
Modelling the Spectro-Angular
Reflectance of Grass
for Accurate Bifacial

Photovoltaic Yield Calculation

27th June 2023

Leonie Mariëlle Horst
s2852497

Master Graduation Assignment
for the master’s programme

Sustainable Energy Technology
University of Twente

06-02-2023 to 04-07-2023

Graduation Committee
Chair: Prof. dr. Rebecca Saive

Internal member: Prof. dr. Monica Morales Masis
External member: Dr. ir. Eli Shirazi

Abstract

Bifacial solar panels are able to capture irradiance from both faces of the module and
therefore the reflectance properties of the surface on which they stand influence the
yield. Being able to perform an accurate yield calculation has many benefits: the
system’s configuration can be optimized, the investment risk decreases, the operation of
the grid is supported and the understanding of the bifacial solar panel technology is
improved. This thesis aims to contribute to a more accurate yield calculation by
analysing the impact of grass reflection on the yield. Grass is one of the most commonly
present materials surrounding a bifacial solar panel and exhibits retroreflective
behaviour: incoming light is reflected back to the source. To model the spectro-angular
reflectance, a Monte Carlo ray tracing software is developed which is used in
combination with a reverse ray tracing software to study the effect of different grass
structures on the energy yield. Specifically, the developed method is applied to a case
study, the vertical bifacial solar park Aasen-Donaueschingen. It was found that
accounting for retroreflective behaviour of grass results in a lower energy yield compared
to assuming grass to reflect diffusely. Furthermore, the simulations showed that the
morphology of the grass influences the energy yield. The presented work can be used for
optimisation of an agrivoltaic system and more accurate calculation of the energy yield.

ii

Contents

Contents

1 Introduction 1
1.1 Motivation for contributing to a more accurate energy yield calculation 2
1.2 Goal of this thesis . 3
1.3 Outline . 4

2 Theoretical Background 5
2.1 Reflection . 5

2.1.1 Quantifying reflection . 6
2.2 The reflectance of grass . 7

2.2.1 Grass as canopy . 7
2.2.2 Experimental measurements reflection of grass 8
2.2.3 Numerical methods to simulate the reflection of grass 8
2.2.4 Motivation for the development of a Monte Carlo ray tracing model . . . 9

2.3 Incorporating the reflectance in photovoltaic yield 9

3 Ray tracing model for simulation of grass reflection 12
3.1 Overview ray tracing software . 12
3.2 Sample generation . 15
3.3 Ray generation . 17
3.4 Ray intersection . 18

3.4.1 New direction . 21
3.4.2 New magnitude . 22

3.5 Ray detection . 23
3.6 From radiance to BRDF . 25
3.7 Calibration of the parameters . 26

3.7.1 Calibrating the horizontal Lambertian reflector 26
3.7.2 Calibrating the grass reflector . 30

3.8 Usage of the ray tracing model . 35

4 Results and discussion 36
4.1 Introduction grass samples . 36
4.2 Comparison BRDF and albedo for various types of grass 38

4.2.1 An angular dependent BRDF . 38
4.2.2 A spectrally dependent BRDF . 40
4.2.3 BRDF dependence on blade geometry . 40

4.3 Influence spectro-angular albedo on the energy yield 43
4.3.1 Introduction case study Donaueschingen-Aasen solar park 44
4.3.2 Energy yield of a vertical bifacial solar panel surrounded by a diffuse

reflector . 46
4.3.3 Energy yield of a vertical bifacial solar panel surrounded by grass 49
4.3.4 The influence of mowing on the energy yield 50

5 Recommendations 54
5.1 Ray tracing model . 54
5.2 Energy yield computation . 55

6 Conclusion 57

Appendices 62

iii

Contents

A Overview simulated BRDFs 62

B Overview power profiles 73

C Guide code Monte Carlo ray tracing model 76
C.1 Overview functions and scripts . 76
C.2 Tracing a ray through the detection dome . 78
C.3 Calibration figures . 78

C.3.1 Ideal Lambertian . 78
C.3.2 Grass reflector . 79

C.4 Filling the BRDF library . 80
C.5 Analysing BRDF library . 80

C.5.1 Plotting the samples . 80
C.5.2 Plotting BRDF and albedo . 81

D Code Monte Carlo ray tracing model 82
D.1 Ray tracing . 82

D.1.1 Set . 82
D.1.2 Save . 85
D.1.3 Retrieve . 86
D.1.4 Generate . 92
D.1.5 Check . 99
D.1.6 Calculate . 102
D.1.7 Analyze . 121
D.1.8 Plot . 136
D.1.9 Other . 144

D.2 Analyze Library . 150

iv

Nomenclature

Nomenclature

Parameters

β Azimuth and elevation angle between two pixel centres on the detection dome

γ Rotation angle of the blade

λ Wavelength

ϕ Azimuth angle

ρ Albedo

τ Tilt of the top part of the blade as measured from the xy-normal (zenith angle)

θ Elevation angle

ξ Random number between 0 and 1 as generated by Matlabs rand function

A Area

a Ratio between radius specified by the subscript to the radius of the sample.

C Matrix of pixels of the detection dome

d Distance from the plane to the origin

E Irradiance

f Bidirectional reflectance distribution function (BRDF)

h Height at which the rays are initially aimed

I Current

j Current density

L Radiance

m Magnitude of the ray

n Number of rays

P Power

q Ratio between radius of the detection dome and the height at which the rays are shot.

R Reflectance of a surface

r Radius

t Time

V Voltage

w Width

x X-component

y Y-component

z Z-component

Subscripts

v

Nomenclature

blackbody Referring to a blackbody

blade Grass blade

b Centre of the grass blade

C Centre of a detection dome pixel

detected Point at which the ray is detected on the detection dome

dome Detection dome

final Referring to the properties of a ray when it has been detected

h Height of a grass blade

illuminated Part of the sample on which the rays are initially incident

in Referring to incoming rays

Lambertian Referring to a Lambertian surface

l Point on a plane

MPP Maximum power point

new Referring to the new properties after the ray has intersected with a specific surface

OC Open circuit

old Referring to the old properties before the ray has intersected with a specific surface

out Referring to outgoing rays

sample Circular sample on the xy-plane

SC Short circuit

source Light source

s End point of a ray

Vectors

c⃗ Centre of the detection dome

d⃗ Direction of a ray

e⃗ Starting point of a ray.

n⃗ Surface normal

p⃗ Position of a ray in space

s⃗ End point of a ray

v⃗ Point is space

vi

1 Introduction

1 Introduction

Increasing the share of renewably generated energy in the global energy mix is an important
step towards a greener future and can be realised by making renewable energy generators as
efficient and cost-effective as possible. In solar cells, the energy from the sun is harvested by
converting energy from photons into electricity.

There is a continuous effort from the scientific community to optimise solar cells. Bifacial
solar cells (BSC) capture irradiance from both faces, the front and the rear. This increases
the number of charge carriers generated compared to a monofacial solar cell. When in an
optimal configuration, BSC therefore generate a higher yield than monofacial solar panels,
while keeping costs relatively low [1]. A parameter which measures this, is the levelized cost of
energy (LCOE). The LCOE is the ratio of the total costs incurred to the total energy generated
over the lifetime [2]. Due to the property of absorbing sunlight from both sides, a bifacial solar
panel can have about 2–6% lower LCOE than monofacial solar panels [3], depending on the
configuration. By using about the same amount of resources but producing a higher yield, the
resources are used more efficiently and sustainably. The market share of bifacial solar modules
is currently (2023) 35% and is expected to increase to 70% within the next 10 years [4], as can
be seen from figure 1. Bifacial solar panels are therefore a technology with a bright future.

Figure 1: Market share of bifacial modules and monofacial modules. Figure from VDMA [4].

A promising application of bifacial solar panels is positioning them on fields used for agriculture.
This could reduce the land competition between food and energy [5]. By optimising the density,
elevation and tilt of the modules, sunlight is distributed between the panels and the crops. The
modules can protect crops from adverse weather conditions (reducing thermal stress and soil
leaching after rain) as well as reducing water evaporation. As solar panels are often cleaned
with water, water irrigation can be further reduced [5]. Furthermore, combining photovoltaics
with agriculture can improve the livelihood of farming communities and accelerate solar energy
investments [5]. Bifacial vertical east-west facing panels were found to have a higher land
productivity, higher spatial uniformity for sunlight and associated water distribution and more
resilience to soiling loss compared to monofacial north-south oriented panels [5].

The agricultural crops also affect the solar panels. Specifically, the way in which they reflect
light onto the solar panel influences the yield of the panel. The reflectance properties of the
surfaces surrounding a bifacial solar panel influence its output [1]. The way a material reflects

1

1 Introduction

light is both a function of the light spectrum and of the angle of the incident light, and research
has shown that both of these parameters have an impact on the output of the solar panel [6, 7,
8, 9]. Modelling this reflection accurately is therefore important to compute the energy yield
accurately.

1.1 Motivation for contributing to a more accurate energy yield
calculation

The yield of a solar cell is influenced by geographical (e.g. the location of the panels, the
time of the year, shade), environmental (e.g. clouds, aerosols, dust, precipitation, temperature,
reflection of surroundings), technological (e.g. quantum efficiency, short circuit current and
open circuit voltage), installation (e.g. sun-tracking, reflectors) and maintenance (e.g. cleaning
interval and technique) factors [10, 1]. Furthermore, degradation of the system influences the
yield as well [10]. Modelling the impact of all these individual factors on the cell performance is
important to compute and predict the yield more accurately and optimise system configurations
for a particular location. An accurate yield calculation comes with the following benefits:

• Reduces investment risk barrier
The energy yield is vital information for making investment decisions. Inaccuracies in
the yield will increase the investment risk [11] as the revenue stream has a larger error.
This hinders market penetration [12]. An accurate yield will decrease the investment risk
barrier, further enabling market penetration. Reduction in investment risk will therefore
create the opportunity to exploit the aforementioned benefits of bifacial solar panels on
a larger scale.

• Supports grid operation
From an energy management perspective, an accurate yield calculation is important to
make accurate forecasts. Power is a special commodity: power production and consump-
tion must constantly match to meet customer demand and keep the grid balanced. On the
electricity market, supply and demand are matched. When real-time supply and demand
do not match, a shortage or surplus can occur. The grid operator activates balancing
energy to prevent loss of quality of the electricity. This electricity often comes from non-
renewable sources, as these have the shortest start-up time [13, 14]. To know to what
extent future supply and demand match such that imbalance and ultimately loss of power
quality can be avoided, both consumption and production are predicted. The accuracy of
this forecast is important as an inaccurate prediction leads to imbalance. Moreover, it is
required to predict reserves and efficiently schedule generation capacity [13]. Ultimately,
better forecasting should lead to a system with less real-time price volatility, which be-
nefits all stakeholders of the energy market [15].

A more accurate energy yield calculation is beneficial for all renewable energy systems.
Bifacial solar cells possess a property that is rare compared to monofacial panels: they
can be put in a configuration which enables them to produce energy on moments of high
energy demand. Whereas monofacial solar panels are traditionally placed facing south and
therefore produce the most power around noon, east-west facing bifacial panels produce
energy in the morning and the evening. These are moments of high energy demand.
Supply and demand are thus matched better, which is beneficial for grid operation. This
shines a unique light on an accurate yield calculation.

• Reinforces the roots for scientific development
From a scientific perspective, being able to compute the yield more accurately is im-
portant for our fundamental understanding of the technology and its optimisation. For

2

1 Introduction

example, understanding the impact of the reflection of materials on photovoltaic yield can
be applied in agrivoltaics to design systems that optimise the energy yield and agricul-
tural production. It also opens doors to optimise reflectors that boost the yield of solar
panels. For example, in the urban environment, an idea that is currently being researched
is the use of a reflector which takes in light from all directions and emits light in only
one direction, thereby enabling a light beam to be aimed at a (bifacial) solar panel [16].
To arrive at a correct optimisation for this system, accurately determining how reflection
impacts the yield of a bifacial solar panel is fundamental.

1.2 Goal of this thesis

The aim of this thesis is to model the influence of a very common reflecting surface, namely
grass, on yield calculations. Grass is an important agricultural crop, as it is fed to ruminant
animals and therefore lies at the basis of products like meat and milk [17]. As grass is an
abundant crop, it is useful to be able to accurately calculate the yield of a bifacial solar panel
surrounded by grass. An additional motivation to choose grass is that its structure is relatively
simple compared to other crops.

The reflection of grass is known to vary with wavelength and therefore has a spectral depend-
ence [18]. Furthermore, grass is known to exhibit retroreflective behaviour: light reflects back
towards the source [19, 20]. The reflection of the environment is only superficially included in
(agri)voltaic research: it is either neglected, given a constant value [5, 21, 22] or at its best
spectrally taken into account [23, 18]. In this thesis, the spectro-angular reflection of grass will
be modelled and its influence of the yield of a bifacial solar panel investigated.

To this end, two models are used. I developed a model in Matlab which simulates the reflection
of grass. In the model, rays are shot from a position in the sky onto a sample of grass. When a
ray hits a blade of grass, it is locally reflected. By performing this calculation many times, the
global spectro-angular reflection can be computed for a certain angle of incidence of the rays.
This calculation is repeated for various grass samples and angles of incident light to obtain
a library of spectro-angular reflection. The obtained reflection is compared to experimental
results. The information in the library is used as input for the model of Pal [9], which can be
used to compute the energy yield of a bifacial solar panel taking into account spectro-angular
reflection of a surface. Using this model in combination with additions from the work of Rikhof
[24], the energy yield of a bifacial solar panel is computed. Lastly, this method, consisting of
the combination of the reflection model and the energy yield model, is applied to a case study
to analyse the impact of mowing on the energy yield for a bifacial solar farm in Germany.

The contributions of this thesis are:

• Development of a physical model to simulate the reflection of grass;

• Verification of the simulated reflection using experimental data;

• Calculation of the energy yield of a bifacial solar panel based on the reflection properties;

• Comparison of the energy yield of a bifacial solar panel between modelling the grass
diffusely and as a retroreflector;

• Application of the calculation method to a case study.

3

1 Introduction

1.3 Outline

This thesis is structured in the following way. Chapter 2 provides the theoretical background. It
explains the concept of retroreflection, explores literature on the reflection of grass, elaborates
on the need for a model that can simulate this reflection and provides more details on the model
used to compute the energy yield. Chapter 3 introduces the model which is used to quantify the
reflection of grass and explains it in detail. Chapter 4 presents the simulated reflection. This
is compared to experimental results and applied to a case study to analyse the impact of the
spectro-angular reflection of grass on the energy yield. Based on this work, recommendations
are proposed in Chapter 5. Lastly, Chapter 6 provides the conclusion and the outlook.

4

2 Theoretical Background

2 Theoretical Background

This chapter presents the main concepts that are underlying this work. First, the physics of
reflection is introduced. Literature about the reflection of grass specifically will be discussed,
including existing models. Lastly, the model used to obtain the energy yield from the spectro-
angular reflection is presented.

2.1 Reflection

When light strikes an interface between two media, part of the light is scattered backward,
which is called reflection [25]. As reflection is a three dimensional phenomenon in space, a
coordinate system has to be defined first.

In this thesis, the angles are defined in the spherical coordinate system, as shown in figure 2.
Any point in the system can be represented by specifying three variables: the azimuth (ϕ),
the elevation angle (θ) and the radius (r). In the coordinate system used in this thesis, the
elevation angle runs from θ = 0° to θ = 90° and the azimuth from ϕ = −180° to ϕ = 180°,
as shown in figure 2. The position at which θ = 90° is called nadir position. When a plane
is placed in a three dimensional space, the plane effectively splits the space in two: each half
is called a half-space. Light reflected from a surface travels into the half-space from which the
light was incident.

Figure 2: The main coordinate system used in this thesis. The azimuth ϕ runs from ϕ = −180° to ϕ = 180° (
in green) and the elevation angle θ from θ = 0° to θ = 90° (in blue).

There are many ways a surface can reflect incoming light from a certain direction specified
by θsource and ϕsource. To help characterise the reflection, the following terms are often used:
specular reflection, diffuse reflection, glossy reflection and retroreflection, which are displayed in
figure 3. A specular reflector reflects light into a unique direction (see figure 3a). This direction
has the same elevation angle to the surface normal as the incoming light has. In contrast, a
diffuse reflector has a rough surface and the incoming light is scattered in every direction with
equal probability (see figure 3b)[9, 26, 25]. An ideal diffuse reflector, which reflects all incoming
light, is called Lambertian. Both of these conditions are extremes. A glossy reflector represents
the in between case - the reflectance does have an angle but is not perfectly specular (see figure
3c).

Another type of reflection considered less often is retroreflection or backscattering (see figure
3d). Light incident on a retroreflective surface will exit from the incident direction. Man-made
retroreflective surfaces are often used in situations where safety is important. For example,
retroreflective surfaces can be found in safety clothes. There are also retroreflective surfaces in
nature, for example in biological tissues [27].

5

2 Theoretical Background

(a) Specular reflection. (b) Diffuse reflection. (c) Glossy reflection. (d) Retroreflection.

Figure 3: Two dimensional schematic of four types of reflection: a) specular, b) diffuse, c) glossy and d)
retroreflection. The incoming beam at elevation angle θsource is reflected as illustrated by the blue area.

2.1.1 Quantifying reflection

Figure 3 shows that the reflection may differ per angle from which it is observed - it depends on
the solid angle. A solid angle or viewing angle is the area of a patch on a sphere divided by the
squared radius of the sphere [28]. A hemisphere as depicted in figure 2 has a total solid angle
of 2π. With the notion of solid angle, radiance can then be defined as the radiant flux reflected
by a surface, per unit solid angle per unit projected area. As the flux has a spectral component,
the radiance has a spectral component as well. The dependence on solid angle ensures that
the reflection can vary in three dimensional space. Furthermore, the radiance may change as
the angle of incidence varies. This can easily be seen from specular reflection: if the angle of
incidence changes, the angle angle at which the light leaves the surface also changes and thus
the radiance has changed. Radiance is defined with respect to a surface perpendicular to the
direction from which the light is coming [28].

The albedo (ρ) of a surface, the ratio between the power of the reflected light and the power
of the incoming light, is a measure of how light is reflected by a surface [6]. The albedo
is, like radiance, in principle spectro-angular: the power of the reflected light depends on the
radiance. However, in literature its many-parameters nature is often reduced to spectral albedo
(integrated over all angles) or simply the albedo (integrated over all angles and the spectrum).
Spectral albedo is the ratio of the spectral exitance (Eout(λ)) over the spectral irradiance
(Ein(λ)). The exitance and irradiance are the leaving and incident flux per unit projected area,
respectively. Compared to radiance, exitance and irradiance are not a function of direction.
Spectral albedo is thus defined as follows:

ρ(λ) =
Eout(λ)

Ein(λ)
(1)

For a Lambertian surface, the albedo at every wavelength is ρ(λ) = 1: the flux incident on the
surface is just as large as the flux leaving a surface.

A useful concept to quantify the spectro-angular albedo is the bidirectional reflectance distri-
bution function (BRDF). Introduced by Nicodemus et al. [29], this function relates light falling
upon a surface from a certain angle of incidence (ϕsource, θsource) to light reflected by that surface.
The reflection varies along the direction (θout, ϕout) and along the spectrum (λ). The BRDF is
defined to be the ratio between the total reflected intensity in direction (θout, ϕout) to the energy
incident per unit time and per unit area onto the surface from direction (ϕsource, θsource) [30]:

f(θsource, ϕsource, θout, ϕout, λ) =
L(θsource, ϕsource, θout, ϕout, λ)

Ein(λ)
(2)

The BRDF can range from simple to complex based on the type of reflection that the surface

6

2 Theoretical Background

has. For example, the BRDF of a Lambertian surface (fLambertian) is a constant:

fLambertian =
1

π
(3)

In contrast, the BRDF of surfaces which have a specular or retroreflective component will
also depend on the angle of incidence of the light (θsource and ϕsource), and the angle from
which the reflection is observed (θout and ϕout). Furthermore, as the surface may absorb certain
wavelengths, the BRDF has a spectral dependence. The first objective of this thesis is to obtain
the BRDF of grass.

2.2 The reflectance of grass

There are several scientific communities interested in the BRDF of surfaces. There is interest
coming from computer graphics community, as they try to optimize the graphics of computer
games and simulations. For example, Shah, Kontinnen and Pattanaik [31] constructed a spa-
tially varying BRDF (also known as bidirectional texture function) to simulate the texture of
grass for given a viewing angle and illumination conditions. Another research branch of science
that looks into reflection of surfaces is Earth observation. The BRDF is relevant as it carries
information about the vegetation [32]. For example, Zheng et al. [33] used spatial, temporal,
and spectral variations in albedo to research vegetation changes in China’s grasslands. Bio-
geoengineers are interested in altering the reflection of a surface on a large scale, so-called albedo
management. The idea is to increase the albedo of e.g. agricultural land to reduce the regional
warming and preserve soil moisture. Seneviratne et al. [34] found that increasing surface albedo
by 0.1 could reduce the mean annual temperature by 1°C and the annual maximum daytime
temperature by 2-3°C. Knowing which properties of the grass contribute to the BRDF is thus
relevant for multiple science fields.

With all these fields also comes knowledge about the BRDF of grass. In this section, the focus
will be on insights from Earth observation science, as their interest (i.e. retrieving information
on vegetation using the reflection) is essentially the exact opposite from one of the subgoals of
this thesis: retrieving the reflection based on the vegetation.

2.2.1 Grass as canopy

A way to look at grass is to consider it a canopy. A canopy is a term for the collection of the
tops of multiple plants. Several common parameters for characterising a canopy are [32]:

• Leaf Area Index (LAI): the total one-sided area of photosynthetic tissue per unit ground
surface area [35] [36].

• Leaf Angle Distribution (LAD): the probability of the leaf normal falling within an unit
interval of inclination angle. Often, a mathematical function is used to model this probab-
ility. Some are used so commonly that they have their own name. In planophile canopies,
horizontal leaves dominate, while in erectophile canopies, vertical leaves dominate [37].

• Leaf geometric parameters such as relative leaf size and shape.

Canopy has been observed to exhibit a retroreflective component. This retroreflective com-
ponent is also known as the hot spot, Heiligenschein or opposition effect [38, 39]. In Earth
observation science, hot spot is the most commonly used word for this phenomenon. In the
case of grass, as the blades cast shadows, the shadows cannot be seen along the direction of
the incident light as the light will be screened by the blades [39]. Research from this science

7

2 Theoretical Background

branch shows that leaf canopy BRDFs around the retroreflective region are known to depend
strongly on leaf geometry [32].

2.2.2 Experimental measurements reflection of grass

The reflection of grass has been measured in several studies. One way to measure the reflection
of grass is using a goniometer. A goniometer is a measurement device where a light source
is aimed at a sample, after which the reflected light is measured at several angles using a
detector. A disadvantage of this setup is that measuring at the hot spot itself is impossible, as
the detector then blocks the light source.

There are ways to measure closer to the hot spot. For example, Belcour et al. [40] used a beam
splitter to be able to measure at the same place as the light is coming in. Roosjen et al. [20]
also circumvented this problem, using an industrial robot-arm. They measured lawn grass of
the species Lolium perenne L. They observe a retroreflective component, which they attribute
to the erectrophile LAD which causes more internal shadow casting within the canopy. They
noticed that the reflectance decreases as the elevation angle increases, which they attribute to
the soil as the grass is not fully covering the surface - especially at nadir position.

The reflection of the same grass species has also been analysed by Sandmeier et al. [19] in the
form of anisotropy factors. The anisotropy factor is defined as the portion of the reflected
radiance relative to the nadir reflectance, sometimes also called relative reflectance [41]. To
compute the anisotropy factor, the reflectance is measured using a goniometer. Close to the
hot spot, they measured an anisotropy factor of about 2 for λ = 550nm, which indicates that
the retroreflection lobe can be rather sharp.

Besides the structural properties of grass by considering it a canopy, the properties of the
individual grass blades are also an important component in the overall reflectance. For example,
Carter [42] found that as leaf water content decreases in the grass species Arundinaria tecta,
leaf reflectance increases over the entire spectrum from 400 - 2500 nm. These grass properties
might be affected by for example mowing. Clark, Prioul and Couderc [43] observed that the
relative water content in a leafs of Italian ryegrass decreased by about 15% in the first 30
minutes after cutting. Dyer, Turner and Seastedt [44] hypothesize that mowing could alter
physiological processes in the plant, increasing its reflectance. So, physiological properties of
the grass also play a role in grass reflection.

2.2.3 Numerical methods to simulate the reflection of grass

Models to investigate the canopy are called canopy reflectance models (CRM). Four main classes,
grouped by their approach and complexity, are [45]:

• Geometrical models treat the canopy as translucent geometric shapes;

• Turbid medium models describe the canopy as a horizontally uniform plane-parallel layer
with absorbing and scattering particles;

• Hybrid models use a combination of geometric models and turbid models;

• Monte-Carlo ray tracing models trace individual rays from the source to the receiver. A
ray is defined as line drawn in space which represents the direction of flow of radiant
energy [25]. The chain of scattering events encountered on the path of each ray are
simulated by modelling only the single scattering properties (Monte-Carlo).

A popular model is the PROSAIL model, which consists of a leaf optical properties model
PROSPECT and the turbid medium canopy model SAIL. Leaf optical properties obtained

8

2 Theoretical Background

from PROSPECT are fed into SAIL, which gives the reflectance of the canopy [45]. The
current PROSAIL model computes the BRDF from 400-2500 nm in increments of 1 nm as a
function of sixteen inputs, including water content, canopy architecture and solar diffusivity.
The model makes the assumption that leaves are broad and behave like a Lambertian reflector.
Furthermore, the canopy is modelled as being homogeneous and gaps in the canopy can therefore
not be modelled accurately. Ray tracing models are therefore more accurate [46].

There are various Monte Carlo ray tracer models to model a canopy. For example, the model of
North [47] does not model the leaves individually, but computes the intersection of the ray with
the blade by random sampling of the distance until collision. This probability is a function of
the previous direction of the photon and the total leaf surface area per unit volume of space.
They arrive at an expression for the probability that a leaf at a certain depth in the canopy is
both illuminated and viewed, and use Monte Carlo simulation to sample this probability.

In the 1980’s, Juhan and Marshak [48] developed a Monte Carlo method to analyse the influence
of leaf orientation and the specular component of leaf reflectance on the BRDF. They found
that the BRDF of a canopy with more electrophile leaves differs the most from a Lambertian
surface for low angles of incidence. They also found that considering the specular component
of leaf reflectance significantly impacted the BRDF, especially for high elevation angles as the
leaf’s orientation becomes more and more horizontal [49].

Qin and Goel [50] compared hot spot models for canopies and found that the retroreflective
lobe is broader for high elevation angles compared to lower elevation angles. Furthermore, for
a given elevation angle, the retroreflective lobe is broader when the LAI is high, the leaves are
more square-like and the LAD is planophile compared to a low LAI, rectangular leaves and
erectophile LAD. As the ratio between the mean leaf width to the length increases (and the
grass becomes more square-like), the width of the retroreflective lobe increases. Qin et al. [32]
found that the retroreflective effect is more sensitive to changes in leaf dimension when the
elevation angle is low.

2.2.4 Motivation for the development of a Monte Carlo ray tracing model

I developed a Monte Carlo ray tracing model to obtain the spectro-angular BRDF of grass,
which I use to eventually compute the energy yield. This model is introduced in chapter 3.

A model has some pronounced advantages over obtaining the BRDF experimentally. Firstly,
the model is free from the challenges of a physical goniometer: light can be measured in three
dimensions and there is no detector blocking the source. The sample can have the desired
dimensions which might not physically fit in a goniometer. Furthermore, experimenting with
different types of grass and soil can be done easily without having to change the samples in the
goniometer, which could contaminate the machine. The model introduces control over many
parameters, including but not limited to the light source, detection mechanism and sample.

Compared to other numerical methods to obtain the BRDF of grass, a main advantage of
choosing a Monte Carlo ray tracing method is that it gives the most insight in how the sample
parameters influence the BRDF compared to the other CRM introduced above.

2.3 Incorporating the reflectance in photovoltaic yield

Knowing the BRDF is important information for calculating the yield and optimizing the
system, as argued in section 1.1. Several studies showed that taking the spectral aspect into
account is important for an accurate yield calculation [6, 7, 8]. Pal and Saive [51] simulated and
Van Loenhout [52] experimentally verified that the different angular reflection behaviours affect

9

2 Theoretical Background

the current density of a solar panel. The spectro-angular reflection properties of a reflector thus
impact the albedo and ultimately the yield that is obtained.

In this thesis, the simulated BRDF of grass will be used as input in the model of Pal [9] to
calculate the resulting yield. This is an optical model: the irradiance that reaches the front
and rear side of the bifacial solar panel is computed [53]. It is also a reverse ray tracing (RRT)
model. In a RRT model, the path of the rays from the module to the sun is followed.

The model of Pal [9] consists of two surfaces, namely the bifacial solar panel and the reflector.
Both surfaces are divided into pixels. Furthermore, the location of a light source can be
specified, as well as its spectrum. The geometry of the setup can be adapted. For example, the
solar panel can be tilted as desired.

In the model, the flux of photons incident on the bifacial solar cell consists of three parts:

1. the flux that reaches the bifacial solar panel directly from the source;

2. the flux that reaches the front of the bifacial solar panel indirectly, i.e. by first being
reflected by the reflector;

3. the flux that reaches the rear of the bifacial solar panel indirectly.

The software computes the short circuit current density in every module pixel due to each of
these three fluxes. The short circuit current density (jSC) is the maximum current that the
solar cell can obtain in a certain area [54]. A summation over the short circuit current density
per pixel is performed to compute the short circuit current (ISC).

The short circuit current is used to compute the power produced by the solar cell. This
calculation requires the values of two more parameters: the open circuit voltage and the fill
factor. The open circuit voltage (VOC) is the maximum voltage that can be obtained from a
solar cell [54]. Operating the cell at either the short circuit current or the open circuit voltage
does not yield any power, as there is either no voltage or no current, respectively. Instead, the
cell is ideally operated at its maximum power point (MPP) [54]. At this voltage (VMPP) and
current (IMPP), the most power is produced. This point is indicated on a sketch of the current
voltage diagram in figure 4. It can be found by multiplying the short-circuit current and open
circuit voltage by the fill factor (FF). Both the open circuit voltage and the fill factor depend
on the solar cell type [54]. The maximum power (PMPP) can thus be computed as follows:

PMPP = FF · ISC · VOC (4)

Figure 4: In this sketch of a current voltage (IV) plot, the short circuit current (ISC), open circuit voltage
(VOC) and maximum power point (MPP) are displayed. The fill factor (FF) multiplied by the ISC and VOC is
the area of the largest rectangle which fits under the IV curve.

10

2 Theoretical Background

Running the model of Pal [9] for multiple positions of the sun allows for computing the short
circuit current at each of these positions. Multiplication by the time the sun spends in every
position, the open circuit voltage (VOC) and the fill factor (FF), allows for computation of the
power profile (P (t)). This calculation has been implemented by Rikhof [24]. Integration of the
power profile over time gives the energy yield.

An important property of this model for this work is that it allows for computing the energy
yield while taking the spectro-angular reflection of the reflector into account. Furthermore, as
the current ISC can be traced back to the three types of fluxes, the model can be employed
to get insight in how the energy yield is built up. For example, it can be used to analyse the
contribution of each of the three fluxes of light to the power profile and the energy yield.

11

3 Ray tracing model for simulation of grass reflection

3 Ray tracing model for simulation of grass reflection

In this chapter, the ray tracing model that I developed will be explained. First, an overview
of the model is given. Then, each main component of the model is described in detail. The
introduced parameters are calibrated: their optimum value to reduce the error of the ray tracer
is explored. Lastly, the use of the model is discussed.

3.1 Overview ray tracing software

A Monte Carlo ray tracing model has been designed to determine the BRDF of grass. The
model has been made in Matlab. The code can be found in appendix D. A brief guide how use
the code to reproduce the main figures in this report can be found in appendix C.

The main assumptions of this model are:

• A ray can be modelled as a vector with a certain direction, a magnitude and wavelength;

• A grass blade can be modelled as a vertical rectangle and exhibits diffuse reflection;

• The ground can be modelled as a horizontal plane and as a blackbody;

• Depending on the wavelength of the incoming wave, a portion is reflected, the rest of the
wave magnitude is assumed to be absorbed and lost from the system;

• Rays whose magnitude at a all wavelengths is smaller than 1% of the initial magnitude
are considered negligible and disappear from the system1.

A bundle of parallel rays is generated which is directed at the volume of the space under
examination. The space is filled with a horizontal surface (the soil) and vertical surfaces (grass
blades). When a ray intersects with a surface, it is redirected in a random direction (diffuse
reflection) and it loses spectral magnitude (energy) depending on the reflectance of the surface
at that wavelength. Once it has been redirected, the ray may bump into another surface,
after which its direction and magnitude are adapted again according to the reflectance. When
the ray intersects with the detection dome, it is condidered to be detected and its spectral
magnitude at the intersection point is stored. Figure 5 shows how a single ray is traced from
the source (green dot on the dome). The ray is reflected by the grass and eventually detected
(blue dot on the dome). By repeating this process for many rays, the total magnitude of the
rays that intersected in a specific part of the detection dome grid is obtained. By normalizing
this spectro-angular radiance, the BRDF is obtained.

1This assumption is used to avoid the model to trace light indefinitely. Many Monte Carlo ray tracers have
such a condition, for example the ray tracer software SunSolveYield [55].

12

3 Ray tracing model for simulation of grass reflection

Figure 5: Visualisation of the ray tracing model. The same coordinate system is used as in figure 2. The
hemisphere represents the detection dome. The sample is placed in the middle of the dome and consists in
this case of a circular ground with vertical rectangular grass blades on top. A ray (black line) is shot from the
detection dome (green dot), reflected between grass blades and eventually detected (blue dot).

Algorithm 1 shows the pseudocode for the ray tracing program. After ray and plane generation,
the path of every ray is traced. The first task of the algorithm is to find the first surface (be it
the ground, grass or the detection dome) that the ray intersects with.

To this end, first the intersection time of the ray with the detection dome and all surfaces (i.e.
the ground and the grass) has to be computed. This serves two purposes: 1) it is used to check
which surface is hit first and 2) it is needed to compute the intersection point of the ray with
the surface. For the grass and the ground, the plane in which the surface is situated is used
for this calculation. All surfaces (ground, grass and detection dome) are sorted on intersection
time in ascending order for computational efficiency. For every surface in this list, the software
computes if the ray hits this surface. If the ray intersects with the detection dome, the ray is
detected and thereby the program breaks out of the outer while loop and starts tracing the
next ray. If the surface is not the detection dome, the intersection point of the ray and the
plane in which the surface lies is computed. If the ray falls within the boundaries of the surface,
the ray changes direction and magnitude according to the refectance at that wavelength and
the program breaks out of the inner while loop. Using the new ray properties, it proceeds to
compute the intersection time with every surface again and checks if the ray hits any of the
surfaces. If the ray does not hit the detection dome, nor the surface in the plane, the next
surface in the list of sorted surfaces is considered, while the ray’s properties remain unchanged.
If the magnitude of the ray is lower than 1% for all considered wavelengths, the path of the ray
is no longer traced.

In the following sections, the main components of the algorithm will be explained in detail.

13

3 Ray tracing model for simulation of grass reflection

Algorithm 1 Ray tracing algorithm to determine the BRDF of grass.

generate sample
generate a bundle of parallel rays
for every ray do
while ray is not detected do
if ray magnitude < 0.01 then
break

end if
calculate intersection time of ray with detection dome
for every plane do
calculate intersection time of ray with plane

end for
sort surfaces on intersection time
k plane← 1
while k plane < number of surfaces do
if surface is the detection dome then
detect ray
break

end if
calculate interscetion point ray with plane
if ray hits the surface then
change ray direction
change ray magnitude
break

end if
increase k plane

end while
end while

end for

14

3 Ray tracing model for simulation of grass reflection

3.2 Sample generation

The sample can consists of two types of surfaces: circular surfaces and rectangular surfaces.
Figure 6 shows a sample for grass, where the ground is modelled as a circle and the blades
are assumed to be vertical rectangles - a blade is considerably thin compared to its width and
length. Therefore, the surfaces are two dimensional in an otherwise three dimensional model.

The properties attributed to these surfaces are elaborated upon below.

Figure 6: Example of a grass sample in the coordinate system, where the ground is modelled as a circle and the
grass blades are modelled as vertical rectangles. The small lines perpendicular to the surfaces are the surface
normals.

Circular surface properties
For a circular surface, the centre, radius (rsample) and height of the surface are specified. For
the sample grass, the ground is considered to be a circular surface whose center is in the middle
of the detection dome.

