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Management summary 
The objective of this research is to find out how to calculate the necessary safety stock a 
surgical specialty should have on the waiting list to prevent stockouts in the operating room. The 
main goal of this research is to improve the resource capacity planning of operating rooms in 
hospitals at a tactical level. This is done by answering the research question:  

What is the necessary safety stock in hours of work for the KNO department at UMC Utrecht to 
ensure a prespecified OR utilization using the MSS for June 2024? 

This question is answered by first exploring literature on the evaluation methods of Master 
surgery schedules (MSS), and seeing what methods can be adapted to calculate a safety stock. 
Then the problem situation at the UMC Utrecht is analysed to give context to the scope of the 
models , and to gather the relevant data necessary for the model inputs. Then we build the most 
promising models, on which we base our conclusions. 

The evaluation techniques that seemed the most promising are a Markov model and discrete 
event simulation. The Markov model was applied by modelling the waiting list as a Markov chain 
in a macro-enabled Excel file, and analysing the waiting list once a steady state was reached. 
The discrete event simulation was applied by modelling a simplification of the admissions 
planning process, and analysing the waiting list once the simulation had been completed.  

The most important finding is that a Markov model is the best out of the two methods to analyse 
surgical waiting lists. Verification and validation of a discrete event simulation is very difficult. 
There are a lot of cases where there is no data or no formal strategy, so it becomes more difficult 
to make sure the model resembles reality. The Markov model does not have this issue, because 
it only uses the transition probabilities, so the only necessary input data, apart from the MSS, 
are the patient arrival distribution and the surgery duration distribution. The Markov model is the 
only model that was found that could be validated. 

The recommended safety stock level 
in hours of work for the KNO 
department at the UMC Utrecht 
depends on the desired expected OR 
utilization, called the service level, 
and is given in FiFigure 1. The 
necessary safety stock level and the 
prespecified service level have an 
exponential relationship, with the 
necessary safety stock level steeply 
increasing when the service level 
exceeds 90%. 

F
i
Figure 1 The necessary safety stock level to achieve 
a prespecified service level 
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The next step for the UMC Utrecht is to calculate the safety stock level for all their surgical 
departments, so they can use the data to improve their tactical planning decisions. This safety 
stock level is also useful when a hospital wants to implement a dynamic master surgery 
schedule. The safety stock can then be used to monitor whether a surgical specialty could use 
more or less OR hours, and if a surgical specialty can be expected to utilize the OR enough 
using a proposed new MSS.  
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Operating room planning 
It is estimated that over one third of health expenditures can be attributed to waste (Oecd, 
2017). 

About 40 percent of a hospital’s expenses come from their operating theatre (OT) (Marrin et al., 
1997). It is a general objective that the OT gets used as optimally as possible while upholding a 
good quality of care. A substantial sub objective is to schedule operations as optimally as 
possible. Because operating room (OR) planning is a complex problem with many constraints 
(patients, staff, materials, post operation bed availability, etc.), an optimal schedule is 
impossible to make. Instead, hospitals often split OR planning into a strategic, tactical, and 
operational component. This was expanded upon by (Hans et al., 2012) Into a framework for 
healthcare planning and control, as shown in Figure 2.  
On a strategic level, Structural decisions, like policies and company strategy are decided. For 
example, hospitals decide how many of a type of surgery they plan to do in a year, and how 
much time they expect each surgery to take.  
The operational level involves short-term decisions that are meant to execute the healthcare 
delivery process. It involves both an offline – in advance- and an online – reactive- part. An 
example of offline operational planning is surgery scheduling. An example of online operational 
planning is handling emergency arrivals, or other unforeseen complications that arise. 
Tactical planning involves actions that are in between strategic and operational planning in 
scope and planning horizon. Because it involves a larger planning horizon than operational 
planning, tactical planning decisions rely more on trends and patterns than operational 
planning. Decisions are also more flexible, as they are made further in advance. For example, in 
tactical planning surgical schedules are made that allocate surgery time in blocks to surgical 
specialties, without specifying what surgeries will be performed. In operational planning, these 
blocks are filled in with surgeries.  

 

 

Figure 2 A framework for healthcare planning and control (Hans et al., 2012) 
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Planning at UMC Utrecht 
The UMC Utrecht is exploring to improve the current Tactical planning process by introducing a 
dynamic master surgery schedule (MSS), where most of the OR time is assigned to specific 
specialties, but some of the OR blocks are kept unassigned. These blocks can then later be 
assigned to the specialty that needs it the most. This introduces a trade-off between stability 
and flexibility where leaving more slots unassigned leads to the slots being allocated to the 
specialties that need it most, but there is less time to schedule patients and doctors.  

Research shows that introducing even a small amount of flexibility into the MSS leads to great 
improvements in OT performance (Oliveira & Marques, 2021). The downside of introducing 
flexibility is that it is known much later what surgery will take place where. This is important to 
stakeholders such as surgeons and surgical staff. 

Deciding what part of the MSS should be stable is a strategic decision that would take too long 
to research in this project, and is part of a multi year project the UMC Utrecht is working on to 
change tactical planning. 
Deciding when a specialty should receive an unassigned OR block is mostly answered by rules 
in place through quality of care purposes. The patients should not wait for so long that their 
health deteriorates while waiting for surgery. So when planners see these waiting times tick up, 
they should receive extra operating sessions. 
Deciding when a specialty does not need an unassigned OR block is the problem that this 
project focuses on. This decision depends on many factors. Some of these are: the number of 
surgeries the specialty is budgeted to fulfil, the number of surgery hours on the waiting list, the 
expected change to the specialties waiting list considering the current schedule, and the UMC 
Utrecht’s strategic position.  
Because these decisions depend on many factors and have an impact on the surgery 
scheduling at a tactical level, they impact many different stakeholders at the hospital. The 
tactical planners have to come to a consensus that the decision being made is the best one for 
all the stakeholders involved. This research project assists in this decision making process by 
presenting a safety stock level for the patient waiting list length. This safety stock is the lowest 
necessary number of hours of work needed on the waiting list to ensure there is enough work to 
service the given OR hours. This tells the tactical planners if their current waiting list is large 
enough for their OR hours, or if they can take away OR hours and still ensure timely surgeries. 
When the safety stock level for the surgical specialties is known, the tactical planners can base 
their planning decisions on data, which is necessary when a consensus needs to be reached in 
a timely manner. 

Problem definition 
The main management problem is: 

Operating rooms are not assigned to surgical specialties optimally. 

This problem Has many causes, part of whom are given in the problem cluster in Figure 3. The 
MPSM method is used to find the best fitting core problem (Heerkens & Van Winden, 2011.). 
This problem cluster only focuses on causes in tactical planning, because different causes fall 



10 
 

outside the scope of this research. 
 

Suboptimal tactical planning is caused by either a suboptimal MSS, or by not adjusting the MSS 
to the current situation. A suboptimal MSS can have many causes. Generally, it is either caused 
by using a suboptimal modelling technique, or by using the same MSS for too long, and not 
changing it for seasonality or other dynamic changes, such as surgeon availability or holidays. 
The MSS does not get adjusted to the current situation properly for two reasons. Either the MSS 
does not have enough flexibility and cannot change, or the proposed changes in the MSS made 
during the tactical planning meeting were not the optimal decisions. 
Suboptimal decision making during the tactical planning meeting also has many causes, the 
most valuable of which is ‘Safety stock for the waiting lists is unknown’. This is the chosen core 
problem for this research. 

 

Figure 3 Problem cluster for operating room scheduling inefficiencies caused by tactical planning mistakes. 

 

This problem is both relevant to UMC Utrecht and unexplored in literature. To make sure the 
problem fits in the scope of a bachelor’s assignment, this project focuses on calculating safety 
stock levels for the patient waiting list for the KNO department at UMC Utrecht. The result from 
this project can be used to make informed planning decisions based on patient waiting lists.  

Global problem solving approach 

Research aim 
The goal for this research is to calculate safety stock levels for patient waiting lists for surgery 
specialties based on key performance indicators (KPI’s). The results from this project can be 
used to support decision making for flexible surgery scheduling. 
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The knowledge question associated with this research aim is: 

What is the necessary safety stock in hours of work for the KNO department at UMC Utrecht to 
ensure a prespecified OR utilization using the MSS for June 2024? 

Research questions 
The problem is broken down into 4 stages, given in Figure 4. First we have to understand the 
current situation. There is no clear idea on what service levels are desired, nor do we know the 
characteristics of patients undergoing surgery. The second step is to review literature, both on 
safety stock and on techniques to evaluate MSSs. This will show the possible methods that exist 
to calculate waiting list lengths for surgical specialties, and what needs to be added to 
calculate a safety stock level. The available model methods that seem to fit the problem 
context best are adapted to the context of safety stock in the solution design, where different 
scenarios will be tested. After that key insights and recommendations will be given.  

 

Figure 4 Graphical view of the solution approach 

The literature review will be researched through a narrative literature review for each research 
question. The research questions for the literature research are: 

1. What techniques to evaluate the impact of an MSS exist? 
2. How is safety stock calculated, and how does this translate to a hospital setting? 

The goal for the literature review is to describe theories, models, and frameworks developed in 
past studies. A narrative literature review is used (King & He, 2005). We choose this method 
because the number of papers with different models is limited, and most models are 
adaptations from one another. The literature review will create a toolbox with possible methods 
to model tactical planning and to calculate safety stock. This implies that this project is limited 
by the models currently available in literature, but the models can be adapted to fit the research 
goal. Research questions 1 and 2 are answered in the chapter ‘Theory’. 

The context analysis will be researched through semi-structured interviews with employees at 
UMC Utrecht that are involved in the tactical planning process, and by using data from UMC 
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Utrecht. The analysis will deliver an analysis and statistical distributions for these main patient 
characteristics. The research questions for the context analysis are: 

3. What are the main patient characteristics? 
a. What are the statistical patient arrivals? 
b. What are the statistical surgery durations? 

4. Wat strategy is used to plan patients in OR blocks at the KNO department at the 
UMC Utrecht? 

The context analysis is given in the chapter ‘System description’. The research questions for the 
context analysis are both descriptive questions. They are all meant to elaborate on the current 
planning policy and situation at UMC Utrecht. These semi-structured interviews focus both on 
answering the specific questions, while also allowing the interviewees to expand and delve into 
aspects that they consider important, but are not explicitly mentioned. Semi-structured 
interviews allow for the collection of both quantitative  and qualitative (questions 3 and 4, 
respectively) data (Dicicco-Bloom & Crabtree, 2006). Research questions 3 and 4 are answered 
in the chapter ‘System description’. 

The research questions regarding the solution design and recommendations are answered by 
estimating what type of method to evaluate the MSS works best for the situation, building this 
method, and testing scenarios and configurations. The research questions for the solution 
design and recommendations are: 

5. What models work best to estimate the necessary safety stock levels for surgical 
departments? 

6. What is the relationship between OR performance and safety stock levels? 
7. What are the practical insights gained from these models? 

The research questions for the conclusions and recommendations answer the original problem 
statement for the project. The answer to question 5 validates the information provided in 
question 6. This question gives the insight necessary to answer question 7. To answer question 
6, experiments need to be conducted. Question 5 is answered by evaluating the quality of the 
models designed during the project. Research questions 5, 6, and 7 are answered in the 
conclusion. 

Relevance and scope 
There are no papers on cases where safety stock was calculated for operating rooms. Only on 
theoretical models, as part of a simulation-optimization approach, expected waiting list lengths 
have been calculated (Razali et al., 2022). These waiting list lengths are not calculated using 
very robust methods, as the actual values are not important for optimization. It is only important 
to see whether the expected waiting list length goes up or down when making changes in the 
MSS. The specific methods used to calculate these waiting list levels are only vaguely explained 
and not reproducible (Abedini et al., 2017; Kumar et al., 2018; Oliveira et al., 2022). This project 
bridges the gap between studies that focus on theoretical models and using these models in a 
practical setting, while adapting the models to more accurately reflect the real world. This 
makes the results given by the models accurate enough to be used in a real world setting. 
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The information given in this project is relevant to UMC Utrecht, and helps them improve their 
tactical planning process. Results given by this project help improve decisions made during 
tactical planning meetings, where changes are made to the MSS based on the current situation 
in the hospital. 

To keep the project within the scope of a bachelor’s thesis, this project will focus on the 
relationship between waiting list length and operating room utilization. 
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Theory 
The goal for the theory chapter is to answer research questions 1 and 2:  

1. What techniques to evaluate the impact of an MSS exist? 
2. How is safety stock calculated, and how does this translate to a hospital setting? 

First we gather what modelling techniques have been used to evaluate MSSs. Then we see how 
safety stock can be calculated in the context of the OR at a hospital. Finally we determine what 
techniques could be adapted to calculate the safety stock level for an OR. 

One of the biggest improvements in recent years to tactical planning in hospitals is introducing 
flexibility to the MSS. In dynamic MSS planning, operating room time for surgical specialties is 
adjusted depending on changes in staff availability and changes in the demand pattern (Oliveira 
& Marques, 2021).  

MSSs are evaluated to understand their expected quality, or their effect on performance 
indicators (Razali et al., 2022). Literature often benchmarks their own planning technique 
against established modelling methods. For example, (van der Sande, 2023)  used the data from 
(Adan et al., 2009) to compare results. (Dellaert et al., 2016) used Markov chains to model and 
evaluate the waiting list length, and (Pulido, 2014) used Monte Carlo simulation for scenario 
reduction. Simulation is also often used to evaluate schedules (Zhu et al., 2019).  

Discrete-event simulation is also often used to test and evaluate master surgery schedules in a 
stochastic environment. (Kumar et al., 2018), (Britt, 2016) and (Abedini et al., 2017) used 
discrete-event simulation to evaluate and test their optimization model. (Bovim et al., 2020) and 
(Oliveira et al., 2022b) use the expected waiting time these simulations to make changes in their 
master surgery schedule, as part of a simulation-optimization approach. 

One way to make dynamic decisions more informed is by introducing safety stocks for surgical 
specialties. Safety stock are the extra resources that a company will keep on hand to reduce the 
probability of a stockout in case of variability in demand, lead times, or forecast inaccuracies. 
The more accurate the forecast, the less safety stock that is required, because safety stock is 
the buffer to counterbalance forecast variability (Monk & Wagner, 2008). 
Safety stock can also prevent stockouts in case of uncertain yield rates from variability in 
production processes (Hung & Chang, 1999). 
Safety stock is not meant to eliminate all stockouts, just the majority of them. The amount of 
time where safety stock prevents a stockout is called the service level. A high service level will 
mean higher safety stocks and costs, but fewer stockouts.  

In a hospital setting, the safety stock should prevent the OR from operating without there being 
any work to be done. The safety stock level is therefore the minimum number of hours of work 
necessary on the waiting list to achieve a prespecified OR utilization with a certainty described 
by the service level. The forecast variability comes from both the uncertainty of patient arrivals, 
and the uncertainty in surgery times. When there are not enough hours of work on the waiting 
list to fill the OR schedule the prespecified amount, The hospital has a stockout. The OR 
utilization and the service level can be determined by the UMC Utrecht depending on their own 
goals. Choosing a higher OR utilization or necessary service level leads to a higher necessary 
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safety stock level, but fewer stockouts compared to choosing a lower OR utilization and service 
level. 

To calculate the necessary safety stock for the KNO department at the UMC Utrecht, 
techniques that evaluate the waiting list will be adapted to evaluate whether a certain amount 
of work on the waiting list is enough to achieve a prespecified service level. The modelling 
techniques that have been used to evaluate the waiting list are from (Dellaert et al., 2016), who 
use a Markov model to evaluate the waiting list, and (Oliveira et al., 2022), who use discrete 
event simulation to evaluate waiting time, although they were not able to validate their model. 
Both these techniques will be explored in the solution design. The other techniques mentioned 
focus on something other than waiting list lengths, and will not be used in the solution design.  
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System description 
The system description describes the system that the real world problem resides in. Where the 
real world is unknown, assumptions are made. First the objective of the model is given, to give 
context on the scope of the description of the problem situation (Robinson & Macmillan, 2014). 
The system description describes the situation that the Markov model and the discrete event 
simulation are based on, and answers research questions 3 and 4: 

3. What are the main patient characteristics? 
c. What are the statistical patient arrivals? 
d. What are the statistical surgery durations? 

