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Management Summary 
 
The goal of this research is to reduce travel distances in delivery routes, thereby lowering fuel costs 
and CO2-emissions for Koskamp B.V. in Den Ham. Koskamp B.V.’s branch is the sale and purchase of 
automotive parts, serving companies as garages and car dealers across the Netherlands. The head 
office operates from Den Ham and together with 12 other additional locations serve as depot for 
delivering. 
 
The company faces high fuel costs and CO2-emissions due to the long delivery routes driven. For 
delivering automotive parts, Koskamp created 10 areas. Each area is a pre-compiled list of addresses. 
The addresses in an area are relatively close to one another, as the addresses that are put into one list 
are based on zip code. The routes are generated 6 times a day, as there are 6 time slots in one day 
where customers can have their products delivered. The goal is that Koskamp delivers the ordered 
items within 90 minutes from the start of a time slot. Because of the 10 fixed areas, 10 routes are 
generated per time slot and these routes can only be adjusted manually. The problem of high fuel 
costs and CO2-emissions arises as Koskamp uses a routing generation method that utilizes this fixed 
allocation of addresses to areas. The goal of this research is to improve the delivery situation of 
Koskamp B.V. by optimizing the route planning to solve current issues in the delivery situation.  
 
Each location has its own vehicles and is responsible for deliveries within allocated areas. Koskamp 
sells automotive parts varying from filters to car tires and more. One thing that sets Koskamp apart 
from its competitors is their fast delivery time. The company aims to deliver the products within 90 
minutes from the start of the time slot, if the products are in stock. The vehicles are categorized in 
small, medium and large vehicles. Most of these are diesel vehicles, however, they also own a small 
set of electric vehicles. Koskamp only provides service to companies and not to individuals.   
 
To solve the problem the company faces, we conduct a literature research. We search for 
optimization methods, that possibly fit in Koskamp’s strategy. The most used optimization problems 
are the Travelling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP). The TSP is a variant 
of the VRP, which has many other variants. Some examples of VRP variants are the Classical Vehicle 
Routing Problem (CVRP), the VRP with Time Windows (VRPTW) and the Vehicle Routing Problem with 
Pickup and Deliveries (PDVRP). Next, we search for methods that help solving the problem. We 
analyze exact, heuristic and metaheuristic methods and their variants. Exact methods provide optimal 
solutions but can be computationally intensive for large problems. Heuristic methods give proper 
solutions, but are not necessarily optimal. Metaheuristics find good solutions for complex problems 
through repetitive, intelligent search methods. We also search for available code online, to apply in 
the model. 
 
After we review the literature search, we decide to use the CVRPTW with the Path Cheapest Arc 
method (PCA). The CVRPTW comes closest to the situation of Koskamp, as Koskamp’s main goal is to 
deliver within a specific time, and sometimes aiming to deliver to specific customers within a certain 
time window during the time slot. The PCA method is very helpful due to the short calculation time. It 
is relatively simple but it still matches real life situation very good. PCA focuses on selecting the 
shortest path from the current node to the next, which provides efficient and practical solutions for 
real-world scenarios. We choose the PCA heuristic over an exact method, as it will generate routes 
quicker, which is necessary for Koskamp, because routes need to be generated within a short time 
before the vehicles leave.  
 
 
We conduct experiments with the model. The input requires coordinates from the location where the 
customer is located, the number of products that that customer ordered for that time slot, the time 



 

4    
 

windows and vehicle capacity. In the input we can adjust the average service time per customer and 
the average speed of the vehicles. With the coordinates, the algorithm generates a distance matrix by 
utilizing the Haversine formula. After this, we adjust the distance matrix by a correction factor of 1.32 
to better fit real-world distances. The time matrix is generated by taking into account the average 
speed of the vehicles. After we conduct the experiments, we conclude that the impact of the model 
varies a lot depending on the number of addresses. In cases where the number of addresses is below 
50, the number of vehicles remain 10 or lower. In cases where the number of addresses exceed 50, 
the model uses more than 10 vehicles. At first sight, it might seem worse than the old situation, as 
the old situation utilizes 10 vehicles per time slot at any time slot. However, after we conduct 
experiments with real-world data, we see that the vehicles in the old situation exceed the time limit 
of 90 minutes a lot more often when the number of addresses is above 50. We find it challenging to 
give exact numbers on the level of improvement, as the improvement varies per experiment. We 
calculate the reduction in salary and depreciation costs for a random day. We base the depreciation 
costs on distance travelled by a vehicle. We conclude that the model reduces the salary costs by 
14.1% and the depreciation costs by 11.3% for that day. 
 
The study evaluates Koskamps’s current routing generation to be inefficient. By adopting the 
Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) and the Path Cheapest Arc (PCA) 
heuristic, Koskamp is able to achieve improvements, reducing the number of vehicles, the driven 
distance and the number of times the time limit gets exceeded. We recommend to Koskamp to start 
implementing the new model in phases. First, apply the model in practice to real-world time slots and 
analyze its performance. Based on the findings (change in travel distance, costs, etc.) adjust the 
model to improve it. When the model is refined once more to better match real-world conditions, a 
software could be developed to integrate the model into Koskamp's strategy. Besides adjusting the 
model based on practical experience, future research can focus on adapting it to handle returns and 
situations where the model does not fully align with real-world data. Koskamp might explore other 
advanced routing software, such as RoutePilot or RouteLogic, to see if they offer better solutions for 
their needs. 
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1 Introduction  
This study focuses on optimizing the delivery operations at Koskamp B.V., a company specializing in 

the sale of automotive parts, headquartered in Den Ham, the Netherlands, with multiple locations all 

over The Netherlands. Koskamp faces a challenge of improving the efficiency of its delivery system, 

currently hindered by issues such as inefficient route planning, high fuel costs, and high CO2-

emissions. 

In this chapter, we introduce the company and the problem. Section 1.1 provides a description of the 

company Koskamp B.V. Section 1.2 identifies the challenges in Koskamp's situation, including 

inefficient route planning and associated costs. Section 1.3 aims to outline the main goal of this 

research. Section 1.4 states the research questions guiding each phase of the study. Section 1.5 

addresses the scope and limitations of the research. 

1.1 Company description 
The company is called Koskamp B.V. We refer to them as Koskamp. Koskamp’s main business is the 

purchase and sale of automotive parts and other attributes related to cars. Their clients are 

companies that are in need of these parts. Their head building is in Den Ham, where main operations 

and deliveries are managed. They have 12 locations in all of the Netherlands and the 13th location is 

in the making. The other locations function as delivery depots only. Each location has its allocated 

areas where they deliver automotive parts. An area consists of certain addresses that are allocated to 

this specific area, based on where the addresses are located. Besides the deliveries, Koskamp also 

picks up returns when a customer wants to return a product. Their clients are limited to companies 

only, which in most cases are garages or car dealers. In this thesis the focus is on improving the 

delivery situation. 

1.2 Problem of the company 
Koskamp faces challenges with its current delivery system. For delivering the parts, the location in 

Den Ham made 10 delivery areas (relatively) near Den Ham. In this context, an "area" refers to a pre-

compiled group of addresses created by Koskamp. The addresses in an area are relatively close to one 

another, as they are based on their zip code. At this location, routes are created to visit each of the 10 

areas 6 time a day during specific time slots, provided there is at least one scheduled order in each 

area for each time slot. The time from leaving until the next time slot starts is 90 minutes. The first 

time slot is at 08:00 and the last one ends at 17:00. An address that is allocated to an area is allocated 

to that same area in every time slot and is therefore never allocated to other areas, unless done 

manually. 

One thing that sets Koskamp apart from the competition is their fast delivery time. When a customer 

places an order, the customer can either choose from the six different time slots, or choose the 

option ‘as fast as possible’ and gets allocated to the first time slot after the order is placed. However, 

the system generates routes per area and an address is always allocated to the same area. This leads 

to inefficient planning, where some routes end up with too many addresses, that can not be handled 

within 90 minutes, while other routes only have one address. The only option that the planners 

currently have is to put addresses in another area manually, based on feeling that comes from 

experience. However, if this is ideal for the number of kilometers driven is not clear.  

These issues result in long delivery routes for Koskamp, which on its turn results in high fuel costs and 

more CO2-emission. This is the problem that Koskamp wants to address. 
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Figure 1-1: Problem Cluster 

We develop a problem cluster to get to the core problem (see Figure 1-1). A problem cluster identifies 

relationships between multiple problems that a company faces. The core problem is the underlying 

issue that eventually leads to the action problem. The action problem is the main issue that the 

company wants to resolve. There are four subproblems leading to the problem the company faces. 

Salary costs 
The first sub-problem is the cost of salaries. The salary costs are unnecessarily high as some routes 
could be combined with others, reducing the number of routes needed. When an unnecessary route 
is generated, they need more drivers, even though the addresses from that extra route might fit into 
another route.  
 
Inefficient routes 
The second sub problem is the inefficiency of routes. Addresses are allocated to that same area every 
day. This fixed allocation is not efficient, as an address might fit better in another area on a specific 
day. There is a need for flexibility in how the routes are generated. Customers should be allocated 
each day to the area that is most efficient in terms of travel distance. This poor planning occurs, 
because the current system does not fully use the potential for optimizing routes.  
 
Fuel costs 
The third subproblem is the high cost of fuel, which also arise from the inefficient routes. The fuel 
costs are also high because of diesel that is relatively expensive in comparison to electric vehicles 
(Meijs, 2019).  
 
Sustainable fuel sources 
The fourth sub-problem comes from the same underlying cause as the third one. The company has 
limited electrical vehicles, which means that they mostly rely on diesel-based vehicles. These vehicles 
are not very sustainable in comparison to electrical vehicles, which is a potential core problem. 
Because of the use of non-sustainable fuel sources, there will eventually be more CO2-emissions in 
comparison to electrical vehicles. This will lead to high CO2-emissions. 
 
There is a clear issue that requires a solution. In the cluster, the two red boxes display the action 
problem. There is a need to lower the costs and CO2-emisions. This issue stems from two potential 
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core problems leading to this. The two potential core problems are: a fixed allocation of addresses by 
the current planning system and non-sustainable vehicles. We choose to focus on the fixed allocation 
issue, as Koskamp addresses that this research will not lead to radical change of non-electric vehicles 
to electric vehicles.  
 

1.3 Aim of research 
The aim of this research is to create an advice for a more efficient delivery system for Koskamp B.V. by 

optimizing the route planning. The current system leads to unnecessarily high distances driven, high 

fuel costs, high CO2-emissions and high salary costs. This research aims to identify opportunities for 

optimizing routes to reduce the total distance traveled, thereby lowering costs and lowering CO2-

emissions. By reaching a more flexible delivery system, the company aims to enhance the efficiency 

and get closer to a sustainable way of working. The target is to achieve a reduction of 5-10% in the 

average daily distance traveled, fuel costs, and CO2-emissions. 

1.4 Research questions 
For the problem approach, we formulate certain research questions. We divide the questions across 

chapters to eventually solve the problem. 

Chapter 2 describes the first step to get a good view of the current situation. The primary research 

question for this chapter is: "What are the key aspects of Koskamp's current operational setup?"  We 

come up with sub-questions for this primary research question. 

