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ABSTRACT

An estimation of center of mass acceleration(aCOM) using a small number of inertial measure-
ment units(IMUs) can potentially be used to estimate energy expenditure in daily living for the
purpose of monitoring users in their daily lives. IMU data and reference aCOM was gathered
for a variety of gait and non-gait activities using the MVN Link suit. Linear regression models
were trained on segment acceleration, angular acceleration, angular velocity and orientation
data obtained from this IMU data via the MVN record software. The performance of activity
specific instantaneous linear regression models for the estimation of aCOM using segment ac-
celeration was investigated for models using inputs from the pelvis segment in addition to one
other segment, the pelvis segment in addition to two symmetrical limb segments and the pelvis
segment in addition to two symmetrical limb segments and the head or sternum segment. The
performance of models using inputs based on the tangential and centripetal acceleration as well
as linear acceleration from the pelvis segment in addition to one other segment was also tested.
Models using inputs from the head, sternum and shoulder segments performed the best over-
all. Models using linear acceleration from symmetrical lower leg segments were necessary to
obtain better performance than pelvis only models for a balancing task but did not perform well
for other activities without the addition of a head or sternum segment. The addition of inputs
based on the tangential and centripetal acceleration significantly improved the performance of
models using inputs from the upper legs, but such models were still outperformed by models
using the head, shoulders or sternum. Large differences in performance for data from different
subjects was detected. It was found that such differences were not exacerbated by the addition
of inputs based on the tangential and centripetal acceleration.
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1 INTRODUCTION

This report describes an investigation into the estimation of center of mass acceleration(aCOM)
of the human body during a variety of activities. This introduction will first provide some context
on why this investigation is relevant by explaining the relevance of energy expenditure estima-
tion and then relating aCOM estimation to energy expenditure estimation. It will then establish
the research question of the thesis and the limitations placed on this scope. Finally, this intro-
duction will provide the structure of the rest of the report.

1.1 Context

To understand the relevance of aCOM estimation, it is first necessary to understand the rele-
vance of energy expenditure and how it relates to aCOM. Energy expenditure is a measure of
the metabolic energy that the human body converts into mechanical work and heat [1]. The
measurement of energy expenditure has a wide variety of applications such as informing the
nutrition of both critically ill patients and athletes [2, 3]. It is also used in assessing the effects
of certain weight loss interventions [4].

Energy expenditure measurements in daily living would be useful since it can be used for pro-
viding feedback for patients trying to lose weight [5], monitoring the health of the elderly persons
[6], providing insulin dosage recommendations for diabetics [7], or simply as a method to gather
epidemiological data [8].

Energy expenditure can currently be measured using the gold standard of indirect calorimetry
and the highly accurate method of doubly labeled water [9, 10]. Indirect calorimetry and doubly
labeled water are obtrusive methods since indirect calorimetry requires continuous measure-
ment of the subject’s respiratory gasses via a hood or mask, and doubly labeled water requires
the collection and expensive analysis of bodily liquids [10]. This makes these methods unsuit-
able for measuring energy expenditure in daily living, so a less obtrusive method for measuring
energy expenditure in daily living is desired.

One potential less obtrusive method for estimating energy expenditure is via the motion of the
body’s center of mass (COM), specifically via aCOM. aCOM can be used to estimate the me-
chanical work done by the subject, and a difference in mechanical work can create a difference
in energy expenditure [11, 12]. As such, aCOM can also contribute to the estimation of energy
expenditure. aCOM has been shown to be linked to the the energy expenditure of prosthetic
and brace users [12, 13], making it a promising parameter for energy expenditure estimation.

aCOM can be measured in multiple ways. The golden standard is force plates [14], which
measure the ground reaction forces that act on the human body [15]. Ground reaction forces
can also be measured via force shoes [16]. Another method is via the use of inertial or optical
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motion capture. Optical motion capture uses camera recordings of reflected markers and is
able to provide very accurate estimates of COM movement [14]. Inertial motion capture uses
inertial measurement units (IMUs), sensors that combine gyroscopes and accelerometers to
estimate movement [17]. aCOM estimation using full body inertial motion capture using has
been validated against visual motion capture to a high degree of accuracy [18].

Inertial motion capture is the preferred method for measuring aCOM in daily living, since it is
relatively unobtrusive and does not require a dedicated measuring environment. In contrast,
optical motion capture and force plates come at the are location bound [16, 19] and force shoes
obtrusively require large force transducers to be added to the sole of the foot [15]. Several
studies have already used IMUs to estimate energy expenditure directly without make use of
an estimation of aCOM [6, 20, 21].

While the aCOM estimation of full body IMU measurement setups has been validated against
visual motion capture to a high degree of accuracy [18], such setups are still too obtrusive to
be used repeatedly and for extended periods of time in daily life. Some studies have used the
assumption that COM is contained within the pelvis, and have attempted to measure aCOM in
gait using only a pelvis IMU [13, 16]. This has resulted in an estimation of aCOM that is notably
of lower accuracy in the mediolateral direction relative to the vertical and posterior directions
[13, 16], illustrating a need for sensor setups that measure a greater portion of the human body
in order to measure mediolateral aCOM accurately.

Another issue with studies on setups with fewer IMUs is that they have often been limited to
normal gait [22, 23], or specific sports tasks [24, 25]. Some studies of minimal IMU estimation of
non-gait activities exist, for instance in investigating a bathtub exiting task [26], but information
on non-gait tasks is sparse. Since daily living activities involve a wide variety of tasks, creating a
model for estimating aCOM that can function for a variety of gait and non-gait tasks is essential
for the estimation of aCOM in daily living.

1.2 Research question

Now that it is established that it would be useful to investigate models for the estimation of
aCOM using a small set of IMUs in a variety of tasks, a research question can be formulated
to perform such an investigation. Before this research question is formulated, the scope of
the investigation will first be narrowed to create a feasible research question for an exploratory
study.

The first narrowing of the scope concerns the activities. Multiple activities will be investigated,
but this investigation will not concern itself with the generalisability of the model over multiple
activities. The investigated models will also not include automatic activity detection in order to
reduce the complexity of the implemented model. Instead, data will manually be labeled as
an activity type, and activity specific models will be trained and evaluated on data that belongs
to one activity label. This means that these models will have the assumption that an activity
detection model has first selected which model to use. In addition to activity recognition, the
model will also assume step detection: Data for gait-based activities will be segmented into
individual steps before being used for training and evaluation.

The second narrowing of the scope happens through the IMUs that are considered. As estab-
lished, using only one IMU does not produce sufficiently accurate results, but it is nevertheless
desirable to limit the amount of IMUs used as much as possible. As such, the amount of IMUs
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that provide inputs to the investigated models will initially be limited to 2, and models using more
IMUs will only be investigated where it is warranted. As the pelvis IMU can provide a moderately
accurate estimate on its own, all models that are investigated will include an IMU on the pelvis
as a sensor providing input data. This means that the thesis will investigate the performance of
models using input from IMUs placed in different locations of the body when combined with an
IMU on the pelvis.

Lastly, a final narrowing of the scope will be performed by limiting the type of model that is
considered. As it is sensible to start by investigating the simplest possible model, only variations
on linear regression models will be investigated in this study. The data from these IMUs will
additionally be used in ways that are based on the kinematics of the human body, as these are
the most likely to produce useful results.

With these three limitations applied, the research question becomes as follows: What is the
performance of activity specific linear regression models for the estimation of whole body aCOM
using a pelvis mounted IMU and at least one other IMU, using inputs based on the kinematic
properties of human motion, and which IMUs are the most suitable to use in addition to the
pelvis with these models?

1.3 Structure

Now that the goal of this thesis has been established, the investigation of this goal will be detailed
as follows: First the rigid body model (RBM) which informs the biomechanical basis for the input
parameters of the linear regression models will be described, followed by the means by which
the data for the models was collected. Then the models themselves will be described, including
preprocessing steps and their mathematical description. The process of evaluating the models
and selecting input IMUs for evaluation will be described and the results of the evaluation will
be described and then summarized using a number of tables. Finally the limitations, potential
follow ups and other considerations for the results will be discussed.
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2 BACKGROUND

This section contains background information on the models used in this thesis. First a general
formulation for a linear regression model(LRM) will be provided. Then number of kinematic
definitions used within this thesis will be established. These definitions will be then be used
to define a rigid body model (RBM), which functions as a simplified model of the human body.
It will be shown that the motion described by this rigid body model can be used to calculate
aCOM of the simulated body, and this kinematic relation between the motion of the RBM and
aCOM will be used in the methods section to derive biomechanically valid input parameters for
the LRMs used to estimate aCOM.

2.1 Linear regression models

This thesis aims to estimate aCOM using a simple linear regression model(LRM), as it is the
easiest possible model to use aside from simply assuming that an IMUmeasures aCOM directly.
This section will provide a basic description of how LRMs work.

An LRM estimates a target(𝑢) by multiplying a series of basis functions(𝑓𝑛()) based on inputs
(𝑣𝑛) with corresponding coefficients(𝑤𝑛) [27].

�̄� = 𝑤0 +
𝑁

∑
𝑛=1

𝑤𝑛 ∗ 𝑓𝑛(𝑣𝑛) (2.1)

Here 𝑁 is the amount of basis functions used in the model. The coefficients of the LRM are
chosen such that an error function is minimized. When the target data has a gaussian noise
distribution, the best estimate is given by minimizing the root mean square error, which is as
follows [27]:

𝐸 = √(�̄� − 𝑢)2 (2.2)

Through basis functions, LRMs can be used to model nonlinear relationships, on the condition
that these relationships are known [27]. The models investigated in thesis will use three types
of basis functions, the exact form of which will be discussed in section 3.4.
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2.2 Kinematic notation

To explain the equations and models used in this thesis, it is first necessary to establish the
notation for the kinematic concepts that will be used. This section will define the notation used
for the vectors, coordinate systems and rotations used to define the rigid body model.

2.2.1 Coordinate systems and vectors

A coordinate system is amethod of representing the distances between different points in space.
All coordinate systems used in this thesis are Cartesian and are denoted using one or more
capital letters. (For example, frame 𝐴.) Cartesian coordinate systems consist of an origin and
a number of perpendicular axes. In the case of three dimensional coordinates, these axes will
be denoted as the x-, y- and z-axis.

Coordinate systems have origins, denoted by 𝑂𝐴, where 𝑂 indicates that it is an origin and the
subscript indicates the coordinate system to which the origin belongs. The coordinates of points
are defined in relation to the origin, as a sum of multiples of the unit vectors along each of the
three axes.

⃗𝑟𝐴 = ⎡⎢
⎣

𝑟𝐴,𝑥
𝑟𝐴,𝑦
𝑟𝐴,𝑧

⎤⎥
⎦

(2.3)

Here 𝑟 is a point, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑟𝐴 is the point described as vector coordinates within 𝐴, and 𝑟𝐴,𝑥, 𝑟𝐴,𝑦, 𝑟𝐴,𝑧
are the components of ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑟𝐴 along the x, y and z axes, respectively. As the origin of a coordinate
system has zero distance from itself, the position of the origin within its corresponding coordinate
system is as follows:

⃗⃗⃗ ⃗⃗ ⃗𝑂𝐴,𝐴 = ⎡⎢
⎣

0
0
0
⎤⎥
⎦

(2.4)

As with eq. 2.3, the second subscript here indicates that ⃗⃗⃗ ⃗⃗ ⃗𝑂𝐴,𝐴 is a vector within coordinate
system 𝐴.

2.2.2 Rotation matrices and translating between coordinate systems

Vectors that are defined within one coordinate system can be transformed into coordinates
within another coordinate system when the two coordinate systems are defined in relation to
one another. This is done using a translation, which is the simple addition of a coordinate vector,
and a rotation. The vector used for translation is the location of the origin of the original coor-
dinate system in the target coordinate system, ⃗⃗⃗ ⃗⃗ ⃗𝑂𝐴,𝐵 for a translation from 𝐴 to 𝐵. A rotation
describes a difference in the direction of the x y and z axes of the coordinate frame, and can
be described by both a rotation matrix and a unit quaternion. A rotation matrix that describes a
rotation from coordinate system A to coordinate system B is denoted as RAB, with the first su-
perscript denoting the original coordinate system and the second superscript denoting the target
coordinate system. A rotation of a vector is performed by performing a matrix multiplication with
the rotation matrix and the vector.
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⃗𝑟𝐵 = 𝑹𝑨𝑩 ∗ ⃗𝑟 + ⃗⃗⃗⃗⃗ ⃗𝑂𝐴,𝐵 (2.5)

A rotation matrix is a 3 by 3 matrix, but can be written as a function of Euler angles. In 3D
space, these are 3 angles that each represent a rotation around one of the axes of the coordinate
system. They are depicted in figure 2.1. These angles are named pitch(𝛼),roll(𝛽) and heading(𝛾)
and are depicted in . A 3D rotation matrix based on the euler angles can be seen as the rotation
that would result from a rotation around each of the three axes in sequence. When applying
rotations in sequence in this way, the result depends on the order in which the rotations are
applied.

Figure 2.1: A depiction of the pitch roll and heading angles.

𝑹𝑨𝑩
𝛾 𝑹𝑨𝑩

𝛽 𝑹𝐴𝐵
𝛼 = 𝑹𝑨𝑩 =𝑓(𝛼, 𝛽, 𝛾) (2.6)

Rotation matrices are a more intuitive representation of rotation than quaternions and will there-
fore be used in the description of the rigid body model. Note however that any rotation described
by a rotation matrix can be described by a unit quaternion. Unit quaternions are 4 dimensional
vectors with components denoted 𝑞0 through 𝑞3. The first step in performing rotation using a
unit quaternion is creating the quaternion representation of the vector:

⎡⎢
⎣

𝑟𝐴, 𝑥
𝑟𝐴, 𝑦
𝑟𝐴, 𝑧

⎤⎥
⎦

⟶
⎡
⎢⎢
⎣

0
𝑟𝐴, 𝑥
𝑟𝐴, 𝑦
𝑟𝐴, 𝑧

⎤
⎥⎥
⎦

(2.7)

Once the vector is in quaternion representation, it can be rotated by performing the following
quaternion multiplication using the unit quaternion.

⎡
⎢⎢
⎣

0
𝑟𝐵, 𝑥
𝑟𝐵, 𝑦
𝑟𝐵, 𝑧

⎤
⎥⎥
⎦

= ⃗𝑞𝐴𝐵
⎡
⎢⎢
⎣

0
𝑟𝐴, 𝑥
𝑟𝐴, 𝑦
𝑟𝐴, 𝑧

⎤
⎥⎥
⎦

⃗𝑞𝐴𝐵−1 (2.8)

Here again the superscripts on ⃗𝑞𝐴𝐵 indicate that ⃗𝑞𝐴𝐵 describes a rotation from coordinate sys-
tem 𝐴 to coordinate system 𝐵. ⃗𝑞𝐴𝐵−1 is the inverse of ⃗𝑞𝐴𝐵. Quaternion multiplication is different
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from matrix multiplication but the specifics of the process are not required to understand of the
work done in this thesis. It is sufficient to understand that the quaternion multiplication in eq.
2.8 describes a rotation of the vector ⃗𝑟𝐴.

2.3 Rigid body model

Now that the notation for vectors and coordinate systems has been established, they will be
used to describe a rigid body model. Subsequently, the relation between the motion of an RBM
and its center of mass will be shown.

2.3.1 Segments and coordinate systems

An RMB is a simplified model of the human body that consists of linked rigid segments, each of
which represents a bone or group of bones within the human body. RBMs are commonly used
in the description and measurement of human motion, including in MVN [28, 29].

In order to describe the movement of the body relative to the world, the RBM is modelled within
a stationary local frame (𝐿) which represents the outside world. Defined in relation to this local
frame is the root segment, which can be any arbitrarily chosen segment of the rigid body model.
A schematic depiction of this relation is shown in figure 2.2. The root segment is modelled via
its frame (𝑆𝑟), which is defined in relation to the local frame via a rotation and translation.

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑝𝐿 = 𝑹𝑺𝒓𝑳 ∗ ⃗𝑝𝑆𝑟 + ⃗⃗⃗⃗⃗⃗𝑂𝑆𝑟,𝐿 (2.9)

Here ⃗𝑝 is a point that is defined in relation to the root segment. The root segment has 3 rotational
and 3 Cartesian degrees of freedom. This means that each of the axial components of ⃗⃗⃗ ⃗⃗ ⃗𝑂𝑆𝑟,𝐿
and each of the Euler angles that describe 𝑹𝑺𝒓𝑳 can change depending on the position and
pose of the body that is being modelled [28].

Figure 2.2: A schematic illustration of the definition of a root segment within the local frame.
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Segments other than the root segment are defined in relation to another segment. A rigid body
model with a parent segment and other segmnets is depicted in figure 2.3. The segment that
a segment is defined in relation to is its parent segment. A segment is also called the child
segment of its parent segment. The relation between a segment and its parent segment can
be described in a fashion similar to eq.2.9 [28].

⃗𝑝𝑆𝑏 = 𝑹𝑨𝑩 ∗ ⃗𝑝𝑆𝑎 + ⃗⃗⃗⃗⃗⃗𝑂𝑆𝑎,𝑆𝑏 (2.10)

Figure 2.3: A schematic illustration of a 2D rigid body model.

