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Summary

Radiology is an important component of healthcare, playing a vital role in disease
diagnosis. The process of radiology reporting, where radiologists document their
findings and observations from scans, is integral to patient care. Thus, the com-
pleteness of these reports is essential, as minor errors can significantly affect the
diagnosis and further treatment. The mistakes or missing fields in the report can
arise due to factors such as increased workload, time constraints and inexperienced
radiologists. This research focuses on automating the process of checking reports
and providing radiologists with suggestions for any missing information.

The radiology reports are Dutch semi-structured text data, Natural language Pro-
cessing(NLP) techniques were used to extract the important information from the
reports. Dutch Language models BERTje and MedRoBERTa.nl were tested for this
task, but they exhibited overfitting due to a limited dataset. A hybrid Conditional
Random Field (CRF) model was also implemented, yielding better results with an
F1 score ranging from 0.94 (highest) to 0.45 (lowest) in identifying fields. The lower
performance for certain labels is attributed to the underrepresentation of these fields
in the reports.

To address the challenges of limited data and underrepresentation, we devel-
oped an interface that integrates the model into the radiologists’ workflow, allowing
for both the application of the model and the collection of annotations through user
interactions.
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Chapter 1

Introduction

Radiology reports play a crucial role in diagnostic decision-making and treatment
planning in healthcare. The clarity and completeness of radiology reports are im-
portant, as they are the primary means of communication between radiologists,
referring physicians and other healthcare workers involved in patient care [1] [2].
However, despite the significance, ensuring their completeness remains a consid-
erable challenge in the field of radiology [3] [4]. This is due to several factors such
as high workload, time constraints, and lack of experience [5] [6]. Automating the
checking of radiology reports can be an approach to address this challenge, and
support radiologists in their work.

Ensuring that radiology reports are both complete and compliant with established
guidelines is vital for accurate diagnosis and effective treatment. Usually, radiology
reports have a general structure with patient data, findings, discussion, and recom-
mendations [7]. To maintain the high quality of radiology reports, the hospitals issue
guideline documents that outline the expected structure and essential components
of these reports [8].

An incomplete radiology report may lack the necessary fields and corresponding
values, and a non-compliant report may contain all required fields but fail to adhere to
the structure specified in the relevant guideline documents. Such incomplete or non-
compliant reports can compromise the accuracy of the report and, consequently, the
patient’s treatment. In most cases, rechecking the report manually is the approach,
but it is time-consuming and adds to the already substantial workload of radiologists.
To address this challenge, one of the focuses of our research is to automate the
checking of radiology reports, aiming to assist radiologists in ensuring their reports
are both complete and compliant. The automation of checking the reports involves
identifying missing elements in the report and providing them as suggestions to the
radiologists.

This research is conducted in collaboration with Ziekenhuisgroep Twente (ZGT).
The prostate screening reports and the guideline document provided by the hospital
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2 CHAPTER 1. INTRODUCTION

are used as the dataset for our study. To develop the model, we reviewed previous
literature where NLP has been used in information extraction tasks. In recent years,
Natural Language Processing (NLP) has emerged as a powerful aid in the field of
radiology [9] [10] [11]. NLP models have been employed for extracting essential in-
formation from radiology reports and performing tasks like pattern matching, which
has led to the automation of various processes within the radiology workflow such
as Clinical Decision Support (CDS), summarization, and quality control. Given that
our dataset comprises semi-structured text-based radiology reports, and our task
involves identifying key fields within these reports, NLP is considered an effective
approach for enhancing their completeness and compliance. This leads to our first
research question with the following sub-questions:

”How accurately can NLP algorithms cross-check prostate screening re-
ports with Guidelines to improve their completeness and compliance?”

RQ1: ”What models can be adapted to extract information from the report?”

RQ2:”How can we ensure the compliance of the report?”

RQ3:”What evaluation metrics should be used to measure the performance of
the models?”

While developing models to assist radiologists is essential, integrating these
models into their workflow is also equally important. The challenges in implement-
ing artificial intelligence models in radiology include the uncertainty of using them in
clinical applications [12]. One of the reasons is the lack of standard user interfaces
to integrate the model results into their workflow [13]. Therefore, another key ob-
jective of this research is to explore how these models can be effectively integrated
using an interface into the reporting process.

Additionally, we aim to use this interface to capture user interactions that can
be converted into annotations, which are an integral part of training models. Our
current dataset contains 206 prostate screening reports annotated by radiologists,
which is a relatively small amount. This annotation is a time-consuming process,
that requires the expertise of radiologists, making it difficult to obtain a large, high-
quality annotated dataset. This contributes to the poor performance and overfitting
in Language Models. Although the hybrid CRF model demonstrated better results,
it still underperformed in fields that were underrepresented in the training data.

To address this, we propose a solution of using the user interface not only to
integrate the model outputs but also to facilitate the annotation as part of the ra-
diologists’ reporting procedure. This approach minimizes additional workload and
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simultaneously enhances the dataset used for training the model, thereby improv-
ing its accuracy over time. This method aligns with the concept of Human-in-the-
Loop (HILT), where user interactions are leveraged to continuously refine the model,
building trust and engagement among users. This brings us to our second research
question and the following sub-questions:

” How can models be integrated into the reporting workflow of radiologists
to check the report and to improve the annotation process simultaneously?”

RQ1: ”What features should the user interface include to support seamless inte-
gration of NLP techniques into radiologists’ workflow?”

RQ2: ”What features should the interface have, to adapt model learning from
user interactions?”

RQ3:”What metrics should be used to evaluate the effectiveness of NLP integra-
tion improving radiologists’ reporting practices and annotation process?”

This thesis begins with a review of related literature on the application of NLP
in radiology, model integration into workflows, and the Human-in-the-Loop (HILT) in
Chapter 2: Related Works. This will be followed by Chapter 3: Dataset describes
the dataset used in this research. Chapter 4: Identify the Missing Fields and En-
suring Compliance of Reports answers our first research question, while Chapter
5: Interface and Annotation addresses our second research question. Finally
Chapter 6 provides the Discussion, and Chapter ?? presents the Conclusion and
Recommendations.
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Chapter 2

Related Works

This chapter discusses previous studies on the application of Natural Language Pro-
cessing (NLP) in radiology along with the integration of Models and the concept of
”Human in the Loop” (HITL). These studies are particularly relevant to the challenges
we are addressing.

The chapter is organised into six sections:
Section 2.1: NLP applications in Radiology
Section 2.2: NLP approaches to extract information
Section 2.3: Dutch Language Models
Section 2.4: Prompting Language models
Section 2.5: Integrating AI Models with Human-in-the-Loop Systems.

2.1 NLP applications in Radiology

Numerous studies have explored the application of NLP to improve the efficiency
and accuracy of radiology reporting. This includes Clinical Decision Support (CDS),
Quality control, Performance monitoring, Increasing diagnostic accuracy, Early pa-
tient Prognosis, Findings alert, Improved productivity, Reporting findings, Follow-up
of Test results, and Choice of Procedures [14]. Some of the tasks in these applica-
tions are useful for our project, including text extraction, pattern matching, and entity
tagging.

For instance, Nguyen et al. [15] propose a hybrid model for automating the sum-
marization of Dutch breast cancer Radiology Reports. They combined an encoder-
decoder attention (EDA) model with a BI-RADS score classifier. While the primary
task was summarization, a subtask involved obtaining the BI-RADS score, an impor-
tant field in breast cancer radiology reports. This shows the importance of identifying
and examining key-value fields, an aspect that is considered in our research as well.
Another interesting study by Shreyasi et al. [11] uses a combination of NLP and ML
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to structure Radiology Reports of Breast Cancer Patients for Clinical Quality Assur-
ance. They used a hierarchical Conditional Random Field (CRF) and Support Vector
Machine to achieve the automated structuring and obtained an F1 score of 0.78.

Donnelly et al. [16] reviews studies that used NLP technologies to evaluate radi-
ology reports. This literature study explains the basics of NLP techniques and how
they can be used in assessing radiology reports. Extracting information from the
report is a fundamental step for most of the tasks mentioned, as the reports can be
unstructured or semi-structured. They divide the approach of NLP extraction of texts
into two: symbolic or rule-based and statistical or machine learning techniques. No-
tably, several studies have adopted a hybrid approach, combining both techniques.
The next section discusses the various strategies employed in previous research to
extract information from radiology reports.

2.2 NLP approaches for Information extraction

Extracting vital information from the reports is the basic step in most of the NLP tasks
in radiology. This also plays an important role in our research problem, as identifying
and searching for relevant fields is essential for assessing the completeness of re-
ports and providing feedback. Several approaches have been used according to the
specific requirement of extraction. One of them is Named Entity Recognition (NER).

Named entity recognition models are used to extract vital information from free
texts. Marı́a et al. [17] provide a methodological literature review of NER models
used in Electronic Health Records. According to this study, Deep Learning mod-
els were the most prevalent, accounting for 58.86% of the approaches. Traditional
Machine Learning methods followed, constituting 20.75% of the NER techniques.
Graphical models like CRF and rule-based approaches held a smaller share, repre-
senting 13.20% and 6.79% of the methods, respectively.

In radiology reports, the measurements are an important part and thus extracting
them for any of the applications should be accurate. Selen et al. [18] propose a
hybrid NLP pipeline that can extract measurements and descriptors from free text
radiology reports. The pipeline consists of an automated NER tagging using the
Condition Random Field (CRF) model and a rule-based measurement tagging using
regular expression. The model was trained on 1117 reports and obtained a good
performance with an F1 score ranging from 80% - 98% for the information types.

Language Models are another approach explored in other studies. BioBERT is a
deep learning language model that is specifically for the medical domain [19]. It is
a variation of the BERT (Bidirectional Encoder Representations from Transformers)
model that is pre-trained using PubMed abstracts and PubMed Central full-text ar-
ticles. Xin Yu et al. [19] proposes a BioBERT-based NER in the electronic medical
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record to annotate clinical problems, treatments and tests. This model was trained
on a dataset consisting of 426 discharge summaries, with 170 used for training and
the remaining 256 reserved for testing. The model achieved an impressive F1 score
of 87.10%. In our case, the reports are in Dutch thus Dutch language models are
more suitable in our case. The next section discusses Dutch LMs.