• What are the specifications of the vehicles they are currently using? 

• What type of customers does Koskamp have? 

• How are the routes currently planned? 

• How does the ordering system work? 

• How do the drivers currently experience the routes, in terms of stress and schedule 

tightness? 

 

Chapter 3 reviews the outcome of a literature search that aims for finding appropriate literature for 

the research. The literature helps determine what to solve and how to solve it. The primary research 

question for this chapter is:  “How can routing problems be solved, and what available methods and 

tools can be utilized?”. The following sub-questions are: 

• What are the type of optimization problems and key methodologies used in routing 

problems? 

• What programming code is already available for routing problems? 

 

Chapter 4 outlines the choice of an appropriate model. We need the literature from Chapter 3 to do 

this. We need to define variables, the objective function, constraints and other aspects related to 

optimization. The aim is to choose an appropriate model with an algorithm that is most applicable to 

the specific needs of Koskamp. The research question for this chapter is “What is an appropriate 

model to use for the situation of Koskamp?” 

 

In Chapter 5, we test the algorithm that is applied in the model by doing experiments. In this phase, 

we add value to performance indicators like traveled distance, travel time, costs and emissions and 

compare this to the old situation. This gives an idea on how much the situation improves if the 

company decides to implement the advice. The primary research question for this chapter is: “How 

big is the improvement compared to the old situation when looking at the performance indicators?” 
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In Chapter 6, the last step is to give an advice to Koskamp and explain to them how and why this 

solution will fit in their strategy. If the model leads to big improvements, the company can consider to 

use the advice we create from the research. This advice comes with a model that can be 

implemented in the strategy of the company.  

1.5 Scope and Limitations  
For this thesis, the focus is on the headquarters of Koskamp: Den Ham. We use data from that 

location only. Koskamp van easily adjust the model to the situation of other locations, but we will not 

do this in this research. 

A limitation regarding the research is that it is not possible to make a completely new planning tool 

for the company to use in their strategy, but create a model that can be implemented through further 

research. This prototype model generates routes while adhering to constraints that apply to 

Koskamp’s situation. Another limitation is that it is not possible to do this for every location of 

Koskamp, as this will cost too much time. That is why we only conduct research at the Den Ham 

location. 

We choose to use python as a programming language on forehand because Python is the most 
generally used program language and is relatively easy to learn (Okeke, 2023). 
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2 Current situation of the company 
This chapter addresses the research question "What are the key aspects of Koskamp's current 
operational setup?". Section 2.1 outlines the locations Koskamp has in the Netherlands. Section 2.2 
elaborates on the types of products Koskamp sells and the specifications of the vehicles used for 
deliveries. Section 2.3 outlines the customers of Koskamp. Section 2.4 covers how the route planning 
is currently done. In Section 2.5, we answer the primary research question, together with the 
corresponding sub questions of this chapter. 
 

2.1 Locations of Koskamp 
Koskamp currently operates from 12 locations in The Netherlands, while a 13th location is in the 

making. Their main building is located in Den Ham. The additional locations include Zutphen, Emmen, 

Bilthoven, Kampen, Leeuwarden, Arnhem, Lelystad, Groningen, Nijmegen, Assen, and Steenwijk. The 

13th location will be in Hengelo. The locations obviously have interaction with each other, but not 

with regards to delivering to customers, as each location has allocated its own areas for delivering. All 

the vehicles that leave from a certain location at a specific time slot, will also return to that location 

before the end of that time slot. 

2.2 Aspects of Koskamp 

2.2.1 Products 
The products sold at Koskamp are automotive parts, which can vary from cleaning tools to car tires. 

Koskamp aims to deliver within 90 minutes from the start of a time slot, provided the products are in 

stock. The company states that 95% of the products that are ordered is in stock. The other 5% Is 

assumed to be there the next day. However, there are exceptions that take a bit longer.  

2.2.2 Vehicles 
Type of vehicles 
The vehicles are subdivided in three categories: small, medium and large. The small vehicles are 
named ‘bestelbus’ (delivery van), the medium ones are called ‘bus’ (van) and the large ones are called 
‘Bus XL’ (XL van). 
 
Fuel  
The fuel used for the vehicles in Den Ham is diesel. There are three electric vehicles at this location: 2 
Renault Kangoo’s and 1 Citroen E Berlingo. Table 2-1 displays the electrical vehicles in green. 
 
Costs 
The costs associated with delivery include fuel costs, salary costs, and depreciation costs. Fuel costs 
vary depending on the type of car (and sometimes even within the same type), depreciation costs 
vary based on the size of the car, while salary costs are uniform for all drivers at €18.84 per hour. 
 
Emissions 
The amount of CO2 that is emitted depends on the type of car (and, similar to fuel costs, can also vary 
within the same type). We use the manufacturer's specification for the emissions. 
 
 

 

 

 



 

14    
 

Table 2-1 shows the specifications of the vehicles. 

Vehicle Type Size Costs per 
KM (€) 

CO2 
per 
KM (g) 

Diesel 
per KM 
(L) 

Current 
Diesel 
price 
per L 
(€) 

0 Renault Kangoo V-417-KP Bestelbus 
(small) 

0.080152 112 0.043 1.864 

1 Renault Kangoo VHF-59-H Bestelbus 
(small) 

0.08388  117 0.043 

2 Opel Combo V-93-DFT Bestelbus 
(small) 

0.109976 155 0.059 

3 Opel Combo VVR-03-P  Bestelbus 
(small) 

0.109976 155 0.059 

4 Citroen Berlingo VKZ-11-V Bestelbus 
(small) 

0.098792 140 0.053 

5 Renault Express VKZ-44-K Bestelbus 
(small) 

0.078288  111  0.051 

6 Renault Express VNB-72-P Bestelbus 
(small) 

0.078288  111  0.051 

7 Renault Express VPJ-56-Z Bestelbus 
(small) 

0.078288  111  0.051 

8 Renault Express VPS-26-R Bestelbus 
(small) 

0.078288  111  0.051 

9 Renault Express VXX-96-K Bestelbus 
(small) 

0.078288  111  0.051 

10 Fiat Doblo VPT-37-P Bestelbus 
(small) 

0.134208 169 0.072 

11 Renault Trafic VRN-95-N  Bus 
(medium) 

0.134208 189 0.072 

12 Renault Trafic VVF-45-L  Bus 
(medium) 

0.134208 189 0.072 

13 Renault Trafic VVZ-23-H  Bus 
(medium) 

0.134208 189 0.072 

14 Citroen E-Berlingo VSP-28-N  Bestelbus 
(small) 

0.0174 0 
 

15 Peugeot Partner VTN-34-J Bestelbus 
(small) 

0.080152 112 0.043 

16 Kangoo van E-Tech Electric VVH-10-F  Bestelbus 
(small) 

0.0174 0 
 

17 Kangoo van E-Tech Electric VVJ-09-G  Bestelbus 
(small) 

0.0174 0 
 

Table 2-1: Vehicle Characteristics 

* The green rows are electrical vehicles. 

* There are currently no large vehicles at the Den Ham location. 

* Same type of models can have different specifications, as some models may be older. 
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2.3 Customers of Koskamp 

2.3.1 Type of customers 
Koskamp has a policy that sales are made only to companies and not to individuals. Most 

organizations are described as ‘car companies’ which are garages where cars are repaired. Other 

customers are car dealers for example. 

2.3.2 Ordering process of Koskamp 
When ordering at Koskamp, a customer can select the products they want to order on the website. 

When they have selected all the desired products, they are able to choose a time slot in which they 

want the products to be delivered. There is also an option that says ‘as soon as possible’, and then the 

customer will be allocated to the first time slot after the order is placed. Some customers have the 

opportunity to order at every time slot, while others only have the opportunity to choose from less 

time slots. This is based on their ordering frequency: frequent customers have more delivery options 

per day. 

2.4 Route planning 

2.4.1 Current route characteristics 
The delivery system at Koskamp is currently focused on fixed allocation. To explain what this means, 

we explain the components related to this.  

Area 

An area in this context refers to a pre-compiled group of addresses created by Koskamp. The 

addresses within an area are relatively near each other, in comparison to addresses in other areas. 

This is because the creation of the group of addresses, is based on postcode. Currently, the Den Ham 

location has 10 of those area’s. 

Address 

When an address is mentioned, it refers to an address of one of the customers of Koskamp. An 

address is always part of the same area, unless the planner changes the address to another area, 

after the routes are already generated. This is usually done if the planner thinks that address is not 

fitting within 90 minutes within a specific route. 

Route 

A route refers to the path taken from the head building to deliver at customers and then return to the 

head building. The routes are determined by the MobileNXT-system. We explain MobileNXT in detail 

in Section 2.4.2. 

Time slot 

The time slots are the specific periods allocated for deliveries at a particular time of the day. At the 

Den Ham location, there are six such time slots. The first one starts at 08:00 and the last one ends at 

17:00. Customers can choose in which time slot they want their products to be delivered. Most 

customers who frequently order, have the possibility to choose from all time slots, while some 

customers can only choose from two or three slots. At the Den Ham location, the time slots have a 

duration of 90 minutes. 
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Time window 

Some customers made an oral agreement with Koskamp, so that their delivery will be delivered 

within a certain time window within a time slot. 

Area 1  Area 6 

Area 2   Area 7 

Area 3  Area 8 

Area 4  Area 9 

Area 5  Area 10 

    Depot in Den Ham 

 

 

 

 

Currently, the 10 areas are linked to 10 routes.  We visualize the areas in Figure 2-1. The vehicles that 

travel to areas 1, 2, 3, 4, 5, 6 and 8 need to be back at the depot within 90 minutes. Areas 7, 9 and 10 

are so far away that a vehicle cannot return within 90 minutes, and that is why they are designated as 

3-hour routes. This means that the delivery must be done within 90 minutes, but the driver does not 

need to be back within those 90 minutes. The vehicles that leave for these areas do leave every time 

slot. This means that for these areas more drivers are needed than the other areas, as the driver will 

not be back in time for the start of the next time slot. 

2.4.2 Current planning system 
Currently, the system MobileNXT is used for operational purposes regarding the planning of the 
routes. The MobileNXT system uses an algorithm that does not take into account capacity and time 
constraints, and therefore creates routes that are not well-suited to Koskamp’s requirement of 
delivering within 90 minutes. 
 
MobileNXT is connected to a scanner that is operated by the drivers. This scanner contains the 
addresses in order for delivery and is also used for scanning the products after they have been 
delivered. An additional system, Silicos, makes receipts that are made after a customer places an 
order. MobileNXT uses this as input. On these receipts the specific area where the customer belongs 
to is noted and a time slot is indicated, based on the preference of the customer. 
 
After the input from Silicos is put into MobileNXT, the driver indicates on the scanner that he is 
present at the depot. The articles that have to be delivered are all mixed up on the scanner. Now, the 
driver scans all the articles that have to be delivered, to check if they are all present. If everything 
turns out to be there, the scanner will indicate that the check has been finished. The person in charge 
of planning will give permission to this driver to leave. After this, the system will determine the routes 
for the corresponding area. 
 
