UNIVERSITY OF
TWENTE

Science and Technology Faculty

Development and implementation of
a user-friendly software interface for
a multispectral imaging camera for
enhanced contrast in medical
applications

Boris ter Braak
Bachelor assignment BMT

Supervisor:
Prof.dr.ir. RM Verdaasdonk
External committee members:
Dr.ing. F. Dadrass Javan
Dr. A. Chizari
Date: 11-07-2024

CONTENTS

Contents
1 Abstract
2 Introduction
3 Theoretical background
3.1 The principles of multispectral imaging
3.2 Spectral filter array cameras oL oL e e e e e e e e
321 AITAY . . o o e e e e e
3.2.2 Image imperfections e e e
33 SKInoptics e e e e
33.1 Perfusion
332 OXygenation e
333 Pigment e e
334 Abnormal tissue L e e e e e e
34 Imageenhancement e e e e e
4 Methods
4.1 Requirement elicitation L e e e e e e e e
4.2 Tools and specifications e
43 Initial design e e e e e e e e e
4.3.1 Softwaredesign.
432 Pre-processing i e e e e e e e e e e
S Results
5.1 Frstversion e e e e e e e e e e e e e e
S5.0.1 0 OVerview o o e e e e
5.1.2 Strengths L e e
5.1.3 Shortcomings and solutions
5.2 Finaldesign L e
521 OVEIVIEW o vt it e e e e e e e e
5.2.2 Resulting images i e e e e e e e e e
6 Discussion
6.1 Requirements L. e e e
6.2 ImMages. e e e e e
6.3 Shortcomings and possibilities for future improvements L.
7 Conclusion
References
8 Appendix
8.1 Code. e e e e e

23
23
23
23

25

26

28

1 ABSTRACT

1 Abstract

Multispectral cameras have great applications in the medical industry due to their inherent ability to take the
same image using multiple wavelengths. This makes these cameras useful for visualizing chromophores and
processes residing in/beneath the outer layer of skin. Image (pre-)processing is required to obtain high-quality
data, which include spatial rearrangement and corrections. The purpose of this study is to create a user-friendly
application for medical professionals to create contrasting images with enhanced features. The development
process is described and feasability of the program is tested. The results show significant image enhancement
using presets created with the program and the program meets all requirements set. It is user-friendly due
to the simple design and limited functions and shows to be useful for imaging with medical applications.
Improvements could be made in image quality and expanding the support base for the program.

2 INTRODUCTION

2 Introduction

The skin is the largest organ of the human body and investigating it can provide crucial information about
someones well-being. Not only does our skin protect us from the outside world, it also contains various
structures and chromophores giving physicians inspecting it an idea about the health condition.

Visual inspection is the best method possible to do so as it allows inspection without the need to perform
invasive actions and having the added risk of infection with unwanted side-effects as a result. Visual inspection
is based on how light interacts with different tissues. The amount of absorption and reflection of the skin at
certain wavelengths contains information the structures underneath the skin, invisible to the naked eye.

Regular cameras film in RGB, thus having only three broad colorbans (red, green and blue) with which to
inspect the skin. This does not give sufficient discrimination to look at structures beneath the outer layer of
skin. Multispectral cameras on the other hand can have between 3 to 25 bands or even more giving a significant
increase in wavelengths to choose from. Next to giving a wider spectrum of wavelengths (sometimes including
even infrared and/or ultraviolet), it also allows for a far more specific selection of wavelengths and thus a
higher spectral resolution. Altogether, multispectral cameras give the ability to enhance certain features with
applications such as pre-operation assessments.

(a) RGB image of a hand (left) compared to a multispectral (b) RGB image of melanoma (left) compared

image of the same hand (right) with enhanced visualization to a multispectral image of the same melanoma
of blood vessels [1] (right) [2]

Figure 1: Examples of medical applications of multispectral imaging. (a) shows enhanced perfusion and (b)
shows the possibility of detecting malignant melanomas

Some multispectral cameras (like the one used for this research) are spectral filter array (SFA) cameras. A
single snapshot image contains information of 16 or 25 wavelengths in the filter. Processing of this image is
needed to extract the desired information and to be able to visualize chromophores or physiological processes.

Most companies deliver specialized applications along with their cameras in order to get and manipulate
multispectral image data for scientific applications, but not for user-friendly medical applications.

The goal of this research is to create such a program for a multispectral camera to combine any of the available
wavelength images with a simple analytical formula to enhance specific features in an image like anatomical
structures and/or physiologic processes. A researcher should be able to test several combinations by inserting
images in the formula and saving them as a preset. Then, from within another simple and user-friendly interface
meant for medical professionals, these presets can be selected for specific diagnostics.

3 THEORETICAL BACKGROUND

3 Theoretical background

3.1 The principles of multispectral imaging

There are some key aspects to consider when working with a multispectral camera. They are displayed in figure
2.

Figure 2: Key aspects of multispectral imaging [3]

For uniform and reliable results, one should consider the light source in the optical setup, the specifications of
the camera, the parameters for acquisition and the processing steps. While this report mostly focuses on the
pre-processing- and processing steps, the other aspects are still taken into consideration.

3.2 Spectral filter array cameras

3.2.1 Array

SFA cameras, like the one used in this research, use an array covering a megapixel sensor. For standard RGB
cameras this array is a 2x2 grid, mostly organized like in figure 3. So each megapixel gets multiple signals
representing the colors of the array. From this, a full image can be reconstructed through image processing.

(a) (b) (© (@

Figure 3: 2x2 bayer patterns [4]

This 2x2 array is scaled up for SFA cameras. The camera used for this research uses a 4x4 grid as seen in figure
4a. This array has 16 colors (wavelengths between 490nm and 618nm) and with a higher spectral resolution,
because the bands (figure 4b) are smaller than those of the standard bayer pattern RGB cameras use. This
allows for a precise selection of wavelengths without as much signal from unwanted wavelengths around the
peak wavelength.

3 THEORETICAL BACKGROUND

0 1 2 3 Filter responses in the active range
490 500 477 478 of a SSM 4x4 VIS hyperspectral sensor
S0
20 N
4 5 6 7 70 f
577 591 563 553 e [
8 o 10 11 -
616 i '
618 478 613 600 N\ -
12 13 14 15 o ’ \;avelength (nm})
538 549 523 511
band 12 band 13 - - - - band 14 -----—- band 15 band8 ---- band9
---- band10 ------- band 11 band4 o band 5 band & band 7

bandQ - band1 ------- band 2 band 3

(a) Spectral filter array of the camera with
peak wavelengths in [nm] (b) Spectral response for each band in the array

Figure 4: Layout of the spectral filter array (a) and their respective responses (b). Extracted from a from a file
containing specifications, given along with the camera

3.2.2 Image imperfections

Spectral imperfections

Images received from hyperspectral cameras are not entirely uniform in the spectral dimension. For example,
the SFA does not have the same sensitivity for each color. Some colors are received with higher intensity than
others [5].

Besides that, pixels can influence the signal of neighbouring pixels. This is called cross-talk’ [3]. Instead of
only receiving a signal from the intended wavelength as defined by the filters spectral sensitivity for the given
pixel, that pixel also receives some signal from another wavelength. They show a second order peak next to the
intended peak wavelength.

For figure 4b, a uniform lightsource is used. Every lightsource has its own emission spectrum [6]. Using a
lightsource without a uniform spectrum (the same emission for each wavelength) could cause imperfections
where some wavelengths would get significantly more (or less) signal than others, if not accounted for.

Spatial imperfections

The illumination over the image is not constant. This phenomenon, called ’vignetting’ causes a fall-off of the
signal towards the edges in comparison to the center of the image [7]. The illumination follows a Gaussian
curve over the width and length of the image.

Noise

The sensor creates a certain amount of noise in the image, even if no signal is received, for example when the
light source is turned off [5]. This *dark noise’ creates inconsistencies in the illumination of the final image.
This issue is amplified when images have a low signal-to-noise ratio (SNR). If there is a relatively high amount
of noise compared to a low amount of signal, the influence of noise in the final image will become more
apparent. Two ways to go about this are to decrease the noise or increase the signal, such that the SNR becomes
higher and the relative influence of noise lower.

3 THEORETICAL BACKGROUND

3.3 Skin optics

Chromophores are the particles within the skin that interact with incoming light. The most important chro-
mophores can be seen in figure 5.

400 nm 700 nm
|
Epidermis
7777777777777777777 Qq
Dermis
Subcutaneous S vﬂ)‘(> s { :
tissue '

Figure 5: Layers of the skin and a visualization of how far different wavelengths penetrate the skin [8]

The epidermis is the outer layer of skin and is also what gives the skin its color due to the presence of melanin.
The layer below is where blood vessels and hair follicles are found. The difference in reflection and absorbance
curves can be used to distinguish between these chromophores. However, there are some large absorbers in the
skin that result in some spectral regions being useless for visualization. Proteins absorb the short wavelength
ultraviolet light and most of the longer wavelengths from infrared onwards are absorbed by water and tissue
within the skin. This leaves the spectral region of visible wavelengths and Near Infrared (NIR) wavelengths as
the useful so-called optical window. Within this window, multiple chromophores can be found such as melanin
and (oxy)hemoglobin (figure 6), but also some physiological processes like perfusion and oxygenation. Some
of these chromophores and processes are explained below.

Melanin

-1
, em™)

Absorption

‘IO-' Oiey-Hemogiobin

10- L L L L L L
400 600 800 1000 1200 1400

Wavelength & (nm)

Figure 6: Absorption spectra of chromophores present in the skin [9]

3.3.1 Perfusion

Perfusion is the flow of blood through tissue. It can be visualized by using the absorption spectra for (oxy-
)hemoglobin in figure 6 as these chromophores are only present in blood.

3 THEORETICAL BACKGROUND

3.3.2 Oxygenation

Oxygenation is the amount of oxygen present within the blood. The way to visualize this is to look at the
differences between the spectra of oxygenated- and deoxygenated hemoglobin (figure 6). Hemoglobin is a
molecule in blood to bind oxygen and transport it. Binding oxygen changes the absorption spectrum of this
molecule. Because of this, the absorption spectrum of oxygenated hemoglobin differs from that of deoxygenated
hemoglobin [10].

3.3.3 Pigment

Pigment is mainly caused by the presence of melanin in the skin. This polymer has a characteristically wide
absorption spectrum resulting in darkness of the skin when present in high concentrations. It just absorbs that
much of the visible spectrum [11]. The absorption spectrum can be seen in figure 6.

3.3.4 Abnormal tissue

Abnormal tissue is tissue with an abnormal growth rate, otherwise known as tumor tissue. There is no singular
absorption spectrum for cancerous tissue, but there are indicators based on abnormal concentrations of certain
molecules. It has been found that abnormal tissue shows an increased concentration of hemoglobin due to
angiogenesis [12], which is the process of new capillaries being formed, excessively present in tumor tissue as
rapidly growing populations of cells need oxygen to survive [13]. So abnormal tissue could also be detected by
looking for abnormally high levels of blood in similar fashion to 3.3.1. Furthermore, melanoma can be detected
by looking at irregular deposition of melanin in the skin. Melanoma originate from melanocytes which are
responsible for the production of melanin [14]. Malignant growth of these melanocytes causes dark pigment
spots on the skin by which cancerous cells could be detected.

3.4 Image enhancement

Image enhancement is the process of making images more useful. This could mean making images more
visually appealing, but also (and especially in this research’s context) bringing out specific features of an image.
Image enhancement to bring out the features above from 3.3 is done by looking at differences in absorption/re-
flection at different wavelengths. A method to visualize perfusion is performed by He and Wang [15]. The
formula used is a sum of weighted averages between wavelengths shown below in formula 1.

Per fusion = (556nm — k * 625nm) + (529nm — [%« 603nm) + (556nm — m x 615nm) (1)

With k, | and m weight factors (mostly between 0.5 and 2) of the subtraction. They use the same principle for
pigmentation according to formula 2.

Pigmentation = (482nm — k * 543nm) 4 (482nm — [* 529nm) + (482nm — m * 544nm) 2)

It can be seen from these formulas that the principle behind image enhancement is choosing wavelengths in the
weighted subtraction such that there is a difference in absorption of the desired chromophore between those
wavelengths. Summing multiple weighted subtractions together only amplifies the contrast of the result. The
same principle can be applied to any other chromophore within the active spectral range of the sensor.

4 METHODS

4 Methods

4.1 Requirement elicitation

The most important part of designing a program is defining what functionalities it needs to hold. There should
be a clear understanding of the requirements before taking any steps in implementation. For this application,
the most important requirements are:

* The application must be able to show a real-time capture of a combination of images from the camera.
* The researcher must be able to combine images of wavelengths by simple analytic manipulations (+,-,/,x).
* The researcher must be able to save the formula as a preset which can later be accessed again.

* The doctor must be able to access and select any of the presets

* The application must be able to combine the images in such a way that enables the researcher to create
presets that show certain structures in the skin with optimal contrast.

* The application should have an additional page where RGB images can be made by selecting wavelengths
for the individual 'R’-, ’G’- and ’B’-channels.

* The user should be able to save images

* The user should be able to display saved images and edit them

4.2 Tools and specifications

Image acquisition was done with the XIMEA MQO22HG-IM hyperspectral camera with the SM4X4-VIS3
filter [16]. It has a spectral range of 460-600nm and consists of 16 spectral bands. The exposure was set to
100ms and was constant throughout the whole process.

Programming was done with python v3.11. Functions to access XIMEAs camera were provided in their xiapi
python module. Other imported modules included Pillow and OpenCV (for computer vision and real-time
image processing) and Numpy (for calculations with matrices). Lastly, the script is turned into an executable
using Pylnstaller. It also analyzes the script to discover every necessary library and module to run the code.

4 METHODS

4.3 Initial design
4.3.1 Software design

Based on the requirements from 4.1, a flowchart was made with all necessary functionality (figure 7).

M
Test formula No

satisfactory
preset?

Yes

Enter name /_\
Yes 1

Save preset New preset.

File with presets

Select preset |« Get preset by name \\l_/
Yes

satisfactory
preset?

No

¥

almost
satisfactory,

|
No
Y

Remove selected
Remove preset)
preset

Figure 7: Flowchart of how presets are added and selected in the initial design

A researcher can enter a formula containing analytical operators and individual images as a string in a textbox
and then test the formula, after which the result of that formula is displayed on screen. If they decide they want
to keep the preset, they can enter a name for the preset and press a “save’ button which saves the preset in a file,
recognizable by its name. The same preset can then be selected from the file, giving them the ability to edit or
remove the preset. A doctor will have access to the same file with presets from a different interface where all
they can do is select the desired preset from a list with all presets.

4 METHODS

4.3.2 Pre-processing

A schematic overview of the necessary pre-proccesing steps is given below in figure 8.

16x272x512 Corrected
imagecube imagecube

Black and
white
corrected
image

088x2048
ultispectra
image

Ble;n’:rﬁ;nd Spatial
carrection rearrangement

Figure 8: Flowchart of the pre-processing steps

First of all, a black- and white correction should be applied to account for the spectral imperfections named
in 3.2.2. A process for this is given by [17] and [5], which has been shown to account for inhomogeneous
illuminations. A black- and white reference image should be taken with the same setup as with which the
camera is about to be used. The black image can be acquired by fully blocking the camera and then taking an
image. This will account for any imperfections that are present, even when no signal is obtained. As for the
white image, a white sheet of paper should be held at some distance from the camera to correct for uneven
signal strength along the spatial dimensions with the current optical setup (in combination with surrounding
light sources). From then on, using these images, a formula (3) should be applied to the desired image to get
the corrected image.

