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ABSTRACT

The study explores the integration of eXplainable Artificial Intelligence (XAI) systems into the

Decision Support Systems (DSS) of Public Employment Services (PES) to enhance the allo-

cation of resources for reducing unemployment. The research focuses on profiling and clus-

tering unemployed individuals in Switzerland using both supervised and unsupervised Ma-

chine Learning (ML) models. Traditional models like Logistic Regression and Decision Trees

have been commonly used in PES but are often limited by their simplicity and limited inter-

pretability. This study introduces more advanced models, such as XGBoost and Hierarchical

Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), to improve accuracy

and clustering efficiency. The integration of XAI into these models ensures that predictions and

decisions are interpretable, allowing caseworkers to make informed decisions. The XAI integra-

tion consists of three main components: a preprocessing pipeline, a clustering module, and a

predicting module, which outputs explanations by design. The findings indicate that the XAI-

enhanced models can provide actionable insights at the individual, cluster, and global levels,

improving the efficiency of resource allocation and reducing long-term unemployment. De-

spite some limitations, including data quality and model performance, the study contributes

to the literature by bridging the gap between AI in PES and XAI in DSS, and by implementing

innovative clustering techniques within PES.

Keywords: eXplainable Artificial Intelligence (XAI); Decision Support System (DSS); Public Em-

ployment Services (PES); Machine Learning (ML); Unemployment Profiling, Clustering; Inter-

pretability.
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1
INTRODUCTION

1.1. MOTIVATION

The global unemployment rate has been steadily declining since its peak at 7.0% after the 2008

global financial crisis and its peak of 6.6% after 2021’s global pandemic. According to the World

Bank, the global unemployment rate is 5.0% of the working population in 2023 [1]. This means

that worldwide, around 181.5 million persons are unemployed. The World Bank estimates the

unemployment rate in the European Union to be 6.0% in 2023 [1], meaning there are around

13 million unemployed in just the European Union. The unemployment rate in Switzerland,

the country in which this research is conducted, is estimated at 4.0% [1], meaning that in the

second quarter of 2024, just over 200.000 Swiss are unemployed [2].

On an individual level, unemployment can cause resource deprivation, social isolation, and

reduced satisfaction and psychological well-being [3]. In addition, unemployment affects the

direct environment, being the spouses, children and partners of an individual, but also has high

societal costs in the form of benefits payment, loss of the production of workers and ultimately

a reduction of the Gross Domestic Product (GDP) of a country [4]. Many Western nations have

introduced the concept of a Public Employment Services (PES) to reduce unemployment rates,

boosting economic growth and public well-being.

In today’s Western labour markets, data is increasingly being used by PES to help deliver more

efficient employment services to prevent long-term unemployment. This is done by, for in-

stance, increasing the efficiency of its counselling process and the effectiveness of active labour

market programs [5]. Statistical profiling tools have been found to ensure that costly and in-

tensive resource allocation is targeted towards the groups most in need, allowing for tailored

services more closely to their individual needs [6]. Statistical profiling of individuals is also

employed in criminology [7], banking [8], and health care [9].

Profiling can have two inherent meanings [10, 11]:

1



MOTIVATION 2

1. the recording and analysis of a person’s psychological and behavioural characteristics, so

as to assess or predict their capabilities in a certain sphere. In this thesis, this is referred

to as profiling.

2. the recording and analysis of a person’s psychological and behavioural characteristics, to

assist in identifying categories of people. In this thesis, this is referred to as clustering.

Only a few examples are known where the statistical profiling tool used to profile job seekers is

an instance of Artificial Intelligence (AI). This research is done in Austria, Denmark, Flanders

(Belgium), and Estonia [6, 12]. All examples employ simple, inherently interpretable Machine

Learning (ML) models like Logistic Regression (LR) or Decision Tree (DT)s to profile job seek-

ers. Currently, these simple statistical profiling tools help PES to offer more tailored services to

individual job seekers based on the profiling and reduce the average cost of an unemployed,

also referred to as optimizing their cost-efficiency. However, the accuracy of the simple ML

performance can be insufficient.

Recently, more advanced ML models such as XGBoost have shown an improved accuracy over

the simpler models in many cases, showcasing the potential success of more advanced ML

models [13]. These models have one major disadvantage for profiling: having a black-box ar-

chitecture, they are not inherently interpretable, requiring a separate explainer to allow for un-

derstanding why certain customers are profiled accordingly [14]. To our best knowledge, only

the recently published work by Dossche et al. [15] shows the application of eXplainable Ar-

tificial Intelligence (XAI) in the Decision Support System (DSS) of a PES. Where the work of

Dossche et al. focuses on the implementation and comparison of explainability methods in an

existing and currently used profiling model, our work focuses on developing a new XAI system

for an existing DSS.

The clustering of job seekers based on demographic and sociological factors is done in only a

few known examples. For example, in Flanders youthly job seekers get a different treatment

than the rest of the customers via a rule-based method [6]. To the best of our knowledge, there

are no examples in PES literature cluster job seekers with respect to their mathematical simi-

larity. This is what generally happens in unsupervised ML models, for example, in the Nearest

Neighbour algorithm. The disadvantage of such methods is that they are expensive to com-

pute in higher dimensions, produce inexplicit spherical groupings, and rely on mathematical

distances in a multidimensional spectrum [16, p. 127].

The recently introduced ML models like Density-based Spatial Clustering of Applications with

Noise (DBSCAN) and Hierarchical Density-Based Spatial Clustering of Applications with Noise

(HDBSCAN) reduce the limitations of classical clustering methods like the Nearest Neighbours

algorithm, allowing for non-spherical clusters and faster computation in higher dimensions

[17, 18]. The analysis of the calculated clusters and their implications on policy level has to be

performed manually. To avoid creating individual measures for people with very similar needs,

assigning job seekers into clusters allows for the customization of employment measures to a
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group level instead of an individual level, increasing the generalization and standardization of

the measures.

1.2. MAIN CONCEPTS

This research considers Artificial Intelligence (AI) to adhere to the definition presented by Rai et

al. [19, p.iii]: "AI is [. . .] the ability of a machine to perform cognitive functions that we associate

with human minds, such as perceiving, reasoning, learning, interacting with the environment,

problem-solving, decision-making, and even demonstrating creativity".

eXplainable Artificial Intelligence (XAI) is most briefly defined as "making AI understandable

by people", however, as the focus of this research lies in the technological area, the definition

is tightened to "all technical means to making AI understandable by people, including direct

interpretability, generating an explanation or justification, providing transparency information,

etc." [20, p.ii]. XAI is also sometimes called interpretable AI, of which the definition by Alangari

et al. [21, p.iii] is used: "reflect the capability to convey the trained model’s output behaviours in

a human understandable way”. This research uses XAI to refer to technical contexts for the rest

of this research, whereas interpretable AI is used for non-technical contexts.

In the multidisciplinary context of this study, the definition of an explanation slightly differs

from what is generally considered to be an explanation: "an interaction between two parties,

the explainer and the explainee, with the goal of aligning mental models" [22, p.i].

This research periodically uses the term Machine Learning (ML), defined as "a type of artifi-

cial intelligence that allows machines to learn from data without being explicitly programmed.

It does this by optimizing model parameters (i.e. internal variables) through calculations, such

that the model’s behaviour reflects the data or experience." [23]. This study uses the broadest

definition of a Decision Support System (DSS): "an interactive computer-based system that helps

people use computer communications, data, documents, knowledge, and models to solve prob-

lems and make decisions" [24, p.xii].

Profiling is defined as "a systematic (qualitative and/or quantitative) assessment of the individ-

ual employment potential to identify and implement the most appropriate services that help

the client through the whole integration chain" [25].

1.3. RESEARCH PRACTICAL CONTEXT

Office of Unemployment Insurance (AVA) Bern is the Office of Unemployment Insurance of the

Swiss canton Bern and actively supports unemployed citizens, also referred to as customers, in

their job search and with financial benefits. The Public Unemployment Insurance Fund covers

the financial damage caused by unemployment with insurance benefits. The Regional Employ-

ment Centers (RAV) helps customers look for work with regular discussions and a wide range

of offers to enable them to rapidly integrate permanently into the labour market. The AVA has

many partnership-based collaborations with Bernese companies which contribute to the suc-
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cess of finding jobs for their customers quickly. AVA Bern consists of a management layer, the

Public Unemployment Insurance Fund Bern, and the ten RAVs [26] and reports directly to the

State Secretariat for Economic Affairs (SECO) of the federal government.

The digital infrastructure of the AVA Bern is hosted by the SECO and is generalized throughout

the 26 cantons of Switzerland. The main system in which all transactions and customer data

are stored is called AVAM, a legacy system written in Cobol from the 1970s. Caseworkers must

manually add all customer and transaction information to AVAM via a terminal window. Data

is extracted from AVAM once a day, during nighttime, and stored in an external database system

connected to MicroStrategy1.

In MicroStrategy, dashboards can be made to inspect this data throughout the organisation,

and RAV counsellors are provided with such a dashboard via their cantonal AVA. This allows

every canton to have their own way of working, which is preferred in Switzerland due to strong

regional differences in the labour markets. Currently, all data analysis is done via MicroStrategy

reports. There is no known usage of AI profiling within the AVAs of Switzerland.

1.4. RESEARCH MOTIVATIONS AND OBJECTIVES

Over the last few years, AVA Bern has invested heavily in their data quality. With the improved

data quality, the AVA Bern believes that it’s ready to implement the first AI based DSS in the

Swiss AVAs that improves their efficiency by supporting their counsellor’s decision-making pro-

cess and allowing them to assist a customer based on their socio-economic characteristics

proactively. The objective is to reduce the average unemployment duration while reducing the

required (human) resources required for a swift re-entry to the labour market for their cus-

tomers. A swift re-entry to the labour market benefits both the unemployed and the AVA as it

gives the unemployed confidence and self-satisfaction [3] and saves the AVA money in the form

of payments they won’t have to make. As the AVA is publicly funded, preventing long-term un-

employment ultimately saves the Swiss population money. Every weekday, almost one million

Swiss Francs flow through the AVA Bern in the form of paid benefits, showing the potential sav-

ings of this project. If the project reduces the average duration of unemployment by only 1%,

the Canton of Bern saves 10.000 Swiss Francs per working day, which is more than 2.5 million

Swiss Francs per year.

The primary goal of this study is to create an XAI tool that is integrated into an existing DSS us-

ing both supervised and unsupervised ML algorithms to profile and cluster unemployed people

who might have difficulties finding a new job at the moment of registration at the RAV and cre-

ate strategies to avoid this behaviour and ensure a rapid reintegration in society. Based on the

databases in the AVAM system, appropriate features are selected for both the profiling and the

clustering. This should be done interpretably to allow the counsellor to understand why the

system returns a certain prediction.

1https://www.microstrategy.com/

https://www.microstrategy.com/
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1.5. RESEARCH QUESTIONS

Based on the research objectives mentioned in the previous section, we aim to provide answers

to the following main research question (RQ):

How to design and integrate an XAI system in an existing DSS to improve the allo-

cation of resources in a PES?

From the main research question, several sub-questions have been drafted:

1. How to design an AI system for a PES?

(a) What different AI models are available?

(b) How to validate these AI systems?

2. How to integrate an XAI system into a DSS?

(a) What different XAI technologies are available?

(b) How can XAI technologies be used to understand predictions?

3. How to extract new knowledge from existing PES datasets using XAI technologies?

(a) What patterns can be detected using profiling?

(b) What patterns can be detected using clustering?

1.6. METHODS

This research uses the CRoss Industry Standard Process for Machine Learning (CRISP-ML) frame-

work to ensure the Necessary Level of Interpretability (NLI) across the stages of the research.

It applies Hierarchical clustering, DBSCAN and HDBSCAN unsupervised and the DT, Ran-

dom Forest (RF), XGBoost, and Catboost supervised ML to a PES dataset. All models are val-

idated using cross-validation. The unsupervised models are validated through the Calinski-

Harabasz Index, Davies-Bouldin Index, and Silhouette Score. The supervised models are val-

idated through the Area Under the Receiver Operating Characteristic Curve (AUC ROC), ac-

curacy, F1-score, and Brier score. SHapley Additive exPlaination (SHAP) is employed as the

explainability method of choice.

1.7. SUMMARY

The remaining sections are organized as follows. In chapter 2, we explore current AI appli-

cations in PES, finding the simple ML models are generally used and identified benchmarks

for precision, accuracy, and AUC ROC scores. We highlight the required complexity of an AI

profiling system to address the diverse challenges faced by job seekers, especially those with

psychological issues or other barriers not typically recorded in PES data. Additionally, we ex-

plore how XAI can enhance DSS by making AI predictions understandable. We compare model-

specific and model-agnostic explainability approaches and find that SHAP and Local Inter-
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pretable Model-agnostic Explanations (LIME) are the most prevalent technologies. We em-

phasized the importance of model-agnostic explainers that can operate globally and locally,

offering flexibility and clarity. mchapter 3, discusses the methodology used in this research and

presents the CRISP-ML framework and several statistical methods implemented in this study.

Next, chapter 4 presents an overview of the experimental set-up designed to develop state-of-

the-art unsupervised and supervised ML models, of which the results obtained are presented

in chapter 5, where we identify reproducible clusters of job seekers with different characteris-

tics and needs. We apply supervised-learning methods and use SHAP values to interpret the

produced models at global, cluster, and individual levels, revealing key profiling features like

region, registration type, age, and language. Finally, the conclusions, limitations and future

recommendations are presented in chapter 6, where we discuss how these insights could lead

to better-targeted employment measures.



2
LITERATURE REVIEW

This chapter connects the two previously disconnected research areas of Artificial Intelligence

(AI) in Public Employment Services (PES) and eXplainable Artificial Intelligence (XAI) in Deci-

sion Support System (DSS). We perform two structured literature reviews and attempt to inte-

grate the knowledge to create a starting point for research on XAI in DSS in PES.

2.1. METHODOLOGY

This literature research employs the Scopus1 abstract and citation database as the source to

subtract high-quality scientific articles, mainly from peer-reviewed journals, selected accord-

ing to a content coverage policy. Additionally, Scopus offers a wide range of features that can

filter the body of literature to identify relevant literature. This research follows a structured ap-

proach in documenting the selection of literature comparable to Wijnhoven and Machado [27]

and Amato et al. [28].

We executed the retrieval of documents using the advanced search bar, which allows researchers

to insert several keywords and create custom search queries. As there exist multiple synonyms

and abbreviations for these concepts, we have included these in the search query to ensure the

concepts are well represented, resulting in the following query:

(’Decision support systems’ OR ’Decision support tools’ OR ’DSS’) OR (’Explainable

artificial intelligence’ OR ’explainable AI’ OR ’XAI’) AND (’Unemployment Insurance’

OR ’Public Employment Service’)2

As this query produced only a several results, we aimed to investigate the application of AI in

PES. Removing the explainability part, and thus replacing XAI with AI, from the query produced

23 results. In an attempt to create a nexus between the two, at the time of conceptualizing this

1https://www.scopus.com
2This query returns eight results

7

https://www.scopus.com
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research, unconnected research areas of AI in PES and XAI applications in DSSs, we formulated

a third and fourth query that separate the domains:

(’Artificial Intelligence’ OR ’AI’) AND (’Unemployment Insurance’ OR ’Public Employ-

ment Service’)3

(’Decision support systems’ OR ’Decision support tools’ OR ’DSS’) AND (’Explainable

artificial intelligence’ OR ’explainable AI’ OR ’XAI’)4

2.1.1. INCLUSION AND EXCLUSION CRITERIA

Following Wijnhoven and Machado [27] and Amato et al. [28], inclusion and exclusion criteria

have been set before the literature analysis to ensure a systematical, phase-based approach to

identifying relevant and high-quality literature. Figure 2.1 visualizes the inclusion criteria and

their results on the remaining body of literature.

As seen in Figure 2.1, the first six phases of the selection process reduced the relevant litera-

ture for this review. The final phase selects literature based on a thorough examination of the

abstract of the research. From the AI in PES branch of the literature review, all literature was

selected and taken as input for the analysis. From the branch of XAI in DSS much literature has

been removed according the following reasoning. Duplicated literature and papers without ac-

cess are removed from the selection, eliminating two documents from the body of literature. All

literature in which the DSS is employed in a clinical context is removed, as the deeper goal of

this literature review is to understand how XAI can be applied in a DSS in PES. The field of PES

is highly dependent on data of a tabular nature, while clinical applications generally rely on im-

age data [29], limiting the transferability of results between these fields, eliminating 51 papers

from the remaining body of literature. Finally, from the title, keywords, and abstract, we judged

the transferability of the literature to the field of PES, eliminating another 38 documents from

the body of literature. Phase seven of this literature review results in 42 papers used as input for

the analysis.

2.1.2. SNOWBALLING METHOD

As the AI in PES branch of the literature review resulted in four results, the authors decided to

apply the snowballing method. In Berman et al. [30], a reference to an international compar-

ison of statistical profiling in PES [6] was found. Further snowballing based on the abstracts

of the literature referenced in that work resulted in 15 articles identified as of interest for this

study and are thus reviewed in this chapter. One work, [12], was also found with the query from

section 2.1 and is not reviewed again. In addition, a brand-new article about explanations for

Machine Learning (ML)-based profiling in PES was found by examining the papers that referred

to Desiere et al. [6] and was also added to the body of literature of this research. In total, this

work reviews 57 articles.

3This query returns 20 results
4This query returns 406 results
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Phases

Search queries
based on keywords

Restricted to English

Restricted to subject ar-
eas Computer Science

& Decision Sciences
& Business, Manage-
ment and Accounting

Restricted to
all open access

Restricted to docu-
ment type: Conference
paper, Article, Review

Restricted to
year: 2021 - 2024

Papers were excluded
based on Title, Key-
word, and Abstract

Papers identified
via snowballing

Search term (’Artificial
Intelligence’ OR ’AI’) AND

(’Unemployment Insur-
ance’ OR ’Public Employ-
ment Service’ OR ’PES’)

N = 20

N = 20

N = 9

N = 4

N = 4

N = 4

N = 42

N = 57

Search term (’Decision
support systems’ OR ’De-
cision support tools’ OR
’DSS’) AND (’Explainable
artificial intelligence’ OR
’explainable AI’ OR ’XAI’)

N = 411

N = 408

N = 325

N = 162

N = 161

N = 133

Figure 2.1: Stages of the study selection process for the literature review.

2.2. FINDINGS

The study selection process resulted in 57 articles which are categorized as either an article in

the AI and PES domain or the XAI and DSS domain, respectively presented in Table 2.1 and
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Table 2.2. The number of citations and Field-Weighted Citation Impact (FWCI) were scraped

from the Scopus5 database. Table 2.1 also contains literature gathered through a snowballing

procedure and thus includes grey literature not published in a journal. In this case, the jour-

nal column contains the phrase ’-’. The number of citations is unknown for literature without

an entry in the Scopus database, and no Field-Weighted Citation Impact (FWCI) exists. The

Field-Weighted Citation Impact6 is the ratio of the document’s citations to the average number

of citations received by all similar documents over a three-year window. Each discipline con-

tributes equally to the metric, eliminating differences in researcher citation behaviour. As the

FWCI cannot be calculated for articles without citations, these cases are marked with ’-’.

Table 2.1: The literature used for analysis of the AI and PES domain

Study Journal # Citations FWCI

Allhutter, D.; Cech, F.; Fischer, F.;
Grill, G.; Mager, Astrid [5]

Frontiers in Big Data 77 4.66

Andonovikj, V.; Boškoski, P.;
Džeroski, S.; Boshkoska, B.M.
[31]

Expert Systems with Applications 1 1.84

Bach, R.L.; Kern, C.; Mautner, H.;
Kreuter, F. [32]

Data & Policy 1 0.46

Berman, A.; de Fine Licht, K.; Carls-
son, V. [30]

Technology in Society 3 6.45

Braunsmann, K.; Gall, K.; Rahn, F.J.
[33]

Historical Social Research 2 1.38

Considine, M.; Mcgann, M.; Ball, S.;
Nguyen, P. [34]

Journal of Social Policy 21 4.14

Desiere, S.; Langenbucher, K.;
Struyven, L. [6]

- - -

Desiere, S.; Struyven, L. [35] Journal of Social Policy 25 2.85
Directorate-General for Employ-
ment, Social Affairs and Inclusion
(European Commission); Scop-
petta, A.; Johnson, T.; Buckenleib, A.
[25]

- - -

Dossche, W.; Vansteenkiste, S.; Bae-
sens, B.; Lemahieu, W. [15]

SN Computer Science 0 -

Haug, K.B. [36] International Journal of Sociology
and Social Policy

2 1.45

Kütük, Y.; Güloğlu, B. [37] Journal of Research in Economics - -
van Landeghem, B.; Desiere, S.;
Struyven, L. [11]

IZA World of Labor - -

Møller, N.H.; Shklovski, I.; Hilde-
brandt, T.T. [38]

ACM Other conferences 25 2.60

Mozzana, C. [39] - 5 0.69
Niklas, J.; Sztandar, K.;
Szymielewicz, K. [40]

- - -

Troya, I.M. de R. de; Moraes, L.O.
[41]

- 9 -

Wan, C.; Belo, R.; Zejnilović, L.;
Lavado, S. [42]

Communications in Computer and
Information Science

0 -

Zhao, L. [43] E3S Web of Conferences 4 1.00

5https://www.scopus.com
6https://service.elsevier.com/app/answers/detail/a_id/14894/supporthub/scopus/

https://www.scopus.com
https://service.elsevier.com/app/answers/detail/a_id/14894/supporthub/scopus/
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Table 2.2: The literature used for analysis of the XAI and DSS domain

Study Journal # Citations FWCI

Alangari, N.; El Bachir Menai, M.;
Mathkour, H.; Almosallam, I. [21]

Information (Switzerland) 2 0.25

Amparore, E.; Perotti, A.; Bajardi, P.
[14]

PeerJ Computer Science 48 4.53

Apostolopoulos, I.D.; Groumpos, P.P.
[44]

Applied Sciences (Switzerland) 8 2.34

Aslam, M.; Segura-Velandia, D.;
Goh, Y.M. [45]

IEEE Access 1 0.34

Barnard, P.; MacAluso, I.; Marchetti,
N.; Dasilva, L.A. [46]

IEEE Int Conf Commun 5 2.93

Bayer, S.; Gimpel, H.; Markgraf, M.
[47]

Journal of Decision Systems 18 3.21

Brown, K.E.; Talbert, D.A. [48] Proc. Int. Fla. Artif. Intell. Res. Soc.
Conf., FLAIRS

3 0.88

Cau, F.M.; Hauptmann, H.; Spano,
L.D.; Tintarev, N. [49]

ACM Transactions on Interactive In-
telligent Systems

4 0.77

Chen, V.; Liao, Q.V.; Wortman
Vaughan, J.; Bansal, G. [50]

Proceedings of the ACM on Human-
Computer Interaction

19 6.98

Christou, I.T.; Soldatos, J.; Pa-
padakis, T.; Gutierrez-Rojas, D.;
Nardelli, P. [51]

Proc. - Int. Conf. Distrib. Com-
put. Smart Syst. Internet Things,
DCOSS-IoT

0 -

Cirqueira, D.; Helfert, M.; Bezbrad-
ica, M. [52]

Lect. Notes Comput. Sci. 17 5.64

Collenette, J.; Atkinson, K.; Bench-
Capon, T. [53]

Artificial Intelligence 19 13.41

Da Silva Oliveira, F.R.; De Lima Neto,
F.B. [54]

IEEE Access 0 -

Dandolo, D.; Masiero, C.; Carletti,
M.; Dalle Pezze, D.; Susto, G.A. [55]

Expert Systems with Applications 9 2.44

Das, D.; Kim, B.; Chernova, S. [56] Int Conf Intell User Interfaces Proc
IUI

3 3.34

Delen, D.; Davazdahemami, B.; Ra-
souli Dezfouli, E. [57]

Information Systems Frontiers 2 4.3

Dreyling, R.M.; Tammet, T.; Pappel,
I. [12]

Future Data and Security Engineer-
ing. Big Data, Security and Privacy,
Smart City and Industry 4.0 Applica-
tions

0 -

Gajos, K.Z.; Mamykina, L. [58] Int Conf Intell User Interfaces Proc
IUI

41 11.61

Galanti, R.; de Leoni, M.; Monaro,
M.; Navarin, N.; Marazzi, A.; Di Stasi,
B.; Maldera, S. [59]

Engineering Applications of Artifi-
cial Intelligence

5 1.47

Garouani, M.; Ahmad, A.; Boun-
effa, M.; Hamlich, M.; Bourguin, G.;
Lewandowski, A. [60]

International Journal of Advanced
Manufacturing Technology

29 3.44

Heider, M.; Stegherr, H.; Nordsieck,
R.; Hähner, J. [61]

Artificial Life 1 0.46

Lee, H.-W.; Han, T.-H.; Lee, T.-J. [62] IEEE Access 0 -
Liao, Q.V.; Zhang, Y.; Luss, R.; Doshi-
Velez, F.; Dhurandhar, A. [63]

Proc. AAAI. Conf. Hum. Comput.
Crowdsourcing.