2.3 Dutch Language Models

While the previously mentioned studies primarily focused on extracting information
from English medical reports, it is essential to note that Dutch reports are the subject
of our current research. Therefore it is necessary to explore studies specifically
dealing with Dutch medical reports.

BERT models can be modified to adapt them to specific tasks in three ways:
pre-trained on a generic corpus, pre-trained on a generic corpus and further on a
domain corpus, pre-trained exclusively on a domain corpus. BERT-NL, BERTje, and
RobBERT are three domain-generic Dutch models that are trained on general data
from Wikipedia, news and web data. To achieve a good performance in medical
data, domain-specific Dutch models are necessary. MedRoBERTa.nl is the first lan-
guage model for Dutch medical Records proposed by Stella et al. [20]. They used
the RoBERTa as the base model and used Dutch hospital notes to pre-train the
model from scratch. This model has outperformed the general model on the task
of odd-one-out similarity for Dutch medical records. MedRoBERTa.nl also outper-
formed the general model when fine-tuned to the task of classifying sentences from
Dutch hospital notes that contain information about patients’ mobility levels.

Contradicting the previous study, the research by Rietberg et al. [21] shows that
BERTje, the generic Dutch model has outperformed the MedRoBERTa.nl on the task
of extracting the reason for taking an MRI scan of Multiple Sclerosis (MS) patients
using the attached dutch free-form reports. This shows that domain-specific models
are not always superior. They also noted that BERTje performed better than both
RobBERT and MedRoBERTa.nl which both are RoBERTa-based, thus it could also
be that BERT-based models are better for their particular task. Therefore comparing
the performance of different models may help to get to the model perfect for our task.

2.4 Prompting techniques for limited annotated data

Another challenge associated with our Dataset is the availability of annotated data.
To train a supervised model efficiently, good-quality annotated data is a necessity.
However, the manual effort and time for this process are expensive, especially in the
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medical domain. In our case, the annotations are done by the radiologists and they
are already busy with their job. Thus obtaining a large amount of annotated data is
not ideal. Therefore methods that can perform with limited annotated data have to
be explored. One such method is prompting the model.

Prompting generally doesn’t require training samples, but in some cases, training
data are given to the model to understand the task. The first case is known as the
zero-shot setting, where the model recognises new tasks through its description
[22]. The other approach is where a large amount of training data is given to the
model known as full-data learning or very few samples are given known as few-shot
learning. [23]. The few-shot or zero-shot approach can be preferred more in the
case of limited data.

Multiple prompts can be used to train the language model to perform a task
and several methods have been explored for this. This can be helpful, as more
than one field has to be analysed for our research problem. Prompt Ensembling is
one such approach which combines multiple unanswered prompts as input to the
model. This can help combine the multiple aspects of the task. Arora et al. [24]
proposed a similar prompting approach called Ask Me Anything (AMA), showing
that a single question can be reformatted as different prompts. Then they combine
the intermediate answers from these prompts to obtain the final output. DIVERSE
is another prompt ensembling approach proposed by Yifei L, et al. [25] where they
have the same method for developing prompts as AMA but use a voting verifier (a
neural network) for selecting the answer as the final output.

Prompting has also been explored in performing tasks in the medical domain.
[26] shows the use of the prompting technique in natural language generation of
justification of medical diagnosis given the case description and disease symptoma-
tology. Similarly prompt tuning is also used in the classification in the field of medical
data [27] [28].

2.5 Integrating AI Models with Human-in-the-Loop Sys-
tems

Implementing an interface to integrate the model is a way in which we can ensure
that radiologists can use the model in completing the task. The implementation
should be easily accessible to the radiologists and shouldn’t interfere with their work-
flow. This is important because developing a model alone will not help in integrating
them into the clinical application, there must be an interactive medium through which
the radiologists can utilise it. Additionally, the model can learn from the interactions
of users through the interface, which is another feature that can be beneficial. Using
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human interactions and feedback in the development of model learning would help
to enhance performance and increase the trust of the users in the system.

For both of these goals, we have to build an interactive user-centred platform
that can well go with the current medical system they use. The first goal can be
obtained by studying the workflow of the radiologists and building a prototype to
show them. The second goal is based on the AI and human interactions. The usage
of user interactions in retraining also includes collecting data for the same. In other
words, while evaluating the reports, we can collect the data in such a way that the
annotations can be extracted. This in fact can be turned into an efficient annotation
system. Such an annotation process integrated into their workflow also helps us get
annotated data efficiently, which is crucial in the medical domain.

Tongshuang et al. [29] conducted a case study tutorial to analyse three aspects
of Human AI (NLP) interactions: Usability Evaluation, User interface design and
Learning and improving NLP models through human interactions. Learning from
human interactions is an interesting aspect that can be adapted to our research.
Human-in-the-loop (HITL) in NLP frameworks is an approach in which human feed-
back is used to improve the model performance which comes under the third aspect
of the research mentioned above.

Wang et al. [30] provides a survey on studies that have used HITL in different
NLP tasks: Text classification, Parsing and entity linking, Topic Modelling, Summa-
rization and Machine Translation, Dialogue and Question Answering. Among these
text classifications and entity linking apply to our research, thus more details on them
are discussed further. Models are trained for text classification tasks and users can
add or remove text features and label new data if the model performs poorly on
them. The same can apply to entity linking, users can interactively annotate entities
in text samples.

Lo et al. [31] introduce a similar approach where they use user feedback in the
model learning process for entity linking. They used active learning strategies to find
the data points that the initially trained model failed to predict and provided them to
the users to obtain feedback on whether they were correctly linked or not. This
method outperformed the non-interactive baseline models.

To adopt the method of HITL, an interactive medium has to be developed. [32]
presents a prototype tool that allows users to visualize and correct the outputs of an
NLP system that extracts binary variables from clinical text. There can be two types
of interfaces: A graphical user interface where users can interact using windows,
buttons, icons, and menus; and a Natural language user interface where they can
interact with speech or text like human communication. The feedback that can be
collected from the users can also be in various forms:

• Binary user feedback
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The feedback will be opposite to each other(Eg: agree, disagree) which can
be used in both interactive mediums.

• Scaled user feedback

The feedback will be in a scaled format like a five-point scale rating.

• Natural language user feedback

The user can express their feedback in the natural speaking language.

• Counterfactual example feedback

The feedback is a natural language text like ”If X had not occurred, Y would
not have occurred” [30].

Natural language feedback can describe the best intention of the user, but adapt-
ing it to the model’s understanding is complex when compared to GUI feedback. In
addition to the type of feedback, the way of interaction that can be adapted to max-
imise the performance has also been explored. Active learning mentioned in one
of the above studies [31] helps not only for efficient model performance but also re-
duces the effort of user labelling, by strategically selecting the data that yields the
maximum desired output. Another approach is reinforcement learning (RL) where
the user interaction is considered an RL action to be taken as a reward or pun-
ishment. This supports understanding of human intention while giving feedback by
taking them as RL action.

The user feedback can be incorporated into model learning in different ways,
such as data augmentation and model direct manipulation. Data augmentation is
the process of adding new data samples or features to the data, and the user feed-
back collected during the interaction can be added as data samples or features.
This can happen in two ways, online update and offline update. Offline update of the
model retrains the model from scratch after obtaining all the user feedback, while
online update trains NLP models while collecting feedback at the same time. Model
direct manipulation involves updating the learning parameters, and updating the loss
functions of the model through collected numerical user feedback. According to the
survey by Wang et al. [30] most of the studies used numerical feedback like binary
feedback or scaled feedback for this purpose. However, the inclusion of natural lan-
guage feedback from users for model direct manipulation can enhance the model
learning and performance.

To conclude, previous research has focused on summarizing radiology reports
and extracting key descriptors for easier access. However, the application of these
methods to ensure the completeness of reports and integrate them into the radiology
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reporting process has not been thoroughly explored, this is the gap we address in
our research. The insights from previous works guided our experimentation with
various models and techniques. We explored different NLP models like BERTje,
medroBERTa.nl, and CRF, as well as rule-based methods like regular expressions
to extract information from the reports. This extraction process was essential in
identifying missing information in the reports. We also tried prompting techniques to
test whether it is suitable for our task given our limited dataset and also to assess
whether existing large language models (LLMs) could be prompted to perform the
task effectively. In addition, we explored methods for integrating AI models into
workflows and leveraging user interactions for annotation. This is another key focus
of this research which demonstrates how keeping the user in the loop can enhance
model performance and facilitate the collection of annotated data, which can be
applied to other tasks.
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Chapter 3

Dataset

This chapter discusses the dataset we used in this research. This includes the ra-
diology reporting process, how the data is collected and annotated and a detailed
analysis of the structure of the report to understand what completeness and compli-
ance refers to.
The chapter is divided into four sections:

Section 3.1: Radiology reporting process
Section 3.2: Dataset Collection
Section 3.3: Dataset Annotation
Section 3.4: Analysis of Report Structure

3.1 Radiology Reporting Process

Radiology reporting is the process of reporting the results of an imaging test. For
this research prostate screening reports are taken as the dataset. To understand
how they prepared this report, we talked with the radiologists of Ziekenhuisgroep
Twente (ZGT). The radiologists analyse the scanning images and report their find-
ings through speech. The hospital has an interface with speech-to-text functionality.
The end report will be semi-structured containing the findings and the conclusion.
Due to workload and time constraints, the reports can be incomplete and not compli-
ant. Our goal is to automate the check of these reports to ensure their completeness
and compliance which saves time and reduces the workload needed for manual
checks.

3.2 Dataset Collection

The Dataset used for this research is a set of 206 prostate-scanning radiology re-
ports from Ziekenhuisgroep Twente (ZGT). The reports are semi-structured and con-

13
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tain a section with the patient ID (altered for privacy concerns), a small synopsis of
the report, followed by the procedure information, findings and conclusion. Figure
3.1a shows a sample radiology report. The reports are in Dutch and for comprehen-
sion purposes Google Translate is used to translate the reports into English which
can be seen in figure 3.1b. The reports are from the period March 2015 - January
2017. In addition to the reports, a guideline document was also provided by the hos-
pital: Quality document Prostate MRI: protocol and reporting [8]. This guideline
document is prepared by the Dutch Association for Radiology (NVvR) and contains
the rules of reporting which include the important fields that should be present in a
report and how it should be reported. The reports are extracted by the supervisor
from the hospital after excluding all the patient info to safeguard their privacy. The
reports were used in a secure virtual environment provided by the hospital to ensure
data security.

