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Abstract

In the pursuit of climate neutrality and sustainability, the European Union (EU) has es-
tablished multiple goals to reduce environmental impact and promote sustainability across
various sectors, including industry. Manufacturing industries, major contributors to envi-
ronmental impact, are part of this transformation [1]. By adopting sustainable practices,
enhancing energy efficiency and circular economy, the manufacturing sector can contribute
to the EU’s climate objectives. One pillar of sustainable manufacturing is the integration
of renewable energy sources as a source of energy into the production process.

Particularly, on-site solar energy generation stands out as one of the most feasible options.
However, due to the intermittent nature of Photovoltaic (PV) energy, batteries can play an
important role in effectively addressing the problem of non-dispatchable energy generation
and unbalanced supply and demand. Moreover, with the grid experiencing considerable
congestion issues due to the increased demand and penetration of renewable energy sources,
the amount of energy, that can be exported to or imported from the grid, is restricted.
This implies the necessity of storage solutions to store the excess solar energy that would
be otherwise curtailed or wasted, allowing it to be used during peak demand hours.

Determining the optimal battery size for a PV system can be a challenge due to multiple
factors, including the intermittent nature of the renewable energy sources, the fluctuations
of the energy demand profiles and prices, the continuously evolving regulatory framework
and the trade-offs between the different objectives of the system, meaning that the different
objectives may conflict with each other.

This master thesis develops a framework for battery sizing optimization for grid-tied PV-
battery systems. The research is done for the Fraunhofer Innovation Platform for Ad-
vanced Manufacturing at the University of Twente. A PV system of 36.9 kWp is installed
on the roof of the building and the generated energy is utilized to supply power to a
machine on the shop floor. Firstly, the optimization of the battery size is realized using
a Mixed Integer Linear Programming (MILP) model, taking into consideration four dif-
ferent objectives, namely cost minimization, CO2 emissions minimization, self-sufficiency
and self-consumption maximization. Various scenarios are analyzed to account for dif-
ferent economic contexts and regulatory constraints. Due to the trade-offs among these
objectives, a co-optimization analysis is also conducted. Furthermore, the CO2 emissions
of the resulting optimal systems are calculated and a financial analysis is performed to
assess the financial implications of the optimized systems. Lastly, the system’s data are
projected over the expected lifetime of the battery, considering changes in the performance
of the PV-battery system, consumption profile, costs and regulatory framework, to analyse
potential variations in the resulting optimal battery size.

The results of the analysis indicate that the optimal battery size of the system is influenced
by a combination of technical, financial, environmental and regulatory factors. In cases
where the electricity prices are low or the system operates under specific schemes, such
as net metering, a battery is not economically beneficial for the system. Additionally,
scenarios that include restrictions on grid interaction generally tend to result in larger
battery sizes. However, when the objective of the system excludes cost considerations,
such as minimizing CO2 emissions or maximizing self-sufficiency or self-consumption, the



optimal battery capacity becomes unrealistically large. Thus, co-optimizing cost along
with these objectives is necessary to obtain a more balanced outcome. Moreover, the
results show that larger battery sizes minimize the environmental impact of the resulting
PV-battery systems, yet only a few of the analysed scenarios are proven to be financially
viable. Lastly, while for certain models, the long-term analysis results in battery sizes of
similar magnitude to those determined by the short-term analysis, in other models the
optimal size differs significantly.

Keywords: PV-battery systems, battery sizing optimization, cost minimization, CO2 emis-
sions, self-sufficiency, self-consumption, financial feasibility, MILP
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Chapter 1

Introduction

In response to the EU’s climate neutrality and sustainability goals, the manufacturing
sector needs to minimize its environmental impact. An innovative way to achieve this ob-
jective is through the adoption of sustainable manufacturing processes that can reduce the
environmental footprint of the industry, achieve resource efficiency, enhance the circularity
of products and promote economic resilience. A key component of the sustainable man-
ufacturing strategy is the incorporation of renewable energy sources into the production
process. Solar energy is one of the most promising on-site solutions due to its scalability,
accessibility and affordability. The green energy generated by the PV systems can be uti-
lized in manufacturing process, reducing in this way the environmental footprint of both
the production process and the resulting goods.

However, due to the intermittent and variable nature of renewable energy sources, chal-
lenges arise. Solar energy production fluctuates over time, meaning that prediction of the
power output is challenging. At the same time, it is non-dispatchable, meaning that the
generation cannot be ramped up or down to match the demand. These characteristics of
sustainable energy sources highlight the importance of effectively balancing energy supply
and demand. Energy storage systems, such as batteries, can provide a solution to this chal-
lenge by allowing excess energy produced during peak production moments to be stored for
later use when energy production is low or zero. Since batteries can be considered energy
buffers, after the incorporation of a battery, the autonomy and independence of the system
can be enhanced, minimizing in this way the total operational cost [2].

Additionally, the growing adoption of PV systems on residential and commercial buildings
has led to a shift from a centralized energy production, where energy is generated centrally
and flows in one direction towards the consumers, to a decentralized model, where energy
flow is bi-directional (Figure 1.1) [3]. While traditional power systems used to operate
with the demand determining the supply, nowadays supply is the factor that shapes the
consumer’s demand. Nevertheless, since the grid was designed for uni-directional flow and
central power generation, local over-voltage issues may occur, resulting in grid congestion
problems [3]. To address this issue, regulations may impose restrictions on the amount
of energy imported from or exported to the grid. Thus, incorporating a battery into a
sustainable energy system could effectively achieve compliance with the regulations and
prevent curtailment of energy or unmet demand.
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Figure 1.1: Traditional centralized electricity grid (left) vs. modern restructured
electricity grid (right) (adapted from [4]).

1.1 Problem Definition

Photovoltaic generation systems are expected to be one of the main technological drivers in
achieving the EU’s climate goals [5]. Nevertheless, solar energy is produced intermittently
and does not always follow the demand of the manufacturing process. The incorporation
of storage solutions into PV systems can mitigate some of the consequent challenges. By
effectively balancing supply and demand, enhancing power supply reliability and allevi-
ating grid stress, storage systems facilitate the integration of renewable sources of energy
into manufacturing processes [6].

A critical aspect of optimizing the performance of a grid-tied PV-battery system is the
effective sizing of its storage. Determining the optimal battery size for a specific system in-
volves considering multiple factors. Firstly, the energy demand profile can reveal patterns
of energy consumption throughout the day and secondly, climate conditions can signifi-
cantly influence energy production, affecting in this way the storage capacity requirements
of the system. Moreover, electricity tariffs and battery costs are crucial factors in determin-
ing the economic feasibility of the system. Regulatory frameworks can also influence the
optimal battery size, by restricting the amount of energy permitted to be imported from
or fed into the grid. Additionally, regulations may define subsidies and financial schemes
that can have a significant impact on the system’s economic viability.

Battery sizing optimization is challenging due to the complexity and variability of the in-
volved factors, such as the intermittency of solar energy production, the dynamic energy
demand and the fluctuating electricity prices. Furthermore, with the battery’s lifespan
varying between 10 and 15 years [7] [8] and taking into account the significant number of
sustainability and climate action initiatives established in recent years, regulatory frame-
work changes are expected during the lifetime of the system. Such changes can influence
the feasibility of grid-connected PV-battery systems, potentially undermining the chosen
size of the energy storage system.

Additionally, during the design phase of a grid-tied PV-battery system, it is essential to
determine the system’s objective. It is important to note that the optimization of battery
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size may involve conflicting goals. While a larger battery size may decrease the system’s
dependence on the grid, maximizing in this way the self-consumption rate or reducing the
total CO2 emissions of the system, it may, on the other hand, increase the initial investment
cost, resulting in misalignment with the objective of cost minimization.

1.2 Research Layout

In this section, the research questions and desirable outcomes of the thesis are displayed.
Additionally, the general structure of the thesis is described.

1.2.1 Research Questions

The main research question of the thesis is the following:

• How to define the optimal battery size of a grid-tied PV system considering technical,
financial, environmental and regulatory aspects?

Additionally, some sub-questions arise:

• What are the factors that influence the selection of the optimal battery size for a grid-
tied PV system? How can the variation of these factors affect the optimal battery
size?

• What are the environmental impacts associated with different battery sizes in grid-
tied PV systems and how can these be minimized through strategic system design
and operation?

• What are the economic implications of the different battery sizes in the context of a
grid-tied PV system?

• How do regulatory frameworks and incentives impact the feasibility and economic
viability of grid-tied PV systems? In what ways can regulatory and policy frameworks
influence the optimal sizing of batteries in grid-tied PV systems?

1.2.2 Research Outcomes

The desirable outcomes of this thesis are the following:

• A simulation model for grid-tied PV-battery systems that aims at the optimization
of the battery size.

• The optimal battery size for various objectives of the case study, namely cost min-
imization, CO2 emissions minimization, self-consumption maximization and self-
sufficiency maximization.

• The impact of different battery sizes on the performance of the system.

• The environmental impact associated with different battery sizes in grid-tied PV-
battery systems.

• The financial feasibility of the resulting optimal PV-battery systems by analysing
metrics, such as payback time, return on investment and net present value.

• Changes in optimal battery size when considering the expected lifetime of the battery
system using projected data.
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1.2.3 Thesis Structure

This thesis is structured in various chapters to address the research objectives. The rest
of the report is structured as follows: Chapter 2 performs a literature review, establishing
the theoretical framework for the study. The methodology section in Chapter 3 describes
the followed approach to conduct the research, Chapter 4 provides background information
on the case study of this assignment and Chapter 5 presents the results of the analysis.
In Chapter 6, a discussion regarding the findings is conducted and finally in Chapter
7, a conclusion that summarizes the key findings is included, the research questions are
answered and recommendations for future research are suggested.
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Chapter 2

Literature Review

In this chapter, a literature review, relevant to this thesis, is presented. The approach
of sustainable manufacturing is described, different types of batteries are compared, the
regulatory framework in the Netherlands is discussed and various optimization techniques
and objectives are presented. Additionally, in this chapter, the economic landscape of PV-
battery systems is examined, including trends in battery costs and how specific regulations
impact the financial feasibility of the systems.

2.1 Sustainable Manufacturing

Sustainable manufacturing represents an innovative way towards reducing environmental
impact, achieving resource efficiency and promoting economic resilience. As defined by
the U.S. Environmental Protection Agency, sustainable manufacturing is the practice of
producing goods using economically viable methods that minimize negative environmental
impacts, conserve energy and resources and prioritize employee, community and product
safety [9].

Recent regulatory initiatives, such as the "Eco-design for Sustainable Products Regulation"
introduced by the European Commission, are crucial for promoting sustainable manufac-
turing, enhancing energy efficiency and circularity of products [10]. This regulation sets
criteria for products to qualify as sustainable, emphasizing waste prevention, material re-
covery increase, extended product lifespan, support for the circular economy, utilization
of recycled materials and reduced environmental footprint throughout the life cycle of the
product [10]. Products, meeting these criteria, can be issued with the "Digital Product
Passport", a passport that provides information to consumers regarding the product’s sus-
tainability characteristics [10]. The provision of the "Digital Product Passport can help
consumers make informed decisions when buying products but also offer a competitive
advantage to a business. By adopting sustainable manufacturing, companies can gain
significant environmental, economic and social benefits while contributing to a more sus-
tainable future. The integration of sustainable manufacturing processes is related to lower
production costs, increased operational efficiency, improved sales and brand recognition,
greater access to financing and capital, resilience to energy price volatility, new business
opportunities, as well as lower regulatory compliance costs [9].

A crucial aspect of sustainable manufacturing is the integration of renewable energy sources
into the production process, with solar energy being the most promising on-site solution.
Unlike fossil-fuels-based energy production systems, PV panels operate without releasing
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hardly any greenhouse gases or harmful emissions. In 2023, the Dutch electricity sector
emitted 40.16 million metric tons of CO2 equivalent [11]. The share of solar energy in
the Dutch electricity mix was 18.03% for the same year, while it was accountable for only
2.51% of the total emissions [11], primarily associated with the manufacturing process of
solar panels. The green energy generated by commercial PV systems can be utilized in
manufacturing processes, reducing in this way the environmental footprint of both the
production processes and the resulting goods. This also contributes to another pillar of
sustainable manufacturing which is resource and material efficiency. This principle aims to
get the most out of the value of the resources and materials used in the production process
while minimizing waste. This approach can preserve critical resources, such as energy,
contributing to the adoption of sustainable manufacturing processes.

2.2 Battery Storage System

The importance of energy storage in PV systems is undeniable. Given the intermittent and
non-dispatchable nature of energy production, storage is crucial for balancing electricity
supply and demand, enhancing power quality and facilitating the integration of renewable
sources of energy into the grid [6]. The most suitable storage technology depends on a
variety of factors, such as the power capacity of the PV system and the energy output of
the latter, the cost, the location, the space availability and the grid restrictions [6]. For
small-scale PV systems, batteries are the ideal storage solution because of their high effi-
ciency, reliability, fast response time, easy use and minimal maintenance requirements [12].
Nevertheless, some limitations of the batteries include their comparatively high cost, re-
stricted lifetime compared to other energy storage alternatives and environmental concerns,
as critical materials, like lithium and cobalt, need to be used for their manufacture [12].
The most widely used rechargeable batteries for PV applications, that incorporate electro-
chemical technology, are lithium-ion, lead-acid, nickel-metal hydride and nickel-cadmium
batteries [12] [6]. The advantages and disadvantages of each battery type are analysed in
the subsequent sections.

2.2.1 Lithium-Ion (Li-ion) Batteries

Lithium-ion batteries are the most prominent battery type with a global battery market
share of almost 53% [13]. Lithium-ion batteries are ideal for renewable energy applica-
tions and micro-scale systems due to their ability to supply steady electrical power [12].
Lithium-ion batteries, as their name suggests, consist of lithium paired with other reactive
metals, such as cobalt, manganese and iron [14].

The advantages of lithium-ion batteries are the long lifetime, the high charge and discharge
efficiency, the broad temperature range of operation, the high energy density, the rapid
charging and the low maintenance cost [12]. On the other hand, lithium-ion batteries
entail high initial investment cost. However, this upfront expense is counterbalanced over
time by the longer lifetime and the reduced need for replacement compared to alternative
battery storage solutions. Some more characteristics of lithium-ion batteries, that restrict
their implementation, are poor performance in increased temperatures and the limited raw
material availability [6]. Detailed characteristics of the lithium-ion battery technology are
outlined in Table 2.1.
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Figure 2.1: Lithium-ion battery [15].

2.2.2 Lead-Acid (Pb-A) Batteries

Lead-acid battery technology stands out as the oldest and most established battery tech-
nology that has been used in photovoltaic systems and stationary applications, as well as in
the automotive industry [16] [6]. The main components of a lead-acid battery are metallic
lead, lead sulfate, lead dioxide and sulfuric acid [17].

Although lead-acid batteries have plenty of advantages, such as low cost, high cell voltage,
high performance in the case of varying temperatures and good recycling ability with
an efficiency of 95%, they also include important limitations [12] [6] [16]. The regular
maintenance needs, the heavy structure, the moderate efficiency, the limited energy density,
the susceptibility to acid stratification and acid leaks and the number of life cycles, which
is relatively lower compared to other battery technologies, are the main drawbacks of lead-
acid batteries, that limit their applicability [12] [6] [16]. Given the toxicity of lead, lead-acid
batteries necessitate recycling when they reach the end of their operational lifetime [14].
Detailed characteristics of the lead-acid battery technology are outlined in Table 2.1.

Figure 2.2: Lead-acid battery [18].

2.2.3 Nickel-Metal Hydride (Ni-MH) Batteries

Nickel-metal hydride batteries are primarily used in hybrid electric vehicles and smart en-
ergy storage systems [6]. The battery consists of a cathode incorporating nickel hydroxide,
an anode composed of metal hydride and an electrolyte containing potassium hydroxide
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[12].

Advantages of the nickel-metal hydride batteries include long shelf life and long lifetime,
high energy density, efficient performance even under extremely high and low temper-
atures, good charge retention capabilities and high tolerance to both overcharging and
overdischarging [6] [12]. The main disadvantages of the nickel-metal hydride batteries are
poor performance under low working temperatures, low specific energy, as well as low spe-
cific power [12]. Besides that, this type of battery is related to higher cost compared to
lead-acid batteries, but it is more affordable than lithium-ion batteries [12]. With respect
to the environmental impact of nickel-metal hydride batteries, nickel, despite not being
rare, is a limited element with difficult extraction processes and toxic properties. For this
reason, recycling at the end of the battery’s lifetime is crucial. Detailed characteristics of
the nickel-metal hydride battery technology are outlined in Table 2.1.