4. Wat strategy is used to plan patients in OR blocks at the KNO department at the 
UMC Utrecht? 

Modelling objectives 
The modelling objectives help inform the content of the model. This chapter focuses on the 
scope of the model, with the aim to clarify the breadth of the system that is to be modelled. 

Specific objective 

Determine the minimum amount of surgery time necessary on the waiting list at the KNO 
department at UMC Utrecht to achieve a prespecified service level for any OR utilization level 
for the MSS of May2024. 

General objectives 

General project objectives: 

• The model should be as simple as possible 
• The model should be as user friendly as possible 
• The model should be as adaptable as possible, so the model might be used for 

different surgical departments than KNO at UMC Utrecht, or different surgical 
departments at different hospitals. 

Model inputs and outputs 

The inputs are the experimental factors that we use to achieve the modelling objectives. 
(Robinson & Macmillan, 2014). These factors are: 

• A distribution for patient arrival rates. 
• A distribution for patient surgery durations. 
• A distribution for patient urgency types. 
• The MSS. 
• A desired utility level. 
• A desired service level. 

The outputs of the model are the statistics that show whether the modelling objectives were 
met (Robinson & Macmillan, 2014). The outputs for this model are: 

• The service level, the percentage of days that the utilization threshold is reached. 
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• The operating room utilization, the percentage of OR time that is used. 
• The percentage of patients that were operated on before their deadline. 
• The necessary safety stock to achieve the service level objective. 

Problem situation 
The problem situation outlines the aspects of the real world that are of interest in the model 
design. The problem situation is used to make decisions on the scope and level of detail of the 
conceptual model. 

The KNO (ear, nose, and throat) department at UMC Utrecht has the longest waiting list for 
surgery at the hospital. People get added to the waiting list when they are scheduled for surgery 
by their doctor, and they get removed from the waiting list when they are planned in for surgery. 
If they need to receive surgery again, or need to be planned again, they are added to the waiting 
list again.  

The patients get scheduled for surgery by the KNO admissions coordinator. The admissions 
coordinator is in charge of scheduling patients for surgery during the OR time the KNO 
department has been given in the MSS. The OR time given to the KNO department can change 
monthly from the tactical planning process, where the hospital tries to balance all the available 
OR time in the hospital with the needs for every surgical department. The given OR time can 
also change every year because of the strategic planning process, where the hospital 
recalibrates their plans, priorities, and budgets.  

When a patient has been scheduled, they get a label in the planning software indicating that 
they have been scheduled. After their surgery, patients are removed from the waiting list and 
leave the system. If the patient is in need of surgery again,  they are added to the waiting list 
again. 

Planning strategy 

When scheduling patients, the admissions coordinator has to balance many interests. These 
include:  

• The patients interests, making sure that the patient is available during their surgery (not 
on holiday for example), and that the patient receives surgery on time. 

• The doctors interests, making sure that the patient is scheduled on a day when their 
doctor is also scheduled to perform surgery. 

• The OR’s interests. They prefer to finish with a shorter surgery, so it can be cancelled 
when they are risking overtime. 

• The organizations interests: making sure that the OR capacity is utilized adequately. 
• Other interests: When an anaesthetist is assigned to multiple operating rooms, the 

surgery can only start when the anaesthetist has done their job. This means that if 2 
surgeries start at the same time, one surgery might have to wait until the anaesthetist is 
finished with the first patient to get to the second, which delays surgery time. 

The admissions officer usually gets the MSS at least 6 weeks ahead, so their planning horizon is 
at least 6 weeks. The expected surgery time and the patients urgency are given by the patient’s 
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doctor. This means that a more experienced surgeon might give a lower expected surgery time 
for a routine surgery than a less experienced surgeon. 

When selecting patients to schedule, the admissions coordinator works with a FIFO (first in first 
out) approach. Patients who have been waiting the longest get planning priority. The exception 
to this rule is that patients with a higher urgency label get priority first, and patients with a lower 
urgency label get priority second. During office hours, the admissions coordinator keeps 
constant watch over the waiting list, and tries to schedule patients as soon as they enter the 
waiting list.  

When scheduling patients far before their date of surgery, the admissions officer has to keep 
some space in the schedule in case semi- urgent patients with a high urgency show up. In the 
case that someone with high urgency arrives on the waiting list, and there is no space for them 
in the schedule, the admissions coordinator might replan a patient with a lower urgency from 
the schedule to make room for this high urgency patient. In general, everything is provisional, 
and semi-urgent cases can always take your place. If a patients place is taken, the admissions 
officer does not place them  in the back of the waiting list, but tries to plan them in as fast as 
possible, because the patient might have waited in the waiting room for the OR the entire day. 

When the waiting list gets long, as is the case with the KNO department, the admissions 
scheduler has to make a decision for how many patients with a lower urgency (over 3 months) to 
schedule, and how much room to leave open for patients with a higher urgency (under 3 
months). This decision is left up to the admissions coordinator. 

If there are not enough patients on the waiting list to fill up the given OR time, the KNO 
department tries to shop for surgeries at divisions with similar specialties. For KNO this is only 
the ‘kaak’ (Maxillofacial) department. Different divisions cannot make effective use of the KNO’s 
OR time, because their requirements in surgical equipment or surgical staff might be different. 
In general, giving back unused OR time to the OR division is difficult, because no division can 
get their staff ready to use the operating room within a short timeframe. 

The goal for the admissions coordinator is to fill up all the given surgery time with surgeries, 
while keeping the interests of all the parties in mind, and keeping the patients waiting time as 
short as possible. There is no simple ‘best’ approach for admissions planning at UMC Utrecht. It 
is a skill and an art, that you get better at over time. Admissions planning is difficult at UMC 
Utrecht, because it is a tertiary hospital. This means that every incoming patient has different 
complexities and needs that must be taken into account, and the variety in surgery durations 
and surgery types is high. 

Assumptions 

• It is assumed that the arrival of patients is a memoryless process. This means that 
patients arrive to the waiting list independent of each other. 

• It is assumed that the surgery time that was planned in by the doctor is the amount of 
time the surgery actually took. 

• It is assumed that there are always the necessary OR personnel available during the 
given OR hours. 
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• It is assumed that OR-time allocated to the KNO department cannot be shared with 
other specialties. 

Because there is no given method of admission’s planning, it is assumed for the conceptual 
model that any planning strategy that either improves OR utilization, the percentage of patients 
planned within their deadline, or both of these factors, when compared to not using this 
strategy, is a valid planning strategy to add to the conceptual model.  The goal for the finished 
model is to get these KPI’s as high as possible, because the assumption is that an actual 
admissions coordinator can always plan better than a computer model that makes 
assumptions and simplifications. 

Data 
The data is obtained from the KNO department at UMC Utrecht. Where there was no available 
data, the best guess of the KNO admissions officer is used. 

Patient type distribution 

Within the given data there is no distinction between different patient types. The KNO 
admissions officer’s best guess is that the patient distribution is: 0% semi-urgent, 25% deadline 
within 3 months, 75% deadline over 3 months. In the simulation, 25% of patients will be 
assumed to have a normal urgency, and 75% of patients will be assumed to be ‘not urgent’. 

Patient interarrival times 

Within the given data there is no indication when patients arrive to the system. Only when they 
leave. It is assumed that The patients that left the system arrived independent from each other. 
The dataset contains all the departures from surgery from the KNO department at UMC Utrecht 
starting in 2023. We only look at data starting in 2023, because before 2023 the KNO 
department had a different schedule, because of the covid pandemic. The average interarrival 
time to the KNO department at the UMC Utrecht since the start of 2023 has been 11:06:40. We 
use this average as the mean interarrival time in a Poisson distribution. 

Surgery times 

Surgery times are usually assumed to be lognormally distributed (Marques & Captivo, 2017), 
therefore, the data for realized surgeries at the KNO department is used to find a fitting 
lognormal distribution. The dataset contains the realized surgery times from the KNO 
department at UMC Utrecht since the start of 2019. Surgery times shorter than 30 minutes and 
longer than 240 minutes are removed from the dataset, because the data seems mostly faulty. 
There are over 20 surgeries that claim to have taken over 1500 minutes, for example. Figure 5 
Shows the best fitting normal distribution for the natural log of the data’s realized surgery times. 
Both with 30 and 58 bins, we are not able to reject the null hypothesis using the chi squared 
test. However, because literature suggests that surgery times are lognormally distributed, and 
cannot find a probability function that fits the data better, this statistical distribution is used in 
the model. The best fit with 30 bins is chosen, because using 58 bins (the square root of the 
number of data points) gives peaks in the data from bins having an inconsistent size. Using 30 
bins eliminates this problem: the data is between 30 and 240 minutes, meaning that every bin 
has a size of 7. The excel solver is used to find a mean and standard deviation that fit the dataset 
the best. This distribution is used as input for the Markov model. The simulation model 
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generates a sample surgery duration from the lognormal distribution associated with this 
normal distribution. If the surgery duration is not between 30 and 240 minutes, the sample is 
regenerated. If the surgery duration is between these values the sample is accepted. We do this 
because it fits the data we have more accurately. We do not do this for the Markov model 
because we cannot write this into mathematical form. 

 

Figure 5 The best fitting distribution to the surgery time data. 

   

MSS 

The MSS for June 2024 for the KNO department at UMC Utrecht is used as an input for the 
schedule for the model. The OR is assumed to be opened between 8:00:00 and 16:00:00. 
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Markov model 
The mathematical model evaluates the MSS by modelling the waiting list as a Markov chain. 
Once the Markov chain has reached a steady state, the expected OR utility is calculated. This 
method is introduced by (Dellaert et al., 2016), and practically explained by (van der Sande, 
2023). This section expands on the established theory by adding uncertainty of surgery lengths 
into the model, which greatly improves the model’s practical usability.  

Notation 

Parameters  

𝐴 Safety stock level that is being tested. 

𝑆 Service level to be achieved. 

𝑇 Length of the master surgery schedule (MSS), 
in days. 

𝑍𝑡  The amount of time the OR is open on day t. 

Variables  

𝑡 Day index, integers in the range  [0,∞ >. 

𝑦 The number of patients arriving on a day. 
Integers in the range [0,∞ >  

𝑌(𝑦, 𝑡) The probability of 𝑦 patients arriving on day  𝑡. 
A large y has an incremental smaller 
probability. 

𝑞𝑡
BP, 𝑞𝑡AP The number of patients in the queue before 

and after planning on day t, respectively. 
BP stands for Before Planning 
AP stands for After Planning 
Both 𝑞𝑡BP and 𝑞𝑡AP are integers in the range 
[0, 𝐴]. 

𝑄𝑡
BP(𝑞𝑡

BP), 𝑄𝑡AP(𝑞𝑡AP). 

 

The probability that the number of patients in 
the queue before and after planning on day  𝑡 
equals 𝑞𝑡BP and 𝑞𝑡AP, respectively. 

𝑥 The number of surgeries that can be 
performed on a day. This is an integer in the 
range [0,∞ >. 

𝑋(𝑥, 𝑞𝑡
𝐵𝑃) The probability of having enough time to 

perform exactly 𝑥 surgeries, given that there 
were 𝑞𝑡𝐵𝑃people on the waiting list before 
planning, and 𝑥 =  𝑞𝑡𝐵𝑃 − 𝑞𝑡𝐴𝑃. 

𝑈(𝑡) 

𝜀 

 

 

Expected OR utilization on day t. 

The difference between the average expected 
waiting list length for some MSS cycle 𝑒, and 
the average expected waiting list length for 
MSS cycle 𝑒 − 1 
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Queue length calculation 
The number of patients that are in the queue after planning on day 𝑡 equals the number of 
people in the queue before planning, minus the number of  people that can be planned: 

𝑞𝑡
AP = 𝑞𝑡

𝐵𝑃 −𝑚𝑖𝑛(𝑥, 𝑞𝑡
𝐵𝑃) 

The number of patients on the waiting list before the surgery session on day 𝑡 is the number of 
people on the waiting list after planning the day before, plus the number of new arrivals: 

𝑞𝑡
BP = 𝑞𝑡−1

𝐴𝑃 +𝑚𝑖𝑛(𝑦, 𝐴 − 𝑞𝑡−1
𝐴𝑃 ) 

The number of surgeries 
The number of surgeries that can be performed in a day depends on the amount of time 𝑧𝑡 the 
OR is open, and the length of the surgeries. Because the length of the surgeries is stochastic 
there exists some probability that on day t there is enough time to perform 𝑥 surgeries. 

The probability that there is enough time to perform at least 𝑥 surgeries during the given OR time 
𝑍𝑡  is the probability that the sum of the surgery times of 𝑥 people exceeds 𝑍𝑡. 
Because patient surgery times can best be described by a lognormal distribution(Marques et 
al., 2019), we can rewrite the surgery time distribution to a normal distribution to make use of 
the normal distributions additive property. The probability that there is enough time to perform 
at least 𝑥 surgeries then becomes: 

𝑃 (𝑋 > 𝑙𝑛 (
𝑍𝑡
𝑥
)) , where 𝑋 ∼ Normal (𝜇, 𝜎) 

with 𝜇 being the mean of the natural log of the surgery time distribution, and 𝜎 being the standard 

deviation of the natural log of the surgery time distribution. 

Let 𝑋(𝑥, 𝑞𝑡
𝐵𝑃) be the probability of having enough time to perform exactly 𝑥 surgeries, when 𝑥 =

 𝑞𝑡
𝐵𝑃 − 𝑞𝑡

𝐴𝑃 . This probability is dependent on 𝑞𝑡
𝐵𝑃 because there are 5 cases: 

1. If 𝑞𝑡
𝐵𝑃  > 𝑥, 𝑎𝑛𝑑 𝑥 > 0: 𝑋(𝑥, 𝑞𝑡

𝐵𝑃) is the probability that we have enough time to perform at 

least 𝑥 surgeries, minus the probability that we have enough time to perform at least 𝑥 + 1 

surgeries: 

𝑋(𝑥, 𝑞𝑡
𝐵𝑃) = 𝑃 (𝑋 > 𝑙𝑛 (

𝑍𝑡
𝑥
)) − 𝑃 (𝑋 > 𝑙𝑛 (

𝑍𝑡
𝑥 + 1

)) , where 𝑋 ∼ Normal (𝜇, 𝜎) 

2. If 𝑞𝑡
𝐵𝑃  > 𝑥, 𝑎𝑛𝑑 𝑥 = 0: 𝑋(𝑥, 𝑞𝑡

𝐵𝑃) is the probability that we have enough time to perform at 

least 0 surgeries, minus the probability that we have enough time to perform at least 1 

surgery: 

𝑋(𝑥, 𝑞𝑡
𝐵𝑃) = 1 − 𝑃(𝑋 > 𝑙𝑛(𝑍𝑡)), where 𝑋 ∼ Normal (𝜇, 𝜎) 

3. If 𝑞𝑡
𝐵𝑃 = 𝑥, 𝑎𝑛𝑑 𝑥 > 0: It is impossible to perform more than 𝑞𝑡

𝐵𝑃 surgeries, so 𝑋(𝑥, 𝑞𝑡
𝐵𝑃) is 

the probability that we have enough time to perform at least 𝑥 surgeries:  

𝑋(𝑥, 𝑞𝑡
𝐵𝑃) = 𝑃 (𝑋 > 𝑙𝑛 (

𝑍𝑡
𝑥
)) , where 𝑋 ∼ Normal (𝜇, 𝜎) 

4. If 𝑞𝑡
𝐵𝑃 = 𝑥, 𝑎𝑛𝑑 𝑥 = 0: It is impossible to fill up your OR time when there is nobody on the 

waiting list: 
𝑋(𝑥, 𝑞𝑡

𝐵𝑃)  =  0 
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5. If 𝑞𝑡
𝐵𝑃  < 𝑥: It is impossible to perform surgery on more people than there exist on the 

waiting list:   

𝑋(𝑥, 𝑞𝑡
𝐵𝑃)  =  0 

Calculating the steady state 

If we want to calculate 𝑄𝑡𝐵𝑃(𝑞𝑡𝐵𝑃), note that for each integer 𝑘 in the interval [0, 𝑞𝑡𝐵𝑃],  
𝑄𝑡−1
𝐴𝑃 (𝑘) and 𝑌(𝑞𝑡𝐵𝑃 − 𝑘, 𝑡) contribute to the probability  of having 𝑞𝑡𝐵𝑃 with probability 𝑄𝑡−1𝐴𝑃 (𝑘) ∙

 𝑌(𝑞𝑡𝐵𝑃 − 𝑘, 𝑡), hence: 

 𝑄𝑡𝐵𝑃(𝑞𝑡𝐵𝑃) = ∑ 𝑄𝑡−1
𝐴𝑃 (𝑘) ∙ 𝑌(𝑞𝑡

𝐵𝑃 − 𝑘, 𝑡)
𝑞𝑡
𝐵𝑃

𝑘=0 . 