(a) Report (b) Translated Report

Figure 3.1: Sample Prostate Scanning Report

3.3 Dataset Annotation

To train a model for checking the completeness and compliance of reports, we need
annotated reports. The annotation in this case is to identify and tag the important
fields in the reports. This annotation was carried out by the radiologists of ZGT as



3.3. DATASET ANNOTATION 15

they are the experts in identifying the fields in a report. They annotated the reports
based on the fields present in the guideline document. The guideline document
provides a table of important contents and examples to ensure the good quality of
reporting as given in figures 3.2 and 3.3.

The annotated data should be of good quality to obtain a good performance. To
ensure this an approach of double annotation was performed. The annotation is
done in the inception platform [33] and four radiologists were approached for this
task. The reports were divided into two sets (100 and 104), each set of reports
was annotated by two of the radiologists each independently resulting in 4 sets of
annotated data. After a thorough analysis of the annotated reports, the correct
annotations were selected, yielding a total of 204 annotated reports. There were
some minor discrepancies between the annotations made by the radiologists, such
as missing or swapped annotations. However, these differences were identifiable,
and the correct annotations were chosen after consulting with the radiologists for the
final dataset.

The radiologists identified 12 fields as important to be presented in the prostate
scanning reports. They are given below:

1. PSA waarde (PSA value): Prostate-Specific Antigen (PSA) value obtained
from blood tests.

2. Grootte (Size): the size of tumors

3. PSA densiteit MRI (PSA density MRI): Concentration of PSA in the prostate
as detected by the MRI.

4. Locatie (Location): Location of specific findings within the prostate.

5. Interpretatie (Interpretation): Interpretation of the imaging findings

6. Pirads classification: The Prostate Imaging Reporting and Data System (PI-
RADS) is a standardized system used to interpret and report findings from
prostate MRI. It helps categorize the likelihood of clinically significant prostate
cancer based on imaging features.

7. Conclusie (Conclusion)

8. Advies (Advice): Recommendation or advice based on the results of the scan.

9. Aspect: Appearance or aspect of specific structures or abnormalities within
the prostate

10. Kwaliteitsoordeel (Quality rating): Overall quality judgment of the MRI images
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Figure 3.2: Prostate MRI: structured reporting template from the guideline docu-
ment
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Figure 3.3: Translated
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11. Prostaatvolume MRI ( Prostate volume MRI): Volume or size of the entire
prostate as determined by MRI.

12. Vergelijkend MRI onderzoek (Comparative MRI study): Compare this with pre-
vious reports.

These fields were used as tags to annotate the reports in the inception platform.
An example of an annotated report can be seen in Figure 3.4.

Figure 3.4: Annotated Report from the inception platform

The annotated data can be exported from the inception platform as zip files which
contain files in XMI (XML Metadata Interchange) format. In these files, annotations
are represented by marking the indices of the starting and ending positions of the
annotated fields. Figure 3.5 shows an example of the exported annotated data.

Figure 3.5: Exported Annotated data

The report with all the tags can be considered complete, if not can be classified
as incomplete. This was the initial condition, but on further analysis of the reports,
there are some special conditions where the absence of certain tags won’t affect the
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completeness of the reports. This will be discussed in detail in the next section 3.4
The annotation process is carried out as an extra task by the radiologists, and as
the radiologists are busy with their work with the hospital, it wasn’t ideal to ask them
to annotate more amount of reports. Thus the annotated dataset remains of a small
quantity.

3.4 Analysis of report structure

This section discusses the detailed analysis of the report structure and contents.
This includes the presence of fields, their structure, the frequency of their occurrence
and how these points to the completeness and compliance of the reports.

As mentioned above even though the radiologists identified 12 fields for the an-
notation, there was no report in the given dataset which has all the 12 fields. The
highest number of distinct field occurrences in a report is ten and the lowest is four.
On further discussion with them, it was found that depending on the findings from
the images, the presence of fields can be different. For example Vergelijkend MRI
onderzoek is a field that will be only present in follow-up reports as it is the compar-
ison of findings with previous reports. The dataset provided were all initial reports,
as a result, this field was excluded from the subsequent analysis.

The occurrence of fields is also not unique, that is in a report there are multiple
occurrences of the same field. The fields with multiple occurrences in reports are
PSA waarde, interpretatie, locatie, grootte and PIRADS classification. The pattern
of their occurrence is also studied to identify them correctly in the case of multiple
occurrences. The highest occurring fields are PIRADS classification, PSA waarde,
interpretatie and lowest occurring field is kwaliteitsoordeel. When asked about the
reason for the low occurrence of the kwaliteitsoordeel, the radiologist mentioned that
often they ignore adding this field if the imaging is of good quality. The frequency of
each field can be seen in Table 3.1 and in Figure 3.6.

To understand what contributes towards the completeness and compliance of
the reports, the structure and pattern of occurrence of each field are studied.

1. PSA Waarde (PSA value)
This field is reported as PSA: x, where x is the PSA value. Example: PSA: 5

2. PIRADS classification
PIRADS classification is reported as PIRADS x, where x is the classification
which is written as both in numerical digits as well as Roman numbers. Ex-
ample: PIRADS 5, PIRADS V. This field also occurs multiple times, and each
time can be the same or different. PIRADS value changes according to the
lesions present in the prostate. So if there is more than one lesion, then there
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Table 3.1: Field Frequency table
Field Frequency (Number of reports with this

field)
1 PIRADS classification 204
2 PSA waarde 204
3 Interpretation 204
4 Conclusie 202
5 Prostaatvolume MRI 200
6 PSA densiteit MRI 200
7 Locatie 200
8 Advies 127
9 Grootte 67
10. Kwaliteitsoordeel 4
11 aspect 8
12 Vergelijkend MRI onder-

zoek
0

Figure 3.6: Frequency of Tags
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will be more than one abnormality (afwijking) and each can result in a different
PIRADS classification.

3. PSA densiteit MRI (PSA density MRI)
This field is reported as PSA densiteit: x, where x is the value. According to
the guideline, there is also a metric ’ng/mL2’ present along with the value, but
radiologists don’t use that because it is already understood without mentioning
it. This field only occurs once. Example: PSA densiteit: 0.24.

4. Prostaatvolume MRI ( Prostate volume MRI)
This field is reported as Prostaatvolume: x cc, where x is the value and cc is the
standard metric. This field only occurs once in a report. Example: Prostaatvol-
ume 22 cc.

5. Interpretatie (Interpretation)
This field doesn’t have a defined structure. It provides the interpretation of
the findings and also occurs more than once based on the number of abnor-
malities and lesions. The interpretation also contains the Pirads classification
sometimes.

Example: Beeld past het best bij prostatitis (PIRADS 2).

Translation: Image best matches prostatitis (PIRADS 2)

6. Locatie (Location)
This field also doesn’t have a defined structure, they contain the zones where
the lesions are present. It often occurs along with the interpretation field and
occurs more than once based on the abnormalities and lesions.

Example: ter plaatse van perifere zone beiderzijds met name middendeel
prostaat.

Translation: at the peripheral zone on both sides, especially the middle part of
the prostate.

7. Grootte (Size)
This field is reported as a x b mm, where a and b are the size values and mm is
the standard metric. This can also occur more than once based on the number
of abnormalities and lesions. Example: 10x8 mm.

8. Aspect
This field doesn’t have a defined structure and is only present in some of the
reports because it represents the structural abnormalities or aspects of specific
structures, which will not be always present in a report.

Example: Geen betrokkenheid van de zaadblaasjes.
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Translation: No involvement of the seminal vesicles.

9. Conclusie (Conclusion)
This also doesn’t have a defined structure, but it starts with a conclusie and a
summary of the report. According to the guidelines it should also contain the
PIRADS value if applicable. However, there can be different PIRADS classi-
fications in a single report. On further discussion with the radiologist, it was
decided that the highest PIRADS value is the one that should be included in
the conclusion.

Example: Conclusie: Afwijkingen passend bij prostatitis en BPH (PIRADS 2).

Translation: Conclusion: Abnormalities consistent with prostatitis and BPH (PI-
RADS 2).

10. Advies (Advice)
This field also doesn’t have a structure except it often starts with Advies. This
also doesn’t occur in every report, only in those which need advice.

Example: Advies: MRI controle op geleide PSA .

Translation: Advice: MRI check for guided PSA.

11. Kwaliteitsoordeel (Quality rating)
This field also doesn’t have a structure and has the lowest frequency. As men-
tioned before the radiologist only reports the quality when it is bad. Describe
the quality of MRI which contains words like susceptibiliteit artefact, Matige
kwaliteit scan (poor quality scan).

After the analysis of the dataset, it is understood that the presence of all fields is
not necessary, some fields are more important than others as indicated by their
frequency of occurrence. This was confirmed by the radiologists, as they mentioned
that some fields are not always present in the reports like advies, aspect. Also,
the presence of certain fields depends on the report findings, as the absence of a
tumour will result in the absence of fields like locatie and grootte.

Also, there are multiple occurrences of the same field in each report, emphasiz-
ing the need to study the pattern of these occurrences. The fields’ structure can help
identify and create the features necessary for developing the model. Now that we
have analysed the field structure we should also see how the report is structured.

The radiologist report their findings in an order and that itself is the structure
of the report. In figure 3.7 you can see how the report looks like when there are
multiple occurrences of fields. After observing the reports, we were able to identify
that the three fields - interpretatie, locatie, and PIRADS classification occur on each
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Figure 3.7: Report structure showing Multiple occurrences of fields

identification of abnormality or lesion. So that is a pattern for their multiple occur-
rence. Also, the order in which the fields occur is almost the same in most of the
reports. PSA waarde, prostaatvolume MRI, PSA densiteit MRI on top followed by
the locatie, interpretatie and PIRADS classification in the findings. Then the grootte,
aspect and advies are present if necessary according to the findings and conclusie
at the end.