When arriving at a customer, the scanner shows the products that have to be delivered only. These 
products get one last scan and are given to the customer. When this is finished, the system states the 

Figure 2-1: Areas visualized 



 

17    
 

delivery done. Then at the next customer, the same routine takes place. When a customer is not 
present, the driver can indicate this in the system. 
 
When all customers have received their products and any returns are taken back, the scanner 
indicates that the driver may return to the depot. 
 

2.4.3 Experience from drivers 
To gain better insights into the routes, it is important to gather information from drivers who have the 
most experience with the current routes. That is why they can give insights on the efficiency of the 
current routes (See Appendix A.1 on page 49 for the full interview with one of the drivers).  
 
MobileNXT routes can sometimes be inefficient. An issue arises when drivers are directed along 
intersecting routes instead of a direct circular path. This can cause confusion and inefficiency.  
 
Areas 1, 2, 3, 4, 5, 6 and 8 are the areas with vehicles that need to return to the depot within 90 
minutes. The tightest areas when it comes to this group of areas, are area 2 and 3. This is because 
these areas are relatively far away from the depot in comparison with the other areas from this 
group. From experience, the driver indicates that these areas contain more orders on average than 
the other areas. Area 3, which includes Raalte, Heino, Ommen, and Lemelerveld, have challenges due 
to the wide distances between these locations, making it difficult to complete deliveries within 90 
minutes. Also, in Area 2, where all addresses are located in Hardenberg, the travel time alone 
amounts to 25 minutes by car. This leaves only 40 minutes to fulfill the orders. This problem is less 
frequent in areas 7, 9 and 10, as they do have enough time to return to the depot after the deliveries 
are done within 90 minutes. 
 
The driver mentions that with reference to the areas they have to drive to, they prefer to drive to the 
same area as often as possible rather than driving different routes each time. This approach will 
enhance the relationship with customers, as customers will see a familiar face, and the driver will 
become more familiar with specific needs the customer might have. 
 
Other things that bothers the drivers is the fact that the MobileNXT-system does not take into 
account the other traffic. The system expects them to be there at a certain timestamp, even though 
this is not always possible due to unexpected traffic circumstances.  
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2.5 Chapter conclusion 
To conclude the chapter, the research questions are answered. 

What are the specifications of the vehicles they are currently using? 

Table 2-1 in Section 2.2.2 shows the specifications of the vehicles. 

 

What type of customers does Koskamp have? 

Koskamp's customers are exclusively companies, and cannot be individuals. Most customers are car 

companies, such as garages where they do a lot of car repair, and car dealers. 

 

How are the routes currently planned? 

Koskamp’s route planning is currently done by the MobileNXT system and manual adjustments to 

this system if the person in charge of the planning sees that certain deliveries cannot be done within 

the 90 minutes or is not satisfied in general. The routes are generated separately for each of the 10 

areas, rather than combining addresses from multiple areas, resulting in 10 independent routes. 

 

How does the ordering system work? 

Customers place orders on Koskamp's website, selecting desired products and choosing a time slot. 

There is a delivery option for 'as soon as possible', which assigns the customer to the first available 

time slot.  

 

How do the drivers currently experience the routes, in terms of stress and schedule tightness? 

Drivers have identified inefficiencies in the MobileNXT system, such as non-optimal routing. They 

prefer driving the same routes to enhance customer relationships and are affected by the system's 

failure to account for other traffic. The most challenging areas are 2 and 3 as they have heavy order 

volumes and are relatively far away for a vehicle that must return to the depot within 90 minutes.  
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3 Theoretical framework 
In this chapter, we research literature of routing optimization problems while we consider the 

primary question of this chapter: "How can routing problems be solved, and what available methods 

and tools can be utilized?" Starting with Section 3.1, we explore different types of routing 

optimization problems, including the Traveling Salesman Problem (TSP) and multiple variants of the 

Vehicle Routing Problem (VRP). Section 3.2 focuses on the key methodologies that solve these 

problems, like exact methods, heuristic approaches, and metaheuristics. In Section 3.3, we review 

online code that is helpful for solving routing problems. Section 3.4 outlines a conclusion 

summarizing the insights we gain from the literature.  

3.1 Types of routing optimizing problems 
One of the most well-known challenges in routing optimization is the Vehicle Routing Problem (VRP). 

It is derived from the Traveling Salesman Problem (TSP), which only seeks the shortest route to visit 

multiple nodes and return to the starting point. VRP aims to optimize routes while aiming for a 

certain goal which can vary. These goals can include minimizing travel time between nodes or 

reducing the overall travel distance.  

In addition to the TSP and VRP, the VRP itself is divided into multiple types (Anita Agárdi, 2022). We 

elaborate on the TSP and 5 different types of the VRP in this section. 

3.1.1 Traveling Salesman Problem 
The Traveling Salesperson Problem (TSP) involves visiting a set of locations exactly once, starting and 

ending at the same location, while minimizing the total travel distance (Urquhart, 2022). Unlike in 

vehicle routing problems, there is only used one vehicle in TSP: it exclusively focuses on determining 

the shortest path that connects all nodes in a route. Each node represents a location and needs to be 

visited exactly once before returning to the depot. 

 

Figure 3-1: TSP example (Urquhart, 2022) 

In Figure 3-1, there is an example of a TSP with 1 depot and 4 nodes (Urquhart, 2022). From the 

depot (see: Dundee) the shortest distance is chosen, which in this case is Edinburgh. From Edinburgh, 

the shortest distance to one of the remaining nodes is to Glasgow and in this way it goes on. 
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3.1.2 Classical Vehicle Routing Problem  
The Classical Vehicle Routing Problem focuses on the minimizing of the distance traveled by selecting 

a certain number of vehicles (Ramser, 1959). The Classical VRP is also known as the Capacitated VRP 

(CVRP). The CVRP, a variant of VRP, adds a constraint that vehicles have a limit to carrying load (Ilhan, 

2020). Characteristics of this variant are that there is only one central depot, each vehicle only travels 

one route and every vehicle has identical characteristics. The start and end of the route is at the 

depot and the capacity of the vehicles cannot be surpassed. This initial version of the VRP resulted in 

numerous variants in the spectrum of VRP methods (Kris Braekers, 2015). The CVRP is visualized In 

Figure 3-2. 

 

Figure 3-2: Visualization of an output of a CVRP (OR-ools, 2021) 

 

3.1.3 Vehicle Routing Problem with Time Windows (VRPTW) 
Vehicle Routing Problems with Time Windows (VRPTW) keeps into account a certain time window 

that a vehicle should be present for delivery at a customer. These time windows can vary from 

customer to customer. The goal is often to reduce the total travel time or total travel distance of a 

route. (Vitória Pureza, 2011).  

3.1.4 Vehicle Routing Problem with Pickup and Delivery (VRPPD) 
The Vehicle Routing Problem with Pickup and Delivery (VRPPD) involves designing vehicle routes that 

start and end at the depot. Pickup and deliveries within each route must be handled by a single 

vehicle, ensuring that the total load along the route never surpasses a specified maximum (Arild Hoff, 

2009).  

3.1.5 The Periodic Vehicle Routing Problem with Time Windows (PVVRPTW) 
The Periodic Vehicle Routing Problem with Time Windows (PVRPTW) involves scheduling routes for 

vehicles to serve customers within specific time windows over a longer period, like daily or weekly. 

The challenge is to plan efficient routes that meet these time constraints while minimizing overall 

costs, distance or time (Suresh Nanda Kumar, Ramasamy Panneerselvam, 2012). 

3.1.6 The Multi-Depot Vehicle Routing Problem (MDVRP) 
The Multi-Depot Vehicle Routing Problem (MDVRP) is about finding the best routes for vehicles 

starting from several depots to visit all customers. The aim is to reduce the total distance or time of 

the routes while managing the tasks between different depots. This adds some complexity because 

coordination between multiple starting locations is necessary. 
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3.2 Key Methodologies 
The Vehicle Routing Problem is a NP-hard problem (Shuhan Kou, 2023). NP-hard (nondeterministic 
polynomial time) means that the solution time for the optimal solution rapidly increases as the size of 
the problem (the number of nodes) increases (Hochba, 1997). 
 

3.2.1 Exact  
Exact solutions explore all possible solutions problems in general, so also for routing problems. It 
searches intensely through a certain area. Exact algorithms guarantee to find optimal solutions within 
given constraints. As the VRP is NP-hard, this indicates that the bigger the problem becomes, the 
more difficult it is to solve it with an exact approach. 
  
An example of an exact way of optimizing a model is Mixed Integer Linear Programming (MILP). When 
tackling MILP problems, a common used approach is a branch-and-bound algorithm. 
 
Branch-and-bound is an exact method. It involves branching, where a problem is divided into smaller 
subproblems, and bounding, where bounds on the optimal solution of each subproblem are 
determined. If the bound of a subproblem indicates it does not produce a better solution than the 
best solution so far, it is removed. This process continues until all subproblems are solved or 
removed, and the solution that remains is the optimal one (Kianfar, 2011). Figure 3-3 displays the 
Branch-and-Bound-algorithm in tree structure. 
 

 
Figure 3-3: Visualization of Branch-and-Bound-algorithm (Geeksforgeeks, 2023) 

 
 
 
 
 
 
 
 
 
 
 
 



 

22    
 

Dynamic Programming (DP) is an approach to solving problems by breaking them into smaller, 
simpler steps. It stores solutions to these steps so they do not need to be recalculated, making it 
efficient for finding optimal solutions to complex problems. Each step is based on previous solutions, 
helping to solve the bigger problems by solving the smaller problems first. DP is effective for 
problems where solutions to smaller parts will help to find the best solution overall (Velimirovi, 
2023). Figure 3-4 shows how each node evaluates the best next node from the remaining options 
available. 

 
Figure 3-4: Visualization of DP-algorithm (Tobbileh, 2021) 

3.2.2 Heuristics 
NP-hard problems are more natural to be tackled by the means of heuristic algorithms. Heuristic 
algorithms find reasonably good solutions. There are many available heuristic algorithms available. 
Heuristics aim for a proper solution, but it may not always be the most optimal (L Zeng, 2006).  
 
Cluster first, route second first divides the customers into areas and then determines a route for each 
area. One of the approaches Is the Gillet and Miller’s sweep-algorithm. This approach starts with 
picking a start location and then conducts a forward or backward sweep, that determines clusters 
(Lalla-Ruiz, 2022). Figure 3-5 visualizes this approach. 

 

 
Figure 3-5: Visualization of the cluster first, route second approach (Lalla-Ruiz, 2022) 

 
Route first, cluster second is an approach that first determines the optimal route for all nodes. 
Beasley's method starts by solving the Traveling Salesman Problem (TSP), where it minimizes the 
travel distance to visit all specified locations one time. Once the TSP solution is determined, it then 
determines the shortest path connecting these nodes in a way that minimizes the total distance 
traveled, and then solves the whole routing problem. (Lalla-Ruiz, 2022). Figure 3-6 visualize this 
approach. 
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Figure 3-6: Visualization of the route first, cluster second approach (Lalla-Ruiz, 2022) 

 
One of the most famous methods to solve VRP heuristics is the Clarke and Wright (CW) savings 
heuristic. This approach starts by assigning each node to a separate route and then merges these 
routes if it results in a reduction in the total route cost. Clarke and Wright could come in helpful due 
to its simplicity in matching real-world situations (Cordeau, 2002). Figure 3-7 visualizes the CW 
savings heuristic. 
 