However, because 𝑦 has no upper bound and 𝑞𝑡𝐵𝑃 has upper bound 𝐴, we have to consider the 
case 𝑞𝑡𝐵𝑃 = 𝐴 separate: In this case  all 𝑦 >  𝐴 − 𝑞𝑡−1𝐴𝑃  contributes to 𝑄𝑡𝐵𝑃(𝐴), 𝑠𝑜 the 𝑌(𝑞𝑡𝐵𝑃 −
𝑘, 𝑡) factor is not only 𝑌(𝐴 − 𝑘, 𝑡) with 𝑦 = 𝐴 − 𝑘 but with ∑ 𝑌(𝑦, 𝑡)∞

𝑦=𝐴−𝑘 . 

In conclusion: 

𝑄𝑡
𝐵𝑃(𝑞𝑡

𝐵𝑃) =

{
 
 
 
 

 
 
 
 
∑𝑄𝑡−1

𝐴𝑃 (𝑘) ∙ 𝑌(𝑞𝑡
𝐵𝑃 − 𝑘, 𝑡),

𝑞𝑡
𝐵𝑃

𝑘=0

        𝑤ℎ𝑒𝑛 0 ≤ 𝑞𝑡
𝐵𝑃 < 𝐴

∑𝑄𝑡−1
𝐴𝑃 (𝑘) ∙ ∑ 𝑌(𝑦, 𝑡)

∞

𝑦=𝐴−𝑘

,

𝑞𝑡
𝐵𝑃

𝑘=0

                 𝑤ℎ𝑒𝑛 𝑞𝑡
𝐵𝑃 = 𝐴

0,                                                                   𝑤ℎ𝑒𝑛 𝑞𝑡
𝐵𝑃 > 𝐴

 

Similar to this derivation,  𝑄𝑡𝐴𝑃(𝑞𝑡𝐴𝑃) can be expressed as follows: 

𝑄𝑡
𝐴𝑃(𝑞𝑡

𝐴𝑃) =

{
 
 
 

 
 
 
∑ 𝑄𝑡

𝐵𝑃(𝑞𝑡
𝐴𝑃 + 𝑘)

𝐴−𝑞𝑡
𝐴𝑃

𝑘=0

∗ X(𝑘, 𝑞𝑡
𝐴𝑃 + 𝑘), 𝑤ℎ𝑒𝑛 0 < 𝑞𝑡

𝐴𝑃 ≤ 𝐴

∑𝑄𝑡
𝐵𝑃(𝑘) ∙ ∑𝑋(𝑥, 𝑘)

∞

𝑥=𝑘

𝐴

𝑘=0

,                                   𝑤ℎ𝑒𝑛  𝑞𝑡
𝐴𝑃 = 0

0,                                                                            𝑤ℎ𝑒𝑛 𝑞𝑡
𝐴𝑃 > 𝐴

 

We use the power method (Bolch, 1998) until the values of 𝑄𝑡BP(𝑞𝑡BP) and 𝑄𝑡AP(𝑞𝑡AP) reach their 
steady state. Obtaining the steady state probabilities allows for the calculation of the expected 
OR utilization. 

Utilization 
The utilization 𝑈(𝑡) is the probability that there are enough people on the waiting list to service 
all the surgery time. It is therefore also 1 – the probability that there are not enough people on 
the waiting list before planning to utilize all the given OR time. This is given by the formula:  
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𝑈(𝑡) = 1 − ∑

{
 
 

 
 
𝑄𝑡
𝐵𝑃(𝑞𝑡

𝐵𝑃),                                             𝑤ℎ𝑒𝑛 𝑞𝑡
𝐵𝑃 = 0

𝑄𝑡
𝐵𝑃(𝑞𝑡

𝐵𝑃) ∙ ∑ 𝑋(𝑥, 𝑞𝑡
𝐵𝑃)

∞

𝑙=𝑞𝑡
𝐵𝑃+1

,    𝑤ℎ𝑒𝑛 0 < 𝑞𝑡
𝐵𝑃 ≤ 𝐴

𝐴

𝑞𝑡
𝐵𝑃=0

 

 

Tool 
The tool is made in a macro-enabled Excel document. The VBA code can be found in Appendix 
3: VBA code. This chapter explains how the safety stock level is calculated, what is used as an 
input in the tool, and what the tool shows as an output. Figure 6 shows a screenshot of the 
dashboard for illustration. 

 

Figure 6  A screenshot from the Markov chain tool, showing the dashboard. 

Determining the safety stock level 

We let 𝜀 be the difference between the average expected waiting list length for some MSS cycle 
𝑒, and the average expected waiting list length for MSS cycle 𝑒 − 1 . If 𝜀 is smaller than our 
desired input value, we assume that the steady state has be reached. If 𝜀 is not smaller than the 
desired input value, the steady state has not yet been reached and we calculate the transitions 
in the Markov chain for another MSS cycle (𝑇 days), after which we evaluate 𝜀 again. This is the 
Power method, as described by (Bolch, 1998). 

We let 𝑆 be the necessary service level we want to achieve. To calculate the necessary safety 
stock we test whether, after reaching a steady state, 𝑈(𝑡) ≥   𝑆 for the entire MSS cycle 
(𝑇 𝑑𝑎𝑦𝑠), given safety stock 𝐴. If this is true, 𝐴 is a sufficient safety stock level, if this is not true, 
we try again with 𝐴 = 𝐴 + 𝐼, where 𝐼 is an index for how much we increase the safety stock level 
after not reaching the service level with safety stock level 𝐴. If an appropriate safety stock level 
is found within the given run time, the tool returns this safety stock level with additional 
information  on waiting list lengths and waiting time. Figure 6 shows what the input and output 
data look like in the computer model. Note that the safety stock level that the tool recommends 
is a number of people on the waiting list. If you want to how many hours of buffer stock you 
need, the safety stock level should be multiplied by the average surgery time. 
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Input 

The input data is the data from the surgery department that is being tested. This includes 
surgery days, a patient arrival rate, and a surgery time distribution. The input parameters can be 
chosen by whoever is evaluating their surgical department. These parameters have an impact 
on the service level the tool is testing, the time it takes to get a steady state with the power 
method, and the safety stock levels that are being tested. These parameters have a large impact 
in the run time for an experiment. 

Output 

The output data shows the safety stock level that was found to be sufficient, and the amount of 
warmup cycles it took to get the calculation. Additional graphs are also given to give context on 
the average waiting list length and patient waiting time. 
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Simulation model 
The simulation model chapter shows the process of creating the discrete event simulation 
model, following the steps as recommended by (Robinson & Macmillan, 2014). Figure 7 shows 
the artefacts of conceptual modelling. This chapter covers the conceptual model, model 
design, and the computer model. The system description has already been given in a previous 
chapter.  

 

Figure 7 The artefacts of conceptual modeling (Robinson, 2011). 

The conceptual model 
The conceptual model uses the system description as an input for the breadth of the 
conceptual model, and clarifies the level of detail the model goes into, and any simplifications 
that are made for the sake of simplicity (Robinson & Macmillan, 2014). Choices for the model 
scope and level of detail are based on the given modelling objectives, and explained in this 
chapter. 

Scope 
The scope highlights parts of the system description and addresses whether they are included 
in the conceptual model or not. 

Component Include/exclude Justification 
Entities:   
Patients Include These are the entities that flow through the model 
Activities:   
Postoperative care Exclude Has some impact on the planning process in a 

practical setting, but this impact is outweighed by the 
complexities adding the postoperative care to the 
model would bring, because the impact on the 
planning process is difficult to measure. 

diagnostics Exclude Simplification: patients arrive not through a 
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diagnostic process, but through poisson arrivals 
based on past arrival data. 

planning Include Experimental factor, required for the patients to flow 
through the model 

Surgery Include Including surgery makes the model easier to read for 
outsiders and thus improves ease of use. 

Queues:   
Waiting before 
planning 

Include Required for safety stock level calculations 

Waiting after planning Include Required when patients need to be replanned 
Waiting on surgery 
day 

Exclude This has no impact on experimental factors 

Resources:   
Surgeons Exclude Collecting data on what surgeons are linked to what 

surgery is too time consuming, and the impact of 
surgeon specific factors is expected to be small 

Admissions planner Exclude The planning is included, the planner themself is not 
Other OR personnel Exclude Assumption: There are always enough OR personnel 

available during given OR hours. 
Nursing staff Exclude Postoperative and preoperative care are not being 

modeled. 
OR schedule Include This is the schedule that the planner uses to 

schedule patients, and is therefore essential to 
achieve the modeling objectives. 

 

Level of detail 
The level of detail highlights details of components that are included in the conceptual model 
and addresses whether they are included in the conceptual model or not. If there are details 
that are not addressed in this chapter, they can be assumed to be excluded in the conceptual 
model. 

Component Detail Include/exclude Justification 
Patients Quantity: 1 entity 

represents 1 patient 
Include Necessary to achieve the modeling 

objectives 
 Arrival pattern: 

patients are referred 
by a doctor 

exclude Simplification: patients arrive 
according to a poisson distribution 
based on realized patient arrival 
data. 

 Different types of 
patients 

Include Simplification: Patients are assumed 
to be part of one of three groups: 
Semi-urgent, normal, and not urgent. 
Each of these groups has a different 
surgery deadline. Patients are 
divided into each group based on 
expected arrival rates to the KNO 
department. Patient types are 
pooled by deadline instead of e.g. 
illness because it is the main 
overarching patient characteristic 
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that can be extrapolated from the 
data. 

 Attributes: surgery 
time 

include Simplification: 
Patients are given an expected 
surgery time based on a lognormal 
distribution based on realized 
surgery times. 

 Attributes: urgency 
level 

include Simplification: Patients are given a 
specific deadline based on expected 
patient urgency distribution 

Planning Patient availability Exclude Assumption: There is no data for 
patient availability. Patients are 
expected to be available for surgery 
whenever they are scheduled 

 Doctor’s availability Exclude Connecting data for surgeries to 
doctors is too time consuming. It is 
added as a feature in the model 
design, but this feature is turned off. 

 OR interests Exclude The complexity and modeling time 
this adds to the model does not 
weigh with the accuracy it would add 
to the model 

 Organization’s 
interests 

Include Making adequate use of the OR 
capacity is the specific objective of 
this model. 

 Other interests exclude The complexity and modeling time 
this adds to the model does not 
weigh with the accuracy it would add 
to the model 

 Planning horizon Include Simplification: The planning horizon 
is assumed to always be 6 weeks 
ahead. 

 Discipline: first in first 
out with priority 
exceptions 

Include  Simplification: Patients are planned 
based on their deadline. A faster 
deadline means higher priority. This 
balances patient arrival times being 
scheduled based on FIFO principles, 
and higher urgency (faster deadlines) 
getting priority. This ensures that 
patients are planned within their 
deadline, which is a high priority in 
the planning process. 

 Operating hours:  Include Simplification: The model attempts 
to plan all patients on the waiting list 
at 9:00:00 every day, and attempts to 
plan patients that arrive to the 
waiting list if they arrive between 
9:00:00 and 17:00:00.  

 Leaving space for 
semi-urgent patients 

Include This is an experimental factor, called 
‘LeaveUrgentSlotsOpenPercent’ 

 Among of low urgency Include This is an experimental factor, called 
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patients to plan ‘LeaveSlotsOpenPercent’ 
 Shopping at other 

divisions to fill OR 
time 

Exclude Including this adds unnecessary 
complexity to the model and defeats 
the purpose of achieving the 
modeling objectives 

 Specific planning 
strategy 

Include A specific planning strategy is 
necessary to maximize the model 
outputs, but does not formally exist 
at UMC Utrecht. It is elaborated on in 
the planning process paragraph. 

 Making space in the 
OR for semi-urgent 
patients 

Include Replanning patients to make space 
for semi-urgent patients has great 
impact on the model outputs, adds 
model accuracy, and helps the 
model plan in patients that it might 
have not been able to, which can 
clog the model and reduce accuracy. 

Surgery Operating time Include The activity ‘surgery’ only exists to 
show patients existing in the 
operating room, which helps in 
model validation and model 
explanation. Therefore, only the 
operating time is included in the 
conceptual model. Any other details 
like the doctor being in the room or 
surgery specific tasks being 
completed are excluded. 

Waiting 
before 
planning 

Capacity: safety 
stock level 

Include Experimental factor.  

Waiting 
after 
planning 

Capacity: unlimited Include No limit to the number of people that 
can be waiting for their surgery after 
they were planned. 

OR 
Schedule 

Level of detail: slot 
size: 5 minutes 

Exclude Simplification: To balance model 
running time and level of detail, The 
OR schedule is split in 15 minute 
timeslots that can be given to 
patients. 

 Schedule: follows the 
MSS every month 

Exclude Simplification: Because the model 
objective is to test the necessary 
safety stock of one MSS cycle, the 
OR schedule repeats one given MSS 
cycle every month. 

Planning process 
The model includes a planning process, but there is no given protocol for admissions planning 
at UMC Utrecht. This chapter proposes different planning strategies, and the planning strategy 
that fits the problem the best is chosen as the preferred planning strategy for the model. 

Although there are general principle and ideas for an admissions planner to follow, there is no 
specific and protocolized planning protocol to follow, especially for what timeslot a patient 



30 
 

should be planned into. It is reasonable to assume that an (experienced) admissions planner is 
always better at planning surgeries in a way that all stakeholders interests are met, than a 
computer model that makes assumptions and simplifications. Under this assumption, we can 
argue that a model is closer to reality, and therefore better, if the output values that the model 
achieves are higher. Note that this assumption and argument only relates to the planning 
strategy used by the admissions planner. 
 

Choosing what patient to plan 

Instead of simply planning FIFO, We plan based on deadline. This is the same as FIFO, but 
patients with higher urgency are automatically put higher to the waiting list. 

Additionally, patients can change urgency levels, based on the time until their expiration date. 
This means that even when semi-urgent patients don’t arrive to the system, they can turn into 
semi-urgent patients when they exist in the system for long enough. Patients change urgency 
levels depending on how close to their deadline they are. This does not have a big impact on the 
planning process, as patients are mainly planned based on FIFO principles, but when the 
strategies of planning patients with an urgent deadline are different from the planning strategies 
of patients with a non-urgent deadline, the planning process can be different. 

Order of importance when choosing a surgery day 

When a patient is chosen to be planned in for surgery, the model looks for suitable timeslots to 
perform surgery in for the next 30 days. Every timeslot has an associated quality, and a 
spreadquality. The quality indicates how well the surgery fits in the schedule. The spreadquality 
indicates how well spread out over the complete planning horizon the planning would be if the 
suggested timeslot is chosen. The suggested timeslots are sorted by quality of fit first, 
spreadquality second, and daynumber third. Quality is always sorted in descending order. 
Spreadquality and daynumber can be sorted in either ascending or descending order, 
depending on the chosen planning strategy. 

Finding the best timeslot for a day based on its quality. 