Rectangular surface properties
For a rectangle, all four corners of the surface need to be specified. Furthermore, the centre of
the surface is saved and the length and height can be set.

In the example of the grass sample, the grass blades are modelled as vertical rectangles, whose
centres (ϕb, rb) are randomly (but uniformly) distributed over the circular sample in the xy-
plane. Therefore, the centres are chosen by uniformly sampling a disc.

ϕb = 2πξ1 (rad) (5)

rb =

(
rsample −

1

2
wblade

)√
ξ2 (rad) (6)

ξ1, ξ2 ∈ [0, 1] (7)

where the random numbers ξi are generated by Matlab’s rand function. This function returns
uniformly distributed random numbers between 0 and 1. The grass blades therefore spawn
randomly but uniformly in the sample. By restricting the radius in which the centre of the
blades are allowed to spawn by half of the width of the blade, no blade falls outside of the

15

3 Ray tracing model for simulation of grass reflection

radius of the sample. Figure 7a shows the sample from nadir position and shows the randomly
spawned points (in orange) in the allowed area (shaded in gray).

Now that the centres (xb, yb) of the samples projected on the xy-plane are known, choosing a
height of the grass blades (zblade) and width of the grass blades (wblade) allows for determining
the corners of the grass blades as illustrated in figure 7b:

x1 = x4 = xb −
1

2
wblade (8)

x2 = x3 = x1 + wblade (9)

y1 = y2 = y3 = y4 = yb (10)

z1 = z2 = zblade (11)

z3 = z4 = 0 (12)

where subscripts 1,2 3 and 4 refer to the left top corner, right top corner, right bottom corner
and left bottom corner, respectively. Now, the sample consists of rectangular blades that are
randomly oriented on the sample, shown by the light green lines in figure 7a. Lastly, the grass
blades are rotated randomly such that each blade is facing a random direction, where rotation
angle γ is:

γ = 2πξ3 (13)

ξ3 ∈ [0, 1] (14)

In figure 7a, the dark green lines represent the rotated grass blades as viewed from the top.
As the centres and rotation of each grass blade depends on these equations only, grass blades
can also grow through each other. This is illustrated by the two grass blades in the top right
quarter in figure 7a.

(a) A grass sample as viewed from the nadir position.
The centres of the grass blades (in orange) are ran-
domly distributed over the allowed area (shaded in
gray). First, the grass blades are all parallel to the x-
axis (in light green). They are rotated by angle γ to
make them face a random direction (in dark green).

(b) A grass blade as viewed along the y-axis. First,
its centre is determined (in orange). The coordinates
of the angles of the blade are determined based on
this position. The orientation of the blade is ran-
domized later by application of a random angle γ
(see figure 7a).

Figure 7: Two dimensional illustrations of the main parameters relevant to the generation of the sample.

16

3 Ray tracing model for simulation of grass reflection

Non-sample area
The area of the bottom of the detection dome that is not a sample2, is modelled to behave like
a blackbody. A ray of light that intersects with this area is lost from the system.

3.3 Ray generation

Generating the first ray
A ray can be described by a vector: it has both a magnitude and a direction. From hereon,
any vector is a three dimensional vector with three components as defined by the Cartesian
coordinate system - e.g. any vector v⃗ has an x, y and z component. Consider a ray starting at
point e⃗, travelling along the direction d⃗. The point p⃗(t) where the ray is at time t can then be
computed as follows [56]:

p⃗(t) = e⃗+ td⃗ (15)

Using this notation, a ray is created with the following properties:

• Starting point (e⃗), computed from the azimuth (ϕsource) and elevation (θsource) angle of
the source and the radius of the detection dome.

• Direction (d⃗ = s⃗ − e⃗) where s⃗ is the end point. The first ray that is generated is aimed
at the middle of the detection dome. The height h at which the rays are aimed can be
chosen by the user. The choice for height influences the results and the height should
therefore be chosen carefully, as described in section 3.7 ((sx, sy, sz) = (0, 0, h)).

• Magnitude per wavelength m(λ). The value of the magnitude can be chosen freely, as
the magnitude measured will eventually be normalised to obtain the BRDF. Therefore,
initially, m(λ) = 1∀λ.

Note that knowing the time t and the first two properties allows us to compute the position of
the ray using equation 15. Figure 8 shows one generated ray. Its starting point corresponds to
the green point and it ends at the middle of the detection dome. The magnitude per wavelength
allows for measuring the spectral dependence of the radiance.

Generate a bundle of parallel rays
A bundle of rays that fall uniformly on the surface is generated based on the direction of the
first ray. Figure 9 shows a bundle of 50 rays. The direction of all rays is the same (d⃗), but the
end point (sx and sy, sz = h) differs such that the rays are falling uniformly distributed on the
surface, mimicking a beam. This beam has a circular cross section on the xy-plane at height
h. When h = 0, the end points of the rays are uniformly distributed on the ground in a certain
illuminated area (the area within the yellow circle in figure 9). Figure 10 is a sketch of the view
from nadir position, where the illuminated area is shown by the yellow-shaded area.

The sample (which is a circle) can be divided into an illuminated and non-illuminated area. As
the cross section of the beam is always circular on the ground, the illuminated area Ailluminated

can be determined with respect to the area of the sample Asample:

Ailluminated = a2illuminatedAsample (16)

rilluminated = ailluminatedrsample (17)

2Anon−sample = Adome −Asample = (a2dome − 1)Asample according to equation 30.

17

3 Ray tracing model for simulation of grass reflection

Figure 8: One ray with ϕsource = 180° and θsource = 45° is shot to the centre of the detection dome.

where a2illuminated is the fraction of the area which is illuminated compared to the sample area. In
principle, the value of ailluminated, the ratio between the radius of the illuminated area rilluminated

and the radius of the sample rsample, can be any value: however, ailluminated > 1 is not sensible
as part of the rays will be shot next to the sample and thus lost immediately. The value of
ailluminated has been optimised, as is further elaborated on in section 3.7.

The properties of the parallel rays are:

• Direction (d⃗) as computed for the first ray.

• Starting point (e⃗) is computed using equation 15. Here, d⃗ is as defined above. The end
points s⃗ are chosen such that the end points are uniformly distributed in a circle on the
chosen height h, which is the same height as for the first ray:

ϕs = 2πξ4 (rad) (18)

rs = rilluminated

√
ξ5 (rad) (19)

ξ4, ξ5 ∈ [0, 1] (20)

These spherical coordinates are then transformed to Cartesian to obtain (sx, sy, sz).
Lastly, time t is the time it takes before this ray intersects with the detection dome
(see equation 29) and using these inputs e⃗ is computed.

• Magnitude per wavelength m(λ) as assigned to the first ray.

All rays (including the first ray) thus have the same direction and an end point that falls within
the circle of radius rilluminated, which can be seen from figure 9.

3.4 Ray intersection

A surface can be described as a plane with boundaries. For any point p⃗ that lies in the plane
of point p⃗l with surface normal n⃗, the following relation holds true [56]:

18

3 Ray tracing model for simulation of grass reflection

Figure 9: 50 parallel rays incident from ϕsource = 180° and θsource = 45° are shot into the illuminated area
(Ailluminated), in yellow.

(p⃗− p⃗l) · n⃗ = 0 (21)

The intersection time of the ray with the plane can now be found by substituting equation 15
in equation 21 [56],

t =
(p⃗− e⃗) · n⃗

d⃗ · n⃗
(22)

Substituting equation 22 in equation 15 gives the intersection point of the ray with the plane, p⃗i.
This does not guarantee that the ray also intersects with the surface in the plane - the program
checks if the computed intersection point falls on or within the boundaries of the surface. Only
if this is the case, the surface is considered to be ’hit’.

The planes resembling the grass blades are two dimensional, but situated in a three dimensional
world. If a ray is parallel to the surface and hits the surface from its infinitesimally thin side,
d⃗ · n⃗ = 0 3 and no intersection time can be computed (equation 22). Therefore, the ray does not
’see’ the grass blade and the ray effectively shines past it. This is the case when light shines
from θsource = 90° on a vertical grass blade, as well as when light shines from any ϕsource to a
blade whose tangent line is parallel to ϕsource. In these situations, the light does not reflect on
the blade.

As the starting point and direction of the ray are known, the number of surfaces that the ray
can hit when it is initially incident on the surface is reduced to only the surfaces that are in the
path of the ray. Computational time can be saved if only the intersection time of the blades in
the path has to be computed. The initial position is specifically ideal to apply this technique,
as the path of the parallel rays is almost the same - a list of surfaces that are present in this
path only has to be made once. For a ray coming from the sky, the software only computes the

3d⃗ · n⃗ = 0 or practically zero (|d⃗ · n⃗| < 1015)

19

3 Ray tracing model for simulation of grass reflection

Figure 10: Two dimensional illustration of the top view of the sample (black circle). The illuminated area
(shaded in yellow) lies within the sample. The light is incident from ϕsource. The end points s⃗ of the light
(yellow circles) have as coordinates (ϕs,rs,h).

intersection time for the surfaces whose centres occur in the area Ailluminated,initial. This area
is defined to have the width of rilluminated + wblade and extends from one end of the detection
dome to the other. This area is shaded in red in figure 11. Once the ray has hit a surface, all
surfaces are taken into account again.

When a ray hits a surface, its direction and magnitude change.

Figure 11: Two dimensional illustration of the top view of the detection dome (blue circle). The black circle
represents the sample and the yellow shaded area is the illuminated area. As light is shot from azimuth ϕsource,
only blades (dark green lines) whose centres (orange points) fall within the initially illuminated area (shaded in
red) are considered in the calculations, as these are the only blades that could potentially be hit. This reduces
calculation time.

20

3 Ray tracing model for simulation of grass reflection

3.4.1 New direction

When a ray hits a surface, it changes direction. The method through which the new direction
is chosen and the grid layout of the detection dome determine the number of photons detected
in every pixel of the detection dome. Choosing a new direction and measuring the rays at the
detection dome should be done such that upon measuring a Lambertian surface, the radiance
measured is equal for every angle: this is the definition of a Lambertian surface (see equation
3).

The possible directions from which the ray can ’choose’ depends on the orientation of the surface
that the ray hits: the new direction should be physically possible. For example, if the surface
is oriented horizontally on the ground, the new direction of the light has to be in the half-space
above the surface. Figure 12a displays 1000 possible ray directions for one ray intersecting at
(0,0) on the xy-plane. For a differently oriented surface, some directions are impossible as the
ray is not allowed to travel through the surface. Figure 12b illustrates this principle, showing
a half-space of possible directions in black and a half-space of invalid directions in red.

The situation described above is translated to mathematical equations in order to choose valid
new ray directions. Mathematically, the new direction is chosen in the half-space of the surface
normal. The valid polar angles of the new ray direction are sampled uniformly in the spherical
coordinate system of the detection dome. To take the direction of the incoming light into
account (and thus the side of the surface that is hit), the normal should be in the half-space of
the incoming light ray. This ensures that the light reflects back into the half-space that it was
coming from.

(a) (b)

Figure 12: Visualisation of possible reflection directions (1000 displayed) of one incoming ray for a horizontal
(a) and tilted (b) surface. The directions in red are not valid, because they are not in the half-space of the
surface normal in the direction where the light is coming from.

21

3 Ray tracing model for simulation of grass reflection

Ensuring that the surface normal is in the direction of the incoming ray
First, the program evaluates if the normal is in the half-space of the incoming ray. For a vector
v⃗, surface normal n⃗ and related surface parameter d, the following relations are true:


n⃗ · v⃗ > d (v⃗ is in the same half-space as n⃗)

n⃗ · v⃗ < d (v⃗ is in the opposite half-space from n⃗)

n⃗ · v⃗ = d (v⃗ is in the plane)

(23)

In these relations, the parameter d follows from the Cartesian equation which models a surface.
It is is the distance from the plane to the origin:

d = p⃗i · n̂ (24)

Knowing d, the relations are applied to ensure that the normal is in the direction of the incoming
light. To this end, v⃗ is substituted by the direction of the incoming ray, d⃗, and the direction of
the normal is flipped to −n⃗ if n⃗ · d⃗ < d.

Determining a new ray direction in the half-space of the normal
Now that the surface normal is in the same half-space as the incoming ray, a new direction can
be chosen. The new direction of the ray is determined by sampling a sphere uniformly in polar
angles and based on random numbers generated by a normal distribution:

ϕnew = −π

2
+ πξ6 (rad) (25)

θnew = −π + 2πξ7 (rad) (26)

ξ6, ξ7 ∈ [0, 1] (27)

This gives a possible new ray direction in the sphere. However, only the ray directions in the
correct half-space are allowed. Therefore, after generating a new ray direction, it is checked
whether this new direction ⃗dnew is in the same half-space as the surface normal. If this is the
case, the new direction is a valid direction. If the new direction is not in the half-space of
the surface normal, the new direction is rejected and a new direction is chosen according to
equation 25.

The new direction of the ray is chosen such that the surface reflects diffusely, like a Lambertian
reflector. Every surface that is part of the sample is modelled to reflect diffusely - the grass
blades included. This is also how Juhan and Marshak [48] model the reflection of leafs.

The chosen new ray direction is transformed to Cartesian coordinates, which results in
−−→
dnew.

Figure 12b illustrates that the new directions that are chosen are rotated correctly.

3.4.2 New magnitude

The new magnitude of the ray depends on the type of surface, which determines the percentage
of reflectance per wavelength. The new magnitude of the ray after intersection (mnew) is
simply the old magnitude of the ray (mold) times the reflectance (Rsurface) which depends on
the material. The ray magnitude is thus adapted as follows:

mnew(λ) = mold(λ) ·Rsurface(λ) (28)

The non-reflected part of the ray is assumed to be fully absorbed - in other words, lost from
the system.

22

3 Ray tracing model for simulation of grass reflection

Included options for surface types are, among others, a blackbody (all wavelengths are absorbed,
Rblackbody(λ) = 0∀λ) and a Lambertian reflector (all wavelengths are reflected, RLambertian(λ) =
1∀λ). Spectrally dependent reflectance data can also be used to model non-ideal surfaces. In
this report, the reflectance data of grass comes from Russell et al. [6] and is shown in figure
13. This data is interpolated to get the reflectance at the input wavelengths that are set by the
user at the start of the program. The soil is assumed to be a blackbody.

Figure 13: The reflectance of grass (R) as function of the wavelength (λ). Data from Russell et al. [6].

3.5 Ray detection

The ray is detected when it intersects with the detection dome. This is the hemisphere in which
the system is contained. The dome is placed over the ground surface. To know the angular
BRDF, it is important to know where the ray hits the dome - i.e. where the intersection point
is between the ray and the dome.

A sphere can be described in vector notation where every point p⃗ lies on the sphere with radius
rdome and centre c⃗ [56]:

(p⃗− c⃗) · (p⃗− c⃗)− r2dome = 0 (29)

where rdome and correspondingly the area at the bottom of the hemisphere Adome is determined
with respect to the sample size according to:

Adome = a2domeAsample (30)

rdome = adomersample (31)

The value of adome, the ratio between the radius of the illuminated area rdome and the radius of
the sample rsample is restricted to adome ≥ 1 to ensure the entire sample falls within the dome.
The value of adome has been optimised, as is further elaborated on in section 3.7 .

Substituting equation 15 in equation 29, the intersection time with the sphere is [56]:

t =
−d⃗ · (e⃗− c⃗)±

√
(d⃗ · (e⃗− c⃗))2 − (d⃗ · d⃗)((e⃗− c⃗) · (e⃗− c⃗)− r2)

d⃗ · d⃗
(32)

and equation 15 can then be used to compute the intersection point. Figure 14 shows an
incoming ray being reflected by the sample and detected at the blue point.

The detection dome is discretized to measure the detected ray. Therefore, it is divided into
pixels. The detection dome is considered to be a spherical coordinate system, resembling a

23

3 Ray tracing model for simulation of grass reflection

Figure 14: An incoming ray is reflected by the sample and detected at the detection point, displayed in blue.

spherical geographic coordinate system. The grid pixel size is thus uniform in terms of θ and
ϕ. That is, if an accuracy of β degrees is chosen, the matrix C(i, j) containing the centre of
every pixel looks as follows:

C(i, j) = C(θ, ϕ) (33)

C(i+ 1, j) = C(θ + β, ϕ) (34)

C(i, j + 1) = C(θ, ϕ+ β) (35)

C(i+ 1, j + 1) = C(θ + β, ϕ+ β) (36)

In this way, the entire C matrix is filled, where each value belongs to the centre of a pixel on
the detection dome. Figure 15 shows the pixels on the detection dome and their centres when
β = 15°. The sum of the final ray magnitude (mfinal) at every wavelength of all rays hitting
the pixel with center C(i,j) pixel is saved in the matrix grid pixel C(i,j).

When a ray hits the detection dome, it is checked which pixel was hit by looking for the smallest
difference between the detection point (θdetected and ϕdetected) and the centres of the pixels (θC
and ϕC). Essentially, the program finds in which pixel the detection point (blue dot) falls, as
illustrated in figure 15.

Then, the final magnitude of the ray at each wavelength (mfinal) is added up to the spectral
value that this pixel already had. In this way, the spectro-angular radiance is obtained: the
radiant flux reflected by a surface, per unit solid angle per unit projected area. So, for each
bundle of rays shot at a specific angle of incidence (θsource, ϕsource), the spectro-angular radiance
(L(C, λ)) can be determined. The formula below describes how the radiance for a single pixel
and wavelength is built up: the magnitudes of the rays (mfinal) at a wavelength (λ) are summed
for all rays (n(C)) that hit a pixel C.

L(C, λ) =
∑
n(C)

mfinal(λ,C) (37)

24

3 Ray tracing model for simulation of grass reflection

Figure 15: An incoming ray is reflected by the sample and detected at the detection point (in blue), which falls
in the highlighted pixel. Here, the angle between the pixel centres β = 15°.

Or, in terms of θ and ϕ:

L(θ, ϕ, λ) =
∑
n(θ,ϕ)

mfinal(λ,C) (38)

So, the radiance for a certain angle of incidence is a three dimensional matrix: tabulated
spectro-angular radiance.

3.6 From radiance to BRDF

Clearly, the BRDF will depend on the shape of the radiance - but they are not the same
quantity. To transform the reflected spectro-angular radiance (L) to the spectro-angular BRDF
(f(θ, ϕ, λ)) -which will be a tabulated BRDF (TBRDF) - the radiance has to be normalized
[57]. This is done by applying the law of energy conservation.

The law of energy conservation states that the number of photons coming out of the system
should be equal to the number of photons entering the system when there are no loss mechan-
isms. This principle of energy conservation can be mathematically described as follows:

2π∑
ϕ=0

1
2
π∑

θ=0

f(θdome, ϕdome, λ)cos(
π

2
− θdome)sin(

π

2
− θdome)dθdomedϕdome = 1 (39)

The cosine takes into account that every pixel has a different viewing angle with respect to the
centre of the sample, and therefore sees a different amount of radiance. The sine takes into
account the tilt of each detection dome pixel.

However, in the detection dome, energy is not always conserved as there is absorption in the
system. In the case of a simple horizontal circular sample, energy might be lost if the sample
absorbs (R(λ) < 1 in equation 28). Such a loss mechanism can cause less number of photons to

25

3 Ray tracing model for simulation of grass reflection

come out out of the system than were initially coming in. This imbalance is to be accounted for
in the BRDF, otherwise all samples would always have an albedo of 1. This effect is accounted
for by the spectral albedo (ρ(λ)):

ρ(λ) =
Eout(λ)

Ein(λ)
(40)

where Eout and Ein are the exitance (radiant flux leaving a surface per unit area) and incoming
spectral irradiance (radiant flux received by a surface per unit area), respectively:

Eout(λ) =
2π∑
ϕ=0

π
2∑

θ=0

L(θ, ϕ, λ) (41)

Ein(λ) =
n∑

n=0

minitial(λ,C) (42)

In summary, the BRDF is computed as follows:

f(θdome, ϕdome, λ) =
L(θ, ϕ, λ)∑2π

ϕ=0

∑ 1
2
π

θ=0 L(θ, ϕ, λ)cos(
π
2
− θ)sin(π

2
− θ)dθdϕ

ρ(λ) (43)

For a given wavelength, the BRDF has the shape of the reflected radiance. The radiance has
to be normalised, which is done by the sums in the denominator. To account for energy loss
in the BRDF, the first division is multiplied by the spectral albedo. The BRDF as shown in
equation 43 can be obtained for every angle of incidence of the light, which makes the BRDF
five dimensional: f(θsource, ϕsource, θdome, ϕdome, λ).

3.7 Calibration of the parameters

The ray tracer software makes use of many parameters, whose values affect the resulting BRDF.
This section aims to create insight in the effects of these parameters with as goal to achieve a
BRDF which is as accurate as possible. First, the simplest sample is considered: a horizontal
Lambertian surface. Then, the parameters are calibrated for grass, modelled by multiple diffuse
reflectors.

3.7.1 Calibrating the horizontal Lambertian reflector

To ensure the model is working, the TBRDF of a Lambertian reflector (as illustrated in figure
12a) is measured and compared to the analytical Lambertian. The BRDF of the latter is 1

π
for

all directions of the hemisphere (equation 3).

As the model is run for a Lambertian reflector, some simplifications are made. The model is run
by simply only generating a horizontal plane in the detection dome, which does not decrease
the magnitude of the ray after collision:

mnew = mold (44)

Thereby, the spectral dependence of the TBRDF is taken out entirely. Furthermore, as the
reflector is Lambertian, the BRDF does not depend on the angle of the incident light. Con-
sequently, the TBRDF becomes two dimensional as it only depends on θdome and ϕdome. Fur-

26

3 Ray tracing model for simulation of grass reflection

thermore, as it is known that the BRDF for a Lambertian surface is a constant, it can be
deduced that the obtained TBRDF should not vary with θdome and ϕdome.

All rays are directed at the origin of the xy-plane to increase calculation speed and such that
the variables adome and asample do not play a role. Furthermore, the software is run ten times
and the average radiance is taken such that local errors are evened out.

Figure 22e shows the BRDF of a horizontal Lambertian surface, evaluated for 100,000 rays.

As the magnitude of the rays never decreases, the energy entering the dome should also leave
the dome to fulfil the law of energy conservation. In other words, the integration shown in
equation 39 should evaluate to 1 for an ideal diffuse reflector, which has been verified.

Comparison TBRDF to analytical Lambertian: Number of rays and detection dome
grid accuracy
Comparing the obtained TBRDF to the analytical Lambertian, the root mean squared error
(RMSE) follows:

RMSE =

√√√√∑2π
ϕ=0

∑π
2
θ=0

(
1
π
− f(θ, ϕ)

)2∑2π
ϕ=0

∑π
2
θ=0 1

(45)

The simulation is run for n rays and a detection dome accuracy measured in β, the amount of
degrees between detection dome pixel centers. Figure 16 shows how for β = 0.5° an increase in
the number of rays decreases the RMSE - which is expected as a larger sample size will decrease
the error.

Figure 16: Root mean squared error (RMSE) as function of the number of rays (n) for β = 0.5°.

Figure 17 shows the results of a simulation where the BRDF has been saved for n from 104

to 109 and the detection dome pixel size varies (β)4. For each value of the number of rays n,
there is a minimum at a certain value of the detection dome pixel size parameter β. Two main
effects can be seen:

1. As the pixel size increases, the RMSE decreases as the errors on individual pixels are
averaged;

2. As the pixel size increases further, the RMSE increases. Because of the large pixel size, the
detection dome shape is made up of less faces and is therefore different from a hemisphere
- in that case, measuring diffuse reflection becomes less accurate.

4The chosen values of β are multiples of β = 0.5° such that the TBRDF for larger pixel sizes (e.g.β = 1°,
β = 1.5° etc.) can be computed after running the ray tracer for only one pixel size. Some multiples of β = 0.5°
are skipped because the detection dome hemisphere cannot be divided into equal parts anymore (e.g., β = 3.5°
does not fit an integer number of times in the azimuth (360°) nor in the elevation angle (90°))

27

3 Ray tracing model for simulation of grass reflection

The first effect is more prominent for a low number of rays, whereas the second effect is more
prominent for a larger number of rays. This can be intuitively explained: when there are more
rays, the error per pixel will be smaller already. Therefore, to minimise the RMSE, a high
number of rays needs to be detected by a smaller pixel size compared to a low number of rays.

Figure 17: Root mean squared error (RMSE) as function of the detection dome accuracy β in degrees for various
number of rays (n).

The ray tracer runs by a for loop over the number of rays. Therefore, the running time
proportionally increases with the number of rays as can be seen from figure 18. Furthermore,
a high value of β means a low number of pixels, which reduces the memory requirements.

Comparison TBRDF to analytical Lambertian: Measured area relative to the dome
In the section above, all incoming n rays are shot towards the middle of the detection dome.
However, if they were to be shot to a point at a certain radius away from the centre of the
dome, the rays don’t fall equally distributed on the grid anymore and the resulting BRDF gets
distorted. Therefore, the rays should be aimed close to the centre of the detection dome. The
impact of the size of the detection dome with respect to the size of the illuminated area has
been evaluated. The illuminated area is set to be the same as the sample size, and the ratio
between the radius of the detection dome and the radius of the sample adome is varied.

Figure 19 shows the relation between the RMSE and adome. The plot is for n = 106 and β = 3°
(as deduced from figure 17). It can be seen that the error is minimised when the detection

Figure 18: The run time t in seconds against the number of rays for β = 0.5°.

28

3 Ray tracing model for simulation of grass reflection

dome is larger than one thousand times the size of the sample.

Figure 19: Root mean squared error (RMSE) as function of adome, the ratio between the radius of the detection
dome and the sample (which is the spot size as here, ailluminated = 1. Case for n = 106 and β = 3°.

So far, the incident rays have been aimed at height h = 0. When the sample height is increased
and the rays are aimed higher (h > 0), the lower pixels of the detection dome will receive less
radiance. To analyse this effect, the parameter q is introduced. This parameter is the ratio
between the dome size and the height:

q =
rdome

h
(46)

Note that q > 1 to make physical sense. Figure 20 shows the resulting RMSE when shooting
the rays at (x, y, z) = (0, 0, h) and varying h. At q = 1, the rays are shot at the top of the
detection dome. The error is minimised when the dome is about a thousand times larger than
the height at which the rays are shot (q = 103).

Figure 20: RMSE as function of q, the ratio between the radius of the detection dome and the height h that
the rays are shot at. Case for n = 1, 000, 000 and β = 3°.

Since a larger detection dome is not computationally more expensive, a detection dome is chosen
with adome = 108. Since adome determines rdome, this means that h may not exceed h = 105 to
retain accuracy.

Other orientations of a Lambertian reflector
The TBRDF of differently oriented surfaces is simulated like the Lambertian surface. A Lam-
bertian surface should always give an equal radiance - and since the shape of the BRDF depends
on the radiance, this can be checked by looking at the BRDF. Figure 21 shows four different
orientations of a Lambertian surface, and the resulting shape of the BRDF. Note that here,
adome = 108 is used. It can be seen that the BRDF is equally large to all directions that are
available, thereby validating that the BRDF of a Lambertian reflector in any orientation can
be simulated accurately (i.e. with the limitations according to figure 17).

29

3 Ray tracing model for simulation of grass reflection

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 21: Possible reflection directions for a horizontal Lambertian (a), vertical (b) and tilted Lambertian
surface (c and d) and their corresponding BRDF (e,f,g, and h, respectively). The simulation has been run for
n = 106 and β = 6.

3.7.2 Calibrating the grass reflector

The simplest grass sample consists of a circular surface, which is the ground, and rectangular
vertical surfaces which represent the grass. To focus only on the effect of the grass geometry,
the ground is assumed to be a blackbody. Each grass blade reflects diffusely, like a Lambertian
reflector - but for the grass, spectral reflectivity R(λ) is taken into account.

The simulations are run for ten different randomly oriented samples such that the local error
of a single sample is reduced.

Considerations for the height h
When the sample is changed for grass modelled as explained above, other parameters become
important: ailluminated and rilluminated. These parameters determine in part the realism of the
obtained BRDF.

The goal of the ray tracer is to produce a BRDF for grass as if it were a large patch. However,
in the ray tracer, there is only a circular sample of grass - it has distinct boundaries. Depending
on the height that the rays are shot at, some rays will hit the grass at the edge of the sample
- especially for low elevation angles. These blades act like a vertical Lambertian (see figures
22b and 22f) and therefore influence to great extent the reflectance and thus the BRDF. This
influence has to be minimized. This problem can be solved by aiming the rays at height
h = zblade - now, by definition, the light will not hit the blade closest to the edge of the sample
as much from the side.

However, aiming the rays at h = zblade also introduces constraints on the height of the blades.
If the blades are very high, the RMSE is distorted (see figure 20). Furthermore, the valid angles
for the source (the sun) are reduced. Consider a vertical Lambertian surface with a height 5
cm, which stands in the middle of the detection dome with a radius of 10 cm (figure 22b). If
the source is at elevation angle θsource = 0 and the ray is shot towards h = 5cm, then the ray
direction has a positive z component: the ray is shot towards the sky instead of towards the
ground. Place some more grass blades in the sample, and it can be deduced that the initial
rays from the sun will have to go through grass blades to be able to follow their path towards
the sky. Clearly, this is not a physically possible situation.

With the help of geometry, the problem can be solved. The elevation angle of the source should

30

3 Ray tracing model for simulation of grass reflection

be defined such that rays are never directed towards the sky. So, the ray direction is either
horizontal or aimed down. Related to this problem is that light which is shot at very low
elevation angles, will be detected on the opposite site of the detection dome. To avoid both
problems, the elevation angle of the source should always be higher than θsource,min:

θsource,min = arctan

(
h(1 + rdome+rilluminated

rdome−rilluminated
)

rdome

)
(47)

Only at angles θsource > θsource,min the ray tracer will produce a valid result. If adome is small,
θsource,min will be large and the ray tracer can be used for less incident elevation angles. Again,
a large detection dome thus proves to be useful as it reduces θsource,min. For example, aiming
rays at a sample with rilluminated = 2.5cm at a height h = zblade = 8cm and a detection dome
of rdome = 5000km gives θsource,min = 1.83 · 10−6°. This angle should be computed to know
the lower limit at which the model is valid. The Matlab code throws an error when angles of
incidence are chosen which force the ray direction towards the sky.

Another option is to place the sample under the detection dome by height h. This configuration
carries the inherent assumption that there is a blackbody at the edge of the sample, as reflection
coming from the side of the sample is not measured and considered to be lost. For this reason,
this configuration was not chosen, although it might be worth re-evaluating this option in the
future as it avoids the error introduced by θsource,min.

Considerations for the blade density
The number of blades hit by the beam and their orientation matters for the obtained BRDF.
Consider a sample illuminated by a light beam so small that all light falls on one grass blade in
the middle. The orientation of this grass blade has a profound impact on the resulting BRDF
- in the initial intersection of all rays with this blade, there is only one half-space of possible
directions (see figure 12b). If the beam were to be aimed at a larger area of the sample, there
are initially more half-spaces of directions to choose from. So, the number of blades that are
illuminated influences the BRDF. In this thesis, I take rilluminated = 2.5cm which consists of 45
blades - that gives a blade density of approximately 22,918 blades per square meter, based on
artificial grass [58].

Considerations for ailluminated

Consider a grass sample which is fully illuminated. The light rays hitting the grass blades at
the edge have an equal chance to be reflected upwards (get a positive z-component to ⃗dnew)
and to reflect towards the ground (a negative z-component). If the sample size is increased
while the illuminated area stays the same, upward directed rays which would otherwise have
been detected have an increased probability of hitting an extra blade. The same is true for
downward directed rays.

To analyse if and how these effects affect the albedo, the ray tracing model has been run
by shooting n = 105 rays on the sample. The sample consists of a blackbody ground and
rectangular grass blades with height zblade = h = 4cm and width wblade = 0.5cm. The accuracy
of the detection dome is β = 10°. The size of the illuminated area (determined by rilluminated)
is kept constant, while the sample size (determined by rsample) is increased. In other words,
ailluminated is changed, but in such a way that the spot size will stay the same. To analyse the
effect of decreasing ailluminated, the model is run for four situations:

• rilluminated = 2.5 cm, rsample = 2.5 cm, ailluminated = 1

• rilluminated = 2.5 cm, rsample ≈ 3.3 cm, ailluminated = 0.75

31

3 Ray tracing model for simulation of grass reflection

• rilluminated = 2.5 cm, rsample = 5 cm, ailluminated = 0.5

• rilluminated = 2.5 cm, rsample = 10 cm, ailluminated = 0.25

Figure 22 presents the BRDF of grass for ten elevation angles of the source. There is no
reflection at θsource = 90°, as the rays directly hit the ground which is a blackbody and absorbs
all the light.

(a) θsource = 0.1° (b) θsource = 10° (c) θsource = 20° (d) θsource = 30° (e) θsource = 40°

(f) θsource = 50° (g) θsource = 60° (h) θsource = 70° (i) θsource = 80° (j) θsource = 90°

Figure 22: The BRDF of vertical grass for ten elevation angles of the source (θsource). Light (yellow line) is
incident from ϕsource = 0°. Here, rilluminated = 2.5cm, rsample = 5cm and ailluminated = 0.5.

Figure 25 shows the value for the albedo (ρ) integrated over the detection dome (θdome and
ϕdome) for ten angles of incidence for each of the four situations for one wavelength (λ = 900
nm). Overall, the albedo for this wavelength varies between ρ = 0.064 and ρ = 0.294. Given
that upon first intersection, a ray at λ = 900 nm reflects 50.76% of the incoming light (see
figure 13), the albedo can be maximally 50.76%. Indeed it can be seen in figure 25 that the
albedo stays well below this limit.

In figure 25, compare the albedo for different elevation angles when the entire sample is illumin-
ated, i.e. for rilluminated = rsample = 2.5cm. The albedo is higher when the angle of incidence is
lower. Light coming in from a low elevation angle hits the grass blades at the top of the blade
(see figure 23a), whereas light that comes in at a higher elevation angle penetrates deeper into
the grass (see figure 23b). Light hitting the grass deeper has less chance to reflect towards the
sky, as illustrated by the blue arrow in figure 23b. Therefore, the simulated albedo of grass
is lower at high elevation angles of incidence. This effect will from hereon be called higher
elevation angle - lower albedo.

There are two main effects when the sample size increases while the illuminated area stays
constant. Consider again a fully illuminated sample (rilluminated = rsample = 2.5cm). After
intersection with a grass blade, there is a 50% probability that the new ray direction will have
a negative z-component. The reflected ray is travelling down and is absorbed by the non-
sample area. When the sample size is increased while the illuminated area stays the same,
essentially an extra ring of blades is added around the illuminated area. A ray which would
have otherwise been absorbed by the non-sample area, now has a chance to hit the grass
blades in this ring. Therefore, these rays get a new opportunity to be reflected towards the
detection dome. So, as the sample size increases, the albedo increases. For example, when
the sample is fully illuminated (rilluminated = rsample = 2.5cm), the albedo for θsource = 50° is
ρλ=900nm,θsource=50°,ailluminated=1 = 0.135, whereas when the sample increases two times in radius,
ρλ=900nm,θsource=50°,ailluminated=0.5 = 0.179. When the elevation angle of the source is low, the first
intersection of the ray with the blade will take place relatively on the top of the blade (see

32

3 Ray tracing model for simulation of grass reflection

(a) Low elevation angle. (b) High elevation angle.

Figure 23: Two dimensional illustration of how elevation angle (θsource) influences the chance to reflect towards
the elevation dome. The incoming ray (yellow) is shot from a certain angle of incidence on the grass blades, in
green. The ray then chooses a new direction. The blue angle represents the directions which will be detected
at the detection dome. The green angle represents the directions for which the light will hit another grass
blade. The grey angle represents the directions for which the ray is aimed at the ground. The angles are an
indication of the probability of this event happening. The figures show how changing (θsource) influences these
probabilities.

figure 23a). Therefore, a reflected ray travelling towards the ground from the top of the blade
(see figure 24a) has a larger probability of intersecting with a grass blade than a ray which
departed from the bottom of the blade (see figure 24b). Consequently, the increase in albedo
is more prominent at low elevation angles (see figure 25).

(a) Downward ray: Low el-
evation angle.

(b) Downward ray: High el-
evation angle.

(c) Upward ray: Low eleva-
tion angle.

(d) Upward ray: High eleva-
tion angle.

Figure 24: Two dimensional illustration of how elevation angle (θsource) influences the probability for a downward
ray to intersect with a grass blade (represented by the brown arrow) and the probability of an upward ray to
intersect with a grass blade (represented by the pink arrow). The yellow line represents the illuminated area.