 
Figure 3-7: Visualization of the Clarke and Wright savings algorithm 

 
Another heuristic method is the Nearest Insertion Heuristic. It selects the customer that is closest to 
an existing route for insertion. Nodes are added by the node with the nearest insertion positions. It 
will give an efficient method for solutions, but just like other heuristics, it will not necessarily be 
optimal (Lalla-Ruiz, 2022).  Figure 3-8 visualizes the approach. 

 
Figure 3-8: Visualization of the Heuristic Nearest Insertion method (Lalla-Ruiz, 2022) 
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A heuristic method that is similar to the nearest insertion heuristic is the Path Cheapest Arc (PCA). 

This method is used for constructing efficient routes in VRP by selecting the least expensive node as 

the next node in the current created route. The cheapest node is usually in terms of distance or time. 

It is a fast way of creating a route with a good, but not optimal solution. It is of good use when trying 

to simulate a real life situation in an efficient way (Dihin Muriyatmoko, 2023). The biggest difference 

with the Nearest Insertion Heuristic, is that the PCA can also aim for the shortest time or lowest costs. 

3.2.3 Metaheuristics 
There are two types of heuristics: (standard) heuristics and metaheuristics. Metaheuristics allow very 
complex moves and enable recombination of solutions. Complex moves means a more advanced 
approach and recombination refers to the fact that it is able to combining elements from different 
solutions to create new solutions (Sorensen, 2013). 
 
With reference to VRP, Tabu search stands out (Cordeau, 2002). Tabu search starts with an initial 
solution and explores other options by making small changes to the initial solution. When a change 
turns out not to improve, it can still be allowed if future changes to that option will result in 
improving the initial solution. It is very effective for large and complex VRP’s. 
 
A Genetic Algorithm is an optimizing technique that generates a set of possible solutions repeatedly. 
It starts with random route solutions, then improve them iteratively by the idea of selection, 
crossover (blending in the routes from more efficient solutions), and mutation (to add variety). (Niels 
Wouda, 2024). 
 

3.2.4 Distance Matrix Construction: Vincenty and Haversine Formulas 
As the distance between nodes for conducting a VRP is needed for distance matrixes, there is a need 

of constructing the matrices quickly. The distances can be approximated by using several formulas. 

Two variants for this are the Vincenty Formula and Haversine Formula (M. Chalela, E. Sillero, L. 

Pereyra , 2021). The Vincenty and Haversine formulas are both used to find the distance between 

nodes, which are represented by coordinates. They both do it in different ways. The Haversine 

assumes the earth as a perfectly round sphere, which is suitable for everyday purposes and shorter 

distances. The Vincenty formula is a bit more complicated and accurate over long distances as it takes 

into account that the Earth is not a perfect sphere but an ellipsoid (M. Chalela, E. Sillero, L. Pereyra , 

2021). 

3.3 Online code 
Online, there is numerous code available for routing optimization. We elaborate on 4 different codes 

in this section. We selected these four codes because they differ in both methodologies and problem 

types, while all being implemented in Python.  

The first code is a code that uses a heuristic: the Nearest Neighbor algorithm. The code uses Excel 

sheets as input, which provides a clear and structured way to organize the input data. The code 

addresses the classic Capacitated Vehicle Routing Problem (CVRP), which involves a single depot, 

multiple vehicles, and customers with specific demands. The objective function is to minimize travel 

distance (Firdaus, 2023). 

The next code utilizes an exact method. The code uses integer programming with Python as the 

programming language. The problem type is a classic Capacitated Vehicle Routing Problem (CVRP) 

and the objective is to minimize total travel distance. The code includes a part that generates a 

visualization of the route using Google Maps. The code uses random coordinates for the input of 

nodes (Kim, 2020). 
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The third code is a heuristic. The code solves the Capacitated Vehicle Routing Problem with Time 

Windows (CVRPTW) using Python. The input includes specified demand, time windows, vehicle 

capacities, and distance/time matrices. The method used is the Path Cheapest Arc (PCA). The 

objective function aims to minimize the travel time and the output shows the time, distance and load 

per route. Excel is used as an input (Singh, 2022). 

The fourth code is an exact approach. In this code for the Capacitated Vehicle Routing Problem with 

Time Windows (CVRPTW), Mixed Integer Programming is utilized, while using Python. The objective 

function minimizes the time (Cimren, 2019). 

3.4 Chapter conclusion 
To conclude this chapter, the research questions belonging to this part of the research methodology, 

are answered. The primary research question for this chapter was “How can routing problems be 

solved, and what available methods and tools can be utilized?”. We answer the sub questions for this 

answer. 

What are the type of optimization problems and key methodologies used in routing problems? 

Types of routing optimization problems 

the primary types of problems used for solving routing challenges are the Traveling Salesman 

Problem (TSP) and the Vehicle Routing Problem (VRP). A TSP allows for a more similar way of 

planning in the current situation of Koskamp by just determining whether two areas can be covered 

by 1 vehicle instead of 2 within 90 minutes. A VRP will give a more accurate solution as it takes into 

account more aspects like multiple vehicles, capacity and time windows. In Chapter 4, we elaborate 

on the type of optimizable problem. 

Key methodologies 

The text discusses different approaches to solving the Vehicle Routing Problem (VRP): We outline 

exact methods such as Mixed Integer Linear Programming (MILP) and Dynamic Programming (DP). 

Heuristic methods include Cluster First, Route Second (CFRS) and Route First, Cluster Second (RFCS). 

Other heuristic algorithms are Clarke and Wright Savings Heuristic, Nearest Insertion Heuristic and 

Path Cheapest Arc (PCA). Additionally, metaheuristics such as Tabu Search and Genetic Algorithms are 

frequently used to solve routing problems. In Chapter 4, we elaborate on the methodology we 

choose for this research.  

What programming code is already available for routing problems?  

There is more code available online for one method than for the other. The available code focuses on 

minimizing distance or time, and not minimizing the distance while taking into account the time. The 

chapter outlines 4 options: the first option utilizes the Nearest Neighbor algorithm, a heuristic 

method for the classic Capacitated Vehicle Routing Problem (CVRP). This code minimizes travel 

distance. The second option is an exact method that uses integer programming to address the CVRP. 

It aims to minimize total travel distance. The third option outlines another heuristic approach, using 

the Path Cheapest Arc (PCA) algorithm to solve the Capacitated Vehicle Routing Problem with Time 

Windows (CVRPTW). This code minimizes travel time. The fourth option is an exact approach 

employing Mixed Integer Programming to address the CVRPTW, focusing on minimizing travel time. 

Chapter 4 outlines the code we choose to use for this research. 
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4 Model design 
This chapter answers the research question: "What is the best model for Koskamp's situation?" The 

chapter follows this structure: Section 4.1 outlines the decision making that we do for choosing the 

right model for the needs of Koskamp. Section 4.2 reviews the available code that we found in 

Chapter 3 and the slight changes that are necessary to align with the requirements of Koskamp. 

Section 4.3 introduces the mathematical model used, outlining its main components. Section 4.4 

concludes by answering the research question for this chapter. 

4.1 Choosing the right model 
Koskamp indicates that they are willing to completely change the way their delivery system is 

organized with a better alternative. Koskamp prefers to search for the best routes possible, even if it 

means significantly changing their current routing system. That is why it is important not to allocate 

all addresses to a specific area in advance.  

We want to put addresses from multiple areas together in one route, so we use a VRP. As the number 

of addresses can be very high, it is too complex to use an exact method. The routes are generated for 

each time slot. This needs to be done just before the vehicles will leave the depot, because customers 

can still place an order for a specific time slot, right before that time slot starts. An exact method will 

take too long to finish in time before the drivers have to leave. 

We use a heuristic to improve the routing situation. The heuristic we apply is a heuristic called Path 

Cheapest Arc (PCA), that utilizes a CVRPTW model, that we will elaborate on in Chapter 4.3. The PCA 

approach focuses on selecting ‘the least expensive node’, which in this case is the shortest time from 

the current node to the next node, which provides a good solution very quick. It is often used for 

simulating real-life scenarios efficiently (Dihin Muriyatmoko, 2023). PCA is also a heuristic that has a 

large selection of available code online in comparison to the other heuristics.  

The model selected is the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), 

utilizing the Path Cheapest Arc (PCA) heuristic. 

4.2 Code Selection 
We found several existing codes for the situation of Koskamp (see Section 3.3). We make the choice 

to use the code utilizing the Path Cheapest Arc method. The reason is that this code is a heuristic and 

needs less adjustment than the other codes. The two exact methods do not suit for the speed that is 

needed to calculate the routes and the other heuristic does not handle time windows, which is crucial 

for Koskamp, so the Path Cheapest Arc is the most suitable, as it closely matches real life situations 

very well. The objective function in this code minimizes the travel time, which is of importance for 

Koskamp. We use a code with an objective function that aims for time minimizing and not distance 

minimizing because this is the most important factor in Koskamp’s strategy. A limitation coming from 

this is that sometimes shorter routes in terms of time, not always correspond to the shortest travel 

distance. Deliveries must be done within a specific time. After that, we adjust the code to handle the 

preferred input and output formats. 

4.3 Mathematical model 
We use the CVRPTW (Capacitated Vehicle Routing Problem with Time Windows) model for this 

research. The CVRPTW model best fits Koskamp’s situation compared to the other models. The main 

features include that the vehicles have limited capacities, it uses strict time windows and utilizes one 

single depot. The model seeks for a proper solution while using the Path Cheapest Arc, which we 

explain in Section 3.2.2 (Dihin Muriyatmoko, 2023). 
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4.3.1 Assumptions 
Assumptions are important for the model because they simplify the complexity of routing operations. 

Without assumptions, planning becomes very complicated and difficult to manage in an effective 

way. By making reasonable assumptions about vehicle capacities and constraints such as road 

conditions, we can simplify operations and make valid decisions. We outline the assumptions in this 

section. 

Capacity of vehicles 
The capacity of the vehicles are not all the same, just like the products that are delivered, as they vary 
in size. That is why it is hard to say how much can fit in a vehicle. With the sizes of the vehicles, we 
make assumptions on how much one vehicle can fit. We choose to base our assumptions on the 
capacity on the number of products. We use number over size as it is more easy to quantify the 
demand for the experiments this way. Also, Koskamp indicates that there is no system yet that 
classifies the products into groups with similar volume. If Koskamp wants to use size in future use, 
this is easy to adjust in the input. To make an accurate assumption, we conduct an interview with one 
of the regional managers of Koskamp (See appendix A.2). 
 
The vehicles are categorized in 3 categories: small, medium and large. Table 4-1 displays which 
vehicle belongs to which category. At the location in Den Ham, they use small and medium size only. 
Typically, there is no distinction between the vehicles in the medium category, and this also goes for 
the small vehicles. There are minor differences. For example, the Fiat Doblo's are somewhat more 
square-formed and might be able to carry an exhaust, while other small vehicles cannot. However, 
according to the regional manager, this is negligible. 
 
According to the regional manager, the weight is negligible as well. It does not happen very often that 
the load is too heavy.  
 