27 8.98

Löfström, H.; Löfström, T.; Johans-
son, U.; Sönströd, C. [64]

Annals of Mathematics and Artificial
Intelligence

1 0.36

Malandri, L.; Mercorio, F.; Mezzan-
zanica, M.; Seveso, A. [65]

Decision Support Systems 2 2.26

Mazzola, L.; Stalder, F.; Waldis, A.;
Siegfried, P.; Renold, C.; Reber, D.;
Meier, P. [66]

Commun. Comput. Info. Sci. 0 -

Mohiuddin, K.; Welke, P.; Alam,
M.A.; Martin, M.; Alam, M.M.;
Lehmann, J.; Vahdati, S. [67]

Int Conf Inf Knowledge Manage 0 -

Mucha, H.; Robert, S.; Breitschw-
erdt, R.; Fellmann, M. [22]

Conf Hum Fact Comput Syst Proc 17 2.73

Nguyen, A.; Foerstel, S.; Kittler, T.;
Kurzyukov, A.; Schwinn, L.; Zanca,
D.; Hipp, T.; Jun, S.D.A.; Schrapp, M.;
Rothgang, E.; Eskofier, B. [68]

IEEE Access 6 1.88
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Table 2.2: The literature used for analysis of the XAI and DSS domain (continued)

Study Journal # Citations FWCI

Panagoulias, D.P.; Sarmas, E.; Mari-
nakis, V.; Virvou, M.; Tsihrintzis,
G.A.; Doukas, H. [69]

Electronics (Switzerland) 6 1.88

Rojo, D.; Htun, N.N.; Parra, D.; De
Croon, R.; Verbert, K. [70]

Computers and Electronics in Agri-
culture

5 0.6

Senoner, J.; Netland, T.; Feuerriegel,
S. [71]

Management Science 67 7.62

Shams, M.Y.; Gamel, S.A.; Talaat,
F.M. [72]

Neural Computing and Applications 6 10.23

Steging, C.; Renooij, S.; Verheij, B.
[73]

Proc. Int. Conf. Artif. Intell. Law,
ICAIL

13 2.19

Sufi, F.K.; Alsulami, M. [74] IEEE Access 21 1.87
Thuy, A.; Benoit, D.F. [75] European Journal of Operational

Research
2 4.6

Tiensuu, H.; Tamminen, S.; Puukko,
E.; Röning, J. [76]

Applied Sciences (Switzerland) 3 0.26

2.2.1. YEAR-WISE REPORTING

Figure 2.2 shows the year-wise distribution of the publications assessed in phase seven of this

literature review. Amongst the 57 papers, 11 have been published in both 2021 and 2022, while

in 2023 more papers than the sum of the two years before it were published; 23. As the research

was conducted in February of 2024, only five papers of this year have been assessed. Due to

the inclusion and exclusion criteria discussed in subsection 2.1.1, all literature included before

2021 was identified through the snowballing method, represented by ’Snowball’ in Figure 2.2.

In the graph, the AI and PES domain is represented with ’Query 1’, and the XAI and DSS domain

is represented with ’Query 2’. The graph shows that AI applications in PES have been researched

since 2015 and that there is a growing interest in XAI in DSSs, with a strong peak in 2023.

2.2.2. THEME-WISE REPORTING

Figure 2.3 shows the frequency of appearance of the keywords of the publications assessed

in phase seven of this literature review after removing the words used in the search queries.

The main concepts are multiple variants of ’machine learning’, ’decision making’ or ’decision

support’, and ’interpretability’, reflecting the focus of this literature review. Interesting words

that pop up are ’human computer interaction’, ’human ai interaction’, and ’learning systems’,

showing that this review goes beyond merely technical aspects of XAI in DSS, also reviewing the

human factor. Figure 2.4 shows the frequency of words appearing in the title of the publications

assessed in phase seven of this literature review. The most occurring words are ’decision’, ’sys-

tem’, and ’support’, followed by ’explainable’, ’artifical’, ’intellengence’, ’machine’, and ’learning’,

reflecting this literature review’s focus.

Figure 2.5 visualizes the co-occurrence of the 25 most frequently appearing words in the titles of

the selected research, given a context window of three words. Of interest are the co-occurrences

between ’explanation’ and ’trust’, ’explaining’ and ’predicting’, ’risk’ and ’explaining’, ’intelli-
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Figure 2.2: The distribution of selected research papers per year

Figure 2.3: A word cloud showing the different keywords of the selected papers

gent’ and ’explanations’, and ’intelligent’ and ’decision’. The first four pairs might indicate rela-

tionships between the concepts, but the latter pair more likely refers to a name generally used

for a DSS using explanations.
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Figure 2.4: A word cloud showing the most appearing words in the titles of the selected papers

2.3. ALGORITHMIC PROFILING IN PUBLIC EMPLOYMENT SERVICES

This section focuses on presenting the results of the literature analysis of the works presented in

Table 2.1. Of these works, three papers are reviews. The first review is published by the Organ-

isation for Economic Co-operation and Development (OECD) [6], the second by the European

Union [25], and the final one is academic [36]. Twelve papers describe the applications of AI

profiling in the PES of a country [5, 30–33, 37, 39, 41, 43, 77], of which only three papers employ

a method of explainability [41, 43, 77]. Four papers have been written from a Labour Economics

point of view [11, 34, 35, 38], and the final paper employs a Human-Computer Interaction point

of view [42].

2.3.1. APPLICATIONS OF ALGORITHMIC PROFILING IN PUBLIC EMPLOYMENT SERVICES

Algorithmic profiling in PES generally has one of three goals: (1) diagnose individual strengths

and weaknesses to account for in the personal action plan for a client, (2) assess the risk of

Long-Term Unemployed (LTU) of an individual, and (3) targeting the appropriate services,

measures and programmes to the profile of the client [6, 25]. As these algorithms are reliant

on statistics, they can only find the best predictors of LTU, but not the drivers behind it [36].

Accurate profiling tools improve the cost-efficiency of PES and can be used to guide planning

and budget allocations [6, 25]. The high caseload of counsellors pushes further this need for

risk profiling tools [25]. Focusing on profiling for early interventions is essential, as these have

the highest cost-effectiveness and overall fiscal savings [25]. Additionally, caseworkers are more

effective when they are supported by systematic tools [25]. Profiling appears to be a promising

way to speed up the unemployment exit by guiding planning and budget allocations [36], pro-

viding systematic support to and reducing the caseload of counsellors [25], ultimately leading

to a more cost-efficient PES [6].
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Figure 2.5: A research map showing the most co-occurring words in the titles of the selected papers

In some countries like Denmark and Sweden, the usage of algorithmic profiling is voluntary

for both the case worker and the client and is used to support the decision-making process

of the case worker [6]. Other countries like Australia and the USA use algorithmic profiling to

determine the service streams jobseekers are assigned to automatically [6]. The actions the

PES takes on as a result of the algorithmic profiling greatly differ across the world and greatly

depend on the culture of the country it is being implemented in.

Desiere et al. [6] distinguish three types of profiling: rule-based profiling, caseworker-based

profiling, and statistical (algorithmic) profiling, which are often combined in practice. The

Directorate-General for Employment, Social Affairs and Inclusion (European Commission) adds

data-assisted profiling as a fourth category [25] and defines this as a profiling method in which

the caseworker has a significant role and is supported by quantitative data.
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Most statistical profiling tools predict the probability that a jobseeker becomes LTU. The ex-

act definition of LTU differs per country, as does the exact predictive value of the models [6].

Generally, the models calculate the probability of LTU where Denmark, Flanders, Sweden and

the US use six months of unemployment as threshold [6, 77]. The cases in Australia, Ireland,

Italy, Latvia, the Netherlands, Portugal and Türkiye consider 12 months of unemployment as

LTU [6, 37, 43]. Another approach is to calculate a risk profile for an individual, which happens

in Austria, Germany, Italy, Poland, Portugal, and Sweden [5, 30, 32, 39–41]. Slovenia is a unique

case in which the model employed is a survival analysis which outputs the probability of un-

employment as a 365-dimensional vector, with each dimension representing the probability of

unemployment on the respective day in the year [31].

The models generally are statistical Logistic Regression (LR) models, see Table 2.3. These mod-

els are inherently, or ante-hoc, explainable, meaning that their inner workings can be deducted

from parameters. More elaborate models, like, for instance, a Random Forest (RF), have not

been widely applied yet [36], as a problem with these models is that their increased complex-

ity not only improves the model performance but also increases model complexity which re-

sults in a lack of interpretability. To overcome this struggle post-hoc explainability methods

like SHapley Additive exPlaination (SHAP) [31, 41, 43, 77], Local Interpretable Model-agnostic

Explanations (LIME) [30] and the Aequitas7 toolkit to audit bias and discrimination [36] have

been applied.

The statistical profiling models employed throughout the OECD generally use a combination

of four types of input variables: socio-economic characteristics of the jobseekers, motivation to

look for a new job, job readiness, and opportunities [6]. The EU defines slightly different types

of variables: personal characteristics, household characteristics, information on education and

skills, the jobseeker’s work history, health status, locality, and attitudes to job search and work

[25]. Haug noted that profiling rarely includes unemployed people’s needs, aspirations, or job

quality metrics and can represent the harsh realities of structural labour market discrimination

[36].

Challenges for algorithmic profiling in PES are to align the complexity of the profiling with the

degree of Active Labour Market Policy (ALMP) in place in the country. For countries with min-

imal ALMP in place, the profiling is not useful, and for countries with strongly differentiated

services, the profiling tools have to be complex [25]. Additionally, the people most in need

might be hard to profile, as these can be people with psychological issues, debt, or drug addic-

tion [25]. The information to assess this is provided by the clients themselves, either digitally

or in a consult with a case worker, leading to the risk of missing key information for assigning a

client to the proper profile [25], making the caseworkers crucial to the collection of data [36].

Profiling, therefore, does not come without risks and limitations. Different profiling tools may

assign different profiles to the same individual, the accuracy of profiling tools can be lower in

practice than in development, the link with service delivery may be missing, and casework-

7http://www.datasciencepublicpolicy.org/our-work/tools-guides/aequitas/

http://www.datasciencepublicpolicy.org/our-work/tools-guides/aequitas/
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ers may not use the tool [6]. Different reasons for caseworkers not using the tool are that they

might perceive profiling results as demotivating to jobseekers, find the tools useless and un-

trustworthy, ignore the tool, or be over-confident in their own experience [36]. In addition, the

decisions of the profiling model are as good as the data used to train the model, the most thor-

ough systems are still prone to statistical discrimination, and finally, difficulties in scrutinising

or understanding the algorithm can result in a lack of transparency [6, 25]. On the other hand,

publishing the algorithm introduces the risk of jobseekers manipulating their information to

get assigned to the desired category [25]. Profiling only brings the desired results when there is

no shortage of job offers and solely provide value to at-risk individuals [25].

The different applications of AI profiling in PES can be found in Table 2.3. The table reports

the country of application, a reference to the source, the type of application, i.e., is it a live

system developed and deployed by a government or a prototype build by researchers based on

some acquired data source, the model interpretability methods and the performance reported.

Some application cases do not report performance measures, as no ground truth is available,

i.e., [39, 40].

Table 2.3: Comparison of PES (X)AI applications

Country Source Type Model Interpretability Performance

Australia [6] Live LR Coefficient analy-
sis

Precision = [0.80;0.91]

Austria [5] Live Multivariate LR Coefficient analy-
sis

Precision = [0.80;0.91]

Denmark [6] Live Decision Tree (DT)
Classifier

- Accuracy > 0.600

Flanders [77] Live RF Classifier TreeSHAP, TreeIn-
terpreter

Area Under the Receiver
Operating Characteristic
Curve (AUC ROC) = 0.789

Germany [32] Prototype LR, Penalized LR, RF
Classifier, Gradient
Boosting Decision
Trees (GBDT) Classi-
fier

- AUC ROC = [0.700; 0.770],
Accuracy = [0.837; 0.846],
Precision = [0.328; 0.372],
Recall = [0.256; 0.290]

Ireland [6] Live Probit Regression - Accuracy = [0.700; 0.860]
Italy [39] Live LR - -
Latvia [6] Live Factor analysis - -
Netherlands [6] Live LR - Accuracy = 0.7
New Zealand [6] Live RF, GBDT - AUC ROC = [0.63; 0.83]
Poland [40] Live - - -

Portugal
[41] Prototype LR, RF, XGBoost SHAP @10% of population: pre-

cision = [0.200; 0.230], re-
call = [0.640; 0;730]

[43] Prototype LR, RF, XGBoost SHAP Accuracy = [0.740; 0.816],
precision = [0.726; 0.828],
Recall = [0.756; 0.806].
F1-score = [0.741; 0.808],
AUC ROC = [0.736; 0.815]

Slovenia [31] Prototype Semi-supervised
multi-target regres-
sion

SHAP AUC ROC = [0.76; 0.79]

Sweden
[30] Live Neural Network (NN) LIME Accuracy = 0.68
[6] Live LR - -

Türkiye [37] Prototype LR, RF, XGBoost, Shal-
low NN

- Accuracy = [0.63; 0.67]

USA [6] Live LR - -
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2.3.2. LABOUR ECONOMICS PERSPECTIVE

Desiere and Stuyven [35] acknowledge that profiling models introduce an inherent tension be-

tween model accuracy and discrimination. They define accuracy as the share of jobseekers

correctly classified and discrimination as the proportion of jobseekers who belong to a par-

ticular group and find a job ex-post but are misclassified as high-risk jobseekers relative to

the proportion among the dominant group. They show that AI-based profiling increases ac-

curacy compared to randomly selecting jobseekers and a rule-based approach, but also intro-

duces ’statistical’ discrimination. Improving accuracy thus comes at the cost of discrimination.

Therefore, there exists an accuracy-equity trade-off. They find that jobseekers of foreign origin

are 2.6 times more likely to be misclassified as high-risk jobseekers than jobseekers of Belgian

origin. They calculate the model’s accuracy and discrimination at different profiling thresholds

and plot the accuracy versus discrimination at these different thresholds. This results in an

inverse U-shaped relation, showing that more jobseekers are considered high-risk for higher

thresholds, resulting in low accuracy and discrimination. For lower values of the threshold,

fewer jobseekers are considered high-risk. Still, those who are, are mainly of foreign origin,

resulting in a low accuracy and high level of discrimination. The visualization shows the trade-

offs made, but policies ultimately decide the required levels of accuracy and discrimination, as

the model’s fairness is also given by the effects of the model and the perceived usefulness of the

PES’ support. Discrimination can be regarded as either ’negative’ or ’positive’ depending on

the perceived usefulness or value of services offered.

Landeghem et al. [11] uncover that statistical models can reveal systematic patterns between

socioeconomic and sociodemographic variables, direct research on the reason why some groups

have a higher risk than others, give an indication of the potential duration of an individual’s un-

employment, and under some circumstances even reduce existing patterns of discrimination.

On the contrary, the statistical models are only modestly more accurate than a lottery approach

while misclassifying many individuals, introducing the risk of reinforcing existing patterns of

discrimination, and only predicting outcomes while not revealing which programs work for

whom. Variables found to have explanatory power are a person’s region of residence and occu-

pation and their employment history. Macroeconomic conditions, especially the local unem-

ployment rate, can also have strong predictive power. In addition, they state that algorithms

are more transparent than the minds of decision-making humans, who often are prone to un-

conscious biases against certain groups. In addition, statistical profiling models might help

identify at-risk people, but they do not reveal which policy programs are effective for whom.

Different regimes might prefer different sensitivity–specificity combinations, and the optimal

combination depends on how profiling is intended to be used.

Considine et al. [34] explores the feasibility and limitations of replacing human interactions

with automated systems, or ’machine bureaucracies’, in welfare and employment services. They

examine how digitalization can improve efficiency, accountability, and consistency in policy

delivery but also consider the necessary trade-offs. While machine bureaucracies promise cost

savings, policy fidelity, and reduced stigma for jobseekers, they may also create new forms of
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exclusion, particularly for those lacking digital literacy or resources. The authors argue that

while digitalization can streamline services, it might fail to address complex individual needs

and ethical considerations better handled by empathetic human decision-making.

Møller et al. [38] discuss a research project involving data scientists, caseworkers, and system

developers to develop algorithmic decision-support systems for job placement in Denmark.

In this study, caseworkers emphasized the need for systems that support their professional

responsibilities and maintain the dignity of those they serve rather than just enhancing effi-

ciency [38]. The participatory approach revealed the importance of flexibility and discretion

in algorithmic systems, leading to a focus on mitigating organizational contradictions instead

of individual profiling aimed at creating more effective and humane decision-support systems.

This highlighted the complexity of public service casework, making it difficult to establish clear

value metrics for algorithmic tools.

2.3.3. HCI PERSPECTIVE

Wan et al. [42] employs an XGBoost classification model in the context of a European PES that

predicts the probability of LTU of clients. They state that algorithms communicate with hu-

mans via causal representation and that human representation, based on prior beliefs, may

collide with the representation of the algorithm, which is called the duet of representations.

Their empirical field research investigates whether explanatory methods, like SHAP and LIME,

introduce conflict between the algorithms and the human representations. They find that dis-

playing college education as part of the explanation introduces conflict and decreases decision-

making quality. Furthermore, they conclude that understanding the why behind the epistemic

conflict should drive human-algorithm interaction. Additionally, they define four necessities

to achieve communicative rationality: the human should understand the algorithm’s epistemic

standpoint, the algorithm should understand the human’s epistemic standpoint, the human

and algorithm should be able to argue with one another, and both the algorithm and the hu-

man should receive feedback on their judgement to improve it.

2.4. EXPLAINABLE ARTIFICIAL INTELLIGENCE IN DECISION SUPPORT SYS-

TEMS

This section presents the dominant themes in the assessed literature. The findings are classified

into XAI Methods in DSSs, subsection 2.4.1, XAI Evaluation Methods in DSSs, subsection 2.4.2,

XAI Applications in DSSs, subsection 2.4.3, and, finally, Human XAI Interaction in DSSs, sub-

section 2.4.4.

2.4.1. XAI METHODS IN DSSS

Many of the works [21, 46, 52, 57, 59, 60, 62, 67–71, 76] assessed by this research use SHAP, pro-

posed by Lundberg and Lee [78], as their primary method of explainability. Another popular

explainability method is LIME, proposed by Ribeiro et al. [79], used in [21, 22, 48, 49, 52, 64, 72].



EXPLAINABLE ARTIFICIAL INTELLIGENCE IN DECISION SUPPORT SYSTEMS 20

Amparore et al. [14] compare the performance of LIME and SHAP and show that both have

vulnerabilities in the form of a limited reiteration similarity, low conciseness or insufficient ex-

planations for the correct label and state that explanations should always be paired with quality

metrics.

The literature also contains studies that propose a new explainability method. Of these new ex-

plainability methods, two are somewhat similar to LIME and SHAP: Accelerated Modal-agnostic

Explanations (AcME) [55], and ModEl constRastive expLanatIoN (MERLIN) [65]. First, AcME

combines the computational simplicity of partial dependence plots with the versatility and

visualizations of feature importances of SHAP. AcME supports both global and local inter-

pretability and is model-agnostic for tabular data in both regression and classification prob-

lems, with the main advantage over SHAP being the improved speed and stability [55]. Second,

MERLIN allows understanding how two textual or tabular classifier ML models work beyond

their prediction performances. It shows that the explanations are crucial to understanding their

behaviour, differences, and likeness [65].

Three of the new explainability methods are rule-based methods: Fuzzy Cognitive Maps (FCMs)[44],

Minimum Converging Set [51], and Rationale Discovery [73]. These methods differ from the

more traditional LIME and SHAP discussed in, respectively, section 3.4 and section 3.5. First,

FCMs are models which infer causality derived from collective human knowledge between phe-

nomena and features. Thus, FCMs are not intended to learn from data but rather to model

knowledge and combine this with the results of ML to allow decision-makers to make more in-

formed decisions, including causality to the reasoning [44]. Second, the goal of the minimum

converging set is to find a minimal cardinality set of variables in the training dataset that are

used by a (sub)set of the extracted rules that together cover the entire training set. For each

instance in the training dataset, at least one rule exists in the (sub)set that satisfies the data

instance [51]. Third, rationale discovery is a method that mimics unit testing in professional

software development. It shows that with carefully designed test cases, a machine-learning

engineer can assess if all of the rationale elements presented in the training set are correctly

recognized and reproduced by the model [73].

