
INTRA-VISION: LIGHTWEIGHT IMAGE
PROCESSING PLATFORM FOR ROBOTIC

INTERVENTION

P. (Pascal) Vriend

BSC ASSIGNMENT

Committee:
dr. ir. K. Niu

L. Marx, MSc
dr. I.S.M. Khalil

July, 2024

043RaM2024
Robotics and Mechatronics

EEMCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands



Abstract
Image-guided robotic systems are crucial in mod-

ern medical surgery, relying heavily on advanced im-
age processing software for decision-making. Traditional
platforms like ROS (Robot Operating System) and 3D
Slicer have provided robust tools for developing such
systems but often come with significant complexity and
resource demands, impeding their real-time application
and flexibility. This thesis addresses these challenges by
proposing a lightweight, modular image-processing soft-
ware platform tailored for robotic interventions. The
platform aims to deliver efficient real-time performance
with minimal computational overhead, high accuracy,
and seamless integration with various robotic systems.
Key features include a user-friendly graphical user in-
terface (GUI) with specialized modules for data plot-
ting, volumetric rendering, and real-time data acquisi-
tion. The architecture emphasizes modularity, scala-
bility, and the application of design patterns to ensure
maintainability and extendability. The platform’s ef-
fectiveness is validated through comprehensive testing,
demonstrating its capability to handle high-resolution
images, live data, and diverse file formats efficiently.
This work lays the foundation for future enhancements
in real-time data processing and integration with robotic
systems, potentially improving the precision and efficacy
of image-guided surgeries.

Introduction
Image-guided robotic systems have become a pivotal

technology in medical surgery. These systems rely on
advanced image processing software to interpret visual
data and make informed decisions. Historically, plat-
forms like ROS (Robot Operating System) and 3d slicer
have been widely used for developing such applications.
These frameworks provide a set of tools and libraries
that facilitate the development of sophisticated image
processing and robotic control algorithms. Despite their
capabilities, the complexity and resource demands of
these platforms can be prohibitive for real-time appli-
cations, particularly in scenarios requiring lightweight
and highly efficient processing.

Current software architectures for image-guided
robotic systems often have several critical limitations.
Firstly, their heavy reliance on extensive libraries
and frameworks leads to high computational overhead,
which can worsen real-time performance. Secondly, the
monolithic nature of many existing platforms decreases
flexibility and scalability, making it challenging to adapt
to different robotic systems or to integrate new algo-
rithms without substantial reconfiguration of the code.
Additionally, the high latency and resource consumption
associated with these architectures can limit their effec-
tiveness in dynamic environments, such as small-scale
robots or embedded systems.

For the development of an optimized image-
processing platform for robotic intervention, several key
user requirements must be addressed. Users need a
software solution that is lightweight yet powerful, ca-
pable of processing high-resolution images in real-time
with minimal latency. The platform should be modular
and expandable, allowing easy integration with diverse
robotic systems and existing algorithms. It should also

support loading data both in real time and from files.
Furthermore, the solution must be resource-efficient, en-
suring that it can operate effectively on devices with lim-
ited computational power without compromising perfor-
mance or accuracy.

The gap in current software lies in the lack of a uni-
fied platform that combines real-time or regular data
processing with robotic devices, specifically with high
efficiency and scalability. Existing solutions are of-
ten complex and require heavy computational resources,
which is not optimal for dynamic robotic environments.
Additionally, the complexity of these solutions intro-
duces a learning curve for using the software. This gap
highlights the necessity for a new approach that priori-
tizes efficiency, flexibility, and scalability.

This thesis proposes the development of a lightweight
image-processing software platform specifically tailored
for robotic intervention applications. The solution will
focus on designing and implementing efficient algo-
rithms optimized for real-time performance, minimizing
computational resource usage while maintaining high
accuracy. By developing modular software components,
the platform will facilitate easy integration with a wide
range of robotic systems. Furthermore the software ar-
chitecture and design patters used in the project will
enable future expansion.

Methods

Modules and classes
The project comprises a lightweight graphical user

interface (GUI) with multiple specialized modules. Cur-
rently, the primary modules include:

• Matplotlib Module: Facilitates the plotting of 2D
data.

• VTK Module: Enables the rendering of volumet-
ric data.

• Live Data Module: Establishes connections for
real-time data acquisition.

Some of these modules share overlapping functionalities,
necessitating the use of abstract modules and widgets.
These abstract components implement common meth-
ods such as data loading and GUI setup, ensuring con-
sistency and reusability across different modules. This
facilitates creating new modules and ensures the absence
of duplicate code. In addition to the primary modules,
the project includes several utility components:

• A Custom Mathematical Library: Provide special-
ized mathematical functions.