Figure 2.3: Nickel-metal hydride battery [19].

2.2.4 Nickel-Cadmium (Ni-Cd) Batteries

Batteries with nickel-cadmium technology are mainly used in portable devices and hand
tools, but also in PV systems [20]. In the case of nickel-cadmium batteries, the anode is
made from metallic cadmium, the cathode is composed of nickel oxide hydroxide and the
electrolyte is potassium hydroxide [6]. It should be mentioned that according to Directive
2006/66/EC of the European Parliament, various nickel-cadmium batteries are banned due
to the inclusion of toxic substances [2] [21]. However, this regulation excludes stationary
nickel-cadmium batteries used in PV systems. Nevertheless, proper recycling of them at
the end of their lifetime is required [2].

Nickel-cadmium batteries are characterized by low maintenance needs, high number of life-
time cycles, great long-term storage abilities, notable durability, good charge retention and
ability to operate under extreme temperature conditions, (> 40oC) and (< −10oC) [6] [12]
[2]. The major drawbacks of nickel-cadmium batteries are the high cost, the low energy
density and the toxic and caustic nature of the involved substances, which subsequently
requires proper recycling [6] [12]. Additionally, it is important to note that nickel-cadmium
batteries suffer from strong memory effects [12]. This phenomenon occurs when the bat-
tery undergoes recharging without first being fully discharged. Consequently, the battery
"memorizes" the shallow discharge level and in this way, it reduces over time its usable ca-
pacity [6]. Detailed characteristics of the nickel-cadmium battery technology are outlined
in Table 2.1.
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Figure 2.4: Nickel-cadmium battery [22].

2.2.5 Battery Types Comparison

In Table 2.1, the key characteristics of each battery type are presented.

Li-ion Pb-A Ni-MH Ni-Cd

Specific energy (Wh/kg) 80 – 250 25 – 50 40 – 110 30 – 80

Energy density (kWh/m3) 95 – 500 25 – 90 40 – 300 15 – 150

Efficiency 75 – 97 % 63 – 90 % 50 – 80 % 60 – 90 %

Working temperature (oC) 20 – 65 18 – 45 – 30 – 70 - 40 – 50

Lifetime cycles 100 – 10,000 250 – 2,000 300 – 1,800 1,000 – 5,000

Lifetime (years) 5 - 15 2 - 15 2 - 15 10 - 20

Depth of discharge 100 % 80 % 100 % 80%

Self-discharge rate (per day) 0.1 – 0.3 % 0.1 – 0.3 % 5 – 20 % 0.2 – 0.6 %

Energy cost (€/kWh) 150 – 2,100 40 – 170 170 – 640 680 – 1,300

Toxicity Low Very high Low Very high

Maintenance requirement Not required 3-6 months 60-90 days 30-60 days

Table 2.1: Comparison table of the battery technologies for small-scale PV
systems [6] [12] [23] [24].

Based on the analysis, it is evident that despite being on average the most expensive battery
type, lithium-ion batteries outperform all other battery technologies. The large number of
lifetime cycles, their high efficiency, their energy density and specific energy, as well as the
relatively less significant environmental impact compared to the other battery types during
operation, are the main factors that distinguish them in the renewable energy market. It
should be noted that, as lithium-ion batteries are relatively new in the energy market, a
significant price drop is expected in the near future because of their mass production over
the last years [24]. According to findings from studies by Symeonidou et al. (2021) [25] and
Nair et al. (2010) [26], lithium-ion batteries have a leading role in the renewable energy
market, being the most appropriate battery type for small-scale PV applications.
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2.3 Regulatory Framework

A supportive policy framework is crucial for the widespread adoption of decentralized PV
systems within the conventional electricity grid. Both feed-in tariffs and net metering
policies are considered important instruments to enhance the financial viability of PV
investments and facilitate the integration of renewable energy sources into the electricity
network [27].

2.3.1 Net Metering

Net metering is a policy framework that permits the prosumers - people who consume
electricity from the grid while also producing electricity - to use the generated energy, at
any moment, instead of being limited to consuming it only during production [27]. In other
words, this scheme is a utility billing method of recording the excess energy generated by
the PVs, which is fed into the grid, and applying it to the customer’s bill as credit [28].
In order to achieve this, the grid effectively operates as a storage battery. Even though
when the regulatory framework was initially introduced in the Netherlands, the net me-
tered quantity was limited to 3,000 kWh/year per customer, in 2011 the limit increased
to 5,000 kWh/year per customer and in 2012, the limit was abolished [27]. To qualify for
this scheme, the customer must be connected to the electricity grid via a connection with
a throughput value of ≤ 3 ∗ 80A [27].

The net metering scheme has undeniably made the installation of PVs more financially at-
tractive in the market. Coupled with the significant price reduction of PV technology, the
net metering practice has been considered to be a pivotal factor in reducing the payback
period of PV systems and in driving the consequent capacity growth of the corresponding
systems in recent years [27]. With this policy in place, the payback time of the investment
decreases and the overall cost of operating and maintaining the system experiences a cost
reduction.

However, over the past years, the net metering policy has been a subject of continuous
debate in the Netherlands. Despite its role in establishing the Netherlands as the coun-
try with the highest solar capacity per capita within the European Union [29], the Dutch
Climate and Energy Ministry is considering phasing out this measure for various reasons.
Firstly, since there is a downward trend in the prices of PV systems, there are growing
concerns that the current net metering scheme is providing too much financial incentive for
people who want to invest in solar energy. This could potentially result in excessive prof-
itability and an imbalance in the energy system. Secondly, it is evident that net metering
policy leads to a reduction of the governmental tax revenue. Since the popularity of PV
systems continues to rise steadily, these losses can become significant. Estimations suggest
that by 2031, these losses could reach approximately €2.8 billion [30]. In addition, it is
important to note that net metering policy does not have negative consequences only for
the government but also for the citizens, who do not own a PV system. Since electricity
bills typically include a fixed cost for operating and maintaining the electricity network,
customers, who exploit the net metering policy, contribute less to these expenses, despite
using the grid system. Therefore, customers, who do not exploit the net metering scheme,
end up having to compensate for that, meaning that they are burdened with higher costs
to maintain the system [30]. Lastly, the net metering policy has practical drawbacks that
can affect the local power quality and the grid capacity used [27]. Specifically, the scheme
encourages customers to limit the capacity of the PV system to their annual energy con-
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sumption rather than to the available rooftop surface, resulting in underutilized rooftop
potential [31]. In the same context, net metering policy does not motivate the owners of
PV systems to increase their self-consumption rate, increasing in this way the used power
grid capacity [27]. As a result, this trend can exacerbate the issue of grid congestion in
the Netherlands.

2.3.2 Network Tariffs

In the Dutch energy market, customers have the choice of signing an electricity contract
with one of the energy suppliers in three forms: fixed contract, variable contract or con-
tract with dynamic energy prices. With a fixed contract, as the name implies, the customer
pays a fixed price for electricity throughout the entire term period. When a fixed-term
contract expires, it turns automatically into a variable contract. In contrast, with a vari-
able contact, energy suppliers have the flexibility to adjust energy prices periodically, with
changes occurring a few times per year or even monthly in recent times [32]. According to
the Netherlands Authority for Consumers and Markets (ACM), half of the Dutch energy
consumers have currently a variable energy contract [33]. Due to increasing uncertainty
in the energy market nowadays, energy suppliers hardly provide fixed electricity contracts,
as it is more challenging and expensive for them to keep prices stable over long periods.
Regarding contracts with dynamic energy prices, the electricity prices are directly tied
to the prices on the spot market, meaning that the rates fluctuate on an hourly basis.
Therefore, the electricity prices become known only one day prior. Despite the uncertainty
and reliance on the fluctuations of the market, the dynamic energy pricing contract can
benefit customers. Through the implementation of smart energy management solutions
and the adjustment of electricity consumption during periods of lower prices, customers
can achieve a substantial reduction in their electricity expenses.

Figure 2.5 shows the day-ahead electricity prices in €/MWh for March 1, 2024 in the
Netherlands. Firstly, significant hourly fluctuations in electricity prices throughout the
day are evident. Secondly, at noon, when the PV power generation peaks, electricity
prices demonstrate a decline compared to morning and evening times. This is the result of
synchronised solar energy production and the consequent increased utilization of the grid
capacity. In instances when solar energy production exceeds overall electricity demand,
feed-in tariffs become negative. This practice discourages energy injection into the grid
by requiring the customer to pay in order to export energy. Such occurrences appear
to be increasingly frequent during noon. This phenomenon indicates the importance of
implementing a battery storage system to store the surplus energy produced, particularly
during noon, and prevent the synchronised injection of solar energy into the grid.

2.4 Optimization Techniques

Optimization algorithms are methods used to find the best possible solution from a set of
feasible options while simultaneously fulfilling specific conditions. Based on the operational
principles, optimization methods for battery sizing problems can be classified according to
the literature into five different categories, namely probabilistic, analytical, mathematical
optimization, heuristic and hybrid methods [35] [36] (Figure 2.6).

Probabilistic methods are considered one of the simplest methods for battery sizing op-
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Figure 2.5: Day-ahead electricity prices in €/MWh for March 1, 2024 in the
Netherlands [34].

timization problems, as the number of parameters, that can be optimized, is restricted
[37]. The main advantage of this method is that for the optimization process, only limited
data availability is required. However, as the approach can optimize a small number of
performance criteria, its applicability in more complex problems is narrow [36]. For the
optimization of the battery size, probabilistic methods account for the uncertainty in the
parameters of the problem, thus creating a risk model [37] [36].

Analytical methods analyse a series of feasible power system configurations by varying the
model elements [36]. These model elements need to be optimized according to specific
predetermined rules [37]. The process aims to find the best configuration for the system
components by comparing single or multiple performance indexes of the different configu-
rations by repetitive calculations [38] [36].

Mathematical optimization involves various mathematical programming techniques, de-
signed to identify the optimal solution to a problem among a set of potential solutions. A
necessary part of mathematical optimization is the construction of an objective function
that represents the quantity to be either maximized or minimized. Through an iterative
process, the algorithm adjusts decision variables within the constraints of the problem,
calculates the value of the objective function and converges towards the optimal solution.
This iterative process continues until the best possible result is reached [36].

Heuristic optimization algorithms are suitable for problems, where finding an optimal so-
lution is challenging, thus exploring suboptimal solutions is allowed [39]. Although the
algorithms frequently lack a mathematically validated foundation for acquiring optimal
solutions, the advantages of the heuristic method are low computational time and high
accuracy rate [37].

Each of the optimization methods explained earlier includes different advantages and draw-
backs. Therefore, instead of relying solely on a single optimization technique, hybrid meth-
ods combine the strengths of different methods to overcome their individual limitations and
achieve better solutions [36]. Hybridization of two algorithms can take place either in a
decoupled or coupled manner. In decoupled hybridization, two optimization methods op-
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erate independently of each other, while coupled hybridization involves the simultaneous
collaboration of two methods [36].

Figure 2.6: Classification of optimization techniques for battery sizing [35].

According to the literature, most of the battery sizing optimization problems are repre-
sented as mathematical models [40] [41]. The capacity of the battery is treated as a decision
variable and the net benefits or losses of the system become the objective function to be
maximized or minimized, respectively [41]. These mathematical optimization problems are
usually solved using pre-existing, available optimization solvers, such as CPLEX or Gurobi
solvers.

Various mathematical optimization techniques can be used for the purpose of optimal en-
ergy system design or operational plan optimization. Among the most common algorithms
used are Linear Programming (LP), Mixed Integer Linear Programming (MILP) and Mixed
Integer Non-Linear Programming (MINLP) [42]. The aforementioned algorithms differ in
the type of variables they can handle and the complexity of the optimization problems
they can solve. While LP and MILP algorithms can exclusively handle linear objective
functions and constraints, dealing with only continuous or both continuous and integer
variables respectively, MINLP is a more powerful optimization technique that addresses
nonlinear problems that include a combination of continuous and discrete variables [43].
The nonlinearities can be included either within the objective function or within the con-
straints of the problem.

In the case of battery sizing optimization problems, binary variables are necessary to rep-
resent key operational characteristics of the energy system, such as the on/off status of the
battery’s charging and discharging power or the importing and exporting power from/to
the electricity grid [44]. Therefore, this type of problems contains not only continuous vari-
ables but also binary variables (0,1) and non-linear terms. To handle these nonlinearities,
multiple techniques can be employed to convert the nonlinear terms of the model into their
linear equivalents [41]. By using approaches, such as the piecewise linear approximation,
the convex relaxation and the Big-M method, a battery sizing optimization problem can
be effectively formulated as a MILP problem [41].

2.5 Optimization Objectives

In the literature, various optimization objectives with respect to battery sizing optimiza-
tion can be found. These can be categorised into three different groups, namely economical,
technical and environmental objectives [39]. Economical objectives focus on achieving the
financial viability of a system. The most common objective refers to cost minimization

13



which aims to minimize the overall cost of the system, including investment, operational,
maintenance and replacement costs and maximize the total profit [45] [46]. Regarding the
technical category, optimization focuses on enhancing technical aspects, such as maximiz-
ing self-sufficiency and self-consumption or minimizing the system’s dependence on the
grid [47]. Lastly, environmental objectives aim to minimize the environmental footprint of
the system by minimizing CO2, NOx or SOx emissions [46].

However, the aforementioned categories of optimization objectives may include contradic-
tory goals. For instance, while a specific battery size may significantly reduce the system’s
emissions, it may also result in high system costs, raising questions about the economic
feasibility of the system and whether the scenario represents a real case option. For this
reason, many energy systems adopt a multiple objective optimization approach that con-
siders simultaneously objectives from different categories [39]. These problems are called
multi-objective optimization problems and they take into consideration potentially con-
flicting goals, resulting in a more balanced solution.

Generally, there are two methods for solving multi-objective optimization problems, the
weighted sum method and the lexicographic goal programming [39]. While the former
transforms the multi-objective optimization problem into a single objective optimization
problem by assigning weights to the multiple individual objectives, the latter follows a
hierarchical approach by prioritizing objectives based on their importance [39].

2.6 Economic Landscape of PV - (Li-ion) Battery Systems

Lithium-ion battery market has experienced rapid growth due to the increasing demand
for energy storage solutions across various industries. In 2023, the market was worth 56.8
billion USD, while projections suggest that the market will reach 187.1 billion USD by
2032 [48]. This market growth is the result of the global shift towards renewable en-
ergy sources, electrification of transportation, investments in Electric Vehicle (EV) charg-
ing infrastructures, technological improvements and supportive government incentives and
regulations for sustainable development. These factors have led to increased production,
making lithium-ion batteries more affordable and efficient. Figure 2.7 shows the lithium-
ion battery prices from 2013 to 2023 on a global scale, clearly illustrating the continuous
declining trend of battery costs.

Figure 2.7: Lithium-ion battery price worldwide over the years [49].
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Despite the reduction in battery costs, the payback time for a PV-battery system remains
relatively high, being in this way a barrier to widespread implementation. Research indi-
cates that the average payback time for residential small-scale PV systems with storage
in Europe exceeds 25 years, while half of small-scale commercial and residential systems
in Europe remain non-competitive [50]. Figure 2.8 provides insight into the range of the
payback period for commercial small-scale PV-battery systems in Europe [50].

Furthermore, net metering scheme is a key factor for the determination of the payback
period of a PV-battery system and its overall economic viability. According to M. Londo
et al. [27], in the Netherlands, the payback time for a residential PV system with net
metering amounts on average to 8 years. In contrast, for systems without net metering,
the payback time can extend to 15 years, highlighting the importance of supportive policies
and incentives in promoting renewable energy systems.

Figure 2.8: Payback period for commercial small-scale PV-battery systems in
Europe [50].
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Chapter 3

Methodology

In this section, the schematic layout of the system and the modeling of the battery’s
behaviour, which is consistent across all the optimization models, are explained. Addi-
tionally, for each single objective optimization model, namely cost minimization, CO2

emissions minimization, self-consumption maximization and self-sufficiency maximization,
some additional model elements to address the different objectives are introduced. The
modeling of the co-optimization algorithms is also analysed. Furthermore, the methodol-
ogy employed for the CO2 emissions calculation, as well as for the financial analysis of the
optimal systems, is explained. Lastly, the required additions in the model for the battery’s
lifelong analysis are discussed.

For the modeling of the battery’s behaviour, a MILP algorithm has been developed. In
order to create the mathematical model, the variables, parameters and constraints of the
problem are defined. Specifically, variables represent unknown or changing parts of the
model, parameters represent the data that must be supplied to perform the optimization
process and constraints represent mathematical relationships that define how different parts
of a model are connected to each other in a logical and realistic way [51]. Furthermore, in
every model, an objective function is determined that needs to be minimized or maximized,
depending on the nature of the problem.