Secondly, after intersection with a grass blade, there is also a 50% probability that the new
ray direction will have a positive z-component. When the sample size has increased, these rays
have an increased probability to hit a grass blade. Hitting yet another blade means that the
magnitude of the ray decreases. This effect is most present when light is incident from a high
elevation angle, as for light penetrating deeper into the grass the probability that an upward
directed ray hits another grass blade (see figure 24d) is larger than for rays hitting the blades
near the top (see figure 24c) .

These two effects counteract each other, and as a result, it can be seen in figure 25 that for
every elevation angle, the sample size at which the albedo is at its maximum is different. For
example, for θsource = 80°, the figure shows that the maximum albedo for this angle is obtained
at rilluminated = 2.5cm, rsample ≈ 3.3 cm, ailluminated = 0.75. For θsource = 20°, the maximum
albedo is not reached yet at rilluminated = 2.5 cm, rsample = 10.0 cm, ailluminated = 0.25. Each
elevation angle thus has a sample size related to it at which its albedo is at its maximum.

It is expected that the albedo will converge for a large sample size. However, the convergence

33

3 Ray tracing model for simulation of grass reflection

Figure 25: The albedo (ρ) at wavelength λ = 900nm for four values of the ratio of the illuminated radius over
the sample radius (ailluminated) and ten elevation angles (θsource). The illuminated area is kept the same, but
the sample around the area increases from rsample = 2.5cm (left case) to rsample = 10cm (right case). Note
that the albedo at θsource = 90° is zero in all four cases.

cannot be clearly seen from figure 25 - likely the sample size has to be increased even further.
Increasing ailluminated comes with a computational cost (see figure 26), as the number of blades
on the sample has to increase to retain the blade density. Therefore, in the continuation of the
report, ailluminated = 0.5 will be used.

34

3 Ray tracing model for simulation of grass reflection

Figure 26: The average run time of the ten runs in seconds for four values of ailluminated and ten elevation
angles (θsource).

3.8 Usage of the ray tracing model

In principle, the described ray tracing software can be used to generate a BRDF for any position
of the sun. Considering that the sun’s position varies a lot throughout a day and the year,
running the ray tracer software for each and every possible position of the sun is computationally
expensive. Computational time can be saved by simply checking which positions the sun takes
in the sky: there are many combinations of ϕsource and θsource that the sun will never be in
for a certain location when modelling direct light. For example, for the city of Aasen in the
Germany, there is a θsource,max elevation angle in which the sun can be. This restricts the number
of positions to compute the BRDF for. When grass is assumed to be azimuthal symmetric on
the macro scale, after retrieving the BRDF for ϕsource = 0° and multiple values of θsource, the
BRDF data can be simply rotated to retrieve the BRDF data for the desired ϕsource. Thus,
a library containing the BRDF at ϕsource = 0° and θsource between θsource,min and θsource,max is
enough to be able to model the BRDF at every possible position of the sun at a given location.

From the library of BRDF’s, the BRDF corresponding to a certain θsource and ϕsource can be
retrieved and used in the reverse ray tracing code of Pal [9] to compute the energy yield.

35

4 Results and discussion

4 Results and discussion

In this section, the BRDF that is obtained from the developed ray tracing model will be
compared to experimental data. Furthermore, it will be demonstrated that the program can be
used to compute the influence of different grass geometries on the yield of a bifacial solar panel.
To this end, a case study of a vertical bifacial solar farm in Aasen, Germany, is performed.

4.1 Introduction grass samples

The following grass samples are investigated (see figure 27):

• Sample 1: Vertical grass 4 cm
Parameters as displayed in table 1.

• Sample 2: Vertical grass 8 cm
Parameters as displayed in table 1, but:

– Blade length is zblade = 8cm

• Sample 3: Vertical grass 12 cm
Parameters as displayed in table 1, but:

– Blade length is zblade = 12cm

• Sample 4: Varying height
Parameters as displayed in table 1, but:

– The type of blade is changed to “VerticalVaryingHeight”

– Blade length zblade is a random number between zblade,min = 4cm and zblade,max =
12cm as follows:

zblade = zblade,min + (zblade,max − zblade,min)ξ8 (48)

ξ8 ∈ [0, 1] (49)

• Sample 5: Tilted top 20° bottom 4cm top 4cm
Parameters as displayed in table 1, but:

– The type of blade is changed to “VerticalAndTiltedTop”

– zblade,top = 4cm

– An extra variable, the blade tilt, is introduced. This variable gives a range for the
minimum (τmin) and maximum angle (τmax) that the tilt may have as seen from the
xy-plane normal. Here, τmin = −20°, τmax = 20°. The blade tops are assigned a
random tilt angle τ between these two angles:

τ = τmin + (τmax − τmin)ξ9 (50)

ξ9 ∈ [0, 1] (51)

• Sample 6: Tilted top 40° bottom 4cm top 4cm
Parameters as displayed in table 1 and with corrections as for sample 5, but:

– τmin = −40°, τmax = 40°.

• Sample 7: Tilted top 20° bottom 8cm top 4cm
Parameters as displayed in table 1 and with corrections as for sample 5, but:

36

4 Results and discussion

– zblade = 8cm

• Sample 8: Tilted top 40° bottom 8cm top 4cm
Parameters as displayed in table 1 and with corrections as for sample 7, but:

– τmin = −40°, τmax = 40°.

• Sample 9: Tilted top 20° bottom 4cm top 8cm
Parameters as displayed in table 1 and with corrections as for sample 5, but:

– zblade,top = 8cm

• Sample 10: Tilted top 40° bottom 4cm top 8cm
Parameters as displayed in table 1 and with corrections as for sample 9, but:

– τmin = −40°, τmax = 40°.

(a) 1: Vertical 4 cm (b) 2: Vertical 8 cm (c) 3: Vertical 12 cm
(d) 4: Varying height 4- 12
cm

(e) 5: Tilted top 20° bottom
4cm top 4cm

(f) 6: Tilted top 40° bottom
4cm top 4cm

(g) 7: Tilted top 20° bottom
8cm top 4cm

(h) 8: Tilted top 40° bottom
8cm top 4cm

(i) 9: Tilted top 20° bottom
4cm top 8cm

(j) 10: Tilted top 40° bottom
4cm top 8cm

Figure 27: The analysed samples.

As the model is run ten times for every sample, the individual peculiarities introduced by all
parameters determined by random numbers (e.g. low probability events) are evened out.

The latter six samples consisting are considered to be more true to the real morphology of grass
than the first four. Nevertheless, the first four grass sample help to explain the effects seen for
the other six grass samples.

37

4 Results and discussion

Table 1: The parameters used to run the ray tracing model.

Parameter Symbol in report Value Notes
Sample Radius rsample 5 cm

Reflectance ground Rground(λ) 0 Blackbody
Number of blades - 180
Type of blades - “VerticalSameHeight” All blades have a height zblade
Blade width wblade 0.5 cm
Blade length zblade 4 cm
Reflectance grass Rgrass(λ) Values from [6]

Detection Accuracy dome grid β 6°
Size dome relative to sample adome 108 rdome = 5000 km

Light Azimuth angle source ϕsource 0°
Elevation angle source θsource Varied [θsource,min, β : β : θsource,max]°
Wavelengths λ [300 : 10 : 1100] nm
Number of rays n 105

Size illuminated area relative to sample ailluminated 0.5 rilluminated = 2.5 cm
Other Number of runs - 10

4.2 Comparison BRDF and albedo for various types of grass

In this section, the spectro-angular albedo of the different samples are analysed. Furthermore,
the albedo variation from sample to sample is investigated.

4.2.1 An angular dependent BRDF

(a) Vertical 8 cm:
θsource = 12°

(b) Vertical 8 cm:
θsource = 36°

(c) Vertical 8 cm:
θsource = 60°

(d) Varying height 4cm - 12cm:
θsource = 12°

(e) Varying height 4cm - 12cm:
θsource = 36°

(f) Varying height 4cm - 12cm:
θsource = 60°

(g) Tilted top 40° bottom 4cm top 8 cm:
θsource = 12°

(h) Tilted top 40° bottom 4cm top 8
cm: θsource = 36°

(i) Tilted top 40° bottom 4cm top 8 cm:
θsource = 60°

Figure 28: The BRDF of vertical grass for three values of the elevation angle θsource. Figures a to c belong
to sample 2 “Vertical 8 cm”, d to f to sample 4 “Varying height 4cm - 12cm” and figures g to i to sample 10
“Tilted top 40° bottom 4cm top 8 cm”.

38

4 Results and discussion

Figure 28 shows the angular BRDF for λ = 900nm for several samples. All values of the
BRDF for the ten samples can be found in appendix A. From these plots, there appears to be
azimuthal retroreflection for all ten samples: the light reflects in the azimuthal direction from
which it came (ϕdome = ϕsource = 0°).

For the samples consisting only of vertical blades (i.e. “Vertical grass 8 cm” and “Varying
height 4cm - 12 cm”), quite some light is reflected straight up into the sky: there is a peak at
θdome = 90°. This can both be seen in subfigures a-f in figure 28 and in figures 43,44,45 and 46
in appendix A. This behaviour can be attributed to the vertical geometry of the grass. Upon
first incidence, the light can only escape in the available directions as displayed in figures 23b
and 23a. Furthermore, the possible escape directions at θdome = 90° after first incidence overlap
with the possible escape directions after hitting a blade on the other side again, as is illustrated
in figure 29. These effects result in a peak around θdome = 90°.

Figure 29: Two dimensional sketch of the detection dome (blue hemisphere) and the sample. When light is
reflected more than once, the probability that the new ray direction is towards the detection dome (blue arrow)
overlaps, resulting in an overall higher chance to reflect towards θsource.

Retroreflection over the elevation angle (i.e. the light reflects in the elevation angle direction
from which it came, θdome = θsource) only occurs when there is a tilted top involved (see figures
47,48, 49,50, 51 and 52 in appendix A).

In figure 30, the shape5 of the obtained retroreflection lobe for “Tilted top 40° bottom 4cm top
8cm” is compared to experimentally obtained data for the wavelength λ = 550nm. The exper-
imental data is obtained by goniometer measurements on grass performed by Jelle Westerhof.
The figure shows the cross-section of the retroreflection lobe: a cut through the detection dome
from ϕdome = 0° to θdome = 180°. As the simulation has been run with an accuracy of the
detection dome of β = 6°, the elevation angles that are compared are not exactly the same.

For elevation angles θsource = 30°, the shape of the simulated BRDF does not agree with the
measured reflection for θdome < 15°. Interestingly, the measurements do not show this effect.
For the highest elevation angles shown in figure 30, the shape seems to agree - a lobe is obtained
that is not ’attached’ to the ground.

5Comparing the numerical values is challenging, as the detector in the goniometer has another viewing angle
on the sample than is the case in the simulation.

39

4 Results and discussion

Figure 30: Comparison of the shape of the reflection. The yellow line represents the elevation angle of the
incident light (θsource). The top three figures show the simulated BRDF of ”Tilted top 40° bottom 4 cm top 8
cm” for three elevation angles of the source (θsource). The bottom three figures show the measured reflection
of grass. Measurements performed with a goniometer by Jelle Westerhof (unpublished).

4.2.2 A spectrally dependent BRDF

Figure 31 shows the spectral albedo of one grass sample ”Tilted top 40° bottom 4 cm top 8
cm”. The figure shows the spectral albedo for seven angle of incidences of the source (θsource).
The albedo varies over the wavelength in accordance to Russell et al. [6] (crosses in figure 31),
as expected from applying the reflectance R in equation 28.

The albedo for all angles is lower than the reflectance. This is to be expected, as in the ray
tracing model, rays are absorbed by the soil or multiplied multiple times with the reflectance
by intersecting with multiple blades. Both these effects decreases the radiance on the detection
dome and thus the albedo.

4.2.3 BRDF dependence on blade geometry

Figure 32 shows the albedo (ρ) at λ = 900 nm for thirteen elevation angles θsource of all ten
samples. The figure shows multiple trends in albedo, which will be discussed in this section.

Grass length
In the first three vertical samples, the higher elevation angle - lower albedo effect as explained
by figures 23b and 23a can be clearly recognized, which agrees with the observations of Roosjen
et al. [20].

As the vertical grass becomes taller, the albedo increases for every angle of incidence. For
example, for an angle of incidence of θsource = 60°, the albedo of vertical grass of 4 cm tall is
about ρ = 0.165 for λ = 900 nm. The albedo for 8 and 12 cm tall grass for the same parameters
are higher: ρ = 0.176 and ρ = 0.179, respectively. When the grass is taller, the ray hits the
blade relatively higher on the blade - recall how the height h that the rays are aimed at is
related to the vertical height of the blade zblade. A smaller portion of the ray directions is

40

4 Results and discussion

Figure 31: The albedo (ρ) as a function of the wavelength (λ) from λ = 300 nm to λ = 1100 nm of tilted grass
top 40° bottom 4 cm top 8 cm for seven values of elevation angle (θsource). The reflectance of grass from Russell
et al. [6] is shown as well.

therefore pointed at the ground. Compare figure 33a to figure 33b: the angle that the gray
area makes, which is an indication of the probability that the ray hits the ground, decreases
as the grass becomes taller. So, taller grass increases the probability that the ray is reflected
towards another grass blade, after which the ray is given another chance to be directed towards
the sky and eventually detected - taller grass has a higher albedo for a given angle of incidence
and wavelength.

At low elevation angles, the ray hits the tall and the short grass close to the top of the blade.
The chance that the ray is reflected towards the ground is now more similar for the short and
the tall grass. So, for lower elevation angles the difference in albedo of the three vertical grass
samples is less.

These length effects are from hereon referred to as taller grass at higher elevation angles - higher
albedo.

When grass of various heights is combined, the trend in albedo as the angle of incidence changes
is different (see figure 31). Effect higher elevation angle - lower albedo still plays a role, and
taller grass at higher elevation angles - higher albedo as well, be it locally for individual tall
grass blades. However these effects do not explain the low albedo at low elevation angles - for
θsource = 10−5°, the albedo is even 0, which can also be seen in figure 46 in appendix A. Clearly,
there is another effect turning up.

Recall that the incoming rays are aimed at h = zblade,max. At all elevation angles, there are less
blades that are tall enough to be in the path of the ray. For example, when the ray comes in
at θsource = 10−5°, only the grass blades that are taller than 11.99999869 cm will contribute to
the reflection 6. The probability that blades of this length even occur in the sample (related
to Matlab’s rand algorithm that generates ξ8 (in equation 50)), is low. The probability is so
small that over all ten runs with 180 blades no collision takes place. The rays shoot overhead

6In the most optimal situation, a ray is aimed at the edge of the illuminated area (rilluminated = 2.5 cm).
The ray then has rsample + rilluminated cm to descend from h = 12 cm while having an elevation angle of
θsource = 10−5. Using geometry, the ray can maximally descend ≃ 1.30899694× 10−6cm. To be hit, the blade
has to be higher than 11.99999869cm

41

4 Results and discussion

Figure 32: Comparison of albedo (ρ) for λ = 900nm for the ten samples for thirteen elevation angles of incident
light (θsource). Note that for ”Varying height 4-12 cm”, the albedo at θsource = 10−5° is zero.

(a) Short grass (b) Tall grass

Figure 33: Two dimensional illustration of how grass length (lblade) influences the chance to reflect towards the
ground. The incoming ray (yellow) is aimed at a certain radius from the centre of the detection dome (sr) in
both cases, but the height (h) at which it is aimed has changed. When the grass is taller, the probability that
the ray hits the ground (related to the gray angle) has decreased, increasing the albedo.

and fall upon the non-sample surface. None of the rays are detected and the albedo is 0. This
effect, mixed grass lengths at low elevation angles - lower albedo, also occurs at higher elevation
angles, although with a less extreme effect on the albedo. At high elevation angles, some rays
hit the ground immediately when the blade length is reduced, as can be seen by comparing 34b
and 34a: mixed grass lengths at high elevation angles - lower albedo. These two effects allow for
a maximum albedo when the elevation angle is neither too low for mixed grass lengths at low
elevation angles - lower albedo, nor too high for mixed grass lengths at high elevation angles -
lower albedo.

Introducing a tilted top
Four effects (higher elevation angle - lower albedo, taller grass at higher elevation angles - higher
albedo, mixed grass lengths at high elevation angles - lower albedo and mixed grass lengths at
low elevation angles - lower albedo) have been discussed so far. When introducing a tilted top,
these effects are all still relevant. However, compared to the previously discussed samples, the
effects will be less visible. Because of the introduced tilt, the grass will have various lengths:
but the variation in length is much less extreme than is the case for sample “Varying height 4cm

42

4 Results and discussion

(a) (b)

Figure 34: Two dimensional illustration of how mixed blade length (lblade) influences the chance to reflect
towards the ground. As rays of different lengths are mixed, the probability that the ray hits the ground
increases, decreasing the albedo.

- 12cm”. For example, for the sample “Tilted top 40° bottom 4cm top 8 cm”, the height will
vary between 9.14 cm and 12 cm. As both mixed grass lengths at high elevation angles - lower
albedo and mixed grass lengths at low elevation angles - lower albedo) are less pronounced, by
just looking at the reduced height difference, the albedo will be higher for the tilted top cases
compared to “Varying height 4cm - 12cm”.

When the grass blades have tilted tops, the architecture of the grass significantly changes. the
tilted tops form a roof-like structure, consisting of the top blades and some gaps in between
them. When rays come in from a high elevation angle, they hit the top of the blade on the
side that faces the sky. As a result, the probability that the new ray direction will be towards
the sky increases compared to vertical grass. When the tilt of the blades is more extreme
(τmin = −40°, τmax = 40°), the area covered in blades that is visible from the position of the sun
has increased - the LAI is larger. This increases the probability that a ray will hit a blade and
thus the albedo. So, more extreme tilted top at high elevation angles - higher albedo. Together
with the other effects, this results in an elevation angle at which the albedo is maximal.

At low elevation angles, more rays penetrate the grass. When the ray comes under the roof-like
structure, it is more difficult to escape compared to the vertical grass, as a ray aimed at the
sky might hit the top of the blades. When the tilt of the blades is becoming more extreme
(τmin = −40°, τmax = 40°), the LAI increases which makes it even harder for rays that are under
the roof to escape the grass structure and reach the detection dome. Therefore, more extreme
tilted top at low elevation angles - lower albedo.

Comparing the samples where the bottom part of the grass is 4 cm tall to the samples where the
bottom part of the grass is 8 cm tall, it can be seen that the albedo is very similar - changing
the height of the bottom part of the blade does not affect the albedo as much as was the case
for the vertical grass. The effect taller grass at higher elevation angles - higher albedo which is
present for vertical grass is overshadowed by the effect of the tilted tops.

When the length of the tilted top is increased instead from 4 to 8 cm, the albedo for low
elevation angles decreases as the LAI is higher - there is more roof compared to gaps making it
difficult for light entering the grass to escape: longer tilted top at low elevation angles - lower
albedo.

4.3 Influence spectro-angular albedo on the energy yield

The influence of taking the spectro-angular albedo of grass into account when computing the
energy yield is investigated by using the computed BRDFs for all ten samples as an input to

43

4 Results and discussion

the software developed by Pal [9] and adapted by Anne Rikhof. As the energy yield differs per
specific situation, a case study is used to assess the influence of the spectro-angular BRDF of
grass.

4.3.1 Introduction case study Donaueschingen-Aasen solar park

In the town Aasen in the south of Germany, there is a solar farm with vertically mounted
bifacial solar panels, built by the company Next2Sun (see Figure 35). It consists of n-PERT
bifacial solar cells, which are vertically aligned from east to west. The peak power is 4.1 MWp
and its annual energy yield is about 4850 MWh. The solar panels are surrounded by grass,
used for hay and silage [59].

Figure 35: The Donaueschingen-Aasen solar park consists of n-PERT bifacial solar panels which are vertically
aligned, east to west. Figure from Next2Sun [59].

The company is interested in the influence of mowing the grass on the energy yield. They
shared measurements of the energy yield and the albedo - the albedo in this case is a single
number and does not have a spectro-angular dependency. It is known that a mowing event took
place on the 5th of July, 2022. Hence, by comparing a day before to a day after the mowing,
information can be obtained about the effect of the albedo on the yield.

As noted in the introduction, the yield of a bifacial solar panel depends on many factors, of
which one is the cloud coverage. To take this factor out of the equation as much as possible,
two clear-sky days are taken: days on which the direct irradiance (Edirect) is similar. Figure
36 shows the direct irradiance in Aasen from the first to the ninth of July. The irradiance was
almost the same on the second and eight of July. Therefore, these two days will be compared.
The temperature on these days was very similar too, which is relevant as the temperature also
influences the performance of a solar panel as mentioned in the introduction.

Figure 36 shows the measured albedo on-site. The data has been filtered such that negative
values and values larger than 1 are not considered. Moreover, only data between 09:00 and
18:00 is displayed, as albedo measurements under low light intensity in the night have a low

44

4 Results and discussion

Figure 36: The direct normal beam irradiance (Edirect), temperature (T) and albedo (ρ) around the mowing
day (the fifth of July, highlighted in green). From this data, the second and eighth of July have been chosen for
comparison (highlighted in yellow). Data from Next2Sun.

signal-to-noise ratio. The graph shows that on days with less direct irradiance (i.e. cloudy
days) the albedo fluctuates more: when there is less irradiance, the signal-to-noise ratio is low.
So, the albedo of clear-sky days measured during daytime is the most accurate.

The albedo decreases throughout the day. This can have two possible explanations: either
the change of angle of the sun is at the root of this, or the grass morphology itself changes
throughout the day. In the first case, the albedo is expected to increase in the morning as
the sun’s elevation angle increases, and decrease in the afternoon as the sun’s elevation angle
decreases again. Although the albedo seems to have a small peak around midday, the overall
trend is still decreasing. One can also imagine that on a warm day, the grass might lose
some water, thereby rigidity of it structure, bending over a bit more. As the tilted top length
increases, the albedo decreases. Another explanation could be that the wind gradually changes
direction, which changes the overall tilt direction of the top of the grass blades which might
also affect the albedo.

The albedo seems to have increased slightly as the grass became shorter. On the second of July,
the albedo varies between 0.17 and 0.19, whereas on the 8th of July the albedo varies between
0.21 and 0.19. Next2Sun measured the energy yield on both of these days and found that the
energy yield on the eighth of July was 6.61 % higher than the energy yield on the second of
July. A factor that could explain part of this energy yield increase is the increase of the albedo
of the ground. In section 4.2.3, it was shown that a change in grass morphology changes the
spectro-angular albedo. In the continuation of this chapter, it is investigated if the various
spectro-angular albedos lead to a different energy yield. For the specific introduced case study,
the question is if the mowing of the grass could be responsible for the increase in energy yield
that Next2Sun measured.

To this end, the ray tracing mode as elaborated upon in section 3 is used to obtain the BRDFs
of the samples introduced and discussed in sections 4.1 and 4.2. These BRDFs are used as input

45

4 Results and discussion

to the reverse ray tracing software of Pal [9], which was introduced in section 2.3. using this
method, the energy yield of a single vertical bifacial solar panel is computed. When applying
the RRT software, a silicon heterojunction cell (specifically the cell published in Saive, Russell
and Atwater [60]) is assumed because of availability of this data. This determines the fill
factor and open circuit voltage, as well as the external quantum efficiency. The radiance of the
incoming light is taken to be the direct normal beam irradiance as obtained from the company
Next2Sun (see figure 36).

4.3.2 Energy yield of a vertical bifacial solar panel surrounded by a diffuse re-
flector

Figure 37 sketches the used configuration for the vertical bifacial solar panel. The vertical panel
receives direct and indirect light on the front and the rear of the module.

Figure 37: Two dimensional sketch of the three dimensional simulation used as input to the software of Pal [9].
A vertical module is placed 0.25 meter above a reflector.

Figure 39a shows the total power generated by the solar panel: the power due to the indirect
light captured by the front of the module, the power due to the indirect light captured by the
rear of the module and the power due to the captured direct light from the sky. The figure also
shows the power due to only the direct light from the sky (in black). This power profile has two
peaks, one in the morning and one in the afternoon. This is expected for east-west positioned
bifacial panels, as the angle of incidence of the sun will be beneficial (i.e. perpendicular to one
of the faces of the module) twice a day. The peak in the morning is higher as the irradiance
received in the morning is slightly higher than in the afternoon.

The same figure shows that making the reflector Lambertian (in dark blue) contributes signi-
ficantly to the power output. For example, at solar noon (at 13:30), the Lambertian reflector
produces 89 W/m2 whereas the direct light does not produce any power. The power contrib-
uted by the reflector varies throughout the day due to the combination of a changing angle of
incidence of the sun, a changing irradiance and changing shade.

Figures 39b and 39c show the power generated by the indirect light that is captured by the
front and rear of the module, respectively. At sun rise, the sun is positioned in the north-east.
Throughout the morning, the irradiance coming from the sun increases, which increases the
flux reflected by the reflector and thus the power output due to indirect light. Furthermore,
the angle between the sun and the front face of the panel becomes less favourable as it start to
deviate more and more from the module’s normal. This decreases the power output towards
the end of the morning.

In the morning, the shadow is in the west and only plays a role for the power output of the
rear. This is illustrated by figure 38a. Specifically, in the morning, a shadow is cast in the
south-west of the module. As the sun rises and travels south throughout the morning, the
shadow decreases and shifts to the north. The decreasing shadow size causes the power output
of the rear to increase, as a larger area of the reflector now can contribute to the reflection. The

46

4 Results and discussion

changing position of the shade also matters. At sunrise, the shade is in the south-west and the
part of the reflector closest to the module contributes fully to the reflection. As the morning
progresses and the sun moves to the east, the shadow casted by the module will be right in
front of the rear of the module. This inhibits the part of the reflector closest to the module
from contributing. The shift of the shadow decreases the power output until the sun has past
the east (at 09:15), after which the part of the reflector close to the module is lit again. These
effects can be seen back in the power profile of the rear (figure 39c) and this part of the module
to produce another power output than the front (figure 39b).

(a) Situation in the morning, when the sun is in the
east.

(b) Situation in the afternoon, when the sun is in the
west.

Figure 38: Two dimensional illustration of the incident light (in yellow) on the module (in gray) and the reflector
(in green). The module casts a shadow on the reflector, shown by the black line. The diffuse reflection upon
illumination of the reflector is shown in blue.

47

4 Results and discussion

(a) Total power generated by the module (including power generated by direct light).

(b) Power generated due to indirect light on the front of the module.

(c) Power generated due to indirect light on the rear of the module.

Figure 39: Power generated on the second of July for a horizontal oriented bifacial solar panel. Figures a) and
b) present the power generated by the rear and front of the module due to indirect (reflected) light, respectively.
Figure c) presents the total power.

After solar noon, the described effects take place in reverse order. The generated power on the
rear and the front of the panel due to indirect light decreases as the irradiance falling on the
reflector decreases due to a combination of less favourable angle of the sun and solar irradiance.
The shade is now on the east side of the module (see 38b). Therefore, less power is produced on
the front of the module compared to the rear of the module. As the sun sets and its elevation
angle decreases, the shadow increases in size, further reducing the produced power on the front
module.

Changing the Lambertian reflector for a diffuse reflector with the reflectance of grass, the total
output of the solar cell will be significantly less, as can be seen from figure 39a. For example,
at solar noon the diffuse reflector with the reflectance of grass contributes 26 W/m2, which is
only 29% of the contribution of the Lambertian reflector at that time. This can be explained
by the albedo, which is lower when the reflectance is taken into account. The flux coming from
the reflector is thus less, reducing the number of photons that the solar cell can capture. The
power profile trend throughout the day is the same as for a Lambertian reflector.

48

4 Results and discussion

4.3.3 Energy yield of a vertical bifacial solar panel surrounded by grass

Compared to the Lambertian and diffuse reflector, grass, which exhibits retroreflective beha-
viour, produces a lot less power. In figures 39a, 39b and 39c, the power of ”Tilted top 40°
bottom 4 cm top 8 cm” is displayed in yellow. The power profiles of the other grass types can
be found in appendix B. Returning to the solar noon example, the power produced by the grass
”Tilted top 40° bottom 4 cm top 8 cm” is only 5 W/m2. The first explanation comes from the
albedo: the albedo of grass is less, as can be seen from figure 31. Furthermore, the albedo has
received an angular component, as it has a retroreflective lobe.

In figures 39b and 39c, the angular, retroreflective component of the reflectance of grass can
be seen in the power profile of the front and the rear of the module. In the morning, the sun
shines from the east, creating a shadow on the west side of the module. The grass which is not
in the shadow has a retroreflective lobe pointing towards the sun, so towards the east, as can
be seen in figure 40a. Retroreflective lobes from the grass in the west of the module can be
partly captured by the module’s rear. In contrast, retroreflective lobes from the grass in the
east of the module are not captured. As a result, in the early morning mostly the rear produces
power. In figure 39c, it can be seen that the rear does generate power due to the indirect light
received in the morning, whereas figure 39b shows that the front of the module barely produces
any power in the early morning. Since sunrise, there is some power production in the front of
the module as well as the BRDF is not entirely zero opposite to the retroreflection lobe (see
figure 52 in appendix A, where the BRDF does not become zero at exactly ϕdome = −90° and
ϕdome = 90°).

For a reflector with retroreflective behaviour such as grass, the angular component of the
reflection changes throughout the day. Specifically, the angle of the retroreflective lobe changes,
as it follows the sun’s path through the sky. For example, at solar noon the retroreflective lobes
all point parallel to the module’s surface. So, even though there is no shadow, the output of
the module’s front and rear is relatively small compared to a diffuse reflector, as can be seen in
figure 39b and 39c. Together with the change in irradiance and the shadow effect as explained
in section 4.3.2, this behaviour results in an optimum power output from the rear of the module
in the morning, which lies around 12:00 for this sample.

(a) Situation in the morning, when the sun is in the
east.

(b) Situation in the afternoon, when the sun is in the
west.

Figure 40: Two dimensional illustration of the incident light (in yellow) on the module (in gray) and the reflector
(in green). The module casts a shadow on the reflector, shown by the black line. The retroreflective lobes upon
illumination of the reflector are shown in blue.

The situation in the afternoon is sketched in figure 40b. After solar noon, the sun travels
north and its elevation angle decreases. the shadow on the east of the module starts small
and relatively north to the module, but increases and shifts to the south as the sun sets. The
retroreflective lobes follow the path of the sun which results in an optimum power output for
the front of the module around 14:45, as figure 39b shows.

49

4 Results and discussion

4.3.4 The influence of mowing on the energy yield

The influence of mowing on the energy yield can be analysed using the developed energy yield
calculation method. The vertical grass types (“Vertical 4cm”, “Vertical 8cm”,“ Vertical 12 cm”
and “Varying height 4 cm - 12 cm”) are not considered in this section, as they are considered
to be less true to realistic grass morphology compared to the six tilted grass samples. This
leaves six samples with a tilted top and various lengths of the bottom and top part of the leaf.
These are divided into two categories: tall grass and short grass. The tall grass consists of the
grass types where one part of the grass blade is 4 cm and the other part 8 cm (samples 7,8,9
and 10), the short grass consists of grass types whose top and bottom are 4 cm (samples 5 and
6).

Figure 41a presents the energy yield for the situation displayed in figure 37 in Aasen for the
second of July. The energy from the direct light does not differ as the reflector is changed.
However, changing the reflector impacts the energy yield. For the grass simulated using the
ray tracing model the energy yield is less compared to a grass modelled as a Lambertian and a
diffuse surface. Figure 41b shows the energy yield for the eight of July. It can be seen that the
yield is similar to 41a - as expected, as the solar angles, irradiance and temperature are also
similar for these two days.

50

4 Results and discussion

(a) Energy yield on the second of July for a vertical panel per reflector type.

(b) Energy yield on the eight of July for a vertical panel per reflector type.

Figures 42a and 42b present the power profiles from the front and the rear of the module for
tall grass on the second of July (circles), and the short grass on the eighth of July (crosses).
The overall trend as described for “Tilted top 40° bottom 4 cm top 8 cm” in section 4.3.3 is
the same for all these grass types. The different types of grass generate their peak power at
slightly different times due to a combination of the albedo per elevation angle of incidence and
shape of the retroreflective lobe.

An interesting case is the power profile of “Tilted top 40° bottom 4 cm top 8cm” (displayed
in yellow), which reaches a maximum power that is about 1 W/m2 lower on the front and on
the rear compared to the other grass types. At the time of the maximum, the elevation angle
of the sun is about θsource = 60°. From figure 32, it can be seen that the albedo of this grass
sample at this elevation angle and λ = 900 nm is ρ = 0.16. Interestingly, the power output for
“Tilted top 20° bottom 4 cm top 8 cm” (in green) at the same elevation angle and wavelength
is significantly higher, even though the albedo is only 0.01 more (ρ = 0.17). This may be due
to the shape of the reflection lobe, which for “Tilted top 40° bottom 4 cm top 8cm” is less wide

51

4 Results and discussion

(i.e. extends to less azimuth angles and elevation angles) compared to the other tilted grass
samples (see figure 52 in appendix A)

(a) Power generated due to indirect light on the front of the module.

(b) Power generated due to indirect light on the rear of the module.

Figure 42: Comparison of power P generated by indirect light throughout part of the day (time t from 05:00
until 21:00) on the second of July (tall grass) and the eight of July (short grass) for a vertical oriented bifacial
solar panel.

Table 2 shows the percentage with which the energy yield changes compared from tall grass
(second of July) to short grass (eight of July). The table shows that for the examined cases,
the energy yield difference are in the range from −0.81% to +1.46%.

Next2Sun measured the energy yield on both of these days and found that the energy yield on
the eighth of July was +6.61 % higher than the energy yield on the second of July. The order
of the energy yield change that they measured is higher than the energy yield change that was
computed in this study (see table 2). This study does show that part of the increase in energy

52

4 Results and discussion

Table 2: Influence of changing from tall grass (on the second of July) to short grass (on the eighth of July) on
the energy yield.

Tall grass Short grass Energy yield difference
Tilted top 20° bottom 8 cm top 4 cm Tilted top 20° bottom 4 cm top 4 cm −0.33%
Tilted top 20° bottom 8 cm top 4 cm Tilted top 40° bottom 4 cm top 4 cm +0.08%
Tilted top 20° bottom 4 cm top 8 cm Tilted top 20° bottom 4 cm top 4 cm +0.18%
Tilted top 20° bottom 4cm top 8 cm Tilted top 40° bottom 4 cm top 4 cm +0.59%
Tilted top 40° bottom 8 cm top 4 cm Tilted top 20° bottom 4 cm top 4 cm −0.81%
Tilted top 40° bottom 8 cm top 4cm Tilted top 40° bottom 4 cm top 4 cm −0.40%
Tilted top 40° bottom 4 cm top 8 cm Tilted top 20° bottom 4 cm top 4 cm +1.04%
Tilted top 40° bottom 4 cm top 8 cm Tilted top 40° bottom 4 cm top 4 cm +1.46%

yield could be due to a change in grass morphology. For example, when the top of a tilted grass
blade is cut, the energy yield increases.

To verify to what extent the change in grass morphology us responsible for the change in
power output measured by Next2Sun, the grass morphology before and after mowing needs to
be known. Furthermore, other factors that could cause a change in energy yield need to be
monitored and taken into consideration in the energy yield calculation model. For example,
mowing grass may change the reflectance properties of the individual blades as Dyer, Turner
and Seastedt [44] hypothesised.

53

5 Recommendations

5 Recommendations

In this section, recommendation are given to improve the adopted method used to obtain the
BRDF of grass and to subsequently to calculate the energy yield based on this BRDF.

5.1 Ray tracing model

Modelling ray direction
The model generates a beam of parallel rays which are shot towards the sample. However,
realistic lighting conditions should also take into account diffuse light. Diffuse light has been
scattered by other reflectors already (clouds, buildings, plants etc.) and therefore has a ran-
domised direction. It can be taken into account by shooting rays from the detection dome with
randomised ray directions. The fraction of diffuse to direct light (so rays with randomised ray
direction to rays coming from the elevation angle of the source) is critical to correctly incorpor-
ate this effect. Overall, the reflection of a grass sample will show less retroreflective behaviour
when taking into account diffuse light. For diffuse rays coming from a certain direction, the
direction into which they will be reflected is likely to be the direction from which they were
coming. Adding up these retroreflective lobes from all directions gives an overall diffuse effect.
However, as long as more rays are coming from one angle than another, there will be a retrore-
flective lobe.

When, after the ray has intersected with a surface, a new ray direction is chosen, a new ray
direction is sampled uniformly in polar angle. This has to be done because of the choice for
a grid with a spherical coordinate system. However, it might be more intuitive to change to
uniformly sampling a hemisphere instead, and take a coordinate system where every pixel on
the detection dome has the same solid angle.

Modelling an individual blade
In the developed ray tracing model, surfaces can only reflect diffusely. Considering that Juhan
and Marshak [49] found that the specular component of leaf reflectance significantly impacted
the BRDF, analysing the effect of adding a specular component is recommended.