What makes the report complete and compliant? This is the question that should
be addressed before delving into the models to ensure them. The initial standard we
came up with to describe completeness and compliance was, that a report is con-
sidered to be complete if it has all the fields present and it is considered compliant
if the field contents follow the structure according to the guideline (Refer to column
”structured reporting contents” in figure3.3). But on further analysis of the dataset
and discussion with the radiologists, we decided that completeness cannot be en-
sured by the presence of all the fields, because the report doesn’t need to contain
all the fields, it changes based on the findings. So to make sure the reports are
complete, we can find the missing fields and suggest them to the radiologists, and
they can add them if felt necessary. That is the missing fields will be suggestions
that the radiologists can either accept or ignore. So to check if a report is complete
we identify the fields and present the missing ones to the radiologists, they are the
ones who decide if they want to add the fields to the report and make it complete.

When coming to compliance, the guideline rules were taken into consideration,
but later on, the rules were found not applicable in certain cases, which is discussed
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in detail in the next sections 4.1.4.



Chapter 4

Identifying the Missing Fields and
Ensuring Compliance of Reports

Following the dataset analysis, the next step is to develop methodologies to address
our research questions. This chapter describes our journey to develop an approach
for predicting missing fields to ensure the completeness of radiology reports, fol-
lowed by defining rules to ensure compliance. This constitutes our solution to the
first research question. This chapter outlines the methodology used, the experi-
ments conducted, and the results obtained.

4.1 Methodology

This section describes the methodology we adopted to identify the missing fields
and ensure the reports’ compliance. It provides an overview of the models and
techniques we utilised.

To identify the missing fields first, we need to detect the fields present in the
reports. Given that the annotation process tags these fields, we can train models
to recognize the important fields. In the context of NLP, Named Entity Recognition
(NER) is an appropriate task for this purpose. The reports are tokenized and each
token is labelled with the corresponding entity. Based on a thorough review of re-
lated studies, we experimented with three different methodologies to perform NER
and identify the fields in the reports. Once the important fields are identified, miss-
ing fields can be determined by noting which expected fields are absent from the
identified ones.
The following three subsections describe the different approaches we tested to en-
sure the completeness of reports:

4.1.1: BERT and RoBERTa-based Dutch Language Models
4.1.2: Prompting
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4.1.3: Hybrid Conditional Random Field
After identifying the missing fields the compliance of the reports which are based

on the guideline rules will be discussed in the subsection 4.1.4.

Data Pre-processing

Before delving into the models - some common pre-processing steps were taken to
ensure the smooth functioning of the models. The annotated versions of the reports
were extracted as XML files. These annotations are represented by marking the
indices of the starting and ending positions of the tags (fields) (see figure 3.5). For
training the models these annotations were converted into BIO (Beginning, Inside,
Outside) format. These BIO-formatted tokens are used for the training of the models.
These preprocessing steps were used in the following approaches.

4.1.1 Language models

Previous research has demonstrated that leveraging Language Models (LMs) can
effectively identify important parts of a report. Given that our reports are in Dutch,
utilizing Dutch language models is a logical choice. So the following LMs were used
to identify the important fields by using the training data. Due to the limited annotated
dataset, we expected the challenge of overfitting, so prompting the models was also
considered. We proceeded by selecting models trained on Dutch medical notes and
data.

We chose MedRoBERTa.nl, a medical domain-specific LM which has demon-
strated good performance on similar tasks before. We also experimented with the
Dutch LM BERTje which is pre-trained on general data as one of the previous stud-
ies showed that the general LMs can sometimes outperform domain-specific ones.
However, despite our efforts to mitigate it, overfitting remained an issue with these
models. Figure 4.1 shows the general flow of the training process in the LMs.

Figure 4.1: Flow chart
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The following sections provide a discussion of these language models and their
respective training processes.

BERTje - Dutch BERT Model

BERTje is a Dutch pre-trained BERT developed at the University of Groningen [34].
BERTje is pre-trained on various corpora of high-quality Dutch text and can be used
for various NLP tasks like next-sentence prediction, POS tagging, and NER.

NER is the task we have to perform. Bidirectional Encoder Representations
from Transformers (BERT) based models can capture the bidirectional contexts by
considering both the left and right contexts of each word. In our case, this will be
helpful, especially in fields with more than two words like interpretation, location,
aspect, advice and conclusion. A previous study by Rietberg et al. [35] also shows
that BERTje outperformed the domain-specific language model MedRoBERTa on
the task of extracting the reason for taking an MRI scan of Multiple Sclerosis (MS)
patients, proving domain-specific models are not always the superior ones. Thus we
tried the BERTje model on our task to see the possibility of it performing well.
Tokenization

The training procedure started with the general preprocessing, then the BERT
tokenizer was used to tokenise the data. We used the word tokenized reports as
the data instead of the raw report text to keep track of the labels. But the prob-
lem was the tokenizer vocabulary didn’t have most of the words for our domain,
and the BERT tokenizer treated them as subwords, which is one of the features of
BERT models. Initially, the thought of adding the domain-specific tokens into the
vocabulary seemed like a good approach. However, it turned out that the number of
these specific words was relatively small compared to the overall vocabulary of the
tokenizer. As a result, this addition did not significantly impact the model’s perfor-
mance. So the original BERT tokenizer was used and the label alignment was done
after the tokenization.

Detailed analysis of the training parameters and results of the model perfor-
mance can be seen in the coming section 4.2.1.

MedRoBERTa.nl- Dutch Medical LM

MedRoBERTa.nl is the first Dutch language model for the medical domain [20].
Since we have a Dutch medical dataset, this model was selected for our task.
MedRoBERTa.nl is trained from scratch with Dutch hospital notes and has outper-
formed general language models for Dutch in classifying sentences in Dutch hospi-
tal notes. This model is based on the RoBERTa architecture, which is a transformer
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model and is known for its effectiveness in NLP tasks.
Tokenization

The tokenizer used here is ”CLTL/MedRoBERTa.nl” but unlike the BERTje tok-
enizer, this tokenizer has an expanded vocabulary specifically tailored to the medical
domain, resulting in more effective and accurate tokenization of medical terms and
phrases. The training parameters and result analysis are discussed in section 4.2.1

4.1.2 Prompting

Prompting is an approach where models are prompted with defined questions or
prompts tuned to get particular results from the model. We opted for this ap-
proach because of the limited annotated data available. But the LMs like BERT and
RoBERTa-based model prompting without pretraining isn’t a good approach as the
models do not have any idea of our particular domain which is prostate screening
reports.

The other option was to try prompting on large language models like GPT, and
Mistral AI. However, using publicly available LLMs is not an ideal approach because
of the sensitive data we have. Thus to understand the upper bound, we decided to
prompt Mistral AI to see how it can perform the task. The Mistral AI 7B model per-
formed well in areas like mathematics, code generation, and reasoning [36]. Thus
this LLM was chosen for prompting. Since the annotated data is anonymised, us-
ing this for prompting was not an issue, we also got permission from the hospital
supervisor.

Two types of prompting: zero-shot and few-shot prompting were performed on
Mistral AI.

1. Zero-shot

For the zero-shot prompting, the following prompt was used:

Prompt : Identify the following fields from the dutch prostate screening re-
port based on the given guideline: conclusie, Advies,locatie, grootte, aspect,
prostaatvolume MRI ,interpretatie’, Pirads classification, kwaliteitsoordeel, PSA
densiteit MRI, PSA waarde.

The report and the guidelines table were given along with the prompt.

2. Few-shot

For the few-shot prompting, an example of how the result should look was also
given.

Prompt: Identify the following fields from the dutch prostate screening re-
port based on the given guideline: conclusie, Advies,locatie, grootte, aspect,
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prostaatvolume MRI ,interpretatie’, Pirads classification, kwaliteitsoordeel, PSA
densiteit MRI, PSA waarde. Here is an example The report : The guideline:
The labels

The experiments and results are discussed in the following section 4.2.2

4.1.3 Hybrid Conditional Random Field

The Conditional Random Field (CRF) is a probabilistic model that is used for se-
quence labelling tasks. The Named Entity Recognition (NER) required to identify
the fields in the reports can be performed by CRF. Previous research has used CRF
to extract information from health records and medical notes. We also require the
same functionality here to label the fields in the report.

The Conditional Random Field is a discriminant model that models the condi-
tional probability of the output labels given the input features P (Y |X), where X rep-
resents the input features in our case the tokens and the features related to it, and
Y represents the output labels which will be the field tags [37].

P (Y |X) =
1

Z(X)
exp

(∑
i

∑
k

λkfk(yi, yi−1, X, i)

)
where,

fk are feature functions
λk weights for the feature functions
Z(X) is the normalization factor to ensure that the probabilities sum to 1

CRFs model the dependencies between labels in sequence considering both
the current and neighbouring labels, which helps in making accurate predictions in
sequences. Before training the model, we can manually add the necessary features
to the CRF model. This can be done by carefully analysing the field structures and
recognising their pattern. However, the addition of features had a negative impact on
the performance. The reason may be due to the fact the new features have reduced
the generalizing ability of the model. So just the general features regarding the font
case and title were added.

After incorporating the features, the data is fed into the model for training. The
trained model is then utilized to predict the tags for the test data. The training pro-
cess involves using 80% of the dataset, with the remaining 20% reserved for testing.
The parameters of the CRF model were experimented with, and the final parameters
that gave the best performance were selected.

Since regular expression rules can easily define some of the patterns, they were
added as a post-processing step, to make sure they are captured even if the model
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fails to. Table 4.1 shows the regular expression rules formulated to improve the la-
belling. Other than these rules, some extra rules were given to identify the multiple
occurrences of fields Interpretatie, Locatie, and Pirads classification. The occur-
rence dependency of these fields is based on the abnormality count that has been
described in the dataset section (see figure 3.7). So rules were made based on the
number of abnormalities or lesions (Afwijking).

Post-processing of the label was taken into account for other reasons too. After
the evaluation with a new set of evaluation data from the hospital, it was noticed
that there were some changes in the way some of the fields were reported. For
example, the PSA densiteit MRI field was reported in the given training dataset as
PSA densiteit: 0.7, but in the new evaluation data it is also reported as density: 0.7.
These small changes are not identified by the model, because of their absence in
the training data. So defining some rules to incorporate such changes by identifying
the pattern can increase the performance.

Thus our final model is a hybrid CRF model combining the power of both the CRF
and the regular expression rules. Figure 4.2 shows the architecture of the Hybrid
CRF model we used.