Timeslots are given a value based on the quality of the timeslot. The quality is based on the 
number of timeslots left over at the start or at the end of the surgery. Because most surgeries 
are 90 minutes or more, leaving 6 or more timeslots available before or after a surgery gives the 
highest quality. Specific numbers for the quality calculation are given in Figure 30 in Appendix 1: 
Logic Flows. Figure 8 Shows how the chosen slot quality calculation impacts how slots are 
ranked by the model. If a surgery fits the available OR time perfectly it is given the highest quality 
score. If scheduling a surgery leaves 6 or more 15 minute timeslots after surgery, it is given the 
second highest quality score. If scheduling a surgery leaves less than 6 15 minute timeslots 
after surgery, The quality is higher the more slots are left over. The quality is lowest if there are 
less than 6 slots left before and after surgery. The reason why having more slots left over after a 
planned surgery gives a higher quality level, is because the chance is higher that another patient 
will arrive that can be scheduled in the leftover time when there are more slots left over. 
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Figure 8 Visual explanation for the slot quality calculation. 

When planning less than one week ahead, non urgent patients can be planned according to the 
LeaveUrgentSlotsOpen benchmark, instead of LeaveSlotsOpen. If this is done, there will be less 
space in the schedule for semi-urgent patients, but the amount of space in the schedule for 
normal patients will remain the same. This is hypothesized to be useful when a lot of normal 
patients are expected to arrive, but not a lot of semi-urgent patients. 

LeaveSlotsOpen and LeaveUrgentSlotsOpen 

Because there is no information on the amount of space to leave open for urgent patients, and 
the amount of space to give to non urgent patients, they are turned into experimental factors 
within the conceptual model. Their optimal values are determined in experiments in a later 
chapter. 

Model design 
The model design shows the constructs and logic of the computer model in terms of the 
software being used (Fishwick, 1995). This chapter gives a process flow diagram for patients, 
Logic flow diagrams for model processes, and this chapter explains the modelled planning 
process in detail. Additionally, this chapter goes into the data necessary to run the model. 
Figure 9 gives a screenshot of the model, to give a high level illustration for how the flows work 
together. Additionally, the logic flows are shown and explained in Appendix 1: Logic Flows, and 
the code in all the methods can be found in Appendix 5: plant simulation code. 
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Figure 9. A screenshot of the model. 

Process flow 
The process flow of patients in the model is highlighted in Figure 10. Patients arrive in the 
system, and go to either the waiting before planning queue, or they leave the system if the 
queue is at capacity. When a patient is scheduled for surgery they go to the waiting after 
planning queue, after which they go to the operating room, followed by leaving the system. One 
exception is when a patient gets removed from the schedule to make room for a more urgent 
patient, in which case the patient gets removed from the waiting after planning queue and 
added to the waiting before planning queue. The process flow can be found in  the model in 
Figure 9 in the orange box named ‘simulation’. 

 

Figure 10, The process flow for patients in the model. 
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Validity and verification 
First, we determine the warmup time, number of replications, and the runtime per replication 
using methods recommended by (Robinson & Macmillan, 2014). Then the model is verified and 
validated. 

Warmup, replications, runtime 
Additional information for the warmup time and number of replications calculations can be 
found in Appendix 2: Warmup time and number of replications 

Warmup 

The warmup time for the simulation is calculated according to the marginal standard error rule 
(MSER) as described in (Robinson & Macmillan, 2014). Because the number of replications is 
expected to be more than 1, the MSER is applied to an average of multiple replications. The 
input data used to calculate the warmup time is the data given in the chapter data. The strategic 
input choices are given in Figure 11. The chosen number of replications is 20, with a simulation 
length of 1000 days per replication. These numbers are chosen to ensure that the warmup time 
falls within the replication length, while not letting the computation time get too long. 

  

Figure 11 Screenshot of the input data used in the warmup time calculations. 

The output values given in the conceptual model cannot be used in the warmup time 
calculations, because their variability is very high. Daily operating room utilization is 0 when the 
OR is closed, and 100 when all timeslots are filled. A different output value needs to be decided 
on that shows that the model is running without an initialization bias. This value is the daily 
average waiting time in the waiting room. When the daily average waiting time in the waiting 
rooms becomes stable, it shows that the waiting room contents are not affected by initialization 
bias. Every day the average waiting time of all the patients in the waiting rooms is calculated.  

Figure 12 shows a table with the outcome of the MSER calculation, showing that the output 
value becomes stable after about 300 days. The chosen warmup time is 306 days. 
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Figure 12 Warmup time calculated using the MSER method. 

Number of replications 

The number of replications for the simulation is calculated using the confidence interval 
method as described by (Robinson & Macmillan, 2014). The data used in the calculations is the 
same data that was used to calculate the warmup time, with the first 306 days removed, to 
account for the initialization bias. The run length for this data is therefore 1000-306 = 694 days. 
Figure 13 shows the cumulative mean time in the system, with 95% confidence intervals. The 
chosen number of replications is 10, because the figure clearly shows that increasing the 
number of replications barely decreases the size of the confidence intervals.  

 

Figure 13 The cumulative mean time in the system with 95% confidence intervals. 

Run length 

There exists no method to calculate the necessary run length, when the warmup time and 
number of replications have already been calculated. A rule of thumb is to make sure that the 
run length is at least 10 times the warm up length, to make sure the initialization bias is properly 
gone. This is not feasible considering the model’s speed. Figure 13 shows that after 306 days we 
can be reasonably confident that the initialization bias is removed. Because the number of 
replications was calculated using a run length of 694 days, and the confidence interval after 10 
replications is reasonably narrow, this will be the chosen run length.  

Verification and validation 

Verification in discrete event simulation models is notoriously difficult (Robinson & Macmillan, 
2014). To help the reader, every method in the simulation model is outfitted with its function, 
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where it is called from, and when it is called, to improve understandability. The code for all the 
methods can also be found in Appendix 5: plant simulation code. 

The problem situation was created from conversations with both UMC Utrecht’s KNO 
admissions planner, and the UMC Utrecht supervisor. The choices made in the conceptual 
model have been looked at and agreed to by the UMC Utrecht supervisor. 

The model design is validated by testing certain cases that give predictable outcomes. The 
model outcome is compared to the expected outcome. For these cases, certain design choices 
might be changed to allow for testing. 

Cases: 

Case Expected outcome Model outcome 
Arrival rate is 0 Utilization = 0 

Notontimepercent = 0 
Utilization = 0 
Notontimepercent = 0 

1 person arrives per day at 
7:59:59, with an operating 
time of 8 hours. The OR is 
open for 8 hours every day. 
We plan the patient as early 
as possible with no ‘slots left 
open’ strategy. 

Utilization = 100% 
Notontimepercent = 0 
Waiting list max contents: 1 

Utilization = 100% 
Notontimepercent = 0 
Waiting list max contents: 1 

2 persons arrives per day at 
7:59:59, with an operating 
time of 4 hours. The OR is 
open for 8 hours every day. 
We plan the patients as early 
as possible with no ‘slots left 
open’ strategy. 

Utilization = 100% 
Notontimepercent = 0 
Waiting list max contents: 2 

Utilization = 100% 
Notontimepercent = 0 
Waiting list max contents: 2 

1 persons arrives per day at 
7:59:59, with an operating 
time of 4 hours. The OR is 
open for 8 hours every day. 
We plan the patients as early 
as possible with no ‘slots left 
open’ strategy. 

Utilization = 50% 
Notontimepercent = 0 
Waiting list max contents: 1 
 

Utilization = 50% 
Notontimepercent = 0 
Waiting list max contents: 1 
 

1 persons arrives every 3 days 
at 7:59:59, with an operating 
time of 8 hours. The OR is 
open for 8 hours every day. 
We plan the patients as early 
as possible with no ‘slots left 
open’ strategy. 

Utilization = 33.33% 
Notontimepercent = 0 
Waiting list max contents: 1 
 

Utilization = 33.27% 
Notontimepercent = 0 
Waiting list max contents: 1 
 
Explanation: because the 
number of simulation days is 
not divisible by 3 the utilization 
is not exactly one third. 
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Experiments 
First the planning strategy that gives the best results is chosen. The Boolean strategy inputs will 
be chosen by running experiments with 4 cases. After that, the GAWizard tool built into plant 
simulation is used to find the best values for the variable inputs, given the best performing 
planning strategy. 

With the chosen inputs, a sensitivity analysis will be given for the patient spread and the safety 
stock level, showing the impact these have on the output of the model. 

Finally, different cases will be entered into the model. 

Strategy 
Spreading patients evenly or unevenly, and planning early or late 

Patients, depending on their urgency level, can be planned either as early or as late as possible, 
as long as the patient is planned within both the patient’s deadline, and the planning horizon. It 
can also be decided to spread patients either as evenly or as unevenly as possible over all the 
days. Planning patients evenly means that the model tries to fill all days equally, while planning 
patients unevenly leads to the model first filling up an entire day before moving on to the next. It 
is assumed that planning semi-urgent patients as early as possible is always preferred. Spread 
quality also does not matter for semi-urgent patients. In total there are 16 different planning 
strategies. Figure 14 shows the strategies and the related input values for all 16 experiments. 

  

Figure 14 The input values for all 16 experiments. 
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Figure 15 Shows the impact that the 16 available planning strategies have on the output 
variables, when given 5 cases. All 16 ∙ 5 =  80 experiments use the same random number 
seeds. The cases have the same given safety stock level of 50, but use a different planning 
strategy, based on different values of leaveslotsopenpercent and leaveurgentslotsopenpercent. 
This shows how the binary decisions behave when given different planning strategies. The 5 
cases are:  

Leaveslotsopenpercent leaveurgentslotsopenpercent 
20 0 
50 0 
20 20 
50 20 
25 0 
 

The results of all 80 individual experiments is shown in Appendix 4: binary strategy results. 

 

Figure 15 The sum of the results of 16 different planning strategies tested for 5 different cases, with their associated 
input data. The colours in the columns are formatted so that the highest number is the most saturated, and the lowest 
number is the least saturated. 

Experiment 4 scores the best when looking at the average level of the KPI outputs, and will be 
used for the variable inputs and the sensitivity analysis. 
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Variable inputs 
The optimal values for leaveslotsopenpercent and leaveurgentslotsopenpercent are found by 
using the GAWizard built into Tecnomatix Plant Simulation. The optimization parameter is the 
service level. The chosen generation size is 5, and the chosen number of generations is 20, with 
10 observations per individual per generation. These values are chosen because it keeps the 
running time of the optimization within reasonable bounds. The running time of the optimization 
ended up being 7:23:18. The optimal values for leaveslotsopenpercent and 
leaveurgentslotsopenpercent is 20 and 0 respectively. Figure 16 Shows the input values and a 
part of the report in Plant Simulation. The evolution of the fitness value graph shows that the 
optimal solution did not change after generation 6, so we assume that the solution that was 
found is optimal. 

Figure 16 A screenshot of the input values of the genetic algorithm and a screenshot of part of the 
auto generated report. 
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Sensitivity analysis 
A sensitivity analysis for 3 input variables is given. The non-variable input values are the ones 
determined in the previous chapter. No sensitivity analysis for the utility threshold is given, 
because the utility threshold has no impact on the planning process, only on the evaluation of 
the planning process. Because each experiment uses the same seed values, the utility is the 
same for each day in each experiment and the graph is flat. 

Leaveslotsopenpercent 

 

Figure 17 The chosen input data for all 4 variables, and their associated outcomes. 

 

Figure 18 Graphs showing the relationship between LeaveSlotsOpenPercent and each KPI. 

Figure 17 shows the input values chosen for the sensitivity analysis of leaveslotsopenpercent, 
and their associated output values. Figure 18 shows the relationship between 
leaveslotsopenpercent and each output value graphically. The figure shows that between a 
leaveslotsopenpercent value of 15 and 40 the service level remains relatively stable. As 
leaveslotsopenpercent increases over 40 and decreases under 15, the service level starts 
slowly dropping. After it increases over 60 the service level dives to 0, with a small bump when 
reaching 100. The utility also continuously dips at the same time, without the small bump. The 
small bump in the service level can be explained by the model only scheduling urgent patients 
at a leaveslotsopenpercent level of 100, while there were still some non urgent patients being 
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planned before. This means that the overall number of patients operated on is lower, but the 
number of days when the OR was opened and it was filled completely was relatively higher, 
given that the patient arrivals for both experiments were the same. 
Figure 18 shows that using a leaveslotsopenpercent values of at least 15 is necessary to plan all 
the patients on time. It is also clear that using a leaveslotsopenpercent value of over 60 has 
detrimental effects on the service level. 

Leaveurgentslotsopenpercent 

 

Figure 19 The chosen inputdata for all 4 variables, and their associated outcomes. 

 

Figure 20 Graphs showing the relationship between LeaveUrgentSlotsOpenPercent and each KPI. 

Figure 20 shows that using a leaveurgentslotsopenpercent values of over 75 has detrimental 
effects on the service level. There is also a slight bump in the service level when 
leaveurgentslotsopenpercent is at 100, which can be explained in the same way as the bump 
for leaveslotsopenpercent. Note that the utilization and service level are low, because a 
leaveslotsopenpercent value of 100 has to be chosen to perform this sensitivity analysis, 



41 
 

because leaveurgentslotsopenpercent can not be higher than leaveslotsopenpercent, and we 
want to analyze the entire range of leaveurgentslotsopenpercent. 

SSlevel 

 

Figure 21 The chosen inputdata for all 4 variables, and their associated outcomes. 

 

Figure 22 Graphs showing the relationship between the safety stock level and each KPI. 

Figure 22 shows that using a safety stock level lower than 10 hours affects the KPI’s negatively, 
but any safety stock level over 10 hours does not improve the KPI levels in any significant way. 
This means that having at least 10 hours of surgeries on the waiting list is enough to plan every 
patient on time, and ensure the OR is always occupied. Increasing the safety stock level beyond 
10 hours has no impact on the KPI’s, because the amount of hours on the waiting list never 
exceeds 10 hours. 
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Case: KNO department at UMC Utrecht 
To determine the necessary safety stock level at the KNO department at UMC Utrecht, the data 
for patient arrivals, surgery duration, and the MSS are entered into the simulation, and the 
Markov model.  

Simulation 
Because the data for the KNO department was used to perform the sensitivity analysis, there is 
no reason to perform these experiments again. The results from the sensitivity analysis are 
used. 

Markov 
The data for the KNO department will be entered into the Markov model to analyse the 
relationship between the desired service level and the necessary safety stock level. The chosen 
epsilon level is 0.000001. Note that the tool gives the safety stock level as a number of patients, 
and not the amount of hours of surgeries. Figure 23 shows the relationship between the desired 
service level and the safety stock level. The safety stock level is expressed in hours by 
multiplying the number of people required by the average surgery time. The graph shows that as 
the desired service level approaches 100%, the necessary safety stock increases exponentially. 

 

Figure 23 The necessary safety stock level to achieve some desired service level. 
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Discussion 

Data 
There are multiple flaws in the data that must be discussed. First, the patient arrival rate. The 
data used to calculate the arrival rate is the KNO department’s departure rate. The number of 
patient departures was divided by the number of weekdays since the start date in the data set. 
From this we devised an average number of patients arriving per weekday. In reality, patients 
arrive on the waiting list when their doctor decides that they require surgery. This means that the 
patient arrival rate is 0 when the doctors are not diagnosing patients, but doing something else, 
like performing surgery for example. This detail cannot be captured by using data from the 
patient departures. 

Second, the patient departure rate. The Markov model uses a lognormal distribution to 
calculate the probability of there being enough time to perform some number of surgeries. This 
lognormal distribution has range [0,∞ >. In reality however, the probability of there being 
enough time to perform e.g. 50 surgeries in one day is 0, because this simply is not realistic. 
Although this probability is low in the lognormal distribution, it is not 0. However, the probability 
of having enough time to perform a large number of surgeries is low enough that the difference 
between the lognormal distribution and reality is insignificant. This does mean that for any 
safety stock level the associated service level is at least the service level given by the tool, but 
the service level could also be higher.  