Another new explainability method is Subgoal-Based Explanations for plan-based DSSs [56].

These explanations supplement traditional DSS output with information about the subgoal to

which the recommended action would contribute and improve user task performance in the

presence of DSS recommendations, improve user ability to distinguish optimal and suboptimal

DSS recommendations, and are preferred by users [56]. One distinctive explainability method is

AMLBID, an advanced AutoML tool that leverages meta-learning, estimating the performance

of proposed ML models and hyperparameters to data characteristics based on characteristics of

other datasets, to automatically select and tune the optimal machine-learning configurations

tailored to specific problems, being the first AutoML tool to support different predictive perfor-

mance measures and provide transparent, auto-explainable recommendations for machine-

learning configurations [60].
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The uncovered XAI methods in DSSs are classified according to the taxonomy of interpretabil-

ity dimensions found in [21]. They distinguish between Stage, the nature of explainability, and

Scope, whether the XAI can calculate local and/or global feature scores. The papers presenting

XAI methods in DSSs assessed in this work are classified in Table 2.4. Several methods listed

in the table were not initially identified in the literature review. They are incorporated as they

were utilized in studies that were part of the reviewed literature. Of these 19 assessed methods,

11 support global explanations, and 11 support local explanations. Three of the methods sup-

port both global and local explanations. Most assessed methods are Model-Agnistic, whereas

methods that aim to create a sense of causality require domain knowledge and are thus Model-

Specific.

Table 2.4: XAI Methods in DSSs

XAI Method Scope Stage

SHAP [78] Global & local Model-Agnostic
LIME [79] Local Model-Agnostic
Fuzzy Cognitive Maps [44] Global Model-Specific
QARMA [51] Global Model-Agnostic
AcME [55] Global & local Model-Agnostic
Subgoal-Based Explanations [56] Local Model-Specific
MERLIN [65] Global Model-Agnostic
Test case based XAI [73] Local Model-Agnostic
Partial Dependence Plot [80] a Global Model-Agnostic
Accumulated Local Effects[81] a Global Model-Agnostic
Parallel Coordinates Plot [82] a Global Model-Agnostic
Natural Language Explanations [83] a Global & local Model-Agnostic
Counterfactual Explanations [83] a Local Model-Agnostic
Contrastive Explanations [83] a Local Model-Agnostic
Explainable Clustering [66] a Global Model-Specific
Anchors [84] a Local Model-Agnostic
Abstract Dialectical Framework [85] a Global Model-Specific
Inference Graphs [86] a Local Model-Specific

Layer-Wise Relevance Propagation [87] a,b Local Model-Agnostic

a This method was not originally included in the structured literature review.
b This is an image-specific explanation method.

2.4.2. XAI EVALUATION METHODS IN DSSS

The majority of this subsection leans on the output of a recent survey of evaluation methods for

interpretable ML by Alangari et al. [21], which produces a taxonomy of interpretability evalua-

tion methods, seen in Figure 2.6, and a summary of current evaluation methods, as seen in Ta-

ble 2.5. Consecutively, a Local Explanation evAluation Framework (LEAF) has been presented

by Amparore et al. [14], which uses different aspects of explanation quality partially aligned

with the computational-based branch of the taxonomy presented by Alangari et al. [21] to eval-

uate explanations given by several explainability methods [14], showing that both SHAP and

LIME are plagued with defects. Building on the computational-based branch, a way of model

evaluation may be to communicate uncertainty. In this area, Thuy and Bernoit [75] claim that a

prediction has two uncertainty values, as uncertainty can arise from two fundamentally differ-

ent sources, data uncertainty and model uncertainty, allowing the human-in-the-loop expert
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to adjust the prediction for uncertain observations. A model operator can still use a model

performing less than optimally globally to make decisions about problem instances where the

model is well-fitted [61]. A different approach is integrating domain knowledge into a visual

support system and using this domain knowledge as ground truth, evaluating the overlap be-

tween model output and expert knowledge [70]. Rojo et al. [70] build forth on the work of Gil

et al. [88], which suggested that information from domain knowledge is a potential strategy

for evaluating and selecting a model. A disadvantage of this method is that human-based eval-

uation methods introduce subjectivity and biases to the evaluation as such a metric rewards

alignment and similarity instead of faithfulness and correctness [21]. As XAI has different re-

quirements in different usage contexts, the evaluation of XAI should not be static but rather

differ between usage contexts. Liao et al. [63] investigate the relative importance of XAI eval-

uation criteria in five different usage contexts of XAI, summarized in Table 2.7. Furthermore,

Löfström et al. [64] build on the idea of evaluation of explanations and investigate the impact

of calibrating predictive models with Venn-Abers and Platt scaling before applying LIME on the

quality of the explanations. They find that better-calibrated models result in better explana-

tions, giving a more accurate representation of reality [64]. Generally, authors agree that good

explanations are comprehensible, actionable, and interactive [21, 63, 75]

Methods to Evaluate Interpretability

Human-based (qualitative) Computational-based (quantitative)

Access the classifier Find-alignment Correctness Comprehensibility Stability

Figure 2.6: Methods to evaluate interpretability, adapted from [21]

Table 2.5: Lists of Computational- and Human-based evaluations methods, adapted from [21]

Computational-based Human-based

Partial Dependency Plots (PDP) Select the best classifier
SHapley Additive ExPlanations (SHAP) Improve a classifier
Local Interpretable Model-agnostic Explanations (LIME) Identify classifier irregularities
TREPAN Forward Simulation
Feature weights/importance Counterfactual explanations
Class Activation Mapping (CAM) Describe the class characteristics
Saliency/heat maps Alignment between humans and models
GoldenEye Select the best explanation

Verification
Understand internal reasoning process
Reconstruct target instance
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Table 2.6: The explanation quality metrics as proposed in LEAF [14]

Metric Description

Conciseness The maximum number K of non-zero weights that are kept in the explanation presented to
the user, while the other F −K features are treated as non-relevant and are excluded

Local fidelity Measures how good is the white-box g in approximating the behaviour of the black-box f for
the target sample x around its synthetic neighbourhood N (x).

Local Concordance It measures how good g is in mimicking f for the sole instance x under the conciseness con-
straint.

Reiteration similarity Measures the similarity of a set of explanations of a single instance x as a measure of similarity
across multiple reiterations of the explanation process.

Prescriptivity Measures how effective an LLE is when taken as a recipe to change the class of x.

Table 2.7: Requirements of XAI in different usage context, adapted from [63]

Usage context Requirements

Model improvement Explanations should be faithful and stable for users to inspect the true causes of model issues.
Capability assessment Explanations should be easy to understand to help users make an efficient assessment, even

at some cost of faithfulness.
Decision support Explanations should communicate the uncertainty of model predictions and the limitations

of explanations.
Understanding how the sys-
tem works with one’s data to
make adjustments

Explanations should be transparent about the model uncertainty and explanation limita-
tions, faithful and stable to allow users to discover and change the true causes of sub-optimal
system behaviours.

Learning Explanations should be stable, faithful and relatively complete to help people discover true
patterns of the domain.

Model auditing Explanations should be first and foremost faithful to the underlying model, transparent about
the explanation limitations, and cover the decision components completely, to allow accurate
and comprehensive auditing.

Additionally, the uncovered XAI Evaluation Methods in DSS are classified according to the tax-

onomy of Interpretability Evaluation Methods presented by Alangari et al. [21]. They distin-

guish between Human-based and Computational-based metrics, i.e., qualitative and quanti-

tative, further branched into five specific categories. The classification of the XAI Evaluation

Methods in DSSs is presented in Table 2.8. Most of the found evaluation methods are of a

quantitative nature. These methods generally use an algorithm to assess the quality of an ex-

plainability and are thus objective. There are differences between the various quantitative ex-

plainability methods, but all four methods measure at least the correctness of an explanation.

Two of the methods add the measurement of the comprehensibility and stability of an explana-

tion to the quality of an explanation. Only one method combines qualitative and quantitative

measures, and another relies solely on qualitative measures. Both of these methods use at least

the find-alignment metric as a quality measure. The latter method also includes the access the

classifier metric. The qualitative methods are prone to biases, as they rely on human judge-

ment [21]. Additionally, Liao et al. [63] state that the classification is not necessarily binary, as

it is possible to devise proxy measures to assess human-centred criteria. Proxy measures were

not found in the assessed methods.
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Table 2.8: XAI Evaluation Methods in DSSs

XAI Evaluation Method Qualitative or Quan-
titative

Branch Task/metric

Augmented Human Model Selection (AHMoSe)
[70]

Qualitative
Access the Classifier Select the best classi-

fier
Find-alignment Alignment between

humans and models

Local Explanation evAluation Framework (LEAF)
[14]

Quantitative

Correctness
Local Concordance
Prescriptivity

Comprehensibility
Conciseness
Local Fidelity

Stability Reiteration similarity

Contextualized Evaluation for
Explainable AI [63]

Quantitative

Correctness
Faithfulness
(Un)Certainty (com-
munication)
Translucence

Comprehensibility
Completeness
Compactness
Comprehensibility

Stability Stability
Qualitative Find Alignment Coherence

None None

Interactivity
Actionability
Novelty
Personalization

Model calibration evaluation [64] Quantitative Correctness Calibration

Uncertainty Estimation [75] Quantitative Correctness (Un)Certainty (com-
munication)

a This method was not originally included in the structured literature review.
b This is an image-specific explanation method.

2.4.3. XAI APPLICATIONS IN DSSS

From the body of literature, only one XAI application in DSSs is in unemployment insurance

[15], the central subject of this literature review. However, many methods and frameworks ap-

plied to other industrial applications can be transferred to unemployment insurance. There-

fore, this chapter analyses the different methods and frameworks throughout the many indus-

trial applications of XAI in DSSs, starting with unemployment insurance.

The Estonian unemployment insurance fund has created OTT8, a DSS showing counsellors the

risk of unemployment of their clients with the aim to enhance effectiveness and increase effi-

ciency in the unemployment counselling process. This system allows a counsellor to put more

time and effort into the people who potentially need more services to get employed and addi-

tionally balances the workload between counsellors. The system uses a RF ML model with 40

input features to predict the chance that someone gains employment within 180 days and uses

a human-in-the-loop approach to ensure quality decision-making [12].

Attrition9 prevention is also an area where XAI is used in DSSs. This area is characterised by

the object of the decision, a human, which brings all sorts of extra challenges, like privacy and

discrimination, with it, aligning with the issues in unemployment insurance. Another issue

8https://e-estonia.com/ai-to-help-serve-the-estonian-unemployed/
9Voluntarily or involuntary leave

https://e-estonia.com/ai-to-help-serve-the-estonian-unemployed/
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with human data found in the literature is noise in the data due to manual labelling, subjec-

tivity in class labels, and class imbalance [57, 67]. In attrition prevention, the frameworks con-

sist of data preprocessing, predictive models and explainable ML approaches in the form of

SHAP [57, 67]. Delen et al. [57] aims to predict and mitigate freshman student attrition. They

show that feature importance might be helpful for group-level insights, which allows for the

adjustment of long-term strategies. These group-level insights should not be used to pursue a

one-size-fits-all strategy on an individual level, but rather, an individual intervention should be

designed. HR-DSS is a DSS that aims to predict employee attrition, helping the decision-maker

to understand the relationship between specific features and the employee’s decision to resign

and design individual interventions with the help of a what-if analysis. This allows the user to

change specific feature values of an individual to explore the impact on the probability of attri-

tion, according to the ML model [67]. Nguyen et al. [68] leverage data from log and enterprise

data-based sources to create an XAI customer support system to identify customers who might

need special attention by calculating each customer’s escalation probability. This allows cus-

tomer support to efficiently allocate resources to improve customer satisfaction through more

proactive customer relations. The authors state that in practice, an investment of 5 hours per

week might lead to a reduction of nearly 50% of escalations yearly for the company in this case,

and they propose an employee workflow to achieve this.

Major application areas of XAI in DSSs are manufacturing and quality control [61, 71, 76]. These

use cases all rely on black-box ML models that use an XAI approach to allow human-in-the-

loop decision-making. The ML methods used in this application area are Learning Classifier

Systems (LCSs) [61] and GBDT [71, 76]. One of the main issues in quality management is find-

ing the root cause of a problem. ML models cannot guarantee causality but rely on the process

engineers to do so [71]. However, ML methods can produce outputs that can function as input

to the decision-making process, exploiting the unique capability of computers to quickly pro-

cess large amounts of data and extract information from it. Applications in this area include

a DSS to inspect the predicted quality of the output before the production process has started

[76] and finding the processes that need quality improvement and then selecting improvement

actions [71]. By incorporating three reasonability aspects into decision systems: feasibility, ra-

tionality, and plausibility, similar reasonable decisions to the same problem can be generated,

allowing the decision-maker to select one of these decisions with the help of a comprehensible

and justifiable explanation [54].

Another application area with research into XAI in DSSs is agriculture [70, 72], using both white-

and black-box models, complimented by either SHAP or LIME to allow for human-in-the-loop

decision-making. Rojo et al. [70] apply regression models in a viticulture context and use SHAP

in combination with domain knowledge to present and compare the output of different re-

gression models in an interactive dashboard. Shams et al. [72] present XAI-CROP, aiming to

bring farmers comprehensible crop recommendations. XAI-CROP uses a five-block architec-

ture which can be transferred to other application areas: a data preprocessing module, a feature

selection module, a model training module, an XAI integration module, and a validation mod-
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ule.

Cyber security is another area in which XAI is integrated into DSSs. This area is characterised by

high velocity and volume imbalanced data, which make human decision-making nearly impos-

sible but are well suited for ML approaches [59, 62, 66]. One of the issues is that over-sensitive

models are responsible for many false alarms, therefore, Lee et al. [62] employ false positive

reduction in the form of an anomaly detection model based on DeepAID [89]. This is inter-

preted by the XAI module, which uses SHAP, contrastive explanation method, and counterfac-

tual explanations to see if the false alarm reduction made a reasonable decision by finding the

K-nearest neighbours. It then calculates the absolute difference with weighted distances, using

the feature importance of the AI model, reducing the false positive rate. Security rule identifi-

cation and validation also allows for the usage of AI to define uncommon patterns and security

threats to be monitored and vetted with a noise-resistant density-based spatial clustering ap-

proach in the form of Density-based Spatial Clustering of Applications with Noise (DBSCAN)

and anomaly detection in the form of a density-based algorithm that calculates a factor repre-

senting the degree of anomaly or novelty called Local Outlier Factor (LOF) [66]. Consecutively,

the XAI system proposes a dimension based on the outliers to generate a new rule that can be, if

accepted, integrated into the security rule engine. The current rule and its effects on a random

set of data from the logs are then graphically displayed. In the subdomain process mining,

Galanti et al. [59] compare Catboost and Long-Short Term Memory (LSTM) NNs on several

real-life process predictive analytics tasks. They use SHAP to return both global and local ex-

planations. Both models perform equally, however, the Catboost model is trained faster, which

is preferred in real-time analytics. The authors [59] conduct a user study in which they gather

feedback on the task difficulty of 18 tasks, which are found to be generally easy to execute, also

for non-expert users, showing that predictions are explained in an effective and efficient form

for process analysts.

Resource management scholars have also applied XAI in DSSs in energy management [69] and

communication network slice reservation, the allocation of dedicated network resources for

specific services within communication networks [46]. Where Barnard et al. [46] verify their

AI with a mathematical model and employ SHAP to monitor and verify the real-time decisions

of the model, revealing trends about the model’s general behaviour and diagnosing potential

harmful behaviours in advance of real-world deployment of the model, Panagoulias et al. [69]

decide to employ a stacked NN with customised XAI analytics for the various groups of en-

ergy management stakeholders. To achieve this, they create a questionnaire, conduct a survey

among stakeholders, and perform user clustering to define XAI systems tailored to user needs.

They applied the Technology Acceptance Model (TAM) [90] and associated perceived useful-

ness with AI literacy and perceived ease of use with usability.

XAI has also been employed in legal DSSs, to evaluate the admission of claims to the European

Court of Human Rights [53] and to evaluate rationales in tort law [73]. The models are both

rule-based domain knowledge models requiring manual transcription of text to input features,
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but where Collenette et al. [53] start with rules and then process data according to these rules,

presenting the user with its verdict and a textual explanation, Steging et al. [73] do the oppo-

site, creating carefully designed artificial training sets from a real-life legal setting with inherent

logical rationale, aiming to extract five known knowledge structures in tort law. They conclude

that NNs failed to learn one of the independent conditions despite high accuracy on the test

set.

Sufi and Alsulami [74] present a fully automated media monitoring solution that automatically

analyses unstructured global events, highlights significant events to users, and explains the root

causes of abnormalities in plain English. The system automatically categorises entity informa-

tion into twelve entity types, extracts the sentiments on events, compares the sentiments on a

time-series and detects whether the event is anomaly or regular. The system can be used by

policymakers to make evidence-based policy decisions or by news agencies and reporters as

their eyes and ears for new articles.

Additionally, XAI can be used to understand epistemic uncertainty in deep NNs [48]. Brown et

al. [48] use Bayesian dropout uncertainty estimation, distilled into regression-based ML mod-

els to which XAI is applied to evaluate the XAI-generated explanation of the model uncertainty

by examining whether the explanation correlates with negative relevance in classification tasks,

pinpointing specific features that lead to a data point being considered out-of-distribution,

functioning as a guideline for human expert intervention.

In Table 2.9, all application domains of XAI in DSS are reviewed and classified according to the

XAI method and XAI evaluation methods from, respectively, Table 2.4 and Table 2.8. Generally,

SHAP is the preferred XAI method and is used in 11 of the 20 application domains, followed by

LIME, which is used three times. Additionally, Natural Language Explanations are used twice,

once in collaboration with SHAP. By providing a well-designed query with the SHAP values to

a natural language model, the SHAP values can be presented to the human decision-maker in

a textual manner instead of as a graph, allowing for more traditional, rule-based explanations.

The evaluation methods found in this literature review were not explicitly applied to the XAI

methods in practice. 11 out of 20 applications did not mention the evaluation of XAI, and the

other nine mentioned it implicitly. Only one work used a quantitative approach, whereas eight

used a qualitative one. The evaluation of calculated feature importance is the most popular XAI

evaluation method found in the literature, being used three times.

Table 2.9: XAI application cases and their XAI Methods and XAI Evaluation Methods

DSS application case Source XAI Methods XAI Evaluation Meth-
ods

Unemployment Insurance [12] Not mentioned None

Manufacturing
[71] SHAP None
[76] SHAP, Partial Depen-

dence Plot (PDP),
Accumulated Local
Effects (ALE), Parallel
Coordinates Plot

User evaluation by
comparison
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Table 2.9: XAI application cases and their XAI Methods and XAI Evaluation Methods (continued)

XAI Method Global Importance Local Importance Stage

[61] Learning Classifier
Systems

None

Agriculture
[70] SHAP Agreement between

model and expert
knowledge

[72] LIME None

Cyber Security
[62] SHAP, Contrastive

Explanation Method,
Counterfactual Ex-
planations

None

[66] Explainable Cluster-
ing

None

Attrition Prevention
[57] SHAP Evaluation of calcu-

lated feature impor-
tance

[67] SHAP, Natural Lan-
guage Explanations

Evaluation of calcu-
lated feature impor-
tance

Resource Management
[46] SHAP Local Accuracy,

Mask-Based Met-
rics (Keep Positive,
Remove Negative,
Remove Absolute,
Remove Positive,
Keep Negative, Keep
Absolute)

[69] SHAP None

Fraud Detection [52] LIME, Anchors, SHAP Estimated user con-
fidence based on
Average Prediction
Switching point (ASP)
for instantiated ex-
planation methods of
Local Feature Impor-
tance (LFI), Global
Feature Importance
(GFI) and Feature
Impact (FI)

Legal Reasoning
[53] Abstract Dialectical

Framework (ADF)
Accuracy compared
to ground truth

[73] None Detailed compar-
ison of actual and
expected outcomes

Predictive Process Analytics [59] SHAP Evaluation of calcu-
lated feature impor-
tance

Customer Support [68] SHAP None

Global Event Analysis [74] Natural Language Ex-
planations

None

Candidate Solutions Generation [54] Inference Graphs None

Understanding Uncertainty in Deep NNs [48] LIME, Layer-Wise
Relevance Propaga-
tion (LRP)

None

2.4.4. HUMAN XAI INTERACTION IN DSSS

As explainability is a crucial tool for building user trust [69], this section aims to explain how

the design of XAI systems influences the users’ trust in the system. Additionally, the design

of an XAI system can influence the capability of the user to learn from his interactions and

cognitively understand why a decision has been made, allowing them to eventually reproduce

the decisions and detect wrong predictions [58]. This section first introduces the concept of
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trust, then we discuss the implications on the design of XAI in DSSs, introducing some design

frameworks.

Trust can be divided into trusting beliefs, trusting intentions, and trusting behaviour, where

trusting beliefs positively influence trusting intentions and trusting intentions positively in-

fluence trusting behaviour [47]. Bayer et al. [47] employ structured equation modelling and

show that the user’s expertise also plays an important role in this equation, as it negatively af-

fects trusting beliefs, and additionally moderates the effect of the AI system’s explanation on

the trusting intention. For users with higher expertise, receiving an explanation increases the

trusting intention, which is in line with the findings of Panagoulias et al. [69], highlighting the

need for proper explanations in an expert DSS. In addition, Thuy and Bernoit [75] show that in-

corporating model uncertainty into the explanation increased the user’s trust, as it enables the

experts to distinguish uncertain and possibly incorrect predictions from more certain predic-

tions allowing users to make decisions about problem instances where the model is well-fitted

[61, 76, 91]. This also helps align the model with the user’s expectations and point of view, as

humans trust and are satisfied with a model’s explanation if it matches their expectations and

their point of view [21, 45], showing a potential threat to organizations. As humans are gen-

erally visually oriented, visualisation is key to increasing the user’s trust in the system, as they

help the users understand the results [76]. A last remark is that instability of interpretation lim-

its trust [21], highlighting the importance of choosing a stable explainability method and the

relevance of the stability evaluation measure presented in subsection 2.4.2.

When it comes to the design of XAI systems, visualisation of the models is key to improving the

user’s understanding of the results, containing different visualisations for different user needs

[76], delivering explanations that align closely with specific user expectations [45]. The expecta-

tions can be transcribed to requirements, which allow insight into the types of explanations and

explanatory elements that are most useful and meaningful for the users, highlighting the need

for explanations to align with the domain-level jargon [45]. Multiple authors [21, 49, 75] warn

that humans might unquestioningly trust the XAI explanations. This overreliance is shown to

be stronger for textual data than for tabular data [49]. Additionally, feature-based explanations

increase the users’ reliance on AI [91]. When users over-rely on the XAI prediction, they fail

to recognize when the XAI decision might be wrong when a situation is not yet found in the

training data distribution, accentuating the need for clear uncertainty communication by, for

instance, indicating when an observation lies outside of the training data [75].