I—1Ip
Icorrecled = m (3)

With I the acquired image, I the dark reference image and Iy the white reference image. All are arrays with
numbers representing the received signal strengths per pixel.

The resulting image has a size of 1088x2048 pixels. This image can be separated into 16 272x512 images. The
full image contained repeated grids of 4x4 pixels of different wavelengths in accordance with image 4a. So
by reducing the spatial resolution to 1/4 in both x and y direction, images were acquired of each individual
wavelength, thereby creating a so-called imagecube’ [18]. An image with, not only, an x- and y-axis as the
spatial dimensions, but also an extra spectral dimension representing all wavelengths (as shown in figure 9).

10

4 METHODS

M rows

Y
< >

n columns

Figure 9: Image cube with two spatial- and one spectral dimension [19]

Furthermore, a normalization is applied, because of the difference in sensitivities between the different
wavelengths (section 3.2.2). Intensities are read as a value between 0 and 255 with, 0 being no received signal
and 255 being full received signal strength. To make sure that every wavelength returns the same signal strength,
the image is multiplied by a gain to stretch the intensity such that the maximum intensity is 255 and therefore
equal for all wavelengths. This is done by:

INormalized (;L) = I(l) * Gam(?L) (4)
.. 255
Gain(A) = T2 5)

With I the array of the corresponding image. This formula makes sure that even wavelengths that receive less
signal can be used in calculations without losing their information.

11

5 RESULTS

5 Results

5.1 First version
5.1.1 Overview

A sequence diagram is made as a summary of the program (shown in figure 10). Some details are missing
regarding for example checking if selected and created presets are valid and how the images are created, but it
is a good, simplified visualization for what happens behind the scenes for the most important functionalities.

X

User
1: Start program
Program
_______________________ >
: I
| 2 Stat comors | '
H _______ sl SO [Prestpage
I
4: Save blackimage _ |

5: Save white image

T: Stop camera

alt,

[User is researcher] . —_—
8: Create entries_ * Name and farmula entry

9: Test formula)l—li

|
’E] 10: Fetch formula I
i ' ' i
| 10.1: Retum fomula |
J_‘ L
10.1.1: Show result of formula I 23
e |
11: Add preset |
P 11.1: Fetch name and formula >__
T 11.1.1: Return name and formu

11.1.1.1: Add preset to list
B

12: Select praset

P |
12.1: Fetch selected preset

1 [
I gl

12.1.1: Return selected preset

PRSI SE SERO poe F BY - pd B
|

12.1.1.1: Enter name and formula of selected preset
1

12.1.1.2: Show result of selected preset

13: Remove selected presat

13.1: Remove selected preset

[Useris doctor]
14: Select preset

14.1: Fetch selected preset

14.1.1: Return selected preset

14.1.1.1: Enter name and formula of selected preset !

14.1.1.2: Show result of selected preset

1
|
|
|
|
T
14.1.1.3: Destroy preset list |

X

Figure 10: Sequence diagram of the first version of the final design

12

5 RESULTS

5.1.2 Strengths

The design has all necessary functionality for adding and removing presets. Presets can be edited and overwritten.
Upon selecting a preset, the name and formula of that preset would be visible in the textboxes, such that the
name and formula can be changed.

5.1.3 Shortcomings and solutions

Unexpected behaviour

First of all, errors weren’t caught by the system which resulted in problematic behaviour as certain unwanted
inputs could crash the system. For example, the buttons for starting and stopping the camera and the ones for
saving a black and white reference image could be pressed without a camera being connected. An error would
then be displayed in the terminal that no camera was found and the program would freeze. In addition to that, a
user could enter a formula that is not of the expected form. This would give the same result, just with a different
error. There are more cases for which this kind of behaviour would occur. These sort of unexpected actions
should be accounted for such that the program continues working after these inputs.

To account for unexpected inputs, so-called "try-except’-blocks were added where needed for every possible
wrong action such that the system would never crash anymore, but it would display pop-ups with the error
message instead informing the user of what went wrong and then resuming the program as it was before. These
blocks execute the code written within the try-statement, unless an error occurs. Then it executes the code
within the except-statement. This allows the program to catch errors and handle them

Black and white correction

Implementing the black and white correction as described in section 4.3.2 resulted in issues, mostly having to
do with division by zero. Any pixel which was divided by zero was automatically set to positive infinity by the
program. This resulted in noise over the image, reducing the quality. A work-around was to set all pixels with
value positive infinity to zero. This ended up working, but another problem surfaced, previously undiscovered.
Doing the correction this way severely reduced the intensity of the final image, as the denominator was bigger
than the numerator by some magnitude. As a result, all pixels got a value between 0 and 1 making the image
invisible. Stretching out the values back to a maximum of 255 was tried, but the resulting image had a low
resolution and lots of noise.

Multiple attempts were made to fix the problems described above, but none sufficed. The array representing the
white image always contains quite a lot of zeros. This means that element-wise division creates division-by-zero
problems. Removing all the zeros from the array and resizing back to the original size altered the image too
much for it to be useful. After careful consideration, the decision was made to not implement a black and white
correction. It was found that the black image (with the camera covered correctly, for example with the lens
cover) was fully black and did not show any inherent noise. As for the white image, the problem would be
vignetting as described in section 3.2.2. However, the intensity from the furthest edge to the center of the image
only did not differ significantly (a difference of at most 20 on a scale of 0-255, this is barely even visible for the
naked eye). While not perfect, it was deemed sufficient for the intended purpose of the application.

Normalization

Normalization as described in section 4.3.2 didn’t have the desired effect. Although each wavelength displayed
the same intensity, problems arose because of the inconsistency of the maximum value for each wavelength.
During the initial design phase, it was assumed that the maximum value would be relatively constant and the
on-screen intensity would gradually be adjusted. Instead, the maximum value changed each frame resulting in
flickering images for frames without movement, let alone when movement was introduced. Moreover, because
some wavelengths received less signal than others, they had the tendency to be underexposed causing noise to
appear in the image. Amplifying the image by a constant resolves the intensity issue, but also amplifies noise.
At first, a solution to this problem was to not apply normalization at all. This ensured that flickering was no
longer an issue, but it meant that intensities per wavelength would differ immensely due to the sensitivity of the
sensor. When combining multiple images into a formula, it is preferred for them to have the same intensity
such that each wavelength used has a similar influence on the final result. After consideration, it was decided

13

5 RESULTS

that the best method would be to upscale lower intensity wavelengths as a ratio compared to the one with the
highest intensity, to keep the gain constant. A record was made of the maximum intensity of each wavelength
with constant settings (see table 1, figure 14). Then, for each iteration, multiple images are taken and added
together per wavelength however many times necessary to reach the desired intensity (displayed in the final
column of table 1), solving the intensity issue and simulating a variable exposure time within the snapshot
images. This also decreases noise, because the amount of signal used for each wavelength becomes higher, thus
increasing the SNR as described in section 3.2.2. This yielded the results shown in figure 14 and figure 12b.

Table 1: Table of wavelengths and their intensities and respective gain used for the program

Wavelength [nm] H Intensity ‘ Gain (255/intensity) ‘

477 103 2.48
478 118 2.16
490 90 2.83
500 92 2.77
511 123 2.07
523 169 1.51
538 189 1.35
549 179 1.42
553 169 1.51
563 209 1.22
577 230 1.11
591 255 1.00
600 255 1.00
613 255 1.00
616 244 1.05
618 255 1.00
o;
0,8
g% g
L i
3 | ‘ | I ‘ i
’ 477 478 490 500 511 523 538 549 553 563 577 591 600 613 616 618 477 478 490 500 511 523 538 549 553 563 577 591 600 613 616 618
Wavelength [nm] Wavelength [nm]
(a) (b)

Figure 11: Graph of the sensitivity per wavelength compared to the wavelength for which the sensor has the
highest sensitivity before (a) and after (b) normalization

14

5 RESULTS

colorchecker BRI

- HE EE
EEE EN

5 HEN
HEE

Taxfite

(a) Color checker used for 12b

- Ay - -

(b) Image for each wavelength organised the same as the spectral filter array (section 4a) after normalization is applied

Figure 12: Reference color checker (a) and an image of the color checker taken for each wavelength after
normalization (b)

Preset storage

Furthermore, presets were only saved temporarily while running the program. Closing the program caused
all created presets to be forgotten (as can be seen by the destroyed preset list at the bottom of figure 10). It is
required that saved presets could still be accessed after closing and reopening the program. Otherwise doctors
would not be able to access created presets.

In the final design, storing presets is done via a json-file accessed by the script. The script checks whether such
a file already exists. If not, it creates an empty one within the same folder and writes an empty dictionary to
the file. If a file does exist, the dictionary contained within the file is accessed by the program. This file is
saved automatically with each update. This means that any added preset will still be available the next time the
interface is used after closing it. It has the added advantage of being able to send created presets to others using
the program elsewhere. A copy of the file can be exported and then placed by someone else into the dedicated
folder where their program can access it in the way described above.

Selecting presets

In the initial design, a doctor using the system can select presets from a list of all presets created by a researcher.
Evaluation resulted in a slight change of the requirements. Where before the doctor was able to select any of
the presets (also seen in figure 10, where the doctor has access to the entire preset list), it now became clear that
the doctor only needs to be able to access the most important presets and they should be able to do so quickly
and easily whereas in the initial design it is unnecessarily cumbersome.

15

5 RESULTS

To make the process of selecting a preset quicker and easier for a doctor using the system, buttons were created
which could have presets assigned to them by a researcher. Fixing a single preset to a button was not a viable
solution, as presets could still be changed by a researcher afterwards. This is why the decision was made to
assign presets by name. If the researcher creates with the same name as displayed on the button, that preset will
be assigned to the respective button. Clicking on the button then displays the result of that preset on-screen.
Since no 2 presets can have the same name, no situation will occur where more presets are added to a single
button. Furthermore, clicking on a button when no preset is assigned returns no error, but just shows a black
screen instead. Therefore, this method is foolproof and meets the requirement set.

RGB image

After evaluation of the design, it became clear that the requirement to be able to show an RGB image in fashion
of figure 13 was not yet met. Previously, images were only displayed as a greyscale image with a representation
of the intensity per pixel. This gave useful results, but an additional page to create an RGB-image was desired.

Y Custom RGE Control

Wayelenghom] (553 4

Figure 13: Desired way of creating an RGB-image. Program has three sliders, one for each of the channels to
assign any wavelength to the respective channel

To enable the user to create an RGB image within the same interface. A new page was added to the program.
When the researcher interacts with this page, they can select a wavelength for each of the channels and increase
or decrease their respective intensities. This gives the researcher a lot of possibilities in order to create their
optimal image. Doctors interacting with this page again see buttons with names which have presets assigned to
them as desribed above.

Saving presets for this page was a problem to overcome. Instead of saving only one formula, presets of this
form need to hold 6 independent pieces of information. One for each of the channels and one for each channel
intensity. After careful consideration and multiple failed tests, the final solution was to save presets as a
dictionary entry, similar to how grayscale images are saved from the other page. For this preset however, all
necessary bits of information are added as a tuple in the dictionary. The program distinguishes between the
elements of the tuple by assigning all elements to their dedicated place on the page.

This created a different issue of being able to select any type of preset in any page. Since the form of these
presets is different, presets from one page are not compatible with the other, resulting in errors being given by
the system. That is why presets in the RGB form get a signature (_RGB) added to their name and presets in the
grayscale form can not contain that signature anywhere in their name or the system notifies the user that the
entered name is invalid. Based on this method, only presets containing the signature are available on the RGB
page and vice versa.

16

5 RESULTS

(a) Image created with the RGB-page of the color checker in (b) with
wavelengths: 618nm (R), 563nm (G) and 500nm (B) (b) Color checker used for (a)

Figure 14: Image created with the RGB page (a) next to reference image (b)

Saving and uploading images

Lastly, the first version of the design did not yet have the possibility to save images and upload/edit previously
created images, but this was one of the requirements. For the final design, these functionalities have been
implemented.

To save images, firstly, directories are made specifically to store these images if they don’t yet exist. The general
directory is called *Saved images’ in which are 2 more directories called *Preset images’ and "'RGB images’ for
images created with the preset pages from figure 16 and RGB pages from figure 17 respectively. A saved image
is put into either of these directories depending on the type of image, along with its preset and image cube (if
they exist). The preset is saved as a json-file containing a single dictionary entry and the image cube is saved as
another directory with a png-images for each wavelength.

Uploading images is done by asking the user to select a file from the ’Saved images’ directory. Depending on
the page from which this is done, a different folder is opened. The user can only select the ’.png’ file found in
the initial folder, selecting any other file than a ’.png’ returns in a black screen (but no error of some sorts) and
the image cube ’.png’ files are just meant as building blocks for the image displayed on-screen.

17

5 RESULTS

5.2 Final design
5.2.1 Overview

An updated version of the sequence diagram shown in figure 10 is shown below in figure 15. The diagram
misses some functionalities like switching to the RGB page and saving/uploading images, but is again a good,
very simplified visualization of the most important functions. A full description of all functions of the program
can be found in section 8.1.

User

1: Start program
____________ p_°_g_________3 Program

alt
2: Create preset file File of presets
[File does not exist] | R aeen e e e
3: Fetch presets |
.|
T 3.1: Retum presets
L
3.1.1: Fetch presets I —————
[File already exists]
3.1.1.1: Return presets vJ
-
Bl
|
, 4 Statcamera[Neamera] || s b e ook SR R T
A5
5: Save black image | I
&: Save white image I
|
7: Stop camera I
|
|
X |
1
alt, I
| 8: Create entries Name and formula entry
[User is researcher] I ,,,,,,,,
9: Test formula i i
9.1: Fetch formula
1.1: Retum formula
-
8.1.1.1: Show result of formula I
10: Add preset
10.1: Fetch name and formula | -
: T L
|
10.1.1: Return name and formula
10.1.1.1: Add name and formula as preset
11: Select preset 1
11.1: Fetch selected preset I
11.1.1: Return selected preset
11.1.1.1: Enter name and formula of selected preset
1
bl |
12: Remove selected preset
12.1: Remove selected preset
-
[Lizscl=doctor) 12.2: Greate preset buttons
|
13: Click button I
-~
13.1: Button clicked LJ
-
-4
13.1.1: Fetch name on button |
i H
13.1.1.1: Return name on button
- L
] +
13.1.1.1.1: Check if preset with that name exists L
alt,
[Preset exists]
13.1.1.1.2: Show result of preset
[Preset does not exist]
13.1.1.1.3: Show black image
Ll i E <

Figure 15: Sequence diagram of the most important functions available on the preset page of the final version of
the design. For the RGB page, the sequence diagram is almost the same, except that presets are a combinations
of channels and not just a formula.

18

5 RESULTS

It can be seen that some of the issues from section 5.1.3 are now solved. The preset list is now a file of presets,
which does not get removed when the program is closed. When opening the program again, it is first checked
whether the file already exists and if so, it gets all presets saved within that file. Furthermore, doctors no longer
have access to the entire list of presets. They just have buttons which may or may not have presets assigned to
them based on their name. Clicking the button will either show the result of the assigned, or a black screen if
no preset is assigned.