Third, the patient deadline distribution. There is no available data to make a probability 
distribution for the length of a patient’s deadline, so we had to use the admission’s planner’s 
best guess. We cannot prove any confidence for how accurate this guess is. 

Markov 
The tool is 𝛺(𝑁3) in Big O notation. This is because the number of calculations performed per 
day goes up exponentially when the safety stock level that we test goes up, and the necessary 
warm up length goes up too. There are features built into the tool to reduce runtime and stop an 
experiment when the runtime gets too long, but the mathematical model would need to be 
changed fundamentally if we want to solve this problem. This means that the model runs fine 
when testing lower safety stock levels, but testing a safety stock level of 80 already requires over 
a minute. When using the tool however, often a safety stock level below 80 will be enough to 
achieve the desired service level. 

Simulation 
Admissions planning at UMC Utrecht does not follow a strict protocol, because the admissions 
planner has to juggle many interests from surgeons, patients, other OR staff etc. These interests 
are not expressed in data. There is no data for a patient’s availability for surgery for example. It is 
also difficult to verify what parts of the planning process were modelled accurately, and what 
parts were not. This makes it difficult to turn admissions planning into a simulation model 
whose resulting KPI’s can be trusted to reflect reality. That is the case for this simulation model. 
In this case the result from the simulation model is 90% lower than the result from the Markov 
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model, while it is not clear where that difference comes from. This stems from how difficult it is 
to verify and validate the simulation model, especially considering how abstract the current 
planning process at the UMC Utrecht is. We cannot verify that the planning process in the 
model reliably mimics the planning process followed by the admissions planners. Because of 
these reliability issues we cannot use the simulation model to recommend a safety stock level. 

This does not mean that the simulation model is useless. The simulation model reflects reality 
to a level where it can give insight into what planning strategy would probably work the best for a 
prespecified patient mix. Even though the KPI levels resulting from the simulation cannot be 
trusted to be accurate enough to reflect reality, we can see if and how much different planning 
strategies change the KPI levels. Although we cannot say that the KPI levels from some strategy 
in the simulation can be expected in reality, we can expect that if we test multiple strategies for 
admissions planning in the simulation, the one that results in the highest KPI levels will likely 
also work the best in reality. 

Future research 
A safety stock level alone is not enough to make an informed decision on whether changing an 
OR schedule is a good decision. Another important factor is the waiting list’s growth factor. If a 
waiting list is smaller than its recommended safety stock level, but the waiting list is growing, 
changing the schedule might not be a smart idea, because the waiting list can be expected to 
grow larger than the safety stock level. On the other hand, changing the OR schedule might be a 
smart decision when the waiting list is larger than the safety stock level, but the waiting list is 
actively shrinking. Future research could explore how the growth of a waiting list and its safety 
stock levels are connected, to be able to make recommendations for when an OR schedule 
should be changed. The expected shrinkage or growth of a waiting list can be calculated 
mathematically by adapting the Markov tool created in this research. A screenshot for this tool 
and its accompanying code are given in Appendix 6: Expected shrinkage and growth tool. 

Conclusion 
First we will answer research questions 5, 6, and 7. After these are answered the answer to the 
main research question is given.  

5. What models work best to estimate the necessary safety stock levels for surgical 
departments? 

While at first both discrete event simulation and a Markov model seem promising, the amount 
of data required to make a reliable discrete event simulation is almost impossible in practice. In 
addition, verification and validation for the simulation model is difficult. A discrete event 
simulation is not a feasible method to calculate the necessary safety stock level for a surgical 
specialty, at least when the simulation mimics an admissions planner. 
A Markov model is a feasible method to calculate the safety stock level for surgical 
departments, given that there is reliable data for patient arrivals and surgery durations. In larger 
systems the necessary computation time might get too long, but this is unlikely. 
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6. What is the relationship between OR performance and safety stock levels? 

We can conclude that there is an exponential relationship between OR performance and safety 
stock level, as shown by the Markov model. This is to be expected, as the relationship between 
safety stock and service level is usually exponential (Hung & Chang, 1999). The exact values for 
this relationship depend on the patient arrival rate, the surgery length distribution, and the MSS, 
and are therefore different for every surgical specialty. The relationship between OR 
performance and safety stock levels for the KNO department at UMC Utrecht is shown in Figure 
23. 

7. What are the practical insights gained from these models? 

From the simulation model we have found that it is almost impossible to model the admissions 
planning process in a way that can be verified and validated. We can also hypothesize that an 
effective way to approach the planning process is to plan all the patients as early as possible, 
while focusing on completely filling one OR day before starting to plan patients into the next. 
From the Markov model we can find a suggested safety stock level using a method that is easily 
verifiable. 

The research main research question is:  

What is the necessary safety stock in hours of work for the KNO department at UMC Utrecht to 
ensure a prespecified OR utilization using the MSS for June 2024? 

We recommend the KNO department at UMC Utrecht to keep at least 104 hours of surgeries on 
the waiting list, because this ensures that we can expect at least 99% of the given OR time to be 
utilized. Keeping the safety stock higher has diminishing effects, and lowering the safety stock 
will cause the expected utilization to drop off quickly. For different OR utilizations the necessary 
safety stock level is given in Figure 23.  

Recommendation 
The UMC Utrecht is recommended to use the Markov tool to evaluate the necessary safety 
stock levels for all the surgical departments, so the safety stock levels can be used to inform 
decisions that need to be made when planning the MSS dynamically in the future. Additionally, 
when different MSSs are proposed, it is recommended to see whether the current waiting list 
length is above the recommended safety stock length as given by the Markov model. This allows 
the admissions planners to see if they can expect to fill their given OR hours with the new MSS. 
If the admissions planners want to see if their waiting list is large enough to achieve enough OR 
utilization for the current MSS, without regard for the next MSS, they are recommended to use 
the tool from Appendix 6: Expected shrinkage and growth tool. 

The UMC Utrecht is recommended to improve the admissions planning for the KNO department 
by following the planning strategy discussed in the conclusion, if they do not expect it to be a 
problem for patients to be informed about their surgery date only one week in advance. 

The UMC Utrecht is recommended to use the Simulation model if they want to know whether a 
change in admissions planning strategy will actually lead to improvement for any department. 
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Appendix 1: Logic Flows 
The logic flows illustrate decisions made and actions performed by the model to move patients 
around. Every logic flow given in this chapter refers to an entity in the blocks ‘methods’ or 
‘functions’ in Figure 9. Blue blocks in the logic flow figures are references to different logic flows. 

 

 

Figure 24 Logic flow 'MovePatient' 

Figure 24 Describes the logic flow ‘MovePatient’. MovePatient is triggered whenever a patient 
enters the system. It gives the patient their attribute values. Then it moves the patient to the 
waiting list if there is space. Otherwise the patient leaves the system. If the patient arrives within 
office hours, it immediately tries to plan the patient using PlanPatient (Figure 26). 

 

 

Figure 25 Logic flow 'PlanPatientCaller' 

Figure 25 describes the logic flow PlanPatientCaller. It is triggered every day at 9:00:00, and tries 
to plan every patient in the waiting before planning queue using ‘PlanPatient’ (Figure 26). 



49 
 

 

Figure 26 Logic flow PlanPatient 

Figure 26 describes the logic flow PlanPatient. It is triggered whenever a patient needs to be 
planned in. Planpatient determines the patient’s urgency based on the time until their deadline 
expires, and plans them in based on the suitable timeslots found by the method 
‘FindBestSlotsFor30Days’. PlanPatient returns true or false based on whether the planning was 
successful. If the patient is semi-urgent and the planning was not successful, planpatient starts 
the urgent kicking/planning process (Figure 27) to find a suitable person on the schedule to 
replace. 

 

Figure 27 Logic flow urgent kicking/planning process from planpatient 

Figure 27 describes the urgent kicking/planning process from planpatient. The process looks at 
every scheduled patient to check if they were scheduled in the necessary timeframe, and if their 
own deadline is further away than the patient we are trying to swap in. It also checks if the 
patient occupies enough OR timeslots to be able to be rescheduled. After that the process 
chooses the patient whose swap leaves the least unoccupied timeslots first, and who has the 
furthest away deadline second. 

 

Figure 28 Logic flow FindBestSlotFor30Days 
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Figure 28 describes the process to find the best slot for 30 days. The process looks at multiple 
days using the FindBestSlotforDay process (Figure 29).  
The days it looks at depend on a patients urgency level. For a semi-urgent patient the process 
looks from 1 day ahead to the patients deadline, unless the patient’s deadline has already 
expired. Then it looks from 1 to 5 days ahead. For a normal patient the process looks from 1 day 
to 30 days ahead. For a non urgent patient the process looks from 5 days to 30 days ahead. 
The way the patients are planned also depends on their urgency level. All the possible slots are 
collected and sorted by quality first, spread quality second, and surgery day third. ‘Quality’ is 
elaborated on in ‘FindBestSlotforDay’ (Figure 29) and ‘spread quality’ is elaborated on in ‘spread 
quality’ (Figure 35) The direction these patients are sorted in is based on a patients urgency 
level. 
A semi-urgent patient is planned in the spot with the highest quality first, with the worst spread 
second, on the earliest day third. 
A normal patient is planned in the spot with the highest quality first, with the worst spread 
second, on the earliest day third. 
A non urgent patient is planned in the spot with the highest quality first, with the best spread 
second, on the latest day third. 
Planning semi-urgent and normal patients on during times where they cause the worst spread 
leaves large holes in the planning that can be used for patients with a high urgency and a high 
surgery time. This method of planning gives the best resulting output variables that we could 
find. 

 

Figure 29 Logic flow FindBestSlotforDay 

Figure 29 describes the logic flow for FindBestSlotforDay. When given a day and a patient, it 
checks whether the OR is open that day using ‘isdayopen’ (Figure 32) and if it is too busy to 
schedule this patient using  ‘IsItBusy’ (Figure 34). Then it calculates the quality of the spread 
that would result if we planned the patient on this day using ‘SpreadQuality’ (Figure 35). After 
that the start- and end times for the OR that day are calculated using ‘StartTime’ and ‘EndTime’ 
(Figure 33). The process loops from the starttime to the endtime and checks whether each slot 
is available using ‘IsSlotAvailable’ (Figure 31). If the slot is available it checks whether we have 
enough future slots available to schedule our patient using ‘NextUnavailableSlot’. If this comes 
back true, FindBestSlotForDay calculates the quality of the timeslot (Figure 30). After looping 
through every timeslot the timeslot with the highest quality is returned. 
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Figure 30 The part of FindBestSlotforDay's logic flow that calculates a slot’s quality 

Figure 30 Describes how a slot’s quality is calculated. The quality of every slot is given a value 
based on how many slots are left open before and after a proposed surgery is scheduled. If a 
surgery fits perfectly, its value is put very high.  

 

Figure 31 Logic flow IsSlotAvailable 

Figure 31 describes logic flow IsSlotAvailable. This process checks if there is OR time available 
on this day, and returns true or false. 

 

Figure 32 Logic flow IsDayOpen 

Figure 32 describes logic flow IsDayOpen. This process checks if there was OR time given on 
this day, and returns true or false. 
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Figure 33 Logic flows StartTime and EndTime 

Figure 33 describes logic flows StartTime and EndTime. These logic flows look at what the 
opening and closing times are for the OR on a given day that the OR is open. 

 

Figure 34 Logic flows for IsitBusy, based on a patients urgency. 

Figure 34 describes the logic flows for IsitBusy. These processes check whether it is too busy to 
plan a patient based on their urgency, and the experimental factors LeaveSlotsOpenPercent 
and LeaveUrgentSlotsOpenPercent. It is never too busy to plan a semi-urgent patient. 
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It is too busy to plan a normal patient if planning the normal patient means we exceed the 
percentage of urgent slots that we are supposed to leave open. 
It is too busy to plan a non urgent patient one week in advance if planning the patient means we 
exceed the percentage of urgent slots that we are supposed to leave open, and it is too busy to 
plan a non urgent patient up to 6 weeks in advance if planning the patient means we exceed the 
percentage of non urgent slots that we are supposed to leave open. 

 

Figure 35 Logic flow for SpreadQuality 

Figure 35 describes the logic flow for SpreadQuality. The spreadquality calculates the quality of 
the spread when planning normal or non urgent patients. SpreadQuality does not matter when 
planning semi-urgent patients. SpreadQuality calculates the difference in quality between the 
patient spread before and after we hypothetically plan in a patient on a day. The quality is 
calculated for the next 30 days by adding the difference between the benchmark utilization and 
the actual utilization squared for every day. SpreadQuality returns the quality of planning a 
patient on a given day. 
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Figure 36 Logic flows for Initday and LeaveOr 

Figure 36 Describes the part of logic flows InitDay and LeaveOr that calculate the output 
variables SlotsUtility and NotOnTimePercent. SlotsUtility is calculated by adding the total 
available slots yesterday to the total, and adding the total number of unused slots yesterday to 
the total. The total slot utilization is 100- the percentage of the total number of unused slots. 

The NotontimePercent is calculated whenever someone leaves the operating room. It checks 
whether the person that was just operated on was operated on on time. NotontimePercent is 
the percentage of people who were operated on too late. 

 

Appendix 2: Warmup time and number of replications 

 

Figure 37 A small sample of the calculations done to calculate the warmup time 



55 
 

 

 

Figure 38 A small sample of the input data for the warmup calculations 

The warmup time is calculated using the tool provided in (Robinson & Macmillan, 2014). Figure 
37 and Figure 38 fhow some of the inputdata and calculations made in the tool. Figure 27 shows 
the calculations done to determine the number of replications. 

 

Figure 39 Calculations for the number of replications 

Appendix 3: VBA code 
Option Explicit 



56 
 

 

'global variables - input 

 

    Dim L As Double 

    Dim UtilityThreshold As Double 

    Dim NrOfdays As Integer 

    Dim RunLength As Single 

    Dim mean As Double 

    Dim stdev As Double 

    Dim ORtime As Double 

    Dim index As Integer 

    Dim epsilon As Double 

     

     

     

'global variables - useful during calculation 

    Dim listlength As Integer 

    Dim AP() As Double 

    Dim BP() As Double 

 

Sub ToolExecute() 

Dim CurrentServiceLevel As Double 

Dim i As Integer 

Dim j As Integer 

Dim d As Integer 

Dim safetystock As Integer 

Dim nextRow As Long 

Dim WeightedAverage As Double 

Dim total As Double 

Dim probability As Double 

Dim percentile As Integer 

Dim startTime, elapsedTime As Single 

Dim WasanswerFound As Boolean 

 

 

With ThisWorkbook.Sheets("Dashboard") 

    .Range("L2:M" & .Rows.Count).ClearContents 

End With 

 

With ThisWorkbook.Sheets("CalculationData") 

    .Range("A2:P" & .Rows.Count).ClearContents 

End With 

 

With ThisWorkbook.Sheets("dashboard") 

    UtilityThreshold = .Cells(13, "B").value 

    L = .Cells(5, "B").value 

    NrOfdays = .Cells(6, "B").value 

    RunLength = .Cells(14, "B").value 

    mean = .Cells(7, "B").value 

    stdev = .Cells(8, "B").value 

    ORtime = .Cells(9, "B").value 

    safetystock = .Cells(15, "B").value - .Cells(16, "B").value 

    index = .Cells(16, "B").value 

    epsilon = .Cells(17, "B").value 

    .Range("G5").ClearContents 

    .Range("G8").ClearContents 
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    .Range("G9").ClearContents 

End With 

 

CurrentServiceLevel = 0 

 

startTime = Timer 

WasanswerFound = True 

     

Do While CurrentServiceLevel < 1 

 

    elapsedTime = Timer - startTime 

     

    'If elapsed time is greater than allowed, exit the loop 

    If elapsedTime > RunLength Then 

        WasanswerFound = False 

        Exit Do 

    End If 

    safetystock = safetystock + index 

    CurrentServiceLevel = MarkovChains(safetystock) 