Therefore, the style of the explanation is also an aspect that needs to be carefully considered,

as inductive-style explanations lead to an overreliance on XAI’s advice, suggesting that abduc-

tive and deductive styles are better at preventing overreliance [49]. Additionally, feature-based

explanations are found to increase participants’ reliance on XAI regardless of whether the AI

system is correct or incorrect. Example-based explanations helped achieve complementary

human-AI performance in the study by increasing appropriate reliance when the AI system

was correct while helping participants maintain their accuracy when the AI system was incor-
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rect [91]. As overreliance reduces incidental learning due to the lack of cognitive engagement,

XAI systems should be designed to minimize user overreliance while improving decision quality

[58]. The visual design of an explanation affects the decision quality of the user [22]. The default

LIME plot performs significantly better in giving an explanation than different plots containing

the same information, showing the relevance of the exact form of visual representation of ex-

planations [22]. Additionally, in plan-based models, Das et al. [56] show that subgoal-based ex-

planations enable more robust user performance in the case of Intelligent DSS failure, showing

the significant benefit of training users for an underlying task with subgoal-based explanations.

Multiple authors have presented design frameworks to guide an XAI designer through the de-

sign needs of an XAI system. These frameworks reach from an application-independent seven-

question design framework, which assesses the fit between the use case and the XAI model [61]

to a design principle framework specifically created for fraud detection usage contexts [52].

Another work uses mental models to obtain explainability requirements, showing that by em-

bracing user-centric approaches and leveraging domain-specific scenarios XAI systems can be

designed to deliver explanations that align closely with user expectations [45]. General design

rules are that explanations should be aligned to human decision intuition and rationale [91],

presented visually [22], exclude the AI’s recommendation [58] and present the user with the

AI’s limitations [91].

2.5. GAPS IN THE LITERATURE

This research has investigated the application of AI in PES and the application of XAI in DSS

to assess the possibilities of connecting these previously unconnected domains, addressing a

gap in the current XAI in PES literature. From the AI in PES domain, we can transfer the risk,

challenges and opportunities of AI applications in PES, as these are likely to translate to the

XAI in DSS in PES domain this research aims to cover. From the XAI in DSS domain, we can

transfer the technical aspects of an implementation. Namely, we can transfer the XAI methods,

XAI evaluation methods, and user acceptance and design implications from the Human XAI

Interaction in DSSs areas. We therefore conclude that we can combine the knowledge attained

from the AI in PES and the application of XAI in DSS into an application of XAI in the DSS

of a PES. This is further supported by the recent publication of Dossche et al.[15] in the exact

research domain.

Further gaps found in the literature are:

• Efficiency vs dignity of unemployed: Much of the research acknowledges the fact that

digitalization, and more specifically, advanced data analytics, has the potential to stream-

line services and mitigate organizational inconsistencies but might fail to address com-

plex individual needs and ethical considerations better handled by empathetic human

decision-making. In addition, statistical profiling models might help to identify at-risk

people but do not reveal which policy programs are effective for whom. However, we did

not identify any research on predicting effective policy programs or how the efficiency-
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dignity tradeoff is made.

• Influence of user expertise on trust in AI: Multiple sources investigate the influence of

user expertise on trust in AI. The sources all use mock scenarios with little at stake. There-

fore, it would be interesting to understand how the expertise of a PES counsellor influ-

ences their trust in the AI system.

• Uncertainty: Literature suggests communicating model and data uncertainty to the user

of XAI system to allow the user to adjust the prediction for uncertain observations with-

out introducing subjectivity and biases to the evaluation. This is especially important as

the datasets in the PES domain contain subjective and manually labelled data. However,

no literature has been identified on objectively quantifying the data and model uncer-

tainty.

• Explainability methods: The research assessed either uses SHAP or LIME as method of

explainability in PES, while many other potential explainability methods have been cre-

ated. In addition, many of the newly created explainability methods have not been ap-

plied to a real use case.

• Visualization of explainability: One of the articles assessed by this review has investi-

gated the effect of the visualization of LIME explanations of the understanding of the

user. As SHAP is generally the most used explainability method, it would be interesting

to see how the visualization of SHAP values influences the understanding of the user.

• Evaluation of explainability methods: Most of the research that uses XAI methods do

not evaluate the performance of these methods. At the same time, it has been proven that

they tend to behave unreliably. In the scarce examples where XAI is evaluated, qualitative

instead of quantitative evaluation is performed.



3
METHODOLOGY

3.1. CROSS-INDUSTRY STANDARD PROCESS FOR MACHINE LEARNING

This study used the CRoss Industry Standard Process for Machine Learning (CRISP-ML) pro-

cess model [92], an updated version of the CRoss Industry Standard Process for Data Mining

developed in 2019, to streamline the development process of the complex exercise of develop-

ing a ML model with the Necessary Level of Interpretability (NLI). The NLI is a combination

of the accuracy of the ML model and the extent of understanding of the inputs, inner work-

ings, outputs, user interface, and deployment aspects of the ML solution required to achieve

project goals established and documented at the initiation stage of the project. A ML system

is sufficiently interpretable when the NLI is achieved. An overview of the process model of the

CRISP-ML methodology is shown in Figure 3.1.

Figure 3.1: CRISP-ML Process Model, adapted from [92]

32
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The CRISP-ML model accommodates modern ML techniques, creates the NLI through the

whole ML solution creation process, and is industry-, tool-, and application-agnostic. Although

the model looks like a linear process, each stage allows for revisiting previous stages. It consists

of a total of seven stages [92]:

1. Project initiation and planning: Initially, the project team works together with the other

stakeholders to establish project objectives, project scope, and assumptions. The project

team also establishes and documents the NLI, including the minimal required accuracy

and understanding of inputs, outputs, inner workings and implementation aspects spe-

cific to the project.

2. Data audit, exploration and cleansing: The next stage demonstrates that the data inputs

into the solution are of adequate quality, make sense to the domain data specialists and

represent the real-world data on which the solution will be deployed.

3. Data predictive potential evaluation: With the outputs of the previous stage, ML meth-

ods are now used to assess the predictive potential of the data quality.

4. Data enrichment: In this stage, additional internal and external data sources are iden-

tified and go through stage 2, adding them to the previously used data. Then, stage 3 is

repeated to assess the predictive potential of the enriched data. The step is repeated until

the required predictive potential is achieved.

5. Model building and evaluation: This stage includes the selection of ML techniques to be

used in modelling, preprocessing the data accordingly, and building the models. Addi-

tionally, the performance of the models is evaluated, and the best model is chosen.

6. Derive business insights: Then, the executives and end-users of the system gain an un-

derstanding of the business insights the model produced. Additionally, this stage func-

tions as a confirmation that the model insights are valid and valuable and trust in the

insights can be built.

7. Deployment and reporting: Finally, the ML model is deployed, and a monitoring and

updating schedule is prepared. Additionally, a technical report is created.

Considering the context of the PES in which the predictive model is created, the CRISP-ML

methodology provides a structured and practical approach that ensures a proper level of NLI

throughout the development process. The CRISP-ML methodology ensures that the ML model

predictions about customers’ length of unemployment are accurate, transparent, and presented

understandably to the counsellors.

3.2. MACHINE LEARNING MODELS

In the ML field, there exists a clear distinction between two different types of classic ML models:

unsupervised and supervised [93]. The unsupervised ML models do not require a ground truth

for the training, but they rather rely on patterns in the provided data to define similar groups
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within the dataset [93], also called clustering. The supervised ML models do require a ground

truth for the training [93]. With this ground truth, they aim to find patterns in the data that can

be exploited to predict the outcome of data without a ground truth. These models are generally

called predictive models. This section will introduce the unsupervised and supervised models

used in this research.

3.2.1. UNSUPERVISED MODELS

The unsupervised ML models presented in this section can be divided into two major cate-

gories, partitional and hierarchical clustering [94]. While partitional clustering determines all

clusters at once, hierarchical clustering creates a hierarchy of clusters by merging or smaller

clusters or dividing larger clusters in, respectively, a bottom-up or top-down process.

HIERARCHICAL CLUSTERING

Hierarchical Clustering was first described by Ward and Joe in 1963 [95]. The method forms

hierarchical groups of k mutually exclusive subsets based on the similarity of X in n dimen-

sions. Each subset initially consists of only one X . The method calculates all possible unions

of k subsets to find the union with the lowest Error Sum of Squares from the k(k −1)/2) pos-

sible pairs that can be formed. The process can be repeated until all subsets are in one group.

Hierarchical clustering can be employed with any distance metric and needs either the num-

ber of clusters to find or a linkage distance threshold above which clusters will not be merged.

Hierarchical clustering can discover non-convex clusters. The hierarchical merging of clusters

can be visualized as a hierarchical tree, also called a dendrogram, which can prove to be useful

for understanding the structure of the data [96]. A different name for this algorithm is bottom-

up (or agglomerative) clustering. Top-down (or divisive) clustering is also possible [94] but not

regarded by this research.

DBSCAN

Density-based Spatial Clustering of Applications with Noise (DBSCAN) uses a density-based

notion of clusters, designed to discover clusters of arbitrary shapes, is efficient for large spatial

databases, can be applied in high dimensional feature spaces, and works with any distance

function [17]. DBSCAN needs two parameters to work, E ps, a measure of distance in the feature

space, and Mi nP t s, the number of points to form a dense region. It works by labelling all the

points of a dataset as core, border, or noise points. First, the algorithm labels all points as a core

point when they have at least Mi nP t s within their E ps. Then, for every core point not assigned

to a cluster, a new cluster is created for this point, and all density-connected points are added

to that cluster. Then, for each cluster sequentially, points that are close to a cluster, but not

labelled as a core point are added to the cluster but cannot be used to grow it. These points

are called border points. All remaining points are labelled as noise. These points may lie close

to clusters but are not part of the cluster as there are no core points within their E ps. While

the time complexity of the algorithm may not strictly adhere to the O(n logn) as stated in the

original paper, Schubert et al. [97] show that the time complexity is not completely unfeasible
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and conclude that DBSCAN performs comparatively compared to newer methods, given the

correct parameters are set.

HDBSCAN

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) is a clus-

tering algorithm that extends DBSCAN by converting it into a hierarchical clustering algorithm

[98]. It then extracts a flat clustering based on the stability of clusters. Unlike DBSCAN, it

supports clusters of varying densities. HDBSCAN only needs one hyperparameter to be set,

a classic smoothing factor mpt s . The HDBSCAN algorithm starts by calculating the mutual

reachability distance between all possible sets of points. The mutual reachability distance be-

tween two points is based on the core distances of these two points, defined as dcor e (Xp ) and

is the distance from object Xp to its mpt s-nearest neighbour. The mutual reachability distance

is defined as dmr each(Xp , Xq ) = max{dcor e (Xp ),dcor e (Xq ),d(Xp , Xq )}, or the maximum of the

mpt s-nearest neighbour of Xp , Xq , and the Euclidian distance between Xp and Xq . Then, the

algorithm builds a Minimum Spanning Tree (MST) connecting each data point to its nearest

neighbour in the context of these new distances. The MST is then transformed into a hier-

archical tree of connected components by progressively removing the longest edges from the

MST. This splits the graph into increasingly smaller connected components. Then, HDBSCAN

condenses the dendrogram and focuses on the most significant clusters, eliminating noise and

branches too small to be meaningful. Finally, it calculates the stability of each cluster Ci by

summing the difference between the density level at which object X j is not part of cluster Ci

and the minimum density level at which Ci exists. The algorithm then selects the most stable

clusters from the hierarchy and regards points not belonging to a stable cluster as noise. One

disadvantage of HDBSCAN is that it has a time complexity of O(n2). This is the result of a few

subprocesses that have this time complexity, like distance calculations [99]. In their improved

Accelerated HDBSCAN* implementation, McInnes and Healy solve this issue by replacing the

processes with O(n2) time complexity and achieve and O(n logn) time complexity comparable

to DBSCAN [99].

3.2.2. SUPERVISED MODELS

The supervised ML models used in this research are all decision tree based models. The ad-

vantage of decision tree based models is that they are easy to compute and capture non-linear

relations in the data [100]. The major disadvantage is that their simplicity might lead to mod-

els not capturing the complete relations. This is where ensemble methods, both bagging and

boosting, come into play.

DECISION TREE

A Decision Tree (DT) is a simple model that aligns well with humans’ decision process by cre-

ating a tree-like structure where each node represents a decision point, each branch represents

an outcome, and the final node in each branch has two leaves of which each leaf represent the

decision of the model given the conditions through which it has passed in a branch. Over the
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years, many different algorithms have been created, but generally, Classification and Regres-

sion Trees (CART) [100] is used, as it can handle both classification and regression problems.

CART recursively partitions the dataset into subsets that are as homogeneous as possible for

the target variable. The data is split at each node using criteria like Gini impurity or entropy

(log-loss) for classification and mean squared error or half Poisson deviance for regression. The

algorithm splits the data at the nodes until a stopping condition is met. This stopping condi-

tion can be the M axTr eeDepth, which is the maximum number of nodes from the root down

to the furthest leaf node, or the Mi nSampl es, which requires all leaf nodes to have at least x

samples. DTs are generally easy to understand and visualize but are prone to overfitting for

more complex datasets. Bagging is a technique that reduces the test set error by perturbing the

training set repeatedly to create multiple predictors and combining their outputs by voting or

averaging in, respectively, classification or regression contexts [101]. The DT algorithm is se-

lected as part of this research as it has been reported to perform quite well on PES data [6] and

is inherently explainable.

RANDOM FOREST

A Random Forest (RF) is a group of classifiers that consist of a collection of tree-structured clas-

sifiers, using the training set and a new independent random vector based on a distribution

introducing randomness to the classifier construction similar to the bagging mechanism de-

scribed Breiman introduced in [101], resulting in a diverse set of classifiers in the ensemble

which casts unit votes for the most popular class for the given input [102]. Breiman also pro-

poses that each classifier in the ensemble should use a set of k random features to increase

the randomness within the ensemble further, reducing the bias and variance of the ensemble.

The main hyperparameters for a RF are the NoE sti mator s, which corresponds to the number

of decision trees the ensemble is built of, and M axFeatur es, which corresponds to the maxi-

mum number of random features that each of the classifiers in the ensemble will be trained on.

We employ the RF algorithm as it has shown to perform well on PES data in previous studies

[6, 32, 37, 41, 43, 77].

XGBOOST

XGBoost is presented in [50] and is an implementation of GBDT first introduced by Friedman

[80], building forth on the idea of DT ensembles [101]. The core idea of GBDTs is to stochas-

tically optimize the loss function of a model using gradient descent. To do so, it fits a DT and

evaluates its errors. Based on the residual error, it produces another DT that decreases the

residual error further. This procedure is repeated M times. In addition, GBDT has the param-

eter Lear ni ng Rate, which implements regularization by shrinkage in the update rule of the

gradient descent, controlling the degree of error reduction in each step. A lower Lear ni ng Rate

value has empirically proven to present better results but relies on the number of iterations M .

M should be as high as computationally feasible, and Lear ni ng Rate should be adjusted to

minimize the Lack of Fit close to M . The XGBoost algorithm [50] optimizes the GBDT algo-

rithm by making it more efficient, flexible and allowing a portable implementation. This is

done by implementing justified weighted quantile sketch, which allows for approximations of
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gradients instead of calculating them precisely, saving a lot of computational resources and,

combined with the cache-aware block structure, allows for parallel computation of gradients.

Additionally, the algorithm is improved to better handle sparse data, which is frequent in ma-

chine learning applications due to the one-hot-encoding technique in which categorical values

are translated into binary features for each of the values of the feature [50]. XGBoost is proven

to be an efficient and accurate model, for which the subsampling rate and the number of fea-

tures selected during each split hyperparameters do not have to be adjusted as long as some

randomization is used [103]. We employ the XGBoost algorithm as it has shown to perform well

on PES data in previous studies [32, 37, 41, 43].

CATBOOST

CatBoost, for Catgorical Boosting, is introduced in Prokhorenkova et al. [104]. Like XGBoost

in the previous paragraph, CatBoost relies on GBDTs. The main difference is in how CatBoost

processes categorical features. Where XGBoost relies on an algorithm that improves its perfor-

mance for sparse data, like one-hot-encoded categorical features, CatBoost uses Target Statis-

tics (TS) to translate the categories into numerical values. It does so by introducing a sequence

in artificial time through a random permutation of the training examples, which allows for

ordering the TS. Thus, the name Ordered TS. This allows CatBoost to use all training data to

learn the model without any target leakage. Additionally, CatBoost combines categorical fea-

ture combinations greedily to capture high-order dependencies, which are then converted to

TS. One advantage of CatBoost is that the algorithm needs relatively view hyperparameters to

be set and automatically estimates them, reducing the need for hyperparameter tuning. The

I ter ati ons hyperparameter is the only required hyperparameter and controls the number of

boosting iterations the algorithm executes. CatBoost is proven to be the most efficient and ac-

curate boosting model currently available, while only the learning rate and the depth of the

trees’ hyperparameters have to be adjusted to get the best results [103]. The literature review

in chapter 2 uncovered a successful application of the CatBoost algorithm to predictive process

analytics, where it was chosen over XGBoost for faster computational times [59]. Although Cat-

Boost has not yet been applied in PES we believe that CatBoost is a very promising algorithm

due to its similarities with XGBoost, which has a proven track record in the field of PES.

3.3. VALIDATION OF MODELS

3.3.1. CROSS-VALIDATION

The hyperparameter tuning process of the previously described models is possibly prone to

a statistical error. To counter this error, cross-validation [105] can be used. Cross-validation

is a model validation technique that assesses how the results of a statistical analysis, like the

application of any ML model, will generalize to an independent dataset. In the context of ML

application, it is used to assess the quality of a fitted model and the stability of its parameters

[106].

The statistical error may have been introduced due to the random split in the data, resulting in
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a coincidental performance of the ML model for the defined hyperparameters, as a differently

chosen split could result in a better-performing model. This statistical error can be reduced

by introducing multiple "folds" in the dataset. A fold is one of the random partitions when

the dataset is split into k equally sized subsamples. Each fold is used as a validation set once,

while the other folds are used for training. The procedure is repeated once for every fold k as

illustrated in Figure 3.2 for k = 5, leading to the name k-fold cross-validation. Generally, we can

say that there is no statistical error, and we can thus be sure of the model quality, if the scores

are similar for each of the k folds.

Figure 3.2: The k-fold cross-validation procedure, adapted from Scikit-learn1.

3.3.2. METRICS OF VALIDATION FOR CLUSTERING MODELS

Where the supervised model evaluation metrics can all rely on the ground truth, say the given

label of a test instance, unsupervised models do not have this access to a ground truth. There-

fore, evaluation metrics for unsupervised models will generally rely on the distance between

data points within clusters and distances between clusters [107–109].

CALINSKI–HARABASZ INDEX

The Calinski–Harabasz Index (CHI) score is introduced in [108] in 1974 by the eponymous au-

thors and uses the dataset and clustering results to assess the clustering quality. It is defined

as the ratio of the between-cluster separation (BCSS) to the within-cluster dispersion (WCSS),

normalized by their degrees of freedom, see Equation 3.1. The BCSS is the weighted sum of

squared Euclidean distances between each cluster mean and the overall data mean. The WCSS

is the sum of squared Euclidean distances between the data points and their respective cluster

means. The higher the CHI score, the better the clustering result.

1https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html
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C H I =
∑k

i=1 ni∥ci −c∥2/(k −1)∑k
i=1

∑
x∈Ci

∥x−ci∥2/(n −k)
(3.1)

Where k is the number of clusters {C1, ...,Ck }, n is the number of points {x1, ...,xn}, ni the num-

ber of points in cluster Ci , ci is the mean of cluster Ci , and c is the mean of the data.

The Calinski-Harabasz Index is used to validate cluster quality in, e.g., customer segmentation

in finance [8] and retail [110].

DAVIES–BOULDIN INDEX

The Davies–Bouldin Index (DBI) is introduced in [109] in 1979 by the eponymous authors and

is the average similarity measure of each cluster with its most similar cluster. Similarity, here, is

defined as the ratio of within-cluster distances to between-cluster distances. The further apart

and less dispersed the clusters are, the better the score. The minimum and optimal DBI is zero.
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) 1
q

, and

Mi , j = ∥Ai − A j∥p

(3.2)

Where Ai is the centroid and Ti is the size of cluster Ci , q controls the root and the moment of

the data and the mean, p controls the dimension and is 2 in the case of Euclidian distance. Mi , j

is a measure of separation between two clusters.

The DBI is used to validate cluster quality in customer segmentation in, e.g., finance [8] and

retail [110].

MEAN SILHOUETTE SCORE

The Silhouette Score is introduced by Rousseeuw in [107] in 1987 and measures the similarity of

an object to its own cluster (a(i )) compared to its dissimilarity to the closest other cluster (b(i )),

as seen in Equation 3.3. It lies on [−1,1], and a higher value indicates a better match between

the object and its cluster. Generally, a score of 0.7 is considered a good fit, 0.5 is a reasonable fit,

and 0.25 is a weak fit between the object and its clusters. The Silhouette Score of all objects can

be plotted to display the relative quality of the clusters, while the Mean Silhouette Score (MSC)

evaluates clustering validity.

∀k∈C∀i∈Ck , s(i ) = b(i )−a(i )

max{a(i ),b(i )}
, wher e

a(i ) = 1

|Ck |−1

∑
j∈Ck ,i ̸= j

d(i , j ), and

b(i ) = min
m ̸=k

1

|Cm |
∑

j∈Cm

d(i , j )

(3.3)
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Where C is a set of clusters with k clusters, i and j are data points in cluster Ck , and d(i , j ) is an

arbitrary distance function between points i and j .

The MSC is commonly used to validate cluster quality in specific applications of customer seg-

mentation in finance [8] and retail [110].

3.3.3. METRICS OF VALIDATION FOR CLASSIFICATION MODELS

SENSITIVITY

In statistics and ML areas, Sensitivity, Recall or True Positive Rate (TPR) is regarded as the frac-

tion of True Positive decisions by the actual positive cases [111]. Equation 3.4 shows the formula

for Specificity.

Sensi t i vi t y = T P

T P +F N
(3.4)

SPECIFICITY

In statistics and ML areas, Specificity, or True Negative Rate (TNR), is regarded as the fraction

of True Negative decisions by the actual negative cases [111]. Equation 3.5 shows the formula

for Specificity.