A further description of the final product is given below.

Preset pages

7 XIMEA MS Display

ormula: nter formula
Name:
Test formula Confirm preset Help

S o |
. - - b -

' XIMEA MS| Display

Perfusm -
- i
S i |

Doctor RGB Save ima Upload image

(b)

Figure 16: Preset pages for a researcher (a) and a doctor (b)

Figure 16 shows the interfaces a user gets to see depending on their role. A researcher (figure 16a) has all
necessary functionality to create and remove presets. They can create presets by adding wavelengths and
operations into the formula entry. Wavelengths can be selected from the list of available wavelengths in the
top left of the screen and then clicking ’Insert wavelength’. This automatically puts the representation for that
wavelength into the formula such that the program can access it. Clicking any of the operators underneath
the ’Insert wavelength’ button automatically inserts the Numpy (4.2) representation of that operator. When
a formula is inserted in the entry, the researcher can test the formula by clicking *Test formula’. This shows
the result of the currently entered formula on screen, but does not save the preset yet. If the result is good,
the researcher can choose to save the preset by entering a name for the preset and then clicking *Confirm

19

5 RESULTS

preset’. The preset then gets added to the list of available presets. From that list, the researcher can also select
a preset that is already created by choosing that preset from the list and clicking ’Select preset’. This shows
the result of that preset on screen and inserts the formula and name of that presets into the formula- and name
entry respectively. The currently selected preset can also be removed by clicking 'Remove preset. And if
the researcher wants to reset all presets they can press ’Clear presets’, which will remove any created preset
(a second confirmation has to be given in order to proceed with the action, such that this will not happen
accidentally).

The preset page for the doctor (figure 16b) is a lot simpler than the one for the researcher. A doctor can only
choose between four presets assigned to the four buttons displayed on screen. When a button is green, this
means that it has a preset assigned to it (as described in section 5.1.3).

Both pages have a button to go to the RGB-page of their respective role (shown in figure 17).

RGB pages

' XIMEA MS! Display

Choose 'R-channel 0 Available presets

Select preset
Choose 'G'-channel
Clear presets

Choose 'B'-channel 9 Remove preset

Name: Enter name

Confirm preset

S i —
Research Upload image - - start stop

7 XIMEA MS! Display

Choose 'R'~channel -
0.5
N
Perfusion
Choose ‘G-channel -
0.5
N

Choose 'B-channel -
05
(T —
Pigmentation

1.0
S |
Doctor Save image Upload image - - Start stop

Figure 17: RGB pages for a researcher (a) and a doctor (b)

20

5 RESULTS

The RGB pages have a lot of the same functionalities as the standard preset pages. Except presets are now more
complicated. Instead of just adding a formula to an entry, the researcher can select any of the wavelengths (or
already created presets) for any of the R-, G- and B-channels including a relative intensity determined by the
scale underneath each channel. When a valid value is entered for each channel, the result of that combination is
automatically displayed on screen, so there is no more need for a *Test formula’-button. The RGB page for the
doctor again has four buttons which can have presets assigned to them by name.

General functionality

It can be seen in figures 16 and 17 that all pages have a scale underneath the image display section to up- or
downscale the intensity of the image to finetune the result. Saving and uploading images should be possible for
all users, so every page has these functionalities as well. They also all have buttons to start and stop the camera
and to save a black and white reference image such that the camera can be started and calibrated on any page.
These buttons will also turn green once that action is performed. The start-button starts off red to indicate that
starting the camera is necessary to run the program, while the program runs just fine without the black- and
white images (also when a black- and white correction is implemented). Using these colors as indicators to the
state of the buttons makes the application more user-friendly.

21

5 RESULTS

5.2.2 Resulting images

To show the results of image processing and demonstrate the possibilities of the program, images (seen in
figure 18) were made to compare different presets with each other.

(a) Regular RGB-image of an
arm taken by a mobile phone (b) Perfusion image of the same arm as ’a

s

(c) Pigmentation image of the arm

(d) Regular RGB-image of the
hand (with a birthmark) taken by
a mobile phone (e) Perfusion image of the hand in ’d’ (f) Pigmentation image of the hand in ’d’

Figure 18: Images made with the program with a perfusion preset (b and e) and a pigmentation preset (c and f)
compared to RGB-images of the same part of the body (a and d).

The perfusion preset is of the form of equation 1, with weighted subtractions between wavelengths 618nm and
490nm, 616nm and 500nm, 613nm and 477nm.

The pigmentation preset has the same form but with weighted subtractions between wavelengths 553nm and
477nm, 563nm and 490nm.

The images above (figures 18b, 18c, 18e, 18f) are made in the page shown in figure 16a. The images below
(figure 19) showcase the possibilities of presets made with the page from figure 17.

(a) Regular 'RGB’-image of an arm taken (b) Image of the arm in ’a’ with a perfusion preset created with the RGB
by a mobile phone page of figure 17a

Figure 19: Comparison between a regular RGB-image (a) and an RGB image with enhanced visualization of
perfusion (b).

For (b), the perfusion preset, used for figure 18b, is set as the 'R’-channel, 563nm is set as the *G’-channel and
549nm is set as the ’B’-channel.

22

6 DISCUSSION

6 Discussion

6.1 Requirements

Part of the aim of this study was to create a user-friendly application for medical purposes. The final product
meets all of the requirements set in 4.1regarding the software design. Using the program, a researcher has
the ability to create a formula, test it and then possibly save the formula along with a name as a preset. The
researcher can select presets, remove presets and clear all presets. They can do this for both regular presets and
presets in the form of RGB-images. The doctor has buttons to select presets that were created by a researcher
(if they are assigned to the button as explained in section 5.2). Both users have the ability to start and stop the
camera, to save a black- and white image and to save and upload images. The image is shown on the right-hand
side of the screen whereas the buttons users can interact with are on the left-hand side.

The program also has some additional features to make the application more user-friendly. For example, buttons
get a color depending on the state of their functions and the list of presets only shows presets of the current
page.

Furthermore, the program behaves as intended and unexpected behaviour is handled appropriately by the
system catching any possible error.

6.2 Images

Another requirement was to be able to create contrasting images using the program. The results from presets
created with the application in the form of equations 1 and 2 for perfusion and pigmentation respectively, show
the desired chromophores as intended. Figures 18a - 18c show that the perfusion presets significantly enhances
the blood vessels (already slightly visible in figure 18a) in the arm, while they are not at all visible in figure 18¢c
as this preset shows pigmentation. This is confirmed by images 18d - 18f. A small birthmark (representing a
local high amount of melanin) is visible in figure 18d and more so in figure 18f (the tiny black dot at the base
of the thumb), while barely visible in figure 18e.

Image enhancement is achieved as contrast is improved in the created images compared to the standard RGB-
image. The same can be seen in figure 19 where perfusion in the arm is significantly enhanced compared to the
reference image made with a mobile phone.

6.3 Shortcomings and possibilities for future improvements

First of all, like said in section 4.3, no black and white correction is applied at the moment. Although the results
(section 5.2.2) are of sufficient quality for the intended purpose of this study, a black and white correction could
improve the quality, removing any dark noise and vignetting from the image.

Secondly, it was mentioned in section 3.2.2 that not using a uniform lightsource could cause imperfections. The
method of normalization used in 5.2 does account for the non-uniform lightsource, but it does not account for the
fact that other lightsources will have different emission spectra. The emission spectrum of the lightsource used
is not determined and therefore nothing can be said about correcting the normalization for other surrounding
light. A possible solution could be to recalculate the intensities per wavelength using a spectrally uniform
LED-ring. This will give absolute intensities per wavelength that are independent of the emission spectrum of
the surrounding light. This way, you could divide the resulting gain by the relative emission per wavelength
of the used lightsource and apply normalization this way. Or you could simply perform any measurement
under the illumination of a uniform lightsource. Thirdly, the colors of presets created with the RGB-page seem
to be off when comparing figure 14a to figure 12a. This could partly be because of a sub-optimal choice of
wavelength. But more likely is that the color balance is wrong. For this, a color correction matrix could be
calculated, a method for which is proposed by [20]. A future version of this program could include such a color
correction matrix to make the results created with the RGB-page more accurate.

Lastly, the program only shows the correct wavelengths for the camera used in this research. Using this program
for any other camera with a different array than shown in figure 4a will require accurate inspection to find
out what wavelength corresponds to what index in the array, because the names of the wavelengths in the
list of available wavelengths on page 16a won’t change depending on the connected camera. A way to read

23

6 DISCUSSION

out the peak wavelengths of the filter used is desired in order to make the application less type-specific. This
would also enable usage of the program for cameras with an array with a layout of a size other than 4x4, which
currently would cause the program to crash.

24

7 CONCLUSION

7 Conclusion

A program was made for a multispectral camera for user-friendly medical applications. The study shows the
steps of the process regarding both software design and image processing. Feasability of the program was
analyzed. The program meets all requirements and has a user-friendly interface depending on the expertise
of the user. Some additional features are added to expand functionality and convenience. Images made using
a preset created with the program show enhanced contrast compared to reference images, demonstrating its
possibilities. Aspects of image processing need to be improved upon, including the black and white correction
and color correction. The program should also undergo changes to allow usage of the program with other
multispectral cameras and increase the support base.

25

REFERENCES

References

[1]

(2]

[5]

[6]

[10]
[11]

[12]

[13]

[14]

[15]

Goel M, Whitmire E, Mariakakis A, Saponas TS, Joshi N, Morris D, et al. HyperCam: hyperspectral
imaging for ubiquitous computing applications. In: Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. UbiComp *15. New York, NY, USA: Association
for Computing Machinery; 2015. p. 145-156. Available from: https://doi.org/10.1145/2750858.2804282.
doi:10.1145/2750858.2804282.

Authors W. Detecting skin cancer using hyperspectral images - Advanced Science News — advanced-
sciencenews.com;. [Accessed 08-07-2024]. https://www.advancedsciencenews.com/detecting-skin-
cancer-using-hyperspectral-images/.

Bauer JR, Bruins AA, Hardeberg JY, Verdaasdonk RM. A Spectral Filter Array Camera for Clinical
Monitoring and Diagnosis: Proof of Concept for Skin Oxygenation Imaging. J Imaging. 2019 Jul;5(8).

Chung KL, Chen HY, Hsieh TL, Chen YB. Compression for Bayer CFA images: Review and performance
comparison. Sensors (Basel). 2022 Oct;22(21):8362.

Ji'Y, Kwak Y, Park SM, Kim YL. Compressive recovery of smartphone RGB spectral sensitivity functions.
Opt Express. 2021 Apr;29(8):11947-61.

Abdel-Rahman F, Okeremgbo B, Alhamadah F, Jamadar S, Anthony K, Saleh M. Caenorhabditis elegans
as a model to study the impact of exposure to light emitting diode (LED) domestic lighting. Journal of
environmental science and health Part A, Toxic/hazardous substances environmental engineering. 2017
01;52:1-7. doi:10.1080/10934529.2016.1270676.

Jiang J, Zheng H, Ji X, Cheng T, Tian Y, Zhu Y, et al. Analysis and Evaluation of the Image Preprocessing
Process of a Six-Band Multispectral Camera Mounted on an Unmanned Aerial Vehicle for Winter
Wheat Monitoring. Sensors. 2019;19(3). Available from: https://www.mdpi.com/1424-8220/19/3/747.
doi:10.3390/s19030747.

How our system works | Phovia — phovia.vetoquinol.ca;. [Accessed 07-07-2024].
https://phovia.vetoquinol.ca/en/how-our-system-works.

Setchfield K, Gorman A, Simpson AHRW, Somekh MG, Wright AJ. Relevance and utility of the
in-vivo and ex-vivo optical properties of the skin reported in the literature: a review [Invited]. Biomed-
ical Optics Express. 2023 Jun;14(7):3555. Available from: http://dx.doi.org/10.1364/BOE.493588.
doi:10.1364/boe.493588.

Prahl S; 1999. Available from: https://omlc.org/spectra’hemoglobin/.

Riley PA. Melanin. The International Journal of Biochemistry Cell Biology. 1997;29(11):1235-
9. Available from: https://www.sciencedirect.com/science/article/pii/S1357272597000137.
doi:https://doi.org/10.1016/S1357-2725(97)00013-7.

Anderson PG, Kainerstorfer JM, Sassaroli A, Krishnamurthy N, Homer MJ, Graham RA, et al. Broadband
optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer.
PLoS One. 2015 Mar;10(3):e0117322.

Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and
opportunities. Cell Mol Life Sci. 2020 May;77(9):1745-70.

Heistein JB, Acharya U, Mukkamalla SKR. Malignant Melanoma. In: StatPearls. Treasure Island (FL):
StatPearls Publishing; 2024. .

He Q, Wang RK. Analysis of skin morphological features and real-time monitoring using snapshot
hyperspectral imaging. Biomed Opt Express. 2019 Oct;10(11):5625-38.

26

REFERENCES

[16] ;. Available from: https://www.ximea.com/en/products/hyperspectral-cameras-based-on-usb3-
xispec/mq022hg-im-sm4x4-vis.

[17] McCann J. In: Luo MR, editor. Retinex Theory. New York, NY: Springer New York; 2016. p. 1118-25.
Available from: https://doi.org/10.1007/978-1-4419-8071-7,60.doi : 10.1007 /978 — 1 — 4419 — 8071 —
7,60.

[18] Cucci C, Delaney JK, Picollo M. Reflectance Hyperspectral Imaging for Investigation of Works of Art:
Old Master Paintings and Illuminated Manuscripts. Acc Chem Res. 2016 Sep;49(10):2070-9.

[19] Dissanayake D, Herath V, Godaliyadda GMR, Ekanayake MP, Bandara C, Prabhath GW. Design of a
Multispectral Imaging System for Industrial Applications; 2019. doi:10.13140/RG.2.2.36834.68800.

[20] Chen Z, Wang X, Liang R. RGB-NIR multispectral camera. Opt Express. 2014 Mar;22(5):4985-94.
Available from: https://opg.optica.org/oe/abstract.cfm?URI=0e-22-5-4985. doi:10.1364/0E.22.004985.

27

8 APPENDIX

8 Appendix

8.1 Code
__init()__

This block of code is meant for initializing variables to be used later in the script. It creates the window for
the program and creates the first page upon opening (for either researcher or doctor depending on the user).
The function also checks whether a preset file already exists and creates one if it doesn’t (as can be seen at the
top of figure 15). Explanations for the variable names and their functionality within the program are given as
comments in the code.