    With ThisWorkbook.Sheets("dashboard") 

        nextRow = .Cells(.Rows.Count, "L").End(xlUp).Row + 1 

        .Cells(nextRow, "L").value = safetystock 

        .Cells(nextRow, "M").value = CurrentServiceLevel 

        If CurrentServiceLevel = 1 Then 

            .Cells(5, "G").value = safetystock 

        End If 

    End With 

Loop 

With ThisWorkbook.Sheets("dashboard") 

    .Cells(9, "G").value = WasanswerFound 

End With 

 

For d = 1 To NrOfdays 

        WeightedAverage = 0 

        probability = 100 

        For i = 0 To listlength 

            WeightedAverage = WeightedAverage + (i * BP(d, i)) 

            If MSS(d) = True Then 

                    probability = probability - 100 * (BP(d, i) * 

utilityprobability(i)) 

            End If 

        Next i 

        

          With ThisWorkbook.Sheets("CalculationData") 

        ' Find the next empty row in column A 

        

        nextRow = .Cells(.Rows.Count, "A").End(xlUp).Row + 1 

         

        ' Paste values into columAP A and B in the next empty row 

        .Cells(nextRow, "A").value = d 

        .Cells(nextRow, "B").value = WeightedAverage 

        .Cells(nextRow, "C").value = probability 

        .Cells(nextRow, "D").value = WeightedAverage / L 

        End With 

Next d 
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With ThisWorkbook.Sheets("CalculationData") 

    For i = 0 To listlength 

        .Cells(i + 2, "F").value = i 

        .Cells(i + 2, "G").value = BP(NrOfdays, i) 'add the chances 

that there are i people on the waitlist at the end just for extra 

information 

    Next i 

End With 

 

  ' Turn all the values in the array to 0 to be safe 

    For i = 0 To NrOfdays 

        For j = 0 To listlength 

                AP(i, j) = 0 

                BP(i, j) = 0 

        Next j 

    Next i 

     

' Update the chart sizes 

    Dim lastRow As Long 

    Dim startRow As Long 

    Dim rangeAddress1 As String 

    Dim rangeAddress2 As String 

    Dim rangeAddress3 As String 

     

     

    ' Calculate the last row for the first range 

    lastRow = NrOfdays + 1 

    rangeAddress1 = "A2:B" & lastRow 

     

    ' Update Chart 1 

    With ActiveSheet.ChartObjects("Chart 4") 

        .Activate 

        Application.CutCopyMode = False 

        ActiveChart.SetSourceData 

Source:=Sheets("CalculationData").Range(rangeAddress1) 

        ActiveChart.FullSeriesCollection(1).IsFiltered = True 

        ActiveChart.FullSeriesCollection(2).IsFiltered = False 

    End With 

     

    ' Calculate the address for the second range 

    

    startRow = 1 

    rangeAddress2 = "A" & startRow & ":A" & lastRow & ",C" & 

startRow & ":C" & lastRow 

     

    ' Update Chart 2 

    With ActiveSheet.ChartObjects("Chart 5") 

        .Activate 

        Application.CutCopyMode = False 

        ActiveChart.SetSourceData 

Source:=Sheets("CalculationData").Range(rangeAddress2) 

    End With 

     

    ' Calculate the address for the third range 
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    rangeAddress3 = "A" & startRow & ":A" & lastRow & ",D" & 

startRow & ":D" & lastRow 

     

    With ActiveSheet.ChartObjects("Chart 6") 

        .Activate 

        Application.CutCopyMode = False 

        ActiveChart.SetSourceData 

Source:=Sheets("CalculationData").Range(rangeAddress3) 

    End With 

End Sub 

 

Function MarkovChains(safetystock As Integer) As Double 

 

    Dim i As Integer 

    Dim j As Integer 

    Dim d As Integer 

    Dim Servicelevel As Double 

    Dim totalservicelevel As Integer 

    Dim WeightedAverageNew, WeightedAverageOld As Double 

    Dim Convergence As Double 

    Dim loopnr As Integer 

     

 

  

    ' Initialize the variables with some values (if needed) 

    listlength = safetystock 

    WeightedAverageOld = 0 

    loopnr = 0 

    Convergence = epsilon + 1 

     

    ReDim AP(0 To NrOfdays, 0 To listlength) 

    ReDim BP(0 To NrOfdays, 0 To listlength) 

 

    Do While Convergence > epsilon 

 

     

    ' Turn all the values in the array to 0 to be safe 

    If loopnr = 0 Then 

        For i = 0 To NrOfdays 

            For j = 0 To listlength 

                If i = 0 And j = 0 Then 'at the start, the chance of 

no people on the waitlist is 1 

                    AP(i, j) = 1 

                    BP(i, j) = 0 

                Else 

                    AP(i, j) = 0 'the rest is just cleaning up the 

array for safety 

                    BP(i, j) = 0 

                End If 

            Next j 

        Next i 

    Else 

        For i = 0 To NrOfdays 

            For j = 0 To listlength 

                If i = 0 Then 'at the start, the probability after 

planning on day 0 is the 
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                    AP(i, j) = AP(NrOfdays, j) 

                    BP(i, j) = 0 

                Else 

                    AP(i, j) = 0 'the rest is just cleaning up the 

array for safety 

                    BP(i, j) = 0 

                End If 

            Next j 

        Next i 

    End If 

 

    For d = 1 To NrOfdays 

     

        'add the chances of i people existing on the waiting list 

before planning. Based on the chance that i-j people arrive, given 

the probability of yesterdays waiting list length being i 

        For i = 0 To listlength 

            If i <> listlength Then 

                For j = 0 To i 

                    BP(d, i) = BP(d, i) + AP(d - 1, j) * 

WorksheetFunction.Poisson_Dist((i - j), L, False) 

                Next j 

            Else 

                For j = 0 To i 

 

                        BP(d, i) = BP(d, i) + AP(d - 1, j) * 

CumProbability((i - j), L) 

 

                Next j 

            End If 

         

        Next i 

         

        'add the chances of people existing after planning, based on 

whether the OR is open today 

        If MSS(d) = True Then 

 

         

            For i = 0 To listlength 

                For j = 0 To listlength - i 

                    'the probability that there are i people after 

planning, is the probability that there were i+j people before 

planning* the probability that j-i people were planned 

                     

                    AP(d, i) = AP(d, i) + BP(d, i + j) * 

NrOfSurgeries(j, i) 

                Next j 

     

            Next i 

        Else 

            For i = 0 To listlength 

                AP(d, i) = BP(d, i) 

            Next i 

        End If 
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    Next d 

     

 

        WeightedAverageNew = 0 

        For i = 0 To listlength 

                WeightedAverageNew = WeightedAverageNew + (i * BP(1, 

i)) 

        Next i 

 

        Convergence = WeightedAverageNew - WeightedAverageOld 

        WeightedAverageOld = WeightedAverageNew 

        With ThisWorkbook.Sheets("Dashboard") 

            .Cells(8, "G").value = loopnr 

        End With 

         

        loopnr = loopnr + 1 

         

 

    Loop 

     

    totalservicelevel = 0 

     

    For d = 1 To NrOfdays 

        Servicelevel = 100 

         

        If MSS(d) = True Then 

         

            For i = 0 To listlength 

                    Servicelevel = Servicelevel - 100 * (BP(d, i) * 

utilityprobability(i)) 'the probability that our expected lost 

utilization is not below our service level 

            Next i 

             

            If Servicelevel > UtilityThreshold Then 

            totalservicelevel = totalservicelevel + 1 

            End If 

        Else 

            totalservicelevel = totalservicelevel + 1 

        End If 

         

    Next d 

     

    MarkovChains = totalservicelevel / NrOfdays 

 

     

End Function 

 

Function MSS(day As Integer) As Boolean 

 

    Select Case day 

        Case 1, 2, 8, 12, 13, 14, 18, 20 

            MSS = True 

        Case Else 

            MSS = False 

    End Select 
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End Function 

 

Function CumProbability(x As Integer, L As Double) As Double 

 

If x = 0 Then 

        CumProbability = 1 

Else 

        CumProbability = 1 - WorksheetFunction.Poisson_Dist(x - 1, 

L, True) 

End If 

 

End Function 

 

Function NrOfSurgeries(vectorsize As Integer, state As Integer) As 

Double 

 

'The NrOFSurgeries is the probability that the amount of OR minutes 

on the waiting list is enough to perform vectorsize surgeries 

'The Nrofsurgeries is thus the probability of at least vectorsize 

surgeries - the probability of at least vectorsize+1 surgeries 

 

Dim probability As Double 

 

If state = 0 Then 

    If vectorsize = 0 Then 

        probability = 1 

    Else 

        probability = 

WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime / 

vectorsize), mean, stdev, True) 

    End If 

ElseIf state = listlength Then 

        probability = 1 - 

WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime / 

(vectorsize + 1)), mean, stdev, True) 

Else 

    If vectorsize = 0 Then 

        probability = 1 - 

WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime / 

(vectorsize + 1)), mean, stdev, True) 

    Else 

        probability = 1 - 

WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime / 

(vectorsize + 1)), mean, stdev, True) - (1 - 

WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime / 

vectorsize), mean, stdev, True)) 

    End If 

End If 

 

 

NrOfSurgeries = probability 

 

End Function 

 

Function utilityprobability(state As Integer) As Double 
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'the utilityprobability is the probability that the amount of OR 

minutes is at least the ORtime, given the number of people on the 

waiting list(state) 

'the utilityprobability is the probability that with state number of 

surgeries, we still dont have enough ORtime to fill the entire 

schedule 

'the utilityprobability is therefore the probability that state 

surgeries take less than the ortime. 

'the probability that x surgeries take less than the ortime is the 

probability that one surgery takes less than ln(ortime/x) 

'if our state number of surgeries is 0, the probability of not 

having enough ORtime is 1 

Dim LNOR As Double 

 

If state = 0 Then 

    utilityprobability = 1 

Else 

 

    LNOR = WorksheetFunction.Ln(ORtime / state) 

    utilityprobability = WorksheetFunction.Norm_Dist(LNOR, mean, 

stdev, True) 

End If 

 

End Function 

 

Appendix 4: binary strategy results 

 

 

Appendix 5: plant simulation code 
-- .Models.Model.MovePatient 

-- Function: gives the patient their attribute values. Moves the 

patient to the waiting list if there is space. Otherwise the patient 

leaves the system. 

-- called by: whenever a patient arrives to the system 

-- author: Lucas van Haandel 

-- date: 2-07-2024 

 

@.arrivaltime := eventController.simTime 

 

var urgencynumber:real := z_uniform(38497,0,1) 

 

if urgencynumber >= 0 and urgencynumber <= urgentpercent/100 

    @.urgency := 1 
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elseif urgencynumber > urgentpercent/100 and urgencynumber <= 

(urgentpercent/100 + normalpercent/100) 

    @.urgency := 4 

else 

    @.urgency := 7 

end 

 

 

@.doctor := ceil(z_uniform(467,0,2)) 

 

 

if @.urgency = 1 

    @.deadline:= 5*86400 

elseif @.urgency = 2 

    @.deadline:= 10*86400 

elseif @.urgency = 3 

    @.deadline := 20*86400 

elseif @.urgency = 4 

    @.deadline := 30*86400 

else 

    @.deadline := @.urgency*15*86400 

end 

 

--@.surgerytime:= 60*1*60 

 

@.surgerytime := 240*61 

while @.surgerytime > 240*60 or @.surgerytime < 30*60 

    @.surgerytime := exp(z_normal(5,4.31,0.649))*60 

end 

 

Nrpatients += 1 

@.PatientNr := nrpatients 

 

if @.patientnr = 0 

    debug 

end 

 

 

var queuelength: integer 

var Queuetime: time:= 0 

var j: integer 

queuelength:= .models.model.waitingbeforePlanning.contentsList.ydim 

 

for j := 1 to queuelength 

    queuetime += waitinglist[2,j] 

next 

 

 

if queuetime + @.surgerytime > SSlevel*3600 

        @.move(nospace) 

else 

    Waitinglist.appendrow(@.PatientNr, @.urgency ,@.surgerytime, 

@.arrivaltime, @.arrivaltime + @.deadline, @.category) 

    waitinglist.sort(4,"up") 

    @.move(waitingbeforePlanning) 
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    if @.arrivaltime mod 86400 > 8*3600 and @.arrivaltime mod 86400 

<= 16*3600 

        planpatient(@) 

    end 

 

end 

 

 
-- .Models.Model.PlanPatientCaller 

--function: try to plan every patient on the waiting list. 

--called by: called daily by initday 

--author: Lucas van Haandel 

--date: 2-07-2024 

var waspatientplanned: boolean:= false 

 

for var j:= 1 to waitinglist.ydim 

    var patient: object 

    var Patientnumber : integer 

    var patientname: string 

 

 

    patientnumber := waitinglist[0,j] 

    patientname:= ".userobjects.patient:"+ patientnumber 

    patient := patientname 

 

    waspatientplanned:= planpatient(patient) 

 

    if waspatientplanned = true 

        exitloop 

    end 

 

next 

 

if waspatientplanned = true 

    planpatientcaller 

end 

 

 
-- .Models.Model.WarmUpCalculator 

--called every day by initday to measure the average current dwell 

time in the waiting lists. 

 

 

 

var totaltimeinsystem: time:= 0 

        var waitingbeforedimension: integer := 

.models.model.waitingbeforePlanning.contentslist.ydim 

        var patient : object 

        var contentlist: table 

        

.models.model.waitingbeforePlanning.contentslist(contentlist) 

        for var i := 1 to waitingbeforedimension 

            patient := contentlist [1,i] 

            totaltimeinsystem+= eventController.simtime - 

patient.arrivaltime 
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        next 

        contentlist.delete 

        var waitingafterdimension: integer := 

.models.model.waitingafterplanning.contentslist.ydim 

        .models.model.waitingafterPlanning.contentslist(contentlist) 

        for var j := 1 to waitingafterdimension 

            patient := contentlist[1,j] 

            totaltimeinsystem+= eventController.simtime - 

patient.arrivaltime 

        next 

 

        var avgtimeinsystem: real 

        avgtimeinsystem := (totaltimeinsystem 

/(waitingbeforedimension + waitingafterdimension))/86400 

        var runNr: integer := experimentManager.CurrRunNo 

        averageTimeinSystem[runNr, daynr]:= avgtimeinsystem 

 

 
-- .Models.Model.PlanPatient 

-- Function: plans a patient. Returns true or false based on whether 

planning was successful 

-- called by: planpatientcaller, movepatient(if the patient arrives 

within working hours) 

-- author: Lucas van Haandel 

-- date: 16-07-2024 

param patient: object 

-> boolean 

 

var slotsRequired:integer := ceil(patient.surgeryTime /900) 

 

-- Find the most suitable slots for the next 30 days 

var patientdeadline:integer:= 

ceil((patient.arrivaltime+patient.deadline - 

eventController.simtime)/86400) 

var patienturgency: integer 

 

if patientdeadline > 30 

    patienturgency := 3 -- not urgent 

elseif patientdeadline >5 and patientdeadline <= 30 

    patienturgency := 2 -- normal 

elseif patientdeadline <= 5 

    patienturgency := 1 

end 

 

 

 

findbestslotFor30Days(patient, patienturgency) 

 

if patienturgency = 1 

    mostsuitableslots.sort(3,2,"up" ) 

elseif patienturgency = 2 

    mostsuitableslots.sort(3,4,2,sortnormal  ) 

elseif patienturgency = 3 

    mostsuitableslots.sort(3,4,2,sortnoturgent ) 

end 
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var ontime:boolean 

 

 

 

-- Handle the chosen slot (e.g., update the schedule database, move 

the patient from WaitingBeforePlanning to WaitingAfterPlanning) 

if mostsuitableslots.ydim /= 0 then 

 

    patient.move(WaitingAfterPlanning) 

 

 

    

scheduledPatients.appendRow(patient.patientnr,mostSuitableSlots[1, 

1], mostSuitableSlots[2, 1], slotsRequired, patient.deadline, 

ontime, patient.arrivaltime) 

 

    var ydim: integer:= scheduledpatients.ydim 

    var surgerylength: integer := scheduledPatients[3,ydim] 