Figure 4.2: Hybrid CRF model

After identifying the fields in the reports, the missing fields can be determined by
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Field Condition Regex
Conclusie (Conclusion) Detect the word con-

clusie: or conclusie
token.lower() ==

’conclusie’ or
token.lower() ==

’conclusie:’

PSA Waarde(PSA Value) Detect PSA value in the
format PSA: x

re.match(r’PSA:\d+’,
token)

PSA densiteit MRI Detect PSA density:x or
PSA denistiet

token.lower() in

[’densiteit’,

’densiteit:’,

’density’,

’density:’] followed
by a decimal check with
is decimal() function

Prostaat volume MRI Detect volume: x cc or
volume: x ml

re.match(r’\^
\d+([.,]\d+)?\s?cc$’,
token) or
re.match(r’\^
\d+([.,]\d+)?\s?ml$’,
token)

token.lower() ==

’volume’ followed by
a decimal check and
token[i+2] in [’cc’,

’ml’]

Advies(Advice) Detect the word Advies:
or Advies

token.lower()

== ’advies’ or
token.lower() ==

’advies:’

PIRADS Classification Detect pirads followed by
a digit

token.lower()

== ’pirads’ and
tokens[i+1].isdigit()

Grootte (Size) Detect size in mm or cm
format

re.match(r"\b \d+mm
\b", token) or
is decimal(token)

followed by tokens[i+1]

in [’mm’, ’cm’]

Table 4.1: Post-Processing Rules for Label Adjustment
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searching for those not present in the identified fields set.

4.1.4 Compliance

After identifying the missing fields our next task is to look for compliance issues in
the report. At the start, the report’s compliance was decided based on the table
from the guideline document 3.3. However, after further review of the reports, it
was noticed that the field content doesn’t exactly have the structure provided in the
guideline table. The radiologist mentioned that in the guidelines the examples of
the fields, are given rather than the structure of it. So to decide on the rules that
are required for the compliance of the report, we discussed with the radiologists and
fixed what rules are necessarily required to make the report compliant. Only some
of the fields had the rules to be followed.

To describe what we meant by compliance in this research is that after the report
is complete with the required fields, the fields present in the report should abide by
certain criteria. So to ensure the compliance of the report we set some rules for
certain fields.

1. Prostaat Volume MRI - The value and the metric cc

2. PSA densiteit MRI - The value and the metric ng/mL2

3. Conclusie - The conclusion should have the pirads value (the one with the
highest score) if applicable.

The other fields do not have specific rules to adhere to and therefore only these
three fields were considered while making the rules. The given reports follow these
rules, except for the PSA densities field where the metrics are not included. Also
during the evaluation, the evaluation dataset showed some variation in reporting
prostrate volume where ml was used as the metric instead of cc.

Compliance with the report doesn’t have many strict rules to be followed, only the
three mentioned, but the two of them are often not used, because of the routine, the
users of the radiology reports know what they are dealing with. However we decided
to include these rules and provide them as suggestions to the user to ensure the
reporting goes compliant as mentioned in the guideline document.

4.2 Experiment and Results

This section discusses the experiments conducted with the models and presents
their results and analysis. This also addresses the challenges we faced and finally,
highlights the methodology that proved most effective for our problem.
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4.2.1 Language Models– Results

BERTje

Training the Model– Hyperparmeter tunings
The tokenized dataset was divided into 3 sets: Train, Validation and Test dataset

in the proportion 80%-10%-10%. After experimenting with various configurations,
the following hyperparameters were identified as the best for training the BERTje
model.

• Number of Epochs: 30

• Batch Size: 8, this specifies the number of samples processed before the
model’s internal parameters are updated.

• Learning rate: initial value 5e-5

• Optimizer: AdamW (Adam with Weight Decay) is used as the optimizer

• Scheduler: A linear scheduler (lr) with warmup is used, thus the lr is linearly
decreased after the warmup.

The 30-epoch training resulted in an overfitting with test loss increasing after a
point. To address overfitting, we replaced the fixed learning rate (LR) parameter with
a learning rate scheduler to enhance the model’s ability to generalize. Additionally,
we implemented early stopping to halt the training process as soon as overfitting
was detected by keeping track of validation loss. This was configured to monitor
the validation performance, stopping the training process when there was no further
improvement in the validation set.

After these changes, despite the effort, the model continued to exhibit overfitting.
The early stopping halted the training by the 11th epoch, indicating the onset of
overfitting. Figure 4.3 shows the trends in training and validation loss, as well as the
training and validation accuracy over the epochs. The accuracy is measured on the
token level of the fields which reflects the proportion of tokens that were correctly
classified out of all the tokens. Before overfitting occurred, the model achieved a
training accuracy of 76% and a validation accuracy of 71%.

MedRoBERTa.nl

Training the Model - Hyperparmeter tunings
The tokenized dataset was divided into 3 sets- Train- Validation and Test dataset

in the proportion 80%-10%-10%. The following hyperparameters were utilised after
experimenting with different configurations for the training of the MedRoBERTa.nl
model.
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Figure 4.3: BERTje: Train- Validation Loss and Accuracy vs Epochs

• Number of Epochs:30

• Learning rate: initial 5e-5

• Batch size: 4

• Optimizer: AdamW

• Scheduler: ReduceLROnPlateau with Mode min that will reduce the lr when
validation loss stops decreasing and patience of 2, the number of epochs with
no improvement after which lr will be reduced.

This combination of hyperparameters was identified as the most effective through
multiple trials. The model is trained for up to 30 epochs. Attempts were made
to address the overfitting issue by adjusting the learning parameters. This included
experimenting with various learning rate schedules to improve model generalization.
However, these adjustments did not lead to significant improvements or reduce the
overfitting problem.

Figure 4.4 shows the train Loss and validation loss, along with the train and vali-
dation accuracy. Before overfitting the train accuracy is 79% and validation accuracy
is 76%. This model performed better than the BERTje. This suggests that with effec-
tive strategies to mitigate overfitting, MedRoBERTa.nl could potentially deliver even
better performance.
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Figure 4.4: MedRoBERTa.nl: Train- Validation Loss and Accuracy vs Epochs

4.2.2 Prompting

Prompting with Mistral AI gave good results. The few-shot approach was more suit-
able as the structure of the output was defined and easier to compare with the true
labels we have. Consequently, we applied this approach across 204 reports.

We compared the results against the annotated reports through qualitative anal-
ysis. The quantitative analysis did not provide a strong evaluation of the model’s
output, as there were slight discrepancies between the identified fields and the an-
notated data. For example, while the annotated data labelled “PSA densiteit MRI”
as “PSA densiteit: 0.25,” Mistral AI identified the field as “0.25”. This is technically
correct but differs in format. Similar variations were observed in other fields, thus we
manually reviewed 40 reports to assess whether Mistral AI successfully identified all
relevant fields.

The following shows an example output of Mistral AI that is correctly identified :
Mistral AI output
Report ID: 032
{’Value’: ’PSA waarde’, ’CoveredText’: ’PSA: 7.6’}
{’Value’: ’prostaatvolume MRI’, ’CoveredText’: ’60 cc’}
{’Value’: ’PSA densiteit MRI’, ’CoveredText’: ’0,13’}
{’Value’: ’locatie’, ’CoveredText’: ’ter plaatse van perifere zone posterolateraal

mid en apex prostaat links’}
{’Value’: ’interpretatie’, ’CoveredText’: ’Beeld past het best bij significant carci-

noom (PIRADS 5)’}
{’Value’: ’Pirads classification’, ’CoveredText’: ’PIRADS 5’}
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{’Value’: ’grootte’, ’CoveredText’: ’11 x 16 mm’}
{’Value’: ’conclusie’, ’CoveredText’: ’Afwijking passend bij significant carcinoom

links perifere zone posterolateraal mid en apex prostaat (PIRADS 5)’}
{’Value’: ’Advies’, ’CoveredText’: ’MRI geleid biopt’}
Annotation (Ground truth)
Report ID: 032
{’Value’: ’PSA waarde’, ’CoveredText’: ’7,6’}
{’Value’: ’prostaatvolume MRI’, ’CoveredText’: ’60 cc’}
{’Value’: ’PSA densiteit MRI’, ’CoveredText’: ’0,13’}
{’Value’: ’locatie’, ’CoveredText’: ’ter plaatse van perifere zone posterolateraal

mid en apex prostaat links’}
{’Value’: ’interpretatie’, ’CoveredText’: ’Beeld past het best bij significant carci-

noom’}
{’Value’: ’Pirads classification’, ’CoveredText’: ’PIRADS 5’}
{’Value’: ’grootte’, ’CoveredText’: ’11 x 16’}
{’Value’: ’conclusie’, ’CoveredText’: ’Afwijking passend bij significant carcinoom

links perifere zone posterolateraal mid en apex prostaat’}
{’Value’: ’Pirads classification’, ’CoveredText’: ’(PIRADS 5’}
{’Value’: ’Advies’, ’CoveredText’: ’MRI geleid biopt’}

However, there were cases where Mistral AI incorrectly identified certain fields. For
example, a random text in the report was identified as advies by Mistral AI, where
the report doesn’t have the field advies.

Report ID: 028
{’Value’: ’Advies’, ’CoveredText’: ’Patiënt werd ingepland voor MRI geleid biopt

in het kader van de studie.’}
Another incorrect example occurred with the ”kwaliteitsoordeel” field, where a

random piece of text was mistakenly labelled as this field, even though the report
did not contain ”kwaliteitsoordeel”:

Report ID: 014
{’Value’: ’kwaliteitsoordeel’, ’CoveredText’: ’Het onderzoek werd medebeoordeeld

door UMCN prof. Barentsz/ M vd Leest’}
The discrepancies in the true and predicted labels when analysed showed that

the Mistral AI has fabricated some of the fields that were not present in the report.
These can be hallucinations or the model has assigned some other texts in the re-
port as the field. This especially occurred with the fields advies and kwaliteitsoordeel
as seen in the above examples. Additionally, in our manual analysis of the 40 re-
ports, we found cases where Mistral AI failed to identify fields that were present,
especially ”kwaliteitsoordeel” and ”aspect.” To conclude while Mistral AI was able
to correctly identify some fields, it also fabricated certain fields and missed oth-
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ers. These findings, along with the privacy concerns associated with using public
AI models, suggest that such tools may not yet be suitable for use in the medical
domain.