Ximea module
from ximea import xiapi

1
2
3
4 # Tkinter imports

5 import tkinter as tk

6 from tkinter import ttk

7 from tkinter import messagebox as mb

8 from tkinter import simpledialog

9 from tkinter.filedialog import askopenfilename

11 # Arrays and calculation
12 import numpy as np

14 # Computer vision and image processing
15 import cv2
16 from PIL import Image, ImageTk

18 # Json file
19 import json

21 # Pop-up messages
22 import warnings

24 # Command prompt arguments
25 import sys

27 # Functions for files and directories
28 import os

30 # Class containing all the functions for the app
31 class XIMEA_DisplayApp() :

32 # Initializes all necessary values

33 def _ _init_ (self, window, user):

34 # Create a window for the app

35 self.user = user

36 self.window = window

37 self.window.title ("XIMEA MSI Display")

38 # Create the theme

39 root.tk.call('source', 'Azure/azure.tcl')

40 root.tk.call ('set_theme', 'dark")

41 # Create the canvas

42 self.width = 1400

43 self.height = 500

44 self.canvas = tk.Canvas (self.window, width=self.width,height=self.height)
45 self.canvas.pack (expand=True, padx=100)

46

47 # Keeps track of what page is currently in use
48 # Page 1: Preset page researcher

49 # Page 2: Preset page doctor

50 # Page 3: RGB page researcher

51 # Page 4: RGB page doctor

28

8 APPENDIX

52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70

71

72

73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99

101
102
103
104
105
106
107
108
109

self.current_page = None

Checks if black and white images have been saved
self.saved_black = False
self.saved_white = False

Sets the initial mode for the type of image on screen (LIVE: image from

camera or IM: uploaded image)
self.mode = "LIVE"

Initializes the color of certain buttons

self.white_img_color = "ORANGE"
self.black_img_color = "ORANGE"
self.start_button_color = "RED"

Standard formula for the image
self.black = np.zeros((272,512))

List of all wavelengths
self.wavelengths = {'490nm':"self.n490", '500nm':"self.n500",
'477nm' :"self.nd477", '478nm':"self.nd478",
'577nm' :"self.n577", '591lnm':"self.n591", ...
'563nm':"self.n563", '553nm':"self.n553",
'618nm':"self.n618", '6l6nm':"self.n6lo",
'613nm':"self.n613", '600nm':"self.n600",
'538nm':"self.n538", '549nm':"self.n549",
'523nm' :"self.n523", '51lnm':"self.n511"}

Opens the json file and puts all presets in a dictionary
JFile = 'presets. json'

try:
with open (JFile, 'r') as fp:
self.presets = dict(json.load(fp))
fp.close()
except:

with open (JFile, 'w') as fp:
json.dump ({}, fp)
fp.close ()

with open (JFile, 'r') as fp:
self.presets = dict (json.load(fp))
fp.close ()

Starts the program with page according to user

if self.user == "Researcher" or self.user == "Tester":
self.pagel ()

elif self.user == "Doctor":
self.page2 ()

Create instance for camera
self.cam = xiapi.Camera ()

Create instances for images
self.img = xiapi.Image ()

self.imgl xiapi.Image ()
self.img2 = xiapi.Image ()
self.img3 xiapi.Image ()

self.black_img = xiapi.Image ()
self.white_img = xiapi.Image/()

Update the image
self.update ()

29

8 APPENDIX

Pages

The following functions are meant for creating the pages and all of their widgets. Calling any of the functions
destroys all widgets currently on-screen and creates all widgets belonging to that page (buttons, text entries,
lists, etc.). The names of the widgets describe their corresponding function. All widgets are made using the
tkinter module mentioned in section 4.2.

Research page

2 def pagel(self) —-> None:

3 self.current_page = 'Page 1'

4 self.set_current_ formula ("self.black")

5 # Destroy all widgets from the previous page

6 for widget in self.window.winfo_children() :

7 if widget is not self.canvas:

8 widget.destroy ()

9

10 # Miscellaneous buttons

11 self.stop_button = tk.Button(self.window, text="Stop",
command=self.stop_camera, height=4, width=10)

12 self.stop_button.pack(side = 'right', padx=10, pady=10)

13 self.start_button = tk.Button(self.window, text="Start",
command=self.setup, height=4, width=10, bg=self.start_button_color)

14 self.start_button.pack(side = 'right', padx=10, pady=10)

15 self.save_white_image_button = tk.Button(self.window, text="White image",
command=self.save_white_image, height=4, width=15,
bg=self.white_img_color)

16 self.save_white_image_button.pack (side="right",padx=10,pady=10)

17 self.save_black_image_button = tk.Button(self.window, text="Black image",
command=self.save_black_image, height=4, width=15,
bg=self.white_img_color)

18 self.save_black_image_button.pack (side="right",padx=10,pady=10)

19 if self.user == "Tester":

20 self.ROI_button = tk.Button(self.window, text="Select ROI",

command=self.get_ROI, height = 4, width=15)

21 self.ROI_button.place (x=1010,y=515)

22 self.save_image_button = tk.Button(self.window, text="Save image",
command= self.save_image, height=4, width=15)

23 self.save_image_button.place (x=730,y=515)

24 self.upload_image_button = tk.Button(self.window, text="Upload image",
command= self.upload_image, height=4, width=15)

25 self.upload_image_button.place (x=870,y=515)

26 if self.user == "Tester":

27 self.page2_button = tk.Button(self.window, text='Doctor',

command=self.page2, height=4, width=12)

28 self.page2_button.pack (side="1left", padx=10,pady=10)

29 if self.user == "Tester" or self.user == "Researcher":

30 self.page3_button = tk.Button(self.window, text="Research RGB",

command=self.page3, height=4,width=12)

31 self.page3_button.pack (side="1left", padx=10,pady=10)

32 if self.user == "Tester":

33 self.paged_button = tk.Button(self.window, text="Doctor RGB",

command=self.paged4, height=4, width=12)

34 self.paged_button.pack (side="1left", padx=10,pady=10)

35

36 # Current formula buttons

37 self.test_formula_button = tk.Button(self.window, text='Test formula',
command=self.test_formula, height=4, width=15)

38 self.test_formula_button.place (x=10,y=350)

39 self.confirm preset_button = tk.Button(self.window, text="Confirm
preset", command=self.add_preset_pagel, height=4, width=15)

40 self.confirm preset_button.place (x=150,y=350)

41

42 # Help button

30

8 APPENDIX

43

44
45
46
47

48
49

50
51

52
53
54
55

56
57

58
59

60

62
63

64
65
66
67
68
69
70
71
7
73
74
75
76
77
78
79
80
81
82

83
84
85
86

87
88
89
90

91
92
93

self.help_button = tk.Button(self.window, text="Help", command=
self.show_help, height = 4, width = 15)
self.help_button.place (x=290, y=350)

Preset buttons

self.remove_preset_button = tk.Button(self.window, text="Remove preset",
command=self.remove_preset, height=4, width=15)

self.remove_preset_button.place (x=520, y=190)

self.clear_preset_button = tk.Button(self.window, text="Clear presets",
command=self.clear_presets, height=4, width=15)

self.clear_preset_button.place (x=520, y=100)

self.set_current_preset_button = tk.Button(self.window, text="Select
preset", command=self.set_as_current_preset, height=4, width=15)

self.set_current_preset_button.place (x=520,y=10)

Create formula buttons

self.insert_wavelength_button = tk.Button(self.window, text='Insert
wavelength',
command=lambda:self.insert_wavelength (self.wavelength_box.get ()),
height=4, width=15)

self.insert_wavelength_button.place (x=180, y=10)

self.insert_minus_button = tk.Button(self.window, text="-",
command=lambda:self.insert_sign("-"), height=2, width=5)

self.insert_minus_button.place (x=250,y=100)

self.insert_plus_button = tk.Button(self.window, text="+",
command=lambda:self.insert_sign("+"), height=2, width=5)

self.insert_plus_button.place (x=180,y=100)

self.insert_divide_button = tk.Button(self.window, text="/",
command=lambda:self.insert_sign("/"), height=2, width=5)

self.insert_divide_button.place (x=250,y=170)

self.insert_multiply_button = tk.Button(self.window, text="x",
command=lambda:self.insert_sign("x"), height=2, width=5)

self.insert_multiply_button.place (x=180,y=170)

Text entries

formula_label = tk.Label (self.window, text="Formula:")
formula_label.place (x=10,y=280)

self.formula_entry = tk.Entry(self.window, width=76)
self.formula_entry.insert (0, "Enter formula")
self.formula_entry.place (x=100, y=280)

name_label = tk.Label (self.window, text="Name:")
name_label.place (x=10,y=310)

self.name_entry = tk.Entry(self.window, width=76)
self.name_entry.insert (0, "Enter name")
self.name_entry.bind("<FocusIn>", self.delete_name)
self.name_entry.place (x=100, y=310)

Comboboxes for wavelengths and presets
wavelength_label = tk.Label (self.window, text="Available wavelengths")
wavelength_label.place (x=10, y=10)
self.wavelength_box = ttk.Combobox (self.window,

values=1list (self.wavelengths.keys()))
self.wavelength_box.place (x=10, y=40)
preset_label = tk.Label (self.window, text="Available presets")
preset_label.place (x=350, y=10)
self.preset_box = ttk.Combobox (self.window,

values=list (self.get_preset_without_rgb () .keys()))
self.preset_box.place (x=350, y=40)

Intensity scale

self.intensity_scale = tk.Scale(self.window, from_=0, to=3,
resolution=0.1, orient="horizontal", length=200)

self.intensity_scale.place (x=730, y=460)

self.intensity_scale.set (1)

31

8 APPENDIX

94 # Doctor page

95 def page2(self) —-> None:

96 self.current_page = 'Page 2'

97 self.set_current_formula ("self.black")

98 # Destroy all widgets from previous page

99 for widget in self.window.winfo_children{():

100 if widget is not self.canvas:

101 widget.destroy ()

102

103 # Miscellaneous buttons

104 self.stop_button = tk.Button(self.window, text="Stop",
command=self.stop_camera, height=4, width=10)

105 self.stop_button.pack(side = 'right', padx=10, pady=10)

106 self.start_button = tk.Button(self.window, text="Start",
command=self.setup, height=4, width=10, bg=self.start_button_color)

107 self.start_button.pack(side = 'right', padx=10, pady=10)

108 self.save_white_image_button = tk.Button(self.window, text="White image",

command=self.save_white_image, height=4, width=15,
bg=self.white_img_color)

109 self.save_white_image_button.pack (side="right", padx=10,pady=10)

110 self.save_black_image_button = tk.Button(self.window, text="Black image",
command=self.save_black_image, height=4, width=15,
bg=self.black_img_color)

111 self.save_black_image_button.pack (side="right",padx=10,pady=10)

112 self.save_image_button = tk.Button(self.window, text="Save image",
command= self.save_image, height=4, width=15)
113 self.save_image_button.place (x=730,y=515)
114 self.upload_image_button = tk.Button(self.window, text="Upload image",
command= self.upload_image, height=4, width=15)

115 self.upload_image_button.place (x=870,y=515)

116 if self.user == "Tester":

117 self.pagel_button = tk.Button(self.window, text="Research",
command=self.pagel, height=4, width=12)

118 self.pagel_button.pack (side="1left", padx=10,pady=10)

119 self.page3_button = tk.Button(self.window, text="Research RGB",
command=self.page3, height=4,width=12)

120 self.page3_button.pack (side="1left", padx=10,pady=10)

121 if self.user == "Tester" or self.user == "Doctor":

122 self.page4_button = tk.Button(self.window, text="Doctor RGB",
command=self.paged4, height=4, width=12)

123 self.paged4_button.pack (side="1left", padx=10,pady=10)

124

125 # Preset buttons

126 self.perfusion_button = tk.Button(self.window, text="Perfusion", command=

lambda:self.set_button_preset ("Perfusion"), height=5,width=18,
font=('Arial', 15), bg=self.set_button_color ("Perfusion"))

127 self.perfusion_button.place (x=80,y=80)

128 self.oxygenation_button = tk.Button(self.window, text="Oxygenation",
command= lambda:self.set_button_preset ("Oxygenation"),
height=5,width=18, font=('Arial', 15),
bg=self.set_button_color ("Oxygenation"))

129 self.oxygenation_button.place (x=380,y=80)

130 self.carcinoma_button = tk.Button(self.window, text="Abnormal tissue",
command= lambda:self.set_button_preset ("Abnormal tissue"),
height=5,width=18, font=('Arial', 15),
bg=self.set_button_color ("Abnormal tissue"))

131 self.carcinoma_putton.place (x=80,y=280)

132 self.pigment_button = tk.Button(self.window, text="Pigmentation",
command= lambda:self.set_button_preset ("Pigmentation"),
height=5,width=18, font=('Arial', 15),
bg=self.set_button_color ("Pigmentation"))

133 self.pigment_button.place (x=380,y=280)

134

135 # Intensity scale

32

8 APPENDIX

136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

158
159

160
161
162
163
164

165
166

167
168
169
170
171

172
173

174
175
176
177
178

179
180
181
182
183
184
185
186
187
188

189
190

self.intensity_scale = tk.Scale(self.window, from_=0, to=3,

resolution=0.1, orient="horizontal", length=200)
self.intensity_scale.place (x=730, y=460)
self.intensity_scale.set (1)

Research RGB page
def page3(self) -> None:

self.current_page = "Page 3"

self.set_current_formula ("self.black")

for widget in self.window.winfo_children() :
if widget != self.canvas:

widget.destroy ()

self.rgb_presets = self.wavelengths.copy ()

self.copied_values = self.presets.copy()

self.copied_values.pop ("White™)

self.copied_values.pop ("Black")

for key in self.copied_values.keys():
self.rgb_presets.update ({key:self.presets.get (key) })

Comboboxes and scales for r, g and b value
r_label = tk.Label (self.window, text="Choose 'R'-channel™)
r_label.place(x=10,y=10)
self.r_value = ttk.Combobox (self.window, values=
list (self.get_preset_without_rgb()) + list(self.wavelengths))
self.r_value.place (x=150,y=10)
self.r_scale = tk.Scale(self.window, from_=0, to=3, resolution=0.1,
orient="horizontal", length=134)
self.r_scale.place(x=147, y=45)
self.r_scale.set (0.5)
g_label = tk.Label (self.window, text="Choose 'G'-channel")
g_label.place(x=10,y=115)
self.g_value = ttk.Combobox (self.window, values=
list (self.get_preset_without_rgb()) + list(self.wavelengths))
self.g_value.place (x=150,y=115)
self.g_scale = tk.Scale(self.window, from_=0, to=3, resolution=0.1,
orient="horizontal", length=134)
self.g_scale.place(x=147, y=150)
self.g_scale.set (0.5)
B_label = tk.Label (self.window, text="Choose 'B'-channel")
B_label.place (x=10,y=220)
self.b_value = ttk.Combobox (self.window, values=
list (self.get_preset_without_rgb()) + list(self.wavelengths))
self.b_value.place (x=150,y=220)
self.b_scale = tk.Scale(self.window, from_=0, to=3, resolution=0.1,
orient="horizontal", length=134)
self.b_scale.place (x=147, y=255)
self.b_scale.set (0.5)

Preset widgets

self.confirm preset_button = tk.Button(self.window, text="Confirm
preset", command=self.add_preset_page3, height=4, width=15)

self.confirm_preset_button.place (x=10,y=350)

name_label = tk.Label (self.window, text="Name:")

name_label.place (x=10,y=310)

self.name_entry = tk.Entry(self.window, width=76)

self.name_entry.insert (0, "Enter name")

self.name_entry.bind ("<FocusIn>", self.delete_name)

self.name_entry.place (x=100, y=310)

preset_label = tk.Label (self.window, text="Available presets")

preset_label.place (x=350, y=10)

self.preset_box = ttk.Combobox (self.window,
values=list (self.get_preset_rgb()))

self.preset_box.place (x=350, y=40)

self.set_current_preset_button = tk.Button(self.window, text="Select
preset", command=self.set_as_current_preset, height=4, width=15)