 

    var surgerystart, surgerystop, currentvalue: integer 

    surgerystart := scheduledPatients[1, ydim] 

    surgerystop := scheduledpatients[1,ydim] + surgerylength - 1 

 

    for var i:= surgerystart to surgerystop 

        currentvalue := 

availableschedule[scheduledPatients[2,ydim],i] 

        availableschedule[scheduledPatients[2,ydim],i] := 

currentvalue - 1 

    next 

 

 

 

    var i: integer := waitinglist.getrowno(patient.patientnr) 

    if patient.arrivaltime + patient.deadline - 

((mostsuitableslots[2,1]-1) * 86400) > 0 

        ontime := true 

    else 

        ontime:= false 

    end 

    waitinglist.cutRow(i) 

 

    var timetoOr: time:= 

Scheduledpatients[2,scheduledpatients.ydim]*86400 + 

(Scheduledpatients[1,scheduledpatients.ydim]-1)*900 - 

eventcontroller.simtime 

 

    &MovetoOR.methcall(timetoOR, patient) 

    result:= true 

 

    scheduledpatients[5, scheduledpatients.ydim] := ontime 

    --remove the patient from the waiting list 

 

elseif mostSuitableSlots.ydim = 0 and ceil((patient.arrivaltime + 

patient.deadline)/86400) - daynr <= 5 
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        mightgetkicked.delete 

        var urgentdeadline:integer := ceil((patient.arrivaltime + 

patient.deadline)/86400) 

        if urgentdeadline <daynr 

            urgentdeadline := 4 + daynr 

        end 

 

 

 

        for var j := 1 to scheduledPatients.ydim 

            if ceil((scheduledPatients[ 4,j]+ 

scheduledPatients[6,j])/86400)- daynr > 5  and 

scheduledpatients[2,j]+1 - daynr >= 0 and scheduledpatients[2,j] <= 

urgentdeadline and slotsrequired <= scheduledpatients[3,j] 

 

 

                var urgentPatientnumber : integer 

                var urgentpatientname: string 

                var urgentpatientnamename: object 

 

                urgentpatientnumber :=scheduledpatients[0,j] 

                urgentpatientname:= ".userobjects.patient:"+ 

urgentpatientnumber 

                urgentpatientnamename:= urgentpatientname 

 

                if urgentpatientnamename /= void 

                    if urgentpatientnamename.location = 

.models.model.waitingafterplanning 

                        

mightgetkicked.appendrow(scheduledpatients[0,j],scheduledpatients[4,

j] + urgentpatientnamename.arrivaltime, -1*(scheduledpatients[3,j]-

slotsrequired)) 

                    end 

                end 

            end 

        next 

        mightgetkicked.sort(3,2,"down") 

 

 

 

        if mightgetkicked.ydim /= 0 

 

            var cutUrgentPatientnumber : integer := 

mightgetkicked[1,1] 

            var cutUrgentpatientstring: string := 

".userobjects.patient:"+ cutUrgentpatientnumber 

            var cutUrgentpatient: object := cutUrgentpatientstring 

            var cutUrgentpatientrowno := 

scheduledpatients.getrowno(cutUrgentpatientnumber) 

            --add new person to scheduledpatients 

 

            scheduledpatients.appendrow(patient.patientnr, 

Scheduledpatients[1,cutUrgentpatientrowno],Scheduledpatients[2,cutur

gentpatientrowno], slotsRequired, patient.deadline, ontime, 

patient.arrivaltime) 
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            var funkyUrgenttimetoOr: time:= 

Scheduledpatients[2,scheduledpatients.ydim]*86400 + 

(Scheduledpatients[1,scheduledpatients.ydim]-1)*900 - 

eventcontroller.simtime 

 

            if patient.arrivaltime + patient.deadline - 

((Scheduledpatients[2,cuturgentpatientrowno]-1) * 86400) > 0 

                ontime := true 

 

            else 

                ontime:= false 

 

 

            end 

 

            -- add 1's back to the availableschedule if we have 

slotsleftover 

            var slotsleftover:= mightgetkicked[3,1]*-1 

 

 

            if slotsleftover /= 0 

                if slotsleftover <0 

                    debug 

                end 

 

                for var k:= 1 to slotsleftover 

                    

availableschedule[scheduledpatients[2,scheduledpatients.ydim], 

scheduledpatients[1,scheduledpatients.ydim] + 

scheduledpatients[3,scheduledpatients.ydim]-1+ k]+= 1 

                next 

            end 

 

 

            scheduledpatients[5, scheduledpatients.ydim] := ontime 

            &MovetoOR.methcall(funkyUrgenttimetoOR, patient) 

            scheduledpatients.cutrow(cutUrgentpatientrowno) 

            

waitinglist.cutrow(waitinglist.getrowno(patient.patientnr)) 

            patient.move(WaitingAfterPlanning) 

            cutUrgentpatient.move(waitingbeforeplanning) 

            waitinglist.appendRow(cutUrgentpatientnumber , 

cutUrgentpatient.urgency, cutUrgentpatient.surgerytime, 

cutUrgentpatient.arrivaltime, 

cutUrgentpatient.arrivaltime+cutUrgentpatient.deadline) 

 

            waitinglist.sort(4,"up") 

            if daynr > warmup+1 and daynr <= warmup + 

simulationlength+1 

                replannedpatients += 1 

                replannedslotsReturned += slotsleftover 

            end 

            result:= true 

        end 

 

end 
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-- .Models.Model.FindbestSlotforDay 

-- Function: finds the best slot for a patient within MSS opening 

and closing times for a specific day. Returns the best slotsnumber, 

the associated quality, and the quality of the planning spread that 

planning the patient in the slot would provide. 

-- called by: findbestslotfor30days 

-- author: Lucas van Haandel 

-- date: 16-07-2024 

 

param patient: object, currentday: integer, endday: integer, 

wasitbusy: boolean 

-> list[real] -- best slot for that day, integer; the quality of 

fit, Real; the quality of spread, real; wasitbusy, boolean 

result.create 

var isdayopen:boolean:= isdayopen(currentday) 

var isittoobusy: boolean 

 

--determine the patients urgency 

var patientdeadline:integer:= ceil(( 

patient.arrivaltime+patient.deadline - eventController.simtime 

)/86400) 

var patienturgency: integer 

var slotsRequired:integer := ceil(patient.surgeryTime /900) 

if patientdeadline > 30 

    patienturgency := 3 -- not urgent 

elseif patientdeadline >5 and patientdeadline <= 30 

    patienturgency := 2 -- normal 

elseif patientdeadline <= 5 

    patienturgency := 1 

end 

 

 

 

-- the part between this and the next comment exist to improve 

performance and reduce the number of times the method isittoobusy is 

called. References to wasitbusy in FindbestSlotfor30days or this 

method are for the same reason. 

-- explanation: if it was too busy to plan a patient on day x-1, it 

would also be too busy to plan a patient on day x. Therefore today 

'isittoobusy' will be the same as it was yesterday. The variable 

wasitbusy exists to pass today's business status to the next 

planning day. 

-- exceptions: on day 1, we still need to calculate whether it is 

too busy. When the benchmark for if it is too busy changes we also 

need to recalculate whether it is too busy. 

if  patienturgency = 3 and currentday = daynr 

    isittoobusy := isitbusy(patient, endday, patienturgency, 

currentday) 

elseif patienturgency = 3 and currentday-daynr = 5 

    isittoobusy := isitbusy(patient, endday, patienturgency, 

currentday) 

elseif patienturgency = 3 and currentday-daynr /= 5 and currentday 

/= daynr 
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    isittoobusy:= wasitbusy 

elseif patienturgency = 2 and currentday = daynr 

    isittoobusy := isitbusy(patient, endday, patienturgency, 

currentday) 

elseif patienturgency = 2 and currentday /= daynr 

    isittoobusy := wasitbusy 

elseif patienturgency = 1 

    isittoobusy := false 

end 

 

 

 

 

-- the results list does not want to pass booleans, so we convert it 

to a different datatype. It is converted back in 

findbestslotfor30days. 

var isittoobusyasreal: real 

if isittoobusy = true 

    isittoobusyasreal:= 1 

elseif isittoobusy = false 

    isittoobusyasreal:= 0 

end 

result[4] := isittoobusyasreal 

-- end of the performance improvement part 

 

if isdayopen = true and isittoobusy = false 

    result[3] := spreadquality(patienturgency, slotsrequired, 

currentday) 

  var openingTime:integer := startTime(currentday) -- first cell of 

mss where cell /= 0 

  var closingTime:integer := EndTime(currentday, openingtime) -- 

first cell of mss where after the starttime cell = 0 

 

 

 

 

    for var SlotNr := openingtime to closingtime 

        var quality: real := 0 

        var isavailable: boolean := isslotavailable(slotnr, 

currentday) -- see if the slot is available 

 

        if isavailable = true -- if it is available, check if there 

are enough slots available 

            var nextUnavailable := NextUnavailableSlot(currentday, 

SlotNr, closingtime) 

 

            -- Calculate the number of slots until the next 

operation, or closing time 

            var NumSlotsAvailable:integer := min(nextunavailable - 

slotNr, closingtime - slotNr ) 

 

            -- Calculate the number of slots required for the 

surgery 

 

 

            -- Check if there are enough slots available until the 
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next slot or closing time 

            if numslotsAvailable >= slotsRequired 

 

 

                var slotsleftafter :=   numslotsavailable - 

slotsrequired 

 

                if slotsleftafter = 1 

                    quality += 0.1 

                elseif slotsleftafter =  2 

                    quality += 0.3 

                elseif slotsleftafter =  3 

                    quality += 0.7 

                elseif slotsleftafter =  4 

                    quality += 1.5 

                elseif slotsleftafter =  5 

                    quality += 3.1 

                else 

                    quality += 6.3 

                end 

                var slotsleftbefore: integer 

                for var i := 1 to 3 

                    if isslotavailable(slotNr - i, currentday) = 

true 

                        slotsleftbefore += 1 

                    end 

                next 

                if slotsleftbefore = 1 

                    quality += 0.1 

                elseif slotsleftbefore = 2 

                    quality += 0.3 

                elseif slotsleftbefore = 3 

                    quality += 0.7 

                elseif slotsleftbefore = 4 

                    quality += 1.5 

                elseif slotsleftbefore = 5 

                    quality += 3.1 

                else 

                    quality +=6.3 

                end 

 

                --if the slot fits perfectly in the given schedule, 

the quality should be the highest it can possibly be. Higher than 

keeping some slots before or after. 

                if slotsleftbefore = 0 and slotsleftafter = 0 

                    quality := 9001 

                end 

 

 

 

                if quality > result[2] 

                    result[1] := slotNr 

                    result[2] := quality 

                end 

            end 

        end 



73 
 

    next 

end 

 

 
-- .Models.Model.FindbestSlotfor30days 

-- Function: looks for the best slots to schedule a patient for the 

next 30 days. Fills these slots with associated qualities into the 

'mostsuitableSlots' data table. 

-- called by: planpatient 

-- author: Lucas van Haandel 

-- date: 16-07-2024 

 

 

param patient: object, patienturgency: integer 

mostSuitableSlots.delete 

 

var endday:integer 

var currentday: integer 

var bestSlotandQuality: list 

var bestslot: integer 

var quality: real 

var spreadquality: real 

var wasitbusyasreal: real:=0 

var wasitbusy:boolean:= false 

 

 

 

var patientdeadline:integer:= 

ceil((patient.arrivaltime+patient.deadline - 

eventController.simtime)/86400) 

 

 

 

if patientdeadline < 1 

    patientdeadline := 5 

end 

 

if patienturgency = 3 

 endday:= daynr + 29 

for var dayOffset := 0 to 29 

 

     currentDay := daynr + dayOffset 

 

    if  dravailability[patient.doctor, (((currentday-1) mod 20)+1)] 

= true 

 

        bestslotandquality := findbestslotforday(patient, 

currentday, endday, wasitbusy) 

        bestslot := bestslotandquality[1] 

        quality := bestslotandquality[2] 

        spreadquality:= bestslotandquality[3] 

        wasitbusyasreal:= bestslotandquality [4] 

        if wasitbusyasreal = 1 

            wasitbusy:= true 

        elseif wasitbusyasreal = 0 
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            wasitbusy:= false 

        else 

            debug 

        end 

        if bestSlot /= 0 

            mostSuitableSlots.appendrow(bestSlot, currentday, 

qualitynoturgent*quality, spreadqualitynoturgent*spreadquality) 

        end 

    end 

next 

 

elseif patienturgency = 2 

 

    endday := daynr + patientdeadline - 1 

for var dayOffset := 0 to patientdeadline-1 

 

     currentDay := daynr + dayOffset 

 

    if  dravailability[patient.doctor, (((currentday-1) mod 20)+1)] 

= true 

 

        bestslotandquality := findbestslotforday(patient, 

currentday, endday, wasitbusy) 

        bestslot := bestslotandquality[1] 

        quality := bestslotandquality[2] 

        spreadquality:= bestslotandquality[3] 

        wasitbusyasreal:= bestslotandquality [4] 

        if wasitbusyasreal = 1 

            wasitbusy:= true 

        elseif wasitbusyasreal = 0 

            wasitbusy:= false 

        else 

            debug 

        end 

        if bestSlot /= 0 

            mostSuitableSlots.appendrow(bestSlot, currentday, 

qualitynormal*quality, spreadqualitynormal*spreadquality) 

        end 

    end 

next 

 

elseif patienturgency = 1 

    endday := daynr + patientdeadline - 1 

    for var dayOffset := 0 to patientdeadline - 1 

        currentDay := daynr + dayOffset 

        bestslotandquality := findbestslotforday(patient, 

currentday, endday, wasitbusy) 

        bestslot := bestslotandquality[1] 

        quality := bestslotandquality[2] 

        spreadquality:= bestslotandquality[3] 

        wasitbusyasreal:= bestslotandquality [4] 

        if wasitbusyasreal = 1 

            wasitbusy:= true 

        elseif wasitbusyasreal = 0 

            wasitbusy:= false 

        else 
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            debug 

        end 

        if bestSlot /= 0 

            mostSuitableSlots.appendrow(bestSlot, currentday, -

1*quality, spreadquality) --note that the spreadquality is always 0 

for semi-urgent patients, because it does not matter. 

        end 

    next 

 

end 

 

 
-- .Models.Model.IsitBusy 

-- Function: given a patient's urgency, calculates whether it is too 

busy to plan a patient on a certain day. 

-- called by: findbestslotforday 

-- author: Lucas van Haandel 

-- date: 16-07-2024 

 

param patient : object, endday: integer, patienturgency:integer, 

currentday:integer 

-> boolean 

 

var isittoobusy:boolean 

 

 

--determine the total nr of slots, and the available slots 

var totalslots: integer 

var availableslots: integer 

 

var startday: integer:= daynr -1 

 

 

 

 

for var i:= startday to endday 

    var mssday:= ((i-1) mod 20)+1 

    for var j:= 1 to mss.ydim 

        totalslots+= MSS[mssday,j] 

        availableslots+= availableschedule[i,j] 

    next 

next 

availableslots -= ceil(patient.surgerytime/900) 

if totalslots = 0 

    result:= true 

    return 

end 

 

 

 

 

 

 

if patienturgency = 3 

/*  if currentday-daynr<=4 
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        if availableslots/totalslots >= 

leaveurgentslotsopenpercent/100 

            isittoobusy:= false 

        else 

            isittoobusy :=true 

        end 

    else*/ 

        if availableslots/totalslots >= leaveslotsopenpercent/100 

            isittoobusy:= false 

        else 

            isittoobusy :=true 

        end 

    --end 

elseif patienturgency = 2 

    if availableslots/totalslots >= leaveurgentslotsopenpercent/100 

        isittoobusy:= false 

    else 

        isittoobusy :=true 

    end 

elseif patienturgency = 1 

    isittoobusy := false 

else 

    debug -- it is never too busy to plan a semi-urgent patient, so 

this method should not be called for semi-urgent patients 

end 

 

result:= isittoobusy 

 

 
-- .Models.Model.Spreadquality 

-- Function: based on the patient's urgency, slots required, and the 

current day that we are trying to plan the patient in, calculate how 

much the quality of the spread improves if we were to actually plan 

the patient on this day. 

