
MSc Cybersecurity
Master Thesis

Effective Fuzzing with
Constraint-Aware Oracle to
Detect Logical Bugs in
Database Management
Systems

Niccolo Parlanti

Supervisor: Andrea Continella
Supervisor: Luca Mariot
Committee Member: Petra van den Bos

September, 2024

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Effective Fuzzing with Constraint-Aware Oracle to Detect

Logical Bugs in Database Management Systems

Niccolò Parlanti
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

n.parlanti@student.utwente.nl

September 2024

Abstract

Database Management Systems (DBMSs) are fun-
damental to data storage, retrieval, and manage-
ment across various applications. Ensuring their
security and integrity is crucial, as vulnerabilities
can lead to system crashes or exploitation through
logical bugs, errors that cause the DBMS to return
incorrect results without crashing. Prior research in
DBMS testing has predominantly focused on iden-
tifying crash-related bugs, often overlooking logical
bugs, like those related to the enforcement of con-
straints within the system. Constraints are essen-
tial rules that ensure data integrity and consistency,
but their complexity makes them challenging to test
with existing tools. This paper presents a novel ap-
proach that combines evolutionary algorithms and
an oracle specialized in the detection of logical bugs
related to DBMS constraints. We employ an evo-
lutionary algorithm to generate new test inputs,
which are then evaluated by our oracle to iden-
tify any violations of the constraints. This method
aims to uncover logical bugs that traditional test-
ing methodologies might miss. Our prototype has
been evaluated on MySQL, and the results provide
valuable insights into the effectiveness of this ap-
proach and its potential applications in improving
DBMS reliability and security.

1 Introduction

Database Management Systems (DBMSs) play a
crucial role in data-intensive applications, support-
ing billions of devices and managing trillions of
databases. Given their extensive use, any bug in
a DBMS does have significant impacts on a large
number of users [17, 20, 26]. The correctness and
reliability of DBMSs are paramount, especially
for critical enterprise applications such as online
banking, e-commerce, and electronic payment
systems. Ensuring these systems function correctly

is essential to maintaining trust and operational
efficiency in these critical areas.

Both industry and academia have devoted con-
siderable attention to DBMS testing, recognizing
the importance of preventing failures. Techniques
such as fuzzing have been widely employed, demon-
strating their effectiveness in uncovering crash bugs
and assertion failures that cause the system to ter-
minate unexpectedly [27, 29, 6, 8]. However, while
these methods are useful, they fall short when it
comes to detecting logical bugs, errors that can
lead to incorrect query results without causing the
system to crash. Logical bugs present a more in-
sidious challenge, as they do not manifest as ob-
vious failures like system crashes. For instance, a
logical bug might result in a DBMS leaking extra
rows or returning incorrect data, which can go un-
noticed without proper validation [11]. Detecting
these logical bugs requires a more sophisticated ap-
proach, often involving the use of oracles to verify
the correctness of each execution result.

Recent advancements in DBMS testing have
significantly enhanced the detection of logical
bugs, particularly through the use of oracles. In
the context of software testing, an oracle is a
mechanism that determines whether the output
of a program under test is correct. Specifically,
in DBMS testing, oracles are used to verify the
correctness of query results by comparing them
to expected outcomes. They work by predicting
what the correct result of a query should be based
on certain rules or transformations. For instance,
Rigger et al. developed innovative oracles by
transforming SQL queries into semantically equiv-
alent forms [22, 24, 25]. This method leverages
the fact that different DBMS code paths should
produce identical results for these transformed
queries. Discrepancies in the results highlight
potential logical bugs. SQLancer [21], the tool that

1

embodies these oracles, has proven highly effective,
uncovering numerous logical bugs across various
DBMS.

However, SQLancer’s approach is not well-
suited for identifying logical bugs related to
table constraints. SQLancer relies on generating
and transforming SQL queries to exploit logical
properties and detect inconsistencies in DBMS
operations. This technique is effective for general
query processing but does not specifically target
the enforcement of table constraints such as unique
constraints and check constraints. These con-
straints involve specific validation rules that must
be upheld by the DBMS. Bugs in these areas often
do not manifest through query transformations
because they pertain to the integrity rules applied
during data manipulation operations, rather than
the logical consistency of query results.

In this paper, we present a novel fuzzing ap-
proach specifically designed to detect logical bugs
in Database Management Systems, focusing on
components such as unique constraints and check

constraints. We designed this approach to utilize a
mutation-based evolutionary algorithm [2], which
generates various test inputs, including edge cases
and invalid data entries. These inputs are then
used to query the target database. Our custom-
built oracle processes each query, understanding
the specific constraints applied to the database
schema and determining whether each input should
pass or fail based on these constraints.
The oracle simulates the correct behavior of

the DBMS by evaluating if the inputs adhere to
the defined rules, such as uniqueness or specific
conditions. Finally, we conduct a thorough eval-
uation by comparing the actual responses of the
DBMS with the expected results generated by the
oracle. Any inconsistencies between the DBMS
and the oracle indicate the presence of a logical
bug. We evaluate the framework on real-world
MySQL systems, demonstrating its effectiveness in
detecting constraint-related bugs and validating
the robustness of the DBMS.

In summary in this paper we make the following
contributions:

• We design an oracle capable of understand-
ing and validating inputs against DBMS con-
straints, ensuring that the generated test cases
accurately reflect the expected behavior and
detect deviations.

• We introduce a novel fuzzing framework specif-
ically designed to detect logical bugs related to
DBMS constraints, such as unique constraints
and check constraints, which are overlooked

by traditional testing methodologies.

• We evaluate our program on real-world DBMS
systems, specifically MySQL, identifying 4 po-
tential bugs related to constraint handling.
These bugs will be submitted to the MySQL
team for further evaluation and verification.

2 Background and Motivation

To understand the research presented in this pa-
per, it is essential to first introduce and explain the
core principles of fuzzing methodologies [10]. This
chapter offers a general overview of fuzzing, detail-
ing its mechanisms and applications. The discus-
sion will then shift to the specific challenges of ap-
plying fuzzing to Database Management Systems
(DBMSs), particularly in the detection of logical
bugs, accompanied by relevant examples. Further-
more, the critical role of oracles in identifying these
bugs will be examined, with a focus on comparing
traditional oracles from the custom-designed oracle
developed in this study.

2.1 Fuzzing: An Overview

Fuzzing is a software testing technique that
automatically generates and injects data into a
program to uncover bugs [19]. Originally coined by
Miller et al. in 1990 [15], the concept has evolved
significantly with the years. Modern fuzzing tools
are sophisticated, generating semi-random inputs
that follow complex criteria, such as code coverage,
to explore different execution paths within the
software. This method allows fuzzing to effectively
discover a wide range of vulnerabilities, from
simple crashes to complex security weaknesses in a
diverse set of applications.

The general workflow of fuzzing involves sev-
eral key steps (Figure 1):

• System Preparation: Setting up the initial con-
ditions, such as seed inputs and configurations,
to ensure the system is ready for testing.

• Test Case Execution: Generating and running
the test cases to observe how the software han-
dles unexpected or malformed inputs, which is
essential for detecting hidden bugs.

• Exploring Program States: Continuously navi-
gating through different program states to un-
cover vulnerabilities that may not be evident
during standard execution.

• Progress Reporting: Documenting the results,
including any detected crashes or anomalies, to
refine the fuzzing strategy and focus on areas
of interest.

2

Figure 1: Basic working process of a fuzzing
test.

Fuzzing can be classified into three main cate-
gories:

• Black-Box Fuzzing: Operates without knowl-
edge of the program’s internal structure, focus-
ing purely on input-output behavior.

• White-Box Fuzzing: Involves deep analysis of
the program’s source code, using techniques
like symbolic execution to generate and test
inputs systematically.

• Grey-Box Fuzzing: Combines aspects of both
black-box and white-box fuzzing, leveraging
partial knowledge of the program to guide in-
put generation and enhance test coverage.

Fuzzers can also be categorized based on the
methods they use to generate inputs:

• Generation-Based Fuzzing: Involves crafting
inputs that adhere to the application’s ex-
pected formats, leveraging detailed knowledge
of input specifications.

• Mutation-Based Fuzzing: Modifies existing
valid inputs (known as seeds) to create new
test cases by making small alterations.

• Evolutionary Fuzzing: Incorporates evolution-
ary algorithms to iteratively refine test cases
based on feedback from previous tests, opti-
mizing the fuzzing process for greater efficiency
and effectiveness.

2.2 Fuzzing for DBMS

Fuzzing DBMSs is a specialized approach to discov-
ering vulnerabilities that extends beyond conven-

tional software fuzzing techniques. It involves sys-
tematically testing DBMSs by injecting malformed
or unexpected inputs, monitoring for exceptions,
crashes, or data integrity violations. This process
requires specific strategies tailored to the unique
characteristics of DBMSs. As with generic fuzzing,
there are several strategies (Figure 2):

• Black-Box Fuzzing: Operates without any in-
ternal knowledge of the DBMS, focusing purely
on external interfaces and behaviors, making it
broadly applicable but less efficient at discov-
ering deeper vulnerabilities.