4.2.3 Hybrid Conditional Random Field

To evaluate the identification of the fields using the CRF model, two approaches
were taken

1. Quantitative Analysis

For the Quantitative analysis, the following evaluation metrics were used: Pre-
cision gives the number of true positives given all the positive cases, whereas
recall gives the number of positives given all the true positives and false nega-
tives. F1-score combines precision and recall and is useful in labelling tasks.

Precison =
TP

(TP + FP )

Recall =
TP

(TP + FN)

F1-score =
2× Precision×Recall

Precision+Recall

where,

TP: True Positive

FP: False Positive

FN: False Negative

We performed two types of token-level evaluations:

• Detailed Evaluation: Assesses each B-token (the beginning token of an
entity) and I-token (the inside token of an entity) labels individually. Each
token in the field is evaluated separately.

• Combined Evaluation: Evaluate the labels considering both B and I to-
kens together that give the evaluation of the field as the whole text.

Another evaluation metric is the metrics seqeval. But it is a stricter metric,
and might not fully capture the model’s performance for our task, because it
evaluates the entire sequence at once. As a result, even slight changes or
mistakes in the text can lead to a larger penalty, potentially misrepresenting
the actual performance of the model. Hence, we focused on the detailed and
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combined evaluations. Figure 4.5 shows the detailed evaluation metrics of
each label and figure 4.6 shows the combined evaluation metrics of each label.
To have a more clear understanding the F1-score is separately mapped for
both cases and is shown in figures 4.7 and 4.8respectively.

Figure 4.5: Hybrid-CRF Model - Detailed Evaluation Metrics

The highest performance was achieved for field PSA Waarde with an F1-score
of 0.94. The lowest F1-score was for the field aspect with 0.45 excluding the
rare ”kwaliteisoordeel” field which was present in only two reports. The next
least occurring field was ”aspect”, which can be the reason for low performance
on its identification. This suggests that under-represented fields in the training
data lead to lower performance, highlighting the need for more representative
data.

2. Qualitative Analysis

This approach evaluated the model’s practical utility in a real-world setting.
We developed a small interface that displays missing fields and compliance
issues(see figure 4.9) for this purpose. Radiology reports were transferred
from the reporting interface to our server via JSON files. The radiologist who
used this model found it easy as it just shows the missing fields almost correctly
but found that some fields were not identified even after reporting them, which
made him look again through his report in vain. To understand which types
of fields were not identified correctly the qualitative analysis of this reporting
was done. It was found that if the reporting structure is not consistent with the
structure of the report that was given for training, the model fails to identify the
fields, resulting in wrong predictions.
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Figure 4.6: Hybrid-CRF Model - Combined Evaluation Metrics

Among the approaches evaluated, the Hybrid CRF model demonstrated the most
promising performance in identifying the fields. Implementing a non-interactive in-
terface allowed us to test the model’s efficacy with real-time reporting. This setup
was able to identify missing fields and ensure compliance with predefined rules.

However, the challenge with this approach is its limitation in handling new types
of reporting structures. The training data given was more structured explicitly mark-
ing abnormalities and corresponding fields. The new set of evaluation data that
is used for the interface evaluation lacked such detailed structuring Additionally,
the model struggled with identifying underrepresented fields such as ”aspect” and
”kwaliteisoordeel.”

The language models on the other hand exhibited overfitting due to the limited
annotated data. This lack of sufficient data led to difficulties in feature identification
and generalization.

To address these limitations, we need to explore strategies to enhance data rep-
resentation and model generalization. One potential solution is data augmentation,
which can help create a more diverse training dataset. However, in the medical do-
main, where fabricated data may not be applicable, having real data is important.
Therefore, we propose developing a solution to improve the efficiency of annotated
data collection. The next chapter will discuss the methodology for this and the inte-
gration of the models into a more interactive interface.
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Figure 4.7: Hybrid CRF- F1 score Detailed Performance

Figure 4.8: Hybrid CRF- F1 score Combined Performance
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Figure 4.9: Interface showing missing fields and Compliance issue
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Chapter 5

Interface and Annotation

The previous chapter described how the model was developed to ensure the com-
pleteness and compliance of the reports. However, to leverage the model in real-
time, it is crucial to integrate it seamlessly into the radiologists’ workflow.

Another important fact is the limited availability of annotated datasets we have.
Annotating data in the medical domain is particularly challenging as it typically re-
quires the involvement of hospital staff. In our case, the radiologists were the an-
notators, which required them to allocate time from their already busy schedules.
As highlighted in the previous chapter, the limited annotated data has been a criti-
cal issue. Additionally, reporting patterns evolve, making it essential to continuously
update the dataset with new annotations.

To mitigate this challenge, we propose developing a solution that integrates data
annotation within the reporting workflow. This approach would enable the continu-
ous collection of annotated data throughout the reporting process, leading to a richer
and more representative training dataset, ultimately enhancing model performance.

Various methods can help reduce the reliance on annotated data, but the most
effective solution would be one that facilitates easier data collection. Thus we de-
cided to build an interface that not only integrates our model but also functions as
an annotation platform. This enables radiologists to annotate data while performing
their regular reporting tasks. This chapter discusses the journey of developing an
interface, the evaluation of it and the challenges we encountered during the process,
addressing our second research question.

The chapter is organised into three sections:

Section 5.1: Methodology– Developing the Interface

Section 5.2: Evaluation of Interface and Result Analysis

Section 5.3: Extraction of Annotations from User Interactions

43
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5.1 Methodology– Developing the Interactive Interface

The Interface we are developing will be able to show the output of the model, and
also be able to annotate the report which can be further used for retraining the
model or for other future tasks. Before developing the interface, the functionality and
requirements for the interface were discussed.

5.1.1 Requirements for the Interactive Interface

Before developing the interface, a thorough analysis of the potential requirements
and functionalities of the interface was conducted. This helped in designing and
developing the interface and its functionality such that it integrates seamlessly with
the radiologist’s workflow and enhances the efficiency of the annotation process and
model’s application.

1. Integration with Radiologists’ Workflow
Integrating the model into the radiologists reporting flow is important as with-
out this the model and the interface developed cannot be used in the practi-
cal world. This involves designing an interface that is easily accessible and
works without disrupting their usual workflow. This will include how the inter-
face should be integrated into their reporting workflow.

To design the interface the endpoint where the user needs the functionalities of
the interface has to be known. After the initial discussion with the radiologist,
it was determined that the interface should be incorporated at the end of the
report preparation process. Here, a “check” button could be introduced, en-
abling the radiologists to access the interface’s functionalities after completing
their reports.

2. Visualization of Model Results
Another important functionality of the interface is to visualize the results of our
model in a clear and interpretable way. So the results the radiologists need
to see are the missing fields and compliance issues in the report so that they
can update it. This also includes how they can interact with the results, like
how they can add the missing fields and how they can correct the compliance
issues.

3. Efficient Data Collection from User Interactions
In addition to showing the model results, using the user interactions for collect-
ing data is a significant functionality. This means that this interface can also
be used as an annotation tool that provides data for model retraining and other
future tasks.
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To do this interface should enable the radiologists to provide their feedback
directly through their interactions. These functionalities include allowing users
to correct the model predictions. To get more information, not only the missing
fields but also the identified fields by the model can be highlighted and labelled,
so that the user can correct it if wrong. More details on these functionalities
are discussed in the coming section 5.1.2.

These functionalities should be designed in such a way that they shouldn’t
take much time and disrupt the radiologists’ workflow. Interactions need to
be intuitive, making it easy for radiologists to use the interface efficiently while
maximizing the extraction of information from their actions.

4. Extraction of Annotations from User Logs

The user interactions can be stored as logs and the annotations can be ex-
tracted from these user logs. These logs capture detailed information about
how radiologists interact with the interface including any corrections or addi-
tions to the model’s output. To extract the annotations in a format suitable for
retraining the model, specialized code needs to be developed. This code will
parse the logs, identify relevant annotations, and structure the data in a way
that is compatible with the model’s retraining pipeline.

5.1.2 Prototype of the Interactive Interface

After identifying the use cases, a prototype of the interface was developed. The
prototype shows how the interactions work and how the model results are visualised.
The prototype was developed with Figma [38]. Figures 5.1, 5.2, 5.3, 5.4, and 5.5
show the interactions in the prototype.

After the report is ready, there will be a check button as shown in figure 5.1 which
will take the user to the page where the report with the following interactions is seen.

1. General Interactions

After clicking the check button, the user will be navigated to the page where
the report with the identified fields and missing fields is shown. The general in-
teractions on this page are the undo and redo functionality which the user can
use to go back and forward to their interactions. There is also a suggestion
box side to the report that shows the missing fields and the compliance guide-
lines. A ”Save” button is also available to save the reports after the checking.
Figure 5.2 shows the prototype after clicking the check button. The specific
interactions on this page are defined next.
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Figure 5.1: Prototype- Check Page
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Figure 5.2: Prototype- 2nd Page

2. Missing Fields
Missing fields are displayed as the ’?’ symbol in the report. Clicking on them
shows the missing field and two other options for rejecting this suggestion. On
clicking on the missing field label, the user can enter the field value. The two
options for rejection are to distinguish the reason for rejection.

The user may reject a suggestion of a missing field, because it is already
present, in this case, the button ”REJECT” is given. The second reason may
be the missing field does not apply to the particular report, like ”Advies” which
is not always provided in a report. For this case, the button ”NOT APPLICA-
BLE” is given. The reason for distinguishing between the two is that the model
can learn the difference and predict the missing fields accordingly. Figure 5.3
shows the interactions associated with the missing fields, in this example, the
PSA Waarde is the missing field.

3. Compliance Issues

The Compliance issues are shown as underlined text, when hovered over it it
shows the right format. By clicking on the right format the text will be replaced
with it. There is also an option ”Reject” for rejecting this suggestion. Figure 5.4
shows this interaction, in this case, the prostate volume 14 is not in the right
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Figure 5.3: Prototype- showing Missing Fields Interaction
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format it should be 14 cc.

4. Identified Fields

The Hybrid CRF field model also identifies the fields in the report. This is
shown by highlighting those texts and the corresponding label is marked at
the top. The label is associated with a drop-down menu of other labels. The
user can change the label if the model predicts it wrongly by clicking on the
labels in the drop-down list. Figure 5.5 shows this interaction, in this example,
interpretatie is the label and the drop-down menu can be seen while clicking
on it.