3.1 System Schematic Layout

The considered system in this assignment currently consists of a PV system, a DC-to-DC
converter, which is used to adjust the voltage levels and ensure that the voltage produced
by the PVs matches the inverter’s operational characteristics, a DC-to-AC inverter, crucial
for compatibility with the AC voltage utilized by the machine, the load and the grid. The
schematic layout of the current system is depicted in Figure 3.1 with connections shown
in blue colour.

This assignment aims to evaluate whether the addition of a lithium-ion battery, the capac-
ity of which needs to be optimized, is beneficial for the system. Along with the battery, a
DC-to-DC converter needs to be included in the system in order to ensure that the battery’s
voltage requirements are met. The potentially new components need to be incorporated
into the system as illustrated by the red lines of Figure 3.1.

For this assignment, the PV energy directly consumed by the system or fed into the grid
accounts for the efficiency losses of the existing system’s DC-to-DC converter and the DC-

16



Figure 3.1: Schematic layout of the grid-connected PV-battery system.

to-AC inverter, based on the provided data. However, the energy stored in the battery is
assumed to not account for losses of the new DC-to-DC converter component. Nevertheless,
in real-world applications, there is an efficiency loss, with the converter typically operating
at around 95% efficiency [52]. This efficiency loss could reduce the available PV energy for
consumption, potentially affecting the result of the battery sizing optimization algorithm.

3.2 Battery Modeling

Across all optimization objectives, the modeling of the battery’s behaviour and perfor-
mance presents common characteristics. In order to determine the optimal battery size,
the battery system needs to be modeled considering multiple parameters, variables and
constraints, each directly affecting the result of the analysis. In this section, the battery
model is presented.

With respect to the parameters of the battery model, the average efficiency of the lithium-
ion battery, according to Table 2.1 in Section 2.2.5, is 0.86. Furthermore, it is assumed
that the C-rate is 0.5, meaning that the battery can be fully discharged within two hours.
The Depth of Discharge (DoD), representing the percentage at which the battery can be
discharged relative to its total capacity, is set at 0.2. A relatively shallow depth is chosen
to prevent a reduction in the number of full charge/discharge cycles over the useful lifetime
of the battery [53]. Besides this, the battery’s behaviour can be modeled linearly when
the State of Charge (SoC) ranges between 20%-80%. Beyond this certain range, batteries
exhibit non-linear characteristics, meaning that the battery’s behaviour can not be mod-
eled as a MILP algorithm. Lastly, the lifetime of the battery ranges between 10 and 15
years [7] [8], with the average value of 12.5 years being selected for the modeling of the
battery system. The aforementioned operational parameters are necessary for the accurate
simulation of the behavior and performance of the battery system.

Table 3.1 presents an overview of the defined parameters, that are consistent across all
models, regardless of the optimization objective, and their corresponding values.

In addition to the parameters, the model incorporates variables representing unknown or
dynamic components of the algorithm. Table 3.2 provides a comprehensive list of these
variables. Notably, CB is the decision variable, representing the battery capacity that
needs to be optimized. Moreover, the defined boolean variables are auxiliary model ele-
ments to replicate real-world scenarios, ensuring the avoidance of simultaneous charging
and discharging, as well as simultaneous energy import from and export to the grid.
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Parameters Value
Depth of Discharge (DoD) 0.2

Efficiency (ηchar/dis) 0.86%
Crate 0.5

Lifetime (n) 12.5 years

Table 3.1: Defined battery operational parameters in the MILP model.

Variables
Battery capacity (kWh) CB

Power imported from the grid (kW) Pimportt
Power exported to the grid (kW) Pexportt

Total power imported/exported from the grid (kW) Pgridt
Battery charge power (kW) Pcharget

Battery discharge power (kW) Pdischarget

Battery Energy (kWh) Et

Excess energy (kWh) Eexcesst

Missing energy (kWh) Emissingt
Boolean variable for importing power from the grid Boolimportt

Boolean variable for exporting power to the grid Boolexportt
Boolean variable for charging Boolchart

Boolean variable for discharging Booldist

Table 3.2: Defined variables in the MILP model.

Besides the parameters and variables, the battery sizing optimization model is subject
to multiple constraints to ensure its feasibility and alignment with real-world conditions.
Firstly, constraints associated with power transactions with the electricity network need
to be defined. These transactions are represented by two variables: the amount of power
imported from the grid in kW at moment t, noted as Pimportt and the power exported
to the grid in kW at moment t, noted as Pexportt . The variables are constrained to be
non-negative and non-positive float variables, respectively.

Pimportt ≥ 0 ∀t (3.1)

Pexportt ≤ 0 ∀t (3.2)

The sum of Pimportt and Pexportt represents the net power exchange with the grid in kW at
moment t. Specifically, when Pgridt is positive, the system imports energy from the grid.
In contrast, when the variable is negative, the system feeds in the excess PV energy to the
electricity network.

Pgridt = Pimportt + Pexportt ∀t (3.3)

In addition, constraints that regulate the power flow within the battery are essential.
The variable Pcharget denotes the charging power of the battery in kW at moment t and
Pdischarget represents the discharging power of the battery in kW at moment t. Pcharget is
constrained to non-negative values, whereas Pdischarget is restricted to non-positive values.
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Pcharget ≥ 0 ∀t (3.4)

Pdischarget ≤ 0 ∀t (3.5)

Furthermore, it is necessary to include some constraints ensuring that the battery is not
charged or discharged at a rate exceeding its maximum capacity in order to prevent poten-
tial damage. Equations 3.6 and 3.7 represent this physical constraint, ensuring that Pcharget

and Pdischarget are always less than or equal to the maximum battery power, Pmax.

Pcharget ≤ Pmax ∀t (3.6)

Pdischarget ≥ −Pmax ∀t (3.7)

The maximum battery power is calculated based on Equation 3.8.

Pmax = Crate × CB (3.8)

where CB is the battery capacity and Crate is the parameter that represents the charging
or discharging rate relative to the battery size and equals 0.5, as defined in Table 3.1.

Moreover, a constraint that limits the amount of energy, that can be stored in the battery
at every moment t, needs to be set. This quantity, measured in kWh, is represented by the
non-negative variable Et.

Et ≥ 0 ∀t (3.9)

The depth of discharge factor (DoD) is also introduced in the model to preserve the bat-
tery’s health over time and ensure that the battery’s behaviour remains linear. Therefore,
the lower and upper limits of Et can be described by Equations 3.10 and 3.11, respectively.

Et ≥ CB ×DoD ∀t (3.10)

Et ≤ CB × (1−DoD) ∀t (3.11)

The amount of energy stored in the battery (Et) can be explicitly described at every
moment t by Equation 3.12.

Et = Et−1 + ηchar/dis × (Pcharget + Pdischarget)× tstep ∀ t ≥ 1 (3.12)

where Et−1 is the battery’s energy in the previous time step, ηchar/dis denotes the charging
and discharging efficiency and tstep is the duration of each time interval, which is set to
one hour for the purpose of this assignment.

The battery energy (Et) is initialized at t = 0 to be equal to half of the battery capacity.
Similarly, at the end of the time horizon T , which represents the length of the time steps,
the battery energy is also equal to half of the battery capacity. For consistency reasons,
the battery should start and finish half-charged.

E0 = 0.5× CB (3.13)
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ET = 0.5× CB (3.14)

Furthermore, a constraint ensuring energy balance within the system is added. Equation
3.15 describes that the amount of energy bought from the grid at moment t, in case of
deficit of energy, equals the demand of the system (Edemandt) that is not covered by the
PV power production (PVt) or the discharge of the battery. Conversely, in case of excess
PV energy production, the amount of energy sold to the grid at moment t, equals the
excess PV power production that is neither consumed by the system nor used to charge
the battery.

Pgridt × tstep = Edemandt − PVt + (Pcharget + Pdischarget)× tstep ∀t (3.15)

In order to ensure that the system does not import and export power simultaneously, it
needs to be defined that at every moment t, at least one of the variables, Pimportt and
Pexportt , equals zero. For this reason, the Boolean variables Boolimportt and Boolexportt are
introduced and the Big-M method is implemented. Specifically, when Boolimportt is zero,
Pimportt must be also zero, meaning that no import of power occurs at moment t. Similarly,
when Boolexportt equals zero, Pexportt is consequently zero, indicating the absence of export
activity at moment t.

The Big-M method is used in optimization problems with binary variables in order to ex-
clude some constraints under specific conditions. This is achieved by using a variable M,
which is chosen to be larger than any reasonable value that a continuous variable may take
[54]. As aforementioned in Section 2.4, the Big-M method is considered a linearization
technique, which converts the nature of the problem from non-linear to linear.

Equations 3.16 - 3.20 ensure that the export and import of power do not occur simultane-
ously with the implementation of the Big-M method.

Pimportt ≤ M × (1−Boolexportt) ∀t (3.16)

Pimportt ≥ −M ×Boolimportt ∀t (3.17)

Pexportt ≤ M × (1−Boolimportt) ∀t (3.18)

Pexportt ≥ −M ×Boolexportt ∀t (3.19)

Boolimportt +Boolexportt ≤ 1 ∀t (3.20)

In the same context, it is necessary to prevent the simultaneous charging and discharging of
the battery. For this purpose, the Big-M method is used again and two Boolean variables
for charging (Boolchart) and discharging (Booldist) are specified. The following constraints
are incorporated into the model:

Pcharget ≤ M × (1−Booldist) ∀t (3.21)

Pcharget ≥ −M ×Boolchart ∀t (3.22)
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Pdischarget ≤ M × (1−Boolchart) ∀t (3.23)

Pdischarget ≥ −M ×Booldist ∀t (3.24)

Boolchart +Booldist ≤ 1 ∀t (3.25)

Additionally, auxiliary variables are required to quantify the excess and missing energy,
measured in kWh, of the system at every time step. These variables are denoted as Eexcesst

Emissingt and are both constrained to be non-negative.

Eexcesst ≥ 0 ∀t (3.26)

Emissingt ≥ 0 ∀t (3.27)

Conditional constraints, that identify at every moment t, if there is excess or deficit of
energy, need to be included in the model. Equations 3.28 and 3.29 represent these con-
straints. When the PV production exceeds the load demand, the system has excess energy,
while a deficit of energy occurs when the PV production is insufficient to meet the demand.

Eexcesst =

{
PVt − Edemandt , if PVt > Edemandt

0, otherwise
∀t (3.28)

Emissingt =

{
Edemandt − PVt, if PVt < Edemandt

0, otherwise
∀t (3.29)

Lastly, it is essential to incorporate in the model some constraints that define how surplus
and deficit of energy are managed within the system. Specifically, when there is an excess
of energy, it can be either used to charge the battery or fed into the grid. In contrast, in
the case of an energy deficit, the additional energy required can be obtained by discharg-
ing the battery or importing energy from the grid. Under these conditions, discharging
the battery to export energy to the grid or importing energy to charge the battery is not
possible. This assumption is made to ensure that the battery’s usage does not impact
negatively its lifetime. Equations 3.30 and 3.31 describe these constraints.

(Pcharget + |Pexportt |)× tstep = Eexcesst ∀t (3.30)

(Pimportt + |Pdischarget |)× tstep = Emissingt ∀t (3.31)

3.3 Battery Sizing Optimization: Single-Objective Approach

In this section, the methodology for the single objective optimization model is presented.
The considered objectives are cost minimization, CO2 emissions minimization, self-sufficiency
maximization and self-consumption maximization.
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3.3.1 Cost Minimization Objective

The objective of cost minimization aims at determining the optimal capacity of the battery
system while minimizing the total investment, operational and maintenance costs over a
specified analysis period. This approach attempts to find the most cost-effective size of
the battery system.

For the purpose of this assignment, various scenarios with respect to cost minimization
are examined. These scenarios can provide insight into how market prices and regulatory
policies influence the feasibility of PV-battery systems. The six considered scenarios are
the following:

• S1: Baseline scenario with fixed electricity prices

• S2: Fixed electricity prices scenario under net metering scheme

• S3: Dynamic prices scenario

• S4: Fixed electricity prices without any economic benefit from exporting surplus
energy to the grid

• S5: Scenario with constraints on exported energy

• S6: Peak shaving scenario

S1: Baseline Scenario with Fixed Electricity Prices
In order to determine the optimal battery size, multiple economic parameters need to be
defined. Firstly, the investment cost of the battery is a factor that can significantly af-
fect the final result. With the price of lithium-ion batteries continually decreasing, the
investment cost for small-scale battery storage is determined at 200€/kWh [55] [56] [57]
[58]. Additionally, maintenance costs for lithium-ion batteries typically range between 6
and 13€/kW per year, with an average value of 10€/kW per year being used in the model
[59]. Additionally, fixed costs associated with electricity imports and exports need to be
specified. For non-household consumers, the purchase cost of electricity is 0.24€/kWh [60],
while the feed-in tariff is set at 0.07€/kWh [61].

Table 3.3 shows the defined parameters for the baseline scenario of the cost minimization
objective and their corresponding values.

Parameters Value
Investment (Iinit) 200€/kWh

Maintenance cost (Costm) 10€/kW/year
Cost of buying electricity (Costim) 0.24€/kWh

Feed-in tariff (Costex) 0.07€/kWh

Table 3.3: Defined parameters for the baseline scenario of the cost minimization
objective model.

Regarding the objective function and considering that the time resolution of the model is
hourly, the investment and maintenance costs need to be adjusted accordingly. Therefore,
if Iinit and Costm represent the initial investment cost and the yearly maintenance costs,
respectively, accounting for the battery’s expected lifetime of 12.5 years as discussed in
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Section 3.2, these costs need to be converted into hourly values. With Iinith and Costmh

being the hourly investment and maintenance costs, respectively, the objective function
for the scenario of fixed electricity prices can be described by Equation 3.32.

Total cost =
T∑

t=0

(Pimportt×tstep)×Costim+

T∑
t=0

(Pexportt×tstep)×Costex+(Iinith+Costmh
)×CB×T

(3.32)

S2: Fixed Electricity Prices Scenario under Net Metering Scheme
The parameters for the scenario with fixed electricity prices along with net metering scheme
are identical to the baseline scenario, shown in Table 3.3. Nevertheless, some additional
constraints need to be defined and the objective function requires some adjustments.

Under the net metering scheme, consumers with renewable energy systems are billed based
on their net electricity usage. If they consume more electricity than they generate over a
time period, they are charged for the additional imported energy. In contrast, if the energy
generated exceeds their total consumption, they receive a credit on their bill. However,
whether a system imports more electricity than it exports over the analysis period or vice
versa is unknown in advance, meaning that both cases need to be considered. Equation
3.33 describes that when the total exported power over the period T exceeds the total im-
ported power over the same period T, then the net electricity usage will be compensated
at the rate of Costex per kWh. Conversely, if the energy imports exceed the exports, the
system owner will be charged at the rate of Costim per kWh.

cost =

{
Costex, if

∑T
t=0(Pimportt) <

∑T
t=0(|Pexportt |)

Costim, if
∑T

t=0(Pimportt) >
∑T

t=0(|Pexportt |)
(3.33)

Regarding the objective function of the model, Equation 3.34 represents the total cost
incurred over the analysis period T. For the scenario of fixed electricity prices with net
metering, the first part of Equation 3.34, representing the operational cost, indicates how
the system owner is charged or compensated based exclusively on the net electricity usage
of the system. The second part of the objective function refers to the investment and
maintenance cost of the battery system over the analysis period.

Total cost = (

T∑
t=0

|Pimportt + Pexportt | × tstep)× cost+ (Iinith + Costmh
)× CB × T (3.34)

S3: Dynamic Prices Scenario
For the scenario of dynamic electricity prices, the hourly electricity costs in the Nether-
lands are obtained from the ENTSO-E platform [34]. The electricity prices during the
analysis period are illustrated in Figure 3.2. The average cost of electricity during the
analysis period is calculated to be 0.083€/kWh. It can be seen in the graph that the cost
of buying electricity from the grid occasionally reaches negative values, particularly during
the summer period. This trend is a result of the significant surplus of solar energy being
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fed into the electricity grid during periods of high PV production.

Figure 3.2: Dynamic electricity prices from July 2023 to March 2024.

For the scenario of dynamic prices, the investment cost, maintenance cost, as well as the
feed-in tariff, are identical to the baseline scenario. However, as the cost of importing
energy varies dynamically, the objective function needs to be slightly adjusted (Equation
3.35).