• White-Box Fuzzing: Utilizes detailed inter-
nal knowledge of the DBMS structure and
logic, allowing for targeted input generation
and deep coverage of internal paths.

• Grey-Box Fuzzing: Balances internal knowl-
edge with limited access, often employing in-
strumentation to guide test case generation.

While the general methodologies and types of
bugs targeted, such as crashes, logical bugs, and
performance bugs, are common to both DBMS
fuzzing and generic software fuzzing, the distinct
challenges of DBMS fuzzing arise from the com-
plex interaction with SQL and the intricate na-
ture of database systems. Unlike standard software
fuzzing, where bugs might be identified through
simple output comparisons or crash detection,
DBMS fuzzing must account for the behavior of
SQL queries, including logical bugs that might re-
sult in minor inaccuracies in data retrieval or ma-
nipulation. For instance, a logical bug might al-
low data to bypass a CHECK constraint without
triggering an error, silently compromising data in-
tegrity. Such issues often require specifically crafted
queries to expose the vulnerabilities. Moreover,
DBMS fuzzing must consider the stateful nature of
databases, where the sequence of operations dur-
ing testing can affect the database’s state, leading
to different outcomes. This complexity is crucial
for uncovering issues that might remain hidden in
a stateless context.

2.2.1 Types of Bugs in DBMS Fuzzing

The three main types of bugs found in DBMSs are
crashes, logical bugs and performance bugs, each
of which present unique challenges and require dis-
tinct methodologies for detection and resolution.

Crashes: These bugs manifest as sudden inter-
ruptions in the DBMS due to unhandled exceptions
or critical errors, compromising data integrity and
availability. Tools like Squirrel [29] and Griffin [6]
are designed to identify such vulnerabilities.

3

Figure 2: White, Black, Grey box DBMS fuzzing. Source [7]

Logical Bugs: These involve discrepancies be-
tween expected and actual DBMS behavior, lead-
ing to incorrect query results, data corruption,
or security vulnerabilities. Detection requires so-
phisticated fuzzing techniques that can generate
and evaluate complex queries. Tools like SQL-
Right [11], SQLancer [21], and its various method-
ologies (PQS [22], TLP [24], NoRec [25]) are effec-
tive in uncovering such issues.
Performance Bugs: These bugs affect the ef-

ficiency and scalability of the DBMS, leading to
excessive resource consumption, slow query execu-
tion, or even denial of service. Fuzzing tools like
APOLLO [9] and AMOEBA [12] focus on simulat-
ing workload scenarios to evaluate DBMS perfor-
mance under various conditions.

2.3 Logical Bug Example

Listing 1 illustrates a logical bug in SQLite re-
lated to the handling of unique constraints with
the NOCASE collation. This bug was detected
by SQLancer using the PQS oracle [22], and has
been subsequently fixed by the SQLite developers.
The first statement creates a table t0 with a sin-
gle column c0 of type INT and a UNIQUE con-
straint with NOCASE collation, that allows to per-
form case-insensitive text comparisons. The sec-
ond statement inserts a value ’./’ into the table.
The third statement attempts to select rows from
t0 where c0 matches ’./’ using a LIKE clause, but
it fetches no rows, which is incorrect behavior.
SQLancer, through its Pivoted Query Synthe-

sis oracle, detects logical bugs by generating and
transforming SQL queries to produce semantically
equivalent forms. Discrepancies in the query re-
sults indicate potential logical bugs. In this case,
the PQS oracle identified that the expected result
should have fetched the row containing ’./’, but
SQLite returned no rows.

1 CREATE TABLE t0(c0 INT UNIQUE COLLATE

NOCASE);

2 INSERT INTO t0(c0) VALUES (’./’);

3 SELECT * FROM t0 WHERE t0.c0 LIKE ’./’; --

fetches no rows

Listing 1: Bug Example 1: SQL code
illustrating the issue

The root of the problem lies in the way SQLite
handles the LIKE operator with NOCASE colla-
tion under UNIQUE constraints. The UNIQUE
constraint with NOCASE collation should treat the
values case-insensitively, ensuring that the value ’./’
is correctly matched. However, due to an oversight
in the query processing logic, SQLite fails to re-
trieve the expected row.

To address this bug, SQLite developers had to
refine the handling of NOCASE collation within
unique constraints, ensuring that the LIKE opera-
tor correctly respects case-insensitive comparisons
during query execution.

This logical bug can have significant security
implications. For instance, it treats case-variant
strings as distinct, potentially leading to incorrect
query results. In scenarios where case-insensitivity
is critical, such as authentication or data dedupli-
cation, this bug could result in data mismatches
or unintended data exposure. Given SQLite’s
widespread usage, including in over 3.5 billion
smartphones, the impact of such a bug could be
extensive, affecting both functionality and security
of numerous applications.

2.4 Oracle-based Logical Bug Detec-
tion

Detecting logical bugs in DBMS is inherently more
challenging than identifying memory-related issues.
Memory bugs often result in crashes or other eas-
ily detectable malfunctions [29, 6, 8]. In contrast,

4

logical bugs typically lead to incorrect query re-
sults without causing any immediate system failure,
making them more elusive. Therefore, an oracle is
essential to determine the expected outcomes and
identify discrepancies.

An effective oracle serves as a reference, compar-
ing the actual output of a DBMS to the expected
correct result. For example, in the case described
in Listing 1, the oracle should recognize that
the expected result is a row containing ’./’.
Constructing a comprehensive, error-free oracle
is a complicated task, often requiring manual
analysis by several analysts.

Differential analysis provides an automated
and scalable solution for logical bug detection
[13, 9, 27]. Techniques such as sending the same
query to different DBMSs and comparing their
results can highlight inconsistencies. However, this
method struggles with DBMS-specific bugs due
to the diverse dialects and extensions supported
by different systems. Consequently, cross-DBMS
validation may miss issues that are unique to a
particular DBMS.

Recent advancements have focused on construct-
ing functionally equivalent queries to test DBMS
behavior. For instance, the NoREC oracle modi-
fies the conditions in WHERE clauses and shifts
them to SELECT expressions [23]. This ensures
that DBMS optimizations do not interfere with the
core logic of the query, making it easier to detect
inconsistencies in the results. Similarly, the TLP
oracle breaks down a condition in a WHERE clause
into three subqueries that evaluate the condition as
TRUE, FALSE, or NULL [24]. By combining the
results of these subqueries and comparing them to
the original query, the TLP oracle can reveal logical
discrepancies. The Pivoted Query Synthesis oracle,
uses pivot rows from the database to generate test
queries. PQS selects a row as a pivot and creates
queries that should include this pivot row in their
results [22]. If the DBMS fails to return the pivot
row as expected, it signals a potential logical bug.

2.5 Advantages of The Proposed Or-
acle

While PQS and other advanced oracles have signifi-
cantly improved logical bug detection, they are not
well-suited for identifying bugs related to DBMS
constraints, such as unique and check constraints.
These constraints involve specific validation rules
that are not directly addressed by the general query
transformations used for example in PQS.

To better understand, we examine a situation
where a state-of-the-art fuzzer, like PQS, fails to
detect a logical bug related to constraints enforce-

ment (Listing 2).
Consider a table with a check constraint that en-

sures all values in a column must be positive:

1 CREATE TABLE t1(c1 INT CHECK (c1 > 0));

2 INSERT INTO t1(c1) VALUES (1);

3 INSERT INTO t1(c1) VALUES (2);

4 INSERT INTO t1(c1) VALUES (-1);

Listing 2: Table Creation and Insertion

The PQS oracle might select a pivot row, say
with the value -1, to generate test queries. The test
query might look like the one showed in Listing 3:

1 SELECT * FROM t1 WHERE c1 = -1;

Listing 3: PQS Test Query

Given the check constraint CHECK (c1 > 0), the
row with c1 = -1 should never be inserted into the
table, and thus the query should return no rows.
However, if there’s a logical bug in the DBMS that
incorrectly enforces the check constraint, the row
with value -1might be inserted, but PQS would not
necessarily detect this. PQS focuses on logical con-
sistency based on pivot rows and the relationships
between different queries, not on the specific en-
forcement of constraints during data manipulation.
This means that PQS could detect discrepancies
between expected and actual results when querying
the database, but it might not generate a scenario
where the constraint is directly violated because it
assumes the data integrity rules (like check con-
straints) are correctly enforced during inserts and
updates.

Our proposed oracle is designed to specifically
target such constraint enforcement issues. By gen-
erating a variety of input values, including edge
cases and invalid values, and attempting to insert
them into the table, our oracle can directly test
the enforcement of the check constraint as shown
in Listing 4:

1 INSERT INTO t1(c1) VALUES (-1);

Listing 4: Testing Constraint Enforcement

The oracle would then evaluate whether the
DBMS correctly rejects this input based on the
check constraint. If the DBMS incorrectly allows
the insertion of -1, our oracle will detect this as a
logical bug because the input does not satisfy the
constraint CHECK (c1 > 0).

In summary, while other oracles are effective in
identifying discrepancies in query results based on
different parameters, they does not specifically test
the enforcement of constraints during data manip-
ulation. Our oracle, with its focus on generating
and validating inputs against specific constraints,
can uncover bugs related to the enforcement of con-
straints like unique and check constraints, pro-
viding a more comprehensive solution for ensuring
DBMS reliability and correctness.

