -27.7% 1.33 1.51 1.91 0.67 2.57 0.91 1.09 1.52 0.79 2.77 -27.6% 

S4 2.09 2.21 2.33 0.52 1.49 1.86 1.95 1.99 0.54 1.60 -11.8% 1.61 1.80 1.94 0.64 2.02 1.19 1.35 1.49 0.76 2.27 -24.7% 

S5 2.17 2.31 2.40 0.56 1.28 1.82 1.96 2.11 0.62 1.73 -15.3% 1.72 1.92 2.29 0.67 1.53 1.34 1.46 1.61 0.78 2.16 -24.0% 

S6 4.71 4.95 5.29 0.45 1.74 4.25 4.33 4.76 0.45 1.60 -12.6% 3.30 3.65 4.03 0.65 2.70 2.62 2.80 3.04 0.76 2.56 -23.2% 

S7 5.04 5.17 5.29 0.45 1.25 4.29 4.40 4.52 0.52 1.64 -14.9% 3.44 3.90 4.21 0.64 2.31 2.62 3.04 3.37 0.73 2.53 -22.0% 

S8 5.12 5.25 5.38 0.44 1.23 4.48 4.54 4.61 0.49 1.50 -13.5% 3.65 4.09 4.42 0.64 2.38 2.85 3.19 3.51 0.73 2.48 -21.9% 

S9 9.74 10.52 11.37 0.44 1.28 8.76 8.76 8.76 0.44 1.32 -16.7% 6.48 7.03 7.58 0.67 1.45 5.18 5.61 6.06 0.75 1.71 -20.2% 

AVG 3.54 3.71 3.89 0.48 1.29 3.05 3.12 3.23 0.54 1.52 -16.8% 2.43 2.73 3.05 0.64 2.12 1.87 2.10 2.34 0.77 2.68 -24.8% 

 