Total cost =
T∑

t=0

(Pimportt×tstep×Costimt)+

T∑
t=0

(Pexportt×tstep)×Costex+(Iinith+Costmh
)×CB×T

(3.35)

S4: Fixed electricity prices without any economic benefit from exporting sur-
plus energy to the grid
A potential solution to mitigate the grid congestion problem could be the implementation
of zero feed-in tariffs. In this case, the renewable energy producers are not compensated for
energy exported to the grid. They are encouraged to consume the generated energy locally
or store it for later use rather than exporting it into the grid, reducing in this way the grid
load. In a future scenario, where exported energy to the grid is no longer compensated,
the role of the battery storage system becomes crucial.

For this scenario, the parameter Costex, which represents the compensation rate for ex-
ported energy, obtains a value of zero. Aside from this, the inputs of the model remain
the same with respect to the baseline scenario. Taking into consideration that there is no
financial benefit for exporting energy to the grid, the objective function can be described
by Equation 3.36.

Total cost =
T∑
t=0

(Pimportt × tstep)× Costim + (Iinith + Costmh
)× CB × T (3.36)

S5: Scenario with Constraints on Exported Energy
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As a result of the restricted grid capacity nowadays, grid operators implement constraints
on the amount of energy that can be fed into the electrical grid in order to assure stability
and reliability in the network [62]. Such limitations can significantly affect the operational
strategy of PV-battery systems, leading to a very rigid operational plan. To provide flexi-
bility to the model, it is decided to permit curtailment of solar energy in this scenario. By
allowing curtailment, an excess amount of PV energy, that can not be directly consumed
or stored in the battery for later use, is curtailed, ensuring that the system remains tech-
nically and economically efficient.

For this scenario, all the parameters defined in the baseline scenario are applied. However,
a constraint that limits the amount of exported energy needs to be introduced in the model.
The constraint will limit the exported energy at every time step to the baseline scenario’s
corresponding average value X in order to avoid the excessive export of energy to the grid,
particularly during peak solar generation hours. The constraint can be described as:

Pexportt ≤ X ∀t (3.37)

Additionally, with the introduction of curtailment in the model, the energy balance of the
system, described by Equation 3.15, needs to be adjusted. Equation 3.38 describes the
adjusted energy balance for this scenario.

Pgridt × tstep = Edemandt − PVt + (Pcharget + Pdischarget)× tstep + Ecurtt ∀t (3.38)

where Ecurtt is the amount of solar energy that is curtailed at moment t.

Nevertheless, energy curtailment needs to be penalized. For this study, it is assumed that
curtailment occurs at the meter level, specifically in the coupling point with the grid, mean-
ing that curtailment does not necessarily lead to the PV system being turned off. Thus,
solar energy may be produced and wasted. The cost of curtailment (Costcurt) is defined as
the potential revenue lost from not selling the curtailed energy to the grid, along with the
production cost, which is equivalent to the LCOE for PVs. With respect to the average
LCOE of a small rooftop PV system, it equals 0.08€/kWh [63].

Regarding the objective function for this scenario, the penalty cost of curtailed energy
must be included in addition to the baseline scenario components. The objective function
is represented by Equation 3.39.

Total cost =
T∑
t=0

(Pimportt × tstep)× Costim +
T∑
t=0

(Pexportt × tstep)× Costex

+ (Iinith + Costmh
)× CB × T

+

T∑
t=0

Ecurtt × Costcurt (3.39)

S6: Peak Shaving Scenario
Peak shaving is an energy management technique used to reduce peak electricity imports
and exports, thus preventing spikes in grid interaction [64]. This approach, when combined
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with a storage method, can be used to achieve grid stability [64].

In order to incorporate the peak shaving strategy into the battery sizing optimization
algorithm, restrictions on energy imports and exports need to be set. Similarly to the
scenario with constraints on exported energy, the exported and imported energy at every
moment t need to be limited in the average corresponding values of the baseline scenario.

Pexportt ≤ X ∀t (3.40)

Pimportt ≤ Y ∀t (3.41)

Without the option of energy curtailment, the model may result in a rigid operational
plan. To introduce operational flexibility, the curtailment of PV energy is permitted and
Equation 3.38 is also incorporated in this scenario.

For this scenario, all the parameters defined in the baseline scenario are applied. Further-
more, the objective function of the model is described by Equation 3.42. In addition to the
baseline objective function components, the curtailment cost of PV energy and a quadratic
function of the total grid energy per interval is included. The last term assures that the
import and export peaks are penalized, resulting in this way into a smoother energy profile
[65]. It should be mentioned that the quadratic term in the objective function transforms
the problem into a Mixed Integer Quadratic Programming (MIQP) problem. Nevertheless,
the used solver is capable of handling this problem type, thus no additional modifications
are required in the model [66].

Total cost =
T∑
t=0

(Pimportt × tstep)× Costim +
T∑
t=0

(Pexportt × tstep)× Costex

+ (Iinith + Costmh
)× CB × T

+
T∑
t=0

Ecurtt × Costcurt

+
T∑
t=0

(Pgridt
2 × tstep) (3.42)

As the peak shaving penalty does not represent a real cost, to ensure that each term of
the objective function contributes appropriately to the overall objective, scaling factors are
essential. For this reason, each component is divided by its maximum value derived from
the model prior to optimization.

Figure 3.3 graphically illustrates the inputs and outputs of the cost minimization model
across all the scenarios, providing a summary of the section.

3.3.2 CO2 Emissions Minimization Objective

The objective of CO2 emissions minimization aims to find the optimal battery capacity that
minimizes the total CO2 emissions of the system. Taking into consideration the carbon
intensity of the imported grid energy and the CO2 emissions associated with the battery
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Figure 3.3: Inputs and outputs for the cost minimization objective model.

system and the generated PV energy, the model with this objective aims to minimize the
overall carbon footprint of the system by optimizing the usage of both grid electricity and
battery storage.

With 48% of the Dutch grid electricity being produced by renewable sources of energy
in 2023 [67], the average carbon intensity of the Dutch grid electricity in the same year
was determined at 301 gr CO2eq./kWh [11]. This number refers to the amount of CO2

emissions produced per unit of electricity generated. However, as shown in Figure 3.4, the
hourly carbon intensity of the Dutch electricity mix fluctuates significantly. At moments of
high renewable energy production, the carbon intensity drops to 50 gr CO2eq./kWh. For
more accurate results, the model incorporates, as parameter, the dynamic carbon intensity
of the Dutch grid electricity.

Figure 3.4: Dynamic carbon intensity in gr CO2eq./kWh of the Dutch grid
electricity from July 2023 to March 2024. [11].

On the other hand, during the production, operational and recycling phase of a lithium-ion
battery, the CO2 emissions are estimated to be 62 kg CO2eq./kWh [68] [69]. It should be
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noted that this number refers to the emissions associated with storing renewable energy
in lithium-ion batteries, thus the operational emissions are negligible. Out of the total
battery CO2 emissions, 56 kg CO2eq./kWh are allocated to the production phase, while
the remaining emissions are related to the end-of-life phase of the battery [69]. However,
since the carbon intensity of grid electricity refers to emissions per generated energy, in
order to ensure a fair comparison, only the emissions associated with the production phase
of the battery are taken into account in the model.

In addition to the emissions from the production phase of lithium-ion batteries, the emis-
sions associated with the generation of energy by the PV system should be also incorporated
in the model. A typical rooftop PV system emits approximately 41 g CO2eq./kWh of en-
ergy generated [70]. Similarly to the battery, emissions related to PV energy arise from
the manufacturing of PV panels rather than their operational phase.

While emissions from grid electricity and PV energy generation are related to electricity
usage, the battery’s emissions (56 kg CO2eq./kWh) refer to the emissions associated with
the battery capacity of the system. This means that 56 kg CO2eq./kWh are the total
emissions over the lifetime of the battery. Therefore, the distributed CO2 emissions during
the operation of the system need to be defined. For this reason, the CO2 emissions per
kWh of battery capacity are converted to CO2 emissions per kWh of stored energy, as
shown in Equation 3.43.

CO2bat =
CB × CO2prod

CB ×Ncycles
(3.43)

where CO2bat and CO2prod are the variables representing the CO2 emissions per kWh of
stored energy and the total emissions during the production phase of the battery, equal to
56 kg CO2eq./kWh, respectively and CB is the battery capacity in kWh. The denominator
of Equation 3.43 refers to the total energy stored in the battery over its lifetime in kWh.
This value is equivalent to the maximum possible total energy stored in each cycle, assum-
ing it equals the battery capacity, multiplied by the number of cycles over the battery’s
lifetime, Ncycles. Given the assumption that the battery is fully charged to its maximum
possible capacity once daily over its lifetime and the expected lifetime of the battery is set
at 12.5 years, the number of cycles during its lifespan is equal to 4,562.5. Thus, Equation
3.43 can be written, as shown:

CO2bat =
CO2prod

Ncycles
=

56 kg CO2eq./kWh

4, 562.5
= 12.27 gr CO2eq./kWh (3.44)

The emissions associated with the grid electricity, lithium-ion battery and PV system are
the additional parameters that need to be set as inputs in the CO2 minimization objective
model (Table 3.4).

Parameters Value
Electricity grid carbon intensity (CO2grid,t) Dynamic prices (Figure 3.4)

Battery CO2 emissions (CO2bat) 12.27 gr CO2eq./kWh
PV system CO2 emissions (CO2PV ) 41 gr CO2eq./kWh

Table 3.4: Defined parameters in the CO2 emissions minimization objective
model.
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The objective function of this optimization problem is described in Equation 3.45. When
energy is imported from the grid, the system emits the CO2 equivalent emissions of the
grid electricity generation. In contrast, when battery is discharged, meaning that energy
becomes available to the system, it emits CO2 equivalent emissions reflective of the produc-
tion phase of the battery. Similarly, emissions from PV energy generation are associated
with the manufacture of solar panels.

Total CO2 emissions =
T∑

t=0

(Pimportt×CO2grid,t)×tstep+

T∑
t=0

(Pdischarget×CO2bat
)×tstep+

T∑
t=0

(PVt×CO2PV
)

(3.45)
In Figure 3.5, the inputs and output of the CO2 emissions minimization model can be seen.

Figure 3.5: Inputs and outputs for the CO2 emissions minimization objective
model.

3.3.3 Self-Sufficiency Maximization Objective

Self-sufficiency is a metric indicating the degree of a system’s independence from the grid
by measuring the percentage of energy demand met by locally generated resources in rela-
tion to the total demand [62]. The optimization model with a self-sufficiency maximization
objective aims to maximize the system’s autonomy and reduce reliance on external energy
sources, such as the electricity grid.

Since self-sufficiency is a metric that does not depend on external factors, such as electricity
prices, investment costs or CO2 emissions, the model with a self-sufficiency maximization
objective aims to internally shift the operational pattern of the system in order to achieve
its goal. Therefore, no additional parameters need to be defined in the model. Figure 3.6
shows the inputs and outputs of the algorithm.

The objective function can be described by Equation 3.46. Self-sufficiency can be quantified
as the percentage of the total demand that is not covered by energy imported from the
grid [71]. A higher percentage signifies a higher degree of self-sufficiency, indicating that
a larger portion of the system’s energy demand is met by the generated PV energy. In
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Figure 3.6: Inputs and outputs for the self-sufficiency maximization objective
model.

contrast, a lower percentage indicates increased dependence on energy imports from the
grid.

SS = 1−
∑T

t=0(Pimportt × tstep)∑T
t=0(Edemandt)

× 100% (3.46)

3.3.4 Self-Consumption Maximization Objective

Self-consumption is the percentage of electricity locally generated and consumed, either
immediately or stored in a battery for later use, with respect to the total energy genera-
tion [62]. The objective of maximizing self-consumption involves minimizing the surplus
energy exported to the grid, maximizing in this way the direct utilization of the on-site
generated energy. As a result, the system’s autonomy and independence from the grid can
be enhanced, reducing the reliance of the system on the fluctuating market conditions.

Similarly to the objective of self-sufficiency maximization of Section 3.3.3, the self-consumption
ratio does not rely on external factors but only on the operational strategy of the system.
Figure 3.7 shows the inputs and outputs of the algorithm for this optimization objective.

Figure 3.7: Inputs and outputs for the self-consumption maximization objective
model.

A higher self-consumption rate can be achieved by minimizing the amount of PV energy
exported to the electricity grid and consequently, maximizing the on-site utilization of the
produced energy. Equation 3.47 shows this relationship and serves as the objective function
of the model.

SC = 1−
∑T

t=0(|Pexportt | × tstep)∑T
t=0(PVt)

× 100% (3.47)
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Figures 3.8 and 3.9 show an example of a daily operational plan of a PV-battery system,
clarifying the difference between self-consumption and self-sufficiency [62]. Self-sufficiency
is the percentage of the total energy demand that was met by locally generated sources,
as indicated by the shaded grey area divided by the sum of the grey and blue areas. On
the other hand, self-consumption is the ratio of the total PV energy produced that was
used within the system and not exported to the electricity grid, calculated as the ratio of
the subtraction of the green and yellow area to the green area. The shadowed areas in the
graphs serve as the input values for calculating the respective percentages of self-sufficiency
and self-consumption. In the example provided, self-sufficiency and self-consumption are
calculated to be 0.23% and 0.97%, respectively. The result indicates that a system can be
characterized by high self-consumption and simultaneously by low self-sufficiency, or vice
versa, meaning that the two metrics are not inherently interdependent.

Figure 3.8: Generic example of
self-sufficiency rate calculation.

Figure 3.9: Generic example of
self-consumption rate calculation.

3.4 Battery Sizing Optimization: Multi-Objective Approach

The methodology for the multi-objective optimization, also known as co-optimization, is
outlined in this section. Co-optimization is performed in pairs, coupling cost minimiza-
tion with one of the following objectives: CO2 emissions minimization, self-sufficiency
maximization or self-consumption maximization. The cost minimization objective is in-
corporated into all the models, as cost is a crucial decision-making factor in manufacturing
industry.

For the co-optimization process, the weighted sum method is followed. This method com-
bines all the single objective functions into one scalar, by assigning weights, namely weight-
ing coefficients, to each objective [72]. These weights indicate the importance of each
objective relative to the others.

3.4.1 Co-Optimization of Cost and CO2 Emissions

The combined objective function for the objectives of cost minimization and CO2 emissions
minimization can be described by Equation 3.48:

MOFCO2 = w1 × Total cost + w2 × Total CO2 emissions (3.48)

31



where Total cost and Total CO2 emissions are the individual objective functions and w1

and w2 are the weighting coefficients which need to be positive and satisfy the following
constraint [72]:

N∑
i=1

wi = 1, wi ∈ (0, 1) (3.49)

However, given the substantial difference in magnitudes between the Total cost function
and the Total CO2 emissions function, normalization of both individual objective functions
becomes necessary. The normalisation can be achieved by dividing each objective function
by its optimum value in the single objective optimization, thus resulting in a dimensionless
objective function. Therefore, Equation 3.48 can be reformulated as:

MOFCO2 = w1 ×
Total cost
costopt

+ w2 ×
Total CO2 emissions

CO2opt

(3.50)

with costopt and CO2opt being the resulting optimal values of the cost minimization and
CO2 emissions minimization individual models, respectively.

3.4.2 Co-Optimization of Cost and Self-Sufficiency

Similarly to Section 3.4.1, the objective function for the co-optimization of cost and self-
sufficiency can be represented by Equation 3.51. However, unlike the previous case, where
both objective functions required minimization, in this case, the cost needs to be minimized,
whereas the self-sufficiency rate needs to be maximized. For this reason, self-sufficiency is
represented by its negative value, indicating the aim for minimization.

MOFSS = w1 × Total cost − w2 × SS (3.51)

The normalised objective function for co-optimization of the total cost of the system and
its self-sufficiency rate is described by Equation 3.52.

MOFSS = w1 ×
Total cost
costopt

− w2 ×
SS

SSopt
(3.52)

where SSopt is the resulting optimal value of the self-sufficiency maximization model.

3.4.3 Co-Optimization of Cost and Self-Consumption

The objective function for co-optimization of the total cost and the self-consumption rate
of the PV-battery system can be seen below:

MOFSC = w1 × Total cost − w2 × SC (3.53)

Similarly to the previous sections, the normalised objective function for the co-optimization
of the total cost of the system and the self-consumption rate is shown in Equation 3.54.

MOFSC = w1 ×
Total cost
costopt

− w2 ×
SC

SCopt
(3.54)

where SCopt is the resulting optimal value of the self-consumption maximization model.
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3.5 CO2 Emissions Calculation

To determine the environmental impact of the resulting optimal systems, it is necessary
to define their CO2 emissions. This process involves applying the principles described in
Section 3.3.2.