5

3 Approach

Our proposed approach aims to detect logical
bugs specifically related to DBMS constraints,
such as unique constraints and check constraints,
by combining evolutionary algorithms, constraint
solvers, and oracles. Logical bugs related to these
constraints often go undetected by traditional test-
ing methodologies, which focus more on general
query processing and crash bugs.

An overview of the proposed approach is illus-
trated in Figure 3.

The process begins with input generation us-
ing an evolutionary algorithm. We developed
two different grammars that are used for the
generation of both tables and input queries [1].
The evolutionary algorithm evolves SQL queries
through mutation and crossover techniques, cre-
ating a diverse range of possible inputs that are
both syntactically and semantically valid. The
diversity and validity of these queries are crucial
for thoroughly testing the constraints of the DBMS.

Once the inputs are generated, they are pro-
cessed by a constraint-aware oracle. This oracle is
designed to understand and validate the constraints
applied to the database schema, such as unique

and check constraints. The oracle analyzes each
generated input to verify whether it adheres to
the defined constraints and predicts the expected
outcomes. This validation step ensures that the
generated inputs conform to the specified rules of
the constraints, thereby focusing on testing the
logical consistency and correctness of the DBMS.

The inputs are executed on the target DBMS,
and the actual results are captured. The actual
results are then comapared with the expected
outcomes. Any discrepancies between the actual
and expected results indicate potential logical bugs
related to constraint enforcement.

The final phase of the approach involves feedback
and refinement. The discrepancies identified are
crucial for this process, as they indicate potential
logical bugs. However, the feedback loop is not lim-
ited to just identifying discrepancies, it also incor-
porates other valuable insights gathered during the
testing phase. Specifically, the feedback includes
information on how close the generated inputs are
to the values tested in the database. Additionally,
the feedback considers whether specific inputs trig-
ger errors that were not previously encountered,
or if they trigger errors specifically related to the
constraints. These insights are fed back into the
evolutionary algorithm, guiding the selection and

Input Generator Table Generator

Constraint-aware
Oracle

DBMS

 Constraints

Fitness Function

DBMS
output

Predicted
output

Bug
Found?

Report Bug

Mutation engine

Queries

Yes

No

Start

Mutated
Inputs

Figure 3: Framework Architecture Diagram

6

mutation of individuals that are more likely to un-
cover hidden logical bugs. Through this iterative
process, the system continuously improves its abil-
ity to generate inputs that effectively test DBMS
constraints, leading to a more comprehensive and
robust solution for detecting logical bugs.

3.1 Input Generation Using Evolu-
tionary Algorithm

Our approach to generating test inputs for de-
tecting logical bugs in DBMS constraints lever-
ages PonyGE2 [5], a grammatical evolutionary al-
gorithm framework. Common fuzzing tools, such
as SQLancer, typically rely on random input gen-
eration or mutation strategies to create test cases.

In contrast, our method uses PonyGE2 [5]
to ensure the generation of syntactically and
semantically valid SQL queries tailored for testing
constraints. This involves defining a detailed
grammar for SQL that guides the creation of valid
and diverse queries. Our approach employs an
evolutionary algorithm [14], which evolves these
queries over successive generations based on their
fitness scores 4.

To illustrate, we start by generating a table with
constraints, using the grammar. For example:

1 CREATE TABLE t1 (

2 id INT AUTO_INCREMENT PRIMARY KEY ,

3 c1 INT UNIQUE COLLATE utf8mb4_bin ,

4 CONSTRAINT v1 CHECK (c1 > SQRT (9))

5);

This table includes a primary key, a unique
constraint on c1, and a check constraint v1 to en-
sure all values are greater than the square root of 9.

Next, PonyGE2, using the BNF grammar, gen-
erates SQL queries to interact with this table. Ini-
tially, the generated queries are simple Insert or
Update functions:

1 INSERT INTO t1(c1) VALUES (30);

2 INSERT INTO t1(c1) VALUES (1.5); --

Flagged by the check constraint

As the algorithm evolves, it produces increasingly
complex queries that are more likely to thoroughly
test the DBMS constraints. This progression is
driven by the evolutionary process, where the
fitness of the individuals in each generation is
evaluated, and those with higher fitness scores are
selected for further refinement. PonyGE2, in its
default setup, uses a fixed number of generations as
the stopping criterion. This means the algorithm
continues to evolve solutions for a pre-defined
number of generations, after which it stops.

3.2 Constraint Validation

The next step involves processing the generated in-
puts through a constraint-aware oracle. This oracle
is capable of parsing SQL queries and applying the
constraint logic defined in the database schema. It
evaluates whether each input respects constraints
such as unique constraints and check constraints.
The oracle then predicts the expected outcome for
each input, simulating the correct behavior of the
DBMS.

For example, given the table creation:

1 CREATE TABLE t1 (

2 id INT AUTO_INCREMENT PRIMARY KEY ,

3 c1 INT UNIQUE COLLATE utf8mb4_bin ,

4 CONSTRAINT v1 CHECK (c1 > 10)

5);

Listing 5: Table creation with constraints

The oracle is able to first understand that the
constraint in use is that the input has to be:

"input" > 10

And then is able to parse the input query to ex-
ctract the value and test it against the constraint,
for example for a queries like this:

1 INSERT INTO t1(c1) VALUES (50);

2 INSERT INTO t1(c1) VALUES (-2);

The oracle can evaluate:

50 > 10 -- return TRUE

-2 > 10 -- return FALSE

With this evaluation, the oracle recognizes if, in
this case, the input violates or respect the CHECK

(c1 > 10) constraint and should predict that the
DBMS will reject or accept this insertion.

3.3 Query Execution and Evaluation

The inputs are then executed directly on the target
DBMS. The results of these executions could be:

• Success: The query executes without any er-
rors.

• Random Error: An error occurs during exe-
cution. This type of error can be generated by
very particular inputs produced by the gram-
mar that break the semantic correctness of the
SQL query.

• Specific Error Code ”Error 3819: Check
Constraint v1 is Violated”: This is a spe-
cific type of error that indicates a violation
of the check constraint ‘v1‘.This information
is interesting for the fuzzing process, as it
helps guide the evolution of test cases through
edge cases that may or may not violate these

7

Figure 4: PonyGE2 control flow. Source [5]

constraints, thereby refining the input genera-
tion strategy to explore the boundaries of con-
straint enforcement.

These execution results are captured and com-
pared against the expected outcomes predicted by
the oracle. The oracle can return one of two values:

• TRUE: Indicating that the input should pass
the constraints.

• FALSE: Indicating that the input should fail
the constraints.

The comparison process to identify potential log-
ical bugs is as follows:

• If the DBMS returns a constraint error (e.g.,
Error 3819) while the oracle returns TRUE,
it indicates a discrepancy because the input
should have passed according to the oracle.

• Conversely, if the DBMS executes the query
successfully but the oracle returns FALSE, it
also indicates a discrepancy because the input
should have failed according to the oracle.

Any such discrepancies between the actual
DBMS results and the oracle’s expected outcomes
are flagged as potential logical bugs (Figure 5).

3.4 Fitness Function and Feedback
Loop

The final step involves feeding the discrepancies
identified by the oracle back into the evolutionary
algorithm. The fitness function plays a crucial role
in this process by evaluating the effectiveness of the
generated queries in uncovering logical bugs. The
fitness function is a critical component that reacts
to feedback from both the DBMS and an oracle:

• DBMS Feedback: This includes checking for
errors, constraint violations, and the correct-
ness of the result set produced by the DBMS.

• Oracle Feedback: The oracle independently
validates the query results against the defined
constraints, ensuring they match the expected
behavior and flagging any deviations as poten-
tial logical bugs.

By guiding the fuzzing process toward inputs
that are more likely to reveal logical bugs, like those
that produce interesting or unexpected results, our
approach maintains the syntactic and semantic va-
lidity of the queries.

For example, a fitness function might score higher
for queries that are closer or farrer to the target
constraint; having the table 5 (with the constraint
CHECK (c1 > 10)) and queries like:

1 INSERT INTO t1(c1) VALUES (10.02355289350);

-- High score because is neart to the

target 10.

2 INSERT INTO t1(c1) VALUES (123184738294328)

; -- High score because is far from the

target 10.

3 INSERT INTO t1(c1) VALUES (356); -- Lower

score

The feedback loop allows the algorithm to refine
its input generation process. By selecting and mu-
tating the best individuals based on the feedback,
the algorithm focuses on creating inputs that are
more likely to reveal logical bugs in constraints.
This iterative process enhances the thoroughness
and effectiveness of the DBMS testing, continuously
improving the detection of logical bugs.

8

Figure 5: Detection of logical bug workflow:
A potential bug is identified when a query suc-
cessfully executes in the database yet fails the
oracle validation, indicating a constraint viola-
tion missed by the DBMS. Conversely, a bug
is also flagged if a query raises an error in the
database but passes the oracle validation, sug-
gesting an overly restrictive DBMS constraint.