In the model, surfaces can only absorb or reflect light. However, surfaces can refract and trans-
mit light as well: upon incidence on a grass blade, light is refracted (i.e. bend as it encounters a
medium with a different index of refraction [25]), travels through the grass and finally refracted
again when leaving the grass blade. Including these effects makes the model more accurate.
As light which is now considered to be absorbed might be refracted and transmitted, including
this effect is expected to increase the albedo.

The geometries of the blade which have been used in this work are simplistic. Samples consisting
of only vertical blades are deemed unrealistic. Although the samples that include a tilted
grass segment are already approaching reality a bit more, they are not representative for the
geometries of a real grass blade. To make the blades more realistic, they need to be divided
into more segments, such that the bends of grass can be modelled more accurately. Using the
current calculation algorithm, this will increase the computational time drastically: recall how
using more surfaces as input to the ray tracing model increased the computational time (figure
26). Related to the transmission and the geometry is the question to what extent a three
dimensional grass blade can be represented by a two dimensional surface.

The leaf structure was assumed to be static. However, the orientation of leaves may exhibit
spatial and temporal variability [61]. The LAD for various species is an active research area:
for example, a recent development is the application of deep learning to monitor the temporal

54

5 Recommendations

variation of leaf angle distributions [62]. Implementing this will give a time-dependent BRDF,
which can influence the energy yield results.

Furthermore, it should be considered to take temporal change in reflectance of the grass blades
themselves into account, as for example Carter [42] found that leaf water content changes the
albedo of the grass.

Realism of the sample
The samples investigated in this thesis are spawned homogeneously. However, in reality, grass
is not as homogeneous - there might be spots where the grass is locally more dense. This
will influence the albedo, as it changes the probability of a ray to be redirected towards the
detection dome. Furthermore, in the current grass sample blades can cross each other, which
is not the case in reality. An improved structure of the grass will benefit the accuracy of the
obtained BRDF for grass.

The soil has been modelled as a blackbody to only study the impact of grass. However, the
soil is still part of the reflector and to make a more accurate model, the reflectance of the soil
should also be taken into account. This will increase the albedo overall, as light which would be
lost from the system with blackbody soil, will now have a new chance to be redirected towards
the sky. It will also impact the spectral distribution of the BRDF. Because only grass carries a
reflectance, the entire spectrum is scaled to the spectrum of grass. When the reflectance of the
soil is modelled, the spectral variation of the BRDF will not resemble the reflectance of grass
as much anymore. Furthermore, in this model the soil is assumed to be a flat plane, whereas in
reality it has a different geometry. When the soil is given a non-zero reflectance, the geometry
of the soil will impact the albedo as well.

Validation and error analysis
The found BRDF can be validated by comparing it to more experimental data. Experiment-
ally measured reflection quantities use different viewing angles, which poses a challenge: the
ray tracing model has to be run for these specific viewing angles. This makes experimental
validation time consuming. Nevertheless, it should be done to validate the found BRDFs as
they form the bases of this study.

As randomness plays a significant role in the ray tracing model, the simulated BRDF can vary
even though the model is run for the same input parameters. In this study, to limit this effect,
the model is run ten times for each sample and the average BRDF is taken. However, it is
important to know how much the BRDF can deviate from sample to sample such that the error
on the computed energy yield can be estimated.

Computational efficiency
The computational time is a bottleneck for the performance of the ray tracing algorithm: with
a faster code, the number of rays, the size of the grass sample and the illuminated part of the
sample can be increased. This will benefit the accuracy of the simulated BRDF, as argued in
section 3.7. Furthermore, it allows for running more complicated leaf geometries in considerable
less time. There are various options to make the code faster. For example, the code can be
re-written as to make it multiple-core. The algorithm at the foundation of the code can also be
improved, for example by decreasing the number of planes that are checked for intersections to
only planes that are in the half-space of the direction of the incoming ray.

5.2 Energy yield computation

Overall, there are many opportunities to make the energy yield calculation more exact - as
mentioned in the introduction, the energy yield depends on many factors including e.g. the

55

5 Recommendations

temperature and the cloud coverage, which are not taken into account here. However, the
model still serves the purpose of showing the influence of the spectro-angular albedo on the
energy yield, and including a factor like temperature does not discredit this result.

Running the energy yield calculation at higher resolution, i.e. for a higher accuracy of possible
sun positions will make the calculated yield more accurate, which means the impact of different
grass types on the energy yield can be assessed more accurately. Furthermore, increasing the
accuracy of the BRDF will also increase the energy yield calculation accuracy.

The performed energy calculation does not include diffuse light. To include this, the RRT
model can be run with light from every possible solar angle, like proposed for the ray tracing
model. When the BRDF is also taking into account diffuse light, the energy yield under diffuse
conditions can be computed. This will change the computed energy yield.

Mismatch
The used reverse ray tracing model does not take into account electrical effects in computing the
power and energy yield - the module is considered to be one large solar cell. However, electrical
effects might impact the outcome of the analysis significantly. In a solar module, solar cells
are often connected in series to increase the power and voltage obtained from a single cell.
Some conditions will cause certain cells to generate more current than others. For example, a
non-uniform irradiance on the module will cause some cells receive more photons and generate
more current. However, the current through in-series connected cells must be the same. Due
to this electrical effect, the total current drops to the lowest current generated by a cell. This
phenomenon is called mismatch and can decrease the power output of the module as well as
lead to deteroriation of the cell [63].

In this work, the angular component of the reflection is changed and this will have an impact
on the distribution of irradiance over the cells of the module. The used reverse ray tracing
model computes the short circuit current density for every pixel defined on the module and
adds them up. However, it does not impose a mismatch condition, causing the energy yield
to be overestimated. For a more accurate energy yield calculation, this condition should be
applied. Future research should include an analysis on the effect of different grass types on the
mismatch.

Validation of the calculation method
More case studies have to be performed to quantify to what extent a change in the spectro-
angular albedo of grass impacts the energy yield. Availability of real-world data of the properties
of grass (e.g. height and reflectance) as well as data on the solar cells in question is key to
increase the accuracy of the yield calculation of the models and being able to compare this to
energy yield measurements.

56

6 Conclusion

6 Conclusion

Research on grass reflection is widespread and therefore also disconnected. In the PV com-
munity, the phenomenon of retroreflection of grass impact on yield has not been accounted
for to the author’s knowledge. In this thesis, the impact of different grass structures on the
spectro-angular reflection and impact on the energy yield has been investigated. A ray tracing
software has been developed to simulate the reflection of different types of grass. This was used
as input to a reverse ray tracing model to compute the energy yield. The tilt of the grass blade
was found to introduce a retroreflective component as a function of the elevation angle of the
source.

The simulated spectro-angular reflection has been applied to a case study to compute the
energy yield. Taking into account the retroreflective reflection lobe of grass results in a lower
energy yield of a vertical east-west bifacial solar panel compared to assuming grass to reflect
diffusely. Moreover, it was shown that the morphology of the grass influences the energy yield.
For example, cutting the tilted top part of the grass blade increases the energy yield in the
order of 1% for the specific case study.

The presented work lays a foundation for more research into how the properties of the reflector
impact the energy yield of solar panels. The research can be extended to other agricultural crops
by modifying the sample examined by the ray tracing model. Knowing the energy yield more
accurately comes with the benefits mentioned in the introduction: reduction of the investment
risk barrier, support of grid operation and reinforcing the roots for scientific development.

Concerning the latter, the results can be used for optimisation of an agrivoltaic system: the
solar panel can be positioned and oriented more accurately such as to capture more irradiance.
Furthermore, it opens up a new dimension to albedo management: adjusting the reflection such
as to increase the energy yield. For example, a farmer might choose a crop that reflects the
light such as to maximise the energy yield, or adapt agricultural practices (e.g. mowing earlier)
to enhance the amount of energy that can be harvested.

Overall, the photovoltaic community would benefit from incorporating the spectro-angular
albedo in energy yield calculations.

57

Bibliography

Bibliography

[1] A. Cuevas et al. ‘50 Per cent more output power from an albedo-collecting flat panel using
bifacial solar cells’. In: Solar Energy 29.5 (Jan. 1982), pp. 419–420. issn: 0038-092X. doi:
10.1016/0038-092X(82)90078-0.

[2] A. Luque and S. Hegedus. Handbook of photovoltaic science and engineering. Wiley, 2011.
isbn: 9780470721698.

[3] M. Tahir Patel et al. ‘A worldwide cost-based design and optimization of tilted bifacial
solar farms’. In: Applied Energy 247 (Aug. 2019), pp. 467–479. issn: 0306-2619. doi:
10.1016/J.APENERGY.2019.03.150.

[4] VDMA. International Technology Roadmap for Photovoltaic (ITRPV). Tech. rep. 2023.
[5] M. H. Riaz et al. ‘The optimization of vertical bifacial photovoltaic farms for efficient

agrivoltaic systems’. In: Solar Energy 230 (Dec. 2021), pp. 1004–1012. issn: 0038092X.
doi: 10.1016/j.solener.2021.10.051.

[6] T.C.R. Russell et al. ‘The Influence of Spectral Albedo on Bifacial Solar Cells: A The-
oretical and Experimental Study’. In: IEEE Journal of Photovoltaics 7.6 (Nov. 2017),
pp. 1611–1618. issn: 21563381. doi: 10.1109/JPHOTOV.2017.2756068.

[7] M. P. Brennan et al. ‘Effects of spectral albedo on solar photovoltaic devices’. In: Solar
Energy Materials and Solar Cells 124 (May 2014), pp. 111–116. issn: 0927-0248. doi:
10.1016/J.SOLMAT.2014.01.046.

[8] R. W. Andrews and J. M. Pearce. ‘The effect of spectral albedo on amorphous silicon
and crystalline silicon solar photovoltaic device performance’. In: Solar Energy 91 (May
2013), pp. 233–241. issn: 0038-092X. doi: 10.1016/J.SOLENER.2013.01.030.

[9] S. Pal. Tracing the light: designing reflectors for bifacial photovoltaic yield enhancement
under outdoor irradiance. 2022. isbn: 9789464195972.

[10] R. R. Rao, M. Mani and P. C. Ramamurthy. ‘An updated review on factors and their
inter-linked influences on photovoltaic system performance’. In: Heliyon 4.9 (Sept. 2018),
e00815. issn: 2405-8440. doi: 10.1016/J.HELIYON.2018.E00815.

[11] A. Richter. ‘Bankability’. In: Konstanz, Oct. 2017.
[12] J. Meydbray. ‘Barriers to Financing Bifacial PV Projects’. In: bifiPV Workshop 2018,

2018. url: https://www.bifipv-workshop.com/2018denverproceedings.
[13] G. Notton and C. Voyant. ‘Forecasting of Intermittent Solar Energy’. In: Advances in

Renewable Energies and Power Technologies. Ed. by Imene Yahyaoui. Madrid: Elsevier,
2018. Chap. 3.

[14] M. Saguan. ‘L’Analyse économique des architectures de marché électrique. L’application
au market design du temps réel’. PhD thesis. Paris: Université Paris Sud, Apr. 2007. url:
https://theses.hal.science/tel-00281131.

[15] S. Goodarzi, H. N. Perera and D. Bunn. ‘The impact of renewable energy forecast errors
on imbalance volumes and electricity spot prices’. In: Energy Policy 134 (Nov. 2019),
p. 110827. issn: 0301-4215. doi: 10.1016/J.ENPOL.2019.06.035.

[16] L. M. Einhaus et al. ‘Free-Space Diffused Light Collimation and Concentration’. In: ACS
Photonics (Feb. 2022). issn: 23304022. doi: 10.1021/acsphotonics.2c01652.

[17] M. B. Jones and A. Lazenby. ‘Preface’. In: The Grass Crop: The Physiological basis of
production. Ed. by M. B. Jones and A. Lazenby. First edition. New York: Chapman and
Hall Ltd., 1988.

[18] T.C.R. Russell, R. Saive and H.A. Atwater. ‘Thermodynamic Efficiency Limit of Bifacial
Solar Cells for Various Spectral Albedos’. In: 2017 IEEE 44th Photovoltaic Specialist
Conference, PVSC 2017. Institute of Electrical and Electronics Engineers Inc., 2017,
pp. 2236–2241. isbn: 9781509056057. doi: 10.1109/PVSC.2017.8366261.

58

https://doi.org/10.1016/0038-092X(82)90078-0
https://doi.org/10.1016/J.APENERGY.2019.03.150
https://doi.org/10.1016/j.solener.2021.10.051
https://doi.org/10.1109/JPHOTOV.2017.2756068
https://doi.org/10.1016/J.SOLMAT.2014.01.046
https://doi.org/10.1016/J.SOLENER.2013.01.030
https://doi.org/10.1016/J.HELIYON.2018.E00815
https://www.bifipv-workshop.com/2018denverproceedings
https://theses.hal.science/tel-00281131
https://doi.org/10.1016/J.ENPOL.2019.06.035
https://doi.org/10.1021/acsphotonics.2c01652
https://doi.org/10.1109/PVSC.2017.8366261

Bibliography

[19] S. Sandmeier et al. ‘Physical Mechanisms in Hyperspectral BRDF Data of Grass and
Watercress’. In: Remote Sensing of Environment 66.2 (Nov. 1998), pp. 222–233. issn:
0034-4257. doi: 10.1016/S0034-4257(98)00060-1.

[20] P. P. J. Roosjen et al. ‘A laboratory goniometer system for measuring reflectance and
emittance anisotropy’. In: Sensors (Switzerland) 12.12 (Dec. 2012), pp. 17358–17371.
issn: 14248220. doi: 10.3390/s121217358.

[21] B. Kirn, K. Brecl and M. Topic. ‘A new PV module performance model based on sep-
aration of diffuse and direct light’. In: Solar Energy 113 (Mar. 2015), pp. 212–220. issn:
0038-092X. doi: 10.1016/J.SOLENER.2014.12.029.

[22] U. A. Yusufoglu et al. ‘Analysis of the annual performance of bifacial modules and optim-
ization methods’. In: IEEE Journal of Photovoltaics 5.1 (Jan. 2015), pp. 320–328. issn:
21563381. doi: 10.1109/JPHOTOV.2014.2364406.

[23] H. Ziar et al. ‘A comprehensive albedo model for solar energy applications: Geometric
spectral albedo’. In: Applied Energy 255 (Dec. 2019), p. 113867. issn: 0306-2619. doi:
10.1016/J.APENERGY.2019.113867.

[24] A. Rikhof. ‘Modelling the yield of building integrated photovoltaic systems employing free
space luminescent solar concentrators’. Master thesis in preparation. Enschede: University
of Twente, 2023.

[25] E. Hecht. Optics. 5th ed. Harlow: Pearson Education Limited, 2017.
[26] R. J. D. Tilley. Colour and the optical properties of materials. Chichester, West Sussex:

John Wiley & Sons, 2000.
[27] K. M. Yoo, G. C. Tang and R. R. Alfano. Coherent backscattering of light from biological

tissues. Tech. rep. 1990.
[28] D. Fleet and A. Hertzmann. Radiometry and Reflection 12 Radiometry and Reflection.

2005.
[29] F. E. Nicodemus et al. Geometrical Considerations and Nomenclature for Reflectance.

Washington, D.C.: U.S. Department of commerce, Aug. 1977.
[30] R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer. 2nd ed. New York: Hemi-

sphere Publishing Corporation, 1981. Chap. 6.
[31] M. A. Shah, J. Kontinnen and S. Pattanaik. ‘Real-time Rendering of Realistic-looking

Grass’. In: Proceedings of the 3rd international conference on Computer graphics and
interactive techniques in Australasia and South East Asia. Association for Computing
Machinery, Inc. 2005.

[32] W. Qin et al. Characterizing leaf geometry for grass and crop canopies from hotspot
observations: A simulation study. Tech. rep. url: www.elsevier.com/locate/rse.

[33] L. Zheng et al. ‘Spatial, temporal, and spectral variations in albedo due to vegetation
changes in China’s grasslands’. In: ISPRS Journal of Photogrammetry and Remote Sens-
ing 152 (June 2019), pp. 1–12. issn: 0924-2716. doi: 10.1016/J.ISPRSJPRS.2019.03.
020.

[34] S. I. Seneviratne et al. ‘Land radiative management as contributor to regional-scale cli-
mate adaptation and mitigation’. In: Nature Geoscience 11.2 (Feb. 2018), pp. 88–96. issn:
17520908. doi: 10.1038/s41561-017-0057-5.

[35] J. M. Chen and T. A. Black. ‘Defining leaf area index for non-flat leaves’. In: Plant, Cell
and Environment 15 (1992), pp. 421–429.

[36] G. Zheng and L. M. Moskal. ‘Retrieving Leaf Area Index (LAI) Using Remote Sens-
ing: Theories, Methods and Sensors’. In: Sensors 9.4 (Apr. 2009), pp. 2719–2745. issn:
14248220. doi: 10.3390/s90402719.

[37] R. Lemeur and B. L. Blad. ‘A Critical Review of Light Models for Estimating the Short-
wave Radiation Regime of Plant Canopies’. In: 1 (Jan. 1975), pp. 255–286. issn: 0166-
2287. doi: 10.1016/B978-0-444-41273-7.50025-8.

59

https://doi.org/10.1016/S0034-4257(98)00060-1
https://doi.org/10.3390/s121217358
https://doi.org/10.1016/J.SOLENER.2014.12.029
https://doi.org/10.1109/JPHOTOV.2014.2364406
https://doi.org/10.1016/J.APENERGY.2019.113867
www.elsevier.com/locate/rse
https://doi.org/10.1016/J.ISPRSJPRS.2019.03.020
https://doi.org/10.1016/J.ISPRSJPRS.2019.03.020
https://doi.org/10.1038/s41561-017-0057-5
https://doi.org/10.3390/s90402719
https://doi.org/10.1016/B978-0-444-41273-7.50025-8

Bibliography

[38] S.A.W. Gerstl. ‘The angular reflectance signature of the canopy hot spot in the optical
regime’. In: Conference: The angular reflectance signature of the canopy hot spot in the
optical regime. 1988.

[39] A. Kuusk. ‘The Hot Spot Effect in Plant Canopy Reflectance’. In: Photon-Vegetation
Interactions. 1991, pp. 139–160.

[40] L. Belcour et al. ‘Bidirectional reflectance distribution function measurements and ana-
lysis of retroreflective materials’. In: Journal of the Optical Society of America A 31.12
(Dec. 2014), p. 2561. issn: 1084-7529. doi: 10.1364/josaa.31.002561.

[41] R. D. Jackson et al. ‘Bidirectional measurements of surface reflectance for view angle
corrections of oblique imagery’. In: Remote Sensing of Environment 32.2-3 (May 1990),
pp. 189–202. issn: 0034-4257. doi: 10.1016/0034-4257(90)90017-G.

[42] G. A. Carter. ‘Primary and Secondary Effects of Water Content on the Spectral Re-
flectance of Leaves’. In: American Journal of Botany 78.7 (1991), pp. 916–924. doi:
10.1002/j.1537-2197.1991.tb14495.x.

[43] B. J. Clark, J.-L. Prioul and H. Couderc. ‘The physiological response to cutting in Italian
ryegrass’. In: Grass and Forage Science 32 (), pp. 1–5. doi: https://doi.org/10.1111/
j.1365-2494.1977.tb01405.x.

[44] M. I. Dyer, C. L. Turner and T. R. Seastedt. Mowing and Fertilization Effect on Pro-
ductivity and Spectral Reflectance in Bromus Inermis Plots. Tech. rep. 4. 1991, pp. 443–
452. doi: 10.2307/1941901.

[45] K. Berger et al. Evaluation of the PROSAIL model capabilities for future hyperspectral
model environments: A review study. Jan. 2018. doi: 10.3390/rs10010085.

[46] S. Jacquemoud et al. ‘PROSPECT + SAIL models: A review of use for vegetation char-
acterization’. In: Remote Sensing of Environment 113.SUPPL. 1 (Sept. 2009), S56–S66.
issn: 0034-4257. doi: 10.1016/J.RSE.2008.01.026.

[47] P. R. J. North. ‘Three-Dimensional Forest Light Interaction Model Using a Monte Carlo’.
In: IEEE Transactions on Geoscience and Remote Sensing 34.4 (1996). doi: 10.1109/
36.508411.

[48] R. Juhan and A. Marshak. ‘Calculation of Canopy Bidirectional Reflectance Using the
Monte Carlo Method’. In: Remote Sensing of Environment 24 (1988), pp. 213–225. doi:
10.1016/0034-4257(88)90026-0.

[49] R. Juhan and A. Marshak. The Influence of Leaf Orientation and the Specular Component
of Leaf Reflectance on the Canopy Bidirectional Reflectance. Tech. rep. 1989, pp. 251–260.
doi: 10.1016/0034-4257(89)90086-2.

[50] W. Qin and N. S. Goel. ‘An evaluation of hotspot models for vegetation canopies’. In:
Remote Sensing Reviews 13.1-2 (1995), pp. 121–159. issn: 02757257. doi: 10.1080/
02757259509532299.

[51] S. Pal and R. Saive. ‘Output Enhancement of Bifacial Solar Modules under Diffuse and
Specular Albedo’. In: Conference Record of the IEEE Photovoltaic Specialists Conference.
Institute of Electrical and Electronics Engineers Inc., June 2021, pp. 1159–1162. isbn:
9781665419222. doi: 10.1109/PVSC43889.2021.9519093.

[52] F. Van Loenhout. ‘Influence of Albedo on Bifacial Solar Module Output: An Experimental
Approach’. Bachelor thesis. Enschede: University of Twente, July 2021.

[53] W. Gu et al. A comprehensive review and outlook of bifacial photovoltaic (bPV) techno-
logy. Nov. 2020. doi: 10.1016/j.enconman.2020.113283.

[54] S. Bowden and C. Honsberg. Photovoltaics Education Website - PVEducation. url:
https://www.pveducation.org.

[55] PV Lighthouse. SunSolve-Yield. url: https://www.pvlighthouse.com.au/sunsolve-
yield.

60

https://doi.org/10.1364/josaa.31.002561
https://doi.org/10.1016/0034-4257(90)90017-G
https://doi.org/10.1002/j.1537-2197.1991.tb14495.x
https://doi.org/https://doi.org/10.1111/j.1365-2494.1977.tb01405.x
https://doi.org/https://doi.org/10.1111/j.1365-2494.1977.tb01405.x
https://doi.org/10.2307/1941901
https://doi.org/10.3390/rs10010085
https://doi.org/10.1016/J.RSE.2008.01.026
https://doi.org/10.1109/36.508411
https://doi.org/10.1109/36.508411
https://doi.org/10.1016/0034-4257(88)90026-0
https://doi.org/10.1016/0034-4257(89)90086-2
https://doi.org/10.1080/02757259509532299
https://doi.org/10.1080/02757259509532299
https://doi.org/10.1109/PVSC43889.2021.9519093
https://doi.org/10.1016/j.enconman.2020.113283
https://www.pveducation.org
https://www.pvlighthouse.com.au/sunsolve-yield
https://www.pvlighthouse.com.au/sunsolve-yield

Bibliography

[56] S. Marschner and P. Shirley. Fundamentals of Computer Graphics. 4th ed. Boca Raton,
Florida, USA: CRC Press, 2016.

[57] J. De Young and A. Fournier. ‘Properties of Tabulated Bidirectional Reflectance Distri-
bution Functions’. In: Proceedings of Graphics Interface ’97. Kelowna, British Columbia,
Canada: Canadian Human-Computer Communications Society, 1997, pp. 47–55.

[58] Kunstgrasnet.nl. Kunstgras Naturel 2.0 — Natuurlijk kunstgras. url: https://www.
kunstgrasnet.nl/naturel.

[59] Next2Sun. Testimonials Agri-PV Plants. 2022. url: https : / / next2sun . com / en /

testimonials/agripv-systems/.
[60] R. Saive, T.C.R. Russell and H.A. Atwater. ‘Light Trapping in Bifacial Solar Modules

Using Effectively Transparent Contact (ETCs)’. In: 2018 IEEE 7th World Conference
on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC,
28th PVSEC 34th EU PVSEC). 2018. isbn: 9781538685297. doi: 10.1109/PVSC.2018.
8547314.

[61] R. Wirth, B. Weber and R. J. Ryel. ‘Spatial and temporal variability of canopy structure
in a tropical moist forest’. In: Acta Oecologica 22.5-6 (Sept. 2001), pp. 235–244. issn:
1146-609X. doi: 10.1016/S1146-609X(01)01123-7.

[62] T. Kattenborn et al. ‘AngleCam: Predicting the temporal variation of leaf angle distribu-
tions from image series with deep learning’. In: Methods in Ecology and Evolution 13.11
(Nov. 2022), pp. 2531–2545. issn: 2041210X. doi: 10.1111/2041-210X.13968.

[63] F. Spertino, P. D. Leo and F. Corona. ‘Non-Idealities in the I-V Characteristic of the PV
Generators: Manufacturing Mismatch and Shading Effect’. In: Solar Cells-Silicon Wafer-
Based Technologies (2011). url: www.intechopen.com.

61

https://www.kunstgrasnet.nl/naturel
https://www.kunstgrasnet.nl/naturel
https://next2sun.com/en/testimonials/agripv-systems/
https://next2sun.com/en/testimonials/agripv-systems/
https://doi.org/10.1109/PVSC.2018.8547314
https://doi.org/10.1109/PVSC.2018.8547314
https://doi.org/10.1016/S1146-609X(01)01123-7
https://doi.org/10.1111/2041-210X.13968
www.intechopen.com

A Overview simulated BRDFs

Appendices

A Overview simulated BRDFs

The following figures present the BRDF of the ten simulated grass samples. Every rectangular
plot shows the BRDF per pixel of the detection dome (ϕdome,θdome) at a wavelength λ = 900
nm for a certain angle of incidence. The angle of incidence θsource and ϕsource = 0. Note that in
these plots, θsource is rounded and the plot with θsource = 0° shows the data of θsource = 10−5°.

62

A
O
verv

iew
sim

u
lated

B
R
D
F
s

Figure 43: The BRDF obtained for the grass sample ”Vertical 4 cm”.

63

A
O
verv

iew
sim

u
lated

B
R
D
F
s

Figure 44: The BRDF obtained for the grass sample ”Vertical 8 cm”.

64

A
O
verv

iew
sim

u
lated

B
R
D
F
s

Figure 45: The BRDF obtained for the grass sample ”Vertical 12 cm”.

65

A
O
verv

iew
sim

u
lated

B
R
D
F
s

Figure 46: The BRDF obtained for the grass sample ”Varying height 4cm - 12cm”.

66

A
O
verv

iew
sim

u
lated

B
R
D
F
s

Figure 47: The BRDF obtained for the grass sample ”Tilted top 20° bottom 4 cm top 4 cm”.

67

A
O
verv

iew
sim

u
lated

B
R
D
F
s

Figure 48: The BRDF obtained for the grass sample ”Tilted top 40° bottom 4 cm top 4 cm”.

68

A
O
verv

iew
sim

u
lated

B
R
D
F
s

Figure 49: The BRDF obtained for the grass sample ”Tilted top 20° bottom 8 cm top 4 cm”.

69

A
O
verv

iew
sim

u
lated

B
R
D
F
s

Figure 50: The BRDF obtained for the grass sample ”Tilted top 40° bottom 8 cm top 4 cm”.

70

A
O
verv

iew
sim

u
lated

B
R
D
F
s

Figure 51: The BRDF obtained for the grass sample ”Tilted top 20° bottom 4 cm top 8 cm”.

71

A
O
verv

iew
sim

u
lated

B
R
D
F
s

Figure 52: The BRDF obtained for the grass sample ”Tilted top 40° bottom 4 cm top 8 cm”.

72

B Overview power profiles

B Overview power profiles

(a) Power output when surrounded by the vertical grass samples.

(b) Power output when surrounded by the tilted grass samples.

Figure 53: Power output due to indirect light on the front of a east-west vertically placed bifacial solar panel.

73

B Overview power profiles

(a) Power output when surrounded by the vertical grass samples.

(b) Power output when surrounded by the tilted grass samples.

Figure 54: Power output due to indirect light on the rear of a east-west vertically placed bifacial solar panel.

74

B Overview power profiles

(a) Power output when surrounded by the vertical grass samples.

(b) Power output when surrounded by the tilted grass samples.

Figure 55: Power output due to direct and indirect light on a east-west vertically placed bifacial solar panel.

75

C Guide code Monte Carlo ray tracing model

C Guide code Monte Carlo ray tracing model

In this appendix, the focus lies on how the code can be used to reproduce the results in this
report. With this information, the model can also be used to simulate the BRDF of new
samples.

C.1 Overview functions and scripts

The code consists of two folders: RayTracing in which all scripts and functions to perform ray
tracing are saved. With the code in this folder, a library of BRDFs can be generated using one
of the analyze scripts in combination with addToLibrary. In the folder AnalyzeLibrary, the files
in the library can be plotted. Figure 56 gives an overview of the functions and scripts in these
two folders. The code can be found in appendix D.

76

C Guide code Monte Carlo ray tracing model

Figure 56: Overview of all functions and scripts in the folders RayTracing and AnalyzeLibrary. The code can
be found in appendix D.

77

C Guide code Monte Carlo ray tracing model

C.2 Tracing a ray through the detection dome

Displaying one or multiple rays can be done by setting the parameteres in setSettingsVisual-
isation as desired. The parameters have the following effect:

• rays visualised is a list specifying which ray number is plotted.

• show diffuse reflection shows, if true, the possible directions for the ray to go in at every in-
tersection of the ray with a plane, like displayed in figure 21. By setting plot invalid ray directions
= true in calculateNewRayDirection, invalid directions are also shown like in figure 12b.

• show ray until intersection traces, if true, the ray numbers in rays visualised through the
detection dome like in figure 5.

• show incoming light shows, if true, the beam of light falling on the sample like in figure
9.

• radius detection dome sets the radius that the detection dome has in the plots. This
allows for seeing the sample better.

A ray can be traced step by step (from intersection to intersection) by putting two breakpoints
below the following lines in the function calculateBRDFgrass2 :

• if sorted planes index(k plane) == 1 % if ray hits the detection dome

• if hit == true % if ray hits surface

C.3 Calibration figures

C.3.1 Ideal Lambertian

As explained in section 3.7.1, in the Lambertian case, some shortcuts can be taken - all rays
can fall at (x, y) = 0. Therefore, the code can be much simpler than calculateBRDFgrass which
saves computational time and makes it easier to check the foundation of the code.

Since some of the steps that are in the full ray tracer code are skipped, the input has to be
checked with caution. For example, since the intersection point of the ray with the plane
can be entered directly, it has to manually be adjusted to ensure the ray intersects at the
right point. In plotLambertianReflection, a ray will always intersect - which is not the case in
calculateBRDFgrass. Specifically, there are two situations for which plotLambertianReflection
and analyzeLambertianReflection give radiance as output, but calculateBRDFgrass does not:
1) the plane is vertical and the light comes from θ = 90° 2) the light shines from any ϕsource

to a blade whose tangent line is parallel to ϕsource. The function calculateBRDFgrass does not
give output for these cases because it cannot compute an intersection time and thus the rays
do not intersect with the plane (see section 3.4).

Recreating figures 16, 17 and 18

1. Run the function analyzeLambertianReflection for accuracy detection deg = 0.5 (β in
this report) for the desired number of rays. The number of rays to run the program
for can be specified in the list number of rays list. Set a dome inverse = 0 (1

adome

in this report) to ensure the rays are shot to the middle of the detection dome. Set
number of repeating runs > 1 to repeat the calculation and eventually average. Check
that the results are saved.

78

C Guide code Monte Carlo ray tracing model

2. Run the function convergenceAnalysisLambertianReflector. Ensure that the values of
accuracy detection deg = 0.5, number of rays list and number of repeating runs > 1
are the same as the input to analyzeLambertianReflection. The function loads the radiance
data generated by analyzeLambertianReflection. Therefore, check if it retrieves the right
files. Set make comparison plots n = true and make comparison plots a dome = false.
The function then checks the energy conservation again and generates among other plots
figures 16, 17 and 18.

Recreating figure 19 and 20

1. Run the function analyzeLambertianReflection for accuracy detection deg = 3 (β in this
report) for number of rays list = 1e6 rays. Set a dome inverse (1

adome
in this re-

port) to a list of desired values. For example, a dome inverse = [0:1:10] shoots the
rays in the middle of the detection dome when a dome inverse = 0 and to the middle
of the detection dome when a dome inverse = 2 (since in the code, rdome = 1). Set
number of repeating runs > 1 to repeat the calculation and eventually average. Set
investigate direction to either vertical or horizontal depending on whether figure 19 or 20
is to be reproduced. Check that the results are saved.

2. Run the function convergenceAnalysisLambertianReflector. Ensure that the values of
accuracy detection deg = 0.5, number of rays list, number of repeating runs > 1 and
a dome inverse are the same as the input to analyzeLambertianReflection. The function
loads the radiance data generated by analyzeLambertianReflection. Therefore, check if it
retrieves the right files. Set make comparison plots n = false and make comparison plots a dome
= true. The function then checks the energy conservation again and generates figure 19
or 20 depending on investigate direction in analyzeLambertianReflection.

C.3.2 Grass reflector

The goal is to run analyzeCalibrationGrass and plot its results.

1. Set the appropriate settings in the files in RayTracer >> set. Used for this specific figure:

• setSettingsVisualisation: rays visualised and wavelengths visualised empty lists and
the other variables Boolean False.

• setSettingsSaveResults save detection dome = False and save results = True. Input
name to save brdf irrelevant because this is overwritten in analyzeCalibrationGrass.

• setSettingsSample radius sample = 1, ground surface = “Blackbody”, blade geometry
= “VerticalSameHeight”, grass type = “GrassRussellEtAl2017”. The other variables
are overwritten in analyzeCalibrationGrass.

• setSettingsReturnedData All variables false.

• setSettingsRayDetection accuracy detection deg = 6, ratio sphere over sample radius
= 1e8, sphere center = [0;0;0]

• setSettingsIncidentLight sun azimuth deg = 0 , wavelengths = [300:10:1100], num-
ber of unique rays = 1e5 , number of repeated rays = 1 . The other variables are
overwritten in analyzeCalibrationGrass.

2. Open analyzeCalibrationGrass and adapt the settings in the script. For figure 25 the
following settings have been used:

79

C Guide code Monte Carlo ray tracing model

• elevation list = [1e− 6, 10 : 10 : 90]

• a illuminated list = [1 0.75 0.5 0.25]

• r illuminated = 2.5 (in cm)

• width blade set = 0.5

• height blade set = 4 (in cm)

• num blades set = 45 (in cm)

• run number of times = 10

3. Check under what name the results are saved. The results are saved in the current folder
(to check the current folder, enter pwd in the command window) with the filename as
specified by the variable save name.

4. Run addToLibrary, taking as input the resulting .mat files for all runs. The output is
a .mat file in which the structure data library contains the detection dome azimuth and
elevation angles. Furthermore, for every angle, it contains the mean spectral albedo and
mean BRDF of all the runs.

5. Open AnalyzeLibrary >> plotFromLibrary. Set the appropriate settings using the struc-
ture settings plotter. Ensure that the variables in the structure settings plotter are cor-
rect.

C.4 Filling the BRDF library

The goal is to obtain a library with for each sample type and desired elevation angle, a BRDF
averaged over a certain number of runs.

1. Set the appropriate settings in the files in RayTracer >> set.

2. Open analyzeBRDFMakeLibrary. Check under what name the results are saved. The
results are saved in the current folder (to check the current folder, enter pwd in the
command window) with the filename as specified by the variable save name.

3. Run analyzeBRDFMakeLibrary. For every elevation angle, a total number of num-
ber of runs will be created. The results are saved in the file ResultsRayTracing.

4. To average the BRDFs and albedos of the number of runs number of files, open addToLib-
rary. Ensure that the files created by analyzeBRDFMakeLibrary are retrieved correctly.
Choose a location to save the averaged BRDFs and albedos by changing folder to add and
name individual files as desired. Also ensure that elevation angles and number of runs
correspond to those of the file names.

5. Run addToLibrary. The output is a .mat file in which the structure data library contains
the detection dome azimuth and elevation angles. Furthermore, for every angle, it contains
the mean spectral albedo and mean BRDF.

C.5 Analysing BRDF library

C.5.1 Plotting the samples

Recreating figure 27

80

C Guide code Monte Carlo ray tracing model

1. Open the script plotSample. In the script, change data to plot such that the saved data
of the desired file is loaded. For example, a file from the library can be loaded. In this
data, the structure surfaces exists in which all surfaces are saved. Running the script for
the right file gives a subfigure like figure 27 as output.