33

8 APPENDIX

191 self.set_current_preset_button.place (x=520,y=10)

192 self.remove_preset_button = tk.Button(self.window, text="Remove preset",
command=self.remove_preset, height=4, width=15)

193 self.remove_preset_button.place (x=520, y=190)

194 self.clear_preset_button = tk.Button(self.window, text="Clear presets",
command=self.clear_presets, height=4, width=15)

195 self.clear_preset_button.place (x=520, y=100)

196

197 # Miscellaneous buttons

198 self.stop_button = tk.Button(self.window, text="Stop",
command=self.stop_camera, height=4, width=10)

199 self.stop_button.pack(side = 'right', padx=10, pady=10)

200 self.start_button = tk.Button(self.window, text="Start",
command=self.setup, height=4, width=10, bg=self.start_button_color)

201 self.start_button.pack(side = 'right', padx=10, pady=10)

202 self.save_white_image_button = tk.Button(self.window, text="White image",

command=self.save_white_image, height=4, width=15,
bg=self.white_img_color)

203 self.save_white_image_button.pack (side="right", padx=10,pady=10)

204 self.save_black_image_button = tk.Button(self.window, text="Black image",
command=self.save_black_image, height=4, width=15,
bg=self.white_img_color)

205 self.save_black_image_button.pack (side="right",padx=10,pady=10)
206 if self.user == "Tester":
207 self.ROI_button = tk.Button(self.window, text="Select ROI",
command=self.get_ROI, height = 4, width=15)
208 self.ROI_button.place (x=1010,y=515)
209 self.save_image_button = tk.Button(self.window, text="Save image",
command= self.save_image, height=4, width=15)
210 self.save_image_button.place (x=730,y=515)
211 self.upload_image_button = tk.Button(self.window, text="Upload image",
command= self.upload_image, height=4, width=15)
212 self.upload_image_button.place (x=870,y=515)
213 if self.user == "Tester" or self.user == "Researcher":
214 self.pagel_button = tk.Button(self.window, text="Research",
command=self.pagel, height=4, width=12)
215 self.pagel_button.pack (side="1left", padx=10,pady=10)
216 if self.user == "Tester":
217 self.page2_button = tk.Button(self.window, text='Doctor',
command=self.page2, height=4, width=12)
218 self.page2_button.pack (side="1left", padx=10,pady=10)
219 self.paged4_button = tk.Button(self.window, text="Doctor RGB",
command=self.paged4, height=4, width=12)
220 self.paged_button.pack (side="1left", padx=10,pady=10)
221
222 # Intensity scale
223 self.intensity_scale = tk.Scale(self.window, from_=0, to=3,
resolution=0.1, orient="horizontal", length=200)
224 self.intensity_scale.place (x=730, y=460)
225 self.intensity_scale.set (1)
226
227 # Doctor RGB page
228 def page4d (self) —> None:
229 self.current_page = "Page 4"
230 self.set_current_formula ("self.black")
231 for widget in self.window.winfo_children{() :
232 if widget != self.canvas:
233 widget.destroy ()
234 self.rgb_presets = self.wavelengths.copy ()
235 self.copied_values = self.presets.copy()
236 self.copied_values.pop ("White")
237 self.copied_values.pop ("Black")
238 for key in self.copied_values.keys():
239 self.rgb_presets.update ({key:self.presets.get (key) })

240

34

8 APPENDIX

241
242
243
244

245
246

247
248
249
250
251

252
253

254
255
256
257
258

259
260

261
262
263
264
265

266
267

268
269

270
271

272
273
274
275

276
277

278
279

280
281

282

Comboboxes and scales for r, g and b value
r_label = tk.Label (self.window, text="Choose 'R'-channel™)
r_label.place(x=10,y=10)
self.r_value = ttk.Combobox (self.window, values=
list (self.get_preset_without_rgb()) + list(self.wavelengths))
self.r_value.place (x=150,y=10)
self.r_scale = tk.Scale(self.window, from_=0, to=3, resolution=0.1,
orient="horizontal", length=134)
self.r_scale.place(x=147, y=45)
self.r_scale.set (0.5)
g_label = tk.Label (self.window, text="Choose 'G'-channel™)
g_label.place(x=10,y=115)
self.g_value = ttk.Combobox (self.window, values=
list (self.get_preset_without_rgb()) + list(self.wavelengths))
self.g_value.place (x=150,y=115)
self.g_scale = tk.Scale(self.window, from_=0, to=3, resolution=0.1,
orient="horizontal", length=134)
self.g_scale.place(x=147, y=150)
self.g_scale.set (0.5)
B_label = tk.Label (self.window, text="Choose 'B'-channel")
B_label.place (x=10,y=220)
self.b_value = ttk.Combobox (self.window, values=
list (self.get_preset_without_rgb()) + list(self.wavelengths))
self.b_value.place (x=150,y=220)
self.b_scale = tk.Scale(self.window, from_=0, to=3, resolution=0.1,
orient="horizontal", length=134)
self.b_scale.place(x=147, y=255)
self.b_scale.set (0.5)

Preset buttons
self.perfusion_button = tk.Button(self.window, text="Perfusion", command=
lambda:self.set_button_preset ("Perfusion RGB"), height=7,width=13,
font=('Arial', 15), bg=self.set_button_color ("Perfusion RGB"))
self.perfusion_button.place (x=350,y=10)
self.oxygenation_button = tk.Button(self.window, text="Oxygenation",
command= lambda:self.set_button_preset ("Oxygenation_RGB"),
height=7,width=13, font=('Arial', 15),
bg=self.set_button_color ("Oxygenation RGB"))
self.oxygenation_button.place (x=540,y=10)
self.carcinoma_button = tk.Button(self.window, text="Abnormal tissue",
command= lambda:self.set_button_preset ("Abnormal tissue_RGB"),
height=7,width=13, font=('Arial', 15),
bg=self.set_button_color ("Abnormal tissue_RGB"))
self.carcinoma_button.place (x=350,y=230)
self.pigment_button = tk.Button(self.window, text="Pigmentation",
command= lambda:self.set_button_preset ("Pigmentation_ RGB"),
height=7,width=13, font=('Arial', 15),
bg=self.set_button_color ("Pigmentation_RGRB"))
self.pigment_button.place (x=540,y=230)

Miscellaneous buttons

self.stop_button = tk.Button(self.window, text="Stop",
command=self.stop_camera, height=4, width=10)

self.stop_button.pack(side = 'right', padx=10, pady=10)

self.start_button = tk.Button(self.window, text="Start",
command=self.setup, height=4, width=10, bg=self.start_button_color)

self.start_button.pack(side = 'right', padx=10, pady=10)

self.save_white_image_button = tk.Button(self.window, text="White image",
command=self.save_white_image, height=4, width=15,
bg=self.white_img_color)

self.save_white_image_button.pack (side="right",padx=10,pady=10)

self.save_black_image_button = tk.Button(self.window, text="Black image",
command=self.save_black_image, height=4, width=15,
bg=self.white_img_color)

self.save_black_image_button.pack (side="right", padx=10,pady=10)

35

8 APPENDIX

283

284
285

286
287
288

289
290
291

292
293
294

295
296
297
298

299
300

self.save_image_button = tk.Button(self.window, text="Save image",
command= self.save_image, height=4, width=15)
self.save_image_button.place (x=730,y=515)
self.upload_image_button = tk.Button(self.window, text="Upload image",
command= self.upload_image, height=4, width=15)
self.upload_image_button.place (x=870,y=515)
if self.user == "Tester":
self.pagel_button = tk.Button(self.window, text="Research",
command=self.pagel, height=4, width=12)
self.pagel_button.pack (side="1left", padx=10,pady=10)
if self.user == "Tester" or self.user == "Doctor":
self.page2_button = tk.Button(self.window, text='Doctor',
command=self.page2, height=4, width=12)
self.page2_button.pack(side="1left", padx=10,pady=10)
if self.user == "Tester":
self.page3_button = tk.Button(self.window, text="Research RGB",
command=self.page3, height=4,width=12)
self.page3_button.pack (side="1left", padx=10,pady=10)

Intensity scale

self.intensity_scale = tk.Scale(self.window, from_=0, to=3,
resolution=0.1, orient="horizontal", length=200)

self.intensity_scale.place (x=730, y=460)

self.intensity_scale.set (1)

36

8 APPENDIX

Main loop

The main loop is what executes the program. This is the function that is called every frame. It obtains images
and calls the functions for image processing, then it creates the image and displays it on-screen.

Function that is looped over. This is the fundament of the script

1

2 def update(self) -> None:

3 if self.cam.CAM_OPEN and self.mode == "LIVE":

4 # Get images from camera as a numpy array

5 self.cam.get_image (self.imgl)

6 self.cam.get_image (self.img2)

7 self.cam.get_image (self.img3)

8 self.data = self.imgl.get_image_data_numpy () .astype (np.uint8),
self.img2.get_image_data_numpy () .astype (np.uint8),
self.img3.get_image_data_numpy () .astype (np.uint8)

9

10 # Black and white correction (not yet implemented)

11 self.black_and_white_correction ()

12

13 # Extract individual images and put a mask over them

14 self.create_image_cube ()

15 self.mask_images ()

16

17 # Update displayed image

18 self.set_image (self.create_image())

19

20 # Call function again to maintain loop

21 self.window.after (15, self.update)

37

8 APPENDIX

Setup

The setup function is called when the users presses *Start camera’. It then starts the camera and updates the
button color (to do so, it first removes all widgets, then changes the variable of the button color and then
recreates all removed buttons, but with updated colors). The same principle is used for the functions of saving
the black and white image. These functions are meant for the black-and-white correction. Upon pressing the
buttons, they give instructions to the user indicating the steps they need to take to correctly save a black and
white reference image.

Start the camera

1

2 def setup(self) —-> None:

3 self.mode = "LIVE"

4 try:

5 # Starting camera and initializing settings

6 self.cam.open_device ()

7 self.cam.set_exposure (50000)

8 self.cam.start_acquisition ()

9 # Change button colors

10 self.start_button.destroy ()

11 self.stop_button.destroy ()

12 self.save_white_image_button.destroy ()

13 self.save_black_image_button.destroy ()

14 self.start_button_color = "GREEN"

15 self.stop_button = tk.Button(self.window, text="Stop",
command=self.stop_camera, height=4, width=10)

16 self.stop_button.pack(side = 'right', padx=10, pady=10)

17 self.start_button = tk.Button(self.window, text="Start",
command=self.setup, height=4, width=10, bg=self.start_button_color)

18 self.start_button.pack(side = 'right', padx=10, pady=10)

19 self.save_white_image_button = tk.Button(self.window, text="White
image", command=self.save_white_image, height=4, width=15,
bg=self.white_img_color)

20 self.save_white_image_button.pack (side="right",padx=10,pady=10)

21 self.save_black_image_button = tk.Button(self.window, text="Black
image", command=self.save_black_image, height=4, width=15,
bg=self.white_img_color)

22 self.save_black_image_button.pack (side="right", padx=10,pady=10)

23 except:

24 mb.showerror ("Error", "No device found")

25 self.start_button_color = "RED"

26

27 # Save the black image for correction

28 def save_black_image(self) —-> None:

29 try:

30 if self.cam.CAM_OPEN:

31 mb.showinfo ("Instruction", "Block the camera lens, then press ok")

32 self.cam.get_image (self.black_img)

33 self.black_img_data = self.black_img.get_image_data_numpy ()

34 self.black_img_datal[self.black_img_data<0] = 0

35 # Change button colors

36 self.start_button.destroy ()

37 self.stop_button.destroy ()

38 self.save_white_image_button.destroy ()

39 self.save_black_image_button.destroy ()

40 self.black_img_color = "GREEN"

41 self.stop_button = tk.Button(self.window, text="Stop",
command=self.stop_camera, height=4, width=10)

42 self.stop_button.pack(side = 'right', padx=10, pady=10)

43 self.start_button = tk.Button(self.window, text="Start", .
command=self.setup, height=4, width=10, bg=self.start_button_color)

44 self.start_button.pack(side = 'right', padx=10, pady=10)

38

8 APPENDIX

45

46
47

48
49
50
51
52
53
54
55
56
57

58
59
60
61

62
63
64
65
66
67
68
69

70
71

72
73

74
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95

self.save_white_image_button = tk.Button(self.window, text="White
image", command=self.save_white_image, height=4, width=15,
bg=self.white_img_color)

self.save_white_image_button.pack (side="right",padx=10,pady=10)

self.save_black_image_button = tk.Button(self.window, text="Black
image", command=self.save_black_image, height=4, width=15,
bg=self.black_img_color)

self.save_black_image_button.pack (side="right",padx=10,pady=10)

self.saved_black = True

except:

mb.showerror ("Error", "Device not open")

Save the white image for correction
def save_white_image (self) —> None:

try:

if self.cam.CAM_OPEN:

mb.showinfo ("Instruction", "Hold a white sheet of paper in front
of the camera, then press ok")

self.cam.get_image (self.white_img)

self.white_img_data = self.white_img.get_image_data_numpy ()

self.white_img_data = self.white_img_data[self.white_img_data != 0]

self.white_img_data = cv2.resize(self.white_img_data, (2048,1088),
interpolation=cv2.INTER_CUBIC)

self.white_img_data = self.white_img_data/np.max (self.white_img_data)

Change button colors

self.start_button.destroy ()

self.stop_button.destroy ()

self.save_white_image_button.destroy ()

self.save_black_image_button.destroy ()

self.white_img_color = "GREEN"

self.stop_button = tk.Button(self.window, text="Stop",
command=self.stop_camera, height=4, width=10)

self.stop_button.pack(side = 'right', padx=10, pady=10)

self.start_button = tk.Button(self.window, text="Start",
command=self.setup, height=4, width=10, bg=self.start_button_color)

self.start_button.pack(side = 'right', padx=10, pady=10)

self.save_white_image_button = tk.Button(self.window, text="White
image", command=self.save_white_image, height=4, width=15,
bg=self.white_img_color)

self.save_white_image_button.pack (side="right",padx=10,pady=10)

self.save_black_image_button = tk.Button(self.window, text="Black
image", command=self.save_black_image, height=4, width=15,
bg=self.black_img_color)

self.save_black_image_button.pack (side="right", padx=10,pady=10)

self.saved_white = True

except:

mb.showerror ("Error", "Device not open")

Turn the camera off and close it
def stop_camera(self) —-> None:

try:

self.cam.stop_acquisition()
self.cam.close_device ()

Change button colors
self.start_button.destroy ()
self.stop_button.destroy ()
self.save_white_image_button.destroy ()
self.save_black_image_button.destroy ()

self.black_img_color = "ORANGE"
self.white_img_color = "ORANGE"
self.start_button_color = "RED"

self.stop_button = tk.Button(self.window, text="Stop",
command=self.stop_camera, height=4, width=10)
self.stop_button.pack(side = 'right', padx=10, pady=10)

39

8 APPENDIX

96

97
98

99
100

101
102
103
104
105
106
107
108
109
110

self.start_button = tk.Button(self.window, text="Start",
command=self.setup, height=4, width=10, bg=self.start_button_color)

self.start_button.pack(side = '

self.save_white_image_button =
image",
bg=self.white_img_color)

right', padx=10, pady=10)
tk.Button(self.window, text="White

command=self.save_white_image, height=4, width=15,

self.save_white_image_button.pack (side="right", padx=10,pady=10)

self.save_black_image_button =
image",
bg=self.white_img_color)

tk.Button(self.window, text="Black

command=self.save_black_image, height=4, width=15,

self.save_black_image_button.pack (side="right", padx=10,pady=10)

except:
mb.showerror ("Error",

Help pop-up

def show_help(self) —-> None:

mb.showinfo ("Info", "np.subtract (bl, b2)

"np.add(bl, b2)

"No device open")

bl - b2\n" +
= bl + b2\n" +

"np.multiply (bl, b2) = bl * b2\n" +

"np.divide (b1,

b2) = bl / b2")

40

8 APPENDIX

Processing

Processing the image is done according to figure 8. With the addition of a circular image mask (as described in
section 5.1.3 under ’Black and white correction’) and the exception that normalization is done simultaneously
with creating the image cube. It can be seen that immediately when seperating the wavelengths, for some
wavelengths multiple images are added together (like mentioned in section 5.1.3 under *Normalization’).