4 Implementation Details

This chapter provides a specific look at the im-
plementation details of our proposed system for
detecting logical bugs in DBMS constraints. We
will explore the key components that constitute the
system architecture, detailing how each part con-
tributes to the overall functionality. The chapter
is structured to first introduce the system’s archi-
tecture, followed by a discussion of the implemen-
tation specifics of each component, and finally, the
interaction between these components within the
system.

4.1 System Architecture

Our system architecture for detecting logical bugs
in DBMS constraints is tailored specifically for
MySQL-like languages [16, 17]. Although the sys-
tem is highly specialized, it offers a degree of exten-
sibility, allowing for the inclusion of new data types
[18] and controls through focused effort. The archi-
tecture consists of three main components and the
DBMS:

• Table Generator: Responsible for creating
the tables in the DBMS with the appropriate
constraints.

• Constraint-Aware Oracle: Designed to un-

derstand and validate the constraints applied
to the database schema, ensuring that the gen-
erated test cases are assessed against the ex-
pected behavior.

• PonyGE2: Incorporates the input generator,
the fitness function, and the mutation engine,
driving the evolutionary algorithm that gener-
ates and refines the SQL queries used for test-
ing.

Figure 3 illustrates the interaction between the
components.

4.2 System Details

Our system’s implementation is composed of sev-
eral interrelated components, each designed to ful-
fill a specific role in the process of detecting log-
ical bugs in DBMS constraints. These compo-
nents work together to ensure that the generated
SQL queries are both syntactically and semanti-
cally valid, and that they effectively test the con-
straints defined in the database schema.

4.2.1 Table Generator

The Table Generator is the component responsible
for creating the database tables that will be used in
the testing process. This generator is implemented
using IslaSolver [28], a grammar-aware string con-
straint solver that allows for the precise definition
of table schemas, including various constraints such
as unique and check constraints. The generator is
highly configurable, enabling the creation of tables
with different data types, indexes, and constraints
tailored to the specific needs of the test cases. This
flexibility ensures that the system can thoroughly
evaluate how the DBMS enforces constraints across
a wide range of scenarios.

Grammar Design Choices

In designing the grammar for the Table Generator,
several key choices were made to ensure that the
generated tables and queries would be effective in
testing the DBMS’s ability to enforce constraints.
These choices were guided by the need to reflect
common scenarios in real-world applications while
also challenging the DBMS with diverse and
complex inputs.

One of the primary decisions was the selec-
tion of data types. The grammar includes INT,
VARCHAR, and FLOAT, which represent a broad
spectrum of data categories: numeric, textual, and
floating-point values. These types were chosen
for their prevalence in typical database schemas.
By focusing on these key types, the grammar is
capable of generating tables that are representative

9

of real-world applications while also exploring a
wide range of potential logical bugs that may
arise from the interaction of these data types with
various constraints.

Another design choice was the inclusion of
various arithmetic and logical operations within
the grammar. Operations such as >, <, =, != and
LIKE, as well as functions like ABS, COS, and LOG,
were incorporated to test how the DBMS handles
complex expressions in CHECK constraints. By
using a diverse set of operators and functions,
the system is equipped to challenge the DBMS’s
ability to evaluate and enforce constraints under
different conditions. This diversity ensures that
the generated queries can uncover subtle bugs that
might occur when the DBMS processes these oper-
ations in conjunction with the specified constraints.

Additionally, the grammar was designed to gen-
erate both simple and complex conditions within
the constraints, such as direct comparisons (c1 >

0) and more involved expressions that combine
functions. This choice was made to ensure that
the system can test the DBMS’s handling of both
straightforward and more intricate constraint logic,
providing a more comprehensive evaluation of its
constraint enforcement capabilities.

These strategic design choices allow the Table
Generator to produce a wide variety of SQL queries
and table schemas, ensuring thorough testing of
the DBMS’s ability to enforce constraints across
different data types and operations. By covering
a broad spectrum of potential scenarios, the
system is better equipped to detect logical bugs
that may compromise the integrity of the database.

For example, the grammar might define a simple
table creation command as follows:

"<start >": "CREATE TABLE t1 (id INT

PRIMARY KEY , c1 <data -type > UNIQUE

CHECK <check -constraint >");"

"<data -type >": [

"INT",

"VARCHAR",

],

"<check -constraint >":[

"(c1 > 0)",

"(c1 < 10)",

"(c1 = ’abc ’),

],

Listing 6: BNF Grammar for SQL Table
Creation

This example illustrates how the generator creates
a table with a primary key and a column that en-

forces both a unique constraint and a check con-
straint.

4.2.2 Constraint-Aware Oracle

The Constraint-Aware Oracle is the core com-
ponent responsible for validating the inputs
generated by the system against the constraints
defined in the database schema. This oracle is
implemented with a custom parser and validation
engine written in Python. Its primary function is
to predict the expected outcomes of the database
operations based on the constraints, simulating
the correct behavior of the DBMS. The oracle
must accurately replicate the DBMS’s processing
logic, particularly in handling unique constraints
and check constraints, to detect any discrepancies
that indicate logical bugs. The design of the oracle
is DBMS-specific for MySQL, requiring specific
tailoring to ensure it behaves consistently with the
target.

To illustrate how the Constraint-Aware Oracle
functions, consider the following table definition:

1 CREATE TABLE t1 (

2 id INT AUTO_INCREMENT PRIMARY KEY ,

3 c1 INT UNIQUE COLLATE utf8mb4_bin ,

4 CONSTRAINT v1 CHECK (c1 > 10)

5);

And the query to be tested:

1 INSERT INTO t1(c1) VALUES (15);

The oracle processes the following steps:

1. Parsing the Table Schema: The oracle identi-
fies the CHECK constraint c1 > 10 on column
c1, extracting the operator > , the value 10,
and the data type INT.

2. Parsing the Input Query: The oracle parses
the input query, noting the value 15 and its
type INT.

3. Evaluating the Constraint: Using the ex-
tracted information, the oracle evaluates the
constraint:

1 if 15 > 10:

2 return True

3 else:

4 return False

Listing 7: Constraint Evaluation

Since the condition 15 > 10 evaluates to TRUE,
the DBMS should accept the insertion. This pro-
cess demonstrates how the oracle simulates the
DBMS’s behavior to ensure that constraints are
correctly enforced.

10

Implementation Details

The implementation of the Constraint-Aware
Oracle involved an in-depth analysis of MySQL’s
documentation to understand the interactions be-
tween different data types, particularly in how they
are compared within the context of CHECK con-
straints. The primary focus was on ensuring that
the oracle could accurately predict and validate
the outcomes of queries involving these constraints.

Given that CHECK constraints are heavily
dependent on how data types interact during com-
parisons, I heavily studied these interactions. This
involved a significant amount of manual testing
and trial-and-error to identify specific behaviors
and edge cases that were not explicitly covered in
the documentation. Through this process, I gained
insights into how MySQL handles various data
types, which informed the design and logic of the
oracle.

However, it is important to note that the imple-
mentation assumes that MySQL correctly handles
these data types under typical conditions. This as-
sumption could introduce a bias into the system, as
the oracle’s effectiveness is partly dependent on the
correctness of MySQL’s type handling. If MySQL
itself has undocumented behaviors or bugs related
to type handling, the oracle might not detect logical
bugs as effectively.

4.2.3 PonyGE2 Framework

The input generation and mutation processes
are managed by PonyGE2 [5] , a grammatical
evolutionary algorithm programming framework.
PonyGE2 plays a central role in generating SQL
queries that are not only diverse but also maintain
syntactic and semantic validity. The framework
uses a detailed grammar for SQL, which guides
the creation of queries that can effectively test the
DBMS constraints.

For example, the grammar might define SQL in-
sert operation as follows:

1 <operation > ::= <insert >

2

3 <insert > ::= "INSERT INTO t1 (c1) VALUES

(("<values >"));"

4

5 <values >::= 0|1|2|3|4|5|6|7|8|9

Listing 8: BNF Grammar for SQL
Operations

The evolutionary algorithm within PonyGE2 it-
eratively refines the generated queries based on
feedback from the oracle and the DBMS. This feed-
back loop improve the detection of logical bugs, as
it allows the system to focus on generating inputs

that are more likely to expose hidden vulnerabili-
ties. The mutation engine within PonyGE2 intro-
duces variability into the queries by altering spe-
cific parts, such as the values used in comparisons
or the structure of the SQL statements. This tar-
geted mutation process allows the system to explore
a diverse set of possible scenarios, covering a wider
range of potential edge cases that could reveal hid-
den bugs. By combining different mutations across
generations, the algorithm maintains a broad explo-
ration of the search space, increasing the likelihood
of uncovering logical bugs.

4.2.4 Integration and Feedback Loop

The integration of these components within the sys-
tem, as shown in figure 3, is designed to be seam-
less, with each part contributing to a continuous
feedback loop that enhances the effectiveness of the
testing process. After the initial queries are gener-
ated and refined by PonyGE2, they are executed on
the DBMS. The results are then validated by the
Constraint-Aware Oracle. Any discrepancies iden-
tified between the expected and actual outcomes
are flagged as possible bugs, then the interesting in-
formations taken during the execution are fed into
the fitness function, which uses this information to
further refine the input generation process.