Here 𝑆𝑏 is the frame of the parent segment of the segment defined by the frame 𝑆𝑎. The
difference between the relations defined through parent segments and the relation between the
local frame and the parent segment is that non-root segments only have rotational degrees
of freedom. The position of a segment’s origin within its parent frame remains constant. The
positions of these segment origins are normally chosen to represent joints, and the rotational
degrees of freedommay be limited to represent a joint with limited rotational degrees of freedom
such as the elbow joint. The segments in the RBM are additionally linked in a hierarchical
manner: Any segment within the RBM is defined in relation to the root segment through a chain
of parent segments [28].

Due to the hierarchical character of the RBM segments, eq. 2.10 can be applied repeatedly to
a point defined on any segment in order to find its location in the root segment frame, followed
by eq. 2.9 to find its position in the local frame. As such, an RBM describes every point defined
on each of its segment frames within the local frame.

Aditionally there are a number of parameters that describe motion that are used in the descrip-
tion of the models used in this thesis. The segment acceleration is the second time derivative
of the position of the segment origin in the local frame, the segment orientation is the difference
in orientation between the segment frame and local frame, and the segment angular velocity
and angular acceleration are respectively the first and second time derivatives of the segment
orientation.

2.3.2 Rigid body model motion and aCOM

Now that the RBM is defined, it can be shown that motion described by an RBM can be used
to calculate aCOM. To do this, it will first be shown that an RBM can be used to calculate COM

12



position in the Local frame ( ⃗𝑝𝐶𝑂𝑀 ).

Using the assumption that both the mass and distribution of mass of a segment do not change
over time, it is possible define a segment mass (𝑚𝑛) and the coordinates of a segment center
of mass within the segment frame( ⃗𝑝𝐶𝑂𝑀,𝑆𝑛,𝑆𝑛). Here 𝑛 denotes the 𝑛th segment from a list
of segments of an RBM, 𝑆𝑛 denotes the coordinate frame of segment 𝑛. As established, the
coordinates of the segment center of mass can be translated to the local frame by repeatedly
applying eqs. 2.9 and 2.10, resulting in ( ⃗𝑝𝐶𝑂𝑀,𝑆𝑛,𝐿). The segment masses and the segment
positions in the local frame can be used to calculate the position of the whole body center of
mass in the local frame via the definition of the center of mass of an object consisting of number
of discrete volumes [30].

⃗𝑝𝐶𝑂𝑀,𝐿 = 1
𝑀

𝑁
∑
𝑛=1

𝑚𝑛 ∗ ⃗𝑝𝐶𝑂𝑀,𝑆𝑛,𝐿 (2.11)

Here 𝑀 is the sum of the segment masses and 𝑁 is the total number of segments. Taking the
second derivative of eq. 2.11 produces an equation for the object’s center of mass acceleration
based on the acceleration of the centers of mass of its constituent volumes.

⃗𝑎𝐶𝑂𝑀,𝐿 = 1
𝑀

𝑁
∑
𝑛=1

𝑚𝑛 ∗ ⃗𝑎𝐶𝑂𝑀,𝑆𝑛,𝐿 (2.12)

As such, it is possible to calculate the aCOM of a rigid body model that describes the motion
of points within its segment frames. Eq. 2.12 will be used in section 3.4.1 to formulate linear
regression models in such a way that the parameters and coefficients estimate 𝑚𝑛/𝑀 and
⃗𝑎𝐶𝑂𝑀,𝑆𝑛,𝐿.
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3 METHODS

To investigate which IMU placement locations are the best to use for the estimation of aCOM,
linear regression models were trained on IMU measurements and measurements of reference
aCOMdata from a number of activities. This section will first describe the system used to acquire
the IMU and reference aCOM data and the protocol of the activities it was used in. Then, it will
detail the preprocessing steps used before training the models, the models themselves and
their mathematical justifications, and then lastly the analysis used to evaluate the models. An
overview of these steps can be seen in figure 3.1.

Figure 3.1: A schematic overview of the steps taken to evaluate different linear regression
models.

3.1 Data acquisition system

To acquire the IMU data and reference aCOM data used to train and evaluate the models, the
MVN Link suit was used [29]. It is a measurement system which consists of 17 IMUs placed
in different locations on the body [29]. The MVN Link suit transmits information to a wireless
receiver connected to a PC running the MVN analyze software, which processes the data.
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Recordings made via in this way provide an estimate of aCOM that is close in accuracy to
visual motion capture [18, 29]. IMUs were attached to the body using a headband, double
sided tape and velcro straps†, on the locations shown in figure 3.2. A photo of the setup can
be seen in figure 3.3. Aside from IMUs, the Link suit requires the subject to wear a body pack
which transmits the data to the receiver and a battery pack which powers the suit [29]. These
were also attached using double sided tape and velcro straps.

Figure 3.2: A schematic depiction of the different placement locations of the IMUs used in the
MVN Link suit. Source: Xsens MVN quick setup sheet [31].

The MVN analyze software processes the data transmitted to it using the subjects body dimen-
sions, data from the magnetometer included in the IMUs of the MVN Link system, as well as
detected contacts between subject’s body and the floor to improve the estimate of the captured
motion. After the processing the recorded data be exported, creating a file containing among
other things the aforementioned detected contacts and center of mass acceleration data, the ac-

†The Link suit IMU’s were attached using double sided tape and velcro straps instead of the lycra suit that is
normally used because the Link measurements were taken in tandem with VICON optical motion capture measure-
ments for a different study, and the lycra suit was incompatible with the marker clusters used in thee optical motion
capture measurements. These optical motion capture measurements were not used in this thesis except to detect
when the subject stepped off the beam in the beam walk recording, as the difference between standing on the beam
and standing on the ground detectable in the MVN recordings.
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Figure 3.3: Pictures of a subject wearing the measurement setup attached with double sided
tape and velcro straps, taken from the front and side.

celeration and angular velocity of the body segment frames within the local frame(body segment
data) and processed sensor acceleration and angular velocity within the sensor frame(sensor
data) [29].

Although the sensor data is closer to what a minimal IMU setup would measure, the body seg-
ment data is still a reasonable approximation of IMU data that is calibrated to equalize the data
for varying IMU positions on the body segment. Due to the exploratory nature of this thesis, the
models were trained and evaluated using the body segment data rather than the sensor data in
order to reduce the amount of processing that needed to be performed.
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3.2 Measurement protocol

To accomplish the goal of evaluating different models in gait and non-gait activities, a protocol
was created‡ to encompass multiple variations of gait and multiple non-gait activities. First
the Link suit was put on the subject as described in the previous section. Once the subject
was wearing the Link suit, the calibration of the MVN software was performed. This calibration
involved the subject standing in N pose, walking forward, turning around and then walking back.
After the calibration was performed, the other activities in the protocol were performed and
recorded using the Link suit.

The activities performed in the protocol were performed in sequence and are listed below. The
performance of each activity by the subject was first preceded by instructions on how to perform
the activity. The activities were performed three times each before moving to the next and for
each repetition the subject was told to start the activity via a verbal start signal. The subject
was instructed to stand in place prior to the start of each activity, and would stand in place until
the start signal was given. Every activity involving gait was performed at the subjects preferred
pace.

1. Natural walking: The subjects walked forward until the subjects was several steps outside
of a threshold in the measurement area.

2. Slalom walking: The subjects walked around several plastic markers on the floor following
a slalom pattern. The markers were placed in a straight line, approximately 75 cm apart.

3. Zigzag: The subjects walked around several plastic markers on the floor following a slalom
pattern. The markers were placed approximately 60 cm apart in the direction of travel
and approximately 150cm perpendicular to the direction of travel, so that the subjects
alternated between walking in a straight line and walking around the markers.

4. Walk and turn: The subjects walked up to a plastic marker on the floor, walked around it
and then continued to walk for several steps.

5. Sit down and Stand up: The subjects stood in front of a stool, sat down on it for 3-5
seconds and then stood up. The stool did not have armrests or a backrest.

6. Jump: The subject jumped forwards by pushing off the floor with both legs simultaneously.
After landing, the subjects remained standing until given a stop signal.

7. Beam walking: The subjects stepped onto a narrow beam and walks across it, balancing
themselves. The subjects kept walking after they have stepped off the beam until they
were past a threshold in the measurement area.

8. Terrain walking: The subjects stepped onto a section of uneven terrain and walked across
it. The subjects will kept walking after they stepped off the terrain until they were past a
threshold in the measurement area.

9. Stairs walking: The subjects approached and then walked up a set of stairs, onto a plat-
form. The subjects took a few steps after reaching the platform and then turned around
and walked back down the stairs. The subjects did not make use of the railing during the
activity.

‡Courtesy to Junhao Zhang, who defined the lion’s share of the activities.
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The activities were performed by 11 young healthy adults, 8 male and 3 female. All anthropo-
metric measurements available for input to MVN were taken and used in the processing of the
measurements. Subjects were assigned a number (1 to 11) and the processed trial data was
exported with a subject number, trial number, and activity type attached. The zigzag and turn
activities were not performed for subject 1.

3.3 Preprocessing

Before models could be trained on the data, some processing had to be performed first. First,
the part of the recording that encompassed the activity was extracted in order to exclude non-
activity related motion. Then, the data was rotated to an anatomical coordinate frame to keep
the posterior andmediolateral directions consistent with rotation of the body. The basis functions
for the input of the linear model were selected or calculated. And finally, a 10Hz lowpass filter
was applied to the data to filter out noise.

3.3.1 Data segmentation

In order to include only the relevant data in the training and evaluation of the model, the data
that corresponded to the activities had to be extracted from the recordings. This was performed
in two steps: First, a section of the recording encompassing the activity was selected, then this
selection was trimmed down further and segmented into steps using estimated foot contacts.

To prevent activities from being contaminated with sections of standing still, or walking or turning
where these were not the activity of interest, the recordings were visually evaluated via the
render provided by MVN analyze. From this evaluation, a range of samples that encapsulated
only the activity of interest was determined and extracted from the recording. As step detection
would be used to trim the recording down to a precise start and end, ranges of samples that
were slightly wider than the section containing the activity of interest were determined.

Two notable alterations are made through this extraction process: The stairs walking recordings
were divided into two activities: One where the subject is walking up the stairs, and one where
the subject is walking down the stairs. This was done because walking downstairs and walking
upstairs result in distinct types of motion. The walk and turn activity was also trimmed in such a
way that the extracted data only contained the turning part of the recording and not the straight
line walking part, because the recordings from the natural walking activity already included
straight line walking. The two parts of the stairs walking recording will be referred to as ’Stairs
walking up’ and ’Stairs walking down’, and the data extracted from the walk and turn activity will
be referred to as the ’turn’ activity. The criteria for the start and of all activities can be found in
appendix A.

Since the models created in this thesis assume accurate step detection, step detection was
used to further trim down and segment the extracted data for the gait based activities. Usage of
MVN’s foot contact detection failed to work for certain stairs walking recordings, so instead the
magnitude of the foot velocity of the foot segment was used to detect foot contacts. An absolute
velocity below a 10% of the maximum foot velocity within the recording was treated as a foot
contact. The time series segments that were extracted, shown in figure 3.4, were defined as
the frames between the end of a foot contact(foot-off) of one foot and the foot-off of the other
foot and extracted from the recordings. If the recording contained a new foot contact after the
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final foot-off in that recording, the extraction was performed as shown in figure 3.5: the frames
between that foot-off and the new foot contact were treated as an additional time series segment
and extracted. The jump and sit down and stand up activities were not segmented in this way
and the section of the recording that extracted using the start and end criteria was used as a
single time series segment.

In addition to preparing the data for the next step in the processing, the data segmentation
was also used to examine the step length and exclude extremely slow or quick steps in certain
activities. A more in-depth description of this process can be found in appendix B.

Figure 3.4: A schematic depiction of the time series segment start and end criteria.

Figure 3.5: A schematic depiction of the time series segment start and end criteria in the case
where the recording ends after a new foot contact but before a foot-off.
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3.3.2 Coordinate frame adjustment

After the relevant data was extracted, the data was converted from the local frame to an anatom-
ical frame. This was necessary since the body segment data from the exported recordings are
defined in the local frame, and the local frame allows the subject’s body to freely rotate within it.
This creates a situation where it is inconsistent whether an axis corresponds to the anteriopos-
terior direction, the mediolateral direction, or a combination of both. To create a frame where
the axes consistently correspond to the anterioposterior and mediolateral directions, shown in
figure 3.6, a frame defined by the vertical vector of the local frame and the heading of the pelvis
frame as defined in the MVN manual[29] were used to create a frame called the anatomical
frame(𝑃 ). This heading of the pelvis is defined as an orthogonal vector to a line between the
left and right anterior superior iliac spine and is based on established anatomical definitions
[29].

Figure 3.6: A comparison between the local frame(𝐿) and the anatomical frame(𝑃 ) when the
subject rotates.

The vertical axis from the global frame was kept instead of placing all vectors in the pelvic coor-
dinate frame, because this vertical axis is based on the gravity [29], which is both measurable
in minimal IMU setups and physiologically meaningful, since it is a force that the human body
must counteract. Due to its availability and relevance, using a combination of the gravity vector
and the pelvis heading has value compared to using a purely pelvis based coordinate system.

In order to place the body segment data in the pelvis heading based frame, the heading was first
extracted from the pelvis orientation. Since the MVN provides the orientation as a quaternion,
the heading can be extracted using the formula for heading angle from quaternions [32].

𝛾 = 𝑎𝑡𝑎𝑛2(𝑞1 + 𝑞3, 𝑞0 − 𝑞2) + 𝑎𝑡𝑎𝑛2(𝑞3 − 𝑞1, 𝑞2 + 𝑞0) (3.1)

A quaternion is constructed from the negative of this heading angle and used to rotate all global
frame variables provided by MVN. This quaternion can be constructed using the formula to
convert euler angles to quaternions [33].
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(3.2)

Since the only rotation that occurs is a negation of the pelvis heading and 𝛼 and 𝛽 remain
unchanged, the equation becomes as follows:

𝑞0 = 𝑐𝑜𝑠(−𝛾𝑝𝑒𝑙𝑣𝑖𝑠
2 )

𝑞1 = 0
𝑞2 = 0
𝑞3 = 𝑠𝑖𝑛(−𝛾𝑝𝑒𝑙𝑣𝑖𝑠

2 )

(3.3)

This quaternion was used to rotate all body segment data as well as aCOM, resulting in IMU data
in a frame where the heading angle of the pelvis is always 0. Since a change in the heading
angle represents a rotation around the z axis, the direction of the z axis in this new frame is
consistent with its direction in the local frame defined by MVN.

3.4 Analysis

To compare the linear models that have been established as well as the possible input body
segments, the models need to be evaluated. This section will first describe which combinations
of input parameters were evaluated, and how describe how a selection of input body segments
for these models was made. Then it will describe the performance metrics that were used to
evaluate the models, and how cross validation was used to evaluate the generalizability of the
models. Finally, a number of additional plots used in the analysis of themodels will be described.

3.4.1 Model types

Four types of models were investigated in this thesis, three of which use only body segment
acceleration and one which uses a combination of body segment acceleration and the variables
based on the tangential and centripetal acceleration. For every combination of activity, body
segment combination and model type that was investigated, three seperate sets of coefficients
were calculated, each of which was used to estimate a different axial component of aCOM in
the anatomical frame. This section provides the formulation of each of these four model types.
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Body segment acceleration models

For the first model type based on body segment acceleration, the ”one direction acceleration
model”, only body segment acceleration in the same direction as the estimated component of
aCOM is considered. This is done by a model of the following form:

⃗𝑎𝐶𝑂𝑀 = 𝑤0 +
𝑁

∑
𝑛=1

𝑤𝑛 ∗ ⃗𝑎𝑆𝑛 (3.4)

Here 𝑎𝑆𝑛 is the linear acceleration of segment 𝑛 The mathematical justification that relates a
model of this format to the kinematics of the RBM can be found in appendix C. Since 𝑎𝐶𝑂𝑀
is a three dimensional vector, the components of 𝑎𝐶𝑂𝑀 (𝑎𝐶𝑂𝑀,𝑥, 𝑎𝐶𝑂𝑀,𝑦, 𝑎𝐶𝑂𝑀,𝑧) are each
estimated separately in the implementation of this model.

𝑎𝐶𝑂𝑀,𝑥 = 𝑤𝑥,0 +
𝑁

∑
𝑛=1

𝑤𝑥,𝑛 ∗ 𝑎𝑆𝑛,𝑥

𝑎𝐶𝑂𝑀,𝑦 = 𝑤𝑦,0 +
𝑁

∑
𝑛=1

𝑤𝑦,𝑛 ∗ 𝑎𝑆𝑛,𝑦

𝑎𝐶𝑂𝑀,𝑧 = 𝑤𝑧,0 +
𝑁

∑
𝑛=1

𝑤𝑧,𝑛 ∗ 𝑎𝑆𝑛,𝑧

(3.5)

Here 𝑤𝑥,𝑛,𝑤𝑦,𝑛 and 𝑤𝑧,𝑛 are the coefficients that correspond to the estimation of the x, y and z
axis components of ⃗𝑎𝐶𝑂𝑀 , respectively.