• Connection Classes: Facilitate the establishment
of IPv4 and serial connections.

• Popup Windows: Communicates errors and infor-
mation to the user.

• Settings Classes: Updates and reads from the set-
tings.json file.

• Data Manager class: Ensures proper file reading
and data storage.

1



• Sidebar Widget: A button that toggles the mod-
ule on, revealing the module components and its
loaded files, or off, concealing them.

Upon launching the application, a data manager class
is instantiated. This class serves as a central repository
for all loaded or incoming data, ensuring that data is ac-
cessible across different modules. The shared instance
of the data manager class allows seamless data trans-
fer between modules. A general overview of the class
hierarchy can be seen in figure 1 and 2

Figure 1: the general structure of the modules

Code architecture
Figure 2 illustrates the high-level architecture of the

code. The diagram focuses on abstract modules to main-
tain clarity and brevity. In practice, these abstract
classes serve as parent classes, with specific subclasses
extending their functionality to implement detailed op-
erations.

Figure 2: High level architecture of the code

Libraries and frameworks
To realise the lightweight GUI, Python 3 is used

alongside the library PySide2. PySide2 is a set of
Python bindings for the Qt application framework, de-
veloped by The Qt Company. It allows Python develop-
ers to utilize the functionalities of Qt, a C++ framework
used for developing cross-platform applications with a
native look and feel. Applications created with PySide2
can run on various operating systems, including Win-
dows, Linux, macOS, iOS and Android without the need
of changing source code. Furthermore the MatPlotLib
and VTK library are used to integrate 2d and 3d im-
ages into the GUI. To establish connections, the python
libraries ”socket” and ”pyserial” are used. Additionally,

the libraries numpy, pandas and scipy are used for han-
dling data.

Design patterns
For consistent code structure, design patterns are

applied. The following patterns can be considered when
looking at the code structure:

• Composite Pattern: Modules aggregate multiple
widgets, providing a unified interface for interac-
tion.

• Strategy Pattern: Each module employs different
strategies for tasks such as plotting data, toggling
windows, and interacting with data.

• Model-View-Controller (MVC) Pattern: The GUI
acts as the View, DataManager functions as the
Model, and each Module serves as the Controller.

• Decorator Pattern: Classes that extend abstract
classes add specific functionalities, thereby en-
hancing the base classes.

• Template Method Pattern: Abstract classes de-
fine methods like setup() and plot() that act as
templates, allowing subclasses to override specific
steps.

• Adapter Pattern: The image widget and control
widget adapt VTK and Matplotlib widgets for in-
tegration into the GUI.

Figure 6, in the appendix, illustrates these design pat-
terns in more detail. The figure shows that abstract
classes have some functions shared across modules, as
well as methods that are overridden by specific mod-
ules. Additionally, the implemented module acts as a
mediator between the image and control widgets, link-
ing the control panel buttons’ callbacks to actions in the
image widget. Implementing additional modules, such
as the MatPlotLib module works in a similar fashion. A
module does not necessarily need to include both a con-
trol and an image widget. For instance, the connection
module solely features a control panel for establishing
connections. This approach enhances flexibility in de-
signing new modules.

Algorithms and data flow
The system is designed to accommodate multiple file

formats across various visualization modules. Here, a
detailed description of the file handling and visualization
processes for Matplotlib, VTK, and live data plotting is
displayed:

Matplotlib integration

For Matplotlib, supported file formats include CSV,
XLSX, and TXT. The Data Manager module parses
the file extension and loads the data into a Pandas
DataFrame. This DataFrame serves as the basis for
plotting within the image widget.

VTK integration

VTK supports a wide array of file extensions, that is:
”vtk”, ”vtu”, ”vtp”, ”vti”, ”stl”, ”obj”, ”ply”, ”jpg”,
”jpeg”, ”png”, ”tif”, ”dicom”, ”nii”, ”nii.gz”, ”mhd”,
and ”DCM”. The Data Manager handles these formats
by employing the appropriate reader for each file type.

2



This reader is returned and utilized for further process-
ing within the application.

Live data plotting

Incomming data from a device is expected in a for-
mat where each data point consists of two columns (x
and y values) separated by commas, with each data set
terminated by a newline. Upon reception, the data is
parsed and stored in a Pandas DataFrame. This data is
then appended to an animation in Matplotlib. To op-
timize performance, only the last 100 data points are
retained and visualized within the animation.