4.2.5 Fitness Function for the Evolutionary
Algorithm

In evolutionary algorithms, the fitness function is
the element that drives the optimization process.
It provides a measure of how well an individual
performs with respect to the problem’s objectives.
This paragraph details the construction of the fit-
ness function used in our evolutionary algorithm,
designed to evaluate test cases based on multiple
criteria.

Given the complexity and varied nature of the
problem, our fitness function is a weighted com-
posite of several components, each representing a
different aspect of input quality. The use of weights
allows us to control the importance of each compo-
nent, tailoring the fitness function to the specific
goals of our DBMS testing framework.

Weighted Fitness Function

A weighted fitness function is a mathematical con-
struct that aggregates multiple objectives into a
single score, with each objective being assigned a
specific weight. These weights allow the algorithm
to prioritize certain goals over others.

In our context, the weighted fitness function eval-
uates test inputs based on:

• Proximity to Expected Outcomes: The
similarity between the generated input and

11

a predefined target value present in the con-
straint.

• Error Discovery: The ability of the input to
trigger new, previously undetected errors.

• Constraint Adherence: Whether the input
respects the system’s constraints.

• Execution Time: Unlike typical performance
metrics, we prioritize slower inputs, which
might indicate more complex queries or edge
cases that challenge the DBMS.

• Syntactical Correctness: Inputs that are
syntactically malformed are heavily penalized
to ensure the focus remains on generating valid
SQL queries.

The Fitness Function

The fitness function F used in our evolutionary al-
gorithm is defined as shown in Figure 6:

Where:

• w1, w2, w3, w4 are the weights that determine
the contribution of each component to the
overall fitness score.

• d(x, x∗) is the distance between the generated
input x and the expected value x∗, defined as:

d(x, x∗) =

{
|x− x∗| if x and x∗ are numbers

L(x, x∗) if x and x∗ are strings

Here, L(x, x∗) is the Levenshtein distance,
which measures the minimum number of
single-character edits (insertions, deletions, or
substitutions) needed to transform one string
into the other.

• Errors(x) is a binary function that rewards in-
puts which trigger new errors:

Errors(x) =

{
1 if x triggers a new error

0 otherwise

• Constraint(x) penalizes inputs that violate
system constraints, defined as:

Constraint(x) =

{
1 if x violates a constraint

0 otherwise

• T (x) is the execution time of the input x. Un-
like in typical optimization scenarios, here we
prefer slower execution times as they may in-
dicate more complex and thorough testing:

T (x) = Execution time of x.

• Syntax(x) introduces a penalty for malformed
SQL inputs:

Syntax(x) =

{
∞ if x results in syntax error

0 if x is syntactically correct

Choosing the Weights

Selecting the appropriate weights w1, w2, w3, w4 is
a custom problem that requires consideration of
the specific goals and context of the DBMS test-
ing framework. The relative importance of each
component may vary depending on factors such
as the types of bugs being targeted, and the con-
straints of the testing environment. The process of
weight selection involves empirical testing and iter-
ation to achieve the desired balance and to ensure
that the evolutionary algorithm effectively priori-
tizes the most relevant aspects of input quality.

5 Experimental Validation

We evaluate our tool on real-world most popular
DBMS system, MySQl, to answer the following
questions:

Q1: How effective is our tool in finding bugs
in real world scenarios?

This question aims to evaluate the effectiveness
of our tool by determining its ability to identify
logical bugs in MySQL, specifically those related to
CHECK and UNIQUE constraints. The effectiveness
will be assessed based on the number and types
of bugs detected in a real-world database setup,
providing an indication of the tool’s practical
utility in real-world applications.

Q2: What is the impact of different evolution-
ary algorithm parameters on the effectiveness
of the fuzzing process?

This question explores how varying parameters
within the evolutionary algorithm, such as the
number of individuals per generation or the num-
ber of generations, affect the tool’s performance in
detecting logical bugs. The impact will be mea-
sured by conducting an ablation study, where the
performance of the tool is evaluated under different
configurations of the evolutionary algorithm. This
will help determine which parameters are most
critical for optimizing bug detection and constraint
coverage.

12

F = w1 · d(x, x∗) + w2 · Errors(x) + w3 · Constraint(x) + w4 · (
1

1 + T (x)
) + Syntax(x)

Figure 6: Fitness function used in the evolutionary algorithm.

Q3: How does our tool’s bug detection ca-
pability compare to state-of-the-art tools like
SQLancer?

This question focuses on comparing the perfor-
mance of our tool with SQLancer in terms of the
number of bugs detected, the types of bugs found,
and the overall coverage of constraints tested. The
comparison will involve running both tools for the
same amount of time and analyzing their outputs.

Ethical and Practical Considerations in
Database Testing

In the field of Database Management Systems
(DBMS) testing, it is both an ethical and practical
standard to use synthetically generated databases
rather than real-world databases. This approach
is especially critical in the context of fuzzing for
logical bugs, where the testing process involves
extensive manipulation of data and constraints
that could lead to unintended consequences if
applied to real databases containing sensitive or
proprietary information.

For ethical reasons, the testing conducted in
this study exclusively utilized synthetic databases.
Using real databases could expose sensitive data
or disrupt operational environments, leading to
significant privacy concerns and potential security
breaches. By employing synthetically generated
schemas and data, the testing process adheres
to ethical standards, ensuring that no actual
data is compromised during the evaluation of the
system. Furthermore, the testing methodology
received approval from the ethical committee of the
University of Twente, confirming that all practices
followed comply with ethical research guidelines.

Beyond ethical concerns, the use of synthetic
databases is also driven by practical considerations.
In DBMS testing, particularly when detecting log-
ical bugs, there are no established benchmark
databases that can be universally applied across
different systems. This limitation arises from
the specialized nature of logical bug detection,
which requires test cases tailored to the specific
behaviors and constraint-handling mechanisms of
each DBMS.

Logical bugs often result from complex inter-
actions between various data types, constraints,
and SQL operations, which can differ significantly
across different DBMS implementations. As a
result, a one-size-fits-all benchmark database does
not exist, and generic benchmarks are insufficient
for thoroughly evaluating the effectiveness of
fuzzing tools in this context.

To overcome this challenge, the testing frame-
work in this study relies on a Table Generator to
create a diverse array of database schemas and
queries. These are specifically tailored to test the
DBMS’s ability to enforce constraints, allowing for
a comprehensive evaluation of its robustness. This
approach not only adheres to ethical testing prac-
tices but also addresses the practical necessity of
creating customized test environments that reflect
the unique characteristics of the DBMS under eval-
uation.

5.1 Experimental Setup

The experiments will be conducted on a Dell XPS
15 9520 with the following specifications:

• Operating System: Ubuntu 22.04.4 LTS
(Jammy Jellyfish)

• Kernel: 6.5.0-44-generic x86 64

• CPU: 14-core (6-mt/8-st) 12th Gen Intel Core
i7-12700H

• RAM: 31.01 GiB

The evaluation will focus on the DBMS plat-
form of MySQL . We will test for logical bugs in
CHECK and UNIQUE constraints using our devel-
oped fuzzing tool. The environment will be con-
trolled, and each tool will run for a fixed period to
ensure consistent and comparable results.

5.2 Metrics for Evaluation

To comprehensively evaluate our tool’s effective-
ness, we employ a set of metrics tailored to assess
different aspects of the tool’s performance. Each
metric is designed to answer specific research ques-
tions, ensuring that our evaluation is both targeted
and thorough.

13

Query Generation Rate

This metric measures the number of SQL queries
generated per unit of time during the fuzzing pro-
cess. It provides insight into the tool’s efficiency in
producing diverse queries.

Relevance:

• Q1 (Real-World Scenarios): Understanding
the rate at which queries are generated is cru-
cial for assessing the tool’s ability to cover a
wide range of inputs in real-world scenarios.

• Q2 (Impact of Evolutionary Algorithm):
Query generation rate can be influenced by
different evolutionary parameters, making it a
key metric for understanding how these param-
eters affect overall performance.

• Q3 (Comparison with SQLancer): This metric
helps compare the efficiency of our tool with
SQLancer by evaluating which tool can gener-
ate and test more queries in a given time frame.

Logical Bug Detection

This metric tracks the number of logical bugs
detected by the tool during the testing phase. It is
particularly focused on bugs related to CHECK and
UNIQUE constraints.

Relevance:

• Q1 (Real-World Scenarios): This metric helps
in assessing the tool’s effectiveness in real-
world settings by identifying the number of log-
ical bugs.

• Q3 (Comparison with SQLancer): This met-
ric directly addresses the effectiveness of the
tool in detecting logical bugs compared to
SQLancer, providing a measure of comparative
performance.

False Positive Rate

This metric measures the proportion of reported
bugs that are not actual bugs. A high false positive
rate indicates inefficiency in the oracle’s ability to
accurately detect logical bugs.

Relevance:

• Q3 (Comparison with SQLancer): This met-
ric is crucial for comparing the accuracy and
reliability of our tool’s bug detection capabili-
ties. A low false positive rate indicates a more
precise tool, and benchmarking this against
SQLancer provides a valuable perspective on
our tool’s performance.

Query Validity

This metric assesses the proportion of generated
queries that are syntactically correct, ensuring
that the tool produces valid SQL queries that can
be executed by the DBMS.