Although the only kinematic relation between aCOM and body segment linear accelerations is
between accelerations along the same axis, there might nevertheless be cross axis correlations
between the accelerations due to the periodic nature of human movement. Since using linear
accelerations from different axes still satisfies dimensional analysis, and the addition of extra
inputs of linear acceleration is trivial, the body segment linear accelerations along all axes can
be considered for each axial component of aCOM. In the second model type based purely on
body segment acceleration, the ”all direction acceleration model”, all three axial components
are used. This produces a model of the following form:

∑
𝑛

𝑤𝑥,𝑛 ∗ 𝑎𝑙𝑖𝑛𝑠𝑒𝑔𝑛
= 𝑤𝑥,1 ∗ 𝑎𝑆1,𝑥 + 𝑤𝑥,2 ∗ 𝑎𝑆1,𝑦 + 𝑤𝑥,3 ∗ 𝑎𝑆1,𝑧 + 𝑤𝑥,4 ∗ 𝑎𝑆2,𝑥 + ... (3.6)

Additional body segments

While most of the models that were investigated use only data from the pelvis and one other
body segment, a model using three body segments was employed in the case of the beam walk
activity where all models performed poorly for the mediolateral direction. This third model type,
the ’multi segment model’ were models to the form of eq.3.6 using body segment acceleration
from symmetrical limb segments(Ex. Both upper leg segments) in addition to the pelvis.
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Body segment angular velocity and angular acceleration models

The fourth model type, the ’gyroscope based model’, aims to make use of information about
aCOMcontained in the gyroscope data in addition to the body segment acceleration. While body
segment orientation data is used in calculating the body segment acceleration, since the body
segment orientation is used to rotate the direction of this acceleration into the anatomical frame,
data corresponding to the gyroscope measurements is otherwise not utilized in the two previous
models. The gyroscope based model uses body segment angular velocity and body segment
angular acceleration via a set of nine features in addition to the body segment acceleration data.
These nine features were derived via the kinematic equations for centripetal acceleration(𝑎𝑐)
and tangential acceleration(𝑎𝑡). These two equations are as follows [30]:

𝑎𝑐,𝑎 = −𝑟𝑎 ∗ ̇𝜃𝑏
2

(3.7)
𝑎𝑡,𝑎 = 𝑟𝑏 ∗ ̈𝜃𝑐 (3.8)

Here 𝑎, 𝑏 and 𝑐 denote three orthogonal axes, 𝑟𝑎 is the a axis component of the distance between
the point where the acceleration is calculated in and the axis of rotation, and ̇𝜃𝑏 and ̈𝜃𝑐 are the
angular velocity and angular acceleration around the b and c axes, respectively. 𝑎𝑐 is always
perpendicular to the axis of rotation and pointing towards it, and 𝑎𝑡 is always perpendicular to
both the axis of rotation and the vector between the axis of rotation and the point [30]. The
direction of these vectors in relation to the axis of rotation are shown in figure 3.7.

Figure 3.7: The directions of the centripetal and tangential acceleration of a point in a rotating
rigid body, relative to the axis of rotation. The centripetal acceleration is denoted 𝑎𝑐 and the
tangential acceleration is denoted 𝑎𝑡.

To utilize the formula for centripetal acceleration, three feature were created per axial component
of aCOM in the anatomical frame. The mathematical justification behind these features can be
found in appendix C. For the estimation of x axis aCOM, these features are as follows:

23



𝑓𝑎𝑐𝑥,1( ̇𝛽, ̇𝛾, ⃗𝑞) = [0 1 0 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ( ̇𝛽2 + ̇𝛾2)

𝑓𝑎𝑐𝑥,2( ̇𝛽, ̇𝛾, ⃗𝑞) = [0 1 0 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
1
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ( ̇𝛽2 + ̇𝛾2)

𝑓𝑎𝑐𝑥,3( ̇𝛽, ̇𝛾, ⃗𝑞) = [0 1 0 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
0
1

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ( ̇𝛽2 + ̇𝛾2)

(3.9)

Here ⃗𝑞 is the orientation of the body segment, ⃗𝑞 [...] ⃗𝑞−1 is a quaternion multiplication, and
[0 1 0 0] ∗ [...] is a vector multiplication.

The quaternion multiplication and vector multiplication component of each of these three fea-
tures is an estimation of the contribution of an axial component of the body segment center of
mass coordinates in the body segment frame ( ⃗𝑝𝐶𝑂𝑀,𝑆𝑛,𝑆𝑛) to an axial component of the body
segment center of mass coordinates in the anatomical frame ( ⃗𝑝𝐶𝑂𝑀,𝑆𝑛,𝑃 ). For the centripetal
acceleration parameters, the axial component of 𝑝𝐶𝑂𝑀,𝑆𝑛,𝑃 corresponds to the axial compo-
nent of aCOM that is being estimated. To simplify the equation, the contributions will be denoted
𝑟𝑎−𝑡𝑜−𝑏 where 𝑎 is the axial component of ⃗𝑝𝐶𝑂𝑀,𝑆𝑛,𝑆𝑛), and 𝑏 is the axis of the ⃗𝑝𝐶𝑂𝑀,𝑆𝑛,𝑃 . The
feature names will be similarly adjusted to indicate the contribution that the feature is based on.
This results in the following equation for the features for estimating aCOM along the x axis of
the anatomical frame:

𝑓𝑎𝑐𝑥,𝑥−𝑡𝑜−𝑥( ̇𝛽, ̇𝛾, ⃗𝑞) = 𝑟𝑥−𝑡𝑜−𝑥 ∗ ( ̇𝛽2 + ̇𝛾2)
𝑓𝑎𝑐𝑥,𝑦−𝑡𝑜−𝑥( ̇𝛽, ̇𝛾, ⃗𝑞) = 𝑟𝑦−𝑡𝑜−𝑥 ∗ ( ̇𝛽2 + ̇𝛾2)
𝑓𝑎𝑐𝑥,𝑧−𝑡𝑜−𝑥( ̇𝛽, ̇𝛾, ⃗𝑞) = 𝑟𝑧−𝑡𝑜−𝑥 ∗ ( ̇𝛽2 + ̇𝛾2)

(3.10)

Equations for equivalent features for estimating aCOM along the y and z axis are as follows:

𝑓𝑎𝑐𝑦,𝑥−𝑡𝑜−𝑦( ̇𝛼, ̇𝛾, ⃗𝑞) = 𝑟𝑥−𝑡𝑜−𝑦 ∗ ( ̇𝛼2 + ̇𝛾2)
𝑓𝑎𝑐𝑦,𝑦−𝑡𝑜−𝑦( ̇𝛼, ̇𝛾, ⃗𝑞) = 𝑟𝑦−𝑡𝑜−𝑦 ∗ ( ̇𝛼2 + ̇𝛾2)
𝑓𝑎𝑐𝑦,𝑧−𝑡𝑜−𝑦( ̇𝛼, ̇𝛾, ⃗𝑞) = 𝑟𝑧−𝑡𝑜−𝑦 ∗ ( ̇𝛼2 + ̇𝛾2)

(3.11)

𝑓𝑎𝑐𝑧,𝑥−𝑡𝑜−𝑧( ̇𝛼, ̇𝛽, ⃗𝑞) = 𝑟𝑥−𝑡𝑜−𝑧 ∗ ( ̇𝛼2 + ̇𝛽2)
𝑓𝑎𝑐𝑧,𝑦−𝑡𝑜−𝑧( ̇𝛼, ̇𝛽, ⃗𝑞) = 𝑟𝑦−𝑡𝑜−𝑧 ∗ ( ̇𝛼2 + ̇𝛽2)
𝑓𝑎𝑐𝑧,𝑧−𝑡𝑜−𝑧( ̇𝛼, ̇𝛽, ⃗𝑞) = 𝑟𝑧−𝑡𝑜−𝑧 ∗ ( ̇𝛼2 + ̇𝛽2)

(3.12)

To utilize the formula for tangential acceleration, six features were created. The mathematical
justification for these features can again be seen in appendix C. Like the features based on
centripetal acceleration, the features based on tangential acceleration contain quaternion mul-
tiplication and vector multiplication components describing the contribution of a component of
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⃗𝑝𝐶𝑂𝑀,𝑆𝑛,𝑆𝑛 to ⃗𝑝𝐶𝑂𝑀,𝑆𝑛,𝑆𝑛. These have been simplified in the same manner as the centripetal
acceleration contributions.

𝑓𝑎𝑡𝑥,𝑥−𝑡𝑜−𝑦( ̈𝛽, ⃗𝑞) = 𝑟𝑥−𝑡𝑜−𝑦 ∗ ̈𝛽
𝑓𝑎𝑡𝑥,𝑥−𝑡𝑜−𝑧( ̈𝛾, ⃗𝑞) = 𝑟𝑥−𝑡𝑜−𝑧 ∗ ̈𝛾
𝑓𝑎𝑡𝑥,𝑦−𝑡𝑜−𝑦( ̈𝛽, ⃗𝑞) = 𝑟𝑦−𝑡𝑜−𝑦 ∗ ̈𝛽
𝑓𝑎𝑡𝑥,𝑦−𝑡𝑜−𝑧( ̈𝛾, ⃗𝑞) = 𝑟𝑦−𝑡𝑜−𝑧 ∗ ̈𝛾
𝑓𝑎𝑡𝑥,𝑧−𝑡𝑜−𝑦( ̈𝛽, ⃗𝑞) = 𝑟𝑧−𝑡𝑜−𝑦 ∗ ̈𝛽
𝑓𝑎𝑡𝑥,𝑧−𝑡𝑜−𝑧( ̈𝛾, ⃗𝑞) = 𝑟𝑧−𝑡𝑜−𝑧 ∗ ̈𝛾

(3.13)

𝑓𝑎𝑡𝑧,𝑥−𝑡𝑜−𝑧( ̈𝛼, ⃗𝑞) = 𝑟𝑥−𝑡𝑜−𝑧 ∗ ̈𝛼
𝑓𝑎𝑡𝑧,𝑥−𝑡𝑜−𝑥( ̈𝛾, ⃗𝑞) = 𝑟𝑥−𝑡𝑜−𝑥 ∗ ̈𝛾
𝑓𝑎𝑡𝑧,𝑦−𝑡𝑜−𝑧( ̈𝛼, ⃗𝑞) = 𝑟𝑦−𝑡𝑜−𝑧 ∗ ̈𝛼
𝑓𝑎𝑡𝑧,𝑦−𝑡𝑜−𝑥( ̈𝛾, ⃗𝑞) = 𝑟𝑦−𝑡𝑜−𝑥 ∗ ̈𝛾
𝑓𝑎𝑡𝑧,𝑧−𝑡𝑜−𝑧( ̈𝛼, ⃗𝑞) = 𝑟𝑧−𝑡𝑜−𝑧 ∗ ̈𝛼
𝑓𝑎𝑡𝑧,𝑧−𝑡𝑜−𝑥( ̈𝛾, ⃗𝑞) = 𝑟𝑧−𝑡𝑜−𝑥 ∗ ̈𝛾

(3.14)

𝑓𝑎𝑡𝑧,𝑥−𝑡𝑜−𝑦( ̈𝛼, ⃗𝑞) = 𝑟𝑥−𝑡𝑜−𝑦 ∗ ̈𝛼
𝑓𝑎𝑡𝑧,𝑥−𝑡𝑜−𝑥( ̈𝛽, ⃗𝑞) = 𝑟𝑥−𝑡𝑜−𝑥 ∗ ̈𝛽
𝑓𝑎𝑡𝑧,𝑦−𝑡𝑜−𝑦( ̈𝛼, ⃗𝑞) = 𝑟𝑦−𝑡𝑜−𝑦 ∗ ̈𝛼
𝑓𝑎𝑡𝑧,𝑦−𝑡𝑜−𝑥( ̈𝛽, ⃗𝑞) = 𝑟𝑦−𝑡𝑜−𝑥 ∗ ̈𝛽
𝑓𝑎𝑡𝑧,𝑧−𝑡𝑜−𝑦( ̈𝛼, ⃗𝑞) = 𝑟𝑧−𝑡𝑜−𝑦 ∗ ̈𝛼
𝑓𝑎𝑡𝑧,𝑧−𝑡𝑜−𝑥( ̈𝛽, ⃗𝑞) = 𝑟𝑧−𝑡𝑜−𝑥 ∗ ̈𝛽

(3.15)

Using these new features to expand eq.3.6 creates a new equation, which describes the gyro-
scope based model. Only the features based on axial component of 𝑎𝑐 and 𝑎𝑡 along the axial
component that is being estimated were used in this model, since using all 27 features based
on 𝑎𝑐 and 𝑎𝑡 would add a lot of features and increase the risk of overfitting. This produces the
following equation for the model for the x axis component of aCOM:

⃗𝑎𝐶𝑂𝑀,𝑥 = 𝑤𝑥,0 +
𝑁

∑
𝑛=1

(𝑤𝑥,𝑛 ∗ 𝑎𝑆𝑛

+
6

∑
𝑖=1

𝑤𝑥,𝑛,𝑖 ∗ 𝑓𝑎𝑡𝑥,𝑖,𝑆𝑛(..., ⃗𝑞)

+
3

∑
𝑗=1

𝑤𝑥,𝑛,𝑗 ∗ 𝑓𝑎𝑐𝑥,𝑗,𝑆𝑛(..., ⃗𝑞))

(3.16)

Here the summations described by
6

∑
𝑖=1

𝑤𝑥,𝑛,𝑖 ∗ 𝑓𝑎𝑡𝑥,𝑖,𝑆𝑛(..., ⃗𝑞) and
3

∑
𝑗=1

𝑤𝑥,𝑛,𝑗 ∗ 𝑓𝑎𝑐𝑥,𝑗,𝑆𝑛(..., ⃗𝑞) hap-
pen over all features described in eqs.3.10 and 3.13. The equations for the other two axial
components of aCOM are equivalent.
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3.4.2 Body segment selection

Due to the high amount of measured body segments, evaluating models for all possible inputs
would be time consuming and would clutter the results from the performance evaluation with
irrelevant, poorly performing models. As such, the range of considered input body segments
was narrowed based on the correlation between the LRM inputs and aCOM.

This was done by calculating the absolute Pearson correlation coefficient between the LRM
inputs and aCOM per time series segment. The absolute value of the correlation coefficient
was used because a high negative correlation would indicate a variable that would function well
with a negative coefficient in the LRM. These Pearson correlation coefficients were aggregated
by taking the mean, and the 95% confidence interval and minimum andmaximum value of these
Pearson correlation coefficients was calculated in order to indicate whether the correlation was
consistent across all time series segments or if the correlation varied. All of these values were
plotted in a heatmap to give an overview of which body segments were the most promising.

An example of a correlation heatmap for body segment acceleration can be seen in figure 3.8.
For the body segment acceleration, correlation heatmaps were made for all three axial compo-
nents of aCOM along the axes of the anatomical frame. For each of these axial components, the
correlation heatmaps were made thrice, once for every axial component of the body segment
acceleration within the anatomical frame. This was done to observe cross axis correlation. A
variant of this heatmap where the absolute correlation coefficients of the pelvis were subtracted
from the absolute Pearson correlation coefficients of the other body segments was also exam-
ined in order to test for body segment accelerations that have a lower correlation with aCOM
but provide information not found in the pelvis acceleration.

An example of a heatmap for the input parameters based on tangential and centripetal accel-
eration can be seen in figure 3.9. Individual correlation heatmaps were made for every body
segment.

For the models using more than two IMUs, the selection of IMUs was based on the intuition that
a human performing a balance task will move their limbs to minimize aCOMmovement, and that
therefore involving more limbs may provide a better result. As such, inputs using symmetrical
inputs from both arms or legs were tested. Afterwards, models using both lower legs, the best
performing pair of limb IMUs on the beamwalking task, was tested on the other tasks, in addition
to two models using four IMU locations: The pelvis, the lower legs and either the head or T8.

3.4.3 Cross validation

In order to test how well the models generalize, cross validation was employed. To test gen-
eralisation over subjects, the partition of the cross validation subsets was performed along the
lines of the subjects: The subjects were divided into 4 roughly equal groups. The model was
evaluated 4 times, with each group acting as a test set once and as part of the training set thrice.

3.4.4 Performance evaluation

To evaluate effectiveness of the different models, the performances of the different models was
compared using the r square(𝑟2) statistic. Models were trained on the training set input data.
The 𝑟2 that these models achieved for the test set was calculated per trial and averaged. The
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Figure 3.8: An example of a correlation heatmap for body segment acceleration. This heatmap
depicts the mean and confidence intervals of the absolute Pearson correlation coefficient be-
tween the x axis body segment acceleration and x axis aCOM over all time series segments for
the beam walk activity.
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Figure 3.9: An example of a correlation heatmap for gyroscope features. This heatmap depicts
the mean and confidence intervals of the absolute Pearson correlation coefficient between the
x axis head acceleration and x axis aCOM over all time series segments for the slalom activity.
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root mean square error(RMSE) was also examined to contextualize the 𝑟2. These examinations
were performed for every axial component of aCOM for models pairing a selected body segment
with the pelvis as well as a model that uses only the pelvis. One 𝑟2 and one RMSE heatmap
was created for every activity and type of model. An example of an 𝑟2 heatmap can be seen
in figure 3.10. These heatmaps were used to create an overview of the 𝑟2 of the different input
body segments for the different components of aCOM for that model-activity pairing. In the case
of 𝑟2, the average of all three axial components was also calculated. In the case of RMSE, the
RMSE over all three axial components was calculated.