The total emissions can be allocated between the emissions from the import of grid energy,
the PV power production and the energy stored in the battery. While Equations 3.55 ,
3.56 and 3.57 describe the emissions of the three subsystems, Equation 3.58 outlines the
total CO2 emissions of the system.

Grid emissions =
T∑
t=0

(Pimportt × CO2grid,t) (3.55)

PV emissions =
T∑
t=0

(PVt × CO2PV ) (3.56)

Battery emissions =
T∑
t=0

(Pdischarget × CO2bat) (3.57)

Total emissions = Grid emissions + PV emissions + Battery emissions (3.58)

The parameters CO2grid,t , CO2PV , and CO2bat , defined in Section 3.3.2, represent carbon
intensity of grid energy, PV energy and energy storage, respectively.

3.6 Financial Analysis

In order to evaluate the financial feasibility of the optimal battery systems, it is essential
to analyse metrics, such as the payback time, return on investment and net present value
of the investment. In this section, the methodology for the calculation of these metrics is
described.

3.6.1 Payback Time

Payback time refers to the length of time required for the cost of an investment to be
recovered [73]. It represents the point where the accumulated benefits of an investment
offset its initial cost. The metric can be calculated using the following formula:

Payback time =
Cost of Investment
Annual Cash Flow

(3.59)

where Cost of Investment is the upfront expenditure of the battery system and Annual
Cash Flow refers to the yearly savings after the incorporation of the battery system which
are influenced by multiple factors, such as electricity prices, regulatory constraints and
maintenance costs.

3.6.2 Return on Investment

Return on Investment (ROI) is a performance measure of an investment’s efficiency and
profitability [74]. ROI is expressed as a percentage that measures the return of a particular
investment relative to the investment’s cost [74]. In general, investments with positive ROI
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are considered profitable, as in this case, the returns generated exceed the initial investment
cost. The metric can be described by Equation 3.60.

ROI =
Net Profit

Cost of Investment
(3.60)

where Net Profit refers to the accumulated savings generated by the investment over the
analysis period and Cost of Investment is the upfront expenditure of the battery system.

3.6.3 Net Present Value

Net Present Value (NPV) is a financial metric that is used to evaluate the profitability of
an investment [75]. The metric is the result of computations that determine the present
worth of a future series of payments using an appropriate discount rate [75]. A positive
NPV signifies that the expected earnings exceed the expected costs, meaning that the
investment is profitable over its lifetime, while a negative NPV indicates the opposite [75].
In contrast to simpler metrics, such as payback time and ROI, NPV can result in more
accurate results, as it accounts for the time value of money [75]. NPV can be calculated
based on the following equation:

NPV =
n∑

t=0

Cash Flow at period t

(1 + i)t
(3.61)

where Cash Flow at period t refers to the annual cash flows resulting from the incorporation
of the battery system and i is the long-term interest rate, which is determined at 2.62%
for the Netherlands, as of March 31, 2024 [76].

3.7 Lifelong Analysis

Since the aim of the battery sizing optimization algorithm is the design of a system with
an optimal battery capacity that will be used for approximately 12.5 years, it is insightful
to perform the analysis for the entire lifespan of the battery, including in the model fac-
tors, such as PV and battery degradation, demand growth, cost variations and regulatory
changes.

For this purpose, the PV and demand data, used for the analysis, need to be projected over
the expected lifetime of the battery, thus 12.5 years. The model assumes a PV degradation
rate of 2.5% during the first year and an additional annual decrease in the PV performance
of 1% [77]. Regarding the electricity demand, it is expected to increase annually by 1.4%
within the following years in the European Union [78]. For the analysis, it is assumed that
this annual demand growth remains constant over the lifetime of the battery. Additionally,
the degradation of the battery needs to be incorporated into the model, as it can decrease
the available battery capacity over time. Each cycle of the battery is assumed to have
Coulombic efficiency of 0.999954, meaning that the degradation rate per cycle is 0.000046
[79]. Under the assumption that the system undergoes one full cycle per day, the amount
of the occurring degradation per time step (hourly) can be calculated as:

drate =
0.000046× 365

365× 24
= 1.916× 10−6 (3.62)

In order for the model to account for the battery degradation, some additional constraints
need to be added. Equation 3.63 counts for the available battery capacity (Cavt) at every
time step, as follows:
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Cavt = Cavt−1 × (1− drate) ∀ t > 1 (3.63)

where Cavt−1 is the available battery capacity in the previous time step and drate is the
constant hourly degradation rate. For t = 0, the available battery capacity equals the
initial battery size.

Cav0 = CB (3.64)

Besides the constraints addition, the upper limit of the energy that can be stored in the
battery (Et) needs to be adjusted to count for the available battery capacity, rather than
the initial capacity (Equation 3.65).

Et ≤ Cavt × (1−DoD) ∀t (3.65)

Similarly, for the calculation of the maximum battery power (Pmax), the initial battery size
should be replaced by the available battery capacity at every moment t (Equation 3.66).

Pmax = Crate × Cavt ∀t (3.66)

For the cost minimization scenarios, the cost of importing and exporting electricity, as well
as the dynamic electricity prices need to be projected into the future. Due to the increasing
renewable energy production and the subsequent high amount of energy, that is fed into
the grid, electricity prices are expected to decrease over the following years [80]. Figure
3.10 shows the future trend of electricity prices in Europe, which is used in the model for
the projection of import and dynamic prices [80].

Figure 3.10: Development of average electricity prices in Europe over the
lifetime of the battery system [80].

Regarding the feed-in tariff, many discussions have been held within the Dutch government
concerning the effectiveness of the scheme. Although no clear decision has been made, the
value of the feed-in tariff is constantly decreasing and the scheme is gradually being phased
out [81]. For this assignment, it is assumed that the annual decrease rate of the feed-in
tariff is 9% [82]. As of 2031, the system will no longer receive any tariff for exporting
energy to the grid [82].

Similarly, there is high uncertainty regarding the net metering scheme in the Netherlands.
Even though it was initially decided that the scheme would phase out in 2023, the latest
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information mentions that this will only happen in 2027 [83]. For the corresponding sce-
nario, it is assumed that the application of the net metering scheme will end on January
1, 2027. Until then, the rate of energy subjected to net metering will be 100%.

Since the penetration of electricity from renewable energy sources constantly increases in
the grid mix, the CO2 intensity of the grid electricity is anticipated to drop significantly
[84]. Therefore, the CO2 emissions of the grid electricity need to be projected accordingly.
Specifically, a 77% emissions decrease is expected from 2020 to 2035 in Europe, meaning
that the annual emissions reduction is 5.51% [84]. By the end of the battery’s lifetime, the
CO2 intensity of grid electricity is projected to be as low as 47 g CO2eq./kWh [84].
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Chapter 4

Case Study

In this chapter, the case study for this assignment is described, namely Fraunhofer Inno-
vation Platform for Advanced Manufacturing at the University of Twente. On the rooftop
of the building, a PV system is installed, while currently, there is no battery system inte-
grated. The description of the system, as well as the data regarding the PV performance
and the consumption profile, are provided in this chapter.

4.1 PV System

A PV system with power capacity of 36.9 kWp is installed on the rooftop of the Fraunhofer
Innovation Platform for Advanced Manufacturing building at the University of Twente.
Positioned at the geographical coordinates with latitude and longitude of 52.2376° N and
6.8479° E, respectively, the PV system aims at a shift towards sustainable energy consump-
tion within the infrastructure of the university.

The system consists of 90 PV modules, each having a maximum power output of 410Wp.
The modules are of the "Canadian Solar - TND CS6R-410Wp Black Frame" model, uti-
lizing mono-crystalline technology. Mono-crystalline solar panels offer higher efficiency
rates compared to alternative PV technologies, such as thin-film or poly-crystalline pan-
els, allowing for a higher energy production per m2 [85]. Furthermore, mono-crystalline
technology performs efficiently under low light conditions, meaning that this type of PV
shows enhanced performance in diffuse solar irradiance scenarios [85]. Possible downsides
of mono-crystalline panels are the increased cost, the higher shading losses and the waste
of silicon during production [85]. The orientation of the PVs is east, implying that their
peak production occurs early in the morning.

In Figures 4.1 and 4.2, the configuration of the PV system is illustrated. As can be seen,
the rooftop is flat and consists of a tilted Building Applied Photovoltaic (BAPV) system.
An important attribute of the system is that the PV array may experience increased shad-
ing losses due to the solid structure situated on the southern part of the system and the
building walls on the northern part, resulting in possible diminished PV production.

Additionally, Figures 4.3 and 4.4 depict the inverter used in the PV system. The system is
equipped with a SolarEdge "SE30K-RW00IBNM4" three-phase inverter with an efficiency
of 98.3% [86]. The inverter is installed at the Fraunhofer Innovation Platform for Advanced
Manufacturing to convert the DC power generated by the PV system into AC power.
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Figure 4.1: PV system on the
rooftop of Fraunhofer Innovation

Platform for Advanced
Manufacturing.

Figure 4.2: PV system on the
rooftop of Fraunhofer Innovation

Platform for Advanced
Manufacturing.

Figure 4.3: Inverter of the PV
system of Fraunhofer Innovation

Platform for Advanced
Manufacturing.

Figure 4.4: Inverter of the PV
system of Fraunhofer Innovation

Platform for Advanced
Manufacturing.

In Figures 4.5 and 4.6, the logical and physical layout of the PV-inverter system are il-
lustrated, with data as of July 25, 2024. In these graphs, blue squares represent the PV
panels and their corresponding DC energy generation, green squares indicate the DC-to-
AC inverter and the purple box represents the AC energy delivered to the building.

The PV production data were sourced from the Application Programming Interface (API)
of SolarEdge Cloud-Based Monitoring Platform [87]. The operation of the system was
initiated on March 31, 2023. However, the system experienced a breakdown from May 5,
2023, until July 6, 2023, resulting in a lack of data for approximately two months. For
this reason, the analysis is decided to be done from July 7, 2023 until March 5, 2024,
thus eight months. The data gathered by the API of SolarEdge Cloud-Based Monitoring
Platform were provided with an hourly resolution and they are illustrated in Figure 4.7.
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Figure 4.5: Logical layout of the
PV system of Fraunhofer

Innovation Platform for Advanced
Manufacturing.

Figure 4.6: Physical layout of the
PV system of Fraunhofer

Innovation Platform for Advanced
Manufacturing.

The total PV energy production of the system during the eight-month period amounts to
15.29 MWh.

Figure 4.7: PV energy production from July 7, 2023 until March 5, 2024.

4.1.1 Lifelong Analysis

For the lifelong analysis, the annual PV production data are needed in order to be projected
over the expected 12.5 years of the battery lifetime. By the time of the analysis, data
are available up to June 25, 2024. To complete a full year, data from PVGIS for the
exact location of Fraunhofer Innovation Platform for Advanced Manufacturing have been
retrieved for the period from June 26, 2024 until July 6, 2024. In order to count for
discrepancies between the actual and PVGIS data, the average difference between the two
datasets is calculated and the PVGIS values are adjusted. The annual PV generation
profile can be seen in Figure 4.8.
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Figure 4.8: PV energy production from July 7, 2023 until July 6, 2024.

4.2 Consumption Profile

At Fraunhofer Innovation Platform for Advanced Manufacturing, there is currently no
smart meter installed, resulting in the absence of recorded information regarding the con-
sumption of electricity within the building. However, a recent addition includes a meter
installed specifically for measuring the energy consumption of one of the machines, a 3D
printer used for manufacturing titanium objects (Figure 4.9). For this assignment, it is
decided that the energy produced by the PV system will be directed towards powering this
specific machine. Thus, the resulting manufactured products will be produced using green
energy.

Figure 4.9: 3D printer at Fraunhofer Innovation Platform for Advanced
Manufacturing.

Nevertheless, the energy consumption data for this machine start from January 11, 2024.
Therefore, it is necessary to forecast the energy consumption for the previous months of
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the year. Given that the machine is not subjected to seasonal demand variations, it is
assumed that the energy demand profile observed from January 11, 2024 to February 10,
2024 is repeated monthly from July 7, 2023 until January 10, 2024. Starting from January
11, 2024, the actual demand profile of the machine is used. Figure 4.10 illustrates the
consumption data of the aforementioned machine over the analysis period.

Figure 4.10: Consumption data of the 3D printer from July 7, 2023 until March
5, 2024.

4.2.1 Lifelong Analysis

By the time of the analysis, five months of consumption data are available. As explained,
the demand profile of the machine is independent of seasonal fluctuations, thus it is assumed
that the available data repeat every five months. The annual consumption profile for the
lifelong analysis is illustrated in Figure 4.11.

Figure 4.11: Consumption data of the 3D printer from July 7, 2023 until July 6,
2024.
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Chapter 5

Results

In this chapter, the results of the single and multi-objective optimization analysis are dis-
played. Additionally, the CO2 emissions of the resulting optimal systems are calculated
and a financial analysis is conducted. Lastly, the results of the 8-month analysis are com-
pared with the corresponding results of the lifelong analysis.

For this assignment, Gurobi software version 10.0.3 along with the Pyomo library is used
to solve the optimization problem within the Python environment. Gurobi optimizer is a
useful tool for the formulation and analysis of mathematical models for complex optimiza-
tion applications. While various packages and libraries, such as Pyomo, are necessary for
building the optimization model, Gurobi software is responsible for solving the mathemat-
ical optimization and returning the optimized value of the objective function, as well as
the final result of the problem’s variables to the user [88].

5.1 Battery Sizing Optimization: Single-Objective Approach

In this section, the results of the battery sizing optimization model with a single-objective
approach are presented. The considered objectives include cost minimization, CO2 emis-
sions minimization, as well as self-sufficiency and self-consumption maximization.

5.1.1 Cost Minimization Objective

This section presents the findings of the cost minimization model across six different sce-
narios: baseline scenario with fixed electricity prices (S1), fixed electricity prices under net
metering scheme (S2), dynamic prices scenario (S3), a scenario with fixed electricity prices
but without any economic benefit from exporting surplus of energy to the grid (S4), a
scenario where constraints on the exported energy are included (S5) and finally a scenario
where peak shaving strategy is incorporated (S6).

S1: Baseline Scenario with Fixed Electricity Prices
The optimal battery capacity for this scenario is calculated to be 10.2 kWh. Figure 5.1
shows the relation between the battery capacity and the total cost of the system. It can
be seen that for a battery capacity of 10.2 kWh, the cost of the system is minimized and
it is equal to €2,197. This cost refers to both operational expenses and the distributed
investment cost over the eight-month analysis period. Additionally, the graph shows that
incorporating a battery leads to a reduction in the total cost of the system. However,
beyond a certain battery capacity, the overall cost begins to rise again due to the increase
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in the battery’s investment cost.

Figure 5.1: Relation between the battery capacity and the total cost of the
system for scenario S1.

Figures 5.2, 5.3 and 5.4 reveal the operational patterns of the storage system over the
eight-month analysis period. It can be seen that during the winter months, the frequency
of battery usage decreases compared to the summer months, mainly due to lower PV pro-
duction. This leads to reduced frequency of charge and discharge cycles, as well as absence
of exported energy during the winter period.

Figure 5.2: State of Charge (SoC)
pattern during the analysis period

for scenario S1.

Figure 5.3: Charge and discharge
pattern during the analysis period

for scenario S1.

In order to examine the variations in the operational behaviour of the battery across sea-
sons, a summer and a winter week are analysed. Figures 5.5 and 5.6 depict the battery’s
State of Charge (SoC) and the import and export patterns during a week in July, while
Figures 5.7 and 5.8 illustrate the corresponding metrics for a week in January.

During the summer period, as shown in Figures 5.5 and 5.6, the battery operates at its
maximum potential, reaching 80% of its total capacity, as constrained by the (1 −DoD)
factor. Additionally, it can be seen that the battery undergoes approximately one complete
charge-discharge cycle per day, meaning that the operational life of the battery may be
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Figure 5.4: Import and export pattern during the analysis period for scenario
S1.

extended compared to scenarios with a higher number of cycles per day. Regarding energy
transactions with the grid, the system exports a significant amount of energy around noon,
coinciding with peak PV generation. Additionally, it imports a relatively small amount of
energy during the rest of the day in order to supplement the battery and meet the energy
demand.

Figure 5.5: SoC pattern during
the summer week for scenario S1.

Figure 5.6: Import and export
pattern during the summer week for

scenario S1.

In contrast, during the winter week, the battery does not operate at its maximum potential,
undergoing only about three full charge-discharge cycles, as shown in Figure 5.7. On these
days, a low amount of energy is fed into the grid, indicating that the PV production
around noon along with the battery’s discharge is often sufficient to cover the energy
demand, as depicted in Figure 5.8. However, for the rest of the week, the battery’s SoC
is constant at 20%, suggesting that the PV production is insufficient to cover the demand
and simultaneously charge the battery.
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Figure 5.7: SoC pattern during
the winter week for scenario S1.