Relevance:

• Q1 (Real-World Scenarios): Query validity is
critical for ensuring that the tool functions ef-
fectively in real-world scenarios.

• Q2 (Impact of Evolutionary Algorithm): This
metric is relevant when adjusting evolutionary
parameters to ensure that query generation re-
mains robust and valid.

• Q3 (Comparison with SQLancer): Comparing
the validity of queries generated by our tool
versus SQLancer can highlight differences in
the robustness of the query generation process.

5.3 Experiments

5.3.1 Detection Capabilities

To evaluate the detection capabilities of our tool,
we conducted a 24-hours run using the base set-
tings. These settings were chosen based on litera-
ture [4, 3]. The base settings used were a popula-
tion size of 50, 50 generations, a crossover rate of
0.75, and 10 mutation events per generation.

This run was designed to simulate a real-world
testing scenario, applying the tool to a MySQL
database to assess its effectiveness in identifying
logical bugs related to CHECK and UNIQUE con-
straints.

Results and Analysis

Over the course of the 24-hours run, the tool gener-
ated and tested a total of 69,293,700 queries. The
performance of the tool was measured across sev-
eral key metrics, which are summarized below.

• Query Generation Rate: The tool main-
tained an average rate of approximately 802
queries per second, demonstrating a high level
of efficiency in generating and executing test
cases within the given time frame.

• Invalid Query Rate: Out of the total queries
generated, 82% were valid. This moderate rate
of invalid queries suggests that while the tool is
aggressive in exploring the search space, there
is significant room for optimizing the query
generation process to reduce the number of un-
executable queries.

14

• Resource Usage: During the run, the tool’s
resource usage was closely monitored. The
tool consumed approximately 48% of CPU re-
sources. Memory usage was also significant,
with a maximum resident set size of 495,312
kB. Despite the intensive workload, the sys-
tem’s performance remained stable throughout
the run.

• Logical Bugs Detected: The tool success-
fully identified 3 possible logical bugs related to
CHECK constraints. These bugs require further
investigation to confirm whether they repre-
sent real issues to the integrity of the database.

DBMS Total Queries Bugs Detected

MySQL 69,293,700 3

Table 1: Summary of Detection Results in
MySQL

The results of this initial run demonstrate the
tool’s capacity to efficiently generate and test a sub-
stantial number of queries in a relatively short pe-
riod. The resource usage metrics indicate that the
tool operates effectively within acceptable system
performance limits. However, the rate of invalid
queries highlights an area for improvement. Reduc-
ing the invalid query rate could enhance the tool’s
effectiveness by increasing the proportion of valid,
executable queries that directly contribute to de-
tecting logical bugs.
Despite the invalid query rate, the detection of

3 possible logical bugs underscores the tool’s po-
tential in uncovering issues related to DBMS con-
straints. These findings indicate that the tool is
capable of identifying scenarios where constraints
might fail, but further investigation is needed to
confirm the validity of the detected bugs.

5.3.2 Ablation Study

To assess the impact of various parameters within
the evolutionary algorithm on the tool’s perfor-
mance, we conducted an ablation study. The pa-
rameters were systematically varied to observe their
effects on the efficiency and effectiveness of the tool
in generating and validating queries. The parame-
ters under consideration include:

• Population Size: Tested values of 25, 50, and
100 were chosen to explore how the number of
individuals per generation influences the diver-
sity and quality of generated queries.

• Number of Generations: We tested 25, 50,
and 100 generations to determine how long the
evolutionary process should continue to maxi-
mize the discovery of logical bugs.

• Mutation Events: This parameter was var-
ied with values of 1, 10, and 20 to assess how
the frequency of mutation affects the overall
tool performance.

• Crossover Rate: Values of 0.6, 0.75, and
0.9 were tested to understand the impact of
crossover on maintaining a balance in the evo-
lutionary process.

Results and Analysis

The results of the ablation study are summarized
in Tables 2 and 3. These tables provide insights
into how each parameter influences the tool’s per-
formance across two key metrics, Query Generation
Rate and Query Validity. The results are summa-
rized below.

• Population Size: Increasing the population
size from 25 to 100 resulted in a higher num-
ber of total queries generated, with a trade-off
in query validity. A larger population leads
to more diverse query generation but may also
introduce more invalid queries due to the in-
creased exploration of the search space.

• Number of Generations: The results indi-
cate that increasing the number of generations
slightly improves the query validity, as the evo-
lutionary process has more time to refine the
solutions. However, the impact on the query
generation rate is minimal.

• Mutation Events: A lower number of mu-
tation events (1) resulted in the highest query
generation rate. Conversely, higher mutation
events (20) slowed down the generation rate
and reduced validity, indicating that too much
mutation may disrupts the evolutionary pro-
cess.

• Crossover Rate: The crossover rate of 0.6
seems to good balance the query generation
rate and validity. A higher crossover rate (0.9)
led to a decrease in query validity, likely due
to excessive mixing of genetic material, which
can lead to less stable solutions.

5.3.3 Tool Comparison with SQLancer

In this section, we evaluate the performance of
our tool in comparison with the state-of-the-art
tool SQLancer across multiple oracles. The goal
of this comparison is to assess how well our tool,
which focuses on DBMS constraints such as CHECK
and UNIQUE constraints, performs relative to
SQLancer in terms of query generation, validity,
bug detection, and false positives.

15

Total Queries Query Gen/sec Query Validity

481,200 801 84.12%

Table 2: Results for Base Parameter Configuration (Population 50, Generations 50, Crossover
Rate 0.75, Mutation Events 10)

Parameter Value Total Queries Query Gen/sec Query Validity

Population Size 25 432,600 721 83.27%
Population Size 100 510,600 851 80.49%
Generations 25 424,800 708 81.68%
Generations 100 454,800 758 83.12%

Mutation Events 1 660,000 1,100 79.95%
Mutation Events 20 357,600 596 75.23%
Crossover Rate 0.6 489,000 815 84.58%
Crossover Rate 0.9 439,200 732 78.61%

Table 3: Impact of Varying Key Parameters on Tool Performance

SQLancer employs three different oracles, PQS,
TLP, and NoREC, each of which detects logical
bugs through query transformation and result
comparison techniques. In contrast, our tool uses
a custom oracle specifically designed for constraint
enforcement in DBMS, focusing more narrowly on
violations related to constraints.

The comparison between our tool and SQLancer
is structured around the following key metrics:

• Total Queries Generated: Measures the
raw efficiency of each tool in producing queries
over a set period.

• Query Validity: Assesses the proportion of
generated queries that are valid and executable
by the DBMS. A higher validity rate indicates
more efficient and focused query generation.

• Bugs Detected: Tracks the number of logical
bugs identified by each tool, with a particular
emphasis on bugs related to constraints.

• False Positives: Measures the proportion of
incorrectly flagged bugs, helping to assess the
accuracy and reliability of the oracle used.

Result and Analysis

Both tools were run on the same DBMS
(MySQL)for an hour under identical conditions to
ensure a fair comparison.

• Query Generation: SQLancer significantly
outperformed our tool in terms of total queries
generated. SQLancer’s PQS oracle gener-
ated nearly 30 million queries, with TLP and
NoREC generating 20 million and 15 million
queries, respectively. In contrast, our tool gen-
erated 2.8 million queries.

• Query Validity: SQLancer also achieved
higher query validity across its oracles. PQS
had a 95% validity rate, NoREC achieved 96%,
and TLP reached 84%. Our tool, by com-
parison, had a query validity of 83%, which
is comparable to TLP but still falls short of
the other SQLancer oracles. This highlights
that while our tool is effective in exploring the
search space, further optimization is needed to
improve the ratio of valid queries.

• Bug Detection: While SQLancer generated
far more queries with higher validity, our tool
identified 1 bug related to DBMS constraints,
whereas SQLancer did not detect any bugs
through its oracles. NoREC detected 1 bug,
matching our tool in this regard. This dif-
ference is likely because SQLancer has been
widely used and has already exposed and
helped correct many bugs in DBMS.

• False Positives: Our tool reported 34 false
positives, while SQLancer had none with PQS
and TLP, and 1 false positive with NoREC.
This suggests that while our tool is effective at
detecting bugs, its custom oracle needs further
refinement to reduce incorrect bug reports.

Discussion and Conclusion

This comparison highlights the differences between
our tool and SQLancer. SQLancer excels at
generating large volumes of valid queries and
minimizing false positives, making it a highly
efficient general-purpose DBMS testing tool. How-
ever, despite generating fewer queries, our tool’s
specialized focus on constraint testing allowed it to
detect bugs that SQLancer may miss.

16

Tool Oracle Total Queries Query Validity (%) Bugs False Positives

Our Tool Custom Oracle 2,889,600 83% 1 34
SQLancer PQS 29,974,663 95% 0 N/A
SQLancer TLP 20,191,952 84% 0 N/A
SQLancer NoREC 15,789,862 96% 0 1

Table 4: Tool Comparison with SQLancer

Future improvements to our tool should focus
on increasing query validity, enhancing its query
generation rate, and reducing the false positive
rate. While SQLancer is more efficient in broader
DBMS testing, our tool proves valuable in detect-
ing constraint-specific issues, making it a possible
complement to SQLancer in DBMS testing strate-
gies.