Speci f i ci t y = T N

T N +F P
(3.5)

FALSE POSITIVE RATE

The False Positive Rate (FPR) can be interpreted as the probability of a false alarm and is called

a type I error in statistics [111]. The FPR is the ratio of False Positives divided by the total nega-

tives, i.e., the sum of False Positives and True Negatives, and equal to the 1 - TNR or specificity,

see Equation 3.6.

F al se Posi t i ve Rate = F P

T N +F P
(3.6)

RECEIVER OPERATING CHARACTERISTIC

The Receiver Operating Characteristic (ROC) is generally plotted as a curve between the TPR

and the FPR, sometimes called the sensitivity vs (1 - specificity) plot. By comparing the TPR and

the FPR under different threshold parameters in a binary classification, a plot can be generated

[111]. The plot informs about the tradeoff between TPR and FPR under the different threshold

parameters and compares them with a random coin flip, which is sometimes visualized as a

45deg line through the plot. For any threshold value between 0 and 1, when a point of the

curve lies under the line, the model performs worse than a random guess. All points above the

curve are considered better predictions than a random guess.
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AREA UNDER THE ROC CURVE

As a comparison between ROC curves is generally hard to do and does not allow for usage in

automated optimizations, the AUC ROC can be used to compare different ROC curves. The AUC

ROC loses the information about the thresholds which compose the ROC curve but is generally

enough to find the better performing model of the two [111].

ACCURACY

Accuracy is the fraction of the study population that is correctly classified, which is the sum of

the sensitivity and the specificity [112]. Equation 3.7 shows the formula for Accuracy.

Accur ac y = Sensi t i vi t y +Speci f i ci t y

= T P

T P +F N
+ T N

T N +F P

= No.cor r ectdeci si ons

No.cases

(3.7)

PRECISION

Precision is the fraction of relevant instances in the set of retrieved cases [112]. When translated

into the same jargon as the other metrics, this would be the ratio of True Positives amongst the

Predictied Positives (True and False Positives), seen in Equation 3.8.

Pr ecsi on = T P

T P +F P
(3.8)

F-SCORE

The F -score is a family of metrics. The goal is to create a tradeoff between precision and recall

[112]. The F1-score is generally used in ML contexts and deems precision and recall equally

important, thus creating a harmonic mean between the two. For example. the F2-score can be

used when recall is twice as important as precision. The general formula for Fβ-score is seen in

Equation 3.9. For the F1-score, β would be set to 1, which simplifies to Equation 3.10.

Fβ = (1+β2) · pr eci si on · r ecal l

(β2 ·pr eci si on)+ r ecal l
(3.9)

F1 = 2 · pr eci si on · r ecal l

pr eci si on + r ecal l

= 2 ·
T P

T P+F P · T P
T P+F N

T P
T P+F P + T P

T P+F N

= 2 · T P

2T P +F P +F N

(3.10)
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BRIER SCORE

The Brier score is a function that measures probabilistic predictions’ accuracy [113]. It essen-

tially calculates the mean squared error of the actual outcome y ∈ {0,1} and the predicted prob-

ability estimate p = Pr (y = 1), see Equation 3.11. This can theoretically be done for multiclass

classifiers, however, the scikit-learn Python package2 only allows this score to be calculated for

binary classifiers.

Br i er scor e = 1

nsamples

nsampl es∑
i=1

(yi −pi )2 (3.11)

3.4. LIME
Local Interpretable Model-agnostic Explanations (LIME) is an interpretability method capable

of explaining any classifier or regressor by learning an interpretable model around the predic-

tion that is locally faithful to the model [79]. LIME adheres to four important characteristics:

• Interpretability: LIME provides a qualitative understanding between the input variables

and the response.

• Local fidelity: the explanation must correspond to how the model behaves near the pre-

dicted instance.

• Model-agnostic: LIME should be able to explain any model and achieves this by treating

the original model as a black box.

• Global perspective: the model explanation is as important as an individual prediction.

Therefore, LIME selects a few explanations to present to the user, such that they are rep-

resentative of the model.

LIME is based on Equation 3.12. In this equation, x ∈ Rd is the original representation of an

instance being explained, and x ′ ∈ {0,1}d ′
is the binary vector for the interpretable representa-

tion of x. G is a class of potentially interpretable models, like linear models or decision trees

and can be presented visually to the user. g lies within the domain {0,1}d ′
and is a binary vec-

tor for the interpretable representation of the model. To punish models with high complexity,

Ω(g ) is included in the minimization objective and can be the number of non-zero weights in

a linear model or the depth of the generated decision tree. The explained model is denoted

as f : Rd → R, and f (x) is the probability that x belongs to a class in classification objectives.

πx (z) is a proximity measure between an instance z to x and controls the locality around x.

L ( f , g ,πx ) is a measure of the unfaithfulness of g in approximating f in the locality πx . The

formula can be used with any different explanation family G , fidelity function L , and complex-

ity measureΩ, which fulfils the model-agnostic characteristic.

2https://scikit-learn.org/stable/index.html

https://scikit-learn.org/stable/index.html


SHAP 43

ξ(x) = argmin
g∈G

L ( f , g ,πx )+Ω(g ) (3.12)

LIME uses uniform random sampling of instances for local exploration around the binary vec-

tor for the interpretable representation x ′. With this perturbed sample z ′ ∈ {0,1}d ′
, the original

representation z ∈ Rd is recovered and f (z) is obtained and used as a label for the explanation

model. With the dataset Z consisting of perturbed samples, Equation 3.12 is optimized to get

the explanation ξ(x). Objects near x get a higher weight than objects far away from x due to the

proximity measure πx (z). This allows LIME to obtain an explanation for models that are too

complex to explain globally.

The global perspective is tackled by constructing an explanation matrix W of n ×d ′, where n

is the number of explanations for a set of instances X . The number of instances to inspect is

controlled by the user and is represented by a budget B that represents the number of expla-

nations the user is willing to inspect to understand a model. The global importance I j of each

feature in the explanation space is given by I j =
√∑n

i=1 Wi j and in the case of text and tabular

data Wi j = |wgi j | can be regarded as the absolute value of the weight for feature j given expla-

nation gi . I j should be larger for features that explain more different instances. The instances

in budget B should be chosen according to a policy that minimizes redundancy in the com-

ponents shown to the user. This is formalized in Equation 3.13, which picks a set of features

based on their absolute value of feature weight for any possible set V from the set of instances

X given budget B . This results in a set of instances and their explanations that cover the most

informative explanations in the dataset based on their combined global feature importance.

Pi ck(W, I ) = argmax
V ,|V |≤B

d ′∑
j=1

1[∃i∈V :Wi j>0]I j (3.13)

LIME has not yet been applied to the context of profiling in PES, but applications in the field of

agriculture [72] and understanding uncertainty in neural networks [48].

3.5. SHAP
SHapley Additive exPlaination (SHAP), is an interpretability method that represents any expla-

nation of a model’s prediction as a model itself, called the explanation model. SHAP assigns an

importance value for a particular prediction to each feature using an interpretable approxima-

tion of the original model [78]. SHAP adheres to three desirable properties:

• Local accuracy: the explanation model matches the output of the original model for the

simplified input.

• Missingness: features missing in the original input to have no impact on, i.e., do not

contribute to, the prediction.

• Consistency: if a model is altered so that the impact of a particular simplified input either
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increases or remains unchanged, regardless of other inputs, the attribution assigned to

that input should not be reduced.

SHAP calculates all Shapley values, which together form the output of the explainability model

and is an additive feature attribution method that has an explanation model that is a linear

function of binary variables. The explanation model g is defined in Equation 3.14

g (x ′) =φ0 +
M∑

i=0
φi x ′

i (3.14)

In this equation, M is the number of features in the model f (x), x ′ is the simplified input corre-

sponding to the original input x. According to the local accuracy property, the original model

f (x) = g (x ′), and according to the missingness property, if x ′
i = 0 ⇒ φi = 0. φ0 is the so-called

base value, which is the mean output of the explainability model. Lundberg and Lee defined

a theorem which states that there is only one possible explanation model g and define φi as

Equation 3.15, which is a sum of the marginal contribution of all features when they are added

to the subset of features weighted by the number of features, accounting for the different ways

features can be added to the subset.

φi ( f , x) = ∑
z ′⊆x ′

|z ′|!(M −|z ′|−1
)
!

M !

[
fx (z ′)− fx (z ′ \ i )

]
(3.15)

Where |z ′| is the number of non-zero entries in the subset z ′ and z ′ ⊆ x ′ represents all z ′ vec-

tors where the non-zero entries are a subset of the non-zero entries in x ′. The solution to this

equation is a set of SHAP values, which is, in practice, approximated based on the model-type-

specific kernels provided by the SHAP implementation 3.

SHAP has already been applied to the context of profiling in PES by Dossche et al. [77]. In

addition, SHAP has been applied to prevent attrition among high school students [57] and em-

ployees [67].

3https://shap.readthedocs.io/en/latest/

https://shap.readthedocs.io/en/latest/
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4.1. EXPERIMENTAL SET-UP

The aim of this research is to implement an XAI application to predict LTU in the context of a

Swiss PES. Additionally, this research aims to cluster customers into uniform groups with the

goal of creating and assigning group-specific Labor Market Measure (AMM)s to the customers.

The IT environment of this PES is provided by the State Secretariat for Economic Affairs (SECO)

and is the same for all 26 cantons of Switzerland.

The SECO provides a financial administration system called ASAL in which all the data about

the paid premiums is stored. The SECO also provides a customer administration system called

AVAM in which all the data about the insured persons is stored. As both ASAL and AVAM are

old systems, they depend on structured data storage, date back to the ’70s, and are written in a

proprietary programming language. Therefore, implementing business intelligence tools into

these systems is nearly impossible. To foster the growing need for data analytics, a data intelli-

gence system called LAMDA was developed. LAMDA runs on a MicroStrategy Workstation1 en-

vironment and allows controllers to develop their own business intelligence tools by dragging

and dropping components into boxes. Each canton has its own MicroStrategy environment

and cannot access the data of any of the other cantons.

The implementation of an XAI module into the MicroStrategy environment comes with some

complications:

• LAMDA, ASAL, and AVAM are not fully connected. Instead, they rely on an Extract, Trans-

form, Load (ETL) server, which runs daily and ensures that updates to the data in each

system are transferred to the other systems exactly once a day. This also means that upon

the inscription of a new client in AVAM, it takes until the next morning for that client to

1https://www.microstrategy.com/enterprise-analytics/workstation
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appear in LAMDA and ASAL. This delay also holds in any other direction of data flow. The

ETL is capable of running Python2 up to version 3.12 and allows all pip3 packages to be

used.

• Integrating custom build ML models on the LAMDA platform is impossible, as MicroS-

trategy also provides AI as a service, which allows only for limited customizability and

comes with very high monthly fees. This challenge can be solved by integrating the pre-

dictive models in the ETL. This solution implies storing the output of the clustering and

predictive models in a database so we can access it from the LAMDA platform.

To have a flexible and future-proof design, this research will incorporate a module design simi-

lar to [57, 67] and use separate modules for the different responsibilities of the various compo-

nents. The implementation consists of four main components, visualized in Figure 4.1:

• Mapping: a JSON file4 containing all the data transformations done in the Preprocessing

step, allowing consistent feature encoding throughout the code. The end-users of the sys-

tem, controllers, can easily change the mapping without any programming experience;

• Preprocessing: a pipeline responsible for cleaning and preparing the data;

• Clustering: a class containing the logic to calculate the clusters using an unsupervised

learning model;

• Predicting: a class containing the logic for calculating the model output and explainabil-

ity.

Mapping

Data Preprocessing Clustering Predicting Output

Figure 4.1: The modular design used in this study.

Both the Predicting and Clustering modules save their calculated models to a file. They can

either be set to read their model from a file or retrained to allow for both the continuity in

results and retraining. The explainability in the predicting module is tackled by a SHAP imple-

mentation, as it is model agnostic and thus allows for flexibility in model choice. It handles

its outputs and explanations in a standardised manner, as opposed to LIME, which outputs

different rules for each local prediction, increasing the complexity of storing the output in a

structured database. All modules can be used independently and shared functions have been

programmed module agnostic and are found in a utils file.

2https://www.python.org/
3https://pypi.org/
4See Appendix A

https://www.python.org/
https://pypi.org/
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The technical implementation of the modules previously presented is a result of the non-technical

experimental framework of this study, presented in Figure 4.2. The framework consists of three

main phases and generally follows the CRISP-ML framework presented in section 3.1. The Data

Collection and Preprocessing phase in the experimental framework maps to the Data compre-

hension, cleansing, enhancement phase of the CRISP-ML framework. The Models Implementa-

tion and Models Validation phases in the experimental framework map to the Model building

and evaluation phase of the CRISP-ML framework. The first phase of the CRISP-ML frame-

work will not be discussed in this thesis, although it has been conducted. The results of this

research will be presented in chapter 5 and map to the Derive and present business insights and

Deployment and reporting phases of the CRISP-ML framework.

Data Collection and Preprocessing Models Implementation Models Validation

Data Collection

Data Cleaning

Feature Engineering

Aggregation of Data

Unsupervised Models

Supervised Models

Unsupervised Models

Supervised Models

Figure 4.2: The experimental framework of this study.

Following the CRISP-ML framework, the predictive potential has been evaluated. We have

explored solutions using regression, binary classification and multiclass classification, as the

thesis’s main problem can be solved through either of these methods. All three model types

were experimented with using the default model hyperparameters. The regression solution at-

tempted to predict the percentage of benefits taken and the days of benefits taken but for all

supervised models discussed in chapter 3 and both problems, the explained variance (R2) was

negative, meaning that the models performed worse than always predicting the mean of the

target value. The multiclass classification solution distributed the clients into one of six classes:

the percentage of benefits taken between 0-19, 20-39, 40-59, 60-79, 80-99, or at 100. A note is

that the classes were very imbalanced, with over half of the data within one of the 6 classes.

This was tackled for the RF, XGBoost, and CatBoost models by setting class weights. Still, the

F1-scores of all of the models remained far under 0.5, which is regarded as a bad-performing

model. The results for a binary classification were more positive, with some of the models’

F1-score reaching over 0.5. As the PES in question wants to distinguish people with potential

problems to return to the labour market from those who can support themselves, the prob-
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lem is fit for a binary classification model. Therefore, the rest of this thesis focuses on a binary

classification problem.

4.2. DATA COLLECTION AND PREPROCESSING

4.2.1. DATA COLLECTION

This study uses SQL queries to collect data directly from the structured SECO databases. As

a data quality improvement program started in 2021, this project uses the data from one of

the Swiss Cantons from 2022 until 2024. The data is consolidated from two main sources: the

database with the financial administration of the paid premiums (ASAL), the database with all

the information about the Job Seekers (STES)s (AVAM), including tables containing AMMs, and

sanctions. This data is then joined on the common factor, the STES-ID, to arrive at a data frame

containing 56 dimensions, generally of a categorical nature, containing more than 85,000 rows.

These rows contain many duplicates due to the multiple joins containing one to many relation-

ships. In addition to duplicates resulting from joins, the dataset also contains duplications due

to multiple values for a feature being applicable to a client. Each value is stored as a unique

row, while the rest of the data is duplicated.

4.2.2. DATA CLEANING

First, the research goal is to assign a relevant measure as early in the unemployment stage of

a client as possible. Therefore, features that only became known later in the unemployment

process are dropped, of which many came from the Sanktionen and AMM databases, both

representing measures that can be assigned to an unemployed during their process at a Re-

gional Employment Centers (RAV). As the data comes from multiple scattered databases, some

columns in the resulting data frame are exact duplicates, allowing the researcher to drop one of

them. In addition, all columns containing dates were also dropped as the research goal required

no information about time other than features already containing this information. All the fea-

tures were dropped in agreement with the person responsible at the Office of Unemployment

Insurance (AVA). At the end of the data cleaning process, 26 features were left in the dataset,

including numerical financial data that can be used to engineer multiple predictor values. The

initial SQL query was updated to reduce the data flow through the preprocessing module, speed

up the process, and prevent any errors when column names are changed.

Second, the data frame contains incomplete information. For example, the age or education

level of some clients is unknown. These clients are removed from the dataset, as imputing the

values with either the mean or the mode might introduce errors or impossible combinations of

values to the model. After completing this step, 78% of the original data is left.

Finally, all vowels with the ümlaut are replaced with their respective two-letter combination,

i.e., ü becomes ue. This is necessary as the dataset’s language is mainly German, and some

algorithms are incompatible with special characters.
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4.2.3. FEATURE ENGINEERING

One of the features that was causing duplicate rows due to multiple values being applicable to

a client was the mother tongue of a client. As Switzerland is a multilingual country, it can be

expected, and was found, that people have multiple mother tongues. More than 5000 clients

are bilingual from the final dataset, some claiming to have four mother tongues. Therefore, a

multilingual feature was created. In addition to this feature, a feature that holds information

on whether someone speaks the local language, which can be either (Swiss-)German or French

depending on the region, is engineered.

The features containing the branch the STES has worked in are stored differently for temporary

work than for more permanent work. Both have many missing values that can be combined

into one feature: the branch of the last employer. If there is a missing value in the permanent

work feature, it is imputed with the value from the temporary work feature. The values con-

tain a six-digit code; each digit has its own meaning, and there are hierarchies in the digits.

In consultation with the data expert, the first two digits were found to provide enough details

about the client’s branch of work for this project. A 0 is imputed for clients with no value for the

previous features, as it is not one of the branch codes.

Finally, the predictive feature standardizing the employment duration by calculating the paid

percentage of total days assigned was engineered as in Switzerland, people get assigned bene-

fits according to their contribution to the fund. The assigned benefits are generally one of the

following: 0 days (extremely rare), 90 days, 200 days, 260 days, 400 days, 520 days, and 640 days.

Given the large difference between these categories, we cannot define a long duration as x days

of unemployment. Standardising the benefits as a percentage of total allowance allows for a fair

comparison between groups.

4.2.4. AGGREGATION OF DATA

Data is aggregated on multiple levels. First, some features have values with only a few occur-

rences in the data frame. A good example is the feature mother tongue, which has 28 possible

values, each representing less than 2% of the total data. These values are combined into a class

called "other" according to the mapping. Second, the system codes are translated to meaning-

ful strings, utilising the mapping of feature values. Some system codes are combined in this re-

search to reduce the granularity of certain features. This was the case for the level of education

and the residential status. A higher granularity may increase the required model complexity

without improving the model performance or even lead to overfitting for groups with few data

points. Multiple system codes with the same inherent meaning are combined to prevent this.

For example, three system codes indicate that the highest level of completed education is pri-

mary education, and five system codes indicate that the client has a settlement permit. Third,

numerical values are binned for the anonymization of the data. This happens, for instance,

with age, which is binned into groups consisting of age groups of five years, starting at 16 all the

way up to 65, the retirement age in Switzerland.
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Finally, the remaining duplicate rows are aggregated according to an aggregation strategy. This

strategy is created using domain knowledge and based on the content and cause of feature du-

plication. The strategy is, thus, feature-specific. Some duplications were caused by counsellors

updating earlier mistakes or missing information in the system. The last value was chosen for

these features as updating a record produces a new row beneath the old row in the data frame.

The first value was taken for the feature ’mother tongue’, as the first answer one would give to

the question "What is your mother tongue?" is probably the preferred language and, therefore,

regarded as the main mother tongue. For binary features, the max is taken.

4.3. MODELS IMPLEMENTATION

As much of the data in this project is of a categorical nature, dimensionality is one of the biggest

issues for clustering. A subset of the available features is chosen for the clustering to reduce di-

mensionality. This subset is partially defined by running a predictive model on the data, finding

the most important features to base the clustering on, and partly on experience from industry.

All of the ordinal features are encoded using an ordinal encoder and the Gower distance is em-

ployed to calculate a matrix of pairwise distances for the clustering algorithms.

The Gower distance allows for the encoding of the ordinal data to retain the ordinal nature and

combine this with the categorical nature of the other variables [114]. In contrast, most numer-

ical clustering approaches use the more widespread Euclidian distance as the default distance

metric but allow for computation with precomputed distance matrixes. As the pairwise dis-

tance matrix needs to be recalculated upon every new batch of clients, which is an expensive

operation, a supervised machine learning model is trained on the input vectors and the result-

ing class of the unsupervised model to avoid recalculation.

All the hyperparameter tuning will be conducted using the python package Optuna5 which uses

a form of Bayesian optimization for hyperparameter tuning [115].

4.3.1. HIERARCHICAL CLUSTERING

This study employs the Scikit-learn implementation of Hierarchical Clustering [106]. As de-

scribed in chapter 3, Hierarchical Clustering needs either the Li nkag eDi st anceT hr eshol d

or the NumC luster s as hyperparameters. We optimize the linkage distance threshold in the

search space of (0, 10]. The search space follows a uniform distribution as the search is over a

continuous range, and we have no knowledge of the best value for the hyperparameter.

Other hyperparameters that will be set are the:

• Linkage, which determines which distance to use between sets of observations. In this

case, the Ward distance is chosen, as it minimises the merged clusters’ variance and per-

forms best for noisy data [106].

• Number of clusters, which must be set to None, as we’re optimizing the linkage distance

5https://optuna.org/

https://optuna.org/
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threshold.

• Metric, which must be set to precomputed, as we’re employing the Gower distance, which

needs to be precomputed as it’s not part of the Scikit-learn toolkit.

4.3.2. DBSCAN

This study employs the Scikit-learn implementation of DBSCAN [106]. As described in chap-

ter 3, DBSCAN needs two hyperparameters to be initialised: E ps and Mi nP t s. This study em-

ploys the Scikit-learn implementation of DBSCAN. The search space of E ps will be (0, 10] and

follow a uniform distribution as the search is over a continuous range, and we have no knowl-

edge of the best value for the hyperparameter, and the search space of Mi nP t s will follow a

uniform discrete distribution [2, 20].

Other hyperparameters that will be set are the:

• Metric, which should be set to precomputed, as we’re employing and precomputing the

Gower distance, which is not part of the Scikit-learn toolkit.

4.3.3. HDBSCAN

As described in chapter 3, HDBSCAN needs only the Mi nC l uster Si ze hyperparameter to be

initialised. However, as we employ the hdbscan6 python package which uses the optimized

HDBSCAN* algorithm presented by McInnes and Healy [99] compared to the Scikit-learn im-

plementation which uses the algorithm as introduced by Campello et al. [98] to increase the

computational efficiency, we can also set the hyperparameter Mi nSampl es, which controls

the clustering’s conservativeness. The search space for the Mi nSampl es hyperparameter is

set to [10, 100] and follows a uniform distribution as the search is over a continuous range,

and we have no knowledge of the best value for the hyperparameter. The search space for

Mi nC l uster Si ze is set to [50, 1000] and follows a uniform distribution as the search is over a

continuous range, and we have no knowledge of the best value for the hyperparameter.