The performances of the one direction acceleration models were also compared to the perfor-
mance of a linear model using coefficients proportional to the segment mass proportions found
in literature [34], in order to examine whether the linear regression had any benefits compared to
using the contributions of segment accelerations that would be expected from literature. Since
differences between the one direction acceleration models and the all direction acceleration
models and gyroscope based models are apparent from their respective results, a comparison
between the segment mass models and all direction acceleration models and gyroscope based
models is not used.

3.4.5 Time series, qq, bland altman and subject r2 plots

Aside from the performance parameters, several other plots were created to examine different
features of the models. Time series plots comparing estimates aCOM to the actual aCOM were
created to identify any odd behavior of the estimate or phases of the motion where the esti-
mate underperforms. This investigation was done for models using the head and the sternum
segments as these were the best performing segments, and for the gyroscope based models
using the upper and lower legs as these segments improved the most compared to the mod-
els using only acceleration. Bland Altman plots were created to examine bias and identify any
odd groupings within the estimates and errors. qq plots of reference values and the estimates
created by the models were used to compare the shapes of the distributions between models.
Bar plots of the 𝑟2 for estimates of aCOM for recordings of individual subjects were used to
investigate the differences between subjects and the influence of the all direction models and
gyroscope models on the variance in performance. These analyses were performed on both
body segment acceleration models and the gyroscope based model, but not the models with
inputs of more than two IMUs, since the addition of IMUs for the purpose of measuring mediolat-
eral aCOM for balancing tasks did not seem worthwhile enough to warrant further investigation.
Since the differences between the all direction acceleration model and one direction acceler-
ation models were minimal, these additional steps of analysis were also not performed for the
one direction acceleration model. Since models estimating the vertical component of aCOM
performed extremely well for all activities, only the anterioposterior and mediolateral directions
were investigated using these analyses.
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Figure 3.10: An example of an 𝑟2 performance heatmap. This heatmap depicts the 𝑟2 for dif-
ferent models trained and tested on terrain walking acceleration data.
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4 RESULTS

This section describes the results of the analysis of the previous section. For each of the sep-
arate model types, it will first detail the outcome of the selection of IMUs based on correlation
based heatmaps. Then, it will summarize the outcomes of the performance heatmaps for the
linear models. To show the best performing input segments for the overall estimation, a com-
pilation of the average 𝑟2 values over the three directional components will be used, and to
show the best performing input segments for each directional component, tables of the input
segments of the top 3 models with the highest 𝑟2 will be used. Finally, any notable outcomes of
the other plots will be described and examples of these outcomes will be provided. A complete
collection of all plots made can be found in a zip file on the gitlab page § of this project.

4.1 IMU selection

This section describes the outcome of the IMU selection based on the averages of the absolute
Pearson correlation coefficient of the different time series segments. It will first describe the
results for the correlation between the segment acceleration and aCOM, followed by the results
for the correlation between the gyroscope based variables and aCOM.

The outcome for the IMU selection for the linear acceleration models¶ is as follows: For the
same axis correlation, the acceleration of segments that make up or are near the torso, head,
sternum(T8), both shoulders, both upper legs and both upper arms were found to have the high-
est correlation with aCOM. The lower legs and feet were also found to have higher correlation
with aCOM for certain activities. In the examination of cross axis correlation, the acceleration
of the hands was found to sometimes have a higher correlation than other segments. Inputs
from these segments were chosen to be tested in the one direction acceleration model and the
all direction acceleration model.

For the correlation with the gyroscope based variables, segments did not have mean correla-
tions that were high across all gyroscope based variables. The variables corresponding to the
upper legs, lower legs and shoulders were found to include variables with a higher lower bound
for the 95% confidence interval for the absolute Pearson correlation coefficient and therefore
had a more consistent correlation over the different time series segments for multiple activities.
Based on this, inputs from these segments were chosen to be tested in the gyroscope based
model. Segments from which the acceleration performed well in the acceleration based mod-
els were also tested to see if the gyroscope based variables would create improvement. The

§https://gitlab.utwente.nl/bss_development/students/m_donck/movella-sensors
¶The initial correlation heatmaps were accidentally created using a 5Hz lowpass filter in the preprocessing instead

of a 10Hz lowpass filter. A sample of the correlation heatmaps was redone and checked and it was determined that
there was no significant difference in which segments had the highest correlation. As such, the determinations in
this paragraph are based on the correlation of data with a 5Hz lowpass filter applied instead of a 10Hz one.
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segments that were added to the examination based on this criteria were the head, T8 and the
upper arms. Since the gyroscope based variables derived from the pelvis segment data also
had higher lower bounds for the 95% confidence interval, a model using only the segment ac-
celeration and gyroscope based variables from the pelvis was also included in the examination.

Examples of this IMU selection process can be seen in appendix D.

4.2 Performance

This section will summarize the results of the performance heatmaps. Any notable results will
be described, and the overall results will be illustrated using a heatmap and a table for each
model type. The heatmap will contain the 𝑟2 averaged over all three directional components of
aCOM, for each activity and each segment. The table will list the three segments that produce
the best performing estimation when used as input for each directional component for each
activity.

4.2.1 One direction and all direction acceleration models

Since the one direction acceleration model and the all direction acceleration model perform very
similarly, their performances are summarized in a shared subsection. The performance of the
one direction acceleration model will be summarized first, and then the performance of the all
direction acceleration model will be described in relation to it.

A heatmap showing the overall performance of the one direction acceleration model for all seg-
ments for all activities can be seen in figure 4.1, and an overview of the best performing seg-
ments per direction of aCOM of the one direction acceleration model can be seen in table 4.1.
The one direction acceleration model performs best when using torso segments (head, sternum
or shoulders) as input, for most activities. The difference in performance between these torso
segments in the anterioposterior direction is often minimal, less than 𝑟2 0.04 . Exceptions to
this occur in jumping and downward stairs walking, where the head outperforms the other torso
segments significantly, and in turning, where the difference between the head and the right
shoulder slightly exceeds this margin. The lower legs and upper arms also provide significant
improvement compared to a model using only the pelvis, but models using inputs from these
segments perform worse than models using torso segments. Exceptions to this are the natu-
ral walking, jump and down stairs walking activities where they perform comparably to models
using torso segments.

For the mediolateral direction, the difference in performance between the torso segments is
greater than in the anterioposterior direction, with the models using the head generally per-
forming better than the other torso segments. For the beam walk activity in the mediolateral
direction, the performance of all models is very poor and only the models using lower legs and
sternum provide a significant improvement compared to the model using only the pelvis. For
the vertical direction, the models using pelvis input alone perform well for all activities except
sit down and stand up, and models using additional semgents do not perform much better than
the model using only pelvis inputs. For sit down and stand up, all torso segments and the upper
arms provide a similar improvement for the aCOM estimation in the vertical direction.

The heatmap for the overall performance of the all direction acceleration model can be seen in
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Activity
aCOM component

X Y Z

Natural walking
1. Sternum 1. Head 1. Head
2. Head 2. Shoulder 2. Sternum
3. Lower leg 3. Sternum 3. Shoulder

Slalom walking
1. Head 1. Head 1. Sternum
2. Sternum 2. Sternum 2. Head
3. Shoulder 3. Shoulder 3. Shoulder

Zigzag
1. Head 1. Sternum 1. Sternum
2. Sternum 2. Head 2. Head
3. Shoulder 3. Shoulder 3. Shoulder

Turn
1. Head 1. Head 1. Sternum
2. Sternum 2. Shoulder 2. Head
3. Shoulder 3. Sternum 3. Shoulder

Sit down and Stand up
1. Shoulder 1. Sternum 1. Sternum
2. Sternum 2. Head 2. Head
3. Head 3. Shoulder 3. Shoulder

Jump
1. Head 1. Sternum 1. Upper arm
2. Shoulder 2. Head 2. Sternum
3. Lower leg 3. Shoulder 3. Head

Beam walking
1. Head 1. Lower leg 1. Sternum
2. Shoulder 2. Sternum 2. Shoulder
3. Sternum 3. Upper arm 3. Head

Terrain walking
1. Head 1. Head 1. Sternum
2. Shoulder 2. Sternum 2. Shoulder
3. Sternum 3. Shoulder 3. Head

Stairs walking up
1. Head 1. Head 1. Sternum
2. Shoulder 2. Shoulder 2. Head
3. Sternum 3. Sternum 3. Shoulder

Stairs walking down
1. Head 1. Head 1. Sternum
2. Shoulder 2. Sternum 2. Head
3. Lower leg 3. Shoulder 3. Shoulder

Table 4.1: Three best performing IMUs per activity per directional component of aCOM for the
linear model using only segment acceleration in the same direction as the estimated aCOM
component.
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Figure 4.1: A heatmap of the average 𝑟2 of one direction acceleration models using inputs from
different segments.

figure 4.2 The IMU location of the best performing model changes for some activities, shown
in the bold in table 4.2. Compared to the one direction acceleration model, models using all
three directional components of aCOM perform better overall, but the relative performance of
the different segments remains largely unchanged. The differences in 𝑟2 that the changes in
best performing segment represent are very small. All direction acceleration models which have
a lower 𝑟2 than the one direction acceleration model using inputs from the same segment are
uncommon and the difference 𝑟2 for these models is very small as well.
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Figure 4.2: A heatmap of the average 𝑟2 of all direction acceleration models using inputs from
different segments.
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Activity
aCOM component

X Y Z

Natural walking
1. Head 1. Head 1. Sternum
2. Sternum 2. Shoulder 2. Head
3. Shoulder 3. Sternum 3. Shoulder

Slalom walking
1. Head 1. Head 1. Sternum
2. Sternum 2. Sternum 2. Head
3. Shoulder 3. Shoulder 3. Shoulder

Zigzag
1. Head 1. Sternum 1. Sternum
2. Sternum 2. Head 2. Head
3. Shoulder 3. Shoulder 3. Shoulder

Turn
1. Head 1. Head 1. Sternum
2. Sternum 2. Shoulder 2. Head
3. Shoulder 3. Sternum 3. Shoulder

Sit down and Stand up
1. Shoulder 1. Sternum 1. Shoulder
2. Sternum 2. Shoulder 2. Sternum
3. Head 3. Head 3. Head

Jump
1. Head 1. Sternum 1. Sternum
2. Foot 2. Head 2. Upper arm
3. Shoulder 3. Shoulder 3. Shoulder

Beam walking
1. Head 1. Lower leg 1. Sternum
2. Sternum 2. Sternum 2. Shoulder
3. Shoulder 3. Foot 3. Head

Terrain walking
1. Head 1. Head 1. Sternum
2. Sternum 2. Shoulder 2. Head
3. Shoulder 3. Sternum 3. Shoulder

Stairs walking up
1. Head 1. Head 1. Shoulder
2. Sternum 2. Shoulder 2. Sternum
3. Shoulder 3. Sternum 3. Head

Stairs walking down
1. Head 1. Head 1. Head
2. Shoulder 2. Sternum 2. Sternum
3. Lower leg 3. Shoulder 3. Shoulder

Table 4.2: Three best performing IMUs per activity per directional component of aCOM for the
linear model using only segment acceleration in all three directions. Differences with the best
performing IMUs using only one directional component of segment acceleration are shown in
bold.
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4.2.2 Multi segment model

This subsection shows the performance evaluation of the models using more than two seg-
ments. As the three segment model was only evaluated on the beam walk activity, the 𝑟2 cal-
culated for this activity is shown in full in figure 4.3. The results of the lower legs and lower legs
and torso segment models will be described and summarized using a heatmap of the average
𝑟2 over all directions of aCOM.

Figure 4.3: A heatmap of the average 𝑟2 of the models using IMU inputs from symmetrical
segments.

37



As can be seen in figure 4.3, only the model using inputs from both lower legs provides improve-
ment in the mediolateral direction compared to a model using only the pelvis, and the lower legs,
upper arms and forearms all provide an improvement in the anterioposterior direction compared
to a model using only the pelvis.

An heatmap showing an overview of the average 𝑟2 of the multi segment models over all direc-
tions of aCOM can be seen in figure 4.4. For the activities besides beam walking, the model
using inputs from both lower legs performs significantly worse than the torso segments in both
the mediolateral and anterioposterior direction, with the exception of down stairs walking where
it provides a better estimate in the anterioposterior direction than the head. The model using
inputs from both lower legs also performs worse than the torso segments in the vertical direc-
tion when estimating sit down and stand up. For most activities, the combination of pelvis, a
torso and both lower legs performs better than just the pelvis and that torso segment in both
the mediolateral and anterioposterior direction. Most of these improvements are small, except
in the anterioposterior direction for stairs walking down.

Figure 4.4: A heatmap of the average 𝑟2 of the models using IMU inputs from both lower legs
and both lower legs and a either the head or the sternum.
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4.2.3 Gyroscope based model

This subsection will summarize the performance of the gyroscope based models. It will describe
the major changes relative to the models using only acceleration.

The overall performance of the gyroscope based models can be seen in figure 4.5. The change
in best performing IMU that that is produced by changing from the all direction acceleration
model to the gyroscope based model is shown in table 4.3. The main difference in performance
between the models using only acceleration and the models using the variables based on the
tangential and centripetal acceleration is an improvement in the performance of the models
using the upper legs. When the gyroscope variables are included, models using the upper legs
often perform comparably to the models using the torso segments, though the torso segments
generally still perform better. Inputs from the upper legs also provide a significant improvement
in the mediolateral estimation of aCOM for the beam activity compared to the pelvis. Aside
from the difference that can be seen with the models using inputs from the upper legs, the
models using T8 as input also show a significant improvement in the estimation of aCOM in the
mediolateral direction for all activities except beam walking, zigzag and jump.
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Activity
aCOM component

X Y Z

Natural walking
1. Head 1. Head 1. Sternum
2. Upper leg 2. Shoulder 2. Head
3. Shoulder 3. Sternum 3. Shoulder

Slalom walking
1. Sternum 1. Sternum 1. Sternum
2. Head 2. Head 2. Shoulder
3. Shoulder 3. Shoulder 3. Head

Zigzag
1. Sternum 1. Sternum 1. Sternum
2. Head 2. Head 2. Head
3. Shoulder 3. Shoulder 3. Shoulder

Turn
1. Sternum 1. Head 1. Sternum
2. Head 2. Sternum 2. Head
3. Shoulder 3. Shoulder 3. Shoulder

Sit down and Stand up
1. Sternum 1. Sternum 1. Sternum
2. Shoulder 2. Shoulder 2. Shoulder
3. Upper arm 3. Head 3. Head

Jump
1. Lower leg 1. Sternum 1. Sternum
2. Shoulder 2. Upper leg 2. Shoulder
3. Upper arm 3. Shoulder 3. Upper arm

Beam walking
1. Sternum 1. Upper leg 1. Sternum
2. Head 2. Lower leg 2. Shoulder
3. Shoulder 3. Sternum 3. Head

Terrain walking
1. Head 1. Sternum 1. Head
2. Sternum 2. Head 2. Sternum
3. Shoulder 3. Shoulder 3. Shoulder

Stairs walking up
1. Head 1. Sternum 1. Sternum
2. Sternum 2. Shoulder 2. Head
3. Shoulder 3. Head 3. Shoulder

Stairs walking down
1. Head 1. Head 1. Head
2. Upper leg 2. Sternum 2. Sternum
3. Lower leg 3. Shoulder 3. Shoulder

Table 4.3: Three best performing IMUs per activity per directional component of aCOM for the
linear model using segment acceleration in all three directions as well as the variables based on
tangential and centripetal acceleration. Differences with the best performing IMUs using only
segment accelleration are shown in bold.
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Figure 4.5: A heatmap of the average 𝑟2 of gyroscope based models using inputs from different
segments.
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4.2.4 Comparison of one direction linear models to mass based linear models

This subsection will summarize the comparison between the performance of the segment mass
models and the one direction acceleration models.

A heatmap showing the difference in overall performance between the one direction acceleration
model and the segment masses model is shown in figure 4.6. The performance of both models
when only the pelvis acceleration is used is identical. The one direction acceleration models
using the head and limb segments perform significantly better than the segment mass models
using the same segments. No linear regression model performs significantly worse than a
segment mass model.
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Figure 4.6: A heatmap of the difference in average 𝑟2 between segment mass models and one
direction acceleration models using inputs from different segments.
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4.3 Time series, bland altman and subject r2 plots

This section will describe any notable results from the time series plots, bland altman plots and
subject 𝑟2 plots. Since the results from the qq plots do not inform any part of the conclusion or
discussion of this thesis, their results have been omitted from this section. A brief look at the
results of the thesis can instead be found in appendix E.

4.3.1 Time series plots

There are two main observations made from the visual inspection of the time series plots. The
first observation is that even for the models with higher 𝑟2, there was often a large distance
between the estimate and the reference value at the minima and maxima of the aCOM time
series. A series of examples for this are shown in figure 4.7. This distance at minima and
maxima was seen in gait and non gait activities.

Figure 4.7: Estimates of aCOM from linear regressionmodels for four different activities showing
a larger distance between the estimates and reference values for aCOM at the minima and
maxima of the time series than at the samples with more moderate values.
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The second observation is that there is a lot of variance in the estimates and aCOM movement
between subjects, which results in deviations from the reference value that different phases of
the gait cycle. An example of two very different time series for the same activity can be seen in
figure 4.8.

Figure 4.8: Estimates of aCOM from linear regression models for two different subjects for
natural walking.