C.5.2 Plotting BRDF and albedo

1. Open AnalyzeLibrary >> plotFromLibrary. Set the appropriate settings using the struc-
ture settings plotter. Ensure that the variables in the structure settings plotter are cor-
rect.

2. Run plotFromLibrary. To not generate all figures at the same time, Matlabs ’run section’
button can be used. The appropriate figures will be generated. An overview:

• plotFromLibraryBRDFperElevationAngle plots the mean BRDF from the library per
elevation able in a heatmap with elevation and azimuth angles of the dome on the
axes. When in this function plot 3D = true, a three dimensional plot is generated.
The BRDF is plotted for the wavelength specified by desired wavelengthin the func-
tion. In this way, figure 28 is made.

• plotFromLibrarySpectralAlbedoPerElevationAngle plots the albedo on the y-axis and
the wavelengths on the x-axis. There is a line for every elevation angle of angles to run.
This results in figure 31.

• plotFromLibraryAlbedoComparisonSamples plots for one wavelength (specified by
desired wavelength in the function) for every sample and for every angle the albedo.
To make this figure, the variable for comparison needs to be filled. This results in
figure 32.

• plotFromLibrary2DPolarPlot plots a cross-section of a BRDF for all elevation angles
of the source and for one wavelength (specified by desired wavelength in the func-
tion). This gives figure 30.

81

D Code Monte Carlo ray tracing model

D Code Monte Carlo ray tracing model

D.1 Ray tracing

D.1.1 Set

setSettingsSample

function settings ray tracer = ...
setSettingsSample(settings ray tracer,variable to adapt, ...
new value,variable to adapt 2,new value 2,...

variable to adapt 3,new value 3,...
variable to adapt 4,new value 4)

%% Ground material:
settings ray tracer.sample.radius sample = 1 ;

% Settings ground material:
% - Lambertian - All light is diffusely reflected
% - Blackbody - All light is absorbed
% - SoilAlfisolPaleustalf - Light is spectrally reflected
% important for reflectance data, see retrieveReflectanceSurface
settings ray tracer.sample.ground surface = "Blackbody";

%% Blades:

settings ray tracer.sample.number of blades = 180;%4516; % 45 when 1r = 2.5 cm

% Settings blade geometry
% (For exact specifications see function generateSample)
% - "VerticalSameHeight" - All blades point vertically upwards
% They have the same height: X cm.
% - VerticalVaryingHeight - All blades point vertically upwards
% There is a variation in height.
% - VerticalAndTiltedTop - Blades consist of 2 equal segments which
% are equal in length. The lower half
% is vertical. The top half is tilted.
settings ray tracer.sample.blade geometry = "VerticalSameHeight";

settings ray tracer.sample.blade width = 0.1; % measured in radius sample

% Height
% set to zero if reflector is at ground height.
settings ray tracer.sample.blade height = 0.8; % measured in radius sample ...

(can be [0.1 1]) to vary height between 0.1r and 1r
settings ray tracer.sample.blade tilt = [-10,10]; % measured in deg from ...

xy-normal
settings ray tracer.sample.height tilted top = 0.8;

% Setting grass type
% - GrassRussellEtAl2017 - Data from 10.1109/JPHOTOV.2017.2756068
% - GrassKokalyEtAl2017 - Data from ...

https://crustal.usgs.gov/speclab/data/HTMLmetadata/ ...
LawnGrass GDS91b shifted 3nm BECKa AREF.html

% important for reflectance data, see retrieveReflectanceSurface
settings ray tracer.sample.grass type = "GrassRussellEtAl2017";

82

D Code Monte Carlo ray tracing model

%% Overwrite:
% simply overwrite the variable which has to be adapted
if nargin > 1 && nargin < 4

settings ray tracer.sample.(variable to adapt) = new value;
elseif nargin > 3 && nargin < 6

settings ray tracer.sample.(variable to adapt) = new value;
settings ray tracer.sample.(variable to adapt 2) = new value 2;

elseif nargin > 5 && nargin < 8
settings ray tracer.sample.(variable to adapt) = new value;
settings ray tracer.sample.(variable to adapt 2) = new value 2;
settings ray tracer.sample.(variable to adapt 3) = new value 3;

elseif nargin == 9
settings ray tracer.sample.(variable to adapt) = new value;
settings ray tracer.sample.(variable to adapt 2) = new value 2;
settings ray tracer.sample.(variable to adapt 3) = new value 3;
settings ray tracer.sample.(variable to adapt 4) = new value 4;

end
end

setSettingsIncidentLight

function settings ray tracer = ...
setSettingsIncidentLight(settings ray tracer,variable to adapt, ...
new value,variable to adapt 2,new value 2)

% Settings incoming light
settings ray tracer.incident light.sun azimuth deg = 0; % in degree
settings ray tracer.incident light.sun elevation deg = 45; %%14.04; % in degree
settings ray tracer.incident light.wavelengths = [300 : 10 : 1100];
settings ray tracer.incident light.number of unique rays = 105;
settings ray tracer.incident light.number of repeated rays = 1;
settings ray tracer.incident light.ratio illuminated over sample radius = 0.5;

% simply overwrite the variable which has to be adapted
if nargin > 1 && nargin <5

settings ray tracer.incident light.(variable to adapt) = new value;
elseif nargin == 5

settings ray tracer.incident light.(variable to adapt) = new value;
settings ray tracer.incident light.(variable to adapt 2) = new value 2;

end

end

setSettingsRayDetection

function settings ray tracer = ...
setSettingsRayDetection(settings ray tracer,variable to adapt, new value)

% Settings ray detection
settings ray tracer.ray detection.accuracy detection deg = 4.5;

83

D Code Monte Carlo ray tracing model

settings ray tracer.ray detection.ratio sphere over sample radius = 1e8; %1e8
settings ray tracer.ray detection.sphere center = [0;0;0];

% simply overwrite the variable which has to be adapted
if nargin > 1

settings ray tracer.ray detection.(variable to adapt) = new value;
end

end

setSettingsReturnedData

function settings ray tracer = ...
setSettingsReturnedData(settings ray tracer,variable to adapt, new value)

% Detection dome
settings ray tracer.returned data.return centers detection dome = true;

% Radiance and BRDF
settings ray tracer.returned data.return brdf = true;
settings ray tracer.returned data.return radiance = true;

% Error calculation
settings ray tracer.returned data.return RMSE lambertian = true;% compute ...

the root mean squared compared to Lambertian reflector

% Albedo
settings ray tracer.returned data.return albedo = true;

% Settings
settings ray tracer.returned data.return settings = true;

% simply overwrite the variable which has to be adapted
if nargin > 1

settings ray tracer.returned data.(variable to adapt) = new value;
end

end

setSettingsSaveResults

function settings ray tracer = ...
setSettingsSaveResults(settings ray tracer,variable to adapt, new value)

% Settings save results
settings ray tracer.save results.save detection dome = false;
settings ray tracer.save results.save results = true;
settings ray tracer.save results.name to save brdf = "LambertianNoBlades";

% simply overwrite the variable which has to be adapted
if nargin > 1

84

D Code Monte Carlo ray tracing model

settings ray tracer.save results.(variable to adapt) = new value;
end

end

setSettingsVisualisation

function settings ray tracer = ...
setSettingsVisualisation(settings ray tracer,variable to adapt, new value)

% Settings visualisation
settings ray tracer.visualisation.rays visualised = []; % list of ray ...

numbers that should be traced
settings ray tracer.visualisation.show diffuse reflection = false;
settings ray tracer.visualisation.show ray until intersection = false;
settings ray tracer.visualisation.show incoming light = false;
settings ray tracer.visualisation.wavelengths visualised = [];%[] = none

settings ray tracer.visualisation.radius detection dome = 2;%[] = none (only ...
for visualisation)

% simply overwrite the variable which has to be adapted
if nargin > 1

settings ray tracer.visualisation.(variable to adapt) = new value;
end

end

D.1.2 Save

saveRaySpecifications

function [rays] = saveRaySpecifications(rays, ray starting point, ...
ray direction,ray magnitude, specific ray)

%===
% Saves the starting point, direction and magnitude of a specific ray
% in the structure rays
%===
% Input: - rays structure Contains information
% about the rays
% - ray starting point 3x1 matrix Starting point [x;y;z]
% - ray direction 3x1 matrix Direction vector [x;y;z]
% - ray magnitude 1xn matrix Magnitude ray for n
% wavelengths
% - specific ray string Ray ID
% --
% Output: - rays structure Contains information
% about rays including
% the specific ray
%===

85

D Code Monte Carlo ray tracing model

rays.(specific ray).start = ray starting point;
rays.(specific ray).direction = ray direction;
rays.(specific ray).magnitude = ray magnitude;

end

saveSurfaceSpecifications

function [surfaces] = saveSurfaceSpecifications(surfaces, ...
surface boundaries, surface name, surface normal, surface type)

%===
% Saves the corners, normal and surface type of a specific plane (plane
% name) in the structure planes
%===
% Input: - surfaces structure Contains information on ...

surfaces
% - surface boundaries struct Contains at least the shape ...

of the
% surface.
% - If the shape is a "Square",
% contains the corners of the
% surface.
% - If the shape is a "Circle",
% contains the radius, center
% and height.
% - surface name string Plane ID
% - surface normal 3x1 matrix Normal direction of the plane
% - surface type string Type of surface
% --
% Output: - surfaces structure Contains information
% about surfaces including
% the specific surface (surface name)
%===
% Update log:
% 04/05/2023 Added circular option.
%===

surfaces.(surface name).normal = surface normal;
surfaces.(surface name).type = surface type ;
surfaces.(surface name).surface boundaries = surface boundaries;
end

D.1.3 Retrieve

retrieveSettingsSample

function [radius sample, ground surface, number of blades, blade geometry, ...
grass type,blade width , blade height, blade tilt,height tilted top] = ...
retrieveSettingsSample(settings ray tracer)

% Settings sample
radius sample = settings ray tracer.sample.radius sample;
ground surface = settings ray tracer.sample.ground surface;
number of blades = settings ray tracer.sample.number of blades;

86

D Code Monte Carlo ray tracing model

blade geometry = settings ray tracer.sample.blade geometry;
grass type = settings ray tracer.sample.grass type;

blade width = settings ray tracer.sample.blade width;%0.02; % measured in ...
radius sample

blade height = settings ray tracer.sample.blade height;%0.16; % measured in ...
radius sample (can be [0.1 1]) to vary height between 0.1r and 1r

blade tilt = settings ray tracer.sample.blade tilt; % measured in deg from ...
xy-normal

height tilted top = settings ray tracer.sample.height tilted top;
end

retrieveSettingsIncidentLight

function [sun azimuth deg, sun elevation deg , wavelengths, ...
number of unique rays, ...
number of repeated rays,ratio illuminated over sample radius] = ...
retrieveSettingsIncidentLight(settings ray tracer)

% Settings incoming light
sun azimuth deg = settings ray tracer.incident light.sun azimuth deg;
sun elevation deg = settings ray tracer.incident light.sun elevation deg;
wavelengths = settings ray tracer.incident light.wavelengths;
number of unique rays = ...

settings ray tracer.incident light.number of unique rays;
number of repeated rays = ...

settings ray tracer.incident light.number of repeated rays;
ratio illuminated over sample radius = ...

settings ray tracer.incident light.ratio illuminated over sample radius;

end

retrieveSettingsRayDetection

function [accuracy detection deg, ratio sphere over sample radius, ...
sphere center] = retrieveSettingsRayDetection(settings ray tracer)

% Settings ray detection
accuracy detection deg = ...

settings ray tracer.ray detection.accuracy detection deg; % in degrees
ratio sphere over sample radius = ...

settings ray tracer.ray detection.ratio sphere over sample radius;
sphere center = settings ray tracer.ray detection.sphere center;
end

retrieveSettingsReturnedData

function [return brdf,return radiance,return RMSE lambertian, ...
return centers detection dome,return albedo,return settings] = ...
retrieveSettingsReturnedData(settings ray tracer)

%Settings return

87

D Code Monte Carlo ray tracing model

return brdf = settings ray tracer.returned data.return brdf;
return radiance = settings ray tracer.returned data.return radiance;
return RMSE lambertian = ...

settings ray tracer.returned data.return RMSE lambertian;

% Detection dome
return centers detection dome = ...

settings ray tracer.returned data.return centers detection dome;

% Albedo
return albedo = settings ray tracer.returned data.return albedo;

% Settings
return settings = settings ray tracer.returned data.return settings;

end

retrieveSettingsSaveResults

function [save detection dome, name to save brdf, save results] = ...
retrieveSettingsSaveResults(settings ray tracer)

% Settings save results
save detection dome = settings ray tracer.save results.save detection dome;
name to save brdf = settings ray tracer.save results.name to save brdf;
save results = settings ray tracer.save results.save results;

end

retrieveSettingsVisualisation

function [rays visualised, ...
show diffuse reflection,show ray until intersection,wavelengths visualised,...

show incoming light,radius detection dome] = ...
retrieveSettingsVisualisation(settings ray tracer);

% Settings visualisation
rays visualised =settings ray tracer.visualisation.rays visualised;
show diffuse reflection ...

=settings ray tracer.visualisation.show diffuse reflection;
show ray until intersection = ...

settings ray tracer.visualisation.show ray until intersection;
wavelengths visualised = ...

settings ray tracer.visualisation.wavelengths visualised;
show incoming light = settings ray tracer.visualisation.show incoming light;
radius detection dome = settings ray tracer.visualisation.radius detection dome;
end

retrieveRaySpecifications

88

D Code Monte Carlo ray tracing model

function [ray starting point, ray direction, ray magnitude] = ...
retrieveRaySpecifications(rays, specific ray)

%===
% Retrieves the starting point, direction and magnitude of a specific ray
% from the structure rays
%===
% Input: - rays structure Contains information
% about the rays
% - specific ray string Ray ID
% --
% Output: - ray starting point 3x1 matrix Starting point [x;y;z]
% - ray direction 3x1 matrix Direction vector [x;y;z]
% - ray magnitude 1xn matrix Magnitude ray for n
% wavelengths
%===

ray starting point = rays.(specific ray).start ;
ray direction = rays.(specific ray).direction ;
ray magnitude = rays.(specific ray).magnitude ;

end

retrieveSurfaceSpecifications

function [surface boundaries, surface normal] = ...
retrieveSurfaceSpecifications(surfaces, surface name)

%===
% Retrieves the surface boundaries and normal of a specific plane (plane
% name) from the structure planes
%===
% Input: - surfaces structure Contains information on planes
% - surface name string Plane ID
% --
% Output: - surface boundaries structure Contains corners of the plane.
% - surface normal 3x1 matrix Normal direction of the plane
%===
% Update log:
% 04/05/2023 Added circular option.
%===

surface boundaries = surfaces.(surface name).surface boundaries;
surface normal = surfaces.(surface name).normal;
end

retrieveReflectanceSurface

function reflectance surface = ...
retrieveReflectanceSurface(reflectance surface, surface type,wavelengths)

%===
% Puts spectral reflectance (reflectance for given wavelengths) of a
% surface in a structure.
%===
% Input: - reflectance surface struct Structure with spectral
% reflectance
% - surface type string Type of the surface

89

D Code Monte Carlo ray tracing model

% - wavelengths 1 x n matrix Array with all wavelengths for
% which a magnitude has to be
% generated
% --
% Output: - reflectance surface struct Structure with spectral
% reflectance of surface type
%===
% Internal functions
% - checkInterpolationPossible Checks if the desired
% wavelengths are within the
% bounds of the wavelengths
% from the data
%===
% Notes: - Ensure used data units are correct in interpolation
%===
% Debugging features
% - checkInterpolationPossible to ensure data retrieved from tables
% can be interpolated.
%===
% Update log
% 23/05/2023 Added GrassRussellEtAll2017
% 10/05/2023 Separated from calculateNewRayMagnitude to improve
% computational costs.
%===

if surface type == "Lambertian"
reflectance surface.(surface type) = 1;

elseif surface type == "Blackbody"
reflectance surface.(surface type) = 0;

elseif surface type == "SoilAlfisolPaleustalf"
%ray magnitude = ray magnitude;%* 0.8;
% Retrieve and assign data
table reflectance = ...

readtable('ReflectanceSoilAlfisolPaleustalf.xlsx',...
'Sheet','Sheet1','Range','A1:B2844');
wavelengths table nm = table2array(table reflectance(1:end,1)) * ...

100; % Unit: nm
reflectance table = table2array(table reflectance(1:end,2))/100;

% Error check
[wavelengths table nm, reflectance table] = ...

checkInterpolationPossible(wavelengths table nm, wavelengths, ...
surface type)

% Interpolate
reflectance surface.(surface type) = ...

interp1(wavelengths table nm,reflectance table,wavelengths);
elseif surface type == "GrassRussellEtAl2017"

% compute correction spectral reflectance
table reflectance = ...

readtable('ReflectanceGrassRussellEtAl2017.xlsx',...
'Sheet','Sheet1','Range','A1:B261');
wavelengths table nm = table2array(table reflectance(1:end,1)); ...

% Unit: nm
reflectance table = table2array(table reflectance(1:end,2));

% Error check
[wavelengths table nm, reflectance table] = ...

90

D Code Monte Carlo ray tracing model

checkInterpolationPossible(wavelengths table nm, wavelengths, ...
surface type, reflectance table);

% Interpolate
reflectance surface.(surface type) = ...

interp1(wavelengths table nm,reflectance table,wavelengths);

elseif surface type == "GrassKokalyEtAl2017"
% compute correction spectral reflectance
table reflectance = ...

readtable('ReflectanceGrassKokalyEtAl2017.xlsx',..
'Sheet','Sheet1','Range','A1:B481');
wavelengths table nm = table2array(table reflectance(1:end,1)) * ...

1000; % Unit: nm
reflectance table = table2array(table reflectance(1:end,2));

% Error check
[wavelengths table nm, reflectance table] = ...

checkInterpolationPossible(wavelengths table nm, wavelengths, ...
surface type);

% Interpolate
reflectance surface.(surface type) = ...

interp1(wavelengths table nm,reflectance table,wavelengths);

elseif surface type == "blade14"
reflectance surface.(surface type) = 0.009;

end

%Debugging code
fprintf("When a ray of light falls upon %s, %.2f \% of the light is absorbed ...

immediately (averaged over wavelength).\n", surface type, 100*(1 - ...
sum(reflectance surface.(surface type)/...

numel(reflectance surface.(surface type)))))

%% Internal functions
function [wavelengths table nm new, reflectance table new] = ...

checkInterpolationPossible(wavelengths table nm, wavelengths, ...
surface type,reflectance table)

% Error check: can interpolation of data in the table be used?

% Checking boundaries of data
if min(wavelengths) < min(wavelengths table nm)

error(sprintf("The desired minimum wavelength cannot be retrieved ...
from the current %s data.",surface type))

elseif max(wavelengths) > max(wavelengths table nm)
error(sprintf("The desired maximum wavelength cannot be retrieved ...

from the current %s data.",surface type))
end

% Ensuring unique wavelengths (otherwise integration does not work)
[wavelengths table nm new, indices unique] = unique(wavelengths table nm);
reflectance table new = reflectance table(indices unique);

end

end

91

D Code Monte Carlo ray tracing model

D.1.4 Generate

generateSample2

function surfaces = generateSample(settings ray tracer)

%% Settings
plot sample = false;

%% Initialization
reflectance surface = struct();
surfaces = struct();
surfaces.individual surfaces = struct();

% retrieve relevant variables out of settings
number of blades = settings ray tracer.sample.number of blades;
radius sample = settings ray tracer.sample.radius sample ;
ground surface = settings ray tracer.sample.ground surface ;
blade geometry = settings ray tracer.sample.blade geometry;
grass type = settings ray tracer.sample.grass type;

blade width = settings ray tracer.sample.blade width; % measured in ...
radius sample

blade height = settings ray tracer.sample.blade height; % measured in ...
radius sample (can be [0.1 1]) to vary height between 0.1r and 1r

blade tilt = settings ray tracer.sample.blade tilt; % measured in deg from ...
xy-normal

wavelengths = settings ray tracer.incident light.wavelengths ;

blades list = repmat([grass type], 1, number of blades);
surfaces list = [ground surface, blades list];

radius dome for visualisation = ...
settings ray tracer.visualisation.radius detection dome;

% Retrieve reflectance of every surface
for k surface = 1:length(unique(surfaces list))

reflectance surface = retrieveReflectanceSurface(reflectance surface, ...
surfaces list(k surface), wavelengths);

end

if plot sample == true
% Plot coordinate system
plotCoordinateSystem('hemisphere',radius dome for visualisation)

end

% Based on blade geometry, set some variables
additional surface specification.blade width = blade width;
additional surface specification.blade height = blade height;

switch blade geometry
case "VerticalSameHeight"

additional surface specification.height type ="VerticalSameHeight";
tilted top = false;

case "VerticalVaryingHeight"

92

D Code Monte Carlo ray tracing model

additional surface specification.height type = "VaryingHeight";
tilted top = false;

case "VerticalAndTiltedTop"
additional surface specification.height type = "HalfLength";
tilted top = true;

otherwise
error("%s is not a valid blade geometry.", blade geometry)

end

%% Generate surfaces
for k surface = 1:length(surfaces list)

surface type = surfaces list(k surface);
if k surface == 1 % is always the ground

[surface boundaries] = generateSurface2(radius sample, "Ground");
else

[surface boundaries] = generateSurface2(radius sample, "Blade", ...
additional surface specification);

% surface boundaries.corners = [2 2 -2 -2 ; 5 -5 -5 5; 5 5 0 0];
% surface boundaries.center = ...

[mean(surface boundaries.corners(1,:)); ...
mean(surface boundaries.corners(2,:));mean(surface boundaries.corners(3,:))];

% surface boundaries.shape = "Rectangle";
end
%surface boundaries.corners = [2 -2 -2 2; 2 -2 -2 2 ; 2 2 0 0]; %[1 -3 ...

-3 1; 4 -1 -1 4 ; 2 2 0 0];%[2 -2 -2 2; 2 -2 -2 2 ; 2 2 0 0];% 45 ...
graden schuin [2 -2 -2 2 ; 1 -4 -4 1; 2 2 0 0]; % schuin

% Compute normal
[surface normal] = calculateNormal(surface boundaries);

if plot sample == true
% Plot surface and normal
plotSurface(surface boundaries)
plotNormal(surface normal, surface boundaries)

end

% Save the surface specifications
surface name = strcat(surface type,string(k surface));
surfaces.individual surfaces = ...

saveSurfaceSpecifications(surfaces.individual surfaces, ...
surface boundaries, surface name, surface normal, surface type);

% Add tilted top
if tilted top == true && k surface > 1 % if surface is not the ground

% Length blade
length blade = blade height;
% Shape blade
surface boundaries.shape = "Rectangle";

% Corners blade: top corners bottom part become bottom corners top part
surface boundaries.corners(1:3,3) = surface boundaries.corners(1:3,2);
surface boundaries.corners(1:3,4) = surface boundaries.corners(1:3,1);

% Determine tilt of the top
tilt top = blade tilt(1) + (blade tilt(2)-blade tilt(1)) * rand(1); ...

% max tilt of the top as seen from the vertical xy-normal. Degrees.

% New height of the top
z new = cos(deg2rad(tilt top)) * length blade;
r new = sin(deg2rad(tilt top)) * length blade; % which is in ...

93

D Code Monte Carlo ray tracing model

direction of the normal of the bottom part - so decompose!

% Angle between x axis and r new
u = [surface normal(1); surface normal(2)] .* r new; % (x;y)

angle phi = atan(u(2)./u(1)); %acos(dot(u,v)./ norm(u) ./ norm(v)); ...
%atan2(norm(cross(surface normal,[1; 0; 0])), ...
dot(surface normal,[1; 0; 0]));

% Corners top part of the tilted blade
surface boundaries.corners(3,1:2) = ...

surface boundaries.corners(3,1:2) + z new; % z
surface boundaries.corners(1,1:2) = ...

surface boundaries.corners(1,1:2) + cos(angle phi) * r new ; % x
surface boundaries.corners(2,1:2) = ...

surface boundaries.corners(2,1:2) + sin(angle phi) * r new ; % y

% Center of the blade
surface boundaries.center = [mean(surface boundaries.corners(1,:)); ...

mean(surface boundaries.corners(2,:)); ...
mean(surface boundaries.corners(3,:))];

% Calculate surface normal
[surface normal] = calculateNormal(surface boundaries);

% Plot surface and normal
if plot sample == true

plotSurface(surface boundaries)
plotNormal(surface normal, surface boundaries)

end

% Save the surface specifications
surface name = strcat(surface type,string(length(surfaces list) -1 + ...

k surface));
surfaces.individual surfaces = ...

saveSurfaceSpecifications(surfaces.individual surfaces, ...
surface boundaries, surface name, surface normal, surface type);

end
end

if tilted top == true
surfaces list = [surfaces list surfaces list(2:end)];

end
surfaces.surfaces list = surfaces list;
surfaces.reflectance surface = reflectance surface;

if plot sample == true
surfaces.sample figure = gcf;

end

end

generateSurface2

function [surface boundaries] = generateSurface(sample size, surface type, ...
additional surface specification)

%===

94

D Code Monte Carlo ray tracing model

% Generates a surface of surface type placed in the grid defined by
% grid size x and grid size y
%===
% Input: - sample size float Radius of the sample or half
% of the length of the sample
% - surface type string Surface type
% - sample geometry string Geometry sample size: either
% square or circular
% --
% Output: - plane 3x4 matrix Contains corners of the surface.
%===
% External functions used:
% - computeRotationMatrix computes rotation matrix. used to
% randomize orientation
%===
% Notes: - The square surface is considered as follows:
%
% 1 ------2 Corner 1 : x1, y1, z1
% | | Corner 2 : x2, y2, z2
% | | Corner 3 : x3, y3, z3
% | | Corner 4 : x4, y4, z4
% 4-------3
%
%===
% Update log:
% 08/05/2023 Deleted square sample geometry because of computational
% speed. For blades: added surface boundaries.center as
% output.
% 04/05/2023 Added circular option, where ground is a circle and the
% grass blades are added on this circle
%===

%"Circle" sample geometry
switch surface type

case "Ground" % surface type
% horizontal circle
surface boundaries.shape = "Circle";
surface boundaries.center = [0;0;0]; %[x;y;z]
surface boundaries.radius = sample size;
surface boundaries.height = 0;

case "Blade" % surface type
surface boundaries.shape = "Rectangle";
r blade = sample size .* ...

additional surface specification.blade width;
switch additional surface specification.height type

case "VerticalSameHeight"
z blade = sample size .* ...

additional surface specification.blade height;
case "VaryingHeight"

blade height difference = ...
additional surface specification.blade height(2)- ...
additional surface specification.blade height(1);

z blade = sample size ...
.*additional surface specification.blade height(1) + ...
blade height difference .* rand(1); % between 1 and 2

case "TiltedTop"
z blade = sample size .* ...

additional surface specification.blade height;
end

95

D Code Monte Carlo ray tracing model

% Determine point B, the point of the center of the grass
% blade on the sample. Point B is determined by giving it a
% radius from the centre and an azimuth from the centre of
% the detection dome.
% Radius: A radius between 0 and sample size - 0.5*r blade
% is assigned to ensure no blade exceeds the
% sample size.
radius from center b = (sample size - 0.5*r blade) * sqrt(rand(1));
azimuth b = rand(1) .*2 .* pi;
[x B , y B , ~] = sph2cart(azimuth b,0,radius from center b);

% vertical plane
x1 = x B - 0.5*r blade;
x2 = x1 + r blade;
x3 = x1 + r blade ;
x4 = x1;

y1 = y B;
y2 = y B;
y3 = y B;
y4 = y B;

z1 = z blade;
z2 = z blade;
z3 = 0;
z4 = 0;

% rotation around z axis
rotation matrix = computeRotationMatrix ([0,0,1], 2*pi * rand(1));
surface boundaries.corners = rotation matrix * [[x1 x2 x3 x4]; ...

[y1 y2 y3 y4]; [z1 z2 z3 z4]];
surface boundaries.center = ...

[mean(surface boundaries.corners(1,:)); ...
mean(surface boundaries.corners(2,:)); ...
mean(surface boundaries.corners(3,:))];

case "blade14" % surface type
surface boundaries.shape = "Square";
surface boundaries.corners = [[6.0660 5.5368 5.5368 ...

6.0660];[2.8890 3.3580 3.3580 2.8890];[0 ...
0 10.0000 10.0000]];

otherwise
error(sprintf("%s is not a valid surface type.", surface type))

end
end

generateRayDirection2

function [ray starting point, ray direction] = ...
generateRayDirection(sphere radius, sun azimuth, sun elevation, aim height)

%===
% Generates one ray coming from the sun by setting its direction and
% magnitude.
%===
% Input: - sphere radius float Radius of the detection dome
% - sun azimuth float Azimuth angle of the sun. Degrees.

96

D Code Monte Carlo ray tracing model

% - sun elevation float Elevation angle of the sun. Degrees.
% - aim height float Height that beams are aimed at. cm.
% --
% Output: - ray starting point 3x1 matrix starting point x,y,z
% - ray direction 3x1 matrix direction vector x,y,z
%===
% Debugging features:
% - reverse ray boolean When true, the ray reverses
% direction
%===
% Update log:
% - 17/04/2022 Removed magnitude assignment
%===
%% Settings
reverse ray = false; % Debugging option

%% Locate ray in space
% Creating a vector: p(t) = e + t (s-e) (advance from e along vector (s-e)
% a fractional distance t to find the point p)
% Starting point e (on the detection dome)
[xe, ye, ze] = sph2cart(deg2rad(sun azimuth), deg2rad(sun elevation), ...

sphere radius);
ray starting point= [xe ; ye ; ze];

% Destination point s (on the ground)
ray destination point = [0 ; 0 ; aim height];

% Debugging code: reverse ray
if reverse ray == true

ray starting point = [xs ; ys ; zs];
ray destination point = [xe ; ye ; ze];

end

% Direction (s-e)
ray direction = ray destination point - ray starting point;

end

generateParallelRayDirection2

function [ray starting point, ray direction,t intersect] = ...
generateParallelRayDirection(spot radius,ray direction,sphere radius,...

sphere center, aim height)
%===
% Generates a ray parallel to ray direction
%===
% Input: - spot radius float radius of the spot size on the
% reflector
% - ray direction 3x1 matrix ray direction [x;y;z]
% - sphere radius float radius of the detection dome
% - sphere center 3x1 matrix center of the detection dome
% - aim height float Height that beams are aimed at. cm.
% --
% Output: - ray starting point 3x1 matrix Starting point of the ray
% - ray direction 3x1 matrix Direction of the ray
%===
% External functions used:
% - calculateIntersectionTimeWithSphere compute starting point of

97

D Code Monte Carlo ray tracing model

% ray on the detection dome
%===
% Update log:
% - 04/05/2023 Option to choose destination point S chosen from
% a circle around (x,y) = (0,0) instead of a
% square grid
% - 17/04/2022 Removed magnitude assignment
%
% --
% Update possibilities:
% - [short desription of updates that could be useful in the future]
%===

%% Locate ray in space
% Creating a vector: p(t) = e + t (s-e) (advance from e along vector (s-e)
% a fractional distance t to find the point p)

% Give rays destination point from circular grid
radius from center s = spot radius * sqrt(rand(1));
azimuth s = rand(1) .*2 .* pi;
[xs , ys , zs] = sph2cart(azimuth s,0,radius from center s);
ray ground point= [xs ; ys ; zs + aim height];

% Starting point e (on the detection dome)
t intersect = ...

calculateIntersectionTimeWithSphere(sphere radius,sphere center, ...
ray ground point, ray direction, "negative");

ray starting point = ray ground point + t intersect * ray direction;

end

generateRayMagnitude

function [ray magnitude] = generateRayMagnitude(wavelengths)
%===
% Generates one ray coming from the sun by setting its direction and
% magnitude.
%===
% Input: - wavelengths 1 x n matrix Array with all wavelengths for
% which a magnitude has to be
% generated
% --
% Output: - ray magnitude 1 x n matrix Array with magnitudes for each
% wavelength
%===
% Update log:
% - 17/04/2022 Created from generateRayDirection
%===

ray magnitude = ones(1, length(wavelengths));

end

98

D Code Monte Carlo ray tracing model

generateGridSky

function [azimuth grid dome deg, elevation grid dome deg] = generateGridSky ...
(azimuth range deg,elevation range deg, accuracy detection deg)

%===
% Generate grid on the sky
%===
% Input: - azimuth range deg matrix Range of azimuth angles
% considered. Degrees.
% - elevation range deg matrix Range of elvation angles
% considered. Degrees.
% - accuracy detection deg float Accuracy with which the
% rays will be detected in
% the sky. Degrees.
% --
% Output: - azimuth grid dome deg matrix Range of azimuth angles
% on the detection dome
% - elevation grid dome deg matrix Range of elevation angles
% on the detection dome
%===
% Implement a proper detection dome grid
% Problem:
% E.g. detection dome grid with accuracy of 1:
% azimuth sky = [0, 1, 2, 3]
% elevation sky = [0, 1, 2, 3]
% At (0,0) only points whose azimuth and elevation are <0.5 are taken
% into account, which is twice as less as for (1,1) which takes
% azimuths and elevations >0.5 and <1.5.
% Solution: Design the detection dome grid such that the points are in the
% middle
% E.g. detection dome grid with accuracy of 1:
% azimuth sky = [0.5, 1.5, 2.5, 3.5]
% elevation sky = [0.5, 1.5, 2.5, 3.5]
% At (0.5,0.5) points whose azimuth and elevation are <1 are taken
% into account, at (1.5,1.5) points whose azimuth and elevation are
% >1 and <2, ect.
accuracy detection deg half = accuracy detection deg / 2;
azimuth grid dome deg = azimuth range deg(1:end-1) + accuracy detection deg ...

/ 2;
elevation grid dome deg = elevation range deg(2:end) + ...

accuracy detection deg / 2;
end

D.1.5 Check

checkBladesInInitiallyIlluminatedArea

function [list initially illuminated surfaces] = ...
checkBladesInInitiallyIlluminatedArea(grass type,corners, surfaces)

list initially illuminated surfaces = [];
for k individual surfaces = 2: length(surfaces.surfaces list) % for all ...

surfaces (except ground)
name blade = strcat(grass type,string(k individual surfaces));
center = ...

99

D Code Monte Carlo ray tracing model

surfaces.individual surfaces.(name blade).surface boundaries.center;

% If statement consists of 3 parts: checking if the
% intersection point x, y and z is within the boundaries of the
% surface
% 1. Check x: if intersection point(1,1) >= ...

min(surface boundaries.corners(1,:)) && intersection point(1,1) <= ...
max(surface boundaries.corners(1,:)) % check x

% 2. Check y: if intersection point(2,1) >= ...
min(surface boundaries.corners(2,:)) && intersection point(2,1)<= ...
max(surface boundaries.corners(2,:)) % check y

% 3. Check z if intersection point(3,1) >= ...
min(surface boundaries.corners(3,:)) && intersection point(3,1) <= ...
max(surface boundaries.corners(3,:)) % check z

% For computational speed, these three if statements are
% condensed into 1 if statement.
if center(1,1) >= min(corners(1,:)) && center(1,1) <= max(corners(1,:)) ...

&& center(2,1) >= min(corners(2,:)) && center(2,1)<= max(corners(2,:))
% hit = true!
list initially illuminated surfaces = ...

[list initially illuminated surfaces, name blade];
end

end

end

checkRayHitsSurface

function hit = checkRayHitsSurface(surface boundaries, ...
intersection point,normal surface)

%===
% Evaluates if a ray hits a plane by checking if the intersection point of
% the ray and the plane is withing the edges of the surface.
%===
% Input: - surface boundaries struct Contains at least the shape of the
% surface.
% - If the shape is a "Square",
% contains the corners of the
% surface.
% - If the shape is a "Circle",
% contains the radius, center
% and height.
% - intersection point 3x1 matrix Intersection point of ray and
% plane ([x;y;z])
% - normal surface 3x1 matrix Normal of the surface ([x;y;z])
% --
% Output: - hit Boolean When true, the ray hits the
% surface. When false: ray does
% not hit the surface.
%===
% Debugging features:
% - Throws an error when the interssection point does not lie on
% the plane
%===
% Update log:
% 04/05/2023 Added circular option.