6 Current Limitations

The current implementation of our tool presents an
approach for detecting specific logical bugs related
to DBMS constraints, but several limitations need
to be addressed to enhance its effectiveness and
applicability.

Our tool is specialized for MySQL-like lan-
guages. Extending support to other popular
DBMS platforms, such as PostgreSQL and Oracle,
would increase its utility and ensure broader appli-
cability. Each DBMS has unique features, such as
different implementations of constraints and data
types. These differences can affect how constraints
are enforced and how logical bugs might manifest,
highlighting the need for broader support to make
the tool versatile across different environments.
Additionally, while the constraint-aware oracle has
been effective in detecting logical bugs, further
refinement is needed to enhance its accuracy, es-
pecially in handling complex constraint scenarios,
like those with constraints that involve intricate
conditions (e.g., combine multiple columns with
AND/OR logic).

Finally a significant limitation lies in the chal-
lenge of accurately emulating the behavior of a
database. Databases are complex systems with
intricate internal mechanisms, and emulating ev-
ery possible interaction is inherently difficult. This
complexity is compounded by the fact that each
DBMS has its own unique implementation details,
even if the SQL grammar is similar. For this reason,
even if the syntax and basic operations may be sim-
ilar, the way each system handles query optimiza-
tion, data storage, indexing, and constraint enforce-
ment can differ. These differences make it challeng-
ing to create a universal oracle that can effectively

validate constraints across multiple platforms. The
oracle must be meticulously tailored to replicate the
behavior of each target DBMS accurately. Achiev-
ing this level of detail is labor-intensive and requires
deep knowledge of each system’s internals.

7 Future Works

There are several promising directions for future
research. Continuing to refine and enhance the
oracle is a critical area of future work. Achieving a
level of completeness in emulating DBMS behavior
would allow the oracle to be reused for testing
with more complex queries and different mutation
approaches. A fully developed oracle could signifi-
cantly improve the accuracy and reliability of the
testing process. Moreover a fully developed oracle
could be used as a base for the creation of other
oracles that could be used for different DBMSs.

Exploring other types of constraints is another
interesting direction. While our current focus
is on unique and check constraints, incorpo-
rating tests for foreign keys and other advanced
constraints would provide a more comprehensive
assessment of a DBMS’s reliability and correctness.

Another possible direction could be to integrate
this method with other fuzzers for logical bugs. By
enabling these fuzzers to also focus on table con-
straints, they can incorporate our method to pro-
vide more refined and comprehensive testing. This
integration would allow fuzzers to not only use their
logical bug detection methodologies but also to vali-
date constraints, enhancing the overall effectiveness
of DBMS testing.

8 Conclusion

In this thesis, we set out to address the need for
detecting logical bugs in Database Management
Systems (DBMSs), particularly those related to
constraints such as unique and check constraints.
These constraints are essential for maintaining data
integrity and consistency, yet their complex na-
ture makes them difficult to thoroughly check with
generic testing tools.

17

To tackle this challenge, we proposed a novel ap-
proach combining evolutionary algorithms and an
oracle to detect logical bugs specifically in DBMS
constraints. Our approach uses an evolutionary
algorithm with mutation to guide the generation
of new inputs, which are then validated by a
constraint-aware oracle. This oracle is designed
to understand and validate inputs against the de-
fined constraints, ensuring that any discrepancies
are identified as potential logical bugs.

8.1 Summary of Contributions

• Oracle Design: We developed an oracle ca-
pable of understanding and validating inputs
against DBMS constraints, ensuring that gen-
erated test cases reflect the expected behavior.

• Fuzzing Framework: We introduced a
fuzzing framework specifically designed to de-
tect logical bugs related to DBMS constraints,
which are often overlooked by traditional test-
ing methodologies.

• Evaluation: We evaluated our framework by
testing it on real-world DBMS systems, specif-
ically MySQL, to assess its ability to detect
logical bugs related to constraints.

8.2 Summary of Results

To address the research questions, we evaluated the
tool in three ways: with a detection capabilities
evaluation, through an ablation study, and in com-
parison with SQLancer.

• Standalone Evaluation: The tool generated
69,293,700 million queries with a validity rate
of 83%, identifying 3 constraint-specific bug re-
lated to CHECK and UNIQUE constraints.

• Ablation Study: Varying parameters in the
evolutionary algorithm impacted query gener-
ation rate, validity, and bug detection. Larger
populations and lower mutation rates led to
higher query validity, while more mutations re-
duced precision but increased exploration.

• Comparison with SQLancer: SQLancer
generated significantly more queries (up to
30 million) with higher validity rates (up to
96%). However, our tool was more effective
at identifying constraint-related bugs, which
SQLancer’s oracles missed.

In total, we identified 4 possible bugs, which will
be sent to the MySQL team for verification.

8.3 Summary of Future Work

We acknowledged several limitations in our current
implementation and identified promising directions
for future research. Refining and enhancing the or-
acle to achieve complete emulation of DBMS behav-
ior will significantly improve the accuracy and re-
liability of the testing process. Expanding support
to other DBMS platforms and exploring advanced
constraints such as foreign keys will provide a more
comprehensive assessment of DBMS reliability and
correctness.

8.4 Vision for the Future

Looking forward, there are several promising
directions for the continued development of our
tool. By building on the insights gained from
this research, we aim to contribute to the broader
field of DBMS testing, ultimately supporting the
development of more robust and secure database
management systems.

In conclusion, while our tool provides a solid
foundation for detecting logical bugs, we see sig-
nificant potential for future advancements. We are
committed to exploring these opportunities as they
arise, with the goal of advancing DBMS reliability
and security.

References

[1] Backus-Naur Form. url: https : / / en .

wikipedia . org / wiki / Backus % E2 % 80 %

93Naur_form.

[2] Martin Eberlein et al. “Evolutionary
Grammar-Based Fuzzing”. In: Search-Based
Software Engineering - 12th International
Symposium, SSBSE 2020, Bari, Italy,
October 7-8, 2020, Proceedings. Ed. by
Aldeida Aleti and Annibale Panichella.
Vol. 12420. Lecture Notes in Computer
Science. Springer, 2020, pp. 105–120. doi:
10.1007/978- 3- 030- 59762- 7_8. url:
https://doi.org/10.1007/978-3-030-

59762-7%5C_8.

[3] A. E. Eiben, Robert Hinterding, and Zbig-
niew Michalewicz. “Parameter control in evo-
lutionary algorithms”. In: IEEE Trans. Evol.
Comput. 3.2 (1999), pp. 124–141. doi: 10.
1109/4235.771166. url: https://doi.org/
10.1109/4235.771166.

18

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://doi.org/10.1007/978-3-030-59762-7_8
https://doi.org/10.1007/978-3-030-59762-7%5C_8
https://doi.org/10.1007/978-3-030-59762-7%5C_8
https://doi.org/10.1109/4235.771166
https://doi.org/10.1109/4235.771166
https://doi.org/10.1109/4235.771166
https://doi.org/10.1109/4235.771166

[4] A. E. Eiben and Selmar K. Smit. “Evolution-
ary Algorithm Parameters and Methods to
Tune Them”. In: Autonomous Search. Ed. by
Youssef Hamadi, Éric Monfroy, and Frédéric
Saubion. Springer, 2012, pp. 15–36. doi: 10.
1007/978-3-642-21434-9_2. url: https:
//doi.org/10.1007/978-3-642-21434-

9%5C_2.

[5] Michael Fenton et al. “PonyGE2: gram-
matical evolution in Python”. In: Genetic
and Evolutionary Computation Conference,
Berlin, Germany, July 15-19, 2017, Compan-
ion Material Proceedings. Ed. by Peter A. N.
Bosman. ACM, 2017, pp. 1194–1201. doi:
10.1145 /3067695.3082469. url: https:
//doi.org/10.1145/3067695.3082469.

[6] Jingzhou Fu et al. “Griffin : Grammar-Free
DBMS Fuzzing”. In: 37th IEEE/ACM In-
ternational Conference on Automated Soft-
ware Engineering, ASE 2022, Rochester, MI,
USA, October 10-14, 2022. ACM, 2022, 49:1–
49:12. doi: 10.1145/3551349.3560431. url:
https : / / doi . org / 10 . 1145 / 3551349 .

3560431.

[7] Xiyue Gao et al. “A Comprehensive Survey
on Database Management System Fuzzing:
Techniques, Taxonomy and Experimental
Comparison”. In: CoRR abs/2311.06728
(2023). doi: 10.48550/ARXIV.2311.06728.
arXiv: 2311.06728. url: https://doi.org/
10.48550/arXiv.2311.06728.

[8] Zu-Ming Jiang, Jia-Ju Bai, and Zhendong
Su. “DynSQL: Stateful Fuzzing for Database
Management Systems with Complex and
Valid SQL Query Generation”. In: 32nd
USENIX Security Symposium, USENIX Se-
curity 2023, Anaheim, CA, USA, August
9-11, 2023. Ed. by Joseph A. Calandrino
and Carmela Troncoso. USENIX Associa-
tion, 2023, pp. 4949–4965. url: https :

/ / www . usenix . org / conference /

usenixsecurity23/presentation/jiang-

zu-ming.