4.3.2 Bland Altman plots

There are twomain observations in the Bland Altman plots. One observation in the Bland Altman
plots is that all models have a bias that is very close to zero, even when the model performs
poorly. An example of a Bland Altman plot showing a bias close to zero can be seen in figure
4.9.

The second observation is that in the Bland Altman plot for the models for estimation of the
x-axis component of aCOM for the jump activity, a cross shape was observed. Coloring the
start and the end of the jump recordings differently showed that one half of the cross shape
could be attributed to the estimates of the start of the jump and the other to the estimates of
the end of the jump, generating two separate ’L’ shapes. And example of this can be seen
in figure 4.10. The cross shape is present in the all direction acceleration models estimating
aCOM using inputs from the upper arm, lower leg and upper leg segments, and the gyroscope
based models using the upper leg segments. The separate ’L’ shapes can be observed in each
of the models showing this cross shape except the models using input data from the upper arm
segments.
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Figure 4.9: A Bland Altman plot of the beam walking activity, showing a bias very close to 0.
The bias corresponding to this example is -0.0010.

Figure 4.10: A Bland Altman plot of the jump activity divided into the start and end of the jump,
showing a cross shape and two ’L’ shapes.
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4.3.3 Subject-wise r2 bargraphs

The results of the subject-wise r2 bargraphs showed that there was large difference in perfor-
mance between subjects. Generalization between subjects improved with the gyroscope based
model compared to the all direction model in certain cases. An example of this can be seen in
figure 4.11. In other cases, the performance difference did not noticeably change, an example
can be seen in figure 4.12.

Figure 4.11: A bar graph comparing two different models estimating mediolateral aCOM for
slalom walking using inputs from the pelvis and left upper leg segments.
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Figure 4.12: A bar graph comparing two different models estimating anterioposterior aCOM for
beam walking using inputs from the pelvis and sternum segments.
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5 DISCUSSION

This section will discuss the conclusions drawn from the findings from the results, as well as
any limitations to the research that was done. It will also compare the results to results found in
literature. It will then It will then discuss some possibilities for further investigation.

5.1 Interpretation of results

This section will describe the interpretation of the results. It will first describe the interpretation
of the results of the best performing IMU locations from the performance heatmaps. It will then
touch on the obtrusiveness of the different well performing IMUs, and then finally describe the
interpretation of the results pertaining to the gyroscope based model.

5.1.1 IMU location performance

Activity specific models using inputs from the pelvis and a torso segment were found suitable
for modelling walking tasks stairs walking tasks and the sit down and stand up task. Perfor-
mance of linear regression models using acceleration from the limb and head segments was
greater compared to the performance of the model with coefficients determined based on seg-
ment mass. This is potentially due to the segment acceleration representing more than just the
acceleration of the segment itself: The acceleration of the head might be representative of a
larger section of the torso than only the head, and the movement of the left lower leg may also
be representative of the movement of the left upper leg and right leg. None of the one direc-
tion acceleration models performed significantly worse than the segment mass based models
using the same segments, and all gains in performance from the all direction acceleration mod-
els and gyroscope based models compared to the one direction acceleration models are most
likely due to the capturing of properties other than the contribution to aCOM of the measured
segment itself.

Although the comparison with the segment mass model indicates that there may be added value
to performing regression, it is not the only model that could be used as an alternative to regres-
sion. A hypothetical model where coefficients are determined based on the contributions of the
segments to aCOM based on both the mass and the segment acceleration might also be con-
didered. Such a model might utilize lighter segments such as the hands better than the model
based on segment masses. However, such a model would be unable to utilize the segment
accelerations along other axes than the estimated aCOM component or the information from
the segment rotation that were utilized by the all direction acceleration model and gyroscope
based model, evidenced by their performance improvement compared to the one direction ac-
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celeration model. Such a model would also likely be unable to utilize the head segment well, as
the head is generally is kept stable during the movement of the human body while the models
using the head segment and the pelvis segment nevertheless performed well for several tasks.
As such, it seems worthwhile to use regression for the purpose of estimating aCOM in setups
using a low amount of IMUs, rather than relying on the contributions of the individual segments.

Compared to the findings of Refai, M.I.M. et al. [16]�, the performance of all tested single di-
rection acceleration models in the anterioposterior direction of normal walking perform worse
than the findings of Refai, M.I.M. et al. with a single pelvis IMU: The maximum 𝑟2 found in the
anterioposterior direction for one direction acceleration models is 0.75 for the model using the
sternum and pelvis, whereas Refai, M.I.M. et al. finds 𝑟2 0.79 using only the pelvis. Refai,
M.I.M. et al. does find a significantly lower performance in the mediolateral direction(𝑟2 0.30)
than the one direction acceleration model using only the pelvis(𝑟2 0.47). This also holds true
for the slalom activity, where Refai, M.I.M. et al. finds 𝑟2 0.26 in the mediolateral direction,
compared to 𝑟2 0.47 from the one direction acceleration model using only the pelvis. In the
anterioposterior direction the difference is reduced: Refai, M.I.M. et al. finds 𝑟2 0.52 in the ante-
rioposterior direction whereas the one direction accelleration model using only the pelvis finds
a comparable 𝑟2 0.50. Refai, M.I.M. et al. uses a differently defined frame, which might make it
easier to estimate anterioposterior aCOM in a straight line while complicating the estimation of
aCOM in the anterioposterior direction. The all direction linear regression model does produce
a better performance in the natural walking activity than the findings by Refai, M.I.M. et al: The
models using the pelvis and head and pelvis and sternum achieve 𝑟2 0.83 and 0.81 respectively,
compared to the 𝑟2 0.79 found by Refai, M.I.M. et al.

Compared to the findings by Simonetti, E. et al. [13]� the one direction acceleration model using
only the pelvis performs better in the anterioposterior direction: The one direction acceleration
model using only the pelvis achieves 𝑟2 0.67 whereas the estimation by Simonetti, E. et al. finds
𝑟2 0.61. The estimation done by Simonetti, E. et al. in the mediolateral direction outperforms
the one direction acceleration model and all direction acceleration model using only the pelvis:
Both the one direction acceleration model and all direction acceleration model find 𝑟2 0.47,
whereas Simonetti, E. et al. finds 𝑟2 0.58. The one direction models using the pelvis and head,
pelvis and sternum and pelvis and shoulder produce better estimations than the single IMU
estimation by Simonetti, E. et al., achieving 𝑟2 0.75, 0.64 and 0.69 respectively. Similarly, all
direction acceleration models using these segments also perform better than the single IMU
estimation by Simonetti, E. et al. Some differences might be caused by the fact that Simonetti,
E. et al. is investigating the estimation of aCOM in transfemoral amputee gait, which differs
from the gait of individuals who have not undergone amputation.

No models using inputs from one IMU in addition to the pelvis were able to accurately estimate
the mediolateral acceleration of the balance task. Assuming balancing tasks and jumping tasks
do not constitute a significant portion of a subject’s daily living activities, a measurement setup
using only an IMU located on the head and an IMU located on the sternum or head may be
used to estimate the aCOM via instantaneous linear models combined with activity and step
detection. If accurate estimation of mediolateral aCOM during balancing tasks is required, a
combination of IMUs, a combination of an IMU on the pelvis, two IMUs on the lower legs and
an IMU on the torso may provide higher accuracy than models using just using inputs from the
pelvis and a torso segment, although the accuracy achieved by these models is still far below
the accuracy that two segment models achieve when estimating mediolateral aCOM in gait. If
accuracy in jumping tasks is desired, an IMU placed on the sternum is preferable to an IMU
placed on the head.

�Using the property that the 𝑟2 is the square of the pearson correlation coefficient
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5.1.2 IMU locations and obtrusiveness

While the IMU location that performs the best can be discovered by comparing performance
measures between models using IMUs in different locations for their inputs, the best perform-
ing IMU may not be the best IMU to use. Not all locations for IMUs are equally obtrusive, and
an important reason for minimizing the amount of IMUs in this manner is to reduce the obtru-
siveness of the measurement setup. For instance, the head and the sternum tend to perform
well, but attaching an IMU to the sternum of a subject would mean putting on an elastic strap,
adhesive tape or even wearing tight shirt for the purpose of keeping the sternum IMU in place.
In contrast, an IMU on the head might be attached to a set of glasses or kept in place in a similar
fashion to an out of ear hearing aid, both methods which would be less uncomfortable to wear
over a long period of time and easier to put on and take off when needed. Similarly, an IMU
attached to the upper leg may be approximated by a smartphone which a person is already
carrying, which may make the usage of a upper leg IMU an option to consider in spite of the
lower accuracy achieved by models using the upper leg IMU in comparison to the models using
the torso segments. As for IMUs on the lower legs, these might need to be strapped onto soft
tissue on the calf where they would be uncomfortable, or around the ankles where they might
resemble ankle bracelets placed on criminals. Since this is undesirable, it may be worthwhile
to investigate methods of estimating aCOM that do not require IMUs on the lower leg if the goal
is to estimate aCOM in balance tasks in daily living.

5.1.3 Gyroscope based model

The inclusion of the parameters based on tangential and centripetal acceleration is mostly useful
for models using inputs from either the upper leg or the sternum. It may also be beneficial for
models for estimating aCOM using only a pelvis IMU if the model needs to provide an estimate
for a sitting down and standing up task. A concern for the use of these parameters may be that
they will only apply to a subset of the subjects and could worsen the outcome for others, but
the r2 bargraphs show that the addition of these parameters does not aggravate the differences
in performance between subjects and in some cases makes the generalization over subjects
more consistent.

5.2 Limitations

There are some limitations on the applicability of the research in this thesis. This section will
describe limitations due to the tasks used in the training and testing of themodels, and limitations
due to issues during the processing. Finally, this section will briefly mention issues with data
from one of the subjects.

5.2.1 Representativity of tasks

Since the goal of estimating aCOM in this thesis is to work towards estimating aCOM in daily
living, it is worthwhile to consider to what extent the tasks that were tested are representative
of daily living. The activities of climbing stairs, sitting down on a seat and getting up from it are
significant parts of the daily activities of many people and are relevant activities to consider in
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this regard. However, jumping and beam walking may be less relevant for this purpose. Even
if a person for some reason makes jumps in their daily routine, which would be uncommon, a
jump only lasts for a brief moment in time and will not constitute a large portion of the person’s
motion in the day. Similarly it may be considered that balancing is not normally a large part
of a person’s routine. Exceptions may exist here, for instance a person who participates in
gardening as a hobby might have to balance along narrow paths in order to reach parts of
the garden they maintain. Such activities are also likely to be less common for the elderly, as
jumping and balancing are tasks that involve a fall risk.

Aside from the activity type, it may also be considered how representative the activities pre-
scribed by the protocol are of the way they would be performed in daily life. The sit down and
stand up task involves the subject sitting straight down after positioning themselves in front of a
stool, but in real life a wide variety of sitting strategies are employed. A person may lower them-
selves to the seat diagonally or pull the seat under themselves in the process of sitting down.
People may also lean on arm rests of the chair to raise and lower themselves, or sit down
quickly and rely on the back rest of the chair to stop their momentum. None of these strategies
are represented in the sit down and stand up task, and the performance of the models created
for it may not be representative of the performance of models used to estimate sitting down and
standing up in real life. Similarly to using the armrests of a chair, a person may also use the
railings of a flight of stairs, which could drastically alter their balancing strategy. As the stairs
walking activity did not involve usage of the railing, such strategies are not accounted for by the
stairs walking activity.

Finally, certain activities which are common in daily living may not be represented in the inves-
tigated activities at all. For instance, daily living activities may involve kneeling down to pick
or clean something up, pushing a shopping cart at the grocery store, or kitchen tasks where a
person is walking or standing while doing something with their hands. None of these activities
are investigated in this thesis and may need to be investigated in order to create a model that
captures enough a person’s potential daily life activities.

5.2.2 Processing issues

HD processing normally provides the best estimates of the motion captured by the Link suit.
However, the data gathered in the experiment would exhibit spikes in the vertical component
of the acceleration data of certain segments after HD reprocessing. In order to avoid these
artefacts, Normal processing was used instead. Although the relation between the segments
and the COM should be similar regardless of the reprocessing quality, this still means that the
estimation was performed for a less accurate reference value for aCOM. The accuracy of the
estimate may change if models are tested and trained using the more accurate values for aCOM
that would be provided via HD processed data.

5.2.3 Subject 5

The recordings of subject 5 were found to significantly deviate from the recordings of other
subjects and as such were not used in the training and evaluation of the model. The specifics
of how this was investigated can be found in appendix F.
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5.3 Future work

Based on the results found in this thesis, some recommendations can be given. In this section,
two potential avenues for improving the performance of the model will be provided: Classifica-
tion of different movement strategies, nonlinear modelling and use of time domain information,
and the use of demographic information. The possibility of using models with multiple activities
will also be discussed. Finally, it will be discussed whether the current results could be put to
practical use.

5.3.1 Classification of different movement strategies

This thesis assumed themodels used would be paired with working activity detection, and to this
end the data was manually labeled as belonging to some activity. However, in the time series
plots it is apparent that there is a lot of variance in the type of motion between the different
subjects, and the performance of the models varied significantly between subjects. If working
activity detection is assumed, it may be possible to distinguish between these different types
of motion. A form of unsupervised learning may be able to distinguish different movement
strategies which could be easier to model individually. Such an investigation may also benefit
from a dataset which includes different walking paces.

5.3.2 Use of demographic information

Another way to reduce the difference in performance between subjects may be to adjust the
models based on demographic information The models were tested and trained on both male
and female subjects of different heights. This information would be easy for a physician to
gather, and differences in demographic between subjects may explain some of the differences
in motion within the same activity.

5.3.3 Nonlinear modelling

The time series plots also showed that the estimates provided by the models were less accurate
when the reference values for aCOM had more extreme values. This indicates that the rela-
tionship between aCOM and the input variables may be different for very high absolute values
of aCOM. A nonlinear model may be able to represent this behavior. Linear splines can easily
be added to a linear regression model as an extra basis function and would allow the model to
provide different estimates for more extreme input values, and may therefore be a worthwhile
addition to investigate.

5.3.4 Time domain modelling

This thesis only investigated instantaneous models, but aCOM and the parameters used to
investigate it are time domain signal and useful data may be contained in the time domain of
the input parameters. It can already be seen that models for the jump activity may benefit from
time domain parameters, as the start of the jump and the end of the jump create different shapes

53



within the Bland Altman plots which indicates that different relations between the parameters
and aCOMmay apply for different parts of the jump. Models for other activities may also benefit
from this, but this is not indicated in the Bland Altman plots.

5.3.5 Multi-activity models

This thesis assumes working activity detection, and to implement the findings of the thesis in
any kind of practical application would require activity detection to be developed. It is however
unclear how necessary this activity detection is. It may be possible to createmodels that perform
well for multiple activities, or at least well enough for activities that have lower requirements for
the accuracy of the estimate. It may be worthwhile to investigate how much performance is
impacted by combining different activities into the same group, as well as investigating which,
if any, activities need to be distinguished in order for the model to function.

5.3.6 Potential applications

As mentioned in the previous paragraph, the models investigated in this thesis cannot be put
to use in measurement applications directly without the use of activity detection. Nevertheless,
the outcome of this research may provide a starting point for the IMUs used in monitoring ap-
plications. Since the models using the IMUs on the head and sternum provide the overall best
performance, it is reasonable to investigate these first when aiming to create a minimally ob-
trusive monitoring application. The improvement in performance of the models using the upper
leg IMUs and pelvis IMUs when the rotation based variables were included also indicates that
it may be worthwhile to attempt to utilize the rotation of the sensor when estimating aCOM with
only a pelvis IMU or a smartphone.
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6 CONCLUSION

For the estimating the reference value of aCOM provided by the 17 segment model used by the
MVN software in the natural walking activity in the anterioposterior direction, the best performing
linear regressionmodels using only acceleration out of the examined group are themodels using
the head sternum or shoulder segment in combination with the pelvis segment, at 𝑟2 0.83, 0.81
and 0.78 respectively. Models using these segments also perform best for the zigzag activity at
𝑟2 0.78, 0.78 and 0.76, for the turn activity at 𝑟2 0.79, 0.77 and 0.76, for the sit down and stand
up activity at 𝑟2 0.84, 0.87 and 0.87, for the beam walking activity at 𝑟2 0.72, 0.71 and 0.70,
for the terrain walking activity at 𝑟2 0.77, 0.75 and 0.73, and for the stairs walking up activity at
𝑟2 0.71, 0.69 and 0.69. For the jump activity, the models using head foot or shoulder segment
in combination with the pelvis segment perform the best, at 𝑟2 0.72, 0.7 and 0.67 respectively.
For the stairs walking down activty, the models using the head shoulder or lower leg segment
in combination with the pelvis perform best at 𝑟2 0.64, 0.54 and 0.54 respectively.