Since the sizes of products vary a lot, the choice of an accurate number that will represent the 
vehicles capacity was challenging.  
 

Model Size # at Den Ham 

Renault Kangoo Bestelbus 
(small) 

2 

Renault Trafic  Bus (medium) 3 

Opel Combo Bestelbus 
(small) 

2 

Citroen Berlingo Bestelbus 
(small) 

1 

Renault Express Bestelbus 
(small) 

5 

Fiat Doblo Bestelbus 
(small) 

1 

Citroen E-Berlingo 
Van 

Bestelbus 
(small) 

1 

Peugeot Partner Bestelbus 
(small) 

1 

Renault Kangoo van 
e-tech electric 

Bestelbus 
(small) 

2 

Table 4-1: Vehicle Size Categories (green row indicates an electrical vehicle) 
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In the future, the company plans to use containers of a certain size (the containers are approximately 

20 by 20 by 30 cm). Some locations already use these containers. These containers are designed to 

transport items such as filters, bulbs, etc. We estimate that each container can hold approximately 3 

objects of average size.  

* A small vehicle is able to contain approximately 50 containers  

* A medium vehicle is able to fit approximately 100 containers. 

* A large vehicle is able to fit approximately 150 containers. 

We base the insights on the experience of the regional manager. It is hard to be completely exact 

about this. 

We assume that approximately 3 products fit in the container. Of course, a tire would not be able to 

fit. That is why we choose a margin of 1 to compensate the fact that a tire needs more space. For the 

capacity assumptions we assume that each container can contain 2 products, as huge products, like 

tires, will not fit.  

For the small, medium and large vehicles that would be 100, 200 and 300 products respectively.   

Condition of vehicles and roads 
When trying to get to a solution that leads to specific routes, the condition of the vehicle is good. The 
roads are also in good condition. In practice, these aspects could lead to some delay. 
 
Other traffic 
Also, traffic jams are not taken into account. Traffic jams are a direct cause of probable delays, as well 
as traffic lights. 
 
Returns 
In real scenarios, Koskamp picks up products at the customers that customers want to return. This is 
done whenever a new product is delivered. In the model, we assume that the number of returned 
products in a route, is always less than the number of products that are delivered during that route. 
This way we neglect the fact that returns have impact on the capacity of the vehicle.  
 
Service time 
We assume that the service time per customer is the same and we take an average of 3 minutes for 
each customer. This number is determined by Koskamp. 
 

4.3.2 Model Components 
This section outlines the main components of the mathematical model that optimizes routing for 
Koskamp B.V. The model includes sets, parameters, decision variables, an objective function, and 
constraints (Sara Rodrigo, Dilina Kosgoda, W. Madushan Fernando, Peter Nielsen, Amila 
Thibbotuwawa, 2024). The sets represent the nodes, the depot and vehicles involved in the delivery 
system. Parameters are travel times, vehicle capacities, and time windows influence the routing 
decisions. Decision variables indicate whether a vehicle travels between specific nodes. The objective 
function aims to minimize the total time. Multiple constraints ensure that vehicle capacities are not 
exceeded, routes are structured in a logical way, and deliveries are done within indicated time 
windows.  
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Table 4-2 displays the sets, parameters and variables. 
 

Sets 

𝑉 = 𝑆𝑒𝑡 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠, 0 𝑖𝑛 𝑉 
𝐾 = 𝑆𝑒𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 
Parameters 

𝑡𝑖
𝑘 = 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣𝑖𝑠𝑖𝑡𝑠 𝑛𝑜𝑑𝑒 𝑖 

𝑡𝑖𝑗 = 𝑇ℎ𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑖 & 𝑗 

𝑞𝑗 = 𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗  

𝑄𝑘 = 𝑇ℎ𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 
𝑆𝑇𝑖 = 𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑖 
𝑇 = 𝑇ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎 𝑟𝑜𝑢𝑡𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑡𝑖𝑚𝑒 𝑠𝑙𝑜𝑡 
𝑒𝑖 = 𝑇ℎ𝑒 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑠𝑡𝑎𝑟𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑎𝑡 𝑎 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 
𝑙𝑖 = 𝑇ℎ𝑒 𝑙𝑎𝑡𝑒𝑠𝑡 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑠𝑡𝑎𝑟𝑡 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑎𝑡 𝑎 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 
Variables 

𝑥𝑖𝑗
𝑘 = 𝐴 𝑏𝑖𝑛𝑎𝑟𝑦 𝑡ℎ𝑎𝑡 𝑡𝑎𝑘𝑒𝑠 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 1 𝑖𝑓  𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗, 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Table 4-2: Sets, Parameters and Variables 

Constraint 1 states the objective function and Constraint 2 until 9 state multiple constraints that we 
use in the model. 

 

min ∑ ∑ ∑ 𝑥𝑖𝑗 
𝑘 𝑡𝑖𝑗

𝑘∈𝐾
𝑗𝜖𝑉

𝑖∈𝑉

   

Constraint 1: Objective function: minimizes the total time for completing the distribution process. 

 

∑ ∑ 𝑥𝑖𝑗 
𝑘

𝑘∊𝐾 = 1  
𝑖∈𝑉

   j ∊ V 

Constraint 2: Ensures that each node is visited exactly once. 

∑ 𝑥0𝑗
𝑘𝑛

𝑗=1 = ∑ 𝑥𝑖0
𝑘 = 1𝑛

𝑖=1    k ∊ K  

Constraint 3: Ensures that each vehicle starts and ends at the depot (depot = node 0). 

∑ 𝑥𝑖𝑗
𝑘

𝑖∊𝑉 =  ∑ 𝑥𝑗𝑖
𝑘

𝑖∊𝑉    j ∊ V, k ∊ K 

Constraint 4: Ensures that each vehicle entering a node, also leaves the node. 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∊𝑉 ∗ 𝑞𝑗  ≤ 𝑄𝑘
𝑖∊𝑉   k ∊ K 

Constraint 5: Ensures that the quantity transported by each truck does not exceed its capacity.    

𝑡𝑖
𝑘 + 𝑡𝑖𝑗 + 𝑆𝑇𝑖 ≤  𝑡𝑗

𝑘 + 𝑀(1 − 𝑥𝑖𝑗
𝑘 )       i,j ∊ V,  k ∊ K 

Constraint 6: Ensures that the service time for customer j is starting after the service time for customer i, if customer j is 
visited immediately after customer i by the same vehicle. 

. 
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𝑒𝑖 ≤ 𝑡𝑖
𝑘 ≤  min (𝑙𝑖,𝑇 − 𝑆𝑇𝑖 − 𝑡𝑖0)  i ∊ V, k ∊ K 

Constraint 7: Requires that kth vehicle arrival times at each node fall within specified time windows and does not exceed 
available time limit after taking into account service time and travel time. 

𝑡𝑖
𝑘  ≥ 0     i ∊ V 

Constraint 8: Ensures that the service start time at each node is non-negative. 

𝑥𝑖𝑗
𝑘  ∊ {0,1}    i,j ∊ V 

Constraint 9: Ensures that the route decision variables are binary variables. 

  

4.4 Chapter conclusion 
The research question for this chapter is: “What is an appropriate model to use for the situation of 

Koskamp?” Chapter 4 outlines that an appropriate model for solving the VRP is Capacitated Vehicle 

Routing Problem with Time Windows (CVRPTW), which uses the Path Cheapest Arc in its algorithm. 

This model includes key components such as constraints on limited vehicle capacities and strict time 

windows, which are essential for meeting the delivery requirements of Koskamp. The use of the Path 

Cheapest Arc (PCA) heuristic is appropriate to this scenario, as it generates routes quickly, Koskamp 

needs as the routes sometimes need to be generated around the same time the vehicles need to 

leave.  
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5 Experimental phase 
In this chapter, we look at how well the route optimization model works. Section 5.1 shows what 

input needs to be put in the model. Section 5.2 shows the form of the output that comes from the 

model. Section 5.3 outlines the experimental design and in Section 5.4 we explain the experiments in 

more detail. Section 5.5 outlines how the model improves route efficiency and reduces costs. Section 

5.6 compares the new value of the indicators to the old one. In Section 5.7 we validate the model. 

Section 5.8 answers the research question “How significant is the improvement compared to the old 

system based on performance indicators?”.  

5.1 Input 
The model optimizes delivery routes based on multiple input factors. The first input data includes a 

list of coordinates for addresses that ordered products. Each coordinate corresponds to a node (See 

Figure 5-1). 

Each node has restrictions, including demand (number of products that specific customer has 

ordered), time windows (in what time window the delivery needs to be done) and a service time of 3 

minutes per address for all customers (see Figure 5-2). When we conduct the experiments we 

indicate that every address has to be visited within 90 minutes, treating all customers the same 

without any special distinction. 

 

 

 

 

 

 

 

The third input covers the vehicles in the model. We indicate the capacity per vehicle and the average 

speed of the vehicles in the simulation can be adjusted here as well (See Figure 5-3). 

 

 

 

 

 

 

 

 

 Figure 5-3: Vehicle capacity and average speed input 

Figure 5-2: Time window, demand and service time input 
Figure 5-1: Input coordinates 
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5.1.1 Time and distance matrix 
After we put in the coordinates, the distance matrix is approximated using the Haversine formula 

based on the coordinates provided (see Section 3.2.4). We decide to use the Haversine formula since 

it is more usable over the Vincenty Formula in approximating shorter distances.  We adjust the matrix 

by a correction factor to get a better reflection of real-world distances. We conclude that this 

correction factor is 1.32. We determine this by comparing a Haversine-created matrix and a matrix 

with actual distances for the same coordinates. We take the average of both matrices and conclude 

that the actual distances are on average 1.32 times bigger than the distances the Haversine formula 

determines. The time matrix generates from the specified average speed in the input, which is set to 

50 km/h. 

5.2 Output 

 

Figure 5-4: Output for a list of coordinates for area 7, 9 and 10 

The output provides a summary of the number of addresses, the number of vehicles used in the 

experiment, including the total time required for their return to the depot. It also shows the total 

distance of all the routes combined. Additionally, it displays the quantities of small and medium 

vehicles utilized. Figure 5-4 shows the output data of a time slot with 14 addresses. 

For more detailed output there is a list of what the time and distance is between the specific nodes. 

As well as the fuel costs and emitted CO2 per route. Figure 5-5 and 5-6 show the output in the correct 

form. 

  

Figure 5-6: Detailed output of the routes                                         

 

 

 

 

Figure 5-5: Detailed output of the routes 
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5.3 Experiment Design 
Table 5-1 presents the experimental design and outlines the experiments we conduct in this research. 

Experiment Title Goal 

1 Correction factor and speed 
testing 

This experiment tests if the 
model works in the preferred 
way with the correction factor 
and vehicle speed that we 
choose. We have to make sure 
that the output is valid and is 
comparable to a real-world 
situation. 

2 Input definition We need to determine how to 
define the input data. We must 
decide whether it is more 
effective to input all 
coordinates at once or process 
them in several batches. 

3 Varying number of addresses 
and demand in the model with 
randomized coordinates. 

This experiment provides 
insights in what happens with 
different number of addresses 
and varying demand levels, as 
we conduct numerous 
experiments with randomly 
selected coordinates. 