Visualization in image widget

For Matplotlib, data is accessed directly from the
Pandas DataFrame for plotting within the image wid-
get. For live visualisation, the animation data is contin-
uously updated by appending new DataFrame entries
and maintaining a rolling window of the last 100 data
points.

Visualization within the VTK image widget involves
initial checks to determine the data type being plotted,
such as vtkPolyData or unstructured grids. This step
is crucial as it dictates the creation of the appropriate
mapper and actor necessary for rendering. Once estab-
lished, the mapper is linked to the actor, which is then
rendered within the widget.

DICOM volume plotting presents unique challenges
due to the necessity of loading multiple files. To address
this, the Data Manager supports directory opening, as-
sociating the directory with a dicomImageReader. This
reader facilitates proper rendering within the image wid-
get, adjusting opacity and color based on scalar values
derived from the DICOM files.

Data interaction

The VTK and Matplotlib modules offer diverse
methods for interacting with plotted data. The Mat-
plotlib widget control panel features functionalities such
as a ’Convolve’ button, facilitating the calculation and
visualization of the convolution between two datasets.
Additionally, it includes a ’Limit’ button to constrain
data within specified minimum and maximum values.
Moreover, it incorporates a ’Filter’ button alongside a
dialog for configuring Butterworth filter settings.

The VTK control widget provides options to adjust
mesh opacity and color. Furthermore, it allows for a
camera reset to return to the original mesh orientation.

Test strategies
The application underwent comprehensive testing

employing several strategies to ensure its functionality,
reliability, and usability.

Unit, integration, and functional tests were con-
ducted to verify that data could be loaded into the
program and interacted with, such as through apply-
ing filters and setting mesh colors. Data compatibility
and integration were assessed using both the VTK and
MatPlotLib modules. A variety of data sets were used,
including incorrectly formatted files

Additionally, performance testing was performed.
This involved configuring multiple servers to send data
at increasing sampling rates. Large datasets, such as
extensive DICOM directories, were loaded to evaluate
GPU usage and performance.

Finally, the application was tested across multiple
versions of Python, including all dependent packages,
to ensure compatibility and stability.

Results

The final result of this thesis is the application itself,
which is available from the RAM gitlab.

To test the performance of the application, big data
sets were loaded into the VTK and Matplotlib module.
The result of this can be seen in figure 3. While the
image widgets showed a slower response time, the user
interface was not affected.

Figure 3: A performance test by loading a big dicom di-
rectory that displays the circle of Willis and ECG data,
obtained from BMT module 3, that holds several thou-
sands of points.

A second test was performed to confirm the usability
of the buttons to interact with the data. Again, data
sets were loaded into the VTK and Matplotlib module
and plotted. Then, a 4th order bandpass filter was ap-
plied with a cutoff of 0.2-40hz and sampling frequency
of 1000. Additionally a limit was set to -250 to 300. For
the vtk mesh, the opacity was lowered and the color was
set to blue. The result of this can be seen in figure 4

Finally a test was performed to confirm the function-
ality of live data visualisation. A script was designed to
send sign wave data over a socket at a predefined sam-
ple rate. Two of these servers that send the data were
initialized and connected with. At a sampling rate of
100 hz, no issuess were observed, but at a sampling rate
of 1000 hz data clipping was present. This can be seen
in figure 5

3



(a)

(b)

Figure 4: Test for interacting with data in the Mat-
plotlib module and vtk module. a) Data that has not
yet been altered. b) Data after filters and limits have
been applied and the opacity and color have been al-
tered.

(a)

(b)

Figure 5: Result of testing live data visualization. a)
The two sign waves are plotted in real time, with no
issues. b) Clipping and data loss is observed due to a
too high sample rate.

Discussion
This thesis presents a software platform enabling

data visualization with seamless integration of various
file formats and medical devices. It supports 2D and
3D figures, allowing interaction by altering visual and
numerical aspects, such as changing mesh colors or ap-
plying filters. Testing revealed no major problems, al-
though some issues were identified. Future integration
of the Robotic Operating System (ROS) could enhance
communication with robotic devices. Currently, the pro-
gram effectively visualizes data from files and medical
devices, demonstrating sufficient functionality and reli-
ability for practical applications.

Real-time data
The application supports multiple methods for con-

necting with devices to receive real-time data. One
method involves establishing an internet connection by
providing an IPv4 address and a port number. Upon
connection, a new thread is initiated to read and op-
tionally plot the data using Matplotlib.