For the mediolateral direction, the best performing models using segment acceleration to esti-
mate the reference value of aCOM provided by the 17 segment model used by the MVN soft-
ware in the natural walking activity in the mediolateral direction are also the models using the
head, sternum or shoulder segments in combination with the pelvis, at 𝑟2 0.75, 0.64 and 0.69
respecively. Models using these segments also perform best for slalom walking at 𝑟2 0.80, 0.75
and 0.75, for zigzag at 𝑟2 0.72, 0.73 and 0.71, for turn at 𝑟2 0.73, 0.69 and 0.70, for sit down
and stand up at 𝑟2 0.51, 0.57 and 0.52, for jump at 𝑟2 0.29, 0.53 and 0.29, for terrain walking
at 𝑟2 0.76, 0.79 and 0.69, for stairs walking up at 𝑟2 0.80, 0.75 and 0.77, and for stairs walking
down at 𝑟2 0.79, 0.70 and 0.68. For the beam walking activity in the mediolateral direction, all
models perform poorly, the best performing models using the pelvis in addition to the lower leg,
sternum or foot, achieving 𝑟2 0.35, 0.32 and 0.31 respectively.

In the vertical direction, all linear regression models estimating the reference value of aCOM
provided by the 17 segment model used by the MVN software using acceleration perform well
for all activities except the sit down and stand up activity, achieving > 0.8 𝑟2 for any model using
any segment in combination with the pelvis. The models combining the pelvis with the head,
sternum or shoulder segments achieve 𝑟2 > 0.9 for all activities except slalom, zigzag and turn,
where they achieve 𝑟2 > 0.85.

A linear regression model using the segment acceleration to estimate the mediolateral com-
ponent of the reference value of aCOM provided by the 17 segment model used by the MVN
software using acceleration for the beam activity using both lower leg segments and the pelvis
achieved a better performance than the models using segment accelerations from two seg-
ments, achieving 𝑟2 0.43. A model using both lower legs, the pelvis and the head achieved 𝑟2

0.47 and a model using the pelvis, both lower legs and the sternum achieved 𝑟2 0.56.

The best performing models estimating the anterioposterior component of the reference value
of aCOM provided by the 17 segment model used by the MVN software using acceleration and

55



the 9 parameters informed by the rotation of the segments use the pelvis in addition to the
head, sternum or shoulder in the case of the slalom walking activity at 𝑟2 0.74, 0.76 and 0.72,
the zigzag activity at 𝑟2 0.78, 0.81 and 0.78, the turn activity at 𝑟2 0.82, 0.82 and 0.79, the beam
walking activity at 𝑟2 0.73, 0.74, 0.71, the terrain walking activity at 𝑟2 0.79, 0.77 and 0.76, and
stairs walking up 0.71, 0.70, 0.70. For the natural walking activity, the best performing models
use the pelvis in addition to the head, upper leg or shoulder segment at 𝑟2 0.84, 0.83 and 0.81,
for the sit down and stand up activity the best performing models use the pelvis in addition to the
sternum, shoulder or upper arm segment at 𝑟2 0.90, 0.88, 0.85, for the jump activity, the best
performing models use the pelvis in addition to the lower leg, shoulder or upper arm segment at
𝑟2 0.81, 0.75 and 0.75, and for the stairs walking down activity the best performing models use
the pelvis in addition to the head, upper leg and lower leg segment, at 𝑟2 0.68, 0.59 and 0.57.

The best performing models estimating the mediolateral component of the reference value of
aCOM provided by the 17 segment model used by the MVN software using acceleration and
the 9 parameters informed by the rotation of the segments for natural walking use the pelvis in
addition to the head, sternum or shoulder, achieving 𝑟2 0.75, 0.72 and 0.73 respectively. Models
using these segments also perform best in the mediolateral direction for slalom walking at 𝑟2

0.82, 0.82 and 0.79, for zigzag at 𝑟2 0.73, 0.77 and 0.73, for sit down and stand up at 𝑟2 0.52,
0.65 and 0.55, for terrain walking at 𝑟2 0.76, 0.79 and 0.74, for stairs walking up at 𝑟2 0.79, 0.81,
0.79, and stairs walking down at 𝑟2 0.80, 0.78, 0.72. For the jump activity, the best performing
models use the pelvis segment in addition to the sternum, upper leg or shoulder, achieving 𝑟2

0.52, 0.24 and 0.25, and for the beam walking activity the best performing models use the pelvis
in addition to the upper leg, lower leg or sternum, achieving 𝑟2 0.41, 0.34 and 0.30, respectively.

The best overall performance for all investigated activities for a linear regression model using
2 segments including the pelvis, from the group of models that was investigated in this study,
is achieved by the models using the pelvis segment and either the sternum segment or head
segment.
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A TABLEOFSTARTANDENDREQUIREMENTSFORDATA
EXTRACTED FROM RECORDINGS

The following are the criteria set for the start and end of a recording for each activity: For natural
walking, the start and end were chosen to be the first and last step, or the last step before the
person started turning. For slalom walking, zigzag and walk and turn, the start and end were
chosen to be when the person first starts turning and when they first stop turning. For the sit
down and stand up For the beam walking activity, only steps that started and ended on the
beam were considered, and as such the recordings were cut off so that the last step onto the
beam and the first step off the beam were not included.

Activity Start criteria End criteria
Natural walking Before the first step During any step where the subject

starts to turn, or towards the very
end of the recording

Slalom, Zigzag, Turn Before the subject starts to After last the step in which the
turn subject turns

Sit down and Stand up Before the subject starts to bend After the subject finishes standing up
Jump Before the subject prepares After the subject has resumed

to jump normal posture
Beam During last step onto the beam During first step off the beam
Terrain walking Before the first step Towards the very end of the recording
Stairs walking up/down Before the first step onto the After the last step off the stairs

stairs

Table A.1: Start and end criteria for different activities.
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B DURATION BASED RECORDING SEGMENT EXCLU-
SION

As part of the processing of the data prior to the creation of the models, the duration of the
different step segments was checked for abnormalities. Based on this examination, a number
of recording segments were excluded from the training and evaluation data.

The examination of the lengths of recording segments was performed via a scatterplot of the
duration of the step segments of the gait-based activities, which is shown in figure B.1. From
this scatterplot it was determined that certain cycles within the dataset were extraordinarily long
or short in duration. Noticeably long recording segments were present in the stairs walking,
turning and beam walking activities. A noticably short outlier was present in the terrain walking.
Recording segments with such an abnormal duration represent steps that were taken extremely
quickly or extremely slowly. Including these steps might negatively impact the evaluation of the
model, since the experiment was not designed to record training data with a wide variety of
walking paces. In order to homogenize the activity datasets, thresholds for exclusion were
determined from a visual inspection of the scatter plot and visual comparison of the cycles with
extreme lengths within certain thresholds. The cycles with lengths outside of these thresholds
were excluded from the dataset. The thresholds are listed in table B.1.

Activity Threshold
Up Above 210 frames (0.88 s)
Down Above 210 frames (0.88 s)
Terrain Below 90 frames (0.38 s)
Turn Above 250 frames (1.04 s)

Table B.1: Cycle length exclusion criteria for different activities.

None of the cyclic units of the beam walking activity were excluded despite the high variance of
the step duration within the dataset, since the variation of step duration is a feature of human
balance control. As consequence of this feature, the duration of the cyclic units within the activity
will naturally be erratic and this should be reflected in the dataset.
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Figure B.1: A scatterplot of cycle duration present in the different gait activities.
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C MATHEMATICAL JUSTIFICATION OF INPUT PARAM-
ETERS OF LINEAR MODELS

This appendix contains the kinematic justification behind the input parameters used in the three
model types.

As per eq.2.12, any variable that contributes to the segment center of mass acceleration can
be said to contribute to the whole body center of mass acceleration.

For every input parameter used, it will be shown that an LRM can be used to estimate the
unknowns in the relationship between the input parameters and aCOM. First this will be done
for a model that uses only the segment acceleration, then it will be done for a model using a set
of parameters derived from the segment angular velocity and angular acceleration.

C.1 Acceleration as input parameter

Acceleration is an input parameter that relates to the simplest case where the basis functions
from 2.1 leave the input unaltered.

�̄� = 𝑤0 +
𝑁

∑
𝑛=1

𝑤𝑛 ∗ 𝑣𝑛 (C.1)

A model that comforms to this simplest case would require inputs that are kinematically re-
lated to aCOM via some constant. By making the assumption that only the linear segment
acceleration(𝑎𝑆𝑛) measured by an IMU contributes significantly to the acceleration of a seg-
ment center of mass, eq.2.12 can be rewritten to a form that uses accleration as input and is
compatible with eq.C.1.

⃗𝑎𝐶𝑂𝑀 =
𝑁

∑
𝑛=1

𝑚𝑛
𝑀 ∗ ⃗𝑎𝑆𝑛 (C.2)

Since segment masses and the total body mass are assumed to be constant, 𝑚𝑛
𝑀 can be esti-

mated by the linear model as a coefficient when 𝑎𝑙𝑖𝑛𝑠𝑒𝑔𝑛 is the input.

⃗𝑎𝐶𝑂𝑀 = 𝑤0 +
𝑁

∑
𝑛=1

𝑤𝑛 ∗ ⃗𝑎𝑆𝑛 (C.3)
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Since the relationship between segment acceleration as an estimate for segment center of
mass acceleration and aCOM can be formulated as a set of input-coefficient pair within a linear
regression model, segment acceleration is a biomechanically valid input parameter to use in a
linear regression model estimating aCOM.

Linear regression model using tangential acceleration, centripetal acceleration and seg-
ment acceleration

The basic linear regression model from the previous section only uses the segment accelera-
tion data, which represents the accelerometer data from the IMU as input. Segment orientation
data, representing the IMU’s gyroscope data, is used to rotate the direction of this acceleration
into anatomical frame, but data corresponding to the gyroscope measurements is otherwise
not utilized in the basic linear regression model. However, the gyroscope data may contain
additional information about aCOM. Simply using the segment angular velocity or angular ac-
celeration as an extra linear acceleration variable in the input for the basic linear regression
model would not be biomechanically justified, as the simple linear regression model relies on a
linear relation between 𝑎𝑆𝑛 and aCOM. This relation is not present for angular velocity. Since a
direct linear relation is not present, a feature that does have a linear relation with aCOM would
need to be created from the angular velocity in order to utilize gyroscope measurements as in-
put. In this section, such a feature will be created using the kinematic equations for centripetal
acceleration(𝑎𝑐) and tangential acceleration(𝑎𝑡). These equations are as follows [30]:

Given a reference frame that does not move in relation to the segment origin, the contributions
of linear acceleration, tangential acceleration and in the segment center of mass position in fact
fully describe ⃗𝑎𝐶𝑂𝑀,𝑆𝑛.

⃗𝑎𝐶𝑂𝑀,𝑆𝑛 = ⃗𝑎𝑆𝑛 + ⃗𝑎𝑐 + ⃗𝑎𝑡 (C.4)

⃗𝑎𝑐 and ⃗𝑎𝑡 can be written out when eq.C.4 is divided into its directional components within the
segment coordinate system:

𝑎𝐶𝑂𝑀,𝑆𝑛,𝑥 = 𝑎𝑆𝑛,𝑥 − 𝑟𝑥,𝑆𝑛 ∗ ( ̇𝛽2 + ̇𝛾2) + 𝑟𝑦,𝑆𝑛 ∗ ̈𝛾 + 𝑟𝑧,𝑆𝑛 ∗ ̈𝛽
𝑎𝐶𝑂𝑀,𝑆𝑛,𝑦 = 𝑎𝑆𝑛,𝑦 − 𝑟𝑦,𝑆𝑛 ∗ ( ̇𝛼2 + ̇𝛾2) + 𝑟𝑥,𝑆𝑛 ∗ ̈𝛾 + 𝑟𝑧,𝑆𝑛 ∗ ̈𝛼
𝑎𝐶𝑂𝑀,𝑆𝑛,𝑧 = 𝑎𝑆𝑛,𝑧 − 𝑟𝑧,𝑆𝑛 ∗ ( ̇𝛼2 + ̇𝛽2) + 𝑟𝑥,𝑆𝑛 ∗ ̈𝛽 + 𝑟𝑦,𝑆𝑛 ∗ ̈𝛼

(C.5)

Here 𝑟𝑥,𝑆𝑛,𝑟𝑦,𝑆𝑛,𝑟𝑧,𝑆𝑛 are the x, y and z coordinates of the segment center of mass within the
segment frame. These equations shows that the assumption made for the simple linear regres-
sion model is only valid when the linear acceleration is measured very close to the segment
center of mass(so that 𝑟 is very small), or when the angular velocity and acceleration are close
to zero.

To include the gyroscope measurements in the estimation of aCOM, eqs.C.2 and C.3 can be
expanded using eq.C.4 to describe a linear model with the assumption that both the measured
linear acceleration as well as 𝑎𝑐 and 𝑎𝑡 caused by the measured rotation of the segment con-
tribute to ⃗𝑎𝐶𝑂𝑀,𝑆𝑛..
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⃗𝑎𝐶𝑂𝑀 =
𝑁

∑
𝑛=1

𝑚𝑛
𝑀 ∗ ( ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑎𝑆𝑛 + ⃗⃗⃗ ⃗⃗ ⃗⃗𝑎𝑐 + ⃗⃗⃗⃗⃗ ⃗⃗𝑎𝑡) (C.6)

𝑎𝑆𝑛 is already included in the basic regression model, but 𝑎𝑐 and 𝑎𝑡 are not. If 𝑎𝑐 and 𝑎𝑡 are
known, they could easily be added to eq.C.3, resulting in eq.C.7 for the x axis aCOM. The
accelerations along the other axes have been excluded from this equation for space but this
does not indicate their exclusion from the actual model.

𝑎𝐶𝑂𝑀,𝑥 = ∑
𝑛

𝑤𝑥,𝑛,𝑝 ∗ 𝑎𝑆𝑛,𝑥 + 𝑤𝑥,𝑛,𝑐 ∗ 𝑎𝑐,𝑆𝑛,𝑥 + 𝑤𝑥,𝑛,𝑡 ∗ 𝑎𝑡,𝑆𝑛,𝑥 (C.7)

However, 𝑎𝑐 and 𝑎𝑡 can only be known if the coordinates of the segment center of mass are
known. Although estimates for the segment center of mass coordinates exist in literature[35],
using these would limit the use of the rotational variables to only estimate the contributions of
their respective segments. This is not ideal because the rotation of a segment can potentially
provide information about multiple segments. For instance, the rotation of the right upper arm
might coincide with rotation in the right lower arm, resulting in an effective center of mass with
different coordinates from the actual right upper arm center of mass. As such, it would be useful
to have the LRM estimate the center of mass coordinates instead of providing them to it. In order
to do this, the coordinates of the segment center of mass have to be written in such a way that
the segment center of mass coordinates can be used as part of 𝑤𝑥,𝑛,𝑐 and 𝑤𝑥,𝑛,𝑡 in eq. C.7.
To do this, the model will first be formulated for a case where the coordinates of the segment
center of mass are constant in the anatomical frame, and then the formula will be expanded
to cover a case where the coordinates are based on a rotation from the segment frame to the
anatomical frame.

If the coordinates of the segment center of mass are constant in the anatomical frame, it can be
shown that it would be trivial to formulate the LRM up in way where it would estimate the center
of mass coordinates. If the two angular components of eq C.7 are written out, it can be seen
that each of the center of mass coordinates in that equation are multiplied with a coefficient.

𝑤𝑥,𝑛,𝑐 ∗ 𝑎𝑐,𝑆𝑛,𝑥 = 𝑤𝑥,𝑛,𝑐 ∗ −𝑟𝑥 ∗ ( ̇𝛽2 + ̇𝛾2) (C.8)
𝑤𝑥,𝑛,𝑡 ∗ 𝑎𝑡,𝑆𝑛,𝑥 = 𝑤𝑥,𝑛,𝑡,𝑦 ∗ 𝑟𝑦 ∗ ̈𝛾 + 𝑤𝑥,𝑛,𝑡,𝑧 ∗ 𝑟𝑧 ∗ ̈𝛽 (C.9)

Two coefficients that are multiplied can be simplified to a single coefficient, so if the segment
center of mass coordinates are treated as coefficients, they can be merged with an existing
coefficient in eq.C.8 in the following manner:

𝑤𝑥,𝑛,𝑐 ∗ −𝑟𝑥 = 𝑤𝑥,𝑛,1 (C.10)
𝑤𝑥,𝑛,𝑡 ∗ 𝑟𝑦 = 𝑤𝑥,𝑛,2 (C.11)
𝑤𝑥,𝑛,𝑡 ∗ 𝑟𝑧 = 𝑤𝑥,𝑛,3 (C.12)

These can be filled in to eq.C.9 to create a linear model with coefficients that represent estimates
each of the center of mass coordinates. Of course, the segment center of mass coordinates
are not constant in the anatomical frame, they are only constant within the segment frame.
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While this does mean that the magnitude of ⃗𝑟 remains constant, its direction will depend on
the segment orientation within the anatomical frame. This can be described using a quaternion
rotation.

⃗𝑟𝑃 = 𝑞 ⃗𝑟𝑆𝑛𝑞−1 (C.13)

Here ⃗𝑟𝑃 is the segment center of mass coordinates within the anatomical frame, ⃗𝑞 is a unit
quaternion describing the orientation of the segment in the anatomical frame, and ⃗𝑞−1 is the
inverse of ⃗𝑞. Writing out the quaternion vectors of the center of mass coordinates produces the
following equation:

⎡
⎢⎢
⎣

0
𝑟𝑥,𝑃
𝑟𝑦,𝑃
𝑟𝑧,𝑃

⎤
⎥⎥
⎦

= ⃗𝑞
⎡
⎢⎢
⎣

0
𝑟𝑥,𝑆𝑛
𝑟𝑦,𝑆𝑛
𝑟𝑧,𝑆𝑛

⎤
⎥⎥
⎦

⃗𝑞−1 (C.14)

While the segment center of mass coordinates within the segment frame are still constant within
this equation, and the quaternion is known, the quaternion rotation in this equation creates a
situation where the axial components of ⃗𝑟𝑃 are each a function of three of the segment center of
mass coordinates within the segment frame. In order to estimate the coordinates using an LRM,
each of the individual contributions of the axial components of ⃗𝑟𝑆𝑛 to the axial components of
⃗𝑟𝑃 would need to be known. It is possible to seperate out these individual contributions using
the distributive property of quaternion rotation [36], which allows eq C.14 to be written out as a
sum of the rotations of the directional components.