The prototypes were developed to visualize the interactions. As mentioned above
each interaction satisfies the use cases of the interface, and the next step is to
implement this interface and evaluate it.

5.1.3 Implementation of the Interface

After developing the prototypes and designing the interactions, the next step was to
implement the interface to put these concepts into practice. This includes integrating
the NLP model with a user-friendly front end that allows the users to interact with
the system efficiently.

Software and Frameworks

The interface was developed using the following packages and technologies to meet
the back-end and front-end requirements:
Flask(Python)

Flask [39] is chosen for the back-end to integrate the model into the interface
because of its simplicity and effectiveness. Flask is a small Python framework that
has a set of helpful features and tools that ease the creation of web applications in
Python. It handles requests, processes the NLP model results, and communicates
the results back to the front end.
HTML, CSS, Javascript

These web technologies were used to create the front-end interface. HTML cre-
ates the structure of the interface, CSS adds the style to the structure, and Javascript
adds the interactive elements and functionality to the interface. This combination al-
lows to build an interactive interface with the required functionalities.
Gunicorn

Gunicorn is a Python WSGI (Web Server Gateway Interface) server which serves
the Flask application. It is a robust and efficient server and can handle multiple
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Figure 5.4: Prototype- showing Compliance Issue Interaction
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Figure 5.5: Prototype- showing Identified Fields and the Interactions associated
with them
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requests. Gunicorn is easy to implement and thus was chosen as the server to host
our interface.

Interface Architecture

The architecture of the interface was developed to ensure smooth communication
between the front end and back end. The current system used for reporting at the
hospital is a speech-to-text system. So initial idea was to integrate the interface into
that system, but for the time being it isn’t possible, so the interface was implemented
such that the radiologist can upload the reports and check. This is not a convenient
approach, but for the evaluation, this was a solution we took.

When the report is uploaded it is sent to the flask application where the trained
hybrid CRF model is loaded. The model processes the report and provides the
result, which is then returned to the front-end interface with the interactions and
functionalities discussed in the above section 5.1.2.

The interface has an upload page, with instructions to ease the users to interact
5.6. The check button at the upload page takes them to the page where the results of
identified fields and missing fields in the reports will be shown as in figure 5.7. On the
same page where the results are shown, there is a model performance box, where
the users can see the performance of the model through the evaluation metrics-
Precision, recall, F1 score (see Figure 5.7). This can be helpful for the radiologists
to understand how capable is the model in identifying the fields.

The other Interactions are the same as described in the prototype and the im-
plementation of those in the interface is shown in the figure 5.8. Additional thoughts
were put in the colouring scheme of the rejection buttons, red for rejecting and green
for not applicable as red symbolises wrong and green symbolises right (but here the
field is not applicable).

Log Messages for User Interactions

The interactions of the user have to be collected to extract annotations from them.
For this purpose carefully analyse log messages where included in the interface.
The extraction of annotation from the interactions is done by developing codes. The
following information was used to create the annotation.

1. Missing Fields Interactions

When the user selects the missing field to enter the field value, the logs get
created and from that the field label and the value can be extracted to add to
the identified fields. If the user rejects the suggestion by selecting ”REJECT”,
that will be removed from the missing field predictions, and a recheck of the
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Figure 5.6: Upload Page of Interface
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Figure 5.7: Interface Page showing the Results

identified fields happen. If ”NOT APPLICABLE” is selected that will be still
marked as a missing field with additional info for marking it wasn’t right for the
particular report. By doing this maybe with more data the model will be able to
identify a pattern of why a particular field is not applicable based on the other
information in the report.

2. Identified Fields Interactions

The user can select a different label for the identified fields if the predicted
label by the model goes wrong. This interaction can also be logged and can
be used to change the labels for the annotation. Also if a label is deleted by
the user, then the identified field can be deleted from the set.

Once the interface was developed, the next step was to evaluate its effectiveness.

5.2 Evaluation and Result Analysis

5.2.1 Evaluation set up

The evaluation of the interface was done with the help of two radiologists from ZGT.
For this process, new reports were arranged from the hospital. The evaluation setup
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(a): Interaction of the identified field
label- PSA waarde

(b): Interactions of missing field Ad-
vies

(c): Dropdown menu showing the labels

Figure 5.8: Interactions available in the Interface

involved asking the radiologists to interact with the interface and assess its function-
ality. Given the time constraint of the radiologists, one of them evaluated 20 reports
while the other evaluated 10 reports. After their interaction with the interface, they
were asked a series of questions to determine if the interface met our expectations.
The questions were as follows:

1. How was the experience with the interface?

2. How would you rate the ease of use of the interface?

3. How would you describe the time required for interaction with the interface?

4. Does incorporating this into the workflow make the reporting easier?
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5. How does the annotation process compare to other methods you’ve used?

6. What suggestions do you have for improving the interface?

7. Where would you prefer the interface functionalities to be located or inte-
grated?

5.2.2 User feedback and Findings

1. User Experience with the Interface

On observing the interactions, initially, radiologists took some time to under-
stand the functionalities. However, as they continued using it, the interaction
became more familiar and intuitive for them. When asked about the same, they
said that with increased usage, they grew more comfortable with the function-
alities. This feedback indicates that there is a positive learning curve where
initial challenges can be mitigated with familiarity, leading to a smooth experi-
ence.

2. Ease of Use of the Interface

Aside from the initial confusion, particularly with rejection options of the miss-
ing fields, the radiologists found the interface easy to use once they understood
its purpose. The functionalities of just clicking for changing and adding labels
made the process easier. The observation from the feedback is that the inter-
face is user-friendly and intuitive.

3. Time Required for Interaction

As mentioned before, initially learning about the interaction was time-consuming,
but the subsequent interactions were quicker. When asked about the same,
one of them mentioned that the colour-coding of the buttons (red and green) for
rejection helped make decisions more rapidly based on visual cues. However,
the other radiologist mentioned that he was confused with the button labels
especially the term ”REJECT”, which took some time to understand. Thus
changing the term ”REJECT” to a more intuitive term like ”WRONG” would
be easier to comprehend, as this better reflects the context of correcting an
incorrect model prediction.

4. Impact on Reporting Workflow

One of our main goals was to make the integration of the model and annotation
work along with the reporting workflow. The radiologists mentioned that inte-
grating this interface and functionalities directly into their workflow would be
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beneficial. They also expressed the concern that frequent model errors could
disrupt their workflow, showing the requirement of high accuracy in the model
suggestions.

5. Comparison of Annotation Process

Another key use case of this interface is the extraction of annotations from
user interactions. Generally, including for this research radiologist perform the
annotations using a separate platform, which takes additional time outside of
their regular duties. In contrast, annotation through the interface is performed
while checking the report, seamlessly integrating the process into their existing
workflow. Thus this annotation process is seen as a more efficient method as
it eliminates the extra task of annotation. The radiologists also appreciated the
time-saving aspect of the interface for annotation and it is a better approach
than the other. But they also said that it would be good to have the option to
select and label the text directly in the report, as this feature would provide
them more freedom to interact and correct the model.

6. Integration of interface Functionalities

Currently, for the evaluation purpose the interface was used at the end of the
reporting, that is after completing the whole report. To understand if this is ef-
fective or if the integration of the interface functionalities from the beginning of
the reporting process is effective, we sought the radiologists’ opinions. They in-
dicated that having the interface available through the reporting process would
better support their workflow. However, the current system they are using limi-
tations pose a challenge to this integration.

7. Suggestions for Improvement

Finally, after the interactions, we asked the radiologists for suggestions to im-
prove the interface. One of them was to change the term ”REJECT” to a term
that relates more to the action. Since the action here is to avoid the sugges-
tions of missing fields as it is wrongly predicted by the model, we concluded
that the term ”WRONG” would be more suitable.

Another suggestion was to incorporate a selection and label interaction where
the users can select and label a text in the report if the model fails to. This is a
useful interaction and can be used for annotation extraction.

8. Evaluation Data and patterns

For the evaluation of the interface, a dataset of 100 reports was used. How-
ever, these reports differed in structure compared to the training data. The
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reports in the evaluation set were less structured when compared to the train-
ing data, with no separate sections for each abnormality. The field prostrate
volume appeared twice with different values. Upon inquiry, the radiologists ex-
plained that reports might include volume measurements from the ultrasound,
but the volume measured during reporting is considered the final value. Also,
some reports used millilitres (ml) instead of cubic centimetres (cc), which is
the standard metric according to guidelines.

While observing the radiologists’ interactions with the interface, it was noticed
that some of the missing field suggestions were rejected with a pattern. To
clarify we asked the radiologist, who explained that when the PIRADS value is
less than 3 (PIRADS 1 and PIRADS 2), fields such as size, location, aspect,
and interpretation are not necessary and can be excluded as missing fields.
We also found that the reporting pattern changes, with time and radiologists,
so more the reports we collect more the data can be provided to the model,
and the model can adapt to the task. Thus collecting annotation while using
the model seems to be a good approach.

So after the evaluation, a small amount of data was collected as a result of the
user interactions. The next section outlines the method of obtaining annotation from
these user interactions.

5.3 Extraction of Annotation from User Interactions

The development of the interface has two goals- to integrate the model and to collect
annotations from their interactions. This section outlines the process of extracting
annotations from user interactions and converting them into a format suitable to use
as training data for the model.

To capture the user interactions, log messages were added to the interface im-
plementation. For each action, a specific log message was formatted.

After preparing the log messages, the next step was to extract the annotations
from these messages. The evaluation results were analyzed, and a code was de-
veloped to systematically extract the necessary information from the log messages,
transforming them into a format that could be used for model retraining. Table 5.1
illustrates the interactions, their corresponding log messages, and the annotation
formats extracted from them.

Due to time limitations in collecting enough data for retraining, this research does
not include model retraining with the newly collected annotations. However, the
following steps are recommended to continue using this approach to enhance model
performance:



5.3. EXTRACTION OF ANNOTATION FROM USER INTERACTIONS 59

Interaction Type Log Message Corresponding Anno-
tation

Identified Fields Identified

entities: [(value1,

covered text1),

(value2,

covered text2)]

{’Value’: value1,

’CoveredText’:

covered text1}, etc.