Figure 5.8: Import and export
pattern during the winter week for

scenario S1.

S2: Fixed Electricity Prices Scenario under Net Metering Scheme
For the scenario of fixed electricity prices with net metering, the optimal battery size is 0
kWh, resulting in a total cost of €525.4. Figure 5.9 shows the relation between the battery
capacity and the total cost of the system. From the analysis, it becomes clear that net
metering significantly reduces the operational cost of the system, making the addition of
a battery unnecessary. Specifically, in the PV-battery system without a battery, the total
imported energy is equal to 12.1 MWh, while 9.9 MWh of energy is exported, meaning
that the owner pays only for the net energy consumption of 2.2 MWh.

S3: Dynamic Prices Scenario
For the scenario of fluctuating electricity prices, the average electricity cost, as mentioned
in Section 3.3.1, is 0.083€/kWh, meaning that the electricity prices are significantly low.
Thus, the results of the analysis indicate that the system cost is minimized when no battery
is included. In this case, the total operational cost over the eight-month analysis amounts
to €369. Figure 5.10 illustrates how the total cost of the system rises with the incorporation
of a battery.

Figure 5.9: Relation between the
battery capacity and the total cost

of the system for scenario S2.

Figure 5.10: Relation between the
battery capacity and the total cost

of the system for scenario S3.

S4: Fixed Electricity Prices without any Economic Benefit from Exporting
Surplus Energy to the Grid
For this scenario, where no economic benefits are gained from exporting energy to the
grid, the optimal battery capacity is 32.4 kWh. The resulting battery capacity is more
than three times larger than the size of the resulting battery in the baseline scenario where
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feed-in energy is compensated. Despite this considerable increase in battery capacity, the
total cost of the system, referring to the operational and distributed investment cost over
the eight-month analysis, has only increased by 25% to €2,746. A larger battery size also
contributes to a higher self-sufficiency rate compared to the baseline scenario, increasing
it by 10% to reach 47%. Figure 5.11 illustrates the considerable cost reduction potential
that a battery can bring to the system.

Figure 5.11: Relation between the battery capacity and the total cost of the
system for scenario S4.

Figures 5.12 and 5.13 illustrate the operational behaviour of the 32.4 kWh battery. Simi-
larly to the baseline scenario, the battery is utilized more frequently during summer com-
pared to winter. Furthermore, there is a reduction in the amount of exported energy
compared to the baseline scenario, as the battery capacity is larger and the storage poten-
tial is increased.

Figure 5.12: SoC pattern during
the analysis period for scenario S4.

Figure 5.13: Import and export
pattern during the analysis period

for scenario S4.

In the summer week analysis, the battery system operates similarly to the baseline scenario,
following a daily cycle of full charge and discharge. Additionally, a significant amount of
energy is exported to the grid around noon. However, there is a slight decrease in both
imported and exported energy due to the increased size of the battery system which can
efficiently store larger quantities of electricity for later use. To avoid repetition, the graphs
of the summer week analysis are not included.
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With respect to the corresponding winter week, the battery is not utilized to its maximum
potential, indicating that the battery’s maximum capacity is mostly used during summer.
Nevertheless, Figures 5.14 and 5.15 present similar patterns to the baseline scenario. Ini-
tially, during the first days of the analysis period, the PV production is sufficient to both
meet the demand around noon and charge the battery approximately up to 40%. However,
for the rest of the week, the battery’s energy state remains constant at 20%. One notable
difference compared to the baseline scenario is the absence of exported energy, as a result
of the larger battery size.

Figure 5.14: SoC pattern during
the winter week for scenario S4.

Figure 5.15: Import and export
pattern during the winter week for

scenario S4.

S5: Scenario with Constraints on Exported Energy
Introducing constraints on the amount of exported energy to the grid leads to an increased
optimal battery size compared to the previously analysed models. Specifically, the optimal
battery capacity amounts to 41.37 kWh, while the total cost of the system reaches €2,561
and the amount of curtailed energy is 1.14 MWh. The relation between the total cost of
the system throughout the analysis period and the battery size is depicted in Figure 5.16.
In this case, the total cost refers to the operational expenses, the distributed investment
cost over the eight-month analysis period, as well as the curtailment cost. It should be
mentioned that in case curtailment of solar energy was not permitted, the optimal bat-
tery size would be 1.1 MWh with a total cost of €20,524, indicating significantly higher
expenses over the eight-month period of analysis. For battery sizes smaller than 1.1 MWh
under these conditions, the problem becomes infeasible, meaning that curtailment of PV
energy is necessary.

The operational strategy of this model is similar to the previously analysed cost minimiza-
tion models which resulted in a battery capacity greater than zero, with the exception that
exported energy is constrained to 8.8 kWh. The system imports energy throughout the
year but exports energy only during summer. Additionally, while the battery completes
approximately one full charge/discharge cycle daily in summer, its usage is significantly
decreased in winter. Figures 5.17 and 5.18 illustrate the battery’s operational pattern over
the analysis period. For a more detailed perspective, daily graphs of the SoC and import/-
export patterns are provided, illustrating both a summer day (August 1st) and a winter
day (January 1st).

Comparing the summer and winter SoC (Figures 5.19 and 5.20), it can be seen that on
the summer day, the battery reaches its maximum capacity around noon and it retains
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Figure 5.16: Relation between the battery capacity and the total cost of the
system for scenario S5.

Figure 5.17: SoC pattern during
the analysis period for scenario S5.

Figure 5.18: Import and export
pattern during the analysis period

for scenario S5.

almost 50% of its charge by the end of the day, whereas in winter, the SoC increases only
by 1% throughout the day. Therefore, the generated PV energy is insufficient to charge
the battery. However, Figure 5.22 shows that PV energy production is sufficient to cover
the demand of the 3D printer around noon on the same day, as imported energy drops
to zero. Additionally, energy exports are negligible on January 1st. In contrast, on the
summer day, the system imports energy exclusively early in the morning, while the rest of
the day exports the excess PV energy, that can be neither consumed directly nor stored in
the battery. On the night of August 1st, both imported and exported energy drop to zero,
meaning that the demand of the system is exclusively covered by the battery.

Figure 5.23 presents the cumulative curtailed energy over the analysis period. It can be
seen that curtailment of energy occurs exclusively during summer, as the excess PV energy
can neither be fed into the grid nor stored in the battery. By October, the PV production
decreases significantly, thus the amount of curtailed energy drops to zero, meaning that
the cumulative curtailed energy stabilizes until the end of the studied period.
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Figure 5.19: SoE pattern on
August 1st for scenario S5.

Figure 5.20: SoE pattern on
January 1st for scenario S5.

Figure 5.21: Import/export
pattern on August 1st for scenario

S5.

Figure 5.22: Import/export
pattern on January 1st for scenario

S5.

Figure 5.23: Cumulative curtailed energy over the analysis period for scenario
S5.

S6: Peak Shaving Scenario
The model, which incorporates the peak shaving strategy, results in an optimal battery
size of 594 kWh, with a total cost of €11,685 over the analysis period. This cost refers
to the operational expenses, the distributed investment cost over the eight-month analysis
period, as well as the curtailment cost. In this case, the curtailed energy amounts to 179.50
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kWh. The model results in a larger battery size compared to the previous models primarily
due to the constraint on imported energy. Since the constraint on imported energy can not
be satisfied by increasing the curtailed energy, the increase of the battery size is inevitable.
In this way, surplus energy produced during periods of high PV production is stored for
later use, ensuring the system’s ability to cover its energy needs at every moment t. Addi-
tionally, since the battery size is higher, the need for curtailment of PV energy is minimized.

Figures 5.24 and 5.25 illustrate the SoC and import/export patterns of this optimization
model. Both figures present different patterns compared to the previous cost minimiza-
tion scenarios. Specifically, the battery does not undergo one full charge/discharge cycle
per day. In contrast, during summer, the SoC fluctuates significantly but remains above
50%, while in winter the battery experiences increased discharge. The large battery size is
necessary during the winter period to ensure that the system can meet the daily energy de-
mand by supplementing energy imports and currently generated PV energy. Furthermore,
Figure 5.25 shows that the system exports energy exclusively during summer and imports
energy only in winter. This occurs mainly because the battery size is sufficiently large to
store enough excess energy and cover the demand of the system without importing energy
during summer. In contrast, during winter, there is no excess PV energy available to be
exported to the grid.

Additionally, Figure 5.25 shows the effectiveness of the peak shaving strategy. Through the
introduction of the objective function penalty in combination with the constraints limiting
the energy import and export at 2.7 kWh and 8.8 kWh, respectively, the overall pattern is
smooth without any significant peaks.

Figure 5.24: SoC pattern over the
analysis period for scenario S6.

Figure 5.25: Import and export
pattern over the analysis period for

scenario S6.

5.1.2 CO2 Emissions Minimization Objective

Regarding the findings of the CO2 emissions minimization model, given that the corre-
sponding emissions from grid electricity are often higher than those emitted by the PV-
battery system, the optimization model prioritizes maximizing the size of the battery. As
a result, the optimal battery capacity amounts to 15.6 MWh, enabling the storage of all
the produced PV energy, minimizing in this way the imported electricity to 2,186 kWh,
equivalent to the total demand of the system subtracted by the PV energy generated. In
this case, the total CO2 equivalent emissions of the system are equal to 686.2 kg. Figure
5.26 displays the relationship between the total CO2 emissions of the system and varying
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battery sizes. It can be seen that the emissions decrease until the battery capacity reaches
15.6 MWh. After this point, the emissions remain constant, as there is no additional
PV energy available to be stored, meaning that any unmet demand must be covered by
importing energy from the grid.

Figure 5.26: Relation between the battery capacity and the total CO2 emissions
of the system.

Since the optimization strategy aims to store all the surplus PV energy, the model results
in storing high amounts of energy during the summer period in order to utilize it in win-
ter, as depicted in Figure 5.27. As a result of this strategy, the system operates without
exporting electricity. Additionally, the system imports occasionally energy from the grid
during the eight-month period, mainly when CO2 emissions of grid energy are lower than
those of the PV-battery system (Figure 5.28).

Figure 5.27: SoC pattern over the
analysis period for the CO2

minimization model.

Figure 5.28: Import and export
pattern over the analysis period for

the CO2 minimization model.

Considering that the total CO2 equivalent emissions of the 3D printer without the incor-
poration of a battery system would amount to 3,588 kg, the reduction of the emissions
is significant. However, the total cost of the system, referring to the operational and dis-
tributed investment cost over the analysis period, amounts to €270,846, thus a battery
size of 15.6 MWh may not be practical in real-case scenarios. Furthermore, the current
model underutilizes the battery’s capabilities, with the lowest SoC being only 50%.
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For this reason, the implementation of a constraint that limits the SoC of the battery on a
monthly, weekly or daily basis is examined. Specifically, the SoC constraint ensures that the
SoC is the same at the start of each specified period. The purpose of this constraint is firstly
to prevent the battery from storing all available energy in the summer for use in the winter
and secondly, to potentially maximize the battery’s utilization. This approach can lead
to a more efficient and realistic battery operation, reducing the optimal battery size and
lowering the overall system’s cost. The results for each constraint type are shown in Table
5.1. In the table, the total cost of the system refers to the total operational and investment
cost distributed during the analysis period. The findings indicate that the optimal battery
size decreases as the period of the SoC constraint shortens. This occurs because shorter
periods require the battery to balance its SoC more frequently, thus reducing the need for a
larger storage capacity to manage long-term energy storage. Consequently, the overall cost
of the system during the eight-month analysis period also decreases. However, this leads to
an increase in CO2 emissions due to a higher dependency on imported energy from the grid.

Constraint type Battery size (kWh) CO2 emissions (kg) Total cost (€)
Monthly SoC constraint 489.65 2,096 9,865
Weekly SoC constraint 300.21 2,123 6,578
Daily SoC constraint 120.20 2,308 3,537

Table 5.1: Impact of SoC constraints on the system performance over the
analysis period.

Comparing the three different scenarios (Figure 5.29), as the period of the SoC constraint
decreases (from monthly to daily), the frequency of charging and discharging cycles in-
creases. For all the cases, the winter period shows relatively stable SoC, while most of the
variations occur during summer. This pattern is a result of higher PV production during
summer, leading to excess energy available for storage.

Figure 5.29: Comparison of SoC throughout the analysis period for different
SoC constraints: monthly, weekly and daily constraints.

Considering all constraint types, the models with monthly and weekly SoC constraints yield
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emissions of similar magnitudes. However, the cost associated with the weekly SoC limit is
significantly lower, making the weekly constraint more cost-effective. When comparing the
weekly with the daily constraint, the battery size required in the daily constraint scenario
is only 40% of that needed for the weekly constraint. Despite this reduction in battery
size, the emissions in the daily constraint scenario are less than 10% higher. Given these
factors, the daily SoC constraint is the optimal choice, as it offers a better balance between
cost efficiency and environmental impact.

Figure 5.30 illustrates the pattern of importing and exporting energy from the grid for the
CO2 emissions minimization model after the implementation of the daily SoC constraint.
Compared to the corresponding graph without the implemented constraint (Figure 5.28),
the pattern shows notable differences. After implementing the daily SoC constraint, energy
imports are more frequent but of lower magnitude. The system avoids importing energy
only when CO2 emissions are low and instead imports energy more consistently over the
analysis period. Additionally, the system frequently exports large amounts of energy during
summer because the reduced battery size cannot store all the excess PV energy.

Figure 5.30: Import and export pattern during the analysis period for the CO2

minimization model with daily SoC constraint.

5.1.3 Self-Sufficiency Maximization Objective

To maximize self-sufficiency, the system needs to minimize the total imported energy and
decrease dependence on the grid. In order to achieve this, the optimization algorithm aims
to maximize the total stored PV energy, resulting in this way in an optimal battery capac-
ity of 14.7 MWh and a self-sufficiency rate of 87.4%. In this case, the total operational and
investment cost of the system over the analysis period amounts to €254,888, indicating
that the resulting system’s design would be limited in real-world applications.

Figure 5.31 shows the potential increase of the self-sufficiency rate after the incorporation
of a battery into the system. Without a storage solution, the self-sufficiency rate of the
system is 30%, while a battery with a capacity of 14.7 MWh can increase the metric to
87.4%. Beyond this threshold, the self-sufficiency of the system can not be further opti-
mized, as there is no additional PV energy to be stored.
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Figure 5.31: Relation between the battery capacity and the self-sufficiency rate
of the system.

Regarding the battery’s SoC pattern, the resulting operational strategy aligns with the
corresponding strategy of the CO2 emissions minimization model before the implementa-
tion of the SoC constraint, as shown in Figure 5.32. Both models aim to store all excess
energy during summer to be utilized during the winter period. However, the import and
export patterns differ. While the system does not export any energy throughout the anal-
ysis period, it imports energy from the grid only when the stored energy from the summer
period is depleted (Figure 5.33).

Figure 5.32: SoC pattern over the
analysis period for self-sufficiency

maximization.

Figure 5.33: Import and export
pattern over the analysis period for

self-sufficiency maximization.

However, due to the high total cost and the large optimal battery size, the resulting system
does not represent a realistic model. Therefore, a SoC constraint that limits the battery’s
SoC on a monthly, weekly and daily basis is examined. Table 5.2 presents the resulting
variables of the system for the different constraint types.

In contrast to the CO2 minimization model, the optimal battery size does not necessarily
decrease as the period of the SoC constraint shortens. Specifically, the weekly SoC con-
straint results in a larger battery size compared to the monthly constraint. This can be
attributed to the circumstances and specific conditions under which the weekly SoC con-
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Constraint type Battery size (kWh) Self-sufficiency rate Total cost (€)
Monthly SoC constraint 209.09 0.584 5,008
Weekly SoC constraint 262.02 0.587 5,916
Daily SoC constraint 120.20 0.561 3,538

Table 5.2: Impact of SoC constraints on the system performance over the
analysis period.

straint is implemented. If one of the weeks coincides with a period of low PV production or
high demand, the system may result in a larger battery capacity to avoid importing large
quantities of energy from the grid. However, the self-sufficiency rate remains relatively
stable across the different SoC constraints, showing only slight improvements. Despite its
slightly lower self-sufficiency rate, the daily SoC constraint proves to be the most cost-
effective scenario, due to the significantly reduced battery size and consequently lower
overall cost.