4 Historical data analysis In this experiment we use 
historical data to validate if the 
routes improve when we use 
the algorithm in the model. We 
gain insights in change in time, 
distance and costs. 

Table 5-1: Experimental design 

5.4 Experiments 
We conduct Experiment 1 first. To make sure the model works in the preferred way, we test the 

algorithm of the model using a small set of coordinates to be able to review the performance. We 

test the correction factor of 1.32, which we derive from comparing actual distance matrices to those 

calculated using the Haversine formula, as well as the average speed of 50 km/h. 

First, multiple groups of coordinates of real-world data is put into the model. We choose this groups 

randomly, only to verify if the model works well. Table 5-2 displays this output. Then we compare 

these results with the route generated by Bing Maps, that we also display in Table 5-2. We also show 

the difference between the model generated route and the actual route in Table 5-2. 
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# 
Addresses 

#  
Vehicles 
used 

Model Generated Route Actual Route in Bing Maps Difference 

Distance 
(km) 

Travel Time 
(min) 

Distance 
(km) 

Travel Time 
(min) 

Distance 
(km) 

Travel Time 
(min) 

6 1 40.7 70 
 

38.2 
 

68 
 

2.5  2 
 

5 2 167.8  120 
 

170 
 

116 
 

-2.2  4 
 

6 1 49.7 
 

80 
 

52 
 

84 
 

-2.3 
 

-4 
 

12 2 166.6 
 

146 
 

167 
 

132 
 

-0.4 
 

14 
 

6 1 35.2 
 

63 
 

36.8 
 

64 
 

-1.6 
 

-1 
 

8 1 45.6 
 

83 
 

46.6 
 

83 
 

-1.0 
 

0 
 

Table 5-2: Comparing the model output to the actual distance and time 

From Table 5-2, we see that the correction factor and the average speed have some exceptions in the 

outcome, but give a very accurate representation of the real-world situation.  

After we make sure that the model gives us the preferred output, we need to identify how we define 

our input for the generation of the routes in Experiment 2. Currently, Koskamp creates routes by 

dividing addresses into 10 different groups, with each group corresponding to an area. However, we 

decide to try a more efficient method by reducing the number of groups and increasing the number 

of addresses in each group. This approach allows more addresses to be grouped together into fewer, 

larger groups, which will lead to more potential for minimizing travel time, and thereby in most cases 

leads to shorter distance as well. 

At first, we conduct three experiments. The first experiments aims to find which way of grouping the 

addresses will lead to the shortest distance. In Experiment 2a, addresses from 10 areas are combined 

into one list of address coordinates. In Experiment 2b we split the addresses into two groups: we put 

the areas that are in greater distance (area 7, 9 and 10) in separately. In Experiment 2c we split the 

addresses once more resulting into three groups (areas 1-4 and areas 5-6, 8 and 7, 9-10). 

For the first set of experiments, we slightly adjust the model per input of addresses. In Experiment 

2a, we us a single list of address coordinates, which means only one model setup is available, as the 

setup is only able to vary when we use multiple lists of coordinates. In this setup, we set the travel 

time from the customer to the depot to 0 for trips that exceed 45 minutes. This adjustment is 

necessary because addresses further than 45 minutes away can not be reached and returned within 

the required 90 minutes time slot that the model manages. When the travel time is set to 0, and the 

algorithm uses the corresponding address as the last node within a route, the model neglects this 

time and this route will represent a route that will not be back at the depot within 90 minutes. The 

distance is never neglected in any of the experiments. 

In Experiment 2b and 2c, the addresses from areas 7, 9, and 10 are put in separately. This allows us to 

use different set ups for the inputs of the address coordinates. Area’s 7, 9 and 10 are the areas where 

the travel time is likely to exceed 45 minutes. For all the addresses in these areas, we set the travel 

time to the depot to 0. For addresses in the remaining areas, we use the actual travel times. Our goal 

is to limit the number of vehicles that cannot return within 90 minutes compared to Experiment 2a. 
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The experiments use addresses based on the locations of real Koskamp customers, with locations 

selected randomly according to order history. For example, if Area 1 accounts for 30% of all orders, 

and Area 2 accounts for 20%, then the ratio of orders from Area 1 to Area 2 is 3:2. This is done with 

all 10 areas. 

In this first set of experiments, we conduct 100 runs for each experiment. The number of addresses 

vary in each run but we use the same number of addresses for every experiment, meaning that if this 

was not the case, the outcome is not comparable. Also the demand is the same in every run. This 

ensures that our results are accurate and comparable, which allows us to analyze the impact of each 

experiment.  

Experiment Average 
Distance (km) 

Average Time 
(min) 

2a 820.578 856.986 
2b 821.529 963.314 
2c 845.493 993.557 

Table 5-3: Outcome of the average distances and averages travel times  

Table 5-3 displays the results of the experiments. At first sight, Experiments 2a and 2b appear to have 

the best outcomes. However, the average travel time in Experiment 2a is significantly lower than in 

Experiment 2b, despite the distances being similar. This indicates that Experiment 2a neglects the 

time required for the last customer to return to the depot more often, suggesting that the number of 

vehicles unable to return within 90 minutes is higher in Experiment 2a compared to Experiment 2b.  

We conclude that the best way of distributing the addresses, is to do it in the same way as we do in 

Experiment 2b. That way we would limit the number of vehicles that cannot return back to the depot 

in 90 minutes, and have a relatively low distance compared to situations where we would divide the 

groups even more often.  

In Experiment 3, we use the separation of the address coordinates into two groups. To give a proper 

insight, we vary the number of addresses and the average number of demand in every run. The 

addresses are ranging from 10 to 100 in steps of 10. In the real situations, the number of addresses is 

often between 30 and 90. The average demand per address are 3, 6, 9, 10, 11, 12, 13, 14 and 15. The 

demands vary a lot and it is hard to really give a proper indication, that is why a relatively low lower 

bound and relatively high upper bound is chosen. We expect that change in distance and travel time 

would only occur when the average demand is over 9, so that is why we decide to place numbers 

closer together at higher level of demands to be able to observe when changes in distance and travel 

occur. This remains accurate, as for each number of addresses, the same address coordinates apply to 

every average demand level. As a result, multiple average demands have the same output. Each 

combination tests 20 times, resulting in 1800 runs.  
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# 
Addresses 

Average assumed 
demand per address 

# 
Vehicles 
used 

Average 
# 
Vehicles 
used 

Average 
Total 
Time 
(min) 

Average 
Total 
Distance 
(km) 

#  
Small 

# 
Medium 

100 3,6 14 - 17 15.15 1238.55 1013.472 14 - 17 0 - 0 

100 9 14 - 17 15.1 1238.15 1013.183 13 - 17 0 - 1 

100 10 14 - 17 15.15 1239.25 1014.235 13 - 17 0 - 1 

100 11 14 - 17 15.15 1238.6 1013.867 13 - 17 0 - 2 

100 12 14 - 17 15.25 1239.65 1014.442 12 - 17 0 - 3 

100 13, 14 14 - 17 15.4 1248.85 1026.206 10 - 14 2 - 5 

100 15 15 - 18 16.4 1291.05 1072.9 10 - 16 1 - 5 

90 3, 6, 9 14 - 15 14.3 1166.95 975.4549 14 - 15 0 - 0 

90 10 14 - 15 14.35 1167.8 976.1346 13 - 15 0 - 1 

90 11 14 - 15 14.35 1167.4 975.9255 13 - 15 0 - 1 

90 12 14 - 15 14.5 1172 979.8741 11 - 14 0 - 3 

90 13, 14 14 - 16 14.9 1187.2 992.7654 11 - 14 1 - 4 

90 15 14 - 16 15.2 1206.4 1010.4 9 - 14 2 - 5 

80 3,6 12 - 14 12.9 1047.4 880.1404 12 - 14 0 - 0 

80 9 12 - 14 12.9 1047.45 880.1716 12 - 14 0 - 0 

80 10 12 - 14 12.9 1047.55 880.2792 11 - 14 0 - 1 

80 11 12 - 14 12.9 1047.95 880.7092 10 - 13 0 - 2 

80 12 12 - 14 12.9 1048.1 880.7884 10 - 13 0 - 2 

80 13, 14 12 - 14 13.05 1055.7 887.0129 9 - 13 1 - 4 

80 15 12 - 15 13.45 1067.5 898.7814 8 - 12 2 - 6 

70 3, 6, 9 11 - 13 12.2 969.8 834.9317 11 - 13 0 - 0 

70 10 11 - 13 12.2 969.80 834.93 11 - 13 0 - 1 

70 11 11 - 13 12.2 969.2 834.4587 10 - 13 0 - 1 

70 12 11 - 13 12.25 970.4 835.4372 10 - 13 0 - 2 

70 13 11 - 14 12.45 978.95 842.37 9 - 14 0 - 3 

70 15 11 - 14 12.45 982.9 845.8958 7 - 12 1 - 4 

60 3, 6, 9, 10 10 - 12 10.85 860.15 747.0697 10 - 12 0 - 0 

60 11 10 - 12 10.85 861.05 747.8608 10 - 12 0 - 0 

60 12 10 - 12 10.85 859.7 746.5959 9 - 12 0 - 1 

60 13, 14 10 - 12 10.85 860.15 746.6506 8 - 12 0 - 3 

60 15 10 - 12 11.1 870.8 755.8463 7 - 11 1 - 4 

50 3, 6, 9, 10, 11 9 - 11 9.75 768.2 684.2191 9 - 11 0 - 0 

50 12 9 - 11 9.75 768.2 684.2191 8 - 11 0 - 1 

50 13, 14 9 - 11 9.8 769.9 685.555 8 - 11 0 - 1 

50 15 9 - 11 9.9 776.2 690.9163 6 - 10 0 - 3 

40 3, 6, 9, 10, 11, 12 7 - 9 8.5 662.9 595.5984 7 - 9 0 - 0 

40 13, 14 7 - 9 8.5 662.9 595.5984 6 - 9 0 - 1 

40 15 7 - 9 8.55 663.45 596.0328 6 - 9 0 - 2 

30 3, 6, 9, 10, 11 6 - 9 7.45 567.35 531.003 6 - 9 0 - 0 

30 12 6 - 9 7.45 567.35 531.003 6 - 9 0 - 1 

30 13, 14 6 - 9 7.45 567.35 531.003 5 - 9 0 - 1 

30 15 6 - 9 7.45 567.7 531.343 4 - 9 0 - 2 
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20 3, 6, 9, 10, 11, 12, 13, 14 5 - 7 5.8 437.2 411.1973 5 - 7 0 - 0 

20 15 5 - 7 5.8 437.2 411.1973 4 - 7 0 - 1 

10 3, 6, 9, 10, 11, 12, 13, 
14, 15 

3 - 5 3.95 271.35 262.4815 3 - 5 0 - 0 

Table 5-4: Experiments done separating the areas into two groups 

The results in Table 5-4 show that the model, when having 50 or more addresses, requires more than 

the usual 10 vehicles Koskamp uses per time slot. We expect this outcome as the model takes into 

account strict time windows. In the old situation, Koskamp often exceeds the time limit of 90 minutes 

with a higher number of addresses, which allowed them to use less vehicles. From the experiments, 

we observe that the distance and time shift differently at different demand levels based on the 

number of addresses. This shift occurs more quickly with a higher number of addresses than with a 

lower number. After we use randomized data, we conduct a number of experiments with real-world 

data for Experiment 4, using sets of addresses from historical data. Table 5-5, 5-6, 5-7, 5-8 and 5-9 

display the results of using coordinates of an actual group of orders, using the developed model. 