⎡
⎢⎢
⎣

0
𝑟𝑥,𝑃
𝑟𝑦,𝑃
𝑟𝑧,𝑃

⎤
⎥⎥
⎦

= 𝑞
⎡
⎢⎢
⎣

0
𝑟𝑥,𝑆𝑛

0
0

⎤
⎥⎥
⎦

𝑞−1 + 𝑞
⎡
⎢⎢
⎣

0
0

𝑟𝑦,𝑆𝑛
0

⎤
⎥⎥
⎦

𝑞−1 + 𝑞
⎡
⎢⎢
⎣

0
0
0

𝑟𝑧,𝑆𝑛

⎤
⎥⎥
⎦

𝑞−1 (C.15)

Since quaternion rotation does not change the magnitude of a vector, the magnitude can be
taken outside of the matrix.

⎡
⎢⎢
⎣

0
𝑟𝑥,𝑃
𝑟𝑦,𝑃
𝑟𝑧,𝑃

⎤
⎥⎥
⎦

= 𝑟𝑥,𝑆𝑛 ∗ 𝑞
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

𝑞−1 + 𝑟𝑦,𝑆𝑛 ∗ 𝑞
⎡
⎢⎢
⎣

0
0
1
0

⎤
⎥⎥
⎦

𝑞−1 + 𝑟𝑧,𝑆𝑛 ∗ 𝑞
⎡
⎢⎢
⎣

0
0
0
1

⎤
⎥⎥
⎦

𝑞−1 (C.16)

If the axial components of the rotated axial unit vectors can be separated, the individual contri-
butions of the directional components of ⃗𝑟𝑆𝑛 will be known. These can be found using the fact
that the quaternion rotation of the axial unit vectors depends only on ⃗𝑞, which means that each
of the directional components of the rotated vector can be written as a function of ⃗𝑞.
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𝑞
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

𝑞−1 =
⎡
⎢⎢
⎣

0
𝑓𝑥,1(𝑞)
𝑓𝑦,1(𝑞)
𝑓𝑧,1(𝑞)

⎤
⎥⎥
⎦

𝑞
⎡
⎢⎢
⎣

0
0
1
0

⎤
⎥⎥
⎦

𝑞−1 =
⎡
⎢⎢
⎣

0
𝑓𝑥,2(𝑞)
𝑓𝑦,2(𝑞)
𝑓𝑧,2(𝑞)

⎤
⎥⎥
⎦

𝑞
⎡
⎢⎢
⎣

0
0
0
1

⎤
⎥⎥
⎦

𝑞−1 =
⎡
⎢⎢
⎣

0
𝑓𝑥,3(𝑞)
𝑓𝑦,3(𝑞)
𝑓𝑧,3(𝑞)

⎤
⎥⎥
⎦

(C.17)

These directional components can be inserted into eq.C.16 to produce an equation that details
the contributions of the axial components of ⃗𝑟𝑆𝑛 to the axial components of ⃗𝑟𝑃 .

⎡
⎢⎢
⎣

0
𝑟𝑥,𝑃
𝑟𝑦,𝑃
𝑟𝑧,𝑃

⎤
⎥⎥
⎦

= 𝑟𝑥,𝑠𝑒𝑔 ∗
⎡
⎢⎢
⎣

0
𝑓𝑥,1( ⃗𝑞)
𝑓𝑦,1( ⃗𝑞)
𝑓𝑧,1( ⃗𝑞)

⎤
⎥⎥
⎦

+ 𝑟𝑦,𝑠𝑒𝑔 ∗
⎡
⎢⎢
⎣

0
𝑓𝑥,2( ⃗𝑞)
𝑓𝑦,2( ⃗𝑞)
𝑓𝑧,2( ⃗𝑞)

⎤
⎥⎥
⎦

+ 𝑟𝑧,𝑠𝑒𝑔 ∗
⎡
⎢⎢
⎣

0
𝑓𝑥,3( ⃗𝑞)
𝑓𝑦,3( ⃗𝑞)
𝑓𝑧,3( ⃗𝑞)

⎤
⎥⎥
⎦

(C.18)

Which can be condensed to

⎡
⎢⎢
⎣

0
𝑟𝑥,𝑃
𝑟𝑦,𝑃
𝑟𝑧,𝑃

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

0
𝑟𝑥,𝑆𝑛 ∗ 𝑓𝑥,1( ⃗𝑞) + 𝑟𝑦,𝑆𝑛 ∗ 𝑓𝑥,2( ⃗𝑞) + 𝑟𝑧,𝑆𝑛 ∗ 𝑓𝑥,3( ⃗𝑞)
𝑟𝑥,𝑆𝑛 ∗ 𝑓𝑦,1( ⃗𝑞) + 𝑟𝑦,𝑆𝑛 ∗ 𝑓𝑦,2( ⃗𝑞) + 𝑟𝑧,𝑆𝑛 ∗ 𝑓𝑦,3( ⃗𝑞)
𝑟𝑥,𝑆𝑛 ∗ 𝑓𝑧,1( ⃗𝑞) + 𝑟𝑦,𝑆𝑛 ∗ 𝑓𝑧,2( ⃗𝑞) + 𝑟𝑧,𝑆𝑛 ∗ 𝑓𝑧,3( ⃗𝑞)

⎤
⎥⎥
⎦

(C.19)

This equation can be inserted into eqs.C.8 and C.9 to merge the components of ⃗𝑟𝑆𝑛 with the
coefficients of the LRM. Inserting eq. C.19 into eq. C.8 creates the following equation

𝑤𝑥,𝑛,𝑐 ∗ 𝑎𝑐,𝑆𝑛,𝑥 = 𝑤𝑥,𝑛,𝑐 ∗ −(𝑟𝑥,𝑆𝑛 ∗ 𝑓𝑥,1( ⃗𝑞) + 𝑟𝑦,𝑆𝑛 ∗ 𝑓𝑥,2( ⃗𝑞) + 𝑟𝑧,𝑆𝑛 ∗ 𝑓𝑥,3( ⃗𝑞)) ∗ ( ̇𝛽2 + ̇𝛾2) (C.20)

Since the segment center of mass coordinates are multiplied directly with the coefficient of the
linear model, the coordinates and the coefficients can be merged into three coefficients.

𝑤𝑥,𝑛,𝑐 ∗ −𝑟𝑥,𝑆𝑛 = 𝑤𝑥,𝑛,𝑐,1
𝑤𝑥,𝑛,𝑐 ∗ −𝑟𝑦,𝑆𝑛 = 𝑤𝑥,𝑛,𝑐,2
𝑤𝑥,𝑛,𝑐 ∗ −𝑟𝑧,𝑆𝑛 = 𝑤𝑥,𝑛,𝑐,3

(C.21)

These coefficients can be inserted into eq.C.20

𝑤𝑥,𝑛,𝑐 ∗ 𝑎𝑐,𝑠𝑒𝑔𝑛,𝑥 =𝑤𝑥,𝑛,𝑐,1 ∗ 𝑓𝑥,1( ⃗𝑞) ∗ ( ̇𝛽2 + ̇𝛾2)+
𝑤𝑥,𝑛,𝑐,2 ∗ 𝑓𝑥,2( ⃗𝑞) ∗ ( ̇𝛽2 + ̇𝛾2)+
𝑤𝑥,𝑛,𝑐,3 ∗ 𝑓𝑥,3( ⃗𝑞) ∗ ( ̇𝛽2 + ̇𝛾2)

(C.22)
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Inserting eq.C.19 into eq.C.9 works similarly and produces the following equation

𝑤𝑥,𝑛,𝑡 ∗ 𝑎𝑡,𝑆𝑛,𝑥 =𝑤𝑥,𝑛,𝑡,𝑦 ∗ (𝑟𝑥,𝑆𝑛 ∗ 𝑓𝑦,1( ⃗𝑞) + 𝑟𝑦,𝑆𝑛 ∗ 𝑓𝑦,2( ⃗𝑞) + 𝑟𝑧,𝑆𝑛 ∗ 𝑓𝑦,3( ⃗𝑞)) ∗ ̈𝜃𝑧+
𝑤𝑥,𝑛,𝑡,𝑧 ∗ (𝑟𝑥,𝑆𝑛 ∗ 𝑓𝑧,1( ⃗𝑞) + 𝑟𝑦,𝑆𝑛 ∗ 𝑓𝑧,2( ⃗𝑞) + 𝑟𝑧,𝑆𝑛 ∗ 𝑓𝑧,3( ⃗𝑞)) ∗ ̈𝜃𝑦

(C.23)

Like with eq.C.20, coefficients can again be merged.

𝑤𝑥,𝑛,𝑡,𝑦 ∗ 𝑟𝑥,𝑆𝑛 = 𝑤𝑥,𝑛,𝑡,1
𝑤𝑥,𝑛,𝑡,𝑦 ∗ 𝑟𝑦,𝑆𝑛 = 𝑤𝑥,𝑛,𝑡,2
𝑤𝑥,𝑛,𝑡,𝑦 ∗ 𝑟𝑧,𝑆𝑛 = 𝑤𝑥,𝑛,𝑡,3
𝑤𝑥,𝑛,𝑡,𝑧 ∗ 𝑟𝑥,𝑆𝑛 = 𝑤𝑥,𝑛,𝑡,4
𝑤𝑥,𝑛,𝑡,𝑧 ∗ 𝑟𝑦,𝑆𝑛 = 𝑤𝑥,𝑛,𝑡,5
𝑤𝑥,𝑛,𝑡,𝑧 ∗ 𝑟𝑧,𝑆𝑛 = 𝑤𝑥,𝑛,𝑡,6

(C.24)

And again these coefficients can be inserted into eq.C.23

𝑤𝑥,𝑛,𝑡 ∗ 𝑎𝑡,𝑠𝑒𝑔𝑛,𝑥 =𝑤𝑥,𝑛,𝑡,1 ∗ 𝑓𝑦,1( ⃗𝑞) ∗ ̈𝛾 + 𝑤𝑥,𝑛,𝑡,2 ∗ 𝑓𝑦,2( ⃗𝑞) ∗ ̈𝛾+
𝑤𝑥,𝑛,𝑡,3 ∗ 𝑓𝑦,3( ⃗𝑞)) + ∗ ̈𝛾 + 𝑤𝑥,𝑛,𝑡,4 ∗ 𝑓𝑧,1( ⃗𝑞) ∗ ̈𝛽+
𝑤𝑥,𝑛,𝑡,5 ∗ 𝑓𝑧,2( ⃗𝑞) ∗ ̈𝛽 + 𝑤𝑥,𝑛,𝑡,6 ∗ 𝑓𝑧,3( ⃗𝑞) ∗ ̈𝛽

(C.25)

Similar equations can be calculated for the y and z components of 𝑎𝑐 and 𝑎𝑡. Since 𝑓𝑥,𝑛( ⃗𝑞) ∗
( ̇𝛽2 + ̇𝛾2), 𝑓𝑦,𝑛( ⃗𝑞) ∗ ̈𝛾 and 𝑓𝑧,𝑛( ⃗𝑞) ∗ ̈𝛽 are all functions of the inputs from the IMU, they can all be
used as basis functions for the linear model. These basis functions can be used to incorporate
the information from the angular velocity and angular acceleration into the estimation of aCOM,
while allowing the linear model to estimate the location of the segment center of mass itself.
Basis functions which can do the same for the y and z axes can be created in an equivalent
manner.

For the sake of completeness, each of the basis functions derived from eqs.C.16, C.17, C.22
and C.25 will be listed below. The seperation of axial components that was previosusly per-
formed by writing the components of unit vectors down as functions of ⃗𝑞 is here represented as
a vector multiplication. For 𝑎𝑐 the derived features are as follows:

𝑓𝑎𝑐𝑥,1( ̇𝛽, ̇𝛾, ⃗𝑞) = [0 1 0 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ( ̇𝛽2 + ̇𝛾2)

𝑓𝑎𝑐𝑥,2( ̇𝛽, ̇𝛾, ⃗𝑞) = [0 1 0 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
1
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ( ̇𝛽2 + ̇𝛾2)

𝑓𝑎𝑐𝑥,3( ̇𝛽, ̇𝛾, ⃗𝑞) = [0 1 0 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
0
1

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ( ̇𝛽2 + ̇𝛾2)

(C.26)
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𝑓𝑎𝑐𝑦,1( ̇𝛼, ̇𝛾, ⃗𝑞) = [0 0 1 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ( ̇𝛼2 + ̇𝛾2)

𝑓𝑎𝑐𝑦,2( ̇𝛼, ̇𝛾, ⃗𝑞) = [0 0 1 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
1
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ( ̇𝛼2 + ̇𝛾2)

𝑓𝑎𝑐𝑦,3( ̇𝛼, ̇𝛾, ⃗𝑞) = [0 0 1 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
0
1

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ( ̇𝛼2 + ̇𝛾2)

(C.27)

𝑓𝑎𝑐𝑧,1( ̇𝛽, ̇𝛾, ⃗𝑞) = [0 0 0 1] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ( ̇𝛼2 + ̇𝛽2)

𝑓𝑎𝑐𝑧,2( ̇𝛼, ̇𝛽, ⃗𝑞) = [0 0 0 1] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
1
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ( ̇𝛼2 + ̇𝛽2)

𝑓𝑎𝑐𝑧,3( ̇𝛼, ̇𝛽, ⃗𝑞) = [0 0 0 1] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
0
1

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ( ̇𝛼2 + ̇𝛽2)

(C.28)

And for 𝑎𝑡 the derived features are as follows:
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𝑓𝑎𝑡𝑥,1( ̈𝛽, ⃗𝑞) = [0 0 1 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛽

𝑓𝑎𝑡𝑥,2( ̈𝛾, ⃗𝑞) = [0 0 0 1] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛾

𝑓𝑎𝑡𝑥,3( ̈𝛽, ⃗𝑞) = [0 0 1 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
1
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛽

𝑓𝑎𝑡𝑥,4( ̈𝛾, ⃗𝑞) = [0 0 0 1] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
1
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛾

𝑓𝑎𝑡𝑥,5( ̈𝛽, ⃗𝑞) = [0 0 1 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
0
1

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛽

𝑓𝑎𝑡𝑥,6( ̈𝛾, ⃗𝑞) = [0 0 0 1] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
0
1

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛾

(C.29)
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𝑓𝑎𝑡𝑧,1( ̈𝛼, ⃗𝑞) = [0 0 0 1] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛼

𝑓𝑎𝑡𝑧,2( ̈𝛾, ⃗𝑞) = [0 1 0 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛾

𝑓𝑎𝑡𝑧,3( ̈𝛼, ⃗𝑞) = [0 0 0 1] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
1
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛼

𝑓𝑎𝑡𝑧,4( ̈𝛾, ⃗𝑞) = [0 1 0 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
1
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛾

𝑓𝑎𝑡𝑧,5( ̈𝛼, ⃗𝑞) = [0 0 0 1] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
0
1

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛼

𝑓𝑎𝑡𝑧,6( ̈𝛾, ⃗𝑞) = [0 1 0 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
0
1

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛾

(C.30)

𝑓𝑎𝑡𝑧,1( ̈𝛼, ⃗𝑞) = [0 0 1 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛼

𝑓𝑎𝑡𝑧,2( ̈𝛽, ⃗𝑞) = [0 1 0 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛽

𝑓𝑎𝑡𝑧,3( ̈𝛼, ⃗𝑞) = [0 0 1 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
1
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛼

𝑓𝑎𝑡𝑧,4( ̈𝛽, ⃗𝑞) = [0 1 0 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
1
0

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛽

𝑓𝑎𝑡𝑧,5( ̈𝛼, ⃗𝑞) = [0 0 1 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
0
1

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛼

𝑓𝑎𝑡𝑧,6( ̈𝛽, ⃗𝑞) = [0 1 0 0] ∗ ⃗𝑞
⎡
⎢⎢
⎣

0
0
0
1

⎤
⎥⎥
⎦

⃗𝑞−1 ∗ ̈𝛽

(C.31)
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D EXAMPLES OF IMU SELECTION

This section will provide examples of the correlation heatmaps that were examined and the
descisions that weremade based on them. It will be shown that every segment that was selected
to be tested in the models was shown to be potentially useful in at least one heatmap. The full
set of correlation heatmaps can be found in a zip file on the gitlab page § of this project.

D.1 Same direction correlation heatmaps

This section will show examples of descisions made via heatmaps of the average correlation of
segment accelerations in a given direction with the aCOM component of that same direction.

In figure D.1, a correlation heatmap for the X axis component of segment accelerations and the
X axis component of aCOM for the natural walking activity is shown. The correlation between
aCOM and the segment acceleration of T8 and the pelvs is the highest of the displayed group,
and the lower bound of the confidence interval of the correlation between the segment acceler-
ation of the upper legs is also fairly high. As such, these segments were identified as potentially
useful based on this heatmap.