The SoC patterns for the three different SoC constraints are illustrated in Figure 5.34.
As the period of the SoC constraint shortens, the charging and discharging cycles become
more frequent. Additionally, the patterns regarding the monthly and weekly constraints
align closely. In all cases, the SoC remains relatively stable during the winter, with most
of the variations occurring in the summer.

Figure 5.34: Comparison of SoC throughout the analysis period for different
SoC constraints: monthly, weekly and daily constraints.

Given that the scenario with the daily SoC constraint is the most cost-effective, it has
been chosen for integration into the self-sufficiency maximization model. The import and
export patterns of this scenario closely align with the corresponding graph of the CO2

emissions minimization model (Figure 5.30). This alignment occurs because firstly, the
resulting optimal battery size is the same in both models, and secondly, both models are
optimized by storing as much PV energy as possible.
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5.1.4 Self-Consumption Maximization Objective

The self-consumption rate of a system can be maximized by minimizing the total exported
energy. The operational strategy of this model aligns with the self-sufficiency maximization
model before implementing the SoC constraint, as the aim of maximizing the percentage of
the stored PV energy is common across the models. This indicates that different objectives
are not necessarily contradictory. Therefore, the optimal battery size for the optimization
model with this objective is also 14.7 MWh with a resulting self-consumption rate of 1.00.
It should be mentioned that the self-consumption rate of the system without a storage
solution is 35%, as shown in Figure 5.35, and it progressively increases to 1 with the in-
crease of the battery size. Beyond this point, it remains constant, as no more PV energy
is available to be stored. The total cost of the system, referring to the operational and
distributed investment expenses over the analysis period, is equal to €254,888.

Figure 5.35: Relation between the battery capacity and the self-consumption
rate of the system.

Since the operational patterns remain consistent across the self-sufficiency and self-consum
ption optimization models, it becomes redundant to mention the same resulting metrics.
Furthermore, the resulting large battery size and the consequent high overall cost indicate
the necessity of implementing a SoC constraint in this model as well. Table 5.3 shows how
different SoC constraints impact the optimal battery size, self-consumption rate and total
cost of the system.

Constraint type Battery size (kWh) Self-consumption rate Total cost (€)
Monthly SoC constraint 209.09 0.668 5,009
Weekly SoC constraint 262.02 0.670 5,917
Daily SoC constraint 120.20 0.642 3,538

Table 5.3: Impact of SoC constraints on the system performance over the
analysis period.

The findings of Table 5.3 align with the results of the self-sufficiency model, showing that
the self-consumption rates vary only slightly between different SoC constraints. Therefore,
the model with the daily SoC constraint, which results in a smaller battery size and con-
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sequently lower total cost, is the most suitable.

Figure 5.36 presents the SoC pattern over the analysis period for the self-consumption
model after the implementation of the daily SoC constraint. The graph is similar to
the corresponding SoC graph of the self-sufficiency model. During summer, the battery
undergoes approximately one incomplete charge/ discharge cycle per day, while in winter,
the battery is mainly discharged. The battery appears to be underutilized, reaching its
maximum SoC (80%) only once during the analysis period. This is because the daily SoC
constraint causes the SoC of the battery to return to 50% at the beginning of each day
and most of the days, the PV production is not enough to fully charge the battery.

Figure 5.36: SoC pattern over the analysis period for the self-consumption
model with the daily SoC constraint.

5.2 Battery Sizing Optimization: Multi-Objective Approach

In this section, the results of the multi-objective optimization analysis are presented. The
co-optimization is performed in pairs, minimizing cost and simultaneously, minimizing CO2

emissions, maximizing self-sufficiency or maximizing self-consumption.

For the cost minimization objective, the first five scenarios, described in Section 3.3.1, are
included in the analysis. The peak shaving scenario can not be implemented in any of
the co-optimization models with CO2 emissions, self-sufficiency and self-consumption due
to convergence issues. Specifically, when the daily SoC constraint of the latter models is
implemented in the co-optimization with the peak shaving scenario, the problem leads to
infeasibility. This is because the flexibility of the peak shaving scenario is limited, meaning
that the battery size can not be lower than 594 kWh. After the incorporation of the daily
SoC constraint, the SoC is required to be equal at the beginning of every day, leading to
the incapability of the system to meet its demand. Likewise, the weekly and monthly SoC
constraints would lead to the same finding.

5.2.1 Cost and CO2 Emissions Minimization

Figure 5.37 illustrates the relationship between cost and CO2 emissions resulting from the
co-optimization model. Each line represents a distinct scenario of the cost minimization
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objective along with the CO2 emissions minimization objective. The data points along
each line indicate different weight combinations for each one of the objective functions of
the co-optimization model. The graph reveals that cost and CO2 emissions objectives,
which both aim for minimization, are conflicting, as reducing cost leads to an increase in
CO2 emissions and vice versa.

Figure 5.37: Co-optimization results of cost and CO2 emissions.

The findings indicate significant variation in the results depending on the scenario selected
for the cost minimization objective, as depicted in Figure 5.37. In the scenarios where
electricity prices are fixed (S1), there is no financial incentive for feed-in energy (S4) and
there is a constraint on exported energy (S5), the generally higher resulting battery sizes,
lead to increased costs but reduced CO2 emissions compared to the scenarios with dynamic
prices (S3) and net metering scheme (S2). In contrast, the single objective optimization
models for scenarios S2 and S3, in Section 5.1.1, concluded that the system is optimized
when no battery is integrated. This finding affects also the results of the co-optimization
model, as when the cost weight increases, the optimal battery size tends towards zero. For
these scenarios, the data points on the graph are fewer due to the algorithm converging
to an optimal battery capacity of zero, when the cost weight is only 0.4. Therefore, these
scenarios result in lower cost but higher CO2 emissions.

Table 5.4 shows explicitly the resulting optimal battery size corresponding to varying
weights assigned to the two objectives of the model. In the table, w1 and w2 are the
weights for the cost and the CO2 emissions objective, respectively. The results suggest
that when w1 increases, the battery size decreases, while an increase in w2 corresponds to
an increase in battery size. This trend mirrors the results of the single-objective analysis
where the cost minimization objective results in smaller battery sizes, while the CO2 emis-
sions objective leads to larger capacities. From Table 5.4, it is clear that the multi-objective
approach achieves a more balanced result, optimizing both cost and CO2 emissions.

It should be mentioned that there are constraints in some of the single-objective models of
cost and CO2 emissions minimization that are not present in both models. However, in the
co-optimization algorithm, all these constraints are considered together. For instance, the
CO2 minimization model includes the daily SoC constraint, as explained in Section 5.1.2,
that is not included in any of the cost models. Nevertheless, the result of the cost models
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Battery Capacity (kWh)

w1 w2
Baseline

scenario (S1)
Net metering
scenario (S2)

Dynamic prices
scenario (S3)

Scenario without
feed in tariff (S4)

Scenario with
constraints on

exported
energy (S5)

0.0 1.0 120.20 120.20 120.20 120.20 120.20
0.1 0.9 65.47 50.88 47.31 67.78 67.03
0.2 0.8 58.33 34.80 23.16 59.79 59.46
0.3 0.7 54.58 7.68 7.37 57.12 56.62
0.4 0.6 51.49 0.00 0.00 54.02 53.54
0.5 0.5 48.58 0.00 0.00 51.84 51.59
0.6 0.4 44.61 0.00 0.00 49.55 49.55
0.7 0.3 39.26 0.00 0.00 46.65 47.28
0.8 0.2 30.34 0.00 0.00 42.63 44.92
0.9 0.1 18.95 0.00 0.00 39.09 41.64
1.0 0.0 10.20 0.00 0.00 32.23 38.02

Table 5.4: Battery size results for cost and CO2 emissions co-optimization.

remains relatively unchanged when this specific constraint is applied. In scenarios S4 and
S5, the optimal battery size when w1 = 1 is slightly lower than the single optimization
model, yet the differences are not significant. This is because the battery is already used
on daily cycles and does not aim at storing as much energy as possible for long-term energy
storage.

5.2.2 Cost Minimization and Self-Sufficiency Maximization

Regarding the co-optimization of cost and self-sufficiency, Figure 5.38 presents graphically
the findings. While an increase in one objective leads also to an increase in the other,
their conflicting nature arises from the need to minimize cost while simultaneously max-
imizing self-sufficiency. For the scenarios where electricity prices are fixed (S1), there is
no financial incentive for feed-in energy (S4) and there is a constraint on exported energy
(S5), the resulting battery sizes are larger, leading to increased costs but also enhanced
self-sufficiency rates compared to the scenarios with dynamic prices (S3) and net metering
(S2). For the latter scenarios, the graph displays fewer data points because the algorithm
converges to an optimal battery capacity of zero. This occurs early in the process, even
before the two objectives are equally balanced (w1 = w2). This can be also seen in Table
5.5 where the battery size results of this multi-objective model are presented.

In Table 5.5, w1 and w2 are the weights for the cost and the self-sufficiency objective,
respectively. While for scenarios S1, S4 and S5, the model results that a battery is ben-
eficial for the system regardless of the weights assigned in the cost and self-sufficiency
objective, for the S2 and S3 scenarios, the outcome differs. Even when the importance of
self-sufficiency outweighs that of cost (for instance w1 equals 0.4), the model suggests that
incorporating a battery is not advantageous for the system. This can be attributed to the
exceptionally low cost of the system when no battery system is integrated, as resulted from
the single cost minimization model of scenarios S2 and S3.

Comparing the co-optimization results of the cost-CO2 emissions and cost-self-sufficiency
models, it is clear that the resulting optimal battery sizes are of similar magnitude. This
similarity arises from the identical battery size resulting from the single objective models
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Figure 5.38: Co-optimization results of cost and self-sufficiency.

Battery Capacity (kWh)

w1 w2
Baseline

scenario (S1)
Net-metering
scenario (S2)

Dynamic prices
scenario (S3)

Scenario without
feed in tariff (S4)

Scenario with
constraints on

exported
energy (S5)

0.0 1.0 120.20 120.20 120.20 120.20 120.20
0.1 0.9 65.07 50.97 46.16 66.67 66.07
0.2 0.8 58.33 23.10 16.61 59.79 59.46
0.3 0.7 54.63 0.63 3.81 57.28 56.62
0.4 0.6 51.49 0.00 0.00 54.13 53.54
0.5 0.5 48.44 0.00 0.00 51.87 51.84
0.6 0.4 43.15 0.00 0.00 49.47 49.54
0.7 0.3 37.40 0.00 0.00 46.54 46.90
0.8 0.2 26.17 0.00 0.00 41.99 44.61
0.9 0.1 18.25 0.00 0.00 38.08 41.43
1.0 0.0 10.20 0.00 0.00 32.23 38.02

Table 5.5: Battery size results for cost and self-sufficiency co-optimization.

for CO2 and self-sufficiency and the similar operational strategy of storing as much excess
PV energy as possible.

5.2.3 Cost Minimization and Self-Consumption Maximization

The results of cost and self-consumption co-optimization are shown in Figure 5.39. The
outcome of the analysis shows similar trends to the co-optimization model of cost and
self-sufficiency, since the optimal battery size of the two single-objective algorithms and
their operational strategy are identical.

However, for the co-optimization of self-consumption and the cost scenario, that includes
a constraint on exported energy (S5), the objective function for self-consumption needs
to be revised. As the self-consumption rate is maximized by minimizing the amount of
exported energy, the current model assumes that self-consumption can be maximized by
curtailing as much energy as possible to avoid exporting it. Thus, the objective function of
this co-optimization model should be adjusted to not only minimize exported energy but
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Figure 5.39: Co-optimization results of cost and self-consumption.

also minimize energy curtailment.

Table 5.6 presents the resulting optimal battery size for the different scenarios, which
closely aligns with the findings of Table 5.5. Again, w1 and w2 are the weights assigned to
the cost and the self-consumption objective, respectively.

Battery Capacity (kWh)

w1 w2
Baseline

scenario (S1)
Net-metering
scenario (S2)

Dynamic prices
scenario (S3)

Scenario without
feed in tariff (S4)

Scenario with
constraints on

exported
energy (S5)

0.0 1.0 120.20 120.20 120.20 120.20 120.20
0.1 0.9 65.07 50.97 46.16 66.38 66.07
0.2 0.8 58.33 23.10 16.58 59.79 59.46
0.3 0.7 54.63 0.53 3.70 57.28 56.62
0.4 0.6 51.49 0.00 0.00 54.13 53.54
0.5 0.5 48.44 0.00 0.00 51.87 51.59
0.6 0.4 43.15 0.00 0.00 49.47 49.54
0.7 0.3 37.40 0.00 0.00 46.54 46.90
0.8 0.2 26.17 0.00 0.00 41.99 44.61
0.9 0.1 18.25 0.00 0.00 38.08 41.43
1.0 0.0 10.20 0.00 0.00 32.23 38.02

Table 5.6: Battery size results for cost and self-consumption co-optimization.

5.3 CO2 Emissions of the System

Given that the primary purpose of the designed PV-battery system is the sustainable man-
ufacturing of titanium objects using a 3D printer, the quantity of CO2 emitted from the
system for each model and scenario needs to be calculated.

Figure 5.40 presents the total CO2 emissions for each of the single-objective optimization
models. The peak shaving scenario (S6) of the cost minimization objective emits the lowest
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amount of CO2, since the resulting battery size is the largest among the different models.
The system designed based on the CO2 emissions minimization model has the second least
environmental impact. Additionally, since the operational strategy of self-sufficiency and
self-consumption maximization align closely with that of the CO2 emissions minimization
model, the two models result in similarly low emissions for the system. On the other hand,
the models with cost minimization objectives with the exception of the peak shaving sce-
nario (S6) result in emissions up to half times higher than those of the CO2 emissions
minimization model. It should be noted that the highest emissions correspond to the sce-
narios that refer to dynamic prices (S3) and net metering (S2), as the resulting system
does not include a battery. From the data presented in Figure 5.40, it can be concluded
that the total CO2 emissions decrease as battery size increases. This is primarily due to
the fact that emissions associated with grid energy tend to be on average higher than those
of the PV-battery system.

Figure 5.40: CO2 emissions for the single-objective optimization models.

Figure 5.41 shows the difference in the resulting CO2 emissions of the CO2 emissions
minimization, self-sufficiency and self-consumption maximization models before and after
the implementation of the daily SoC constraint. The graph shows that the emissions are
considerably higher when the constraint is applied in the model. Regarding the CO2 min-
imization model, the emissions after the constraint implementation are more than three
times higher, whereas, for the other models, they are approximately twice as high. Further-
more, in case the daily SoC constraint was not included, the CO2 minimization, as well
as the self-sufficiency and self-consumption maximization models, would result in lower
emissions than all the cost minimization models. These findings demonstrate how different
operational constraints can significantly impact the system’s performance.

For the co-optimization models, the resulting CO2 emissions vary based on the optimal
battery size, with CO2 and battery size having an inverse relation. Additionally, the op-
timal battery size decreases as the cost weight increases. Figure 5.42 displays the total
emissions for the co-optimization model of cost and CO2 emissions in relation to the cost
weight, while Figure 5.43 illustrates the same metric for the co-optimization model of cost
and self-sufficiency. As the battery size results of Tables 5.5 and 5.6 are nearly identical,
the resulting emissions of the cost and self-consumption model can also be represented by
Figure 5.43.
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Figure 5.41: Comparison of CO2 emissions of the single-objective optimization
models before and after the implementation of the daily SoC constraint.

Figure 5.42: CO2 emissions for
the different weight combinations of

cost and CO2 emissions
co-optimization model.

Figure 5.43: CO2 emissions for
the different weight combinations of
cost and self-sufficiency, as well as

cost and self-consumption
co-optimization models.

Based on the displayed results, implementing a storage system can significantly decrease
the total emissions of the system but with a consequent higher cost. The integration
of a battery into the system can make the manufacturing process of titanium objects
more sustainable and minimize negative environmental impacts. These improvements can
be reflected in the "Digital Product Passport" of the products, providing in this way a
competitive advantage to the manufacturer.

5.4 Financial Analysis

In this section, the results of the financial analysis are displayed. The financial feasibility
of the resulting optimal systems is assessed based on the following metrics: payback time,
ROI and NPV.

Table 5.7 presents the operational cost of the optimal PV-battery system for every dif-
ferent model and scenario. Since the optimization model showed that a battery is not
beneficial for scenarios S2 and S3, the operational cost of the system with a battery is not

63



applicable in these cases. Regarding the peak shaving scenario (S6) of the cost minimiza-
tion objective, Table 5.7 does not include its operational cost without a battery. This is
due to the infeasibility of the model when a battery is not included in the system. The
restriction on imported energy leads to the system’s inability to meet its demand at every
moment without storage. Therefore, the operational cost of the model prior to the battery
incorporation cannot be calculated. Additionally, the system’s operational cost after the
battery installation is significantly higher compared to the rest of the models, which can
be attributed to the high maintenance cost that such a large battery requires.