1 #TODO To be implemented (within 'try'-block, 'except'-block gets executed as
long as no white or black image is saved)

2 # If there is a black and white image, implements the formula for black and
white correction

3 def black_and white_correction(self) —-> None:

4 # Correction formula for flat-field correction

5 try:

6 # Formula for black and white correction should go here in place of

the code below

7 # Write the formula for the black and white correction for each of

the arrays (1, 2, 3)

8 # Last line is correct

9 self.corrected_data_1l = self.datal[0]

10 self.corrected_data_2 = self.data[l]

11 self.corrected_data_3 = self.data[2]

12 self.corrected_data = [self.corrected_data_1l, self.corrected_data_ 2,

self.corrected_data_3]

13 except:

14 self.corrected_data_1l = self.datal[0]

15 self.corrected_data_2 = self.datal[l]

16 self.corrected_data_3 = self.data[2]

17 self.corrected_data = [self.corrected_data_1l, self.corrected_data_ 2,

self.corrected_data_3]

18

19 # Separate wavelengths from full signal

20 def create_image_cube (self) —-> None:

21 # Image for every wavelength (1088x2048 -> 272x512)

22 # The corrected_data numpy array has all wavelength pixels in a 4x4 grid,
so by choosing what pixels to select per wavelength you get
individual images for each

23 # Multiple images are added together depending on the relative signal for
each wavelength

24 self.n490 = self.corrected_data[0] [np.s_[0::4],np.s_[0::4]1] +

self.corrected_datall] [np.s_[0::4],np.s_[0::4]] +
self.corrected_data[2] [np.s_[0::4],np.s_[0::4]11%x0.833

25 self.n500 = self.corrected_data[0] [np.s_[0::4],np.s_[1::4]1] +
self.corrected_datall] [np.s_[0::4],np.s_[1::4]] +
self.corrected_data[2] [np.s_[0::4],np.s_[1::411%x0.772

26 self.nd477 = self.corrected_data[0] [np.s_[0::4],np.s_[2::4]1] +
self.corrected_datall] [np.s_[0::4],np.s_[2::4]] +
self.corrected_data[2] [np.s_[0::4],np.s_[2::4]11%x0.476

27 self.n478 = self.corrected_data[0] [np.s_[0::4],np.s_[3::4]1] +
self.corrected_datall] [np.s_[0::4],np.s_[3::4]] +
self.corrected_data[2] [np.s_[0::4],np.s_[3::4]11x0.161

28

29 self.n577 = self.corrected_datal[0] [np.s_[1l::4],np.s_[0::4]] +
self.corrected_data[l]l [np.s_[1::4],np.s_[0::4]11%x0.109

30 self.n591 = self.corrected_data[0] [np.s_[1l::4],np.s_[1::4]]

31 self.n563 = self.corrected_data[0] [np.s_[1l::4],np.s_[2::4]] +
self.corrected_data[l]l [np.s_[1l::4],np.s_[2::4]11%x0.220

32 self.n553 = self.corrected_data[0] [np.s_[1l::4],np.s_[3::4]1] +

self.corrected_datall] [np.s_[1l::4],np.s_[3::4]11x0.509

33

34 self.n618 = self.corrected_data[0] [np.s_[2::4],np.s_[0::4]]

35 self.n616 = self.corrected_datal[0] [np.s_[2::4],np.s_[1::4]] +
self.corrected_data[l]l [np.s_[2::4],np.s_[1::4]11%x0.045

41

8 APPENDIX

36
37
38
39

40

41

42

43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78

self.n613 = self.corrected_data[0] [np.s_[2::4],np.s_[2::4]]
self.n600 self.corrected_data[0] [np.s_[2::4],np.s_[3::41]

self.n538 = self.corrected_data[0] [np.s_[3::4],np.s_[0::4]1] +
self.corrected_data[l] [np.s_[3::4],np.s_[0::4]11%x0.349
self.n549 = self.corrected_datal[0] [np.s_[3::4],np.s_[1::4]1] +
self.corrected_data[l]l [np.s_[3::4],np.s_[1::4]11%0.425
self.n523 = self.corrected_data[0] [np.s_[3::4],np.s_[2::4]1] +
self.corrected_datal[l] [np.s_[3::4],np.s_[2::4]11%x0.509
self.n511 = self.corrected_data[0] [np.s_[3::4],np.s_[3::4]1] +

self.corrected_data[l] [np.s_[3::4],np.s_[3::4]1] +
self.corrected_datal2] [np.s_[3::4],np.s_[3::4]11x0.073

Creates a circular mask from the center to put over the image
def create_circular_mask(self, h, w, center = None, radius = None) -> bool:

Set the center and radius
if center is None:

center = (w/2, h/2)
if radius is None:
radius = min(center[0], center[l], w-center[0], h-center[1l])

Y,X = np.ogrid[:h, :w]
Formula to calculate how far everything is from the center set previously
dist_from_center = np.sqgrt ((X-center[0])**2 + (Y-center[1l])**2)
Create a tuple containing boolean values indicating whether each pixel
is inside or outside the circular mask
mask = dist_from center < radius
return mask

Values outside of the max are made black such that only the signal at the

center remains

def mask_images (self) -> None:

self.mask = self.create_circular_mask(272,512)

self.nd490[self.mask==False]
self.n500[self.mask==False]
self.nd477[self.mask==False]
self.nd478[self.mask==False]
self.nb577[self.mask==False]
self.n591 [self.mask==False]
self.n563[self.mask==False]
self.n553[self.mask==False] =
self.n6l8[self.mask==False]
self.n6l6[self.mask==False]
self.n6l1l3[self.mask==False]
self.n600[self.mask==False]
self.n538[self.mask==False]
self.n549[self.mask==False]
self.n523[self.mask==False]
self.nb511[self.mask==False]

O O OO O OO OO O oo oo oo

42

8 APPENDIX

Create image

This block of code contains all necessary functions for displaying in image on-screen. The ’set_image’ functions
is called from the main loop (8.1) and sets the image of the canvas to the given input image, which is obtained
via ’create_image’. For the preset pages, this function evaluates the formula in the formula entry and turns it
into a greyscale image (if the formula is valid according to section 8.1). It does so except for when an image is
uploaded (’self.mode = "IM"’, this variable is also explained in section 8.1). Then that uploaded image becomes
the displayed image. For the RGB page, this functions does the same, but the image is no longer a greyscale
image from the evaluation of the formula entry, but rather a merged image of the wavelengths used for each
of the three RGB-channels. The ’correct_result’ function removes any unwanted value from the final image
(which could arise because of division by zero or subtraction resulting in negative values).

= I T I VSR)

25
26
27
28
29
30
31
32
33
34

35

Removes values such as negative and infinite numbers from the result which

def

would otherwise cause discrepancies in the final image

correct_result (self, result) -> None:

warnings.simplefilter ('ignore', RuntimeWarning)

result = np.nan_to_num(result, copy=True, nan=255, posinf=255, neginf=0)
result [result<0] = 0

return result

Creates the image to be displayed on screen based on the page and the

def

current formula

create_image (self) -> Image:
if self.current_page == "Page 1" or self.current_page == "Page 2":
if self.mode == "LIVE":

self.image =
cv2.cvtColor (self.correct_result (self.eval_formula(self.get_curren

* self.intensity_scale.get ()) .astype(np.uint8),
cv2.COLOR_BGR2RGB)
elif self.mode == "IM":
try:
self.image =
self.correct_result (eval (self.get_current_formula()) =
self.intensity_scale.get ()) .astype (np.uint8)
except:
self.image = np.asarray (Image.open(self.current_file))
if self.current_page == "Page 3" or self.current_page == "Page 4":
if self.mode == "LIVE":
Channels are not empty
if self.r_value.get () != "" and self.g_value.get() != "" and

wn .,

self.b_value.get () !=
Formulas in the channels are valid formulas

if
self.valid_formula_no_error (self.rgb_presets.get (self.r_value.
and ...
self.valid_formula_no_error (self.rgb_presets.get (self.g_value.
and ...
self.valid_formula_no_error (self.rgb_presets.get (self.b_value.
self.merge_RGB_image ()
self.image = self.correct_result(self.image.astype (np.uint8))

else:
Display black image
self.image = np.zeros((272,512))

else:

Display black image
self.image = np.zeros((272,512))
elif self.mode == "IM":
if self.r_value.get () != "" and self.g_value.get() != "" and
self.b_value.get () != "":
if
self.valid_formula_no_error (self.rgb_presets.get (self.r_value.

43

t_formula ()

get ()))

get ()))

get ())) :

get ()))

8 APPENDIX

36
37

38
39
40
41
42
43
44
45
46
47
48

49

50

51
52
53
54
55

and ...
self.valid_formula_no_error (self.rgb_presets.get (self.g_value.
and ...
self.valid_formula_no_error (self.rgb_presets.get (self.b_value.
self.merge_RGB_image ()
self. image =
self.correct_result (self.image.astype (np.uint8))
else:
Display uploaded image
self.image = np.asarray (Image.open(self.current_file))

else:
Display uploaded image
self.image = np.asarray (Image.open(self.current_file))
return Image.fromarray (self.image.astype(np.uint8)) .resize((768,408))

Merges the results from each channel together into one RGB image
def merge_RGB_image (self):

self.image = cv2.merge([self.r_scale.get() » self.intensity_scale.get () =
self.eval_formula (self.rgb_presets.get (self.r_value.get())),
self.g_scale.get () x self.intensity_scale.get () * ...
self.eval_formula(self.rgb_presets.get (self.g_valu
self.b_scale.get () x self.intensity_scale.get () =

self.eval_formula(self.rgb_presets.get (self.b_valu

Set the input image as the image being displayed on the canvas
def set_image(self, image):
self.photo = ImageTk.PhotoImage (image=image)
self.canvas.create_image (self.width, 0.5xself.height,
image=self.photo, anchor=tk.E)

44

get ()))
get ())):
e.get ())),
e.get()))1])

8 APPENDIX

Formula

The following block contains all functions for the formula. The formula is defined as the text in the formula
entry that is to be evaluated and turned into an expression. Not all entries can be turned into expression. That’s
why the function ’valid_formula’ exists. It is used throughout the script wherever it is necessary to check if a
formula can be evaluated. Using an invalid formula as an image causes problems in the script so this functions
prevents that. It throws an error when the formula is invalid, indicating to the user that they should change
it. The script also has this functions without throwing the error, which is necessary in certain situations. The
’self.current_formula is the formula that is used for creating the image (as can be seen in section 8.1). This
variable has a getter and setter to make these functionalities easier in other parts of the script. Setting the current
formula to the given formula is only done when the given formula is valid. The function ’test_formula’ is called
upon pressing that respective button. It just sets the formula entry to be the current formula thus displaying the
result, but does not yet save it as a preset.

Set current formula to what is given as the parameter

2 # Only if it is a valid formula

3 def set_current_formula(self, formula) -> None:
4 if self.valid_formula_no_error (formula) :

5 self.current_formula = formula

6 else:

7 self.current_formula = "self.black"

8

9

Returns the current formula
10 def get_current_formula(self) —-> str:
11 return self.current_formula

13 # Returns the evaluation of the current formula if the formula is valid
14 def eval_formula(self, formula) -> np.array:

15 if self.valid_formula (formula) :

16 return eval (formula)

17

18 # Tests the formula currently entered in the formula entry

19 def test_formula(self) —-> None:

20 if self.valid_formula(self.formula_entry.get()):

21 self.set_current_formula(self.formula_entry.get ())

22

23 # Checks whether it's possible to evaluate the formula

24 # Returns True or False depending on it

25 # Gives an error for invalid formula if it cannot evaluate the formula
26 def valid_formula(self, formula) -> None:

27 try:

28 eval (formula)

29 return True

30 except:

31 mb.showerror ("Error", "Invalid formula®)

32 return False

33

34 # Same function as valid_formula, but doesn't give error message
35 # Necessary in some situations

36 def valid_formula_no_error (self, formula) -> None:

37 try:

38 eval (formula)

39 return True

40 except:

41 return False

45

8 APPENDIX

Preset

The functions in the following block all have to do with presets. Firstly there are the functions for adding
presets. The functions for the preset- and RGB-page are seperate, as these functions are quite complicated
already. There are a lot of cases to be identified when adding a preset, which are described as comments in
the code (figure 15 shows a simplified version without all these cases described). Adding a preset results in
removing the list of presets, then updating the list and lastly recreating the list (otherwise the updated preset
list would not show in the program). The ’set_button_preset’ function sets the current formula to the formula
associated with the button that is pressed (only if a preset is associated to that button, described in section 5.1.3
under ’Selecting presets’). The function called ’set_as_current_preset’ is called when the button ’Select preset’
is clicked. This function makes sure that the result of that preset is shown on-screen by setting the current
formula to the formula associated with the preset. The functions for removing and clearing presets first ask for
a confirmation and then determine what presets to remove. Then updating the list goes the same as with adding
presets. First, the list is removed, then the presets are updated and lastly the list is added again. Nothing special
happens in the final functions for inserting wavelengths and signs and also deleting the name and formula from
their respective entries. Explanations for these bits of code are given as comments above the functions.