In figure D.2, a correlation heatmap for the X axis component of segment accelerations and
the X axis component of aCOM for the sit down and stand up activity is shown. The segment
accelerations of T8, the head the shoulders and the upper arms have relatively high correlations
and lower bounds for the confidence intervals of their correlations. Due to this correlation and
confidence interval, these segments were therefore identified as potentially useful based on this
heatmap.

In figure D.3, a correlation heatmap for the X axis component of segment accelerations and the
X axis component of aCOM for the jump activity is shown. The segment accelerations of T8,
the upper legs and the lower legs had relatively high correlations with aCOM and were therefore
identified as potentially useful. Although the correlation between the feet and aCOM is relatively
low, lower bound of the correlation between the acceleration of the feet and aCOM is relatively
high. This was used to also identify the feet segments as potentially useful.

§https://gitlab.utwente.nl/bss_development/students/m_donck/movella-sensors
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Figure D.1: A correlation heatmap for the X axis component of segment accelerations and the
X axis component of aCOM for the natural walking activity.
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Figure D.2: A correlation heatmap for the X axis component of segment accelerations and the
X axis component of aCOM for the sit down and stand up activity.
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Figure D.3: A correlation heatmap for the X axis component of segment accelerations and the
X axis component of aCOM for the jump activity.
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D.2 Cross axis correlation heatmaps

This section will show an example of a descision made via the heatmaps of the average cor-
relation of segment accelerations in a given direction with the aCOM component of a different
direction. While other cases of noticable cross axis correlation exist, the example provided here
is the only case where cross axis correlation was used to select a segment for use in the linear
regression models.

In figure D.4, a correlation heatmap for the X axis component of segment accelerations and the
Z axis component of aCOM for the stairs walking down activity is shown. The correlatations
for the acceleration of the hands segments and the upper bounds of their confidence interval
are slightly higher than that of the other segments, and this was used to identify the hands as
potentially useful segments.
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Figure D.4: A correlation heatmap for the Z axis component of segment accelerations and the
X axis component of aCOM for the stairs walking down activity.

77



D.3 Rotation based variables heatmap

This section will show examples of a descision made via the heatmaps of the average cor-
relation of the gyroscope based variables calculated from the rotation of a certain segment
corresponding to a given direction with the aCOM component of the same direction.

In figures D.5, D.6 ,D.7 and D.8, heatmaps of the average correlation of the rotation based
variables corresponding to acceleration along the X axis of the pelvis, shoulder, lower leg and
upper leg with the X axis component aCOM for the sit down and stand up, natural walking, stairs
walking down and terrain activities are shown. Each of these heatmaps shows at least one lower
bound of of the confidence interval of the average correlation which is significantly higher than
0. Based on this the shoulder, lower leg and upper leg have been selected as potentially useful
segments and a model using both the rotation based variables and the accelerations of only the
pelvis to estimate aCOM was tested seperately.
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Figure D.5: A correlation heatmap of the average correlation of the rotation based variables
corresponding to acceleration along the X axis of the pelvis with the X axis component aCOM
for the sit down and stand up activity.
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Figure D.6: A correlation heatmap of the average correlation of the rotation based variables
corresponding to acceleration along the X axis of the left shoulder with the X axis component
aCOM for the natural walking activity.

80



Figure D.7: A correlation heatmap of the average correlation of the rotation based variables
corresponding to acceleration along the X axis of the right lower leg with the X axis component
aCOM for the stairs walking down activity.
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Figure D.8: A correlation heatmap of the average correlation of the rotation based variables
corresponding to acceleration along the X axis of the left upper leg with the X axis component
aCOM for the terrain walking activity.
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E QQ PLOT RESULTS

This appendix will briefly discuss the main observation found in the qq plots.

E.0.1 qq plots

The vast majority of the qq plots that were created showed a significant deviation from a linear
relation at the tails, indicating that the distributions of the model and the reference values differ
from each other. These deviations were present for both the all direction acceleration model
and the gyroscope based model. These distributions did not change drastically in shape for
the gyroscope based model compared to the all direction acceleration model using the same
segments, even when the performance of the model improved. An example of this can be seen
in figure E.1.

Figure E.1: qq plots corresponding to models for estimating aCOM in the natural walking activity
using the right upper leg, with and without using the gyroscope variables..
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F INVESTIGATIONOFABNORMALDATAFROMSUBJECT
5

This appendx details the investigation of abnormal data found in the recordings corresponding to
subject. This appendix will first explain how the abnormalities were found, the examinations that
were performed on these initially found abnormalities. It will then detail how the determination
was made that they were present outside of just the natural walking activity and finally why the
decision was made to exclude the data from subject 5 due to these abnormalities.

F.1 Discovery

The abnormalities were discovered during the examination of the initial Bland Altman plots. A
streak-like shape was detected in the Bland Altman plots for the models for the natural walking
activity. Examining which samples belonged to which subject showed that the streak-like shape
was formed by data from subject 5. Two instances of Bland Altman plots displaying this streak
with data from subject 5 highlighted can be seen in figures F.1 and F.2.

Figure F.1: An example of ’streaks’ in the Bland Altman plots for models estimating aCOM in
natural walking using the head segment, with the data from subject 5 highlighted.
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Figure F.2: An example of ’streaks’ in the Bland Altman plots for models estimating aCOM in
natural walking using the sternum segment, with the data from subject 5 highlighted.

As it was shown that these ’streaks’ came from data from subject 5, it was further investigated
whether the ’streaks’ were formed from all data from subject 5 or a single recording. It was
found that all recordings of subject 5 contributed to this streak, as can be seen in figures F.3
and F.4.

Figure F.3: An example of ’streaks’ in the Bland Altman plots for models estimating aCOM in
natural walking using the head segment, with individual subject 5 recordings in seperate colors.
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Figure F.4: An example of ’streaks’ in the Bland Altman plots for models estimating aCOM
in natural walking using the sternum segment, with the individual recordings subject 5 given
seperate colors.

To further investigate the nature of these odd shapes within the Bland Altman plot, time series
plots from subject 5 for natural walking were compared to time series plots from other subjects.
It was found that the natural walking activity recordings for subject 5 contained oscillations in the
anterioposterior acceleration of the pelvis that were not present in the recordings of the other
subjects, which can be seen in figure F.5. To examine whether these oscillations persisted,
time series from the slalom activity, which was recorded after the natural walking activity, were
examined. These did not contain this oscillation, as can be seen in figure F.6.

Figure F.5: A section of a time series plot of the anterioposterior acceleration of the head, pelvis
and aCOM for subjects 5 and 8 for the natural walking activity.
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Figure F.6: A section of a time series plot of the anterioposterior acceleration of the head, pelvis
and aCOM for subjects 5 and 3 for the slalom activity.

F.2 Further investigation of the abnormalities

The abnormalities were further examined by examining the average coefficients of the model
trained with and without the data of subject 5, as shown in figure F.7. The coefficients of models
trained on data from only one subject were also examined, and it was found that the coefficients
from subject 5 in natural were outliers in certain cases, producing very low coefficients for ac-
celeration from the pelvis segment in comparison to other subjects, as can be seen in figure F.8.
The difference in coefficients between subject 5 and the other subjects was not high for models
using the shoulder or head segments. Removing subject 5 also produced a large difference in
performance in the anterioposterior direction for the natural walking activity. A heatmap of the
differences in the trial average of 𝑟2 that the addition of subject 5 makes is shown in figure F.9.

Figure F.7: The average coefficients of the models that estimate aCOM using sternum accel-
eration, with and without subject 5 in the training set.
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Figure F.8: A bar graph of the coefficients for subject specific models for the beam walking
activity using the lower legs and pelvis.

F.3 Discovery of abnormalities outside the natural walking activity

Although subject 5 does not seem to be an outlier in the slalom activity, it did present itself
as an outlier when examining the coefficients on models trained on individual subjects for the
beam walk activity, in the case of models using three segments. This can be seen in figure
F.10. Subject 5 does not appear to be an outlier when examining two segment models for the
beam activity, however. It was suspected that subject 5 may have been more or less trained
in walking across a narrow surface than the other subjects, and that this created the difference
in coefficients for the single subject models. This was examined by examining the variances
of the mediolateral aCOM of each of the subjects. A subject who keeps their COM steady is
more trained and may produce different motion from the other subjects. As is shown in figure
F.11, subject 5 does have more variance in aCOM than most other subjects, but the same is
the case for subject 8 whose recordings do not lead to linear regression models with deviating
coefficients. As such, it appears that subject 5 is an outlier in more activities than just natural
walking. Investigating coefficients of subject specific models for the estimation of mediolateral
aCOM in the terrain walk activity also showed that the recordings from subject 5 produced an
abnormally low coefficient for the mediolateral pelvis acceleration for the majority of segments.
An example of this can be seen in figure F.12. Since the beam walk activity was performed
after the slalom activity, there does not appear to be a clearly defined point in time where the
abnormalities stop.
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Figure F.9: The difference in 𝑟2 between the tests sets for models with and without subject 5 in
the dataset. A negative value means that 𝑟2 is lower when subject 5 is included in the dataset.
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Figure F.10: A bar graph of the coefficients for subject specific models estimating mediolateral
aCOM for the beam walking activity using the lower legs and pelvis.

F.4 Conclusion

While data from subject 5 was not found to be an outlier for all models, subject 5 is abnormal
in multiple activities within the protocol and there is no clear chronological cutoff point for these
abnormalities. The abnormalities also pertain to the pelvis acceleration, which is used in all
models. Furthermore, the oscillations present in the pelvis acceleration for the natural walking
activity do not seem to have a basis in the actual motion of the subject and are likely due to
some sort of measurement error. As there is no clear cutoff point for where the abnormalities
in the data from subject 5 appear, this data may is also exhibit abnormal behavior deviant in
activities in between in a way that is not immediately visible from the plots. In order to avoid
using faulty data unknowingly, the decision was made to exclude all recordings of subject 5 from
the data used in the training and testing sets.
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Figure F.11: A bar graph of the variances of the mediolateral aCOM of the subjects.

Figure F.12: A bar graph of the coefficients for subject specific models for the beam walking
activity using the lower legs and pelvis.
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G CONCEPTFORAPHYSICS INFORMEDMACHINE LEARN-
ING MODEL

This unused model concept was meant to apply physics informed machine learning of a sort to
the problem of estimating aCOM.

An introduction to physics informed machine learning

Physics informed machine learning(PIML) is a method that utilizes machine learning to simulate
a system that is known to obey a certain equation such as a conservation law. This law is
encoded as an additional loss term in the loss function of a machine learning algorithm, which
can be seen as an addition to 2.2

𝐸 = √(�̄� − 𝑢)2 + 𝑓𝑐(�̄�) (G.1)

Here 𝑓𝑐 is a function that encodes the equation that the system should comform to. Encoding the
law in this way causes the machine learning algorithm to produce results that (approximately)
follow it.

PIML has two ways to be used, depending on whether the equation is known exactly or only
the form of the equation is known. If the entire equation is known, a model can be created
that simulates the system from an intial state. Used in this way, PIML can sometimes be a
more efficient way to simulate a system than via numerical methods. If only the form of the
equation is known, PIML can aditionally fit constants to the system. Often, training a model with
an additional loss term like this will generalize better than model that is merely trained to best
fit the training data.

The model

We would like to use PIML to estimate aCOM from minimal IMU data, but there is no exact
equivalent to a conservation law when determining aCOM from IMU data. The one set relation
between aCOM and IMU data is the equation for determining aCOM from segment movements.
Using this equation requires full knowledge of the whole body, at which point machine learning
is a redundant addition to the model. This can also be a way to simulate a system, or merely to
estimate the constants in the equation.
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To still use physics informed machine learning, we can go from the IMU data to a higher dimen-
sional space where an additional loss term could be applied: An RBM of the whole body. The
motion of the RBM can be transformed into aCOM data by using eq.2.12. The use of machine
learning in this case is to determine the motion of the model from IMU data. Using a model that
is trained only to minimize the error with the training data need not result in human-like motion
at all, as it would be possible to keep the model in a static pose and apply a linear acceleration
to the root segment to produce aCOM. To produce more human-like motion in the intermediate
step, a constraint can be imposed to have the model comform to the input data. This con-
straint would work as follows: Every segment with an IMU that is used as input is simulated
by the RBM. The difference between the angular velocity in these simulated segments and the
angular velocity measured by the IMUs is used as an additional loss term when training the
model. The difference between the linear acceleration in the simulated segment and the linear
acceleration measured by the IMU is also used as a loss term.

By forcing the model to comform to the input motion in this way, the model may generalize better
than normal machine learning methods.

Implementation considerations

There are several considerations in implementing a model like this.

Control

The first consideration in implementing this model is the actual means of controlling the RBM.
The human body is normally controlled by muscle forces. The model could output muscle
forces which would be integrated to simulate motion. When using muscles, the metabolic cost
of muscle activation could be considered as an additional loss function to promote more real-
istic motion. However, when simulating control muscles, multiple ways of generating the same
motion arise. These aditional ways of generating the same motion would add complexity to
an already complicated model. A method using integration without this redundancy would be
to use joint torques and integrate these. Since segment masses are constant, this would be
equivalent to using the joint angle acceleration as output.

A model using joint torques would not be fully defined, as an RBM also has linear degrees of
freedom in the root segment which are not accounted for by torques. To account for these,
the linear acceleration in the root segment can be used as an additional output. Since the
position and velocity of the root segment have no bearing on the aCOM of the RBM, this linear
acceleration does not need to be integrated and only needs to be determined in each frame.

Creating a model without integration can also be considered. This would be a model that is free
to determine the joint angles and joint angle velocities in addition to joint angular acceleration
and root segment linear acceleration. The benefit of such a model would be that its output for
one frame would not be able to negatively affect the outputs for future frames. However, the
model would no longer truly describe motion, as the orientation, angular velocity and angular
acceleration of the segmenets would be independent of each other. Aditionally, this would
produce a model with far more output variables, making it (more) overdefined. As such, it
would be best to control the model using angular acceleration outputs.
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The usage of integration with respect to joint angles necessarily requires the model to have
initial states for the angles and angular velocities of the RBM joints. These would need to be
determined via a calibration of some sort, which is outside the scope of this concept.

Input

As mentioned, the machine learning model has the IMU linear acceleration and angular velocity
data as input, and the model outputs joint angular accelerations for the purpose of determin-
ing aCOM. Since the angular velocity and orientation of the segments determine the relation
between joint angular accelerations and aCOM, this information about the current state of the
model should also be included in the input. Furthermore, the joint angular acceleration in the
current frame determines the segment angular velocity in the following frame. Since the model
is trained to replicate this angular velocity, the IMU data for the frame after the current one
should also be used as input. Further future inputs may also be used provide more information.
As the model outputs cannot affect the past, past data is not as likely to be useful.

Segments

As discussed in the model section machine learning model needs an RBM to control. As this
model involves back and forth from a higher dimensional space, it would be best to keep the
amount of variables in the rigid body model low. This would be done by limiting the amount
of segments and the rotational degrees of freedom within the joints. Limiting the degrees of
freedom can be done bymerging segments, or by relating the motion of one segment to another.
Reducing the amount of segments could be done by taking an existing model and dissallowing
movement in the joints between the merged segmetns. For instance, the joints between the
pelvis, sternum, head and neck segments could be removed in this way in order to treat these
segments as a single ’torso’ segment. Relating the motion of segments to others would involve
defining the joint angular acceleration of one joint as a function of another. For instance the joint
angular accelation of a leg could defined as a linear function of the joint angular acceleration of
the shoulder.

The greatest simplification of this sort that still allows some freedom for the model would be to
reduce the model to three segments, two of which are constrained by IMU input. One way to
do this would be to make a model consisting of a torso segment, upper arm segment and lower
arm segment. Here the torso torso segment would be made out of the strenum pelvis, the legs
and an arm, the upper arm segment would consist of only the upper arm, and the lower arm
would consist of the lower arm and the hand. The torso segment would be constrained by a
pelvis IMU, the lower arm segment would be constrained by a lower arm IMU, and the upper
arm segment would be unconstrained. This is shown in figure G.1

Modelling software

To implement this PIML model, a simulation of a rigid body model is required. There are several
implementations available. Opensim is a commonly used piece of software for simulating rigid
bodies, and it has been used in machine learning projects before. However, Opensim is not
very well documented, and the program is relatively computationally expensive. Mujoco is a
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Figure G.1: A schematic depiction of the simple three segment rigid body model with two IMU
constraints.

simpler, more lightweight alternative to Opensim, and has been implemented in the reenforce-
ment learning software Gymnasium. This will likely make it easier to implement than Opensim,
and the lower weight of the program should make it easier to optimize. Myosuite, another
lightweight model, can also be considered. The main advantage that it offers over Mujoco is
that Myosuite simulates muscles, while Mujoco does not. Of course, since muscle simulation
would be an unnecessary element of complexity, there is no reason to choose Myosuite for this
implementation.

Next steps

The first step in implementing this model would be to implement a basic model in Mujoco, using
a custom error function to implement PIML. This would be done by first implementing a regular
machine learning model to control a simplified rigid body model, and then adding the custom
error function to that. To postpone the need for a calibration task, the model can be provided
with the initial state from the MVN recording.
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