100

D Code Monte Carlo ray tracing model

%===

%% Initialization
hit = false;

%% Does intersection point lie on the plane?
% first check for speed: does the intersection point intersect with the
% plane?

point = surface boundaries.center;
intersection = dot(point - intersection point , normal surface);

% Check if x, y and z coordinates of intersection point are within or on ...
the surface edges

if abs(intersection) >= 0 % Extra debugging check if intersection point is ...
on the plane
switch surface boundaries.shape

case "Rectangle"
% If statement consists of 3 parts: checking if the
% intersection point x, y and z is within the boundaries of the
% surface
% 1. Check x: if intersection point(1,1) >= ...

min(surface boundaries.corners(1,:)) && ...
intersection point(1,1) <= ...
max(surface boundaries.corners(1,:)) % check x

% 2. Check y: if intersection point(2,1) >= ...
min(surface boundaries.corners(2,:)) && ...
intersection point(2,1)<= ...
max(surface boundaries.corners(2,:)) % check y

% 3. Check z if intersection point(3,1) >= ...
min(surface boundaries.corners(3,:)) && ...
intersection point(3,1) <= ...
max(surface boundaries.corners(3,:)) % check z

% For computational speed, these three if statements are
% condensed into 1 if statement.
if intersection point(1,1) >= ...

min(surface boundaries.corners(1,:)) && ...
intersection point(1,1) <= ...
max(surface boundaries.corners(1,:)) && ...
intersection point(2,1) >= ...
min(surface boundaries.corners(2,:)) && ...
intersection point(2,1)<= ...
max(surface boundaries.corners(2,:)) && ...
intersection point(3,1) >= ...
min(surface boundaries.corners(3,:)) && ...
intersection point(3,1) <= max(surface boundaries.corners(3,:))

hit = true;
%plotRays(ray starting point, ray direction,t intersect)

end
case "Circle"

[~, ~, intersection point radius] = ...
cart2sph(intersection point(1), intersection point(2), ...
intersection point(3));

% If statement consists of two parts:
% 1. Check radius: if intersection point radius <= ...

surface boundaries.radius % check radius
% 2. Check height: if intersection point(3,1) == ...

surface boundaries.height % check height
% For computational speed, these three if statements are
% condensed into 1 if statement.

101

D Code Monte Carlo ray tracing model

if intersection point radius <= surface boundaries.radius && ...
intersection point(3,1) == surface boundaries.height
hit = true;
%plotRays(ray starting point, ray direction,t intersect)

end % end check radius
end

else
error("Intersection point does not lie on the plane.")

end

end

D.1.6 Calculate

calculateBRDFatShiftedAzimuth

function brdf out = calculateBRDFatShiftedAzimuth(brdf in, ...
azimuth desired,accuracy detection deg, azimuths dome, elevations dome)

% SHIFTED FROM AZIMUTH 0 DEG

%% Settings
make 3D plots = false;

%% Initialization
% When using this function on its own:
% data = load('C:\Users\leoni\Documents\SET\7 8 Graduation ...

Assignment\Code\Grass12cm 2\GrassVertical12cm 72.00 2 2.mat');
% accuracy detection deg = ...

data.settings ray tracer.ray detection.accuracy detection deg;
% brdf in = data.brdf;
% elevations dome = data.elevation grid dome deg;
% azimuths dome = data.azimuth grid dome deg;
% azimuth desired = 39;
% azimuth = 0;

% 3D figure
if make 3D plots == true

rg = zeros(size(brdf in,1) + 1,size(brdf in,2) + 1);
rg(:,1) = [0 ; elevations dome];
rg(1,:) = [0 , azimuths dome];
plotCoordinateSystem('hemisphere',1)
rg(2:end,2:end) = brdf in(:,:,70)*4;
plotReflectionLobe(rg,azimuths dome ,elevations dome)

end

%% Check if azimuth desired is a valid input
% if isempty(find(azimuths dome == azimuth desired))
% error('invalid input for azimuth desired. Variable should be in ...

data.azimuth grid dome deg.')
% end

if rem(azimuth desired,accuracy detection deg) ~= 0; %0.5 * ...
accuracy detection deg
error("Invalid input for azimuth desired. Variable should be a multiple ...

of accuracy detection deg.")
end

102

D Code Monte Carlo ray tracing model

%% Shift to desired accuracy

to shift = azimuth desired / accuracy detection deg; %(azimuth desired- 0.5 ...

* accuracy detection deg) / accuracy detection deg ;
brdf out = circshift(brdf in,to shift, 2);

% 3D figure
if make 3D plots == true

rg = zeros(size(brdf in,1) + 1,size(brdf in,2) + 1);
rg(:,1) = [0 ; elevations dome];
rg(1,:) = [0 , azimuths dome];
plotCoordinateSystem('hemisphere',1)
rg(2:end,2:end) = brdf out(:,:,70)*4;
plotReflectionLobe(rg,azimuths dome ,elevations dome)

end

end

calculateBRDFgrass2

function returned data = calculateBRDFgrass(settings ray tracer,surfaces)
%===
% Computes the BRDF of grass by Monte Carlo ray tracing of a piece of grass
%===
% Input: - settings ray tracer struct Contains all settings needed
% to run the program. See
% "Settings" below which
% settings are needed.
% --
% Output: - returned data struct Contains results of the
% program as specified in
% settings ray tracer
%===
% Debugging features:
% - There are several checks in the external functions - see
% "Debugging features" in the documentation string of these
% functions.
% - Possibility to plot the ray tracing software, see
% settings ray tracer.visualisation
%===
% Update log:
% - 19/05/2023 Taking structure surfaces as an input instead of
% making this structure in the function. Allows
% for running multiple times with same sample.
% - 05/05/2023 Changed into a function, taking in
% settings ray tracer and giving returned data
% as output.
% - 04/05/2023 Changed square of grass to a circular spot
%===

% Start time measurement
tic;

%% Settings - unpack the settings
% retrieveSettingsRayDetection
[accuracy detection deg, ratio sphere over sample radius, sphere center] = ...

retrieveSettingsRayDetection(settings ray tracer);

103

D Code Monte Carlo ray tracing model

%retrieveSettingsIncidentLight
[sun azimuth deg, sun elevation deg , wavelengths, number of unique rays, ...

number of repeated rays,ratio illuminated over sample radius] = ...
retrieveSettingsIncidentLight(settings ray tracer);

%retrieveSettingsSample
[radius sample, ~, ~,~,grass type,~, blade height, ~,~] = ...

retrieveSettingsSample(settings ray tracer);

%retrieveSettingsVisualisation
[rays visualised, ...

show diffuse reflection,show ray until intersection,wavelengths visualised, ...
show incoming light,radius dome for visualisation] = ...
retrieveSettingsVisualisation(settings ray tracer);

%retrieveSettingsSaveResults
[save detection dome, name to save brdf,save results] = ...

retrieveSettingsSaveResults(settings ray tracer);

%retrieveSettingsReturnedData
[return brdf,return radiance,return RMSE lambertian, ...

return centers detection dome,return albedo,return settings] = ...
retrieveSettingsReturnedData(settings ray tracer);

%% Initialization
% Initialization general
returned data = struct();
rays = struct();

% Initialize radii
radius illuminated = radius sample * ratio illuminated over sample radius; ...

% spot radius on the sample
radius sphere = radius sample * ratio sphere over sample radius; % sample ...

radius (compared to spot)

% Initialization detection dome
azimuth range deg = -180 : accuracy detection deg : 180;
elevation range deg = [90 :-accuracy detection deg : 0]';
azimuth range rad = deg2rad(azimuth range deg);
elevation range rad = deg2rad(elevation range deg);
[azimuth grid dome deg, elevation grid dome deg] = ...

generateGridSky(azimuth range deg,elevation range deg, ...
accuracy detection deg);

% Initialize measuring radiance
radiance = ...

zeros(length(elevation grid dome deg),length(azimuth grid dome deg), ...
length(wavelengths));

% Initialize visualisation
if isempty(rays visualised) == 0

copyobj(surfaces.sample figure.Children, figure); % plot surfaces
plotGridDetectionDome(azimuth grid dome deg,elevation grid dome deg, ...

radius dome for visualisation)
end

%% Generate objects
% Generate rays
[ray starting point, ray direction] = generateRayDirection2(radius sphere, ...

sun azimuth deg, sun elevation deg,max(blade height).*radius sample);

104

D Code Monte Carlo ray tracing model

[ray magnitude] = generateRayMagnitude(wavelengths);

% if show incoming light == true
% plotRays(ray starting point, ray direction,linspace(0,5,100))
% plotRayStartPoint(ray starting point)
% end

for k ray = 1:number of unique rays
[rays] = saveRaySpecifications(rays,ray starting point, ray direction, ...

ray magnitude, strcat("ray", string(k ray)));
if show incoming light == true % Plot all rays - note that the N of ...

linspace determines with which the rays are drawn.
plotRays(ray starting point, ray direction,linspace(0,5,100))
plotPoint(ray starting point, 'green') % plotted on radius sphere

end
if ray direction(3)> 0 % a ray may not be shot at the sky.

error(sprintf("The incident ray %d is aimed at the sky.",k ray))
end

[ray starting point, ray direction,~] = generateParallelRayDirection2(...
radius illuminated,ray direction,radius sphere,sphere center, ...
max(blade height).*radius sample);

end

% Retrieve surfaces
surfaces list = surfaces.surfaces list;
reflectance surface = surfaces.reflectance surface;

% Check Surfaces initially hit
[corners] = computeCornersInitiallyIlluminatedArea(settings ray tracer);
[list initially illuminated surfaces] = ...

checkBladesInInitiallyIlluminatedArea(grass type,corners, surfaces);
list initially illuminated surfaces = [strcat(surfaces list(1),string(1)) ...

list initially illuminated surfaces]; % add the ground surface

%% Main loop: ray tracer
% Intersection
for k ray = 1: number of unique rays

%Debugging code: check how far program is
if rem(k ray,500) == 0

fprintf("%.f unique rays have been computed out of %.f \n", k ray, ...
number of unique rays)

end

for kk ray = 1: number of repeated rays
% retrieve specifics of ray
clear ray starting point ray direction ray magnitude
[ray starting point, ray direction, ray magnitude] = ...

retrieveRaySpecifications(rays, strcat("ray", string(k ray)));
initial direction = true;

flag not detected = true; % initially, the ray is not detected
while logical(flag not detected) % when the ray is detected, we trace the ...

next ray
if ray magnitude < 0.01

break
end

105

D Code Monte Carlo ray tracing model

% compute time at which ray intersects with detection dome and all planes
sphere intersection time = ...

calculateIntersectionTimeWithSphere(radius sphere,sphere center, ...
ray starting point, ray direction,"positive");

plane intersection time = [];

if initial direction == true
surfaces to check list = list initially illuminated surfaces;

else
surfaces to check list = fieldnames(surfaces.individual surfaces); % ...

all surfaces
end

for k plane = 1: length(surfaces to check list)
surface name = string(surfaces to check list(k plane));
[surface boundaries, surface normal] = ...

retrieveSurfaceSpecifications(surfaces.individual surfaces, ...
surface name); % plane that might be hit first.

[plane intersection time] = [plane intersection time ...
calculateIntersectionTimeWithPlane(surface boundaries, ...
ray starting point, ray direction, surface normal)];

end
% sort the planes on first intersections and add the intersection time ...

with the dome
[sorted intersection time, sorted planes index] = ...

sort([sphere intersection time ...
plane intersection time],'MissingPlacement','last');

% ensure interection is not on same plane as the ray departed from
sorted planes index = sorted planes index(sorted intersection time>0.001);
sorted intersection time = ...

sorted intersection time(sorted intersection time>0.001);

% initialize for while loop
k plane = 1; % loop over the planes
while k plane <= length(sorted intersection time)% every sorted plane ...

%order the planes on intersection points, then go over this ...
list (first hit surface first!)

if sorted planes index(k plane) == 1 % if ray hits the detection dome
intersection point = ...

calculateIntersectionPoint(ray starting point, ...
sphere intersection time, ray direction);

if intersection point(3)>0 % if the ray hits the detection dome ...
below zero, it should not be detected. If the 'if statement' ...
is left out, the rays that hit the detection dome below z = 0 ...
are detected at the edge (theta = 0) leading to skewed results.
radiance = detectRay(radiance, ray magnitude, ...

intersection point, radius sphere, azimuth grid dome deg, ...
elevation grid dome deg);

if show ray until intersection == true && ismember(k ray, ...
rays visualised)
plotPoint(intersection point, 'blue')

end
end
flag not detected = false; % stop computing directions for this ray
if show ray until intersection == true && ismember(k ray, ...

rays visualised)
plotRays(ray starting point, ray direction, ...

106

D Code Monte Carlo ray tracing model

linspace(0,sorted intersection time(k plane),2))
end
break

end

% retrieve plane details
surface name = ...

string(surfaces to check list(sorted planes index(k plane)-1));
[surface boundaries, surface normal] = ...

retrieveSurfaceSpecifications(surfaces.individual surfaces, ...
surface name); % plane that might be hit first.

% calculate intersection point with polygon
intersection point = calculateIntersectionPoint(ray starting point, ...

sorted intersection time(k plane), ray direction);
hit = checkRayHitsSurface(surface boundaries, ...

intersection point,surface normal);

if hit == true % if ray hits surface
if show ray until intersection == true && ismember(k ray, ...

rays visualised)
plotPoint(ray starting point,"green")
plotRays(ray starting point, ray direction, ...

linspace(0,sorted intersection time(k plane),2))
end

if show diffuse reflection == true && ismember(k ray, ...
rays visualised)
ray magnitude = ...

calculateNewRayMagnitude(surfaces.individual surfaces.
(surface name).type, ray magnitude, reflectance surface);
ray direction = calculateNewRayDirection(intersection point, ...

ray starting point,surface normal);
count = 1;
while count < 1000 % Debugging code (count)

ray direction check(:,count) = ...
calculateNewRayDirection(intersection point, ...
ray starting point,surface normal);

plotRays(intersection point, ...
ray direction check(:,count), linspace(0,0.002,2))

count = count + 1;
end %end while
ray starting point = intersection point;

else
ray magnitude = ...

calculateNewRayMagnitude(surfaces.individual surfaces.
(surface name).type, ray magnitude, reflectance surface);
ray direction = calculateNewRayDirection(intersection point,
ray starting point,surface normal);
ray starting point = intersection point;

end % end if

if ray magnitude < 0.01
break

end
initial direction = false;
break % we change direction, recompute intersection times

end % end if hit

107

D Code Monte Carlo ray tracing model

k plane = k plane + 1; % go to next plane if we did not hit the ...
first one we encountered

end
end

end % end for ray direction
end

pbaspect([1,1,0.5])

%% Compute BRDF
ray magnitude initial = generateRayMagnitude(wavelengths);
number of rays = number of unique rays * number of repeated rays;
[brdf, albedo] = computeBRDF(radiance, ray magnitude initial, ...

number of rays, azimuth grid dome deg, elevation grid dome deg);

% Finish time measurement
run time = toc;

%% Plot results
% initialize matrix to visualise 3D data
rg = zeros(size(radiance,1) + 1,size(radiance,2) + 1);
rg(:,1) = [0 ; elevation grid dome deg];
rg(1,:) = [0 , azimuth grid dome deg];
rg wavelength = repmat(rg, 1,1,length(wavelengths));

for k wavelength = wavelengths visualised
wavelength = wavelengths(k wavelength);

% 2D figure
figure;
imagesc(brdf(:,:,k wavelength))
colorbar;

% 3D figure
plotCoordinateSystem('hemisphere',1)
rg(2:end,2:end) = brdf(:,:,k wavelength);
rg wavelength(2:end,2:end,k wavelength) = brdf(:,:,k wavelength);

plotReflectionLobe(rg, azimuth grid dome deg, elevation grid dome deg);
end

%% Save resulting BRDF
if save results == true

FileName = strcat(pwd,'\RayTracingResults'); mkdir(FileName)
save(strcat(FileName,'\',name to save brdf,'.mat'), 'brdf', 'radiance', ...

'settings ray tracer' , 'azimuth grid dome deg', ...
'elevation grid dome deg', 'wavelengths', 'surfaces', 'rays', ...
'albedo','run time');

end

%% Save grid detection dome
if save detection dome == true

mark = sprintf("dome grid %.2f accuracy", accuracy detection deg);
FileName = strcat(pwd,'\RayTracingResults'); mkdir(FileName)
save(strcat(FileName,'\',mark,'.mat'), 'azimuth grid dome deg', ...

'elevation grid dome deg');
end

108

D Code Monte Carlo ray tracing model

%% Error calculation
if return RMSE lambertian == true

for k wavelength = 1 : length(wavelengths)
wavelength = wavelengths(k wavelength);
root mean squared error(k wavelength) = ...

computeErrorLambertian(brdf(:,:,k wavelength));
end

end

%% Return values
if return brdf == true

returned data.brdf = brdf;
end

if return radiance == true
returned data.radiance = radiance;

end

if return RMSE lambertian == true
returned data.RMSELambertian = root mean squared error;

end

if return centers detection dome == true
returned data.detection dome azimuths = azimuth grid dome deg;
returned data.detection dome elevations = elevation grid dome deg;

end

if return albedo == true
returned data.albedo = albedo;

end

if return settings == true
returned data.settings ray tracer = settings ray tracer;

end

returned data.run time = run time;

%% Notification when code is finished
% Play sound when finished (see xpsound)
gong(0.5,442,1)
pause(0.2)
gong(0.5,600,3)

calculateIntersectionPoint

function intersection point = calculateIntersectionPoint(ray starting point, ...
t intersect, ray direction)

%===
% Computes the intersection point based on the vector equation of the ray
%===
% Input: - ray starting point 3x1 matrix Starting point of the ray
% [x;y;z]
% - t intersect float Time at which the ray
% intersects

109

D Code Monte Carlo ray tracing model

% - ray direction 3x1 matrix Direction of the ray
% [x;y;z]
% --
% Output: - intersection point 3x1 matrix Intersection point [x;y;z]
%===

% The intersection point p can computed as:
% p(t) = e + t*d
% Where
% e starting point
% t intersection time
% d direction

intersection point = ray starting point + t intersect.*ray direction;

end

calculateIntersectionTimeWithPlane

function t intersect = ...
calculateIntersectionTimeWithPlane(surface boundaries, ...
ray starting point, ray direction, surface normal)

%===
% Calculates the time at which a ray intersects with a plane
% (e.g. the ground, grass blades)
%===
% Input: - plane [type variable] [explanation]
% - ray starting point [type variable] [explanation]
% - ray direction [type variable] [explanation]
% - normal plane [type variable] [explanation]
% --
% Output: - t intersect [type variable] [explanation]
%===
% Update log:
% 08/05/2023 Changed efinition point to always be center - no switch
% case needed depending on geometry of surface.
% 04/05/2023 Added circular option.
%===

%% Define a point on the plane
point = surface boundaries.center; % point on the plane (center)

%% Compute the intersection time
% The plane cointaining the polygon has the implicit equation:
% (p-pl) *n = 0
% where p is any point on the plane
% pl a point on the plane
% n the normal of the plane
% and the multiplication is the dot product
% Consider a ray with direction d and starting point e
% We find point p at time t from e in direction d.
% The intersection time is:
% t = (pl - e) * n / (d*n)
% where the multiplication is the dot product

dot product d n = dot(ray direction,surface normal);
if abs(dot product d n) < 1e-15 % if dot product practically zero, ray ...

110

D Code Monte Carlo ray tracing model

direction perpendicular to normal
t intersect = nan;
fprintf("A ray was parallel to a plane. This plane is not seen by the ray.")

else
t intersect = dot((point - ray starting point), surface normal) ./ ...

dot(ray direction,surface normal);
end

end

calculateIntersectionTimeWithSphere

function t intersect = ...
calculateIntersectionTimeWithSphere(sphere radius,sphere center, ...
ray starting point, ray direction, time sign)

%===
% Calculates the time at which a ray intersects with a sphere
% (e.g. the detection dome)
%===
% Input: - sphere radius float Radius of the sphere
% - sphere center 3x1 matrix Center of the sphere
% - ray starting point 3x1 matrix Starting point of the
% ray [x;y;z]
% - ray direction 3x1 matrix Direction of the ray [x;y;z]
% - time sign string Specifies whether the
% intersection is expected
% forward (positive) or
% backward (negative) in time
% --
% Output: - t intersect float Time at which the intersection
% takes place
%===
% Debugging features:
% - Gives error when
% - discriminant < 0
% - invalid time sign input
%===

%% Initialization
% Renaming variables to read the mathematical equations more easily
R = sphere radius;
d = ray direction;
e = ray starting point;
c = sphere center;

%% Code
% A sphere can be written in vector form like:
% (p-c) * (p-c) - Rˆ2 = 0
% where c is the center of the sphere and p is any point on the sphere
% Consider a ray with direction d and starting point e
% The intersection time can then be computed:
% t = -d * (e-c) +- sqrt((d*(e-c))ˆ2 - (d*d)((e-c)*(e-c)-Rˆ2))/ d*d
% where every product is a dot product

discriminant = dot(d,(e-c)).ˆ2 - dot(dot(d,d), (dot(e-c,e-c) -Rˆ2));

111

D Code Monte Carlo ray tracing model

if discriminant <0
error('Ray never intersects with detection dome!')

elseif discriminant == 0
t intersect nominator = - dot(d,(e-c)) + sqrt(discriminant);
t intersect = t intersect nominator / dot(d,d);

else % two intersection times
t intersect nominator 1 = - dot(d,(e-c)) + sqrt(discriminant);
t intersect nominator 2 =- dot(d,(e-c)) - sqrt(discriminant);

t intersect 1 = t intersect nominator 1 / dot(d,d);
t intersect 2 = t intersect nominator 2 / dot(d,d);

switch time sign
case "positive"

if t intersect 1 >= 0
t intersect = t intersect 1;

elseif t intersect 2 >= 0
t intersect = t intersect 2;

end
case "negative"

if t intersect 1 <= 0
t intersect = t intersect 1;

elseif t intersect 2 <= 0
t intersect = t intersect 2;

end
otherwise

error(sprintf('%s is not a valid input for the variable ...
time sign.', time sign))

end
end

end

calculateNewRayDirection

function ray direction = ...
calculateNewRayDirection(intersection point,ray starting point,surface normal)

%===
% Computes a new direction and magnitude for the ray after it has hit a
% surface
%===
% Input: - intersection point 3x1 matrix Point where ray hits the
% surface ([x;y;z])
% - ray starting point 3x1 matrix Starting point of the ray
% ([x;y;z])
% - surface normal 3x1 matrix Normal of the surface ([x;y;z])
% --
% Output: - ray direction 3x1 matrix Direction of the ray
% ([x;y;z])
%===
% Debugging feautures
% - plot invalid ray directions Boolean If true plots
% invalid ray
% directions
%===
% Update log:
% 23/05/2023 Added function to plot invalid ray directions for debugging
% purposes

112

D Code Monte Carlo ray tracing model

% 22/05/2023 Input variables w.r.t. azimuth and elevation angles
% detection dome deleted. Method through which new direction
% is obtained has changed: now sampling a sphere
% uniformly (in trems of polar angles), only allowing the new
% direction to be in the same half sphere as the normal of
% the surface (which is in the same direction as the light
% is coming from)
%===

%% Debugging settings
plot invalid ray directions = true;

%% Choosing a new direction
% Model the plane as in the Cartesian equation:
% a * x + b * y + c* z = d
% where x, y and z are unit vectors in those respective directions.
% Then, the following relations are true for any point v and the surface
% with surface normal n:
% n * v > d -> v is in the same half space as n
% n * v = d -> v is in the plane
% n * v < d -> v is in the opposite half space
% See: ...

https://www.quora.com/Given-a-point-and-a-plane-how-would-you-determine-which-
side-of-the-plane-the-point-lies
% We can determine d knowing a point on the plane and the surface normal.
% d = n x * P x + n y * P y + n z * P z
% See: https://tutorial.math.lamar.edu/classes/calcIII/EqnsOfPlanes.aspx

d = intersection point(1)* surface normal(1) + ...
intersection point(2)*surface normal(2) + intersection point(3)* ...
surface normal(3);

%% Check from which side of the plane the ray is coming.
% Is the ray coming in the direction of the normal?
% Check by using the relations descirbed above
% Take v = direction of the ray = start point - intersection point
% If n * v < d the surface normal is in the opposite direction of the
% ray and should be turned towards the ray

if dot(surface normal, ray starting point - intersection point) < d
surface normal = -surface normal; % change normal direction

end

% The surface normal is now always in the same direction as the ray is coming
% from. The relations above are used to check if the new direction of the
% ray is viable (i.e. is in the same half-space as surface normal)

check correct side of plane = false;

count while = 0;
while check correct side of plane == false % check if point in correct ...

half-space
if count while > 1000

error("Cannot find a suitable direction.")
end

% Choose a new direction in polar coordinates (azimuth phi, elevation
% th) from the entire sphere of possibilities
sphi = (-0.5*pi + pi*rand(1)); %(-0.5*pi - angle from x axis + ...

113

D Code Monte Carlo ray tracing model

pi*rand(1)); % between 0 and 2pi
stheta = -pi + 2* pi * rand(1); % angle from z axis + pi * ...

rand(1);%acos(rand(1)); % TEst deg2rad(20);

% Rewrite to Cartesian coordinates ([x;y;z])
[direction x, direction y, direction z] = sph2cart(sphi,stheta,100);
ray direction = [direction x;direction y;direction z];

% Reject ray direction if it is not in the half-space of the normal.
% Else, continue
if dot(surface normal, ray direction) > d

check correct side of plane = true;
break

elseif plot invalid ray directions == true
ray = intersection point + linspace(0,0.02,1).*ray direction;
plot3(ray(1,:), ray(2,:),ray(3,:),'r', 'LineWidth',1)
hold on

end
count while = count while + 1;

end
end

calculateNewRayMagnitude

function ray magnitude = calculateNewRayMagnitude(surface type, ...
ray magnitude, reflectance surface)

%===
% Computes a new magnitude for the ray after it has hit a surface
%===
% Input: - surface type string Type of the surface
% - ray magnitude 1 x n matrix Array with magnitudes for each
% wavelength
% - - reflectance surface struct Structure with spectral
% reflectance
% --
% Output: - ray magnitude 1 x n matrix Array with magnitudes for each
% wavelength
%===
% Update log
% 10/05/2023 Simplified to only one equation, moved definition of
% spectral reflectance surface to another function.
% 26/04/2023 Deleted "blade" angle dependence.
%===

%% Determine the new magnitude of the ray

ray magnitude = ray magnitude .* reflectance surface.(surface type);

end

calculateNormal

function [normal surface] = calculateNormal(surface boundaries)

114

D Code Monte Carlo ray tracing model

%===
% Finds the normal of a surface
%===
% Input: - surface boundaries struct Contains at least the shape of the
% surface.
% - If the shape is a "Square",
% contains the corners of the
% surface.
% - If the shape is a "Circle",
% contains the radius, center
% and height.
% --
% Output: - normal plane 1x3 matrix Normal direction of the surface
% [x;y;z]
%===
% Notes: - The plane is considered as follows:
%
% 1 ------2 Corner 1 : x1, y1, z1
% | | Corner 2 : x2, y2, z2
% | | Corner 3 : x3, y3, z3
% | | Corner 4 : x4, y4, z4
% 3-------4
%
%===
% Update log:
% 04/05/2023 Added circular option.
%===

switch surface boundaries.shape
case "Circle"
% vector from center to east of the circle
point east = surface boundaries.center;
point east(1) = point east(1) + surface boundaries.radius;
vector top left right = point east - surface boundaries.center;

% vector from center to south of the circle
point south = surface boundaries.center;
point south(2) = point south(2) + surface boundaries.radius;
vector left top bottom = surface boundaries.center - point south;

case "Rectangle"
% finding the normal of the plane
vector top left right = surface boundaries.corners(:,2) - ...

surface boundaries.corners(:,1);
vector left top bottom = surface boundaries.corners(:,3) - ...

surface boundaries.corners(:,1);

end

normal surface = cross(vector left top bottom,vector top left right);

% normalization
normal surface = normal surface / sqrt(normal surface(1)ˆ2 + ...

normal surface(2)ˆ2 + normal surface(3)ˆ2);
end

computeBRDF

115

D Code Monte Carlo ray tracing model

function [brdf, albedo] = ...
computeBRDF(radiance,initial ray magnitude,number of rays,...
azimuth grid dome deg, elevation grid dome deg)

%===
% Computes the BRDF based on the matrix radiance.
%===
% Input: - radiance a x b matrix magnitude of the rays
% detected in a specific
% detection dome pixel
% - initial ray magnitude float magnitude of the rays
% when entering the
% system
% - number of rays integer total number of rays
% entering the system
% - azimuth grid dome deg 1 x b matrix Azimuth angles of the
% detection dome grid.
% Degrees.
% - elevation grid dome deg a x 1 matrix Elevation angles of
% the detection dome
% grid. Degrees.
% --
% Output: - brdf a x b matrix tabulated BRDF
%===
% Debugging features:
% - Explicitely checks if energy is not increasing
% - plot track shape brdf boolean to check the shape of
% radiance, radiance and brdf
%===

%% Debugging settings
plot track shape brdf = false;

%% Initialization
radians = pi/180;

%% Determine incoming irradiance
incoming irradiance = initial ray magnitude .* number of rays;

%% Determine brdf
for k wavelength = 1: size(radiance, 3) % for all wavelengths

% Plot radiance
% radiance = radiant flux per solid angle per projected source area
% radiance is the flux per pixel over the area in the detection dome
if plot track shape brdf == true

figure;
rg = zeros(size(radiance(:,:,k wavelength),1) + ...

1,size(radiance(:,:,k wavelength),2) + 1);
rg(:,1) = [0 ; elevation grid dome deg];
rg(1,:) = [0 , azimuth grid dome deg];
rg(2:end,2:end) = radiance(:,:,k wavelength);
plotReflectionLobe(rg, azimuth grid dome deg, elevation grid dome deg);
title('Radiance')
pbaspect([1 1 0.5])

end

% Normalisation factor for radiance

116

D Code Monte Carlo ray tracing model

if numel(elevation grid dome deg)==1
normalization = 1 ./ abs(trapz((azimuth grid dome deg.*radians),
abs(radiance(:,:,k wavelength).*cosd(90-elevation grid dome deg).*
sind(90-elevation grid dome deg)))) ;

else
normalization = 1 ./ abs(trapz((azimuth grid dome deg.*radians), ...

abs(trapz((elevation grid dome deg).*radians, ...
abs(radiance(:,:,k wavelength).*cosd(90-elevation grid dome deg).*

sind(90-elevation grid dome deg)))))) ;
end

% What percentage of energy entering is leaving?
% Albedo = radiosity / irradiance
% Radiosity = radiant flux leaving a surface per unit area
% Irradiance = radiant flux received by a surface per unit area
albedo(k wavelength) = sum(radiance(:,:,k wavelength), 'all') ./ ...

incoming irradiance(k wavelength);

% Compute the brdf (taking into account absorption)
brdf(:,:,k wavelength) = normalization .* radiance(:,:,k wavelength) .* ...

albedo(k wavelength);

% Plot BRDF
if plot track shape brdf == true

plotCoordinateSystem('hemisphere',1)
rg = zeros(size(radiance,1) + 1,size(radiance,2) + 1);
rg(:,1) = [0 ; elevation grid dome deg];
rg(1,:) = [0 , azimuth grid dome deg];
rg(2:end,2:end) = brdf(:,:,k wavelength);
plotReflectionLobe(rg, azimuth grid dome deg, elevation grid dome deg);
title('BRDF')
pbaspect([1 1 0.5])

end

% Check conservation of energy
if numel(elevation grid dome deg)==1

check conservation = abs(trapz((azimuth grid dome deg.*radians),
abs(brdf(:,:,k wavelength).* cosd(90-elevation grid dome deg).*
sind(90-elevation grid dome deg)))) ;

else
check conservation = abs(trapz((azimuth grid dome deg.*radians), ...

abs(trapz((elevation grid dome deg).*radians, ...
abs(brdf(:,:,k wavelength).*cosd(90-elevation grid dome deg).*

sind(90-elevation grid dome deg)))))) ;
end
conservation accuracy = 1E-10;
if check conservation > 1 + conservation accuracy

error("The computed BRDF does not obey energy conservation.")
end

end

end

computeCornersInitiallyIlluminatedArea

117

D Code Monte Carlo ray tracing model

function [corners] = computeCornersInitiallyIlluminatedArea(settings ray tracer)

%% Settings
plot illuminated area = true; % in figure that is already made
plot sketch illuminated area = false;

%% Initialization
% Angle definitions
phi 1 = deg2rad(settings ray tracer.incident light.sun azimuth deg);
phi 2 = pi/2 - phi 1;

% Distances
r sample = settings ray tracer.sample.radius sample;
r sample adjusted = r sample * 10; % if corners 3 and 4 have a straight line ...

between them, we there is a small part of the sampl which is not in the ...
illuminated area. To avoid this, set corners 3 and 4 very far away.

r illuminated = r sample .* ...
settings ray tracer.incident light.ratio illuminated over sample radius;

% Blade width
blade width = r sample .* settings ray tracer.sample.blade width;

% Define distance a:
a = r illuminated + blade width/2;

% Origin
origin = [0; 0];

%% Determine support points

support point 1 = [origin(1) + a * cos(phi 2); origin(2) - a * sin(phi 2)];
support point 2 = [origin(1) - a * cos(phi 1); origin(2) - a * sin(phi 1)];

d origin support point 1 = norm(support point 1);
d support point 1 to edge sample = sqrt(r sample adjustedˆ2 - ...

d origin support point 1.ˆ2);

%% Find corners

corner 4 = [support point 1(1) - d support point 1 to edge sample * ...
cos(phi 1) ; support point 1(2) - d support point 1 to edge sample * ...
sin(phi 1)];

corner 3 = [support point 1(1) + d support point 1 to edge sample * ...
cos(phi 1) ; support point 1(2) + d support point 1 to edge sample * ...
sin(phi 1)];

support point 3 = [origin(1) - a * cos(phi 2); origin(2) + a * sin(phi 2)];

corner 2 = [support point 3(1) + d support point 1 to edge sample * ...
cos(phi 1) ; support point 3(2) + d support point 1 to edge sample * ...
sin(phi 1)];

corner 1 = [support point 3(1) - d support point 1 to edge sample * ...
cos(phi 1) ; support point 3(2) - d support point 1 to edge sample * ...
sin(phi 1)];

%% Return corners matrix
corners = [[corner 1 , corner 2 , corner 3 , corner 4]; [0,0,0,0]];

%% Plot
if or(plot sketch illuminated area==true, plot illuminated area == true)

118

D Code Monte Carlo ray tracing model

% Initialize
surface boundaries.shape = "Rectangle";
surface boundaries.corners = corners;

if plot sketch illuminated area == true
% support points in blue
% corners in green
% center of sample in black

% Plot origin
figure;
scatter(origin(1),origin(2), 'k')

% Plot support points
hold on
scatter(support point 1(1),support point 1(2), 'b')
hold on
scatter(support point 2(1),support point 2(2), 'b')
hold on
scatter(support point 3(1),support point 3(2), 'b')

% Plot corners
hold on
scatter(corner 4(1),corner 4(2), 'g')
hold on
scatter(corner 1(1),corner 1(2), 'g')
hold on
scatter(corner 3(1),corner 3(2), 'g')
hold on
scatter(corner 2(1),corner 2(2), 'g')
hold on

% Plot initial illuminated area
plotSurface(surface boundaries)
hold on

% Plot support circles
plotCircle(0,0,r illuminated,'y')
hold on
plotCircle(0,0,a, 'c')
hold on
plotCircle(0,0,r sample,'g')
hold on
plotCircle(0,0,r sample adjusted,'c')
hold on

pbaspect([1,1,1])
elseif plot illuminated area == true

plotSurface(surface boundaries)
end % end if plot

end % end if or()

%% Internal functions
function h = plotCircle(x,y,r,color)

th = 0:pi/50:2*pi;
xunit = r * cos(th) + x;
yunit = r * sin(th) + y;

119

D Code Monte Carlo ray tracing model

h = plot(xunit, yunit,color);
end % end internal function

end % end function

computeErrorLambertian

function root mean squared error = computeErrorLambertian(brdf)
%===
% Computes the mean square error of brdf compared to an ideal Lambertian
% (with the same grid size)
%===
% Input: - azimuth grid dome deg 1xb matrix Azimuth angles of
% centers of detection
% dome pixels
% - elevation grid dome deg ax1 matrix Elevation angles of
% centers of detection
% dome pixels
% - brdf axb matrix BRDF with elevations
% on rows and azimuths
% on columns
% --
% Output: - mean square error float mean square error of brdf
% compared to ideal lambertian
%===
% Debugging features:
% - Error can be printed
%===

%% Settings
make Lambertian plot = false;
make individual error plot = false;

%% Error calculation
% Squared error for every pixel
analytical lambertian= 1/pi;
squared error individual pixel = abs(analytical lambertian - brdf).ˆ2;

% error total shape
mean squared error = sum(squared error individual pixel, 'all')/numel(brdf);
root mean squared error = sqrt(mean squared error);

% Debugging code: Print error
% sprintf("Error with my BRDF: %.10f ", root mean squared error)

%% Plot error
if make individual error plot == true
figure;
imagesc(squared error individual pixel)
title("Error with my brdf")
colorbar;
end

end

computeRotationMatrix

120

D Code Monte Carlo ray tracing model

function rotation matrix = computeRotationMatrix (rotation axis, rotation angle)
%===
% Returns the rotation matrix given the axis of rotation and rotation angle
%===
% Input: - rotation axis 3x1 matrix axis to rotate around
% - rotation angle float angle of rotation
% --
% Output: - rotation matrix 3x3 matrix rotation matrix
%===

%% Initialize
% Variables are renamed such that rotation matrix can be checked more
% easily

% Separate rotation axis
ux = rotation axis(1);
uy = rotation axis(2);
uz = rotation axis(3);

% Rotation angle
th = rotation angle;

%% Compute the rotation matrix
% Source: wikipedia
rotation matrix = [[cos(th)+uxˆ2 * (1-cos(th)) , ux*uy*(1-cos(th))- ...

uz*sin(th) , ux*uz*(1-cos(th))+uy*sin(th)];
[uy*ux*(1-cos(th)) + uz* sin(th) , cos(th)+ uyˆ2 * ...