Missing Fields- Addition Entered value for

<label> value:

<value>

’Value’: <label>,

’CoveredText’:

<value>

Label removal Label "<label>"

removed from "<text>"

Removes the

entity with

’Value’: <label>,

’CoveredText’:

<text>’ from final

annotations

Text Selection Selected text

"<text>" with label

"<label>"

Adds ’Value’:

<label>,

’CoveredText’:

<text>’ to final

annotations

Dropdown Change Dropdown Category

Changed from

<previous> to <new>

for <item>

Updates the ’Value’

of ’Covered

Text’ <item> from

<previous> to <new>

Table 5.1: Summary of Log Interactions and Corresponding Annotations

1. Extarct the annotations

Using regular expression rules extract the annotation from the log messages
as mentioned in the table 5.1.

2. Train the model

Use the new set of annotations to train the model by incorporating them into
the training set.

3. Evaluate the performance

After training, evaluate the model’s performance to assess improvements.

These steps can be integrated into a continuous pipeline allowing the model to
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improve automatically as radiologists interact with the system. The model’s perfor-
mance can be displayed in the interface, providing users with real-time visibility into
how well the model is performing.



Chapter 6

Discussion and Recommendations

6.1 Discussion

In this research, we compared different models and chose a Hybrid Conditional Ran-
dom Field model that can identify important fields in prostate screening radiology re-
ports. The results were then used to predict the missing fields in the report thereby
ensuring the completeness of the reports. Additionally, we created a set of regular
expression rules to ensure that the reports adhered to compliance standards. We
also explored other approaches such as Dutch Language Models but these models
encountered overfitting issues due to the limited availability of annotated data. This
led us to develop an innovative approach that integrates the model into the radiolo-
gists’ workflow, allowing for both the use of the model in real-time reporting and the
facilitation of the annotation process, making it more efficient.

The Hybrid CRF model demonstrated good performance in identifying the fields,
that were well represented in the training data. However, it performed poorly in iden-
tifying underrepresented fields and failed to accurately identify fields when new re-
porting structures were introduced. The integration of an annotation process within
the interface offers a solution to this limitation. By continuously collecting annotated
data through the interface, we can retrain the model to adapt to new reporting struc-
tures and improve its performance in underrepresented fields.

Gaining more annotated data is also expected to help mitigate the overfitting is-
sues observed with the language models, potentially enabling their application for
the same task. The interactive interface has shown that annotation can be done
along with the reporting. Although the interface is not yet fully integrated with the
hospital’s existing systems, its potential for future integration is promising. Radiolo-
gists also suggested that the interface could be even more useful if it provided real-
time feedback during the reporting process, rather than only at the end. This would
allow them to address any issues immediately, rather than reviewing the report at
the end. However, for this to be effective, the model must achieve high accuracy in
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its predictions, as frequent incorrect predictions could disrupt the reporting process.
In summary, this research aimed to answer the following research questions and

the findings are as follows:
”How accurately can NLP algorithms cross-check prostate screening re-

ports with Guidelines to improve their completeness and compliance?”

RQ1: What models can be adapted to extract information from the report?
We tested different models including Dutch Language Models, Prompting, and

Hybrid Conditional Random Fields to extract the information from the reports and
identify them using the Named Entity Recognition (NER) approach. The Hybrid
Conditional Random Field model was the effective model that identified the fields
except for the fields which are underrepresented. This indicates that while the CRF
model is adaptable, it requires more annotated data to improve accuracy in identify-
ing all fields consistently.

RQ2: How can we ensure the compliance of the report?
The compliance of the report was ensured by defining regular expression rules,

However, these rules applied only to fields with a defined structure, limiting their ap-
plicability to just three fields. Ensuring compliance for more complex, unstructured
fields remains a challenge.

RQ3: What evaluation metrics should be used to measure the performance
of the models?

To analyse the model performance we used quantitative and qualitative evalu-
ation metrics. The quantitative evaluation of the Dutch Language models resulted
in overfitting. The reason is considered due to the limited dataset. For quantitative
evaluation, F1 scores were used to assess the accuracy of the CRF model, which
ranged from 0.94 to 0.45, with the lower scores attributed to underrepresented fields
like ”aspect” and ”grootte.” A qualitative evaluation was also performed for the CRF to
see the performance in the real setting. This was done by implementing an interface
that shows the results to the user while they are reporting. While the CRF model
performed well in real settings, inconsistencies in reporting structures affected its
performance.

Thus to address the first research question, the Hybrid CRF model identifies
fields that are represented in the training dataset and can suggest the missing fields
to the radiologists, which can help ensure completeness. The compliance as men-
tioned applies only to three fields and the regular expression rules can identify them.
The identification of underrepresented fields and the new structure are the limitations
of this approach. Increasing the annotated data for training may solve the problem
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of identification of underrepresented fields. The second research question of this
study focused on the integration of the model and the improvement of the annota-
tion process, with the following findings:

” How can models be integrated into the reporting workflow of radiologists
to check the report and to improve the annotation process simultaneously?”

RQ1: What features should the user interface include to support seamless
integration of NLP techniques into radiologists’ workflow?
The interface was designed with features that supported seamless integration of
the NLP model into the radiologists’ workflow, without creating additional burdens.
Prototypes were tested and refined to ensure that the interface was easy to use
and helped radiologists without interrupting their workflow. Key features included
highlighting missing fields and providing compliance checks after the report was
completed.

RQ2: What features should the interface have, to adapt model learning
from user interactions?
To adapt the model’s learning, the interface allowed for interaction-based annotation
collection. This was crucial, as it enabled the model to learn from radiologist in-
teractions and continuously improve. Features that allow radiologists to correct the
model’s predictions were built into the interface, allowing real-time data annotation
and collection.

RQ3: What metrics should be used to evaluate the effectiveness of NLP in-
tegration improving radiologists’ reporting practices and annotation process?
The evaluation of the interface with the real users radiologists was conducted to un-
derstand whether the features of the interface integrate the model into the workflow
and improve the annotation process. Although quantitative metrics were limited due
to a small sample size, the qualitative results showed that radiologists appreciated
the interface but requested real-time feedback during the reporting process. This
suggests that future evaluations should incorporate more test cases to quantitatively
measure improvements in reporting accuracy and time efficiency. The annotation
extraction from the interaction is possible from the log messages. The retraining
with the annotations was not done in this research, due to limited time for data col-
lection.

By integrating the model into an interface, the radiologist can use, and also by
leveraging the interface for collecting annotated data, we can increase the efficiency
of the annotation process. This approach effectively addresses our research ques-
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tions and offers a practical solution for enhancing both the accuracy and efficiency
of radiology reporting.

6.2 Limitations

In this research, we proposed an approach of using Conditional Random Fields
and regular expression rules to ensure completeness and compliance with prostate
screening radiology reports. After the development of the model, we integrated it into
the workflow of radiologists using an interface to facilitate its practical application.
One of the key challenges was having a limited annotated dataset, which led us to
use the same interface to collect user interactions during the reporting process itself.
However, there were several limitations in our study:

1. Adaptation to Other Domains

The model was designed on prostate screening reports, which limits its appli-
cation to other radiology reports. Future work would be needed to test if the
model can be adapted to other domains of radiology by training on the specific
data.

2. Limited Evaluation of Interactive Interface

Although the evaluation was performed, and observations were obtained, still
another set of iterative evaluations after incorporating the suggestions and find-
ings from the previous evaluation, would give more insights about the interface
usability.

3. Integration of the Interface in Real-Time

We were unable to integrate the interactive interface into the hospital system
fully. We use the non-interactive interface that shows the model results into
the system, but to know the performance of the interactive one in real-time
instead of at the end of reporting is not still done. Thus the potential impact of
such a feature on both reporting efficiency and model accuracy in the long run
remains unexplored.

4. Model Performance on Varying Medical Terminology

The reporting contents can change over time. Small changes were noticed
in the training dataset and the dataset used for the evaluation of the interface
itself. Using the annotation from the user interaction can help in capturing the
new changes, but still, an extensive study would be required to test how well
the model adapts to the new changes.
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5. Radiologist Workload and Acceptance

We evaluated the interface with the radiologists and analyzed their experience
and feedback. But this was done with two radiologists and in a short period.
From this evaluation, we got positive feedback that using the interface will re-
duce the burden of annotation and minimize the burden on radiologists, its
long-term impact on their workload has not been explored. As mentioned be-
fore, this can be only tested by using the interface along with their reporting
over time, to understand whether radiologists can adapt to it and find it a help-
ful aid.

6. Limited Exploration of Model Retraining

The user interaction data collected were relatively small due to time constraints,
limiting the ability to demonstrate significant improvements in model perfor-
mance with the additional data. Also, factors like how frequently the models
should be retrained have to be explored in future scope.

Additionally, while the overfitting issue with language models was partially at-
tributed to limited annotated data, further exploration into this issue was beyond the
scope of this thesis. Our primary focus was on designing an effective annotation
interface to address the problem, though other potential solutions remain to be ex-
plored.

6.3 Recommendations

Based on the findings of this research, the following recommendations are proposed
for future work:

1. Adapting to Other Radiology Reporting

While this research concentrated on prostate screening reports, the approach
can be extended to other radiology reporting, by adjusting the model and Reg-
ular Expression (RE) rules accordingly. This involves training domain-specific
datasets to capture relevant features and improve extraction accuracy.

2. Large Language Models

In this research, the use of the Language model was not a success. The limited
dataset may be a reason. As more data is collected through the interface,
language models can be revisited and retrained with the annotated data. With
sufficient data, these models may exhibit better performance and adaptability,
making them a promising area for future exploration.
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3. Integrating into the Existing System

The current interface can be developed to integrate with the hospital systems
to support real-time checking of the reports and collection of annotations. An
iterative evaluation of the interface has to be conducted to get more insights
into the usability of the interface.

4. User Training for Interactive Interface

Providing the radiologists with training in how to effectively use the interface
could improve user adoption. Demonstrating how the interface can save time
and ensure report quality would encourage more radiologists to use the inter-
face.

5. Speech-Based Interactions

Exploring the implementation of speech-based interaction instead of clicks can
be interesting, as the radiology reporting is speech-based. Thus speech-based
interactions will be easier for the user. This involves exploring how speech
commands can be used to navigate and interact with the reports.
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