Other hyperparameters that will be set are the:

• Metric, which should be set to precomputed, as we’re employing and precomputing the

Gower distance, which is not natively supported by the hdbscan package.

4.3.4. DECISION TREE

The Scikit-learn implementation [106] of the CART algorithm that will be used does not sup-

port categorical features, in contrast to the original algorithm [100]. Therefore, the categorical

features will have to be encoded. All ordinal features will be encoded using ordinal encoding,

preserving the ordinal nature of the feature, and all other categorical features will be one-hot

encoded.

As described in chapter 3, DT needs a stopping criteria to be set. This can either be M axTr eeDepth

6https://hdbscan.readthedocs.io/en/latest/index.html

https://hdbscan.readthedocs.io/en/latest/index.html
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or Mi nSampl es. As the dataset is quite large, it can be expected that the tree will have to be

rather deep to achieve good performance. Therefore, an optimization of the Mi nSampl es over

the uniform discrete distribution of [1, 20] will be performed as the search is over a continuous

range, and we have no knowledge of the best value for the hyperparameter. Furthermore, the

cr i ter i on will be optimized and can be either Gini impurity or entropy.

Other hyperparameters that will be set are the:

• Class weight, which will be set to bal anced to prevent the tree from being biased to-

wards predicting the majority class by adjusting weights inversely proportional to class

frequencies.

• Max depth, which controls the maximum depth of the DT and will be set to its default

value of None to allow trees of any depth.

4.3.5. RANDOM FOREST

The Scikit-learn implementation of the RF algorithm that will be used does not support cate-

gorical features. Therefore, the categorical features will have to be encoded. All ordinal features

will be encoded using ordinal encoding, preserving the ordinal nature of the feature, and all

other categorical features will be one-hot encoded.

As a RF is essentially an ensemble of many DTs, the RF implementation also has access to

the hyperparameters of the underlying DTs. Therefore, in addition to the hyperparameters

mentioned in chapter 3, many more hyperparameters can be set.

The hyperparameters Mi nSampl esSpl i t and Mi nSampl esLea f control, respectively, the

number of samples required to split an internal node and the number of samples required to be

at a leaf node. Both hyperparameters are used to control and prevent overfitting of the model

and will be tested on the uniform discrete distribution of [1, 10].

Other hyperparameters that will be set are the:

• NoEstimator, which controls the number of trees and will be set to 100, its default value.

Higher values than 100 generally do not massively improve the predictive performance.

• MaxFeature, which controls the number of features that will be considered for each of

the individual trees in the ensemble. Generally, the square root of the total number of

features performs best in classification problems [106]. Thus, this hyperparameter will

be set to sqr t .

• Criterion, which will be set to the best-performing value from the previous DT hyperpa-

rameter tuning.

• Class weight, which will be set to bal anced to prevent the tree from being biased to-

wards predicting the majority class by adjusting weights inversely proportional to class

frequencies.
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• Max depth, which controls the maximum depth of the DTs and will be set to its default

value of None to allow trees of any depth.

4.3.6. XGBOOST

The implementation of the XGBoost algorithm7 does not support categorical data. It is, how-

ever, optimized to handle one-hot encoded features, so all input features will be one-hot en-

coded.

As mentioned in chapter 3, the Lear ni ng Rate is the main hyperparameter of XGBoost and is

used to prevent overfitting. It makes the model more robust by shrinking the weights on each

step. The learning rate will be optimized on the interval [0.00001, 0.1] using a logarithmic scale.

Other hyperparameters that will be set are the:

• NoIterations, which controls the number of boosting rounds and will be set to 100, its

default value. This will create a total of 100 boosted trees and create a model comparable

complex as the RF.

• Max depth, which controls the maximum depth of the DTs and will be set to its default

value of 6.

4.3.7. CATBOOST

Employing a CatBoost algorithm has two main advantages. The first is that it can work with cat-

egorical features out of the box and thus requires no further encoding. The second advantage

is that it requires no hyperparameter tuning, as this is done automatically. The most impor-

tant hyperparameter, the learning rate, is estimated based on the characteristics of the data.

Therefore, we do not need to optimize this during the model selection stage. The M axDepth

parameter is optimized on the interval [4, 10] using a uniform discrete distribution.

One hyperparameter that will be set to control the complexity of the algorithm is:

• NoIterations controls the number of boosting rounds and will be set to 100. This will

create a total of 100 boosted trees and create a model comparable complex as the RF.

4.4. MODELS VALIDATION

4.4.1. UNSUPERVISED ML MODELS

The different clustering approaches are visually inspected using Multidimensional Scaling (MDS)

to reduce the multiple dimensions to two dimensions and plot the data points and the clusters

they are assigned to. In addition to the visual inspection, the clusters are evaluated based on

the CHI, the DBI, and the MSC described in chapter 3. The computational comparisons are

made using the pairwise distance matrix containing the Gower distances for all data points.

The scores of the multiple validation metrics are compared over the multiple clustering meth-

7https://xgboost.readthedocs.io/en/stable/python/index.html

https://xgboost.readthedocs.io/en/stable/python/index.html
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ods, as each of the metrics will likely lead to different hyperparameters for each of the models,

leading to a different allocation of clusters. The similarity between the defined clusters is cal-

culated for the different optimization metrics given each model and the different models given

each optimisation metric. In addition, the individual clusters and their corresponding contents

are explored and described for the best-performing clustering model.

4.4.2. SUPERVISED ML MODELS

The different supervised ML models are evaluated using the performance metrics presented in

chapter 3. As the dataset is strongly imbalanced, the F1-score is the metric of most importance

as it gives a fair representation of the model’s performance despite class imbalance by consider-

ing both precision and recall. Cross-validation is employed to test the model’s generalizability

to an unknown dataset and detect overfitting. We employed five-fold stratified cross-validation

on all models during hyperparameter tuning to allow a fair comparison between the different

models. We use stratified cross-validation to ensure that both the positive and the negative

classes are approximately represented according to the distribution of the complete dataset.

A sensitivity analysis is performed on the model output decision threshold. This threshold does

not affect the model itself but when its output probabilities are transformed into positive or

negative decisions. The threshold initially lies at 0.5, and thresholds on [0.40, 0.60] are tested

and evaluated using the f1-score. The best-performing threshold is used for further experi-

ments. Additionally, a sensitivity analysis is be conducted on the threshold of where to split

the classes, i.e., the binary cutoff point for the percentage of benefits taken. We test thresholds

between 10 and 90 with steps of 5, leading to 18 experiments evaluated on the aforementioned

metrics. The binary cutoff point with the highest metric is used for further experiments.

Finally, this work adapts the calculated feature importance procedure evaluation from [57, 59,

67] as presented in subsection 2.4.2. This procedure generally consists of analysing the feature

importance, or in this case, the SHAP values, for a set of selected instances and assessing the

feature contributions with an expert to understand how accurate the explanation model is at

distinguishing important features and feature interactions. This also allows for discovering cur-

rently uncovered relations between certain features at different aggregation levels [57, 67] or to

evaluate the extent to which the evaluation method correctly identifies current organizational

policies that might be present in the dataset [59, 67].



5
RESULTS AND DISCUSSION

5.1. EXPLORATORY DATA ANALYSIS

Understanding the input data for the ML models described in the previous chapters is impor-

tant before examining their results. The dataset used in this research contained 84307 unique

rows, many of which were duplicates. The original dataset contains 17103 unique STES-ids,

and the many duplications are the result of multiple internal joins. The output of the prepro-

cessing is a dataset with 17103 rows and 21 features. During preprocessing, the number of rows

in the dataset is reduced by a factor of nearly five. Of the 21 features, one is the unique STES-id,

fifteen are categorical features of the individual, one is the engineered predictive value of the

percentage of benefits used, two are the numerical values used to create the predictive value,

and the final two are created as part of the feature engineering and are both of a binary nature.

The dataset contains 29 individuals with a percentage of benefits used greater than 100%. These

29 individuals are the subjects of individual arrangements. They are removed from the dataset

so as not to confuse the predictive models later on, resulting in a dataset of 17074 rows. The

remaining distribution of the percentage of benefits used can be found in Figure 5.1. The graph

follows a Pareto distribution, with a sharp spike at the maximum. The distribution is as ex-

pected by the experts of the PES, with the exception of the sharp spike at the maximum. This

sharp spike indicates that there are many people who fully exhaust their benefits. As men-

tioned in chapter 1, one of the goals of this project in the PES is to detect these people and

create strategies to avoid this behaviour and ensure a rapid reintegration in society.

As previously mentioned in chapter 4, this study predicts unemployment according to a bi-

nary classification objective. To get to a binary predictive value, the percentage needs to be

binarized, which is done with a threshold. In consultation with the experts at the PES, this

threshold has initially been set at 40%. As the mean allowance is 342 working days, 40% of that

is 137 working days, or over half a year of unemployment, which is generally regarded as LTU

55
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Figure 5.1: The distribution of the engineered predictive value.

across Europe1. The usage of a percentage allows for comparison across different degrees of

allowances. The threshold will be optimized in a later stage, which is discussed in section 5.3.

The initial distribution of the binary predictive value can be found in Figure 5.2. The Under

40%, or negative, class contains 12921 individuals, while the Over 40%, or positive, class con-

tains a mere 4153 individuals. This means that 75.6% of individuals belong to the negative class,

and only 24.4% of individuals belong to the positive class, indicating a strong imbalance in the

dataset.

Figure 5.2: The binary distribution of the engineered predictive value with threshold 40%.

The assignment of the individuals into binary classes allows for an analysis of the distribution

of the predictive value over the distributions of the input features. This is done for all input

features except the last job and branche of the last employer, given the high cardinality of these

categories. The analysis can be found in Figure 5.3 and Figure 5.4. We expect all of the input

features to be distributed according to the 1 : 3 ratio, as also seen in the binary predictive value.

1See subsection 2.3.1
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Any deviations from this might indicate a relationship between a feature and a lower or higher

percentage of benefits used and will be reported below. As the dataset is in German, the transla-

tion of the feature name will be provided, followed by the name in the graph between brackets.

Features of an increased interest due to a skewed distribution of the predictive value are:

• Qualification (qualifikation_id): The learned value (gelernt) has slightly more individu-

als than expected for the Under 40% class. This might indicate that people who retrieved

a professional qualification may find a job relatively easier than people who did not. The

other values follow the distribution of the binary predictive value.

• Professional Qualification (berufs_abschluss_id): The feature none (keiner) indicates

that people did not receive a professional qualification. This value has a higher than

expected number of individuals in the Over 40% class, which is in line with the findings

for the feature Qualification.

• Job Function (berufs_funktion_id): People with a management function (Kaderfunk-

tion) are relatively less likely to use more than 40% of their benefits. In contrast, people

with an apprentice function (Lehrling) are relatively more likely to use more than 40% of

their benefits.

• Mothertongue (sprache_id): Swiss German-speaking (CH-Deutsch) people are some-

what less likely to use more than 40% of their benefits in comparison with the average.

People speaking French or Albanian (Franzosich or Albanisch) are relatively more likely

to use more than 40% of their benefits.

• Region (bezirksnummer): People in the regions Biel/Bienne, Interlaken-Oberhasli, Frutigen-

Niedersimmental, and Obersimmental-Saanen are relatively more likely to use less than

40% of their benefits. People in the regions Emmental, and Jura Bernois are relatively

more likely to use more than 40% of their benefits. This might indicate the existence of

regional economic differences.

• Offical Language (amt_sprache): People who speak the official language of their region

(1) are less likely to use more than 40% of their benefits compared to people who do not

speak it (0).

• Level of Education (ausbildungs_niveau_id): People who finished their higher educa-

tion, either professional or academic, are relatively less likely to use more than 40% of

their benefits.

• Age Category (ao_alter): People aged between 16 and 20 are slightly more likely to use

more than 40% of their benefits. The age category 21 to 25 is the category for which

people are most likely to use more than 40% of their benefits. The category after this, 26-

30, is less likely to use more than 40% of their benefits. People aged between 51 and 55

are the least likely to use more than 40% of their benefits. After 61, so nearing the Swiss

pension age of 65, people are more likely to use more than 40% of their benefits.
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Figure 5.3: The distribution of input features over the binary predictive value.
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Figure 5.4: The distribution of input features over the binary predictive value (continued).
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• Experience (berufs_erfahrung_id): People with more than three years of experience

(mehr als 3 Jahre) and people with no job experience (keine erfahrung) are slightly less

likely to use more than 40% of their benefits, while people with 1-3 years of experience (1

- 3 Jahre) are more likely to use more than 40% of their benefits.

• Registration Type (anmeldungsart_id): People who register for the first time (Erstanmel-

dung) at the PES are relatively less likely to use more than 40% of their benefits. People

with subsequent registrations within half a year (Wiederanmelding innerhalb 6 Monate)

are more likely to use more than 40% of their benefits.

• Disability Rate (iv_code_id): People who have a disability rate fewer than 70% (IV-Grad

less than 70%) are relatively more likely to use more than 40% of their benefits.

A chi-square goodness of fit test [116] has been performed over all possible feature combina-

tions. The null hypothesis is that for each feature pair, the values of the first feature are inde-

pendent of the values of the second feature. Assuming independence between the features, we

would expect all values for the first feature to have an equal number of values for the second

feature. The p-value of the chi-square test indicates if the value of the chi-square test statistic

is large enough respective to the sample size and properties to reject the null hypothesis. To re-

ject the null hypothesis, the p-value should be lower than the significance level, 5% in this case.

If the p-value is lower than 5%, the null hypothesis is rejected, and the values of the first and

second features are not independent, showing a correlation in the data. The correlation ma-

trix in Figure 5.5 shows that most features are correlated. Therefore, we can select a subset of

the features, which reduces the dimensionality of the clustering without excessive information

loss.

The corresponding p-values of the chi-square tests are reported in Figure 5.5. It can be seen

that most features are correlated with one another. Feature combinations without a statistical

correlation are:

• Job Function (berufs_funktion_id) and Degree of Disability (iv_code_id),

• Bilingual (zweisprachig) and Employability Rate (vermittlungs_grad), and

• Experience (berufs_erfahrung_id) and Mobility (mobilitaet_id).

5.2. UNSUPERVISED MODELS RESULTS

As discussed in chapter 4, the Hierarchical Clustering, DBSCAN, and HDBSCAN unsupervised

ML models are optimized with Optuna2. The results of the optimizations according to the hy-

perparameter search spaces also defined in chapter 4 are presented in Table 5.2. Additionally,

the resulting clusters are visualized in two dimensions using MDS in Figure 5.6 and the distri-

bution of the binary predictive value over the defined clusters is presented in Figure 5.7.

The results of the optimizations with respect to the three different metrics, CHI, DBI, and MSC,

2See footnote section 5
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Figure 5.5: The correlation matrix of the input and target values.

are all in favour of the Hierarchical Clustering which has the highest score for CHI and MSC, and

the lowest score for DBI. The DBSCAN came in at second place for all three metrics, while the

HDBSCAN scored poorest on all three metrics. Although HDBSCAN is designed for applications

on datasets with higher dimensions, it performed less than expected. This may have to do with

the high correlations between many of the features.

Table 5.1: The results of the unsupervised learning optimization

Algorithm Metric Score Parameters # Clusters

Hierarchical Clustering
CHI 5.76E +++21 Li nkag eDi st anceT hr eshold : 2.238 767
DBI 9.76E −−−06 Li nkag eDi st anceT hr eshold : 8.923 223
MSC 0.992 Li nkag eDi st anceT hr eshold : 2.364 767

DBSCAN
CHI 4.14E +4 E ps : 6.448, Mi nP t s : 3 68
DBI 0.524 E ps : 1.140, Mi nP t s : 14 263
MSC 0.985 E ps : 1.464, Mi nP t s : 14 263

HDBSCAN
CHI 1.34E +4 Mi nC l uster Si ze : 541, Mi nSampl es : 81 16
DBI 0.598 Mi nC l uster Si ze : 423, Mi nSampl es : 24 19
MSC 0.474 Mi nC l uster Si ze : 763, Mi nSampl es : 35 9
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A visual inspection of the clustering results using Figure 5.6 shows that Hierarchical Clustering

produces visually dispersed clusters, which is expected with the high number of clusters for all

three metrics. The DBSCAN clustering approach produces many outliers for the DBI and MSC

metrics while producing many clusters. The optimal solution for DBSCAN algorithm for the

CHI metric and the solutions for the HDBSCAN algorithm produce well-ordered clusters. The

optimal parameters for the HDBSCAN algorithm using the MSC metric only produce 9 clusters,

which causes the whole bottom left part of the data to be considered as one cluster.

Figure 5.6: The clustering results of the different optimized unsupervised models.

Figure 5.7 shows the distribution of the binary predictive value over the clustering results of

the different models, optimized towards different metrics. As the two top rows are hard to anl-

yse due to the high amount of clusters, we will focus on the bottom row, presenting the HDB-

SCAN algorithm. The figure shows that some of the clusters, like, for instance, cluster 11 of the
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HDBSCAN DBI or cluster 0 of the HDBSCAN MSC solutions, contain a higher proportion of

instances of a benefits usage over 40%. Other clusters, like cluster 16 of the HDBSCAN CHI or

cluster 18 of the HDBSCAN DBI solutions, contain a lower proportion of instances of benefits

usage over 40%. This shows that the clustering can partially identify potentially problematic

customer groups from those less likely to deplete their benefits.

Figure 5.7: The distribution of the binary predictive value over the clustering results of the different optimized un-
supervised models.

Remarkable is that the optimizations for the Hierarchical Clustering and DBSCAN presented

different hyperparameters for all three metrics, but two of their results remained stable, pro-

ducing respectively 767 and 263 clusters. The optimal parameters lie closely together for these

cases, even though a different metric has been used. For the Hierarchical Clustering, the met-

rics CHI and MSC produce similar parameters and results, while for the DBSCAN the metrics

DBI and MSC produce similar results. The optimization for the DBI metric for the Hierarchical

Clustering produces a mere 223 clusters, as opposed to the 767 clusters that were result of the

optimizations of the other metrics, and the optimization of the CHI metric resulted in 68 clus-

ters in comparison with 263 clusters for the optimizations of the other metrics for the DBSCAN
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algorithm. The optimizations for the HDBSCAN returned very different parameter sets for all

three metrics.

However, as the PES is planning on using the results of the unsupervised ML models as an input

of their initial response to the inscription of a recently unemployed, including presenting the

counsellor with a set of possible metrics, it is practically undesirable to have over 20 clusters as

the increasing complexity of the output cannot be grasped by humans. The complexity of the

cluster output may be reduced by reducing the complexity of the input. In this case, the dimen-

sionality of the clustering input could be reduced, as currently, the clustering is performed on

all seventeen input features. Reducing the dimensionality of the clustering could potentially

reduce the number of clusters defined by the different model configurations.

In consultation with the person responsible at the PES and with the variables causing a skewed

distribution of the predictive value in mind as discussed in section 5.1, the features Registration

Type (anmeldungsart_id), Age Category (ao_alter), Experience (berufs_erfahrung_id), Level of

Education (ausbildungs_niveau_id), and Official Language (amt_sprache) are chosen as clus-

tering features.

The results of the optimizations in a reduced dimensionality according to the hyperparameter

search spaces also defined in chapter 4 are presented in Table 5.2. Additionally, the resulting

clusters are visualized in two dimensions using MDS in Figure 5.8 and the distribution of the

binary predictive value over the defined clusters is presented in Figure 5.9.

Looking strictly at the metrics presented in Table 5.2, the Hierarchical Clustering approach out-

performed the two more recently developed density-based approaches in all three cases. The

optimization of the density-based approaches resulted in an equal result for the CHI metric,

but DBSCAN outperformed HDBSCAN on the other two metrics. The optimizations for the

Hierarchical Clustering presented different hyperparameters for all three metrics, but their re-

sults remained stable, producing 767 clusters. The three optimizations for the DBSCAN model

retrieved different hyperparameters and results, ranging from two to 625 clusters. The three

different optimizations for the HDBSCAN model retrieved two completely identical solutions,

of which the results align with the DBSCAN optimization using CHI as a metric. The HDBSCAN

models resulted in either two or 33 clusters.

Table 5.2: The results of the unsupervised learning optimization

Algorithm Metric Score Parameters # Clusters

Hierarchical Clustering
CHI 7.58E +++21 Li nkag eDi st anceT hr eshold : 2.555 767
DBI 9.80E −−−06 Li nkag eDi st anceT hr eshold : 1.208 767
MSC 0.992 Li nkag eDi st anceT hr eshold : 0.098 767

DBSCAN
CHI 4.14E +4 E ps : 9.899, Mi nP t s : 2 2
DBI 0.909 E ps : 2.755, Mi nP t s : 10 322
MSC 0.985 E ps : 1.582, Mi nP t s : 2 625

HDBSCAN
CHI 4.14E +4 Mi nC l uster Si ze : 954, Mi nSampl es : 98 2
DBI 1.059 Mi nC l uster Si ze : 202, Mi nSampl es : 67 33
MSC 0.580 Mi nC l uster Si ze : 954, Mi nSampl es : 98 2
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Visually inspecting the clustering results presented in Figure 5.8 shows that Hierarchical Clus-

tering produces visually dispersed clusters, which is expected with the high number of clusters

for all three metrics. The DBSCAN clustering approach produces relatively fewer outliers for the

DBI and MSC metrics compared to the higher dimension clustering presented in Figure 5.6. It

does, however, still produce many clusters. The DBSCAN solution for the CHI metric and the

HDBSCAN solutions for the CHI and MSC metrics produce the same solution, clearly splitting

the data through the centre and producing two clusters. The optimal parameters for the HDB-

SCAN algorithm using the DBI metric produce 33 clusters with many outliers.

Figure 5.8: The clustering results of the different optimized unsupervised models.

Figure 5.9 shows the distribution of the binary predictive value over the clustering results of the

different models, optimized towards different metrics. The instances that produce two clusters

do not clearly distinguish between high or low benefits usage. Additionally, the HDBSCAN op-
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timization of the DBI metric does not provide clusters with a distinction between high or low

benefits usage as clear as the same optimization in the higher dimension solution presented in

Figure 5.7. This hints that some information was lost, resulting in a less informative clustering

solution.

Figure 5.9: The distribution of the binary predictive value over the clustering results of the different optimized un-
supervised models.