Operational cost (€)
Model Without battery With battery

Cost min: S1 2,221 2,088
Cost min: S2 525 -
Cost min: S3 369 -
Cost min: S4 2,920 2,400
Cost min: S5 2,884 2,120
Cost min: S6 - 5,356

CO2 emissions min 2,221 2,257
SS max 2,221 2,257
SC max 2,221 2,257.7

Table 5.7: Operational cost of the different scenarios and models over the
analysis period.

Table 5.8 presents the findings of the financial analysis. It should be mentioned that for
the calculation of the financial performance, the annual savings are calculated using linear
extrapolation based on the eight-month analysis data. Furthermore, it is assumed that
the annual savings remain constant throughout the lifetime of the system. However, these
assumptions may not accurately represent realistic conditions because factors such as the
degradation of the battery, fluctuations in PV energy generation and changes in demand
can influence the overall performance over time.

Model Payback Time (years) ROI NPV
Cost min: S1 10.20 22.5% 81.66
Cost min: S2 - - -
Cost min: S3 - - -
Cost min: S4 8.31 50.4% 1,793.89
Cost min: S5 7.22 73.1% 3,881.57
Cost min: S6 - - -

CO2 emissions min -456.75 -102.7% -24,598.36
SS max -456.74 -102.7% -24,598.36
SC max -446.87 -102.8 % -24,610.70

Table 5.8: Payback time, ROI and NPV for the resulting systems of the
single-objective optimization models.

For the scenarios S1, S4 and S5 of the cost minimization models, all the evaluation methods
agree that the battery investment is profitable. Only these three models result in long-term
profitability, with a payback time of 10.2, 8.31 and 7.22 years, respectively. This finding
suggests that the investment becomes profitable within a reasonable time frame. More-
over, the resulting ROIs of 22.5%, 50.4% and 73.1% indicate that the investment generates
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returns 1.225, 1.504 and 1.731 times the initial investment and the positive NPVs assure
that the investment will generate positive returns that exceed the initial cost of investment
over its lifetime.

Additionally, it can be seen that for the CO2 emissions minimization, as well as for the self-
sufficiency and self-consumption maximization models, all the evaluation methods suggest
that the investment is not profitable. The negative values of the payback time, ROI and
NPV are due to the negative annual cash flows resulting from the investment. This outcome
was anticipated, as these models do not account for the cost factors of the system, resulting
consequently in larger battery sizes.

5.5 Lifelong Analysis

In this section, the results of the optimization model, which takes into consideration the
projected data over the lifetime of the battery system, are presented. Since this research
focuses on design optimization rather than operational optimization, the intention of this
section is to illustrate overall trends rather than provide detailed information on the oper-
ational performance of the battery. Therefore, the figures presented in this section depict
long-term patterns, illustrating trends over the battery’s expected lifetime.

The lifelong analysis results in the findings of Table 5.9. For the scenarios of cost mini-
mization, where electricity prices are fixed (S1), there is no financial incentive for feed-in
energy (S4) and there is a constraint on exported energy (S5), the resulting battery sizes are
slightly lower than the corresponding values of the 8-month analysis. This occurs mainly
due to the reduction of generated PV energy and the simultaneous increase in demand,
meaning that less energy is available to be stored in the battery. Additionally, the lower
cost of buying electricity from the grid makes the investment in a storage solution less
attractive. Despite the battery’s capacity loss over time due to degradation, these factors
reduce the optimal battery capacity of the system. The patterns of the battery’s SoC,
import and export energy, as well as battery charge and discharge for scenario S1, can be
seen in Figure 5.44. As the resulting patterns between the aforementioned scenarios align
closely, they are not displayed to avoid repetition.

Battery Capacity (kWh)
Model 8-month analysis Lifelong analysis

Cost min: S1 10.2 9.17
Cost min: S2 0 0
Cost min: S3 0 0
Cost min: S4 32.4 26.87
Cost min: S5 41.37 41.11
Cost min: S6 594 4,387.4

CO2 emissions min 120.2 267.5
SS max 120.2 242.5
SC max 120.2 242.5

Table 5.9: Comparison of the battery sizing optimization results of the 8-month
and lifelong analysis.

From Figure 5.44, it becomes clear that the total available battery capacity decreases over
time due to battery degradation. By the end of the analysis period, the available battery
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capacity drops to 19% of its initial size. Additionally, while the amount of exported energy
slightly declines, the imported energy slightly increases over time. This trend occurs due
to the reduction of the generated PV energy in combination with the demand increase
over the analysis period. For the case of the cost minimization scenario with constraints
on exported energy (S5), the amount of exported energy remains constant over time, being
equal to the average corresponding value of the baseline scenario (9.14 kWh). Furthermore,
in the latter scenario, the amount of curtailed solar energy, during the battery’s lifetime,
is equal to 20.3 MWh.

Figure 5.44: Results of scenario S1 for the lifelong analysis.

Regarding the scenarios of net metering (S2) and dynamic prices (S3), both the short-term
and long-term analyses indicate that a battery is not beneficial for the system. On the
other hand, the optimal battery size for the peak shaving scenario (S6) is significantly
higher compared to the 8-month analysis. In this case, curtailment of energy does not
take place. The considerable difference between the results of the two models is likely due
to the restriction on imported energy. Since the demand covered by PV energy decreases
over time, the system needs to import larger energy quantities. Additionally, considering
capacity loss due to degradation, the model results in an increased optimal battery size
to ensure that the demand is continuously covered. However, the result is unrealistically
high and the daily SoC constraint cannot be implemented in this model, as it leads to
infeasibility, meaning that the system would not be able to cover its needs.

Figure 5.45 illustrates the system’s behaviour in the peak shaving scenario (S6). The bat-
tery is fully charged during summer and fully discharged during winter. Similarly to the
aforementioned scenarios, the energy imports increase, while the energy exports decrease
over time.

The objectives of CO2 emissions minimization, self-sufficiency and self-consumption max-
imization result in optimal battery sizes of similar magnitudes. Specifically, the CO2

emissions minimization model results in an optimal size of 267.5 kWh and total emissions
of 32,004 kg CO2 eq. over the 12.5-year battery lifetime. The self-sufficiency and self-
consumption maximization models yield an optimal capacity of 242.5 kWh, while the cor-
responding rates are 0.66 and 0.65, respectively. In these models, the daily SoC constraint
is included, meaning that the battery’s SoC needs to be equal at the beginning of every day.
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Figure 5.45: Results of scenario S6 for the lifelong analysis.

The optimal battery capacity for the CO2 emissions minimization, self-sufficiency and self-
consumption maximization models is more than double the size determined by the 8-month
analysis. For the CO2 minimization model, using a battery is still more advantageous, with
respect to CO2 savings, than importing electricity from the grid, even after the significant
reduction in CO2 emissions over time. Additionally, the need to account for battery degra-
dation justifies the significant increase in battery size. The high resulting battery capacity
of the self-sufficiency and self-consumption maximization models can be also attributed to
the capacity loss due to degradation.

Figure 5.46 presents the operational patterns of the battery for the CO2 emissions mini-
mization model which closely aligns with the self-sufficiency and self-consumption maxi-
mization models. It can be seen that the daily SoC constraint has a significant influence on
the battery operation, as the SoC fluctuates constantly around 50%. Additionally, energy
export, which occurs exclusively during summer, decreases over time, while energy import
slightly increases.

Figure 5.46: Results of the CO2 emissions minimization scenario for the lifelong
analysis.
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5.5.1 Financial Analysis

Table 5.10 compares the operational costs of the different scenarios and models with and
without a battery system. For the objectives that do not consider the economic implications
of the model, namely CO2 emissions minimization, self-sufficiency and self-consumption
maximization, the operational cost with storage is higher than without storage. However,
for the scenarios S1, S4 and S5, the battery proves to be advantageous for the system.
Scenario S5 appears to have the highest savings among all the models. This can be at-
tributed to the fact that without a battery, a large amount of energy needs to be curtailed
(58 MWh), which incurs additional costs. Regarding the peak shaving scenario (S6), the
system becomes infeasible without a battery, as the demand cannot be met due to the
restriction on imported grid energy. Additionally, for the same scenario, the operational
cost of the system after the incorporation of the battery is considerably high because of
the high consequent maintenance cost. For models resulting in an optimal battery size of
zero, the operational cost of the system without a battery appears to be significantly lower
than the rest of the models, justifying the outcome of the analysis.

Operational cost (€)
Model Without battery With battery

Cost min: S1 35,788 33,690
Cost min: S2 26,040 -
Cost min: S3 8,043 -
Cost min: S4 42,985 36,173
Cost min: S5 44,368 31,802
Cost min: S6 - 560,382

CO2 emissions min 35,788 51,831
SS max 35,788 48,701
SC max 35,788 48,702

Table 5.10: Operational cost for the different scenarios and models over the
expected lifetime of the battery.

Table 5.11 shows the payback time, ROI and NPV of the battery investment for the mul-
tiple scenarios. While the methods of payback time and ROI agree that the investment
is profitable for all the applicable scenarios with cost minimization objectives, the NPV
method results in a negative value for the baseline scenario (S1). This discrepancy occurs
due to the fact that the NPV method considers the time value of money throughout the
entire lifetime of the battery system [75]. Therefore, for the baseline scenario (S1) where
the annual savings are relatively low (up to 225€/year), the present value of the future
cash flows is negative.

Regarding the models that do not account for the cost of the system, namely CO2 min-
imization, self-sufficiency and self-consumption maximization models, all the evaluation
methods indicate that the battery investment is not profitable. The values of the payback
time, ROI and NPV are negative due to the negative annual cash flows resulting from the
investment.

Therefore, only the scenarios, where there is no financial incentive for feed-in energy (S4)
or there are constraints on exported energy (S5), result in profitability over the lifetime of
the battery system. Specifically, the break-even point of the former is 9.86 years with an
ROI of 26.8%, while of the latter is 8.18 years with an ROI of 52.8%, meaning that both
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investments generate positive returns.

Model Payback Time (years) ROI NPV
Cost min: S1 10.93 14.4% -37.24
Cost min: S2 - - -
Cost min: S3 - - -
Cost min: S4 9.86 26.8% 553.57
Cost min: S5 8.18 52.8% 2,687.61
Cost min: S6 - - -

CO2 emissions min -41.69 -130% -67,180.28
SS max -46.96 -126.6% -59,523.76
SC max -46.95 -126.6 % -59,524.51

Table 5.11: Payback time, ROI and NPV for the resulting systems of the
single-objective optimization models of the lifelong analysis.
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Chapter 6

Discussion

The findings of the battery sizing optimization model indicate that a battery is not always
economically beneficial for the system. When electricity prices are low or regulations, such
as net metering, allow the customers to use the grid as a battery, the system does not gain
any financial advantage from incorporating a battery. Additionally, the analysis indicates
that cost minimization scenarios that include restrictions on grid interaction tend gener-
ally to result in larger battery sizes compared to the rest of the cost minimization models.
This occurs due to the consequent need of the system to decrease dependency on the grid
and ensure continuous coverage of its needs. Since the grid regulations become constantly
stricter, the demand for larger storage solutions is expected to rise.

In contrast, when the optimization objective aims at minimizing the system’s environmen-
tal impact or increasing its self-sufficiency and self-consumption, incorporating a battery
is always beneficial. However, these objectives result in unrealistically large battery sizes,
as the system intends to store as much energy as possible for future use. Thus, it becomes
clear that cost is a significant factor for battery sizing optimization. Without incorpo-
rating cost considerations into the model, the outcome is financially unfeasible, leading
to expenses that outweigh the benefits of a storage solution during the battery’s lifetime.
Therefore, co-optimizing costs along with other objectives is crucial for achieving a more
balanced outcome. This approach ensures that reducing the environmental impact of the
system or its dependency on the grid does not compromise the system’s financial viability.

Regarding the environmental impact of the resulting PV-battery systems, it is clear that
larger battery sizes minimize emissions. By storing more energy, the system reduces its
need to import grid electricity, which is associated with higher carbon intensity than stor-
ing PV energy in a battery. Therefore, incorporating a storage solution into the model
can lead to a more sustainable manufacturing process, a fact that can be reflected in the
"Digital Product Passport" of the manufactured objects.

Furthermore, for this assignment, multiple assumptions have been made that can influ-
ence the operational pattern and consequently, the optimal battery size of the system.
Some of them refer to costs, battery efficiency and emissions, as well as potential regu-
latory changes, especially for the lifelong analysis. Additionally, for the analysis over the
battery’s expected lifetime, the projected data are based on forecasts, meaning that they
may not accurately represent real-world scenarios. Nevertheless, since the purpose of this
assignment is design optimization rather than operational optimization, meaning that the
analysis is based on theoretical models, the projected data are sufficient.
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It is important to note that the battery sizing optimization analysis takes, as input, data
starting from the summer months, meaning that there is immediately available energy to
be stored in the battery. This could possibly influence the resulting optimal battery capac-
ity, particularly in the 8-month analysis. This is because certain models intend to store as
much PV energy produced during the summer as possible for winter use. In the opposite
case, where the data start from winter, less energy would be available for storage, possibly
resulting in lower battery capacities.

Comparing the short and long-term analysis findings, while for certain models, the long-
term analysis results in battery sizes of similar magnitude to those determined by the
short-term analysis, in other models the optimal size differs significantly. Regarding the
scenarios that aim at cost minimization, the resulting optimal battery size is similar or
slightly lower in the long-term analysis, since there is less available energy to be stored and
the cost of electricity is decreased. An exception is the scenario of peak shaving, where
the limitation on imported energy leads to a significant increase in battery size. For the
CO2 minimization, self-sufficiency and self-consumption maximization models, the optimal
battery size is larger in the long-term analysis due to the capacity loss from degradation
over time.

Combining the findings of the 8-month and lifelong financial analysis, a battery gener-
ates positive returns only in two cost minimization scenarios, namely the scenarios where
feed-in energy is not compensated (S4) and constraints on exported energy are applied
(S5). In the rest of the scenarios, the battery investment is not profitable and this can
be attributed to various reasons. Some objectives do not consider cost parameters, while
others result in returns that are too low to be profitable. Additionally, regulations may
force the system to select a large battery size, leading to expenses that outweigh the savings.

Moreover, it is likely that due to the continuous technological advancements and the in-
creasing demand for lithium-ion batteries, battery cost to drop significantly in the future,
meaning that battery investments will become more profitable. Besides this, in order to
address the grid congestion problem, it is possible that batteries will be subsidized for use
in energy systems with high penetration of renewable energy resources. This approach
could significantly reduce the total cost of the system and consequently, affect the result
of the optimization model.
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Chapter 7

Conclusion

To conclude, the optimal battery size is influenced by multiple technical, financial, en-
vironmental and regulatory factors. For the purpose of this assignment, a MILP model
was developed to consider these aspects. The result of the analysis indicates that when
electricity prices are low or the system is under the net metering scheme, incorporating
a storage solution is not beneficial for the system. Nevertheless, when grid limitations
are applied to the system, the model results in larger battery capacities which may not
always align with financial feasibility. Additionally, the models that exclude cost consid-
erations result in impractically large battery sizes. Even though these objectives lead to
lower environmental impact and reduced grid dependency, the resulting systems are not
cost-effective. Thus, co-optimizing cost along with other objectives can result in a more
balanced solution. Finally, comparing the results of the short and long-term analysis, while
for certain models, the algorithm suggests battery sizes of comparable magnitude, in other
models the optimal sizes differ significantly.

Future work should focus on analyzing how the optimal battery size varies after the addi-
tion of more machines into the system. As more machines are introduced, the consumption
profile may change, potentially resulting in higher peak demand or smoother load profile,
depending on the load of each individual machine. This variation could potentially lead
to different battery requirements. Additionally, it is recommended to compare the results
of the optimization model when different types of batteries are included. Since the differ-
ent battery types have different lifetimes, investment and maintenance costs, the optimal
battery size may change accordingly. Lastly, given that in some scenarios, a significant
amount of energy is fed into the grid, it is suggested to examine the possibility of a smart
grid implementation within the University of Twente. Instead of exporting the excess PV
energy, that cannot be stored in the battery of Fraunhofer Innovation Platform for Ad-
vanced Manufacturing, this energy could be utilized by other buildings within the university
infrastructure, increasing its economic resilience and grid independence.
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Appendix

Figure 7.1: Detailed NPV calculations for the 8-month analysis.

Figure 7.2: Detailed NPV calculations for the battery’s lifelong analysis.
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