# Addresses Average 
assumed 
demand 
per address 

# Vehicles 
used 

Total 
Time 
(Min) 

Total 
Distance 
(KM) 

Actual 
Total 
Time 
(Min) 

Actual 
Total 
Distance 
(KM) 

38 6 8 645 564.2326662 619 567.6 

55 6 9 724 617.1910883 739 617.2 

38 6 7 543 483.4806912 534 479.1 

63 6 10 791 640.0032985 754 634.7 

54 6 8 588 378.1014754 606 394.5 

40 6 7 598 473.4361786 563 488.1 

81 6 13 1008 826.1183902 1025 826.5 
Table 5-5: Model output versus actual distance and time in Bing Maps 

In Table 5-5, the output of the model appears in yellow. The same order of coordinates are put in Bing 

Maps, which shows an accurate time and distance of the route (including the assumed average of 3 

minutes of service time at every address). This displays in green. It shows that the output of the 

model and the actual time and distance from Bing Maps are very similar.  
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# 
Addresses 

Average 
assumed 
demand 
per 
address 

# 
Vehicles 
used 

Actual 
Total 
Time 
(Min) 

Actual 
Total 
Distance 
(KM) 

# of 
routes 
that 
exceed 
time 
limit 

(Old) # 
Vehicles 
used 

(Old) 
Total 
Time 

(Old) 
Total 
Distance 

(Old) # 
of 
routes 
that 
exceed 
time 
limit 

38 6 8 619 567.6 
1 

10 ↑ 
660 ↑ 

6.6% 
594.6 

↑4.8% 
 0 

55 6 9 739 617.2 
1 

10 ↑ 
748 ↑ 

1.2% 
650.4 ↑ 

5.4% 
 3 

38 6 7 534 479.1 
0 

10 ↑ 
645 ↑ 
20.8% 

569.3 ↑ 
18.8% 

1 

63 6 10 754 634.7 
0 

9 ↓ 
753 ↓ 
-0.13% 

612.3 ↓ 
-3.5% 

4 

54 6 8 606 394.5 
2 

9 ↑ 
654 ↑ 

7.9% 
563.6 ↑ 

42.9% 
2 

40 6 7 563 488.1 
0 

9 ↑ 
606 ↑ 

7.6% 
551.6 ↑ 

13.0% 
0 

81 6 13 1025 826.5 
1 

10 ↓ 
918 ↓ 
-10.4% 

697.1 ↓ 
-15.7% 

5 

Table 5-6: Actual distance and time in Bing maps versus Old planned route in Bing Maps 

Table 5-6 shows the new routes marked in green and the old routes marked in red, both after the 

coordinates are put in by Bing Maps. While the new routes offer improvements, some old routes still 

have shorter distances and durations. However, the table reveals that routes marked in red, despite 

being shorter, exceed time limits more frequently. This suggests that even though these routes are 

shorter, they are not as efficient in terms of time compared to the new routes. 

# 
Addresses 

# 
Vehicles 
used 

Actual 
Total 
Distance 
(kg) 

Fuel costs 
(€) 

CO2-
emissions 
(kg) 

(Old) # 
Vehciles 
used 

(Old) 
Total 
Distance 

(Old) Fuel 
costs (€) 

(Old) 
CO2-
emissions 
(kg) 

38 8 567.6 34.2535248 42.8538 
10 ↑ 

594.6 
↑4.8% 

40.0113475 51.84912 

55 9 617.2 39.62753173 50.6104 
10 ↑ 

650.4 ↑ 
5.4% 

43.7661965 56.71488 

38 7 479.1 26.53666457 32.1681429 
10 ↑ 

569.3 ↑ 
18.8% 

38.3088802 49.64296 

63 10 634.7 42.70972464 55.34584 
9 ↓ 

612.3 ↓ 
-3.5% 

39.3129254 82.0482 

54 8 394.5 23.807286 29.78475 
9 ↑ 

563.6 ↑ 
42.9% 

36.1861257 75.5224 

40 7 488.1 27.03516171 32.7724286 
9 ↑ 

551.6 ↑ 
13.0% 

37.1178259 73.9144 

81 13 826.5 62.09837815 82.7135769 

10 ↓ 
697.1 ↓ 
-15.7% 

46.9086955 60.78712 

Table 5-7: Change in Distance, Fuel costs and CO2-emissions 
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In Table 5-7, the differences in distance, fuel costs and CO2-emissions of the old and new routes are 

displayed. 

For the final comparison, we determined the salary and depreciation costs per route for a single day 

(which is divided into six time slots) for the new situation and the old situation. The first six time slots 

from the real-world data represent a full day.  

Time 
Slot 

# 
Addresses 

# 
Vehicles 
used 

# Not 
back in 
time 

# 
Employees 
needed 

Salary 
costs 
(€) 

(Old) # 
Vehicles 
used 

(Old) # 
Not 
back in 
time 

(Old) # 
Employees 
working 

(Old) 
Salary 
costs (€) 

08:00 38 8 3 8 226.08 10 3 10 282.60 
↑20.0% 

09:30 55 9 4 12 339.12 10 3 14 395.64
↑7.7% 

11:00 38 7 3 11 310.86 10 3 14 395.64
↑15.4% 

12:30 63 10 4 13 367.38 9 3 14 395.64 
0.0% 

14:00 54 8 2 12 339.12 9 3 12 339.12 
0.0% 

15:30 40 7 2 8 226.08 9 3 9 254.34 
↑11.1% 

Day total:                                                                  1808.64                                                                  2062.98 
                                                                 ↑14.1% 

Table 5-8: Change in salary costs 

From the results in Table 5-8 it turns out that the salary costs in the old situation are 14.1% higher for 

this day. 

Time 
Slot 

# 
Addresses 

Total Distance 
(km) 

Depreciation 
costs (€)  

(Old) Total 
Distance 
(km) 

(Old) 
depreciation 
costs (€)  

08:00 38 567.6 41.624 594.6 43.604 

09:30 55 617.2 45.261 650.4 47.696 

11:00 38 479.1 35.134 569.3 41.749 

12:30 63 634.7 46.545 612.3 44.902 

14:00 54 394.5 28.930 563.6 41.331 

15:30 40 488.1 35.794 551.6 40.451 

Day total:                                               233.29                                        259.73  
                                    ↑11.3% 

Table 5-9: Change in depreciation costs 

We base the depreciation costs on the distance travelled by a vehicle. From the results in Table 5-9 it 

turns out that the depreciation costs in the old situation are 11.3% higher for this day. In Appendix B, 

we explain the calculations of the salary and depreciation costs. 
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5.4.1 Limitations of the experiments 
With real-world data, the model sometimes exceeds the time limit in Bing Maps, but never by more 

than 5 minutes. To fix this, we can either make the maximum duration of a route shorter in the input 

or move 1 or 2 addresses manually. By making the maximum duration shorter, the model will 

generate shorter routes and in the real life situation there will be more time to complete the route 

within the time limit. This should help solve the problem without overly increasing the travel 

distances. 

Another limitation is the demand. In the experiments, we assume the average demand. This might 

not be completely accurate to the real situation. The model does not account for returns, which could 

affect route efficiency. This is an aspect that failed to be incorporated into the code. However, the old 

generation of the routes also does not take this into account, so the improvements are still accurate. 

We conduct more experiments with randomized data than with real-world data due to the amount of 

time it costs. Although real-world data showed improvements, the limited number of experiments 

not fully capture all possible scenarios. 

We estimate the fuel costs and CO2-emissions based on the values in Table 2-1 in Section 2.2.2., using 

the cheapest available vehicles. For instance, when 8 vehicles are utilized, the average costs and CO2-

emissions per kilometer of the 8 cheapest vehicles are cumulatively averaged and then multiplied by 

the distance traveled. However, this method is not entirely precise when using the model, as the code 

requires two inputs: during the second input of coordinates from areas 7, 9, and 10, it does not 

account for the fact that the cheapest vehicles have already been utilized in the first input. In Table   

5-6, we calculate manually to still be as precise as possible.  

5.5 Insights 
The main objective of the model is to reduce route distances, thereby lowering fuel costs and CO2-

emissions. Experiments show that from around 50 addresses, the number of vehicles utilized drop 

below 10, compared to the 10 vehicles typically used in the old system for 10 routes. 

Overall, the experiments indicate that the model's routes become more efficient as the number of 

addresses decreases, specifically 50 or lower. However, real-world data shows that with a higher 

number of addresses, between 60 and 70, the routes also improve. Above this number, more vehicles 

are utilized, due to the strict time constraints. Although further validation is required, the 

improvements demonstrate with both the randomized and the real-world data suggest that the new 

routing approach offers a more accurate and efficient solution compared to the previous system. 

Future work should focus on refining the model to address its limitations. In Section 6.3 we elaborate 

on this. 

5.6 Comparison to start situation 
It is hard to say what the exact improvement is on the routes. From the experiments we conclude 

that the model is able to improve the routes, but this is not in a consistent way. In the output of the 

model using real life data, it shows that one output of the total distance in a time slot is around 5% 

higher in the old situation but another is around 40% higher in the old situation. Also, some values 

are lower in the old situation, but still improve as less vehicles will exceed the time limit. When 

comparing the new situation with the old one, we believe that the model is effective in improving the 

routes. 
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5.7 Validation and reliability of the model 
After we conduct the experiments, we present the routes to an executive of the company. The routes 
that came from the model are validated and seem to appear feasible in practice, but might need 
some minor manual adjustment in some cases. For example, when a route is too tight, meaning that 
it is hard to do all the deliveries within the set time, a small manual adjustment to another route can 
be made, to provide more flexibility for the tighter route.  
 

5.8 Chapter conclusion 
The research question for this chapter was: “How big is the improvement compared to the old 

situation when looking at the performance indicators?”. The main performance indicator is the travel 

distance and therefore also the fuel costs and CO2-emissions, as we calculate those based on the 

distance. Although it is hard to give an exact number, the model does show improvement. It shows 

that it has to use fewer vehicles and make routes shorter, which helps in reducing fuel costs and 

emissions. Some routes can improve a lot, while others only imply a small change. For situations 

where the number of addresses are above 50, the number of vehicles exceeds 10. For fewer than 50, 

this is not the case. In real-world data, the experiment with 38 addresses shows a 6.6% reduction in 

time and a 4.8% reduction in distance. Table 5-6 in Section 5.4 shows this for 8 experiments. Salary 

costs reduce by 14.1% and depreciation costs by 11.3% on a randomly chosen day. It also shows 

improvement in delivering within the specified time the delivery needs to be done. When the 

experiments show more vehicles are needed then the usual 10, we see that the time limits do not get 

exceeded as many times as it does in the old situation. Overall, the new model is better than the old 

one, but there is a need of testing and refining it to make sure it works as well as possible in real-life 

situations. Some minor manual adjustments to the generated routes can be helpful. As this might 

occur sometimes, the generation of the routes is not completely without help of manual 

adjustments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

42    
 

6 Conclusions and recommendations 
This chapter provides a summary of the findings of the research and offers recommendations based 

on those findings. It is divided into four sections: Conclusions, Recommendations, Post-Research, and 

Alternatives. Section 6.1 summarizes the answers of all the research questions. Section 6.2 provides 

advice for Koskamp to implement the model. Section 6.3 is the Further Research section and this 

section identifies areas that could use further research and improvement, while Section 6.4 outlines a 

suggestion considering other routing solutions available in the market.  