(1-cos(th)) , uy*uz*(1-cos(th))-ux*sin(th)];
[uz*ux*(1-cos(th))-uy*sin(th) , ...

uz*uy*(1-cos(th))+ux*sin(th) , cos(th) + uzˆ2 * ...
(1-cos(th))]];

end

D.1.7 Analyze

analyzeBRDFgrass

%% Analyze BRDF grass
% This script should be run per section.

%% Set settings
settings ray tracer = struct();
surfaces = struct();

% retrieveSettingsRayDetection
settings ray tracer = setSettingsRayDetection(settings ray tracer);

%retrieveSettingsIncidentLight
settings ray tracer = setSettingsIncidentLight(settings ray tracer);

%retrieveSettingsSample
settings ray tracer = setSettingsSample(settings ray tracer);

121

D Code Monte Carlo ray tracing model

%retrieveSettingsVisualisation
settings ray tracer = setSettingsVisualisation(settings ray tracer);

%retrieveSettingsSaveResults
settings ray tracer = setSettingsSaveResults(settings ray tracer);

%retrieveSettingsReturnedData
settings ray tracer= setSettingsReturnedData(settings ray tracer);

%make sample
surfaces = generateSample2(settings ray tracer);

%run
returned data = calculateBRDFgrass2(settings ray tracer, surfaces);

%% Run for several theta
elevation list = 70;%[0 30 70 90]; %0:10:90;
illumination spot list = 1;

surfaces = generateSample(settings ray tracer);
for k elevation = 1 : length(elevation list)

elevation = elevation list(k elevation);

for k illumination = 1 : length(illumination spot list)
spot size = illumination spot list(k illumination);

fprintf("Elevation %.3f \t Spot size %.1f \n", elevation, spot size)

% to save results
save name = ...

sprintf("OneBladedomesmall %.1f percentage illuminated %d 15May",
elevation, spot size * 100);

%save name = sprintf("BCgrass %.1f percentage illuminated %d 7", ...
elevation, spot size * 100);

settings ray tracer = setSettingsSaveResults(settings ray tracer,
"name to save brdf",save name);

% to change the elevation
settings ray tracer = setSettingsIncidentLight(settings ray tracer, ...

"ratio illuminated over sample radius", ...
spot size,"sun elevation deg", elevation);

% compute BRDF
tic;
returned data = calculateBRDFgrass(settings ray tracer, surfaces);
timed run(k elevation,k illumination) = toc;

end
end

%% Run for several number of blades
blades list = [0 50 100 250 350 500];%[0 30 70 90]; %0:10:90;

for k blades = 1 : length(blades list) %6% [3, length(elevation list) - 2]
num of blades = blades list(k blades);

fprintf("Blades %.1f \n", num of blades)

122

D Code Monte Carlo ray tracing model

% to change the num of blades
settings ray tracer = ...

setSettingsSample(settings ray tracer,"number of blades", ...
num of blades);

surfaces = struct();
tic;
surfaces = generateSample2(settings ray tracer);
time generate sample(k blades) = toc;

% compute BRDF
tic;
returned data = calculateBRDFgrass2(settings ray tracer, surfaces);
timed run(k blades) = toc;

end

%% Run for several elevation angles and blade lengths
elevation list = [0:10:90];
grass length list = [0.16 0.32];

for k grass length = 1 : length(grass length list)
grass length = grass length list(k grass length);
grass blade geometry = strcat("VerticalSameHeight");

% to change the num of blades
settings ray tracer = ...

setSettingsSample(settings ray tracer,"blade geometry", ...
grass blade geometry,"blade height",grass length list);

% make sample
surfaces = struct();
surfaces = generateSample2(settings ray tracer);

for k elevation = 1 : length(elevation list)
elevation = elevation list(k elevation);
settings ray tracer = setSettingsIncidentLight(settings ray tracer,
"sun elevation deg", elevation);

fprintf("Grass length %.1f Elevation %.1f \n", grass length, ...
elevation)

% to save results
save name = sprintf("VerticalGrass %.1f Elevation %1.f 25May", ...

grass length, elevation);
settings ray tracer = ...

setSettingsSaveResults(settings ray tracer, ...
"name to save brdf",save name);

% compute BRDF
tic;
calculateBRDFgrass2(settings ray tracer, surfaces);
timed run(k elevation,k grass length) = toc;

end
end

fprintf("Mixed heights \n")
% to change the num of blades
settings ray tracer = ...

setSettingsSample(settings ray tracer,"blade geometry", ...

123

D Code Monte Carlo ray tracing model

"VerticalVaryingHeight","blade height",grass length list);

% make sample
surfaces = struct();
surfaces = generateSample2(settings ray tracer);
for k elevation = 1 : length(elevation list)

elevation = elevation list(k elevation);
settings ray tracer = ...

setSettingsIncidentLight(settings ray tracer,"sun elevation deg", ...
elevation);

save name = sprintf("MixedHeightsGrass Elevation %1.f 25May", elevation);
settings ray tracer = ...

setSettingsSaveResults(settings ray tracer,"name to save brdf", ...
save name);

fprintf("Mixed Heights Elevation %.1f \n", elevation)

% compute BRDF
tic;
calculateBRDFgrass2(settings ray tracer, surfaces);
timed run(k elevation,3) = toc;

end

%% Run for several tilted tops and elevation angles
tilted tops list = [10 45];

for k tilted top = 1 : length(tilted tops list) %6% [3, ...
length(elevation list) - 2]
tilted top = tilted tops list(k tilted top);

% to change the num of blades
settings ray tracer = ...

setSettingsSample(settings ray tracer,"blade geometry", ...
"VerticalAndTiltedTop", "blade tilt",[-tilted top, tilted top]);

% make sample
surfaces = struct();
surfaces = generateSample2(settings ray tracer);

for k elevation = 1 : length(elevation list)
elevation = elevation list(k elevation);
settings ray tracer = ...

setSettingsIncidentLight(settings ray tracer,"sun elevation deg", ...
elevation);

% to save results
fprintf("Tilted top %.1f Elevation %.1f \n", tilted top, ...

elevation)

% to save results
save name = sprintf("MixedHeightsGrass Elevation %1.f 25May", ...

elevation);
settings ray tracer = ...

setSettingsSaveResults(settings ray tracer,"name to save brdf", ...
save name);

% compute BRDF

124

D Code Monte Carlo ray tracing model

tic;
calculateBRDFgrass2(settings ray tracer, surfaces);
timed run(k elevation, k tilted top+3) = toc;

end
end

%% a illuminated change to see change in BRDF - keep r illuminated constant ...
and increase r sample

elevation list = [0:10:90];
a illuminated list = [1 0.8 0.5 0.2 0.1];
r illuminated = 2.5; % cm
width blade set = 0.5; % cm
height blade set = 4; % cm
num blades set = 45; % #
width blade set ratio = width blade set/ r illuminated;
height blade set ratio = height blade set/ r illuminated;

for k a illuminated = 1: length(a illuminated list)
a illuminated = a illuminated list(k a illuminated);
r sample = r illuminated / a illuminated;
width blade = width blade set ratio * a illuminated;
height blade = height blade set ratio * a illuminated;
num blades = round(r sample.ˆ2/ r illuminated.ˆ2 *num blades set);

settings ray tracer = setSettingsIncidentLight(settings ray tracer, ...
"ratio illuminated over sample radius", a illuminated);

% to change the num of blades
settings ray tracer = ...

setSettingsSample(settings ray tracer,"blade width", width blade, ...
"blade height",height blade,"number of blades",num blades, ...
"radius sample", r sample);

% make sample
surfaces = struct();
surfaces = generateSample2(settings ray tracer);

for k elevation = 1 : length(elevation list)
elevation = elevation list(k elevation);
settings ray tracer = ...

setSettingsIncidentLight(settings ray tracer, ...
"sun elevation deg", elevation);

% to save results
fprintf("a illumination %.1f Elevation %.1f \n", ...

a illuminated, elevation)

% to save results
save name = ...

sprintf("Convergence aillumination %.1f El %1.f 26May", ...
a illuminated, elevation);

settings ray tracer = ...
setSettingsSaveResults(settings ray tracer, ...
"name to save brdf", save name);

% compute BRDF
calculateBRDFgrass2(settings ray tracer, surfaces);

end

125

D Code Monte Carlo ray tracing model

end

analyzeMakeLibrary

%% Set settings
settings ray tracer = struct();
surfaces = struct();

% retrieveSettingsRayDetection
settings ray tracer = setSettingsRayDetection(settings ray tracer);

%retrieveSettingsIncidentLight
settings ray tracer = setSettingsIncidentLight(settings ray tracer);

%retrieveSettingsSample
settings ray tracer = setSettingsSample(settings ray tracer);

%retrieveSettingsVisualisation
settings ray tracer = setSettingsVisualisation(settings ray tracer);

%retrieveSettingsSaveResults
settings ray tracer = setSettingsSaveResults(settings ray tracer);

%retrieveSettingsReturnedData
settings ray tracer= setSettingsReturnedData(settings ray tracer);

%% Make library BRDF
elevation list = [1e-6 6:6:72]; %0:10:90;
number of runs = 10;

for i = 1:10
surfaces = generateSample2(settings ray tracer);
for k elevation = 1 : 2% length(elevation list)

elevation = elevation list(k elevation);

fprintf("Run: %d, Elevation %.3f \t \n", i, elevation)

% to save results
save name = ...

sprintf("VerticalTiltedTop40 4cm4cm theta %.2f %d",elevation,i);
settings ray tracer = setSettingsSaveResults(settings ray tracer, ...

"name to save brdf",save name);

% to change the elevation
settings ray tracer = setSettingsIncidentLight(settings ray tracer, ...

"sun elevation deg", elevation);

% compute BRDF
returned data = calculateBRDFgrass2(settings ray tracer, surfaces);

end
end

analyzeCalibrationGrassReflector

126

D Code Monte Carlo ray tracing model

%% analyzeCalibrationGrassReflector
%% Set settings
settings ray tracer = struct();
surfaces = struct();

% retrieveSettingsRayDetection
settings ray tracer = setSettingsRayDetection(settings ray tracer);

%retrieveSettingsIncidentLight
settings ray tracer = setSettingsIncidentLight(settings ray tracer);

%retrieveSettingsSample
settings ray tracer = setSettingsSample(settings ray tracer);

%retrieveSettingsVisualisation
settings ray tracer = setSettingsVisualisation(settings ray tracer);

%retrieveSettingsSaveResults
settings ray tracer = setSettingsSaveResults(settings ray tracer);

%retrieveSettingsReturnedData
settings ray tracer= setSettingsReturnedData(settings ray tracer);

%% Settings for various runs
elevation list = [1e-6 10:10:90];
a illuminated list = [1 0.75 0.5 0.25];
r illuminated = 2.5; % cm
width blade set = 0.5; % cm
height blade set = 4; % cm
num blades set = 45; % #
number of runs = 1;%10;

%% Initialization
width blade set ratio = width blade set/ r illuminated;
height blade set ratio = height blade set/ r illuminated;

%% a illuminated change to see change in BRDF
for k n runs = 1 : number of runs
for k a illuminated = 1%1: length(a illuminated list)

a illuminated = a illuminated list(k a illuminated);
r sample = r illuminated / a illuminated;
width blade = width blade set ratio * a illuminated;
height blade = height blade set ratio * a illuminated;
num blades = round(r sample.ˆ2/ r illuminated.ˆ2 *num blades set);

settings ray tracer = setSettingsIncidentLight(settings ray tracer, ...
"ratio illuminated over sample radius",a illuminated);

% to change the num of blades
settings ray tracer = ...

setSettingsSample(settings ray tracer,"blade width", width blade, ...
"blade height",height blade, ...
"number of blades",num blades,"radius sample", r sample);

% make sample
surfaces = struct();
surfaces = generateSample2(settings ray tracer);

127

D Code Monte Carlo ray tracing model

for k elevation = 1%1 : length(elevation list)
elevation = elevation list(k elevation);
settings ray tracer = ...

setSettingsIncidentLight(settings ray tracer, ...
"sun elevation deg", elevation);

% to save results
fprintf("a illumination %.1f Elevation %.1f \n", ...

a illuminated, elevation)

% to save results
save name = ...

sprintf("Convergence aillumination %.2f El %.2f 6Jun %d", ...
a illuminated, elevation,k n runs);

settings ray tracer = ...
setSettingsSaveResults(settings ray tracer, ...
"name to save brdf", save name);

% compute BRDF
calculateBRDFgrass2(settings ray tracer, surfaces);

end

end
end

analyzeLambertianReflection

%% Settings
accuracy detection deg = 3;
azimuth range deg = [-180 : accuracy detection deg : 180];
elevation range deg = [90 :-accuracy detection deg : 0]';
number of rays list = [1e3 1e4 1e5];% 7.5e4 1e5 2.5e5 5e5 7.5e5 1e6 2.5e6 ...

5e6 7.5e6 1e7 2.5e7 5e7 7.5e7 1e8];
a dome inverse list = [1e-8 5e-7 1e-7 5e-5]; % for center, set to 0
number of repeating runs = 2;
save data = true;
investigate direction = "vertical"; % "vertical" or "horizontal"

%% Initialization
sphere radius = 1;
azimuth range rad = deg2rad(azimuth range deg);
elevation range rad = deg2rad(elevation range deg);
[azimuth grid dome deg, elevation grid dome deg] = generateGridSky ...

(azimuth range deg,elevation range deg, accuracy detection deg);
ray starting point =[3;2;1]; % does not matter for Lambertian

%% save detection dome
mark= sprintf("dome grid %.2f accuracy",accuracy detection deg);
FileName = strcat('C:\Users\leoni\Documents\SET\7 8 Graduation ...

Assignment\Code\RayTracingResultsLambertianAdome'); mkdir(FileName);
save(strcat(FileName,'\',mark,'.mat'), 'azimuth grid dome deg', ...

'elevation grid dome deg');

%% Main loop
for k repeat = 1 : number of repeating runs

128

D Code Monte Carlo ray tracing model

for k radius aim from center = 1: length(a dome inverse list)
switch investigate direction

case "horizontal"
intersection point ground = ...

[a dome inverse list(k radius aim from center);0;0];
case "vertical"

intersection point ground = ...
[0;0;a dome inverse list(k radius aim from center)];

otherwise
error(sprintf("Not a valid value for %s", investigate direction))

end

for k number of rays = 1 : length(number of rays list)
tic; % measure time

% For computational speed, update number of the upcoming ray that
% we are running.
% E.g. number of rays list = [100,1000];
% First run : from ray 1 to ray 100,
% Second run: rays 101 to 1000 are added instead of
% running from 1 to 1000 again.

% Initialize starting ray
if k number of rays ==1

radiance = zeros(length(elevation grid dome deg), ...
length(azimuth grid dome deg));

number of rays start = 1;
else

number of rays start = number of rays list(k number of rays-1)+1;
end

% Initialize max number of rays
max number of rays = number of rays list (k number of rays);

for k ray number = number of rays start : max number of rays %for ...
every ray

%Debugging code: check how far program is
if rem(k ray number,1e4) == 0

fprintf("%.f unique rays have been computed out of %.f \n", ...
k ray number, max number of rays)

end

% New direction from ground
new direction = ...

calculateNewRayDirection(intersection point ground, ...
ray starting point,[0;0;1]);

% Intersection with detection dome
sphere intersection time = ...

calculateIntersectionTimeWithSphere(sphere radius,[0;0;0], ...
intersection point ground, new direction,"positive");

intersection point = ...
calculateIntersectionPoint(intersection point ground, ...
sphere intersection time, new direction);

% Detect
if intersection point(3) >= 0

radiance = detectRay(radiance, 1, intersection point, ...

129

D Code Monte Carlo ray tracing model

sphere radius, azimuth grid dome deg, ...
elevation grid dome deg);

end
end

% MakeBRDF
[brdf, albedo(k number of rays, k radius aim from center,:)] = ...

computeBRDF(radiance,1,max number of rays, azimuth grid dome deg, ...
elevation grid dome deg);

root mean squared error(k number of rays, k radius aim from center) ...
= computeErrorLambertian(brdf);

% Save data
if save data == true

run time = toc; % measure time
mark = ...

sprintf("Lambertian rays %.f beta %.2f %d",max number of rays, ...
k radius aim from center , k repeat);

FileName = strcat('C:\Users\leoni\Documents\SET\7 8 Graduation ...
Assignment\Code\RayTracingResultsLambertian'); mkdir(FileName)

save(strcat(FileName,'\',mark,'.mat'), 'radiance', 'brdf', ...
'albedo', 'root mean squared error','run time');

end
end

end
end

convergenceAnalysisLambertianReflector

% comparison error file
clear all
%% Settings
number of rays list = [1e4 5e4 1e5 5e5 1e6 5e6];% % 5e6 1e7 5e7 1e8 5e8 1e9];%
accuracy detection deg = 3;
number of repeating runs = 10;
make comparison plots n = false;
make comparison plots a dome = true;
make comparison plots h= true;

% Only when make comparison plots a dome/ make comparison plots h == true
a dome inverse list = [1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 0.02 0.04 0.066667 ...

0.1 0.25 0.5 0.6 0.7 0.8 0.9 1];
number of rays specific = 1e6;

%% Initialization
% Retrieve detection dome grid
mark = sprintf("dome grid %.2f accuracy",accuracy detection deg);
FileName = strcat('C:\Users\leoni\Documents\SET\7 8 Graduation ...

Assignment\Code\RayTracingResultsLambertianAdome'); mkdir(FileName)
loaded data grid = load(strcat(FileName,'\',mark,'.mat'));
azimuth grid dome deg = loaded data grid.azimuth grid dome deg;
elevation grid dome deg = loaded data grid.elevation grid dome deg;

% Set accuracy list, consisting of angles. Note that not all angles are
% allowed as both the azimuths and the elevation angles should be divided
% into this angle.

130

D Code Monte Carlo ray tracing model

accuracy list = accuracy detection deg .* [1:90]';
accuracy list = accuracy list(mod(90,accuracy list)==0);
accuracy list = accuracy list(mod(360,accuracy list)==0);

% Colours
colour choice accuracy = parula(length(accuracy list));
colour choice number rays = parula(length(number of rays list));

%% Main code: compute mean square error
if make comparison plots n == true
for k rays = 1: length(number of rays list)

number of rays = number of rays list(k rays);

% load data
for k number of runs = 1: number of repeating runs

mark = sprintf("Lambertian rays %.f %d",number of rays, ...
k number of runs);

FileName = strcat('C:\Users\leoni\Documents\SET\7 8 Graduation ...
Assignment\Code\RayTracingResultsLambertian'); mkdir(FileName)

loaded data = load(strcat(FileName,'\',mark,'.mat'));
radiance per run(:,:,k number of runs) = loaded data.radiance;
run time per run(:,k number of runs) = loaded data.run time;

end

radiance = mean(radiance per run,3);
mean run time(k rays) = mean(run time per run,2);

for k accuracy = 1: length(accuracy list) %accuracy detection dome
accuracy = accuracy list(k accuracy);

% compute error
if accuracy == accuracy detection deg

[brdf, albedo(k accuracy,:)]= computeBRDF(radiance, 1, ...
number of rays, azimuth grid dome deg, elevation grid dome deg);

root mean squared error(k accuracy, k rays) = ...
computeErrorLambertian(brdf);

else
clear brdf reduced azimuth reduced elevation reduced ...

radiance reduced
[radiance reduced, azimuth reduced, elevation reduced] = ...

reduceResolutionData(radiance, azimuth grid dome deg, ...
elevation grid dome deg,accuracy detection deg, accuracy);

sprintf("Number of rays: %.f \t \t Grid accuracy: ...
%.2f",number of rays, accuracy)

brdf reduced = computeBRDF(radiance reduced, 1, number of rays, ...
azimuth reduced, elevation reduced);

root mean squared error(k accuracy, k rays) = ...
computeErrorLambertian(brdf reduced);

end
end

end

%% Plot

% y axis RMSE, x axis accuracy grid
figure;
for k rays = 1: length(number of rays list)

number of rays = number of rays list(k rays);
s1 = scatter(accuracy list, root mean squared error(:,k rays),'filled');
s1.MarkerFaceColor = colour choice number rays(k rays,:);

131

D Code Monte Carlo ray tracing model

%repmat(colour choice(k accuracy,:),length(number of rays list),1);
set(gca,'yscale','log')
set(gca,'xscale','log')
hold on

end
lgd = legend(append("n = ", string(number of rays list)));
xlabel("\beta")
ylabel("RMSE")
title("Accuracy test of the ray tracer")
grid on
ylim([1e-3 1])
set(gca,'FontSize',20)
lgd.Location = "northeastoutside";
box on

% trial
figure
t = tiledlayout(1,2,'TileSpacing','compact');
bgAx = axes(t,'XTick',[],'YTick',[],'Box','off');
bgAx.Layout.TileSpan = [1 2];
ax1 = axes(t);
for k rays = 1: length(number of rays list)

number of rays = number of rays list(k rays);
s1 = scatter(ax1, accuracy list, ...

root mean squared error(:,k rays),'filled');
s1.MarkerFaceColor = colour choice number rays(k rays,:); ...

%repmat(colour choice(k accuracy,:),length(number of rays list),1);
set(gca,'yscale','log')
set(gca,'xscale','linear')
hold on

end
xline(ax1,10,':');
ax1.Box = 'off';
set(gca,'FontSize',20)
xlim(ax1,[0 10])
ylim(ax1,[1e-3 1])
xticks(ax1, [0:1:10])
grid on

ax2 = axes(t);
ax2.Layout.Tile = 2;
for k rays = 1: length(number of rays list)

number of rays = number of rays list(k rays);
s1 = scatter(ax2, accuracy list, ...

root mean squared error(:,k rays),'filled');
s1.MarkerFaceColor = colour choice number rays(k rays,:); ...

%repmat(colour choice(k accuracy,:),length(number of rays list),1);
set(gca,'yscale','log')
set(gca,'xscale','linear')
hold on

end
xline(ax2,10,':');
ax2.YAxis.Visible = 'off';
ax2.Box = 'off';
set(gca,'FontSize',20)
xlim(ax2,[10 45])
ylim(ax2,[1e-3 1])
xticks(ax2, [10:5:45])
grid on

132

D Code Monte Carlo ray tracing model

xlabel(t,"\beta")
ylabel(t,"RMSE")
title(t,"Accuracy test of the ray tracer")

% y axis RMSE, x axis number of rays, extra variable accuracy
figure;
for k accuracy = 1:length(accuracy list)

accuracy = accuracy list(k accuracy);
s2 = scatter(number of rays list, ...

root mean squared error(k accuracy,:),'filled');
s2.MarkerFaceColor = colour choice accuracy(k accuracy,:); ...

%repmat(colour choice(k accuracy,:),length(number of rays list),1);
set(gca,'xscale','log')
set(gca,'yscale','log')
hold on

end
if length(accuracy list)>1

legend(string(accuracy list))
end
xlabel("n")
ylabel("RMSE")
grid on
set(gca,'FontSize',20)
box on
title("Influence number of rays on RMSE (\beta = 0.5)")

% y-axis RMSE x-axis number of rays for beta = 0.5
figure;
for k rays = 1: length(number of rays list)

s3 = scatter(number of rays list(k rays), root mean squared error(1, ...
k rays), 'filled');

s3.MarkerFaceColor = colour choice number rays(k rays,:); ...
%repmat(colour choice(k accuracy,:),length(number of rays list),1);

set(gca,'xscale','log')
set(gca,'yscale','log')
hold on

end
xlabel("n")
ylabel("RMSE")
ylim(gca,[1e-2 1])
title("Influence number of rays on RMSE (\beta = 0.5)")
grid on
set(gca,'FontSize',20)
box on

% y-axis RMSE x-axis a dome for n = 1e6 and beta = 3 graden
figure;
for k rays = 1: length(number of rays list)

s3 = scatter(number of rays list(k rays), root mean squared error(1, ...
k rays), 'filled');

s3.MarkerFaceColor = colour choice number rays(k rays,:); ...
%repmat(colour choice(k accuracy,:),length(number of rays list),1);

set(gca,'xscale','log')
set(gca,'yscale','log')
hold on

end
xlabel("n")
ylabel("RMSE")

133

D Code Monte Carlo ray tracing model

title("Accuracy test of the ray tracer")
grid on
set(ax2,'FontSize',20)
box on

% y-axis run time, x-axis number of rays
figure;
for k rays = 1: length(number of rays list)

s3 = scatter(number of rays list(k rays), mean run time(k rays), 'filled');
s3.MarkerFaceColor = colour choice number rays(k rays,:); ...

%repmat(colour choice(k accuracy,:),length(number of rays list),1);
set(gca,'xscale','log')
set(gca,'yscale','log')
hold on

end
xlabel("n")
ylabel("t (s)")
title("Run time per number of rays")
grid on
set(gca,'FontSize',20)
box on

end

if make comparison plots a dome == true
for k a dome = 1: length(a dome inverse list)
a dome = 1./a dome inverse list(k a dome);

% load data
for k number of runs = 1: number of repeating runs

if a dome > 1.9
mark = sprintf("Lambertian rays %.f a dome %.f %d", ...

number of rays specific,a dome, k number of runs);
else

mark = sprintf("Lambertian rays %.f a dome %.2f %d", ...
number of rays specific,a dome, k number of runs);

end

FileName = strcat('C:\Users\leoni\Documents\SET\7 8 Graduation ...
Assignment\Code\RayTracingResultsLambertianAdome'); mkdir(FileName)

loaded data = load(strcat(FileName,'\',mark,'.mat'));
radiance per run(:,:,k number of runs) = loaded data.radiance;
run time per run(:,k number of runs) = loaded data.run time;

end
radiance = mean(radiance per run,3);
mean run time(k a dome) = mean(run time per run,2);

% compute error

[brdf, albedo(k a dome,:)]= computeBRDF(radiance, 1, ...
number of rays specific, azimuth grid dome deg, elevation grid dome deg);

root mean squared error(k a dome) = computeErrorLambertian(brdf);

end

134

D Code Monte Carlo ray tracing model

% y-axis RMSE x-axis a dome for n = 1e6 and beta = 3 graden
figure;
a dome list = 1./a dome inverse list;
for k a dome = 1: length(a dome inverse list)

s3 = scatter(a dome list(k a dome), root mean squared error(k a dome), ...
'filled');

s3.MarkerFaceColor = colour choice number rays(5,:); ...
%repmat(colour choice(k accuracy,:),length(number of rays list),1);

set(gca,'xscale','log')
set(gca,'yscale','log')
hold on

end
xlabel("a {dome}")
ylabel("RMSE")
title("Relation RMSE and a {dome} for n = 1eˆ6 and \beta = 3")
grid on
set(gca,'FontSize',20)
yticks([1e-3 1e-2 1e-1 1 1e1 1e2])
ylim([1e-3 1e2])
box on

% y-axis run time, x-axis a dome
figure;
for k a dome = 1: length(a dome inverse list)

s3 = scatter(a dome list(k a dome), mean run time(k a dome), 'filled');
s3.MarkerFaceColor = colour choice number rays(5,:); ...

%repmat(colour choice(k accuracy,:),length(number of rays list),1);
set(gca,'xscale','log')
set(gca,'yscale','log')
hold on

end
xlabel("n")
ylabel("t (s)")
title("Run time per number of rays")
grid on
set(gca,'FontSize',20)
box on
end

if make comparison plots h == true

for k a dome = 1: length(a dome inverse list)
a dome = 1./a dome inverse list(k a dome);

% load data
for k number of runs = 1: number of repeating runs

mark = sprintf("Lambertian rays %.f a dome vert %.2f %d", ...
number of rays specific,a dome, k number of runs);

FileName = strcat('C:\Users\leoni\Documents\SET\
7 8 Graduation Assignment\Code\LibraryLambertian\
RayTracingResultsLambertianH'); mkdir(FileName)
loaded data = load(strcat(FileName,'\',mark,'.mat'));
radiance per run(:,:,k number of runs) = loaded data.radiance;
run time per run(:,k number of runs) = loaded data.run time;

end
radiance = mean(radiance per run,3);
mean run time(k a dome) = mean(run time per run,2);

135

D Code Monte Carlo ray tracing model

% compute error

[brdf, albedo(k a dome,:)]= computeBRDF(radiance, 1, ...
number of rays specific, azimuth grid dome deg, ...
elevation grid dome deg);

root mean squared error(k a dome) = computeErrorLambertian(brdf);

end

% y-axis RMSE x-axis a dome for n = 1e6 and beta = 3 graden
figure;
a dome list = 1./a dome inverse list;
for k a dome = 1: length(a dome inverse list)

s3 = scatter(a dome list(k a dome), ...
root mean squared error(k a dome), 'filled');

s3.MarkerFaceColor = colour choice number rays(5,:); ...
%repmat(colour choice(k accuracy,:),length(number of rays list),1);

set(gca,'xscale','log')
set(gca,'yscale','log')
hold on

end
xlabel("a h")
ylabel("RMSE")
title("Relation RMSE and a h for n = 1eˆ6 and \beta = 3")
ylim([1e-3 1])
yticks([1e-3 1e-2 1e-1 1])
xlim([1 1e8])
grid on
set(gca,'FontSize',20)
box on

% y-axis run time, x-axis a dome
figure;
for k a dome = 1: length(a dome inverse list)

s3 = scatter(a dome list(k a dome), mean run time(k a dome), 'filled');
s3.MarkerFaceColor = colour choice number rays(5,:); ...

%repmat(colour choice(k accuracy,:),length(number of rays list),1);
set(gca,'xscale','log')
set(gca,'yscale','log')
hold on

end
xlabel("n")
ylabel("t (s)")
title("Run time per number of rays")
grid on
set(gca,'FontSize',20)
box on

end

D.1.8 Plot

plotCoordinateSystem

136

D Code Monte Carlo ray tracing model

function plotCoordinateSystem(sphere type,r)
%===
% Plots the polar and cartesian coordinate system for a sphere or a
% hemisphere.
%===
% Input: - sphere type string Specifies the type of coordinate
% system that has to be plotted.
% - r float Radius of the coordinate system
% plotted
%===
% Debugging features
% - The Boolean use coordinate system rg can be used to label the
% phi's and theta's according to the coordinate system of rg.
%===
% Update log:
% - 08/05/2023 Added viewpoint
% - 06/04/2023 Added radius as input parameter
% - 31/03/2023 Created out of plotReflectionLobe
% --
% Update possibilities:
% - Changing coordinate system (azimuth, zenith etc.)
%===

%% Settings
%r = 5; % radius of the coordinate system plotted
resolution dome = 30; % resolution of dome
display size dome = false;

% Colour azimuth related
colour azimuth = [0.0000 0.9800 0.0000];
colour zenith = [0.2000 0.2000 0.8000];

% axes
use coordinate system rg = false;

%% Initialization
number of points axes = 2*r+1;

% Debugging Code
if use coordinate system rg == true % coordinate system of rg

azimuth display = ["-90", "0", "", "90"];
else

% our coordinate system
azimuth display = [0 90 180 -90]; % anti-clockwise, starting from x>0

end

%% Initialize based on sphere type
switch sphere type

case 'sphere'
r st = -r;
number of points axes z = number of points axes;
full sphere = true;

case 'hemisphere'
r st = 0; % radius depending on sphere type
number of points axes z = r+1;
full sphere = false;

otherwise

137

D Code Monte Carlo ray tracing model

error(sprintf ('%s is not a valid sphere type. Choose "sphere" or ...
"hemisphere".'), sphere type)

end

%% Plot and label axes (x,y,z)
figure();

%plotting axes
plot origin line z = ...

plot3(zeros(number of points axes z,1),zeros(number of points axes z,1), ...
[r st:r],'Color',"#A9A9A9",'LineWidth',2);

hold on
plot origin line x = plot3([-r:r],zeros(number of points axes,1), ...

zeros(number of points axes,1),'Color', "#A9A9A9",'LineWidth',2);
hold on
plot origin line x = plot3(zeros(number of points axes,1),[-r:r], ...

zeros(number of points axes,1),'Color', "#A9A9A9",'LineWidth',2);
hold on

%limits axes
xlim([-r,r])
ylim([-r,r])
zlim([r st,r])

%label axes
% text(r/2,-0.2,0,'x','HorizontalAlignment','left','FontSize',12,'Color','k');
% text(-0.2,r/2,0,'y','HorizontalAlignment','left','FontSize',12,'Color','k');
% text(0,-0.1,r/2,'z','HorizontalAlignment','left','FontSize',12,'Color','k');

% Setting ticks
xticks([-r,0,r])
yticks([-r,0,r])
if full sphere == false
zticks([0,r])
else
zticks([-r,0,r])
end

% Setting tick labels
if display size dome == true

xticklabels({sprintf('x = %.f', r) , 'x = 0', sprintf('x = %.f', -r)});
yticklabels({sprintf('y = %.f', r) , 'y = 0', sprintf('y = %.f', -r)});
if full sphere == false

zticklabels({'z = 0',sprintf('z = %.f', r) });
else

zticklabels({sprintf('z = %.f', r) , 'z = 0', sprintf('z = %.f', -r)});
end

else
xticklabels({'','y = 0',''});
yticklabels({'','x = 0',''});
if full sphere == false

zticklabels({'z = 0',''});
else

zticklabels({'', 'z = 0',''});
end

end

138

D Code Monte Carlo ray tracing model

%% Plot angles (theta, phi)
% Displaying the angles in the plot (anti-clockwise, starting from x>0!)
if r <= 1

add space = 0.1;
else

add space = r*0.1;
end

% Display azimuth
text(r + 1.5*add space, 0, 0, strcat('\phi', sprintf('= ...

%.f', azimuth display(1))),'HorizontalAlignment','left','FontSize',12, ...
'Color',colour azimuth);

text(0, r+add space*3, 0, strcat('\phi', sprintf('= %.f', ...
azimuth display(2))),'HorizontalAlignment','left','FontSize',12, ...
'Color',colour azimuth);

text(-r - 3* add space, -add space, 0.5* add space, strcat('\phi', ...
sprintf('= %.f', ...
azimuth display(3))),'HorizontalAlignment','left','FontSize',12, ...
'Color',colour azimuth);

text(add space, -r+add space*3, 0, strcat('\phi', sprintf('= %.f', ...
azimuth display(4))),'HorizontalAlignment','left','FontSize',12, ...
'Color',colour azimuth);

%Display elevation angle
text(0,0,r+1.5*add space,'\theta = ...

90','HorizontalAlignment','left','FontSize',12,'Color',colour zenith);
text(r+1.5*add space,0,0+add space,'\theta = ...

0','HorizontalAlignment','left','FontSize',12,'Color',colour zenith);

%% Plot dome and circles
% generate half a dome (half a sphere)
[x to plot,y to plot,z to plot] = sphere(resolution dome);
if full sphere == false

x to plot = x to plot(round(resolution dome/2)+1:end,:);
y to plot = y to plot(round(resolution dome/2)+1:end,:);
z to plot = z to plot(round(resolution dome/2)+1:end,:);

end

% plot dome
surf(r*x to plot,r*y to plot,r*z to plot,'FaceColor',[0.3010 0.7450 ...