To conclude, the optimizations towards different metrics result in different parameters and

clustering results over the three clustering models in both dimensionalities. Reducing the di-

mensionality did not necessarily lead to better clustering. The only model/metric combina-

tion for which the dimensionality reduction improves the clustering performance is the HDB-

SCAN MSC combination. The higher dimensionality counterpart produces an equal or better

score for all other combinations. Therefore, we can conclude that there is no benefit in re-

ducing the dimensions to just the features Registration Type (anmeldungsart_id), Age Category

(ao_alter), Experience (berufs_erfahrung_id), Level of Education (ausbildungs_niveau_id), and

Official Language (amt_sprache). Additionally, we found that solutions with many smaller clus-

ters perform better in the scoring compared to a few larger clusters. This is not ideal for the
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intended use case of the PES.

Moving forward, the original higher dimension HDBSCAN implementation using the parame-

ters obtained from the optimization of the DBI is, in consultancy with the experts of the PES,

chosen as the most informative model for policy creation. The complexity of the clustering so-

lution is high enough to make informed decisions about specific groups but not so high that

the groups are too specific, making human decision-making impossible. In addition, this solu-

tion shows clear differences in the predictive value between clusters of similar sizes while only

disregarding a limited number of outliers.

The goal of the clustering is to distinguish different groups of people from one another, also re-

ferred to as profiling across literature. The cluster distributions across the feature values can be

seen in Figure 5.10 and Figure 5.11. The several clustering profiles are summarised in Table 5.2.

Due to space limitations, only three clusters will be considered in detail, starting with cluster 5.

Cluster 5 mainly contains unemployed Swiss nationals between 51 and 65 with more than three

years of experience speaking at least two languages of either CH-German, German, or French,

including the official local language of their region, without relevant professional education

who have learned on the job, generally in specialist and auxiliary functions.

Cluster 7 mainly contains unemployed Swiss nationals between 31 and 65 with more than three

years of experience speaking either CH-German, German, or French, which is the official local

language of their region, with relevant Swiss higher education, generally in specialist and man-

agement functions, who have all reapplied to the PES within six months.

Cluster 16 mainly contains unemployed Swiss or foreign nationals between 16 and 65 with more

than three years of experience speaking either either CH-German, German, or French, which is

the official local language of their region, with relevant Swiss higher or professional education,

generally in specialist functions, who have all reapplied to the PES within six months.

There are some slight differences between these clusters that can be relevant for finding a policy

that works for the targeted individual, but this information is contained in a number rather

than a textual description, allowing an easy mapping between target groups and policies. A

difference between clusters 5 and clusters 7 and 16 is, for instance, that clusters 7 and 16 solely

contain unemployed who are reapplying. One will reapply to the PES if they have lost their

job, meaning that the people in these clusters are, according to some definitions seen across

literature, LTU, requiring a different approach than people who apply to the PES for the first

time. In addition, cluster 5 comprises people approaching the legal pension age. Finding a

job is generally harder for them and requires a different approach than for someone who just

finished their education.
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Figure 5.10: The distribution of input features over the clusters.
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Figure 5.11: The distribution of input features over the clusters (continued).
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Table 5.3: The profiles of the different clusters.

Cluster qualifikation_id berufs_abschluss_id berufs_function_id aufenthalt_status_id sprache_id zweisprachig

0 Relevant education Swiss or foreign professional education Specialists A, B, C French, other foreign languages False
1 Relevant education Swiss or foreign professional education Specialists A, B, C French, other foreign language False
2 Relevant education Swiss professional education Specialists A, C CH-German, German, French True, False
3 No relevant education / learned on the job No professional education Specialists and auxiliaries A, C CH-German, German, French True, False
4 No relevant education / learned on the job No professional education Auxiliaries and apprentices A CH-German, German, French True, False
5 No relevant education / learned on the job No professional education Specialists and auxiliaries A CH-German, German, French True
6 Relevant education Swiss or foreign professional education Specialists A, C CH-German, German, French True, False
7 Relevant education Swiss professional education Specialists and managers A CH-German, German, French False
8 No relevant education / learned on the job No professional education Specialists and auxiliaries A CH-German, German, French False
9 No relevant education / learned on the job No professional education Auxiliaries A CH-German, German, French False

10 No relevant education / learned on the job No professional education Auxiliaries B, C French, other foreign language False
11 No relevant education / learned on the job No professional education Auxiliaries B, C, L French, other foreign language False
12 No relevant education / learned on the job No professional education Specialists and auxiliaries A, B, C, L French, other foreign language False
13 No relevant education / learned on the job No professional education Auxiliaries B, C, L French, other foreign language False
14 No relevant education / learned on the job No professional education Auxiliaries B, C, L French, other foreign language False
15 Relevant education Swiss professional education Specialists A, B CH-German, German, French True, False
16 Relevant education Swiss professional education Specialists A, B CH-German, German, French True, False
17 Relevant education Swiss professional education Specialists A, B CH-German, German, French True, False
18 Relevant education Swiss professional education Specialists and managers A, B CH-German, German, French True, False

Cluster amt_sprache ausbildungs_niveau_id ao_alter berufs_erfahrung_id anmeldungsart_id

0 False Sek. II, high. prof. educ., high. academic educ. 26 - 45 None, less than a year, 1 to 3 years, more than 3 years Reapplication after 6 months
1 False Sek. II, high. prof. educ., high. academic educ. 16 - 25 None, less than a year, 1 to 3 years, more than 3 years Initial registration, reapplication within 6 months
2 True Sek. II, high. prof. educ., high. academic educ. 21 - 35 None, less than a year, 1 to 3 years Reapplication after 6 months
3 True Sek. I 31 - 65 More than 3 years Reapplication after 6 months
4 True Sek. I 16 - 30 None, less than a year, 1 to 3 years Initial registration, reapplication within 6 months
5 True Sek. I 51 - 65 More than 3 years Initial registration, reapplication within 6 months
6 True Sek. II 21 - 35 More than 3 years Reapplication after 6 months
7 True high. prof. educ., high. academic educ. 31 - 65 More than 3 years Reapplication after 6 months
8 True Sek. I 21 - 60 1 to 3 years Reapplication after 6 months
9 True Sek. I 21 - 60 None, less than a year Reapplication after 6 months

10 False Sek. I 16 - 60 None, less than a year, 1 to 3 years Initial registration, reapplication within 6 months
11 False Sek. I 21 - 60 None, less than a year, 1 to 3 years Reapplication after 6 months
12 False Sek. I 26 - 65 More than 3 years Reapplication after 6 months
13 False Sek. I 26 - 65 More than 3 years Reapplication within 6 months
14 False Sek. I 26 - 65 More than 3 years Initial registration
15 True Sek. II, high. prof. educ., high. academic educ. 26 - 50 None, less than a year, 1 to 3 years Initial registration, reapplication within 6 months
16 True Sek. II, high. prof. educ., high. academic educ. 16 - 65 More than 3 years Reapplication within 6 months
17 True Sek. II 16 - 65 More than 3 years Initial registration, reapplication within 6 months
18 True high. prof. educ., high. academic educ. 26 - 65 More than 3 years Initial registration, reapplication within 6 months
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As the Gower distance matrix will have to be recalculated for every new inscription, and this is

a rather expensive operation, a CatBoost supervised ML model will be trained on the clustering

output. This model will be stored and queried upon new inscriptions. In addition, this also

solves the issue that an unsupervised ML model may, over time, change its clustering output

as new inscriptions may change the underlying densities. In this application, where a cluster

corresponds to a clearly defined profile based on which measures are selected, this would be

unacceptable and solving the issue would be labour-intensive. The clusters should, however,

still be periodically reevaluated to prevent creep. It should be manually ensured that cluster-

specific policies still are still valid for the calculated clusters.

The performance of the predictive model is evaluated using cross-validation over four-folds to

ensure that the predictive model gets enough data points for each cluster to predict the cluster

accurately. The cross-validation results can be found in Figure 5.12. In the four folds, respec-

tively, 39, 41, 33, and 36 labels of the 4269 labelled individuals were wrongly predicted, resulting

in an accumulated accuracy of 99.7%. All of these mispredictions were mistakes between the

outlier cluster and any other cluster, showing that the predictive model has trouble with cor-

rectly predicting whether an instance belongs to any cluster or to the outliers. This can be

caused by the sixteen-dimensional clustering and the difference between the handling of sim-

ilar entries of the two different models. When the HDBSCAN model is not certain of a cluster,

the individual is marked as an outlier, while the predictive model would return the most prob-

able cluster with lower certainty. When an individual is more similar to individuals from any

cluster than to the rest of the outliers, the CatBoost model will thus label this individual to be

part of a cluster, while the difference, and thus distance to a dense area, may be large enough

for the HDBSCAN model to assign this individual to the outlier class.

5.3. SUPERVISED MODELS

As discussed in chapter 4, the DT, RF, XGBoost and CatBoost supervised binary classification

ML models are optimized with Optuna3. The results of the optimizations according to the hy-

perparameter search spaces also defined in chapter 4 are presented in Table 5.3. Additionally,

the resulting confusion matrixes are visualized in Figure 5.13. To ensure the imbalance of the

dataset is considered by the algorithms, the micro setting for the average parameter of the AUC

ROC and F1-score metric is used.

Looking strictly at metrics, the CatBoost model scores best on AUC ROC, accuracy and the Brier

score. The RF model scores best on the F1-score, followed by the DT, XGBoost, and CatBoost

models respectively in second, third and fourth place. The XGBoost model has a slightly lower

accuracy and Brier score than the CatBoost model and comes in at third place for AUC ROC. The

performances of the optimized boosting algorithms are very similar, except for the AUC ROC

score of the XGBoost model, which is significantly lower. The RF model scores second place for

AUC ROC and third for accuracy and brier score. As expected, the only weak learning algorithm

3See footnote section 5
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Figure 5.12: The cross-validation confusion matrices of the predictive clustering model.

used in this study scores lowest on all but one metric and is outperformed by the strong learn-

ers. The simple DT model comes in at fourth place for AUC ROC, accuracy, and Brier score.

Surprisingly, the four F1-scores are quite similar and rather low, which can be further explained

by examining the confusion matrices.

Table 5.5: The results of the supervised learning optimization. The best performance for each metric is shown in
bold.

Algorithm Metric Score Parameters

DT

AUC ROC 0.564 Mi nSampl esSpl i t : 16,Cr i ter i on : g i ni
Accuracy 0.607 Mi nSampl esSpl i t : 15,Cr i ter i on : g i ni
F1-score 0.532 Mi nSampl esSpl i t : 13,Cr i ter i on : g i ni
Brier score 0.333 Mi nSampl esSpl i t : 7,Cr i ter i on : entr opy

RF

AUC ROC 0.628 Mi nSampl esSpl i t : 6, Mi nSampl esLea f : 2
Accuracy 0.655 Mi nSampl esSpl i t : 4, Mi nSampl esLea f : 2
F1-score 0.546 Mi nSampl esSpl i t : 9, Mi nSampl esLea f : 10
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Brier score 0.217 Mi nSampl esSpl i t : 4, Mi nSampl esLea f : 2

XGBoost

AUC ROC 0.586 Lear ni ng Rate : 6.25E −5
Accuracy 0.746 Lear ni ng Rate : 0.001
F1-score 0.471 Lear ni ng Rate : 0.094
Brier score 0.182 Lear ni ng Rate : 0.020

CatBoost

AUC ROC 0.640 Depth : 6
Accuracy 0.749 Depth : 6
F1-score 0.456 Depth : 7
Brier score 0.179 Depth : 4

The confusion matrices of the sixteen different optimized models are seen in Figure 5.13. A

confusion matrix allows one to better understand the effect of the parameters on the models

and performance metrics, while the metrics allow for an easier comparison between different

models. In addition, it can help with making the trade-off between false positives and false neg-

atives. In this context, a false negative represents an individual that will be LTU but is not pre-

dicted as such, and a false positive represents an individual that will not be LTU but is predicted

as such. As the goal of the PES is to help every individual as best as possible, false positives are

preferred over false negatives.

From these confusion matrices, we can conclude that decreasing the Mi nSampl esSpl i t pa-

rameter of the DT models decreases the number of false negatives, shifting slightly towards

more false positives. The same happens for the Mi nSampl esLea f of the RF models. De-

creasing this parameter again decreases the number of false negatives, shifting slightly towards

more false positives and, generally, a more accurate classifier. For the boosting algorithms, we

see similar patterns. If the Lear ni ng Rate of the XGBoost models is increased, the predictions

shift more towards predicting the false class, decreasing the predicted positives. For the Cat-

Boost models, we see that lowering the depth of the models shifts more predictions towards

predicting the false class, decreasing the predicted positives, but this effect is minor.

Generally, all optimizations for the same model produce similar confusion matrices. Optimiz-

ing towards the brier score for the DT and RF models produces slightly more balanced clas-

sifiers, with classifier errors more divided over the two classes. The boosting models produce

quite similar results and learn to classify all individuals in the negative class, which apparently

produces better results than dividing the individuals over the classes. All models can be cali-

brated quite simply by changing the binary classification threshold. This will be discussed in

more detail in the following paragraphs.

Following Bach et al. [32], the similarity matrix in Figure 5.14 has been created by comparing

all the binary predictions of the different models with one another. A general pattern is that

models optimized towards a different metric in the same model family return similar models.

The DT optimized towards the Brier score and the RF model optimized towards F1-score are

exemptions to this general rule. The two boosting algorithms predict almost identically, with

similarities higher than 96%.
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Figure 5.13: The confusion matrices of the different optimized supervised models.

From purely looking at the metrics, the CatBoost model is the clear winner of the comparison.

However, when also consulting the confusion matrices, the boosting algorithms produce situ-

ations in which most customers would be predicted to be in the negative class or below 40%

of benefits usage. In reality, this is not a very helpful result, but we may be able to increase the

accuracy and F1 score by doing some further tuning of the decision threshold. In the confusion

matrices, the RF produces promising results, which the same tuning may further improve. The

rest of this chapter will proceed with the CatBoost and RF models with their optimized hyper-

parameters for the F1-metric, as this is the most balanced performance metric for unbalanced

datasets available.

The optimum binary decision threshold is found with a visual inspection of the accuracy and

f1-score for each possible threshold on the interval [0,1]. This is visualized in Figure 5.15. The

minimum and maximum values for the accuracy are equal for both models. The minimum lies
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Figure 5.14: The similarity of prediction of the different optimized supervised models.

at 0.245, and the maximum at 0.755. For the F1-score, the minima are also equal at 0.196, but

the maxima and the threshold for which the maximum value is valid differ. The maximum F1-

score for the RF model is 0.560 at threshold 0.53, while the maximum of the CatBoost model is

0.572 at threshold 0.30. As the calibrated CatBoost model has a higher F1-score, we will regard

this as the best-performing model

Another essential threshold of the model is the threshold that decides when an individual is

regarded as long-term unemployed. This threshold has previously been set to 40% of benefits

usage. This section will iterate over the possible threshold and create a new CatBoost model

with the previously defined hyperparameters for each item of this interval. This is highly com-

putationally expensive, so the threshold will be evaluated with a step size of 5. The same 5-fold
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Figure 5.15: The threshold vs. accuracy and F1-score curves of the RF and CatBoost models.

cross-validation strategy as used previously will be employed, and the effect of the threshold

on the different metrics is visualized in Figure 5.16.

From Figure 5.16, it becomes evident that no matter the LTU threshold, the model will always

tend to predict all values in one class. This can be recognized by the low point in the line of

the F1-score, which falls entirely together with the line of accuracy, at 0.5. The binary classes

are almost equally distributed at the threshold for this value, 20. The near linear increase in

accuracy and F1-score and decrease in Brier score is due to the distribution of the predictive

value, also seen in Figure 5.1. This graph proves that there is no real optimal value for this

threshold, and thus, the rest of this research will further consider a value of 40 for this threshold.

It is a proven fact that creating ensembles of weak learners generally tends to improve the

model’s accuracy while increasing the bias [101]. When ensembles of weak learners are made,

bagging or boosting are techniques often used. However, the model considered in this research

is not a weak learner but a strong learner, as a boosting model is technically an ensemble of

weak learners. Creating ensembles of strong learners is also possible, generally called stacking

algorithms. The advantage of this is that the errors and overfitting of one specific model might

be cancelled by the errors and overfitting of the other models, just as with bagging.

Using the cluster information obtained from the unsupervised learning ML model, discussed

in section 5.2, we have created multiple model configurations:

• Predictive model: This is the best-performing CatBoost model, as described in this sec-

tion. It now includes the cluster feature, for which all values are set to -1, to prevent the

model from using this feature for discovering patterns.

• Predictive model clustering: This is the best-performing CatBoost model, as described

in this section, with the addition of the cluster feature as input feature.

• Predictive model no outliers: This is the best-performing CatBoost model, as described
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Figure 5.16: The long-term unemployed threshold vs. AUC ROC, accuracy, F1-score, and the Brier score curves of
the optimized and calibrated CatBoost model.

in this section, with the addition of the cluster feature as input feature. However, it will

not include the instances defined as outliers by the unsupervised learning ML model in

the training set.

• Predictive model cluster specific: This is an ensemble of models trained specifically

on each cluster’s data. For each cluster, a separate model is trained and tested on in-

stances from that cluster. The outputs of these models are then aggregated and presented

through a common interface.

All ensembles are created using CatBoost models with the depth parameter set to 7 and are

evaluated using 5-fold cross-validation. The binary decision threshold needs to be recalibrated

for every possible ensemble combination of the different model configurations, as every en-

semble is essentially a completely new model. This is done using the same procedure as before,
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plotting the F1-Score and accuracy for all possible thresholds. The resulting graph can be seen

in Figure 5.17. All curves are very similar to the curves before, however, for the ensemble mod-

els, the F1-score does not increase above 0.50. The best-performing ensemble is the Predictive

model, Predictive model clustering, and Predictive model cluster specific ensemble, with an

F1-score of 0.499 at threshold 67, and an accuracy of 0.649.

Figure 5.17: The threshold vs. accuracy and F1-score curves of the possible ensemble models.

Comparing the confusion matrices of the best regular predictive model and the best ensemble

predictive model, as seen in Figure 5.18, leads to the conclusion that creating a complicated
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ensemble from multiple CatBoost models with different configurations does not improve the

overall predictive performance of the model. Therefore, we will resume the rest of this thesis

with the initial hyperparameter-optimized and calibrated CatBoost model.

(a) Confusion matrix for the best CatBoost model (b) Confusion matrix for the best ensemble model

Figure 5.18: The confusion matrices for the best regular and ensemble predictive models.

The distribution of the predictions over the different clusters is visualized in Figure 5.19. Some

apparent differences are found when comparing this to the distribution of the predictive value

over the clusters in Figure 5.7. For clusters 0, 4, 10, 11, 12, 13, 14, and 16, the model over-

predicted the Over 40% class. The model predicted the same balance as the predictive value in

clusters 1, 5, 8, 9, and 15. The model under-predicted the Over 40% class in clusters 2, 3, 6, 7,

17, 18.

Figure 5.19: The distribution of the predictions over the different clusters.
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5.4. SHAP ANALYSIS

After optimizing the model’s predictive performance, we will analyse the SHAP-output of this

model on different aggregation levels. The feature contributions will be analysed and discussed

on the global, cluster, and individual levels. In contrast to the two higher-level analyses, a local

analysis can visualize the direction of the effect given the input. As the original data is privacy

sensitive, synthetic test entries have been generated manually and adhere to the clustering pro-

files described earlier. With these synthetic test entries, a what-if analysis will be conducted,

showing the change in feature importance, and possibly the prediction, given a change in the

synthetic input data.

Starting with the global summary statistics visualized in Figure 5.20, the five most important

features of this model are the Region (bezirksnummer), Registration Type (anmeldungsart_id),

Age (ao_alter), Language (sprache_id), and Job (bezeichnung_m_de). The five least important

features Mobility (mobilitaet_id), Time of Labour (arbeits_zeit_id), Professional Qualification

(berufs_abschluss_id), Job Function (berufs_funktion_id), and Employability Rate

(vermittlungs_grad) are features with limited variance in the values. The most important fea-

tures are the features containing the most variance, while the least important features are fea-

tures without much variance, as we recall from Figure 5.3 and Figure 5.4. Remarkable is that

the feature Degree of Disability (iv_code_id) also has a low variance but is more important for

the model, showing the importance of this feature on the prediction.

The same patterns can be found on the cluster and global levels. However, the most contribut-

ing features for some clusters have more extreme values. This is the case for clusters 1, 4, 5,

11, 13, 15, 16, 17, and 18, where Registration Type (anmeldungsart_id) is the most contributing

feature.

The most extreme case is cluster 16, which has a SHAP-value of 0.62 for Registration Type (an-

meldungsart_id). Recall from Table 5.2 that this is a cluster with well-educated Swiss specialists

capable of speaking the official local language of any age with more than three years of expe-

rience and reapplication to the PES within six months. The model predicts individuals in this

cluster to have about a 50% probability of becoming LTU, while the actual distribution lies near

a 33% probability. This might lead to a relative over-expenditure of PES resources on this clus-

ter.

A what-if analysis on a synthetically created instance for this cluster’s five most important fea-

tures is found in Figure 5.24. The first waterfall plot shows the most important features and

their values for the original instance, while in all other plots, the value of any of the five most

important features is changed, keeping the others stable. When changing the application type

to a first inscription (subplot b), the feature’s contribution flips from negative to positive and

the job is no longer one of the most important features but gets replaced by region. Changing

the individual’s age from 51 - 55 to 31 - 35 (subplot c) increases the job’s and language’s posi-

tive contribution and sum the other features. It also slightly decreases the contribution of the

last active branch. Changing the individual’s job from theatre tailor to painter (subplot d) re-
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Figure 5.20: The summary statistics of the global SHAP values.

duces the positive contributions of the language and job and flips the prediction from under

40% to over 40% of benefits used. Changing the individual’s region from Berner Mittelland to

Emmental (subplot e) reduces the negative contribution of the branch and increases the posi-

tive impact of the other 14 features. This shows that this individual, according to the model, has

a higher chance of finding a job in Emmental, indicating the possibility of a relocation. Finally,

changing the individual’s language from CH-German to German removes the positive contri-

bution of this feature, flipping the prediction from under 40% to over 40% of benefits used. This

shows that for this job, branch and location, it is essential to speak CH-German.

Another extreme case is cluster 5, with a SHAP-value of 0.36 for Registration Type (anmel-

dungsart_id). This cluster’s actual probability of becoming LTU is nearly identical to the pre-

dicted distribution. This shows that more extreme SHAP-values for a cluster do not necessarily

mean that the model performs better or worse than reality.