6.1 Conclusions 
The study aims to optimize the current delivery routes by analyzing multiple aspects and to discover 

how route optimizing methods would enhance that efficiency 

The primary question in Chapter 2 is: "What are the key aspects of Koskamp's current operational 

setup?". Koskamp relies on the MobileNXT-system for the planning of their routes, in which manual 

adjustments are done when necessary. The vehicles have specific specifications when it comes to size 

and costs. Drivers identify inefficiencies in the current route planning, as not being able to deliver in 

time due to long distance or unexpected traffic circumstances. 

Chapter 3 focuses on finding appropriate literature to use in the research. We formulate the research 

question: "How can existing literature on routing problems help Koskamp with their strategic 

implementation?". We analyze different methods for solving routing problems. We identify the 

Traveling Salesman Problem and the Vehicle Routing Problem as the most important approaches. We 

explore different variants of the VRP, including the CVRP, VRPTW and the CVRPTW. The solution 

approaches varies from exact ways of model optimization like Mixed Integer Linear Programming 

(MILP) and Dynamic Programming (DP). Those give optimal solutions but take a long time to generate 

routes, compared to heuristic and metaheuristic methods such as Cluster First, Route Second, Clarke 

and Wright Savings Heuristic, and Genetic Algorithms, which offer proper solutions that are not 

always optimal. We conduct additional research on the Haversine formula and eventually use this 

formula in the model. 

In Chapter 4, the primary research question is: "What is an appropriate model to use for the situation 

of Koskamp?". We decide that The Capacitated Vehicle Routing Problem with Time Windows with the 

Path Cheapest Arc heuristic is the most appropriate method, since it is important to make sure the 

code can deliver within certain time windows and takes into account the capacity. Also, heuristics aim 

to find a solution very quick and since Koskamp needs to have the routes generated just before 

leaving, the Path Cheapest Arc was very suitable. 

For Chapter 5 the primary research question is: "How big is the improvement compared to the old 

situation when looking at the performance indicators?". In comparison with the old way the routes 

are generated, the model shows improvement. The models output with randomized addresses shows 

a usage of less vehicles with a lower number of addresses than 50. However, when the address 

number is higher than 50, the usage of the number of vehicles is above 10. When we deal with 10, 

20, 30, 40 or 50 addresses, the average vehicles used is 5.8, 7.45, 8.5 and 9.75 respectively, with an 

average demand per address of 6. This is below 10 for each number of addresses. When having 60, 

70, 80, 90 or 100 addresses, the vehicles used is on average 10.85, 12.2, 12.9, 14.3 and 15.5 

respectively, with an average demand per address of 6. This is above 10 for each number of 

addresses. We conclude that in these cases, the time restrictions are violated many more times in the 

old situation. When we look at the experiments we do with real-world data, we see that the total 

distance (and thereby fuel costs, CO2-emissions), is 6.6% higher in terms of time and 4.8% higher in 
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terms of distance in the old situation, with 38 addresses. In Table 5-6 in section 5.4 the changes are 

displayed for 8 different time slots. Although the degree of improvement varies per route, it certainly 

improves. The salary costs for a specific day (divided into 6 time slots) are 14.1% higher in the old 

situation. The depreciation costs are 11.3% higher in the old situation for this same day. 

After we outlined the current setup of Koskamp and explored different ways of routing methods, we 

were able to determine which aspects needed improvement and how to improve them. The research 

then led us to the CVRPTW-model using the Path Cheapest Arc, which is effective in generating 

proper routes in a fast way while meeting time constraints and vehicle capacities. This model than 

helped us to optimize routes and thereby reducing the distance traveled or limit the number of 

vehicles that exceed the time limit. 

6.2 Recommendations 
While the algorithm of the model developed in this research is not yet perfect in simulating real-life 

scenarios, it represents an improvement over the current routing methods used by Koskamp. We 

expect the implementation enhance the efficiency and optimize delivery. The implementation can be 

done by Koskamp in the described way: 

Start by applying the model in the real-world to some of the time slots to keep track on its 

performance in different conditions. Then, analyze and adjust the algorithm based on real-world 

feedback to address deviations and improve the accuracy of the model. In different scenarios, such as 

areas with high order density and different traffic conditions, the results will give a good insight on 

how the algorithm of the model performs under different circumstances. As the routes might be a bit 

tighter and therefore more restrictive for the drivers, it is important that the drivers adapt to this way 

of delivering. It is most important to check the new routes on costs saving and CO2-emissions, as this 

is hard to approximate in the experiments we conduct. 

After testing the algorithm and analyzing its results in performance, cost savings, and CO2-emissions, 

Koskamp could start creating a software for actual usage. It is helpful to develop a software that 

works in a similar way as the MobileNXT-system, as that will not be a big change for the people 

working in the logistic department. Setting up a way to get feedback from users will help improving 

the software (P. Toth, 2014).  

6.3 Post-Research 
We concluded the primary research, but there are still some issues, such as customers who want to 

return products and tight delivery times, that are not being handled in the model. These challenges, 

along with the need for more real-world testing, point to areas for further improvement. Future work 

could focus on fixing these issues and testing the model in a wider range of situations to be able to 

realize its full potential. 

6.4 Alternatives 
There are companies that have many experience in creating routing algorithms. Koskamp might want 

to look at and compare some of these options. These companies often have the possibility to handle 

complex problems better, like delivering to specific areas within tight time limits or managing 

complex delivery needs. They might be able to deal with issues such as delivering to areas 7, 9, and 

10 within 90 minutes without needing to return to the depot in that same time. They could also help 

manage things like capacity and returns more efficiently. By considering these alternatives, Koskamp 

might find a solution that works better for their needs. 
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6.4.1 Examples of alternatives 
Two examples of these alternatives are outlined here: 

RoutePilot.net ensures users to generate the most efficient delivery route with a single click. It uses 
advanced AI technology. It calculates the routes in the most optimal way by considering factors as 
distance, capacity and vehicle type. The price of this software is €35 per vehicle per month. As there 
currently are 18 vehicles at the Den Ham location, Koskamp would have to pay €630 a month for this 
software. However, this is for this location only. (RoutePilot, sd) 
 
RouteLogic is a software with an application. With the software the best routes are generated with 
very accurate arrival times. This software also uses AI in generating the routes. It also is able to tell 
when a vehicle will need gas or needs to be charged (in case of electrical vehicles). The price of this 
software varies from €39 to €49 per vehicle per month. For the Den Ham location this would cost 
between €702 and €882 a month  (RouteLogic, sd). 
 
 

  

https://routepilot.net/
https://routepilot.net/
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Appendices 

Appendix A: Interviews 

Appendix A.1: Interview held with an experienced driver at Koskamp 
What are the common challenges faced with specific routes? The routes going to areas 2 and 3 are 

challenging due to the demand being often high and tight scheduling. Area 3 contains addresses in 

Raalte and Heino and is hard to reach when you have to be back in time, as they are far away. The 

same applies to area 2 in Hardenberg. So you would say that area 2 and 3 are the most challenging? 

Yes. Do you prefer driving to the same area every time you work or to drive to different areas? I 

would prefer to drive to the same area as the contact you have with customers is better. The 

customer relationships will improve because of this. Would you not like variation in the areas you 

drive to? No, because even if you drive to the same areas every day, no day is the same. What are 

aspects of the current delivery system that could use improvement? The way the routes are 

generated. Sometimes last minute a customer gets added and this one is not put into the scanner. 

When you follow the scanner, sometimes it leads you crisscross instead of circular. And sometimes 

the scanner thinks you can be at a place within a certain time, but it is not even possible due to 

traffic. Especially not when you leave 5 minutes later than planned. I would prefer if for more 

customers there will be less time slots, as I sometimes drive for one small product. 

Appendix A.2: Interview held with one of the regional managers about the capacity of the 

vehicles 
How do you determine the capacity of each vehicle type (Small, Medium, Large, XL) in terms of 

fitting auto parts, such as tires and containers? We aim to use a system that requires boxes of 

20x30x20 cm that are put in the vehicle. The small vehicle is approximately 4 cubic meters and will fit 

approximately 50 boxes, the medium is approximately 6 cubic meters and will fit approximately 100 

boxes and the large vehicle is about 8 cubic meters and will fit approximately 150 boxes. And how 

many products will fit in a box based on number? 3 average sized products will fit in a box. Is there 

any distinction within size within the same size category? There is no distinction between the 

vehicles within the same type size. How do you keep into account larger products like vehicles when 

the capacity is based on number and not size? This is hard to say as all the products vary a lot in size. 

If I would have to make a guess, I think you could say that a tire takes the space of 3 boxes. But it is 

very difficult to be precise in this. Do you ever encounter situations where the weight is to heavy? 

No, this is negligible. How does Koskamp group addresses into an area? This is done automatically 

by a system that scans the postcode and this postcode is already linked to an area, so the address will 

be allocated to the corresponding area. 

Appendix B: Calculations  

Appendix B.1: Calculations of salary costs 
To calculate salary costs, we use the gross hourly salary for drivers, which is €18.84. To calculate for 

each time slot, this salary is multiplied by 1.5 as the duration of the time slot is 90 minutes. For the 

new situation, we multiply this by the number of drivers needed for each time slot. In the previous 

situation, we use the number of employees who were working during that time slot. Table 5-7 

displays the change in salary costs, comparing the new situation (in green) to the old situation (in 

red). 
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Appendix B.2: Calculations of depreciation costs 
We calculate depreciation costs per time slot based on the distance traveled by the vehicles in that 

timeslot. We calculate per vehicle, as small and medium vehicles have different catalog values, and 

we need this value to determine the depreciation costs. For this comparison, we only consider small 

vehicles, as in this situation only small vehicles are utilized. We consider the traveled distance of a 

vehicle. We determine the costs by the vehicle's catalog value: €22.000 for small vehicles and 

€26.000 for medium vehicles, and how much of that value is used up in the route based on the 

traveled distance. Each vehicle has an expected lifespan of 300.000 kilometers. For a small vehicle, 

we use the proportion of the traveled distance in relation to this lifespan to calculate the 

corresponding depreciation cost from the €22.000 catalog value. For example, if a vehicle travels 30 

kilometers in a route, this represents (30/300.000) = 0.01% of the vehicles total life span. Therefore 

we state the depreciation costs for that route to be 0.01% of €22.000, which equals €2.20. Table 5-9 

in Section 5.4 displays the change in depreciation costs, comparing the new situation (in green) to the 

old situation (in red). (The percentage change per time slot is the same as displayed in Table 5-6 and 

5-7 in Section 5.4, as the costs are based on distance). 