[9] Jinho Jung et al. “APOLLO: Automatic De-
tection and Diagnosis of Performance Regres-
sions in Database Systems”. In: Proc. VLDB
Endow. 13.1 (2019), pp. 57–70. doi: 10 .

14778/3357377.3357382. url: http://www.
vldb.org/pvldb/vol13/p57-jung.pdf.

[10] Jun Li, Bodong Zhao, and Chao Zhang.
“Fuzzing: a survey”. In: Cybersecur. 1.1
(2018), p. 6. doi: 10.1186/S42400- 018-
0002-Y. url: https://doi.org/10.1186/
s42400-018-0002-y.

[11] Yu Liang, Song Liu, and Hong Hu. “Detect-
ing Logical Bugs of DBMS with Coverage-
based Guidance”. In: 31st USENIX Security
Symposium, USENIX Security 2022, Boston,
MA, USA, August 10-12, 2022. Ed. by Kevin
R. B. Butler and Kurt Thomas. USENIX As-
sociation, 2022, pp. 4309–4326. url: https:
/ / www . usenix . org / conference /

usenixsecurity22/presentation/liang.

[12] Xinyu Liu et al. “Automatic Detection of
Performance Bugs in Database Systems us-
ing Equivalent Queries”. In: 44th IEEE/ACM
44th International Conference on Software
Engineering, ICSE 2022, Pittsburgh, PA,
USA, May 25-27, 2022. ACM, 2022, pp. 225–
236. doi: 10.1145/3510003.3510093. url:
https : / / doi . org / 10 . 1145 / 3510003 .

3510093.

[13] Eric Lo et al. “A framework for testing DBMS
features”. In: VLDB J. 19.2 (2010), pp. 203–
230. doi: 10.1007/S00778- 009- 0157- Y.
url: https://doi.org/10.1007/s00778-
009-0157-y.

[14] Sean Luke. Essentials of Metaheuris-
tics. second. Available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/.
Lulu, 2013.

[15] Barton P. Miller, Lars Fredriksen, and Bryan
So. “An Empirical Study of the Reliability of
UNIX Utilities”. In: Commun. ACM 33.12
(1990), pp. 32–44. doi: 10 . 1145 / 96267 .

96279. url: https://doi.org/10.1145/
96267.96279.

[16] MySQL. url: https://www.mysql.com/.

[17] MySQL Customers. url: https : / / www .

mysql.com/customers/.

[18] MySQL Data Types. url: https : / / dev .

mysql.com/doc/refman/8.4/en/data-

types.html.

[19] OWASP. Fuzzing. url: https : / / owasp .

org/www-community/Fuzzing.

[20] PostgreSQL Clients. url: https://wiki.
postgresql . org / wiki / %20PostgreSQL _

Clients.

[21] Manuel Rigger. SQLancer. GitHub reposi-
tory. url: https://github.com/sqlancer/
sqlancer.

[22] Manuel Rigger. “Testing Database Engines
via Pivoted Query Synthesis”. In: 14th
USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20).
Banff, Alberta: USENIX Association, Nov.
2020. url: https : / / www . usenix .

org / conference / osdi20 / presentation /

rigger.

19

https://doi.org/10.1007/978-3-642-21434-9_2
https://doi.org/10.1007/978-3-642-21434-9_2
https://doi.org/10.1007/978-3-642-21434-9%5C_2
https://doi.org/10.1007/978-3-642-21434-9%5C_2
https://doi.org/10.1007/978-3-642-21434-9%5C_2
https://doi.org/10.1145/3067695.3082469
https://doi.org/10.1145/3067695.3082469
https://doi.org/10.1145/3067695.3082469
https://doi.org/10.1145/3551349.3560431
https://doi.org/10.1145/3551349.3560431
https://doi.org/10.1145/3551349.3560431
https://doi.org/10.48550/ARXIV.2311.06728
https://arxiv.org/abs/2311.06728
https://doi.org/10.48550/arXiv.2311.06728
https://doi.org/10.48550/arXiv.2311.06728
https://www.usenix.org/conference/usenixsecurity23/presentation/jiang-zu-ming
https://www.usenix.org/conference/usenixsecurity23/presentation/jiang-zu-ming
https://www.usenix.org/conference/usenixsecurity23/presentation/jiang-zu-ming
https://www.usenix.org/conference/usenixsecurity23/presentation/jiang-zu-ming
https://doi.org/10.14778/3357377.3357382
https://doi.org/10.14778/3357377.3357382
http://www.vldb.org/pvldb/vol13/p57-jung.pdf
http://www.vldb.org/pvldb/vol13/p57-jung.pdf
https://doi.org/10.1186/S42400-018-0002-Y
https://doi.org/10.1186/S42400-018-0002-Y
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://www.usenix.org/conference/usenixsecurity22/presentation/liang
https://www.usenix.org/conference/usenixsecurity22/presentation/liang
https://www.usenix.org/conference/usenixsecurity22/presentation/liang
https://doi.org/10.1145/3510003.3510093
https://doi.org/10.1145/3510003.3510093
https://doi.org/10.1145/3510003.3510093
https://doi.org/10.1007/S00778-009-0157-Y
https://doi.org/10.1007/s00778-009-0157-y
https://doi.org/10.1007/s00778-009-0157-y
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://www.mysql.com/
https://www.mysql.com/customers/
https://www.mysql.com/customers/
https://dev.mysql.com/doc/refman/8.4/en/data-types.html
https://dev.mysql.com/doc/refman/8.4/en/data-types.html
https://dev.mysql.com/doc/refman/8.4/en/data-types.html
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://wiki.postgresql.org/wiki/%20PostgreSQL_Clients
https://wiki.postgresql.org/wiki/%20PostgreSQL_Clients
https://wiki.postgresql.org/wiki/%20PostgreSQL_Clients
https://github.com/sqlancer/sqlancer
https://github.com/sqlancer/sqlancer
https://www.usenix.org/conference/osdi20/presentation/rigger
https://www.usenix.org/conference/osdi20/presentation/rigger
https://www.usenix.org/conference/osdi20/presentation/rigger

[23] Manuel Rigger and Zhendong Su. “Detect-
ing optimization bugs in database engines
via non-optimizing reference engine con-
struction”. In: ESEC/FSE ’20: 28th ACM
Joint European Software Engineering Confer-
ence and Symposium on the Foundations of
Software Engineering, Virtual Event, USA,
November 8-13, 2020. Ed. by Prem Devanbu,
Myra B. Cohen, and Thomas Zimmermann.
ACM, 2020, pp. 1140–1152. doi: 10.1145/
3368089.3409710. url: https://doi.org/
10.1145/3368089.3409710.

[24] Manuel Rigger and Zhendong Su. “Finding
Bugs in Database Systems via Query Par-
titioning”. In: Proc. ACM Program. Lang.
4.OOPSLA (2020). doi: 10.1145/3428279.

[25] Jiansen Song et al. “Testing Database Sys-
tems via Differential Query Plans”. In:
45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Mel-
bourne, Australia, May 14-20, 2023. IEEE,
2023, pp. 2072–2084. doi: 10 . 1109 /

ICSE48619.2023.00175. url: https://doi.
org/10.1109/ICSE48619.2023.00175.

[26] SQLite Users. url: https://www.sqlite.
org/famous.%20html..

[27] SQLsmith. url: https : / / github . com /

anse1/sqlsmith..

[28] Dominic Steinhöfel and Andreas Zeller. “In-
put invariants”. In: Proceedings of the 30th
ACM Joint European Software Engineering
Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/FSE
2022, Singapore, Singapore, November 14-
18, 2022. Ed. by Abhik Roychoudhury, Cris-
tian Cadar, and Miryung Kim. ACM, 2022,
pp. 583–594. doi: 10 . 1145 / 3540250 .

3549139. url: https://doi.org/10.1145/
3540250.3549139.

[29] Rui Zhong et al. “SQUIRREL: Testing
Database Management Systems with Lan-
guage Validity and Coverage Feedback”. In:
CCS ’20: 2020 ACM SIGSAC Conference
on Computer and Communications Security,
Virtual Event, USA, November 9-13, 2020.
Ed. by Jay Ligatti et al. ACM, 2020, pp. 955–
970. doi: 10.1145/3372297.3417260. url:
https : / / doi . org / 10 . 1145 / 3372297 .

3417260.

20

https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3428279
https://doi.org/10.1109/ICSE48619.2023.00175
https://doi.org/10.1109/ICSE48619.2023.00175
https://doi.org/10.1109/ICSE48619.2023.00175
https://doi.org/10.1109/ICSE48619.2023.00175
https://www.sqlite.org/famous.%20html.
https://www.sqlite.org/famous.%20html.
https://github.com/anse1/sqlsmith.
https://github.com/anse1/sqlsmith.
https://doi.org/10.1145/3540250.3549139
https://doi.org/10.1145/3540250.3549139
https://doi.org/10.1145/3540250.3549139
https://doi.org/10.1145/3540250.3549139
https://doi.org/10.1145/3372297.3417260
https://doi.org/10.1145/3372297.3417260
https://doi.org/10.1145/3372297.3417260