0.9330],'FaceAlpha',0.2, 'EdgeAlpha',0);
hold on

% indicate theta
th = linspace(0,90,resolution dome);
y = zeros(5,1);
x = r*cosd(th);
z = r*sind(th);
x = repmat([x 0 x(1)],5,1);
z = repmat([z 0 z(1)],5,1);
surf(x, zeros(size(x)), z ,'FaceAlpha',0.8, 'EdgeAlpha',0.5, 'EdgeColor', ...

colour zenith,'LineWidth',3)

% indicate phi
phi = linspace(0,360,resolution dome);
z = zeros(5,1);
x = r*cosd(phi);

139

D Code Monte Carlo ray tracing model

y = r*sind(phi);
x = repmat([x 0 x(1)],5,1);
y = repmat([y 0 y(1)],5,1);
surf(x, y, zeros(size(x)),'FaceAlpha',0.8, 'EdgeAlpha',0.5, 'EdgeColor', ...

colour azimuth,'LineWidth',3)

%% Other settings used
box off
if full sphere == false

pbaspect([1 1 0.5])
else

pbaspect([1 1 1])
end

set(gca,'fontSize',12)
ax = gca;
ax.Visible = "off";
view([-30 -10])

end

plotGridDetectionDome

function ...
plotGridDetectionDome(azimuth grid dome deg,elevation grid dome deg, ...
radius, accuracy detection dome)

% Note: number of arguments in (nargin == 4): highlight a surface area on ...
the sphere

%% Generate all longitudes and latitudes
if nargin == 4 % highlight a patch: find the elevation and azimuths of the ...

quadrangle
elevations = [elevation grid dome deg - (accuracy detection dome) / 2, ...

elevation grid dome deg + (accuracy detection dome) / 2];
azimuths = [azimuth grid dome deg - (accuracy detection dome) / 2, ...

azimuth grid dome deg + (accuracy detection dome) / 2];

elevation around = linspace(...
deg2rad(elevations(1)),deg2rad(elevations(2)) ,50);

azimuth around = linspace(deg2rad(azimuths(1)) ...
,deg2rad(azimuths(2)) ,100);

else
% generate the lines of the pixels over the entire dome
elevations = [elevation grid dome deg(2:end) + ...

(elevation grid dome deg(1:end-1) - elevation grid dome deg(2:end)) / ...
2 ; 0];

azimuths = [-180, azimuth grid dome deg(2:end) + ...
(azimuth grid dome deg(1:end-1) - azimuth grid dome deg(2:end)) / 2];

140

D Code Monte Carlo ray tracing model

azimuth around = linspace(0, 2 * pi,100);
elevation around = linspace(0,pi, 50);

end

%% plot elevation line(s)
for k elevations = 1:length(elevations)

elevation = deg2rad(elevations(k elevations));
[x,y,z] = sph2cart(azimuth around, repmat(elevation, 1, 100), ...

repmat(radius, 1, 100));

if nargin == 4
p = plot3(x,y,z,"Color","#00BFFF", "LineWidth", 3); % highlight

else
p = plot3(x,y,z,"Color", "#00BFFF"); % display over the whole dome

end
p.Color(4) = 0.5; % set transparency

end

%% Plot azimuth line(s)
for k azimuths= 1:round(length(azimuths)/2) +1

azimuth = deg2rad(azimuths(k azimuths));
[x,y,z] = sph2cart(repmat(azimuth, 1, 50), elevation around, ...

repmat(radius, 1, 50));

if nargin == 4
p = plot3(x,y,z,"Color","#00BFFF", "LineWidth", 3); % highlight

else
p = plot3(x,y,z,"Color","#00BFFF"); % display over the whole dome

end
p.Color(4) = 0.5; % set transparency

end

%% Plot centers of every pixel
[xc, yc, zc] = sph2cart(deg2rad(azimuth grid dome deg), ...

deg2rad(elevation grid dome deg), radius);
scatter3(xc,yc,zc,3,'filled',"MarkerFaceColor","#00BFFF","MarkerFaceAlpha",0.8);
end

plotNormal

function plotNormal(normal plane, surface boundaries)
%===
% Plots the normal of a plane
%===
% Input: - normal plane 3x1 matrix Normal of the plane ([x;y;z])
% - surface boundaries struct Contains at least the shape of the
% surface.
% - If the shape is a "Square",
% contains the corners of the
% surface.
% - If the shape is a "Circle",
% contains the radius, center
% and height.
% --
% Output: plot of the normal
%===
% Update log:

141

D Code Monte Carlo ray tracing model

% 04/05/2023 Added circular option.
%===

% Find starting point of the normal
switch surface boundaries.shape

case "Circle"
starting point = surface boundaries.center;

case "Rectangle"
% find middle of the plane
starting point = [mean(surface boundaries.corners(1,:)); ...

mean(surface boundaries.corners(2,:)); ...
mean(surface boundaries.corners(3,:))];

end

% Make a vector using the normal as direction
t = linspace(0,0.5,1.5);
normal to plot = starting point + t.* normal plane ;

% Plot the normal
plot3(normal to plot(1,:), normal to plot(2,:),normal to plot(3,:))

end

plotPoint

function plotPoint(ray starting point, color)
scatter3(ray starting point(1), ...

ray starting point(2),ray starting point(3), 15,color,'filled');

end

plotRays

function plotRays(ray starting point, ray direction,t plot)

t = t plot;
ray = ray starting point + t.*ray direction;
plot3(ray(1,:), ray(2,:),ray(3,:),'k', 'LineWidth',1)
hold on
end

plotReflectionLobe

function [reflectance to plot x,reflectance to plot y,reflectance to plot z] ...
= plotReflectionLobe(rg, azimuth angle, elevation angle)

%===
% Produces a plot of the reflection lobe and the specularly reflected line.
%---
% Input:- rg matrix Values of glossy reflection
% - azimuth angle matrix azimuth angles
% - elevation angle matrix elevation angles
%---

142

D Code Monte Carlo ray tracing model

% Output: - figure displaying the reflection lobe
%===
% Update information
% 24/04/2023 Added extra datapoint to form a full lobe
% 06/04/2023 Deleted multiplication of rg(2:end,2:end) by
% cosd(elevation angle)
% 31/03/2023 Function simplified by taking out plotting coordinate
% system and taking out plotting one specularly reflected beam
% 20/03/2023 Function made out of scraps of plot tryout
%===
% Possible Future Updates
% - inputs azimuth angle and elevation angle not needed bescause in rg
%
%===

[reflectance to plot x,reflectance to plot y,reflectance to plot z] = ...
sph2cart(deg2rad(azimuth angle),deg2rad(elevation angle),rg(2:end,2:end));

reflectance to plot x = [reflectance to plot x, reflectance to plot x(:,1)];
reflectance to plot y = [reflectance to plot y, reflectance to plot y(:,1)];
reflectance to plot z = [reflectance to plot z, reflectance to plot z(:,1)];
surf reflectance = surf(reflectance to plot x ...

,reflectance to plot y,reflectance to plot z, 'EdgeAlpha',0);

end

plotSurface

function plotSurface(surface boundaries)
%===
% Plots a surface
%===
% Input: - surface boundaries struct Contains at least the shape of the
% surface.
% - If the shape is a "Square",
% contains the corners of the
% surface.
% - If the shape is a "Circle",
% contains the radius, center
% and height.
% --
% Output: - plot of a surface
%===
% Notes: - The square surface is considered as follows:
%
% 1 ------2 Corner 1 : x1, y1, z1
% | | Corner 2 : x2, y2, z2
% | | Corner 3 : x3, y3, z3
% | | Corner 4 : x4, y4, z4
% 4-------3
%
%===
% Update log:
% 04/05/2023 Added circular option.
%===

switch surface boundaries.shape
case "Circle"

azimuth = linspace(0,2*pi,100);

143

D Code Monte Carlo ray tracing model

x = surface boundaries.center(1) + surface boundaries.radius * ...
cos(azimuth);

y = surface boundaries.center(2) + surface boundaries.radius * ...
sin(azimuth);

z = repmat(surface boundaries.center(3) + ...
surface boundaries.height,1,100);

plot3([x], [y], [z])

case "Rectangle"
plot3([surface boundaries.corners(1,:) ...

surface boundaries.corners(1,1)], ...
[surface boundaries.corners(2,:) ...
surface boundaries.corners(2,1)], ...
[surface boundaries.corners(3,:) surface boundaries.corners(3,1)])

end
end

D.1.9 Other

addToLibrary

% add to library
clear data library data

% library location = "C:\Users\leoni\Documents\SET\7 8 Graduation ...
Assignment\AnnesCode\";

% library name = "GrassTilt40";

%% Settings for BRDF grass library
% Retrieve files
folder to add = "C:\Users\leoni\Documents\SET\7 8 Graduation ...

Assignment\Code\Library\TiltedTop40 Bottom4cm Top8cm\";
name individual files = ...

"VerticalTiltedTop40 Bottom4cm Top8cm Elevation %.2f %d";

% Where to save mean BRDFs
library location = "C:\Users\leoni\Documents\SET\7 8 Graduation ...

Assignment\Code\Library\";
library name = "TiltedTop40 Bottom4cm Top8cm";

% Settings file names to loop over
elevation angles = [0:6:72];
number of runs = 10;

%% Settings for convergence grass library
% Retrieve files
folder to add = "C:\Users\leoni\Documents\SET\7 8 Graduation ...

Assignment\Code\LibraryConvergenceAnalysisNew\";
name individual files = "Convergence aillumination 1.00 El %.2f %d";

% Where to save mean BRDFs
library location = "C:\Users\leoni\Documents\SET\7 8 Graduation ...

Assignment\Code\LibraryConvergenceAnalysisNew\";
library name = "Convergence aillumination 1.00.mat";

% Settings file names to loop over
elevation angles = [0:10:90];

144

D Code Monte Carlo ray tracing model

number of runs = 10;

%% Generate mean BRDF and albedo
for k angle = 1: length(elevation angles) % for every angle

angle = elevation angles(k angle);
angle name = sprintf("Angle%d", angle);

for k run = 1 : number of runs % for every run
run name = sprintf("Run%d", k run);

% retrieve data
data = load(strcat(folder to add, sprintf(name individual files, ...

angle, k run)));

% temporarily save data
brdf(:,:,:,k run) = data.brdf;
albedo(k run,:) = data.albedo;

end

% compute mean albedo and BRDF
data library.(angle name).mean brdf = mean(brdf, 4);
data library.(angle name).mean albedo= mean(albedo, 1);

% also save azimuths and elevations detection dome
if k angle == length(elevation angles)

data library.azimuths detection dome = data.azimuth grid dome deg;
data library.elevations detection dome = data.elevation grid dome deg;

end

end

%% Save mean BRDFs and albedo
save(strcat(library location,library name), 'data library')

detectRay

function radiance = detectRay(radiance, ...
ray magnitude , intersection point, radius sphere, ...
azimuth grid dome deg, elevation grid dome deg) % angles related

%===
% Detects the ray on the detection dome
%===
% Input: - radiance matrix Contains the detected
% reflectance.
% Rows: elevation angle
% Columns: azimuth angle
% Sheets: wavelengths
% - intersection point 3x1 matrix Intersection point of
% the ray with the
% detection dome [x;y;z]
% - ray magnitude 1xn matrix Magnitude ray for n
% wavelengths
% - radius sphere float Radius of the detection
% dome
% - azimuth grid dome deg matrix Range of all azimuth

145

D Code Monte Carlo ray tracing model

% angles of dome (degrees)
% - elevation grid dome deg matrix Range of all elevation
% angles of dome (degrees)
% --
% Output: - radiance matrix Contains the detected
% reflectance, including
% the magnitude of the
% ray that intersects
% with the dome
%===
% Internal functions used:
% - checkRadius Checks if intersection point is on the
% detection dome
%---
% External functions used:
% - findIndexQueryPoint Finds index of a query point in range.
% - plotGridDetectionDome Highlights the pixel that has been hit
%===
% Debugging features:
% - The function checkRadius checks if intersection point is on the
% dectection dome. If not, an error is shown.
% - The function plotGridDetectionDome can be used to check if the
% intersection point is counted towards the correct pixel.
%===
% Update log
% 11/05/2023 Added pixel highlight option.
% 14/04/2023 Adapted the grid of the detection dome. Pulled this definition
% outside of this funtion. Redefined the way the index of the ...

detection
% matrix is determined.
%===

%% Intersection point ray-detection dome in spherical coordinates
% Find the spherical coordinates of the intersection point
[azimuth sky,elevation sky,sphere radius check] = ...

cart2sph(intersection point(1),intersection point(2),intersection point(3));
% check if radius is as expected
checkRadius (radius sphere, sphere radius check);

%% Find the azimuth and elevation indexes in the detect ray matrix
azimuth sky = rad2deg(azimuth sky);
elevation sky = rad2deg(elevation sky);

% Find the right index based on the azimuth and elevation.
[azimuth i, elevation i] = findIndexQueryPoint ...

(azimuth grid dome deg,elevation grid dome deg, azimuth sky, elevation sky);

% Debugging code: highlight the pixel that is hit
%plotGridDetectionDome(azimuth grid dome deg(azimuth i), ...

elevation grid dome deg(elevation i), radius sphere, ...
azimuth grid dome deg(2)-azimuth grid dome deg(1))

%% Add the magnitude of the deteced ray to the radiance matrix
to add = reshape(ray magnitude,[1,1, length(ray magnitude)]);
radiance(elevation i, azimuth i,:) = radiance(elevation i, azimuth i,:) + ...

to add;

%% Internal functions
function checkRadius (sphere radius, sphere radius check)

146

D Code Monte Carlo ray tracing model

% sphere radius = actual radius as entered
% sphere radius check = radius as computed from cart2sph
allowed radius error = 0.005;
if abs(sphere radius check) > abs(sphere radius + allowed radius error)

error("The radius of the dome is incorrect.")
end

end

end

findIndexQueryPoint

function [azimuth index, elevation index] = findIndexQueryPoint ...
(azimuth range,elevation range, azimuth query, elevation query)

%===
% Finds the index of the value closest to azimuth query and elevation query
% in azimuth range and elevation range.
%===
% Input: - azimuth range 1 x n matrix
% - elevation range n x 1 matrix
% - azimuth query float
% - elevation query float
% --
% Output: - azimuth index integer [explanation]
% - elevation index integer [explanation]
%===

azimuth index = find(abs(azimuth query - azimuth range) == ...
min(abs(azimuth query - azimuth range)),1);

elevation index = find(abs(elevation query - elevation range) == ...
min(abs(elevation query - elevation range)),1);

% Because of this definition, a query point P on the boundary of the grid,
% exactly between two centers C given by azimuth index and elevation index,
% will be assigned to the left C.
% Exception: if azimuth query = 180 or -180, then the point P is assigned
% to the last and first C, respectively

end

gong

function gong(vol,frq,dur)
% gong: sounds gong
% by John Gooden - The Netherlands
% 2007
%
% call gong
% call gong(vol)
% call gong(vol,frq)
% call gong(vol,frq,dur)
%
% input arguments (optional, if 0 then default taken)
% vol = volume (default = 1)

147

D Code Monte Carlo ray tracing model

% frq = base frequency (default = 440 Hz)
% dur = duration (default = 1 s)
fb = 440;
td = 1;
vl = 1;
if nargin>=1

if vol>0 vl = vol; end
end
if nargin>=2

if frq>0 fb = frq; end
end
if nargin>=3

if dur>0 td = dur; end
end

t =[0:8192*td]'/8192;
env = exp(-5*t/td);
f = fb;
vol = 0.3*vl;
tpft = 2*pi*f*t;
sl = sin(tpft)+0.1*sin(2*tpft)+0.3*sin(3*tpft);
sl = vol*sl;
sr = [sl(100:end);sl(1:99)];
vl = cos(20*t);
vr = 1-vl;
y(:,1) = vl.*env.*sl;
y(:,2) = vr.*env.*sr;
sound(y)

reduceResolutionData

function [data reduced, column axis reduced, row axis reduced] = ...
reduceResolutionData(data, column axis,row axis,accuracy, accuracy desired)

%===
% Reduces the resolution of the data with a certain accuracy to obtain
% data reduced, which has a reduced resolution, with a accuracy desired.
%===
% Input: - data a x b matrix Data to be reduced
% - column axis b array Columns axis of data
% - row axis a array Rows axis of data
% - accuracy float Current accuracy of
% data
% - accuracy desired float Desired accuracy of
% data
% --
% Output: - data reduced matrix Data with a reduced
% resolution
% - column axis reduced b array Columns axis of reduced
% data
% - row axis reduced a array Rows axis of reduced
% data
%===
% Notes: - The data matrix should be such that the steps in the rows and
% the column are the same. Example: (accuracy = 5)
% data
% X | 5 10 15 20 <- column axis
% -------------------------------------
% 2.5 | 1 2 3 4

148

D Code Monte Carlo ray tracing model

% 7.5 | 1 2 3 4
% 12.5 | 5 6 7 8
% 17.5 | 5 6 7 8
% ˆrow axis
%===
% Debugging features:
% - Desired accuracy should be smaller than current accuracy.
% - Desired accuracy should fit an integer times in current
% accuracy.
%===

%% Debugging checks
% Check if the desired accuracy is possible
if accuracy desired < accuracy

error("The desired accuracy has to be larger than the current ...
accuracy.")

end

if rem(accuracy desired, accuracy) > 0
error("The desired accuracy has to be an integer times larger than ...

the current accuracy.")
end

%% Initialization
accuracy factor = accuracy desired ./ accuracy;

if rem(360, accuracy desired) ~= 0
error("The desired accuracy has to be able to generate a uniform ...

grid, also at the edges.")
elseif rem(90, accuracy desired) ~= 0

error("The desired accuracy has to be able to generate a uniform ...
grid, also at the edges.")

end

% New matrix columns
column start = column axis(1) - accuracy/2;
column axis reduced(1) = column start + accuracy desired/2;
k column = 1;
while column axis reduced(k column) + accuracy desired < 180

k column = k column + 1;
column axis reduced(k column) = column axis reduced(k column-1) + ...

accuracy desired;
end

% New matrix rows
row start = row axis(1) + accuracy/2;
row axis reduced(1) = row start - accuracy desired/2;
k row = 1;
while row axis reduced(k row,1) - accuracy desired > 0

k row = k row + 1;
row axis reduced(k row,1) = row axis reduced(k row-1,1) - ...

accuracy desired;
end

if 90 - row axis reduced(1) ~= row axis reduced(end) - 0
error("The desired accuracy has to be able to generate a uniform ...

grid, also at the edges.")
elseif -180 - column axis reduced(1) ~= column axis reduced(end) - 180

error("The desired accuracy has to be able to generate a uniform ...

149

D Code Monte Carlo ray tracing model

grid, also at the edges.")
end

%% Construct the reduced data
% k col red index columns of reduced data
% k row red index rows of reduced data
% k col index columns of data
% k row index rows of data

for k col red = 1 : length(column axis reduced) % loop over the new ...
matrix columns
if k col red == 1

k col = 1;
end
for k row red = 1 : length(row axis reduced) % loop over the new ...

matrix rows
if k row red == 1

k row = 1;
end
data reduced(k row red, k col red) = sum(data(k row : k row + ...

accuracy factor - 1, k col : k col + accuracy factor - 1),'all');
k row = k row + accuracy factor; % next row

end
k col = k col + accuracy factor; % next column

end

end

D.2 Analyze Library

plotFromLibrary

% Retieve desired data
settings plotter.folder = "C:\Users\leoni\Documents\SET\7 8 Graduation ...

Assignment\Code\Library\";
settings plotter.name to run = "MeanVaryingHeight4cm12cm.mat"; ...

%"Convergence aillumination 0.25.mat"; ...
%"VerticalVaryingHeight4cm8cm %.2f %d";%"Convergence aillumination %.1f El %d 28May %d";

%When compare plot Comparison
settings plotter.for comparison = ...

["Convergence aillumination 1.00.mat","Convergence aillumination 0.75.mat", ...
"Convergence aillumination 0.50.mat","Convergence aillumination 0.25.mat"];

% Set data characteristics
settings plotter.angles to run = [0:6:72];%[0:10:90];
settings plotter.a ill list = 0.5;
settings plotter.wavelengths = [300:10:1100];

% Saving plot
settings plotter.name to save = "Test.jpg";

%% plots BRDF
plotFromLibraryBRDFperElevationAngle(settings plotter)

150

D Code Monte Carlo ray tracing model

%% plots Albedo
plotFromLibrarySpectralAlbedoPerElevationAngle(settings plotter)

%% comparison albedo between samples
plotFromLibraryAlbedoComparisonSamples(settings plotter)

%% plot reflectance 2D polar plot
plotFromLibrary2DPolarPlot(settings plotter)

plotFromLibrary2DPolarPlot

function plotFromLibrary2DPolarPlot(settings plotter)
%% Settings
add experimental data Jelle = false;
add experimental data Jelle separately = true;

%% Initialization
folder = settings plotter.folder; %= 'C:\Users\leoni\Documents\SET\7 8 ...

Graduation Assignment\Code\RayTracingResults28May\';
name to run = settings plotter.name to run; %= ...

'Convergence aillumination 0.2 El '; %'BCgrass ';%'BCsmall elevation ';
angles to run = settings plotter.angles to run;
wavelengths = settings plotter.wavelengths;
name to save = settings plotter.name to save;

% retrieve data simulations
data = load(strcat(folder,name to run));
elevations detection dome = data.data library.elevations detection dome;
azimuths detection dome = data.data library.azimuths detection dome;

% retrieve data Jelle
if or(add experimental data Jelle == true, ...

add experimental data Jelle separately == true)
if length(angles to run) > 3

error("Max 3 angles allowed!")
end

for k angle = 1:3
figdata 550nm jelle = openfig("grass 550nm alldata.fig",'invisible'); % ...

angles 30 50 70
theta jelle(k angle) = ...

rad2deg(figdata 550nm jelle.Children.Children(k angle+1).
Children(1).ThetaData(1));
data jelle th(:,k angle) = ...

figdata 550nm jelle.Children.Children(k angle+1).Children(2).ThetaData';
data jelle r(k angle,:) = ...

figdata 550nm jelle.Children.Children(k angle+1).Children(2).RData;
experimental angles = [30,50,70];
end

end

desired wavelength = 550; %nm
figure;
if add experimental data Jelle separately == true

t = tiledlayout(2,3);
else

151

D Code Monte Carlo ray tracing model

t = tiledlayout(1,3);
end

for k angle = 1: length(angles to run)
nexttile;
angle name = angles to run (k angle);
brdf = data.data library.(strcat("Angle", ...

string(angle name))).mean brdf(:,:, find(desired wavelength == ...
wavelengths));

brdf at phi0 = mean(data.data library.(strcat("Angle", ...
string(angle name))).mean brdf(:,[30, 31], find(desired wavelength == ...
wavelengths)),2);

brdf at phi180 = mean(data.data library.(strcat("Angle", ...
string(angle name))).mean brdf(:,[1, 60], find(desired wavelength == ...
wavelengths)),2);

polarscatter(deg2rad(elevations detection dome),brdf at phi0,'filled', ...
'b ');

hold on
polarscatter(pi - ...

deg2rad(elevations detection dome),brdf at phi180,'filled', 'b ')
title(strcat("\theta {source} = ", string(angle name)," "))

hold on
polarplot(repmat(deg2rad(angle name),10), ...

linspace(0,1,10),'LineWidth',3, 'Color', 'y')

% setting axes
ax = gca;
ax.RLim = [0 0.05];
ax.RTick= [0:0.01:0.05];
ax.RTickLabel = [0:0.01:0.05];
ax.ThetaLim = [0 180];
ax.ThetaTick = [0:15:180];
ax.ThetaTickLabel = strcat(string([0:15:90 75:-15:0]), ' ');
ax.RAxis.Label.String = "BRDF";
set(gca,'FontSize',20)

% adding label with angle of incidence
text(deg2rad(angle name),0.07,"$ \theta {source}$" ,...
'HorizontalAlignment','center',...
'VerticalAlignment','bottom', 'Interpreter', 'latex', 'Color', 'y', ...

'FontSize',20)

if add experimental data Jelle == true
hold on
polarscatter(data jelle th(:,k angle) ,data jelle r(k angle,:)','x','r')

hold on
polarplot(repmat(deg2rad(theta jelle(k angle)),10), ...

linspace(0,1,10),'LineWidth',3, 'Color', 'r')

end

end
if add experimental data Jelle separately == true
for k angle = 1: length(angles to run)

nexttile;
angle name = angles to run (k angle);

152

D Code Monte Carlo ray tracing model

polarscatter(data jelle th(:,k angle) ,data jelle r(k angle,:)','x','r')

hold on
polarplot(repmat(deg2rad(theta jelle(k angle)),10), ...

linspace(0,1,10),'LineWidth',3, 'Color', 'r')
title(strcat("\theta {source} = ", ...

string(experimental angles(k angle))," "))
text(deg2rad(angle name),0.3,"$ \theta {source}$" ,...

'HorizontalAlignment','center',...
'VerticalAlignment','bottom', 'Interpreter', 'latex', 'Color', 'r', ...

'FontSize',20)
ax = gca;
ax.RLim = [0 0.25];
ax.RTick= [0:0.05:0.25];
ax.RTickLabel = [0:0.05:0.25];
ax.ThetaLim = [0 180];
ax.ThetaTick = [0:15:180];
ax.ThetaTickLabel = strcat(string([0:15:90 75:-15:0]), ' ');
ax.RAxis.Label.String = "Reflection (%)";
set(gca,'FontSize',20)

end
end
title(t, {"Comparison shape reflection to experimental data","",""}, ...

'FontSize',20);
set(gca,'FontSize',20)

end

plotFromLibraryAlbedoComparisonSamples

%compareFromLibrary
function plotFromLibraryAlbedoComparisonSamples(settings plotter)
%% Initialization
% % Set data characteristics
% settings plotter.angles to run = [0:6:72]; %[0.1 10:10:90];
% settings plotter.a ill list = 0.5;%[1 0.75 0.5 0.25];
% settings plotter.wavelengths = [300:10:1100];
%
% libraries = ["GrassVertical4cm","GrassVertical12cm","GrassVertical20cm", ...

"GrassVaryingHeight"];%, "GrassTilt20", "GrassTilt40"];
% library location = "C:\Users\leoni\Documents\SET\7 8 Graduation ...

Assignment\Code\Library\";

%% Settings
desired wavelength = 900; % nm

%% Initialization
%retrieve settings
folder = settings plotter.folder;
name to run = settings plotter.name to run;
angles to run = settings plotter.angles to run;
wavelengths = settings plotter.wavelengths;
a ill list = settings plotter.a ill list;
name to save = settings plotter.name to save;

libraries = settings plotter.for comparison;

153

D Code Monte Carlo ray tracing model

colourlist = parula(length(angles to run));
wavelength i 900nm = find(wavelengths == desired wavelength);

%% Find mean albedo

for k library = 1 : length(libraries)
for k angle = 1: length(angles to run)

angle = angles to run(k angle);
load(strcat(folder, libraries(k library)), 'data library'); % 900 nm
albedo bar plot(k library, k angle) = ...

data library.(sprintf("Angle%d",angle)).mean albedo(1,61);
end

end
%%
figure;
b = bar(albedo bar plot, 'FaceColor','flat');
for k angle = 1: length(angles to run)

b(k angle).CData(:,:,:) = repmat(colourlist(k angle,:), ...
length(libraries),1);

end

ylabel('$$\rho(\lambda = 900 nm)$$', 'Interpreter', 'latex')
xticklabels(["Vertical 4 cm", "Vertical 8 cm", "Vertical 12 cm", "Varying ...

height 4-12 cm", "Tilted top 20 bottom 4cm top 4cm", "Tilted top 40 ...
bottom 4cm top 4cm", "Tilted top 20 bottom 8cm top 4cm", "Tilted top ...
40 bottom 8cm top 4cm","Tilted top 20 bottom 4cm top 8cm","Tilted top ...
40 bottom 4cm top 8cm"])

ylim([0, 0.3])
yticks(0:0.01:0.3)
y ticks = string(0:0.01:0.3);
y ticks(2:2:end-1) = "";
yticklabels(y ticks)
l = legend(strcat('$$\theta {source} = $$', ...

{'$$10ˆ{-5}$$','6','12','18','24', '30','36','42', '48', '54', '60', ...
'66', '72'}));

l.Title.String = 'Elevation angle (degree)';
l.Interpreter = 'latex';
l.Location = 'northeastoutside';
l.FontSize = 14;
title("Comparison of albedo at $$\lambda = 900$$ nm for various samples", ...

'Interpreter', 'latex')
set(gca,'FontSize',14)

grid on

plotFromLibraryBRDFperElevationAngle

function [] = plotFromLibraryBRDFperElevationAngle(settings plotter)

%% Settings
plot 3D = false;
desired wavelength = 900;% nm

%% Initialization

folder = settings plotter.folder; %= 'C:\Users\leoni\Documents\SET\7 8 ...
Graduation Assignment\Code\RayTracingResults28May\';

154

D Code Monte Carlo ray tracing model

name to run = settings plotter.name to run; %= ...
'Convergence aillumination 0.2 El '; %'BCgrass ';%'BCsmall elevation ';

angles to run = settings plotter.angles to run;
wavelengths = settings plotter.wavelengths;
a ill list = settings plotter.a ill list;
name to save = settings plotter.name to save;

% retrieve data
data = load(strcat(folder,name to run));
elevations detection dome = data.data library.elevations detection dome;
azimuths detection dome = data.data library.azimuths detection dome;

%% Make 2D figure
figure;
tiles = tiledlayout(1,length(angles to run));
tiles.TileSpacing = 'tight';
title figure = title(tiles,{'BRDF for wavelength \lambda = 900 nm', ''});
for k options = 1:length(angles to run)

nexttile;
angle name = angles to run(k options);
i wavelength = find(wavelengths== desired wavelength,1);
brdf to plot = data.data library.(strcat("Angle", ...

string(angle name))).mean brdf(:,:,i wavelength);
brdf 3Dplot(k options,:,:) = brdf to plot;

imagesc(elevations detection dome,azimuths detection dome, ...
brdf to plot', [0 0.2])

accuracy dome = abs(azimuths detection dome(2)- azimuths detection dome(1));
xlim([0,90])
ylim([-180,180])
xticks([0:accuracy dome:90])
yticks([-180:accuracy dome:180])
pbaspect([1 4 1])
if k options >1

set(gca,'YTickLabel',[]);
end
ax = gca;
labels x = string(ax.XAxis.TickLabels);
labels y = string(ax.YAxis.TickLabels);
labels x([2 3 5 6 8 9 11 12 14 15]) = ' ';
labels y(2:3:length(labels y)-1) = ' ';
labels y(3:3:length(labels y)-1) = ' ';
ax.XAxis.TickLabels = labels x;
ax.YAxis.TickLabels = labels y;
grid on
set(gca, 'FontSize',14)
title({sprintf('%s = %.1f', '$ \theta {source} $' ...

,angle name)},'Interpreter','latex','FontSize',12)
end

title figure.FontSize = 20;
c = colorbar;
c.Layout.Tile = 'east';
c.Label.String = 'BRDF';
c.Label.FontSize = 18;
c.Ticks = [0:0.05:0.5];

155

D Code Monte Carlo ray tracing model

tiles.XLabel.String = {'','','Elevation angle $$\ \theta {dome} (degree)$$'};
tiles.XLabel.Interpreter = 'latex';
tiles.XLabel.FontSize = 18;

tiles.YLabel.String = 'Azimuth angle $ \phi {dome} (degree) $';
tiles.YLabel.Interpreter = 'latex';
tiles.YLabel.FontSize = 18;

hold off

%% Make 3D figure
for k options = 1:length(angles to run) % elevation angles incoming light

if plot 3D == true
rg = zeros(size(brdf to plot,1) + 1,size(brdf to plot,2) + 1);
rg(:,1) = [0 ; elevations detection dome];
rg(1,:) = [0 , azimuths detection dome];

% 3D figure
plotCoordinateSystem('hemisphere',1)
rg(2:end,2:end) = brdf 3Dplot(k options,:,:).*4;
plotReflectionLobe(rg,azimuths detection dome, ...

elevations detection dome);

% plot incident ray
if angles to run(k options) == 0

angles to run(k options) = 1;
end

[ray starting point(1),ray starting point(2),ray starting point(3)] ...
= sph2cart(0,deg2rad(angles to run(k options)),1);

ray end points = [0;0;0];

ray = ray starting point' - ...
linspace(0,800,100).*(ray starting point' - ray end points);

plot3(ray(1,:), ray(2,:),ray(3,:),'y', 'LineWidth',3)

name fig = sprintf(name to save, angles to run(k options));
exportgraphics(gcf,name fig,'Resolution',600)

end
end

end

plotFromLibrarySpectralAlbedoPerElevationAngle

function plotFromLibrarySpectralAlbedoPerElevationAngle(settings plotter)

%% Initialization
folder = settings plotter.folder; %= 'C:\Users\leoni\Documents\SET\7 8 ...

Graduation Assignment\Code\RayTracingResults28May\';
name to run = settings plotter.name to run; %= ...

'Convergence aillumination 0.2 El '; %'BCgrass ';%'BCsmall elevation ';
angles to run = settings plotter.angles to run;
wavelengths = settings plotter.wavelengths;

156

D Code Monte Carlo ray tracing model

name to save = settings plotter.name to save;

% retrieve data
data = load(strcat(folder,name to run));
elevations detection dome = data.data library.elevations detection dome;
azimuths detection dome = data.data library.azimuths detection dome;

colourlist = parula(length(angles to run));

%% Make figure
figure;
for k angle = 1: length(angles to run)

angle name = angles to run (k angle);
albedo = data.data library.(strcat("Angle", ...

string(angle name))).mean albedo;
scatter(wavelengths,albedo,'filled','MarkerFaceColor',colourlist(k angle,:))
hold on

end
ylabel("\rho")
ylim([0,0.25])
yticks([0:0.01:0.25])
title("Relation between \rho and \theta {source}")

hold on
xlim([300 1100])
xlabel("\lambda")

ax = gca;
xticks(wavelengths(1):50:wavelengths(end))
labels x = string(ax.XAxis.TickLabels);
labels y = string(ax.YAxis.TickLabels);
ax.XAxis.TickLabels = labels x;
ax.YAxis.TickLabels = labels y;

grid on
l = legend(strcat('$$\theta {source} = $$', {'$$10ˆ{-5}$$','12','24','36', ...

'48', '60', '72'}));%legend(strcat('$$\theta {source} = $$', ...
{'$$10ˆ{-5}$$','6','12','18','24', '30','36','42', '48', '54', '60', ...
'66', '72'}));

l.Title.String = 'Elevation angle (degree)';
l.Interpreter = 'latex';
l.Location = 'northeastoutside';
l.FontSize = 20;
set(gca, 'FontSize',14)

title("Spectral albedo for several elevation angles of the source")

hold off
end

plotSample

%% Settings
data to plot =load('C:\Users\leoni\Documents\SET\7 8 Graduation ...

Assignment\Code\Results grass 10 ...
runs\GrassTilt20\GrassTiltedTop20 0.00 1.mat');

157

D Code Monte Carlo ray tracing model

%% Innitialization
a dome = 5;
radius sample = 1;
surfaces = data to plot.surfaces;
number of individual surfaces = ...

length(fieldnames(surfaces.individual surfaces));
all fields = fieldnames(surfaces.individual surfaces);

%% Plot
plotCoordinateSystem("hemisphere", a dome* radius sample)
for n surfaces = 1: number of individual surfaces

plotSurface(surfaces.individual surfaces.
(all fields{n surfaces}).surface boundaries)

end

158

	Introduction
	Motivation for contributing to a more accurate energy yield calculation
	Goal of this thesis
	Outline

	Theoretical Background
	Reflection
	Quantifying reflection

	The reflectance of grass
	Grass as canopy
	Experimental measurements reflection of grass
	Numerical methods to simulate the reflection of grass
	Motivation for the development of a Monte Carlo ray tracing model

	Incorporating the reflectance in photovoltaic yield

	Ray tracing model for simulation of grass reflection
	Overview ray tracing software
	Sample generation
	Ray generation
	Ray intersection
	New direction
	New magnitude

	Ray detection
	From radiance to BRDF
	Calibration of the parameters
	Calibrating the horizontal Lambertian reflector
	Calibrating the grass reflector

	Usage of the ray tracing model

	Results and discussion
	Introduction grass samples
	Comparison BRDF and albedo for various types of grass
	An angular dependent BRDF
	A spectrally dependent BRDF
	BRDF dependence on blade geometry

	Influence spectro-angular albedo on the energy yield
	Introduction case study Donaueschingen-Aasen solar park
	Energy yield of a vertical bifacial solar panel surrounded by a diffuse reflector
	Energy yield of a vertical bifacial solar panel surrounded by grass
	The influence of mowing on the energy yield

	Recommendations
	Ray tracing model
	Energy yield computation

	Conclusion
	Appendices
	Overview simulated BRDFs
	Overview power profiles
	Guide code Monte Carlo ray tracing model
	Overview functions and scripts
	Tracing a ray through the detection dome
	Calibration figures
	Ideal Lambertian
	Grass reflector

	Filling the BRDF library
	Analysing BRDF library
	Plotting the samples
	Plotting BRDF and albedo

	Code Monte Carlo ray tracing model
	Ray tracing
	Set
	Save
	Retrieve
	Generate
	Check
	Calculate
	Analyze
	Plot
	Other

	Analyze Library