Check if the name already exists in presets

1

2 # Check if the formula is valid

3 # Add the preset to the dictionary of presets

4 def add_preset_pagel (self) —-> None:

5 name = self.name_entry.get ()

6 formula = self.formula_entry.get ()

7 if name._ _contains__ ("_RGRB"):

8 mb.showerror ("Error", "Invalid name")

9 else:

10 # Case 1: name does not yet exist

11 if name not in self.presets.keys{():

12 # Case 1.1: Name entry is empty

13 if name == "":

14 mb.showerror ("Error", "Please fill in a name for the preset")

15 # Case 1.2: Formula entry is empty

16 elif formula == "":

17 mb.showerror ("Error", "Please fill in a formula")

18 # Case 1.3: Neither are empty

19 else:

20 # Case 1.3.1: Formula is valid

21 if self.valid_formula_no_error (formula) :

22 self.presets.update ({name:formula})

23 self.preset_box.destroy ()

24 self.preset_box = ttk.Combobox (self.window,

values=list (self.get_preset_without_rgb () .keys()))

25 self.preset_box.place (x=350, y=40)

26 with open('presets.json', 'w') as fp:

27 json.dump (self.presets, fp)

28 fp.close ()

29 self.delete_name(e="'")

30 self.delete_formula(e="'")

31 # Case 1.3.2: Formula is invalid

32 else:

33 if mb.askokcancel ("Warning", "This formula is invalid,

are you sure you want to add it?"):

34 self.presets.update ({name:formula})

35 self.preset_box.destroy ()

36 self.preset_box = ttk.Combobox (self.window,
values=list (self.get_preset_without_rgb () .keys()))

37 self.preset_box.place (x=350, y=40)

38 with open('presets.json', 'w') as fp:

39 json.dump (self.presets, fp)

40 fp.close()

41 self.delete_name (e="'")

46

8 APPENDIX

4
43
44
45
46
47

48
49
50

51
52
53
54
55
56
57
58
59

60

61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81

82
83

84
85
86
87
88
89
90
91

self.delete_formula(e="'")

Case 2: Name already exist in presets
else:

Case 2.1: Formula is valid
if self.valid_formula_no_error (formula) :
if mb.askokcancel ("Warning", "Are you sure you want to
overwrite the preset?"):
self.presets[name] = formula
self.preset_box.destroy ()
self.preset_box = ttk.Combobox (self.window,
values=1list (self.get_preset_without_rgb () .keys()))
self.preset_box.place (x=350, y=40)
with open('presets.json', 'w') as fp:
json.dump (self.presets, fp)
fp.close ()
self.delete_name(e="")
self.delete_formula(e="'")
Case 2.2: Formula is invalid
else:
if mb.askokcancel ("Warning", "This formula is invalid, are
you sure you want to add it?"):
if mb.askokcancel ("Warning", "Are you sure you want to
overwrite the preset?"):
self.presets[name] = formula
self.preset_box.destroy ()
self.preset_box = ttk.Combobox (self.window,
values=list (self.get_preset_without_rgb () .keys()))
self.preset_box.place (x=350, y=40)
with open('presets.json', 'w') as fp:
json.dump (self.presets, f£fp)
fp.close()
self.delete_name(e="'")
self.delete_formula(e="'")

def add_preset_page3(self) —-> None:

self.name_entry.get () + "_RGB"

Case 1: name does not yet exist

if name not in self.presets.keys():
Case 1.1: Name entry is empty
if name == "":

mb.showerror ("Error", "Please fill in a name for the preset")

Case 1.2: Name entry is not empty
else:

Case 1.3.1: Formula is valid
if
self.valid_formula_no_error (self.rgb_presets.get (self.r_value.get (
and ...
self.valid_formula_no_error (self.rgb_presets.get (self.g_value.get (
and ...
self.valid_formula_no_error(self.rgb_presets.get (self.b_value.get (
self.presets.update ({name: (self.r_value.get (),
self.g_value.get (), self.b_value.get(),
self.r_scale.get (), self.g_scale.get (), self.b_scale.get())})
self.preset_box.destroy ()
self.preset_box = ttk.Combobox (self.window,
values=1list (self.get_preset_rgb() .keys()))
self.preset_box.place (x=350, y=40)
with open('presets.json', 'w') as fp:
json.dump (self.presets, fp)
fp.close ()
self.delete_name(e="'")
Case 1.3.2: Formula is invalid
else:

if mb.askokcancel ("Warning", "This formula is invalid, are
you sure you want to add it?"):

47

8 APPENDIX

92

93
94

95
96
97
98
99
100
101
102
103

104

105

106
107

108
109
110
111
112
113
114
115

116

117

118
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

self.presets.update ({name: (self.r_value.get (),
self.g_value.get (), self.b_value.get (),
self.r_scale.get (), self.g_scale.get (),
self.b_scale.get())})
self.preset_box.destroy ()
self.preset_box = ttk.Combobox (self.window,
values=list (self.get_preset_rgb() .keys()))
self.preset_box.place (x=350, y=40)
with open('presets.json', 'w') as fp:
json.dump (self.presets, fp)
fp.close ()
self.delete_name(e="'")
Case 2: Name already exist in presets
else:
Case 2.1: Formula is valid
if
self.valid_formula_no_error (self.rgb_presets.get (self.r_value.get()))
and ...
self.valid_formula_no_error (self.rgb_presets.get (self.g_value.get()))
and ...
self.valid_formula_no_error (self.rgb_presets.get (self.b_value.get())):
if mb.askokcancel ("Warning", "Are you sure you want to overwrite
the preset?"):
self.presets[name] = (self.r_value.get(),
self.b_value.get (), self.r_scale.get(),
self.g_scale.get (), self.b_scale.get())
self.preset_box.destroy ()
self.preset_box = ttk.Combobox (self.window,
values=1list (self.get_preset_rgb() .keys()))
self.preset_box.place (x=350, y=40)
with open('presets.json', 'w') as fp:
json.dump (self.presets, fp)
fp.close ()
self.delete_name(e="'")
Case 2.2: Formula is invalid
else:
if mb.askokcancel ("Warning", "This formula is invalid, are you
sure you want to add it?"):
if mb.askokcancel ("Warning", "Are you sure you want to
overwrite the preset?"):
self.presets[name] = (self.r_value.get(),
self.g_value.get (), self.b_value.get (),
self.r_scale.get (), self.g_scale.get (),
self.b_scale.get())
self.preset_box.destroy ()
self.preset_box = ttk.Combobox (self.window,
values=1list (self.get_preset_rgb () .keys()))
self.preset_box.place (x=350, y=40)
with open('presets.json', 'w') as fp:
json.dump (self.presets, f£fp)
fp.close()
self.delete_name(e="")

self.g_value.get (),

Sets the presets of the buttons according to their names
def set_button_preset (self, preset) -> None:
Checks if a preset exists with the name of the button
If so, displays the result of that preset
If not, displays black image

if preset == "Perfusion":
if self.presets.__contains__ (preset):
self.set_current_formula(self.presets.get (preset))
else:
self.set_current_formula("self.black™)
elif preset == "Oxygenation":
if self.presets.__contains__ (preset):

48

8 APPENDIX

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

self.set_current_formula (self.presets.get (preset))

else:
self.set_current_formula("self.black™)
elif preset == "Abnormal tissue":
if self.presets.__contains__ (preset):
self.set_current_formula(self.presets.get (preset))
else:
self.set_current_formula("self.black")
elif preset == "Pigmentation":
if self.presets.__contains__ (preset):

self.set_current_formula(self.presets.get (preset))

else:

self.set_current_formula ("self.black")
== "Perfusion_RGB":
if self.presets.__contains__ (preset):

elif prese

self
self
self
self
self
self
else:
self
self
self
self
self
self
elif preset

self
self
self
self
self
self
else:
self
self
self
self
self
self
elif prese

self
self
self
self
self
self
else:
self
self
self
self
self
self
elif preset

self
self
self
self
self

.r_value.
.g_value.
.b_value.
.r_scale.
.g_scale.
.b_scale.

.r_value. (
.g_value. (
.set ("")
(
(

.b_value

.r_scale.
.g_scale.
.set (0.5)

.b_scale

set (self
set (self
set (self
set (self
set (self
set (self

set

n H)
set)

wn

0.5)
0.5)

set
set

.presets.
.presets.
.presets.
.presets.
.presets.
.presets.

== "Oxygenation_RGB":
if self.presets.__contains__ (preset):

.r_value.
.g_value.
.b_value.
.r_scale.
.g_scale.
.b_scale.

.r_value.
.g_value.
.b_value.
.r_scale.
.g_scale.
.b_scale.

set (self.
set (self.
set (self.
set (self.
set (self.
set (self.
set (""
set
set
set
set
set

)
" ")
" n)
0.5)
0.5)

(
(
(
(
(
(0.5)

presets. ()
presets. ()
.get (preset)
()
()
()

presets
presets

== "Abnormal tissue_RGB":
if self.presets.__contains__ (preset):

.r_value.
.g_value.
.b_value.
.r_scale.
.g_scale.
.b_scale.

.r_value. (
.g_value. (
.set ("")
(
(

.b_value

.r_scale.
.g_scale.
.b_scale.

set (self.
set (self.
set (self.
set (self.
(self.
(self.

set
set

set)
Set nw ")

set (0.5)
set (0.5)

set (0.5)

presets.
presets.
presets.
presets.
presets.
presets.

== "Pigmentation_RGB":
if self.presets.__contains__ (preset):

.r_value.
.g_value.
.b_value.
.r_scale.
.g_scale.

set (self
set (self
set (self
set (self

(
(
(
set (self

.presets.
.presets.
.presets
.presets.
.presets.

49

get (preset
get (preset
get (preset
get (preset
get (preset
get (preset

get (preset
get (preset

.get (preset
presets.
presets.

get (preset
get (preset

get (preset)
get (preset)
get (preset)
get (preset)
get (preset)
()

get (preset

get (preset
get (preset

get (preset
get (preset

()
()
.get (preset)
()
()

01)
11)
21)
31)
41)
51)

(01
[11)
[21)
[31)
[41)

8 APPENDIX

203
204
205
206
207
208
209
210
211
212

213
214
215
216
217
218
219
220
221
222

223
224
225
226
227
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242

243
244
245
246
247

248
249
250
251
252

253
254

256
257
258
259

self.b_scale.set (self.presets.get (preset) [5])
else:
self.r_value.set
self.g_value.set
self.b_value.set
self.r_scale.set
self.g_scale.set
self.b_scale.set

("m)
"m")
("m
(0.5)
(0.5)
(0.5)
Sets the current formula to the formula associated with the key shown in

the value box
Also sets the text entries to the corresponding name and formula
def set_as_current_preset (self) —-> None:

if self.preset_box.get () != "":

self.set_current_formula (self.presets.get (self.preset_box.get ()))

if self.current_page == "Page 1":
if self.preset_box.get () .__contains__("_RGB") == False:
self.delete_name (e="")

self.name_entry.insert (0, self.preset_box.get())
self.delete_formula(e="")
self.formula_entry.insert (0,

self.presets.get (self.preset_box.get ()))

else:
mb.showerror ("Error", "Invalid formula')
if self.current_page == "Page 3":
if self.preset_box.get () .__contains__("_RGB"):
self.delete_name (e="")

self.name_entry.insert (0,
self.preset_box.get () .replace("_RGB", ""))
self.r_value.set (self.presets.get (self.preset_box.get
self.g_value.set (self.presets.get (self.preset_box.get
self.b_value.set (self.presets.get (self.preset_box.get
self.r_scale.set (self.presets.get (self.preset_box.get
self.g_scale.set (self.presets.get (self.preset_box.get
self.b_scale.set (self.presets.get (
else:

self.preset_box.get
mb.showerror ("Error", "Invalid formula'")

Removes the currently selected preset and any RGB preset using that preset
def remove_preset (self) —-> None:
if self.current_page == "Page 1":
if self.presets._ _contains__ (self.preset_box.get()):
if mb.askokcancel ("Warning", "Are you sure you want to remove the

preset?"):

self.presets.pop(self.preset_box.get ())

keys_to_pop = []

for key in self.presets.keys():

Checks if any RGB preset uses the removed preset

if self.presets.get (key) [0] == self.preset_box.get () or
self.presets.get (key) [1] == self.preset_box.get () or
self.presets.get (key) [2] == self.preset_box.get () :

keys_to_pop.append(key)
for key in keys_to_pop:
self.presets.pop (key)
self.preset_box.destroy ()
self.preset_box = ttk.Combobox (self.window,
values=list (self.get_preset_without_rgb () .keys()))
self.preset_box.place (x=350, y=40)

with open('presets.json', 'w') as fp:
json.dump (self.presets, fp)
fp.close ()
if self.current_page == "Page 3":
if self.presets.__contains__(self.preset_box.get ()):

if mb.askokcancel ("Warning", "Are you sure you want to remove the
preset?"):

50

8 APPENDIX

260
261
262

263
264
265
266
267
268
269
270

271
272
273
274
275

276
277
278
279
280
281
282
283
284

285
286
287
288
289
290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

self.presets.pop(self.preset_box.get ())
self.preset_box.destroy ()
self.preset_box = ttk.Combobox (self.window,
values=list (self.get_preset_rgb() .keys()))
self.preset_box.place (x=350, y=40)
with open ('presets.json', 'w') as fp:
json.dump (self.presets, fp)
fp.close ()

Removes all presets
def clear_presets(self) —-> None:
if mb.askokcancel ("Warning", "Are you sure you want to remove all
presets?") :
if self.current_page == "Page 1":
for key in list(self.get_preset_without_rgb()):
self.get_preset_without_rgb () .pop (key)
self.preset_box.destroy ()
self.preset_box = ttk.Combobox (self.window,
values=list (self.get_preset_without_rgb () .keys()))
self.preset_box.place (x=350, y=40)
with open('presets.json', 'w') as fp:
json.dump (self.presets, fp)
fp.close ()
elif self.current_page == "Page 3":
for key in list (self.get_preset_rgb()):
self.get_preset_rgb() .pop (key)
self.preset_box.destroy ()
self.preset_box = ttk.Combobox (self.window,
values=1list (self.get_preset_rgb() .keys()))
self.preset_box.place (x=350, y=40)
with open('presets.json', 'w') as fp:
json.dump (self.presets, fp)
fp.close ()

Insert the representation for the currently selected wavelength into the
formula
def insert_wavelength(self, text) -> None:
match text:

case "490nm":

text = "self.n490"
case "500nm":

text = "self.n500"
case "477nm":

text = "self.nd477"
case "478nm":

text = "self.n478"
case "577nm":

text = "self.nb577"
case "591nm":

text = "self.nb591"
case "563nm":

text = "self.nb563"
case "553nm":

text = "self.nb553"
case "618nm":

text = "self.n618"
case "6lé6nm":

text = "self.n6l6"
case "613nm":

text = "self.n6l13"
case "600nm":

text = "self.n600"
case "538nm":

text = "self.nb38"
case "549nm":

51

8 APPENDIX

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

text = "self.nb549"
case "523nm":

text = "self.nb523"
case "511nm":

text = "self.n511"

self.formula_entry.insert (tk.INSERT, text)

Insert the numpy representation of each sign in the formula

def insert_sign(self, sign) —-> None:
match sign:
case "-":
self.formula_entry.insert (tk.INSERT, "np.subtract(,) ™)
case "+":
self.formula_entry.insert (tk.INSERT, "np.add(,) ")
case "/":
self.formula_entry.insert (tk.INSERT, "np.divide(,) ")
case "x"

self.formula_entry.insert (tk.INSERT, "np.multiply (, ")

Delete all text from name entry
def delete_name (self, e) —-> None:
self.name_entry.delete (0, tk.END)

Delete all text from formula entry
def delete_formula(self, e) —> None:
self.formula_entry.delete(0,tk.END)

52

8 APPENDIX

Preset lists

Presets from one page can’t be used in the other or problems will occur. That is why only presets corresponding
to the respective page are shown in each page. These functions create the lists containing only presets of their
pages. They do so by checking whether the names of the presets contain the °_RGB’-signature in their name.

=T = Y T N O

Returns the list of presets containing "_RGB"
def get_preset_rgb(self) -> dict[str, str]:
only_rgb = self.presets.copy()
for key in self.presets.keys():
if key.__contains__ ("_RGB") == False:
only_rgb.pop (key)
return only_rgb
Returns the list of presets not containing "_RGB"
def get_preset_without_rgb(self) -> dict[str, str]:

no_rgb = self.presets.copy ()
for key in self.presets.keys():
if key.__contains__ (" _RGB") == True:

no_rgb.pop (key)
return no_rgb

Button color

Makes the doctors preset buttons green if a preset is assigned to them (the name of the button is also the name
of a preset in the list of presets: self.presets).