Another communication method is through a serial
connection. The program automatically scans for con-
nected devices and displays them as available ports. The
user can select a port and enter the device’s baud rate
to establish the connection. Similar to the internet con-
nection, a new thread is started to read and plot the
incoming data.

Concurrency is a critical consideration when deal-
ing with multiple threads. When multiple devices are
connected, their threads attempt to access the image
widget and data manager object simultaneously, which
can lead to memory leaks. To address this, a thread-
ing lock is implemented to ensure that only one thread
can access these objects at any time. This implementa-
tion prevents concurrent access issues, maintaining the
application’s stability and performance.

Current limitations
While the application is functional, several limita-

tions have been identified that impact its performance
and usability. Despite the application’s general effi-
ciency, large datasets from medical files can significantly
slow down the graphical user interface (GUI). This is-
sue is evident in both the Matplotlib and VTK wid-
gets, where plotting extensive data causes notable de-
lays. The handling of large volumes of data results in a
bottleneck, as the current implementation struggles to
maintain responsiveness when visualizing high-density
information. Optimizing data processing and rendering
techniques will be crucial for enhancing performance,
especially in medical applications where large datasets
are common.

When plotting live data, users encounter limitations
due to the inability to apply filters or limits in real
time. The current system only allows for data alter-
ation processes to be applied to existing data already
present within the system, rather than to incoming data
streams. This restricts the flexibility and functionality
of the application when dealing with live data, as users
cannot dynamically adjust visualizations based on real-
time data inputs. Addressing this limitation would in-
volve developing mechanisms to process and filter live
data as it is received, thereby enhancing the applica-

4



tion’s real-time data visualization capabilities. Addi-
tionally, the application crashes when a connection is
broken by an external source.

Furthermore, the application requires live data to
follow a specific format, which poses additional con-
straints. Currently, live data must consist of only two
data points for x and y values, separated by a comma,
with multiple points being separated by new lines. This
rigid format can be restrictive and may not accommo-
date the diverse data structures encountered in various
medical and scientific applications. Expanding the flexi-
bility of data input formats would allow the application
to handle a broader range of data types and sources,
improving its versatility and user-friendliness.

These limitations highlight areas for future improve-
ment to enhance the application’s ability to manage
large medical datasets and live data more effectively. By
addressing the issues related to data handling efficiency,
real-time data processing, and input format flexibility,
the application can be significantly improved to meet
the demands of complex medical and scientific data vi-
sualization tasks.

Future Improvements

As discussed in the current limitations, the applica-
tion does not support the application of filters to live
data streams. Addressing this limitation would signif-
icantly enhance the usability and functionality of the
software. A potential solution is to implement filtering
and limiting mechanisms that apply each time data is
read from the connection. This would involve modifying
the data reading process to include checks for any active
filters or limits before the data is visualized.

To achieve this, boolean fields could indicate whether
the incoming data should be filtered. These fields would
be dynamically updated based on user settings, allowing
for real-time adjustments to the data visualization. Fil-
ter settings would be managed through the settings.json
file, which the application would read to determine the
necessary filtering parameters.

However, implementing this feature presents some
challenges, particularly in maintaining performance.
Continuously reading and applying filter settings from
a JSON file at high refresh rates could introduce signif-
icant overhead, potentially slowing down the data pro-
cessing pipeline. This is especially critical in scenarios
where data is received at high frequencies, such as real-
time monitoring of medical devices. One approach to
mitigate these performance issues is to cache the filter
settings in memory, reducing the need to repeatedly ac-
cess the JSON file.

Another potential enhancement is to implement a
more flexible data handling framework that supports
a variety of data formats and structures. This would
involve developing more sophisticated parsing and pro-
cessing capabilities that can adapt to different data for-
mats. By broadening the range of supported data for-
mats, the application could become more versatile and
capable of handling real-time data from sources more
effectively.

Finally, integrating advanced data processing tech-
nologies, such as parallel processing and GPU acceler-
ation, could further improve the application’s perfor-

mance. Leveraging these technologies would allow the
application to handle larger datasets and more complex
filtering operations without compromising speed and re-
sponsiveness.