A what-if analysis on a synthetically created instance for this cluster’s five most important fea-

tures is found in Figure 5.25. The first waterfall plot shows the most important features and their

values for the original instance, while in all other plots, the value of any of the five most impor-

tant features is changed, keeping the others stable. When changing the application type from a
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Figure 5.21: The summary statistics of the SHAP values per cluster (part 1).
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Figure 5.22: The summary statistics of the SHAP values per cluster (part 2).
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Figure 5.23: The summary statistics of the SHAP values per cluster (part 3).

first inscription to a reapplication within six months (subplot b), the feature’s contribution flips

from a slight positive to a strong negative contribution. Changing the individual’s age from 35

- 40 to 21 - 25 (subplot c) introduces a strong negative contribution of this feature but reduces

the contribution of the application type. This shows that somewhat older people with the same

profile are less likely to become LTU. Changing the individual’s job from host to salesman (sub-

plot d) increases the application type’s positive contribution and the negative contribution of

the region and job. Changing the individual’s region from Berner Mittelland to Thun (subplot

e) increases the positive contributions of the language. Finally, changing the individual’s lan-

guage from CH-German to Other removes the positive contribution of this feature, and the fact

that this individual speaks the official local language, which can be either CH-German, Ger-

man, or French in this region, has a negative contribution to the prediction. The residency type

A has a positive effect on the prediction. This means that the fact the individual was born in

Switzerland only became relevant after changing the language.

An interesting case is cluster 7. For this cluster, unlike on the global level, the most impor-

tant feature is Level of Education (ausbildungs_niveau_id) with a SHAP-value of 0.18. This is

0.10 higher than on a global level. This cluster represents Swiss nationals with relevant profes-

sional education in a specialist or management function capable of speaking the official local

language aged between 31 and 65 with more than three years of experience and reapplication

after six months. Their higher education is either of a professional or academic nature.

A what-if analysis on a synthetically created instance for this cluster’s five most important fea-

tures is found in Figure 5.26. The first waterfall plot shows the most important features and
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(a) Original (b) Application type set to first inscription

(c) Age set to 31 - 35 (d) Job set to painter

(e) Region set to Emmental (f) Language set to German

Figure 5.24: What-if analysis using SHAP waterfall plots for one synthetic entry in cluster 16.

their values for the original instance, while in all other plots, the value of any of the five most

important features is changed, keeping the others stable. The most important feature for this

individual is the degree of disability with a value between 70 and 100%. This means that the

individual is able to do less than 70% of work, showing that the model can find the relationship

between disability and opportunities in the labour market. When changing the level of educa-

tion from higher academic to higher professional (subplot b), the negative contribution of the

job and the region and the positive contribution of education are reduced. Changing the job

from head chef to team leader (subplot c) increases the positive contribution of education and

application type and increases the negative contribution of age. Changing the language from

CH-German to French (subplot d) reduces the negative effect of the degree of disability, which

indicates a lack of training data for these instances. It increases the negative contributions of

language and the official local language. The individual is from a region where both languages

are spoken, so this is somewhat unexpected. Changing the region from Bern Mittelland to Jura

increases the positive contribution of the education level and the negative contribution of the

age and official local language. Decreasing the age from 61 - 65 to 46 - 50 increases the negative

contribution of the degree of disability and the positive contribution of the education level.
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(a) Original (b) Application type set to reapplication within six months

(c) Age set to 21 - 25 (d) Job set to salesman

(e) Region set to Thun (f) Language set to Other

Figure 5.25: What-if analysis using SHAP waterfall plots for one synthetic entry in cluster 5.
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(a) Original (b) Education level set to Higher professional

(c) Job set to team leader (d) Language set to French

(e) Region set to Jura (f) Age set to 46 - 50

Figure 5.26: What-if analysis using SHAP waterfall plots for one synthetic entry in cluster 7.



6
CONCLUSION

6.1. LESSONS LEARNED

To conclude, this research consisted of an investigation into the integration of an XAI system

in an existing DSS, in order to improve the allocation of resources in a PES. The main research

question will be solved by answering the subquestions as presented in chapter 1.

RQ1: How to design an AI system for a PES?

Firstly, before shifting the focus to the mostly unexplored area of applying XAI in PES, the lit-

erature has been consulted for more general AI applications to transfer that knowledge. Most

live systems are currently using simple LR and DT models, with three exceptions. A RF model is

applied in the Belgian PES, Sweden employs a NN, and the New Zealand PES uses both RF and

GBDT models. Only the Belgian and Swedish applications report an interpretability aspect.

Precision, accuracy, and AUC ROC are used as validation measures in live profiling systems

worldwide. Precisions between 0.8 and 0.91, accuracies between 0.6 and 0.86, and AUC ROC

scores between 0.63 and 0.79 are found, setting the benchmark for the current research. The

AI applications generally use as much information as possible, ranging from socio-economic

characteristics of the jobseekers to motivation for finding a new job to job readiness and oppor-

tunities. However, people who need professional help most are generally hard to profile. These

people might have psychological issues, debt, or drug addiction, which are generally not stored

in the data of the PES. Finally, the AI profiling application should be as complex as the Active

Labour Market Policy in place in the country.

RQ2: How to integrate an XAI system into a DSS?

Secondly, a thorough exploration of the XAI in DSS has been conducted. XAI predictions can

be used on a global or local level to understand the contributions of features to the model’s pre-

diction. One way of achieving this is building the explainability directly into the model, called

89
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model-specific explainability. Another option is to create a model-agnostic explainer, which

needs the model input and its predictions and creates a simpler, interpretable model that allows

the user to understand the model. Generally, it is desirable to have a model-agnostic model that

allows for simple changes in models used and can explain both globally and locally, allowing

for different levels of understanding. The most occurring XAI technologies are SHAP and LIME.

Many other technologies have been identified, but these technologies cannot function globally

and locally or are not model-agnostic. One technique that works both globally and locally and

is model-agnostic is Natural Language Explanations, in which the numerical output of an ex-

planation method, generally SHAP, is provided to a Large Language Model, which generates a

textual explanation better suited for human interpreters. Another technique adhering to these

properties is AcME, which is less popular in literature. This might be related to a defective

Python package.

RQ3: How to extract new knowledge from existing PES datasets using XAI technolo-

gies?

Finally, integrating the knowledge obtained from answering the previous subquestions, differ-

ent AI and XAI models have been successfully applied to a Swiss PES dataset. Using multiple

unsupervised ML methods, reproducible clusters have been established in the clientele of the

PES. Within these clusters, a set of clusters has been defined in which the proportion of clients

with a benefits usage of over 40% is higher than the population proportion. An example of this

is cluster 11, characterized by performing an auxiliary function, a lack of professional educa-

tion, a migrational background, not being able to speak the official local language, having less

than three years of relevant experience, and reapplying to the RAV after at least six months of

being unemployed. There are also examples of clusters where the proportion of clients with a

benefits usage of over 40% is higher than the population proportion, like, for instance, cluster

18. This cluster contains clients who perform specialist and management functions, have Swiss

higher education and a Swiss passport, speak the official local language, and have more than

three years of relevant experience.

We are using hyperparameter tuning and model calibration to train a profiling model with an

F1-score of 0.499 and an accuracy of 0.649. Based on the input and predictions for this model,

the corresponding SHAP-values can be calculated. With these SHAP-values the models can be

interpreted on global, cluster, and individual levels. For most models, the Region and Registra-

tion Type are the most important features, followed by Age and Language. Generally, the most

important features are the features containing the most variance, while the least important fea-

tures are those without much variance. These feature importances vary on cluster level. The

most important profiling feature for individuals in cluster 7 is the Education Level. The individ-

ual level allows for understanding complex, multidimensional relationships between feature

values.
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6.2. PRACTICAL AND SCIENTIFIC CONTRIBUTIONS

From a practical perspective, the main contribution of this research is the development and

deployment of an XAI system for profiling and clustering unemployed in a PES. The PES has

a highly complex Active Labour Market Policy but previously used simple rule-based policies

to assign labour market measures. With this new system, the PES can improve and possibly

automate the assignment of labour market measures. The performed clustering allows for the

design of more targeted labour market measures by tailoring the measures to the needs of the

different groups. In addition, the output of the profiling model can be used to get an auto-

mated warning of individuals at risk of LTU, allowing counsellors to adjust their focus and as-

sign labour measures to the customers who need it most. This LTU warning can be accompa-

nied by the reason for the warning in the form of the features and values that contributed most

to this prediction, allowing the counsellor to reassess the need for an intervention and adjust

the labour market measure if necessary. The above innovations should lead to a more efficient

allocation of human and financial resources.

From a scientific perspective, the main contribution is filling the existing gap in literature. Pre-

viously, AI in PES and XAI in DSS were completely distinct topics. To the best of our knowledge,

there was no literature bridging the gap and applying XAI techniques in the DSS of PES. The lit-

erature review conducted in this research has bridged this gap, and the application proves the

possibilities of transferring knowledge between the two research areas. Additionally, this lit-

erature, to the best of our knowledge, is the first to implement unsupervised ML techniques in

PES, which allows for more group-level statistics and policies, improving the efficiency of policy

creation. Multiple strong relationships between language, residency type, and the probability

of LTU are found.

The generalizability of this research is reinforced by the widespread use of AI models in various

Public Employment Services (PES) globally, showing the potential of the more complex GBDT

algorithms compared to the more widely used DT and RF algorithms. The application of the

SHAP XAI method is transferable due to its model-agnostic properties. These methods and the

clustering approach used to profile clients based on features such as education, language pro-

ficiency, and work experience make the methodology applicable to other PES systems within

the German-speaking part of Switzerland, as the input data is similar. Care must be taken in

generalizing the research results in regions other than that, as the research uses a dataset from

one of the Swiss cantons. This dataset might reflect inherent specific socio-economic and de-

mographic factors that may not be applicable to other regions, even within German-speaking

Switzerland, reducing the direct generalizability of the discovered feature interactions.

6.3. LIMITATIONS AND FUTURE RESEARCH RECOMMENDATION

Although this research shows many valuable insights, several limitations impacting the out-

comes should be considered when interpreting the findings.

1. Analysis of literature: The literature review of this study has merely employed the Scopus
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citation database to collect articles. As this database does not always contain all scien-

tific literature published in Elsevier papers, this limits the findings of the literature review.

The search criteria were composed, and relevant articles were selected based on the re-

searcher’s knowledge and judgement. Employing the snowballing procedure helped re-

duce these limitations. As mentioned in subsection 2.2.2, a DSS was connected to ex-

planations with the word intelligent, showing that a possible area of interest might be

intelligent DSSs, which was not included in the literature study.

2. Involvement of end-users: This study is performed with the assistance of the controlling

division of the PES in question. The end-users, in this case the counsellors, have not been

involved in the process of selecting data, training and validating models, and explaining

the model outputs. This may lead to increased friction during the implementation pro-

cess in the form of unwillingness to cooperate or nonunderstanding of the tool and its

capabilities. The involvement of end users would also be helpful with model validation,

as the tool mimics the intuition and experience of a counsellor by profiling unemployed

as either a low- or high risk of unemployment.

3. Data quality: Even though the data quality has greatly at the PES has greatly improved

over the years, the data quality is still not optimal. As with all ML applications, the quality

of the input data is equal to the quality of the trained model. One of the main problems

is that much of the data at the PES is collected manually by the counsellors and is thus

prone to errors and inconsistencies. Furthermore, the data could be enriched by imple-

menting labour market history, soft skills, and regional labour market data. This would

also allow for the engineering of additional input features, which generally boost the per-

formance of predictive models.

4. Validation metrics employed and resulting optimizations: The CHI, DBI, and MSC are

generally higher for convex clusters rather than density-based clusters like those ob-

tained through DBSCAN and HDBSCAN [106]. The optimizations for these algorithms

may thus result in a non-optimal solution. However, Agglomerative clustering is a distance-

based approach that can produce clusters of any shape. Therefore, this limitation also

affects this algorithm, so this should not affect the outcomes of which algorithm to use.

It might influence the optimal hyperparameters for each of the models. Solutions with

many smaller clusters perform better in scoring than a few larger clusters, which is caused

by including inter-cluster distance in all metrics. When disregarding this inter-cluster

distance, larger clusters may be more desirable. In addition, the original notation of the

DBI only allows for truthful applications in the Euclidian space. The clustering is per-

formed in the Gower space as we employ Gower distances. The application is still possi-

ble, but we should question the validity of the results when comparing them to clustering

performed in the Euclidean space.

5. Model performance: The model performance is somewhat lower than wished. The model

performs poorly when compared to other models used throughout PES worldwide. Our
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hypothesis for the slightly disappointing model performance is that the dataset contains

many highly correlated features with low variance in the categories. This means a slight

variance can already lead to a wrongly predicted label. Improving the accuracy might,

however, include more discrimination in the model as per the accuracy-equity trade-off.

6. Model evaluation: The explainability method we have applied is reported to be unstable,

meaning that it might not always report the proper feature contributions. However, the

framework on which these claims are based did not come with runnable code, removing

the possibility to verify these claims. Additionally, the main instability of SHAP is reiter-

ation similarity, meaning that recalculation of the explainable models leads to different

models. However, SHAP uses random sampling to construct these explainable local lin-

ear models, which produce the feature contributions. Therefore, some sort of random-

ness is to be expected, and the use of random number generator seeds is not mentioned.

SHAP is still the industry-standard XAI methodology, and to the best of our knowledge,

no other authors report similar issues. We thus conclude that it’s better to have a po-

tentially unstable measurement of feature contribution than none at all. Additionally,

The explanations provided by SHAP are as good as the model. Therefore, the presented

feature importances should be interpreted with caution.

7. Explainability style: Currently, the users of the model are presented with a SHAP fea-

ture contribution plot for a specific instance which includes the prediction of the model.

Multiple sources, however, report that a better design would not include the model’s pre-

diction to prevent overreliance on the XAI system and keep users cognitively engaged

allowing them to recognize when the model output is incorrect.

8. Model explainability validation: Currently, the model explanations are manually eval-

uated by looking at feature importances and spotting unexpected contributions. This is

not scalable and leads to the fact that not all explanations are validated, but only a ran-

dom subset. In addition, this method of validation includes human biases and can be

problematic in spotting inconsistencies. Using numerical model explainability valida-

tion metrics would be preferred. However, to the best of our knowledge, the only Python

package offering this is currently not working.

9. Lack of external validation: Although all models have been 5-fold cross-validated, the

models have not yet been tested with a large external validation dataset and if the su-

pervised model can hold up the accuracy and F1-score when used to predict many new,

unseen data points. As the appearance of many new data points may shift the dense ar-

eas of the data, the so-called creep, it would be exciting to see if the unsupervised model

presents different clusters after training with an extended dataset.

Future studies may include a more specific study on the explainability style to be used in XAI

applications in PES. Also, a technique to remove correlation between features in a dataset while

keeping the interpretability aspect, specifically for categorical features, would be a research
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topic of interest. Furthermore, this research heavily leans towards the ML part in the non-

symbolic school of AI. Future research may explore how symbolic AI, e.g., ontologies, can be

implemented in PES. This study tried to maximize the impact of the AI profiling tool by incorpo-

rating it in the very beginning of the unemployment process, sacrificing additional information

about the unemployed that is collected in a later stage of the process. An interesting research

topic would be to compare the effectiveness of AI profiling at different stages of the unemploy-

ment process and find the balance in this information effectiveness trade-off. Additionally, this

research has found some patterns between specific features which require additional research

to fully understand.

Future case-specific research may include adding labour market history, soft skills, and regional

labour market data to increase the input for the predictive model. Also, with this extra data,

more informative features can be engineered, which may greatly enhance model performance.

Additionally, the region of implementation could be extended. When changing the scope of this

project from one Swiss canton to the whole country, much more data is available which might

improve the performance of the predictive model. Additionally, a randomized controlled trial

experiment may be conducted based on the current study in which the algorithm is extended

to provide recommendations on labour market measures and is compared to the current way

of working at the PES. This research would also allow for the testing of the organizational con-

sistency of the PES. Finally, the latter can be combined with a cost-benefit analysis of the clus-

tering and profiling tool to find if employing analytical methods increases the efficiency of the

PES.
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A
APPENDIX A: OUTLINE OF THE JSON

MAPPING

{

"id_features": [

"stes_id_avam"

],

"remove_categories": {

"anmeldungsart_id": [

"NA"

],

"arbeits_zeit_id": [

"NA"

],

"ausbildungs_niveau_id": [

"NA"

],

"berufs_funktion_id": [

"NA"

],

"ao_alter": [

"NA"

],

"bezirksnummer": [

"NA"

],
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"mobilitaet_id": [

"NA"

]

},

"intact_categorical_features": [

"bezeichnung_m_de"

],

"intact_numerical_features": [

"abgerechnete_tgg_total"

],

"branche_features": [

"noga_code",

"noga_code1"

],

"categorical_mapping": {

"anmeldungsart_id": {

"mapping": {

"1288": "Erstanmeldung",

"1289": "Wiederanmeldung innerhalb 6 Monate",

"1290": "Wiederanmeldung laenger 6 Monate",

"1291": "RAV-Wechsel"

},

"na_value": "NA"

},

"arbeits_zeit_id": {

"mapping": {

"587": "ganztags",

"588": "vormittags",

"589": "nachmittags",

"590": "stundenweise",

"591": "einzelne Tage",

"592": "abends"

},

"na_value": "NA"

},

"aufenthalt_status_id": {

"mapping": {

"-1": "A",

"594": "B",

"9678": "B",

"595": "B",
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"597": "C",

"596": "C",

"598": "C",

"599": "C",

"9384": "C",

"600": "F",

"9679": "F",

"602": "G",

"1519": "K",

"604": "L",

"603": "L",

"605": "N",

"606": "S"

},

"na_value": "A"

},

"ausbildungs_niveau_id": {

"mapping": {

"9501": "Sek. I",

"9502": "Sek. I",

"9503": "Sek. I",

"9504": "Sek. II",

"9505": "Sek. II",

"9506": "Sek. II",

"9507": "Sek. II",

"9508": "Sek. II",

"9509": "Sek. II",

"9512": "Ter. Hochschulen",

"9513": "Ter. Hochschulen",

"9516": "Ter. Hochschulen",

"9511": "Ter. Hoehere Berufsbildung",

"9510": "Ter. Hoehere Berufsbildung",

"9514": "Ter. Hochschulen",

"9515": "Ter. Hochschulen"

},

"na_value": "NA"

},

"berufs_abschluss_id": {

"mapping": {

"701": "keiner",

"702": "inlaendisch",
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"703": "auslaendisch"

},

"na_value": "keiner"

},

"berufs_erfahrung_id": {

"mapping": {

"-1": "keine Erfahrung",

"706": "keine Erfahrung",

"707": "weniger als 1 Jahr",

"708": "1 - 3 Jahre",

"710": "mehr als 3 Jahre"

},

"na_value": "keine Erfahrung"

},

"berufs_funktion_id": {

"mapping": {

"713": "Fachfunktion",

"714": "Hilfsfunktion",

"712": "Kaderfunktion",

"715": "Lehrling",

"9006": "Praktikant",

"718": "Student",

"711": "selbstaendigerwerbend",

"717": "Schueler",

"716": "Heimarbeit"

},

"na_value": "NA"

},

"bezirksnummer": {

"mapping": {

"246": "Verwaltungskreis Bern-Mittelland",

"242": "Verwaltungskreis Biel/Bienne",

"245": "Verwaltungskreis Emmental",

"249": "Verwaltungskreis Frutigen-Niedersimmental",

"250": "Verwaltungskreis Interlaken-Oberhasli",

"244": "Verwaltungskreis Oberaargau",

"248": "Verwaltungskreis Obersimmental-Saanen",

"243": "Verwaltungskreis Seeland",

"247": "Verwaltungskreis Thun",

"241": "Arrondissement administratif Jura bernois"

},
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"na_value": "NA"

},

"iv_code_id": {

"mapping": {

"1629": "nicht IV-Bezueger",

"1630": "IV-Grad less than 70%",

"1631": "IV-Grad less than 70%",

"1518": "IV-Grad less than 70%",

"1642": "IV-Grad less than 70%",

"1643": "IV-Grad less than 70%",

"1644": "IV-Grad 70 - 100%"

},

"na_value": "nicht IV-Bezueger"

},

"mobilitaet_id": {

"mapping": {

"1172": "nicht mobil",

"1173": "Tagespendler",

"1174": "in Teilen der Schweiz",

"1175": "in der ganzen Schweiz",

"1176": "auch ins Ausland"

},

"na_value": "NA"

},

"qualifikation_id": {

"mapping": {

"-1": "ungelernt",

"1224": "gelernt",

"1225": "angelernt",

"1226": "ungelernt"

},

"na_value": "ungelernt"

},

"sprache_id": {

"mapping": {

"1387": "CH-Deutsch",

"1401": "Deutsch",

"1386": "Other",

"1367": "Tuerkisch",

"1365": "Spanisch",

"1366": "Portugiesisch",
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"1402": "Franzoesisch",

"1388": "Slavic",

"1397": "Other",

"1385": "Albanisch",

"1370": "Slavic",

"1384": "Tamil",

"1403": "Italienisch",

"1375": "Arabisch",

"1395": "Other",

"1377": "Slavic",

"9578": "Other",

"1393": "Slavic",

"1369": "Other",

"9218": "Other",

"1389": "Slavic",

"1372": "Slavic",

"1390": "Slavic",

"1400": "Other",

"1391": "Slavic",

"1364": "Other",

"1382": "Slavic",

"1368": "Other",

"1371": "Slavic",

"1373": "Other",

"9978": "Slavic",

"9646": "Other",

"1399": "Other",

"9818": "Other",

"1381": "Slavic",

"9579": "Other",

"9798": "Other",

"1380": "Other",

"1398": "Other",

"1376": "Other",

"9658": "Other",

"1379": "Other",

"1378": "Other",

"1383": "Other",

"1363": "Other",

"1374": "Other",

"1394": "Other",
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"1392": "Other",

"1396": "Other",

"9998": "Other"

},

"na_value": "Other"

}

},

"keep_few_mapping": {

"bezirksnummer": {

"keep": [

"246",

"242",

"245",

"249",

"250",

"244",

"248",

"243",

"247",

"241"

],

"replace_value": "NA"

}

},

"numerical_categories": {

"ao_alter": {

"values": [

15,

20,

25,

30,

35,

40,

45,

50,

55,

60,

80

],

"labels": [

"16 bis 20",
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"21 bis 25",

"26 bis 30",

"31 bis 35",

"36 bis 40",

"41 bis 45",

"46 bis 50",

"51 bis 55",

"56 bis 60",

"61 bis 65"

],

"nan_label": "NA"

},

"hoechstanspruch": {

"values": [

-10,

0,

145,

230,

330,

460,

580,

1000

],

"labels": [

0,

90,

200,

260,

400,

520,

640

],

"nan_label": 0

},

"vermittlungs_grad": {

"values": [

0,

50,

79,

100

],
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"labels": [

"less than 50%",

"51 - 79%",

"80 - 100%"

],

"nan_label": "less than 50%"

}

}

}
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