[Y N T R N

Changes the color of preset-buttons when presets are assigned
def set_button_color(self, button) -> str:
if self.presets.keys().__contains__ (button):
return "GREEN"
else:
return "ORANGE"

53

8 APPENDIX

Saving/uploading images

The ’save_image’ function is called when the user presses the respective button. This function then creates
directories to save the image in (if they don’t already exist). It then saves the image into the dedicated directory
along with all the images of the image cube and a .json-file containing the preset used to create that image.
Uploading an image is done by letting the user select an image from the directory and then setting that as the
image to be displayed. It also sets the image cube to the images found in the respective folder and the current
formula to the formula found in the preset belonging to the selected image.

1 # Save the image currently displayed on screen to the directory of "Saved
images" along with the image cube and its preset

2 def save_image (self) -> None:

3 # Freeze camera to capture current image

4 if self.cam.CAM_OPEN:

5 self.stop_camera ()

6 image = self.create_image ()

7 # Ask for a name

8 try:

9 name = simpledialog.askstring("Name", "Enter a name for the saved image")

10 except:

11 pass

12

13 # Create directories if they don't yet exist

14 if name != None:

15 if os.path.exists ("Saved images"):

16 pass

17 else:

18 os.makedirs ("Saved images")

19

20 if os.path.exists("Saved images/Preset images"):

21 pass

22 else:

23 os.makedirs ("Saved images/Preset images")

24

25 if os.path.exists ("Saved images/RGB images") :

26 pass

27 else:

28 os.makedirs ("Saved images/RGB images")

29

30 # Change the name as long as the name already exists, until it

doesn't, then save it to the dedicated directory along with the
preset

31 if self.current_page == "Page 1" or self.current_page == "Page 2":

32 while os.path.exists("Saved images/Preset images/"+name) == True:

33 name += "_"

34 os.makedirs ("Saved images/Preset images/"+name)

35 image.save ("Saved images/Preset images/"+name+"/"+name +".png")

36 if self.current_page == "Page 3" or self.current_page == "Page 4":

37 while os.path.exists ("Saved images/RGB images/"+name) == True:

38 name += "_"

39 os.makedirs ("Saved images/RGB images/"+name)

40 image.save ("Saved images/RGB images/"+name+"/"+name +".png")

41

42 if self.current_page == "Page 1":

43 with open ("Saved images/Preset images/"+name +"/Preset.json",
'w') as fp:

44 Json.dump ({self.name_entry.get () :self.formula_entry.get ()}, £fp)

45 fp.close()

46 elif self.current_page == "Page 2":

47 with open ("Saved images/Preset images/"+name +"/Preset.json",
'w') as fp:

48 Json.dump ({"":self.get_current_formula()}, fp)

49 fp.close ()

54

8 APPENDIX

50
51

52

53
54
55

56

57
58
59
60
61

62
63
64
65
66
67

68
69

70
71

72
73

74
75
76

71
78

79
80

81
82

83
84
85

86
87

88
89

90
91

92
93

elif self.current_page == "Page 3":
with open ("Saved images/RGB images/"+name +"/Preset.json", 'w')
as fp:
json.dump ({self.name_entry.get () : (self.r_value.get (),

self.g_value.get (), self.b_value.get (),
self.r_scale.get (), self.g_scale.get (),
(

self.b_scale.get())}, fp)
fp.close ()
elif self.current_page == "Page 4":
with open ("Saved images/RGB images/"+name +"/Preset.json", 'w')
as fp:
Json.dump ({"": (self.r_value.get (), self.g_value.get(),

self.b_value.get (), self.r_scale.get(),
self.g_scale.get (), self.b_scale.get())}, fp)
fp.close ()

Save the image cube to the same directory as the file and preset
try:
Check if an image cube is captured (this line will throw an
error if it does not exist)
self.n490 = self.n490
if self.current_page == "Page 1" or self.current_page == "Page 2":
os.makedirs ("Saved images/Preset images/"+name+"/Image cube")

nm477 = Image.fromarray(self.nd477.astype(np.uint8))

nmd77.save ("Saved images/Preset images/"+name+"/Image
cube/477nm.png")

nm478 = Image.fromarray(self.nd478.astype(np.uint8))

nmd78.save ("Saved images/Preset images/"+name+"/Image
cube/478nm.png")

nm490 = Image.fromarray(self.n490.astype(np.uint8))

nm490.save ("Saved images/Preset images/"+name+"/Image
cube/490nm.png")

nm500 = Image.fromarray(self.n500.astype(np.uint8))

nm500.save ("Saved images/Preset images/"+name+"/Image
cube/500nm.png")

nm511 = Image.fromarray(self.n5ll.astype(np.uint8))

nm511.save ("Saved images/Preset images/"+name+"/Image
cube/511nm.png")

nm523 = Image.fromarray(self.n523.astype(np.uint8))

nm523.save ("Saved images/Preset images/"+name+"/Image
cube/523nm.png")

nm538 = Image.fromarray(self.n538.astype(np.uint8))

nm538.save ("Saved images/Preset images/"+name+"/Image
cube/538nm.png")

nm549 = Image.fromarray(self.n549.astype(np.uint8))

nm549.save ("Saved images/Preset images/"+name+"/Image
cube/549nm.png")

nm553 = Image.fromarray(self.n553.astype(np.uint8))

nm553.save ("Saved images/Preset images/"+name+"/Image
cube/553nm.png")

nm563 = Image.fromarray(self.n563.astype(np.uint8))

nm563.save ("Saved images/Preset images/"+name+"/Image
cube/563nm.png")

nm577 = Image.fromarray(self.n577.astype (np.uint8))

nm577.save ("Saved images/Preset images/"+name+"/Image
cube/577nm.png")

nm591 = Image.fromarray(self.n591.astype(np.uint8))

nm591.save ("Saved images/Preset images/"+name+"/Image
cube/591nm.png")

nm600 = Image.fromarray(self.n600.astype(np.uint8))

55

8 APPENDIX

94

95
96

97
98

99
100

101
102
103
104
105
106

107
108

109
110

111
112

113
114
115

116
117

118
119

120
121

122
123
124

125
126

127
128

129
130

131

132

133

134
135

136
137

138

nm600.save ("Saved images/Preset images/"+name+"/Image

cube/600nm.png")

nm613 = Image.fromarray(self.
nm613.save ("Saved images/Preset images/"+name+"/Image

cube/613nm.png")

nm6l16 = Image.fromarray(self.
nm6l6.save ("Saved images/Preset images/"+name+"/Image

cube/6l6nm.png")

nm618 = Image.fromarray(self.
nm618.save ("Saved images/Preset images/"+name+"/Image

cube/618nm.png")

if self.current_page == "Page 3"

n6l3.astype (np.uint8))

n6l6.astype (np.uint8))

n6l8.astype (np.uint8))

or self.current_page ==

"Page 4":

os.makedirs ("Saved images/RGB images/"+name+"/Image cube")

nm477 = Image.fromarray (self.

nm477.save ("Saved images/RGB
cube/477nm.png")

nm478 = Image.fromarray(self.

nm478.save ("Saved images/RGB
cube/478nm.png")

nm490 = Image.fromarray(self.

nm490.save ("Saved images/RGB
cube/490nm.png")

nm500 = Image.fromarray(self.

nm500.save ("Saved images/RGB
cube/500nm.png")

nm511 = Image.fromarray(self.

nm511.save ("Saved images/RGB
cube/511nm.png")

nm523 = Image.fromarray(self.

nm523.save ("Saved images/RGB
cube/523nm.png")

nm538 = Image.fromarray(self.

nm538.save ("Saved images/RGB
cube/538nm.png")

nm549 = Image.fromarray(self.

nm549.save ("Saved images/RGB
cube/549nm.png")

nm553 = Image.fromarray(self.

nm553.save ("Saved images/RGB
cube/553nm.png")

nm563 = Image.fromarray(self.

nm563.save ("Saved images/RGB
cube/563nm.png")

nm577 = Image.fromarray (self.

nm577.save ("Saved images/RGB
cube/577nm.png")

nm591 = Image.fromarray(self.

nm591.save ("Saved images/RGB
cube/591nm.png")

nm600 = Image.fromarray(self.

nm600.save ("Saved images/RGB
cube/600nm.png")

nm6l3 = Image.fromarray (self.

nm613.save ("Saved images/RGB
cube/613nm.png")

nm6l6 = Image.fromarray (self.

nm61l6.save ("Saved images/RGB
cube/6l6nm.png")

nm618 = Image.fromarray (self.

56

nd477.astype (np.uint8))
images/"+name+"/Image

n478.astype (np.uint8))
images/"+name+"/Image

n490.astype (np.uint8))
images/"+name+"/Image

n500.astype (np.uint8))
images/"+name+"/Image
n511.astype (np.uint8))

images/"+name+"/Image

n523.astype (np.uint8))
images/"+name+"/Image

n538.astype (np.uint8))
images/"+name+"/Image

n549.astype (np.uint8))
images/"+name+"/Image
n553.astype (np.uint8))

images/"+name+"/Image

n563.astype (np.uint8))
images/"+name+"/Image

n577.astype (np.uint8))
images/"+name+"/Image

n591.astype (np.uint8))
images/"+name+"/Image
n600.astype (np.uint8))

images/"+name+"/Image

n6l3.astype (np.uint8))
images/"+name+"/Image

n6lé.astype (np.uint8))
images/"+name+"/Image

n6l8.astype (np.uint8))

8 APPENDIX

139

140
141
142
143
144
145
146
147
148
149
150

151
152
153

154
155
156
157
158

159

160

161

162
163

164

165

166

167
168

169

170

171

172
173

nm618.save ("Saved images/RGB images/"+name+"/Image

cube/618nm.png")

except:

pass

Upload an image from the directory of "Saved images"

def upload_image (self)

—> None:

Freeze camera

if self

.cam.CAM_OPEN:

self.stop_camera ()
Open directory based on type of preset

if self.current_page == "Page 1" or self.current_page == "Page 2":

self.current_file = askopenfilename (initialdir="Saved images/Preset
images")

elif self.current_page == "Page 3" or self.current_page == "Page 4":
self.current_file = askopenfilename (initialdir="Saved images/RGB images")

if self.current_file != "" and self.current_file._ _contains__(".png") and
self.current_file._ _contains__ ("Image cube") == False:
if self.current_page == "Page 1" or self.current_page == "Page 3":

try:

self.preset_box.set ("")

Upload image cube
self.nd77 =

(if present)

and preset

(if present)

np.asarray (Image.open (os.path.dirname (self.current_file)+"/Image

cube/47Tnm.png"))
self.nd478 =

np.asarray (Image.open (o

cube/478nm.png"))
self.nd490 =

np.asarray (Image.open (o

cube/490nm.png"))
self.n500 =

np.asarray (Image.open (o

cube/500nm.png"))

self.nb511 =

np.asarray (Image.open (o

cube/511nm.png"))
self.nb523 =

np.asarray (Image.open (o

cube/523nm.png"))
self.n538 =

np.asarray (Image.open (o

cube/538nm.png"))
self.n549 =

np.asarray (Image.open (o

cube/549nm.png"))

self.n553 =

np.asarray (Image.open (o

cube/553nm.png"))
self.n563 =

np.asarray (Image.open (o

cube/563nm.png"))
self.n577 =

S.

S.

S.

S.

S.

S.

S.

S.

S.

np.asarray (Image.open (os.

cube/577nm.png"))
self.nb91 =

np.asarray (Image.open (os.

cube/591nm.png"))

self.n600 =

np.asarray (Image.open (o

cube/600nm.png"))

57

S.

path.

path.

path.

path.

path.

path.

path.

path.

path.

path.

path.

path.

dirname (self.

dirname (self.

dirname (self.

dirname (self.

dirname (self.

dirname (self.

dirname (self.

dirname (self.

dirname (self.

dirname (self.

dirname (self.

dirname (self.

current_file)+"/Image

current_file)+"/Image

current_file)+"/Image

current_file)+"/Image

current_file)+"/Image

current_file)+"/Image

current_file)+"/Image

current_file)+"/Image

current_file)+"/Image

current_file)+"/Image

current_file)+"/Image

current_file)+"/Image

8 APPENDIX

174

175

176

177
178

179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

self.n6l3 =
np.asarray (Image.open (os.path.dirname (self.
cube/613nm.png"))

self.n6l6 =
np.asarray (Image.open (os.path.dirname (self.
cube/6l6nm.png"))

self.n6l8 =
np.asarray (Image.open (os.path.dirname (self.
cube/618nm.png"))

with
open (os.path.dirname (os.path.realpath(self.
'r') as fp:
preset = dict (json.load (fp))
fp.close ()

if self.current_page == "Page 1":
self.delete_name ("e")

current_file)+"/Image

current_file)+"/Image

current_file)+"/Image

current_file))+"/Preset

self.name_entry.insert (0, list (preset.keys())[0])

self.delete_formula("e")

self.formula_entry.insert (0, preset.get (list (preset.keys())[0]))
self.current_formula = preset.get (list (preset.keys()) [0])

elif self.current_page == "Page 2":

self.current_formula = preset.get (list (preset.keys()) [0])

elif self.current_page == "Page 3":
self.delete_name (e="")
self.name_entry.insert (0,

list (preset.keys()) [0].replace("_RGB",

self.r_value.set (preset.get (list (preset.keys()
self.g_value.set (preset.get (list (preset.keys ()
self.b_value.set (preset.get (list (preset.keys ()
self.r_scale.set (preset.get (list (preset.keys()
self.g_scale.set (preset.get (list (preset.keys ()
self.b_scale.set (preset.get (list (preset.keys ()

self.r_value.set (preset.get (list (preset.keys ()
self.g_value.set (preset.get (list (preset.keys ()
self.b_value.set (preset.get (list (preset.keys ()
self.r_scale.set (preset.get (list (preset.keys ()
self.g_scale.set (preset.get (list (preset.keys ()
self.b_scale.set (preset.get (list (preset.keys()

(
(
(
(
(
elif self.current_page == "Page 4":
(
(
(
(
(
(

except:

""))

g b w N o

)
)
)
)
)
)

(G BTNV N N @)

)
)
)
)
)
)

if self.current_page == "Page 1" or self.current_page == "Page 3":

self.delete_name ("e")
if self.current_page == "Page 1":
self.delete_formula("e")

if self.current_page == "Page 3" or self.current_page == "Page 4":

self.r_value.set
self.g_value.set

)

)
self.b_value.set ("")
5

self.r_scale.set (0.5)
self.g_scale.set (0.5)
self.b_scale.set (0.5)
self.current_formula = "No valid formula" == True

self.mode = "IM"

58

. json",

8 APPENDIX

Start variables

Start a tkinter window with the display-app
root = tk.Tk ()

Run the app as a different user with different access depending on the
parameter given

try:

user = str(sys.argv[l])
except:

user = "Tester"

app = XIMEA_DisplayApp (root, user)

Window cannot be expanded

root.resizable (False,False)

Start the loop and therefore the program
root.mainloop ()

59