Integration with robotic devices
Over the past decade, significant developments have

emerged in the field of image-guided robot-assisted in-
terventions. An article by Unger et al describes several
methodologies through which robotic devices, in con-
junction with imaging devices, can be utilized to en-
hance medical procedures. [1] Robotic devices offer high
precision, which is particularly beneficial for interven-
tions such as needle biopsies and pedicle screw inser-
tion. [2] [3]

The platform discussed in this thesis can be used to
interact with both medical images and robotic devices.
One way of communicating with robots is through the
Robotic Operating System (ROS). ROS includes soft-
ware libraries and tools designed to be easily integrated
with various systems. Connolly et al. developed a mod-
ule that integrates the open-source 3D Slicer software
with ROS, demonstrating its potential for creating prac-
tical, image-guided robotic systems [4]. Despite its ca-
pabilities, a potential limitation of this module is the
incompatibility of some devices with either ROS or 3D
Slicer.

Another article by Frank et al. Describes the ROS-
IGTL-Bridge, a ROS node that links other ROS nodes
to medical imaging software. [5] It does this by estab-
lishing a TCP/IP socket with the imaging software and
forwarding data received by the robotic system in a for-
matted matter. Such a bridge can be useful for connect-
ing robotic systems to the imaging platform described
in this thesis

Conclusion
This thesis presents a novel lightweight imaging plat-

form tailored for robotic interventions, addressing the
limitations of existing software frameworks like ROS
and 3D Slicer. These traditional platforms, while pow-
erful and suitable for large-scale clinical applications,
often struggle with the demands of small-scale robotic
systems due to their complexity and resource intensity.
The platform developed in this thesis is designed with
a modular architecture that prioritizes efficiency, scala-
bility, and ease of integration with a variety of devices,
including medical sensors and imaging systems.

The proposed platform features a user-friendly
graphical user interface (GUI) composed of specialized
modules for 2D data plotting, volumetric rendering, and
real-time data acquisition. The use of abstract modules
and widgets ensures consistency and re-usability, mini-
mizing code duplication and facilitating the addition of
new functionalities. The software leverages Python 3
and libraries such as PySide2, Matplotlib, and VTK to
achieve a cross-platform, visually cohesive application.
By employing design patterns like Composite, Strategy,
MVC, Decorator, Template Method, and Adapter, the
platform ensures a robust and maintainable code struc-
ture.

Comprehensive testing demonstrated the platform’s
ability to efficiently process and visualize large datasets
and real-time data from various medical devices, re-

5



vealing no major issues but identifying areas for future
improvement. Performance optimization, especially in
handling extensive medical datasets and live data, re-
mains a priority. Future work will focus on enhancing
real-time data filtering, expanding the flexibility of data
input formats, and integrating advanced data process-
ing technologies such as parallel processing and GPU
acceleration.

Furthermore, the integration with robotic devices
through frameworks like ROS shows great promise for
enhancing image-guided robotic systems. The plat-
form’s modular design allows for easy adaptation and
expansion, paving the way for future developments in
medical robotics. Potential enhancements include inte-
grating the Robotic Operating System (ROS) for im-
proved communication with robotic devices and imple-
menting more sophisticated data handling frameworks
to support a broader range of data types and structures.

In summary, this thesis lays a solid foundation for
a scalable, efficient, and versatile image-processing plat-
form tailored for robotic interventions. By addressing
the limitations of existing systems and providing a flex-
ible and modular architecture, this platform has the po-
tential to significantly improve the precision and efficacy
of image-guided surgeries, ultimately contributing to ad-
vancements in medical robotics and patient care.

References
[1] Unger M, Berger J, Melzer A. Robot-assisted

image-guided interventions. Front Robot AI. 2021
Jul;8:664622.

[2] Smakic A, Rathmann N, Kostrzewa M, Schönberg
SO, Weiß C, Diehl SJ. Performance of a robotic
assistance device in computed tomography-guided
percutaneous diagnostic and therapeutic procedures.
Cardiovasc Radiol. 2018 Apr;41(4):639-44.

[3] Lefranc M, Peltier J. Accuracy of thoracolum-
bar transpedicular and vertebral body percutaneous
screw placement: coupling the Rosa® Spine robot
with intraoperative flat-panel CT guidance–a ca-
daver study. J Robot Surg. 2015 Dec;9(4):331-8.

[4] Connolly L, Deguet A, Leonard S, Tokuda J, Ungi
T, Krieger A, et al. Bridging 3D Slicer and ROS2 for
image-guided robotic interventions. Sensors (Basel).
2022 Jul;22(14):5336.

[5] Frank T, Krieger A, Leonard S, Patel NA, Tokuda
J. ROS-IGTL-Bridge: an open network interface
for image-guided therapy using the ROS environ-
ment. Int J Comput Assist Radiol Surg. 2017
Aug;12(8):1451-60.

6



Appendix

Figure 6: Detailed class diagram of the implementation of the VTK module.

7