-- called by: findbestslotforday 

-- author: Lucas van Haandel 

-- date: 16-07-2024 

 

param patienturgency, surgerylength, operationday: integer 

-> real 

 

 

--var benchmark: real 

var oldspread, newspread: real 

var slotspreadquality: real 

 

 

oldspread := 0 

newspread := 0 

 

if patienturgency = 1--semi-urgent patients should always be planned 

as soon as possible, no point in calculating. 

    result:= 0 

    return 

end 
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var slotsfilled: integer:= 0 

var availableslots: integer:= 0 

var totalslots: integer:= 0 

var mssday:= ((operationday-1) mod 20)+1 

 

for var j:= 1 to mss.ydim 

 

    totalslots+= MSS[mssday,j] 

    availableslots+= availableschedule[operationday,j] 

 

next 

 

slotsfilled:= totalslots-availableslots 

 

 

oldspread := pow((slotsfilled/totalslots)*100, 2) 

newspread := pow(((slotsfilled+surgerylength)/totalslots)*100, 2) 

 

slotspreadquality := newspread- oldspread 

 

result:= slotspreadquality -- the lower this number, the more even 

the slot spread quality. 

return 

 

 
-- .Models.Model.StartTime 

-- Function: checks at what time the operating room opens based on 

the MSS 

-- called by: findbestslotforday 

-- author: Lucas van Haandel 

-- date: 2-07-2024 

 

Param Currentday: integer 

-> integer 

var modexperiment := currentday - 1 

var MssDay := ((modexperiment mod 20) +1) 

for var i := 1 to MSS.yDim 

    if MSS[MssDay, i] /= 0 then 

        result := i 

        return 

    end 

next 

 

 
-- .Models.Model.Endtime 

-- Function: checks when the operating room closes, based on the MSS 

-- called by: findbestslotforday 

-- author: Lucas van Haandel 

-- date: 2-07-2024 

 

Param Currentday, starttime: integer 

-> integer 

 var modexperiment := currentday - 1 
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var MssDay := ((modexperiment  mod 20) +1) 

if starttime = 0 

    result:= 0 

    return 

end 

for var i := starttime to mss.ydim 

    if MSS[MssDay, i] = 0 then 

        result := i 

        return 

    end 

next 

 

 
-- .Models.Model.NextUnavailableSlot 

-- Function: checks when the next unavailable slot is based on some 

current available slot. 

-- called by: findbestslotforday 

-- author: Lucas van Haandel 

-- date: 2-07-2024 

 

Param currentday, currentslot, closingtime: integer 

-> integer -- the next unavailable slot after you had some available 

slots 

var nextslot := currentslot +1 

for var i := nextslot to closingtime 

    if availableschedule[currentday, i] = 0 and 

availableschedule[currentday,i-1] /= 0 

        result := i 

        return 

 

    end 

 

next 

 

 
-- .Models.Model.isslotavailable 

-- Function: checks if a timeslot is available. returns true or 

false. 

-- called by: findbestslotforday 

-- author: Lucas van Haandel 

-- date: 2-07-2024 

 

param slot, daynr: integer 

-> boolean 

 

if Availableschedule[daynr, slot] = 0 

    result := false 

else 

    result := true 

end 

 

 
-- .Models.Model.Isdayopen 

-- Function: checks if the operating room is opened on a day. 

Returns true or false 
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-- called by: findbestslotforday 

-- author: Lucas van Haandel 

-- date: 2-07-2024 

Param Currentday: integer 

-> boolean 

var modexperiment := currentday - 1 

var MssDay := ((modexperiment mod 20) +1) 

for var i := 1 to MSS.yDim 

    if MSS[MssDay, i] /= 0 then 

        result := true 

        return 

    end 

next 

result:= false 

 

 
-- .Models.Model.MovetoOR 

-- Function: moves a patient to the operating room. 

-- called by: methcall from planpatient 

-- author: Lucas van Haandel 

-- date: 2-07-2024 

 

param patient: object 

 

 

if patient /=void and scheduledpatients.getrowno(patient.patientnr) 

/= -1 

    var patientrowno := 

scheduledpatients.getrowno(patient.patientnr) 

    if patient.location = .models.model.waitingafterplanning and 

scheduledpatients[2, patientrowno]*86400 + 

(scheduledpatients[1,patientrowno]-1)*900 = eventcontroller.simtime 

    patient.move(operatingroom) 

    &Leaveor.methcall(patient.surgerytime, patient) 

    end 

end 

 

 
-- .Models.Model.LeaveOR 

-- Function: takes a patient out of the operating room. Updates some 

KPI's 

-- called by: methcall from movetoOR 

-- author: Lucas van Haandel 

-- date: 2-07-2024 

 

param patient: object 

 

patient.move(exit) 

if daynr > warmup+1 and daynr <= warmup + simulationlength+1 

    totaloperated += 1 

    if 

scheduledpatients[5,scheduledpatients.getrowNo(patient.patientnr)] = 

false 

        totalnotontime += 1 

    end 
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end 

 

 
-- .Models.Model.Init 

-- Function: initialises data tables based on the input data. 

calculates the total number of slots available during the 

simulation. 

-- called by: start of simulation 

-- author: Lucas van Haandel 

-- date: 2-07-2024 

 

eventController.end := (warmup+simulationlength+1)*86400 

 

noturgentpercent := 100 - urgentpercent-normalPercent 

-- Clear the Schedule table before copying new data 

availableSchedule.delete 

var enddate: integer 

enddate:=ceil(eventController.end/86400)+30 

daynr += 1 

-- Loop through the next 30 days 

for  var dayNr := 1 to enddate 

 

    var dayIndex := ((dayNr-1) mod 20) + 1  -- Calculate the column 

index based on the day, cycling every 20 days 

 

    -- Assuming MSS and Schedule are tables and we need to copy data 

from MSS to Schedule 

    for var i := 1 to 96   -- Loop through the rows in MSS 

        var rowData := MSS[dayIndex, i] -- Get the data from the 

specific column in MSS 

        availableSchedule[daynr, i]:= rowdata 

 

        if rowdata/= 0 

            availableschedule.setbackgroundcolorcolumn(daynr, 3) 

        end 

 

/*      if daynr <= enddate -30 and daynr > 30 

            totalslotsNR += rowdata 

        end*/ 

 

    next 

 

    if dayindex = 21 

        debug 

    end 

next 

 

 
-- .Models.Model.initDay 

-- Function: calculates some KPI's and calls the planpatientcaller 

every day, which tries to plan all the patients. 

-- called by: called at 9:00:00 by generator startoftheday 

-- author: Lucas van Haandel 

-- date: 2-07-2024 
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if eventcontroller.simtime >= 86400 

    daynr += 1 

end 

 

if daynr > warmup+1 and daynr <= warmup + simulationlength+1 

    var unusedslotstoday := 0 

    var totalslotstoday := 0 

 

    if totaloperated /= 0 

        ontimepercent := (1-(totalnotontime/totaloperated)) *100 

    end 

 

    for var i := 1 to 96 

        nrofunusedSlots += availableschedule[daynr-1,i] 

        unusedslotstoday += availableschedule[daynr-1,i] 

        totalslotsNR += MSS[(((daynr-1)-1)mod 20)+1,i] 

        totalslotstoday += MSS[(((daynr-1)-1)mod 20)+1,i] 

    next 

 

    if totalslotstoday /= 0 

        slotsutility := (1-(nrofUnusedSlots/totalSlotsNR))*100 

        daysmeasured += 1 

 

        if (1-(unusedslotstoday/totalslotstoday))*100 >= 

utilityThreshold 

            daysWithGoodService += 1 

        end 

    end 

     

    if daysmeasured /= 0 

        serviceLevel:= (daysWithGoodService/daysmeasured)*100 

    end 

end 

 

 

 

 

--warmuptimecalculator 

 

 

    planpatientcaller 

 

 
-- .Models.Model.Reset 

-- Function: resets all necessary variables and data tables 

-- called by: reset 

-- author: Lucas van Haandel 

-- date: 2-07-2024 

 

deletemovables 

NrPatients := 0 

Waitinglist.delete({0,1}..{*,*}) 

DayNr := 0 

nrofUnusedSlots := 0 
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totalSlotsNR := 0 

totalnotontime:= 0 

replannedslotsReturned := 0 

totaloperated := 0 

slotsutility := 0 

ontimepercent := 0 

replannedPatients := 0 

serviceLevel := 0 

daysmeasured := 0 

dayswithGoodService := 0 

availableschedule.setbackgroundcolorcolumn({0,0}..{*,*}, 

makeRGBValue(255,255,255)) 

availableschedule.delete({1,1}..{*,*}) 

 

mightgetKicked.delete({1,1}..{*,*}) 

scheduledPatients.delete({0,1}..{*,*}) 

mostsuitableSlots.delete({1,1}..{*,*}) 

--warmupSlotsUtility.delete({1,1}..{*,*}) 

 

--warmupslotsutility[experimentManager. 

 

Appendix 6: Expected shrinkage and growth tool 
The expected shrinkage and growth tool shows how a waiting list changes during an MSS cycle, 
and how this change impacts the expected utilization and average patient waiting time. The 
code is adapted from the original Markov tool, however instead of first calculating a steady 
state, we simply input how many people we have on the waiting list at the start, and use that as 
an input for the Markov chain. At the end of the cycle we calculate how the waiting list behaved 
during the cycle. 
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Sub ToolExecute() 

Dim CurrentServiceLevel As Double 

Dim i As Integer 

Dim j As Integer 

Dim d As Integer 

Dim safetystock As Integer 

Dim nextRow As Long 

Dim WeightedAverage As Double 

Dim total As Double 

Dim probability As Double 

Dim percentile As Integer 

Dim startTime, elapsedTime As Single 

100.000

100.000

100.000

100.000

100.000

100.000

100.000

100.000

0 5 10 15 20 25

Average OR utilization per day

38.000

39.000

40.000

41.000

42.000

43.000

44.000

45.000

46.000

47.000

0 5 10 15 20 25

Average patient waiting time per day



84 
 

Dim WasanswerFound As Boolean 

 

 

With ThisWorkbook.Sheets("Dashboard") 

    .Range("L2:M" & .Rows.Count).ClearContents 

End With 

 

With ThisWorkbook.Sheets("CalculationData") 

    .Range("A2:P" & .Rows.Count).ClearContents 

End With 

 

With ThisWorkbook.Sheets("dashboard") 

    UtilityThreshold = .Cells(13, "B").value 

    L = .Cells(5, "B").value 

    NrOfdays = .Cells(6, "B").value 

    RunLength = .Cells(14, "B").value 

    mean = .Cells(7, "B").value 

    stdev = .Cells(8, "B").value 

    ORtime = .Cells(9, "B").value 

    safetystock = .Cells(15, "B").value 

    index = .Cells(16, "B").value 

    epsilon = .Cells(17, "B").value 

    .Range("G5").ClearContents 

    .Range("G8").ClearContents 

    .Range("G9").ClearContents 

End With 

 

CurrentServiceLevel = 0 

 

startTime = Timer 

WasanswerFound = True 

 

Do While CurrentServiceLevel < 1 

 

    elapsedTime = Timer - startTime 
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    'If elapsed time is greater than allowed, exit the loop 

    If elapsedTime > RunLength Then 

        WasanswerFound = False 

        Exit Do 

    End If 

 

    CurrentServiceLevel = MarkovChains(safetystock) 

    With ThisWorkbook.Sheets("dashboard") 

        nextRow = .Cells(.Rows.Count, "L").End(xlUp).Row + 1 

        .Cells(nextRow, "L").value = safetystock 

        .Cells(nextRow, "M").value = CurrentServiceLevel 

        If CurrentServiceLevel = 1 Then 

            .Cells(5, "G").value = safetystock 

        End If 

    End With 

    safetystock = safetystock + epsilon 

Loop 

With ThisWorkbook.Sheets("dashboard") 

    .Cells(9, "G").value = WasanswerFound 

End With 

 

For d = 1 To NrOfdays 

        WeightedAverage = 0 

        probability = 100 

        For i = 0 To listlength 

            WeightedAverage = WeightedAverage + (i * BP(d, i)) 

            If MSS(d) = True Then 

                    probability = probability - 100 * (BP(d, i) * 

utilityprobability(i)) 

            End If 

        Next i 

        

          With ThisWorkbook.Sheets("CalculationData") 

        ' Find the next empty row in column A 
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        nextRow = .Cells(.Rows.Count, "A").End(xlUp).Row + 1 

         

        ' Paste values into columAP A and B in the next empty row 

        .Cells(nextRow, "A").value = d 

        .Cells(nextRow, "B").value = WeightedAverage 

        .Cells(nextRow, "C").value = probability 

        .Cells(nextRow, "D").value = WeightedAverage / L 

        End With 

Next d 

 

With ThisWorkbook.Sheets("CalculationData") 

    For i = 0 To listlength 

        .Cells(i + 2, "F").value = i 

        .Cells(i + 2, "G").value = BP(NrOfdays, i) 'add the chances that there are 

i people on the waitlist at the end just for extra information 

    Next i 

End With 

 

  ' Turn all the values in the array to 0 to be safe 

    For i = 0 To NrOfdays 

        For j = 0 To listlength 

                AP(i, j) = 0 

                BP(i, j) = 0 

        Next j 

    Next i 

     

' Update the chart sizes 

    Dim lastRow As Long 

    Dim startRow As Long 

    Dim rangeAddress1 As String 

    Dim rangeAddress2 As String 

    Dim rangeAddress3 As String 

     

     

    ' Calculate the last row for the first range 

    lastRow = NrOfdays + 1 
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    rangeAddress1 = "A2:B" & lastRow 

     

    ' Update Chart 1 

    With ActiveSheet.ChartObjects("Chart 4") 

        .Activate 

        Application.CutCopyMode = False 

        ActiveChart.SetSourceData 

Source:=Sheets("CalculationData").Range(rangeAddress1) 

        ActiveChart.FullSeriesCollection(1).IsFiltered = True 

        ActiveChart.FullSeriesCollection(2).IsFiltered = False 

    End With 

     

    ' Calculate the address for the second range 

    

    startRow = 1 

    rangeAddress2 = "A" & startRow & ":A" & lastRow & ",C" & startRow & ":C" & 

lastRow 

     

    ' Update Chart 2 

    With ActiveSheet.ChartObjects("Chart 5") 

        .Activate 

        Application.CutCopyMode = False 

        ActiveChart.SetSourceData 

Source:=Sheets("CalculationData").Range(rangeAddress2) 

    End With 

     

    ' Calculate the address for the third range 

     

    rangeAddress3 = "A" & startRow & ":A" & lastRow & ",D" & startRow & ":D" & 

lastRow 

     

    With ActiveSheet.ChartObjects("Chart 6") 

        .Activate 

        Application.CutCopyMode = False 

        ActiveChart.SetSourceData 

Source:=Sheets("CalculationData").Range(rangeAddress3) 

    End With 
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End Sub 

 

Function MarkovChains(safetystock As Integer) As Double 

 

    Dim i As Integer 

    Dim j As Integer 

    Dim d As Integer 

    Dim ServiceLevel As Double 

    Dim totalservicelevel As Integer 

    Dim WeightedAverageNew, WeightedAverageOld As Double 

    Dim Convergence As Double 

    Dim loopnr As Integer 

     

 

  

    ' Initialize the variables with some values (if needed) 

    listlength = safetystock + index 

'    WeightedAverageOld = 0 

'    loopnr = 0 

'    Convergence = epsilon + 1 

     

    ReDim AP(0 To NrOfdays, 0 To listlength) 

    ReDim BP(0 To NrOfdays, 0 To listlength) 

 

'    Do While Convergence > epsilon 

 

     

    ' Turn all the values in the array to 0 to be safe 

'    If loopnr = 0 Then 

        For i = 0 To NrOfdays 

            For j = 0 To listlength 

                If i = 0 And j = safetystock Then 'at the start, the chance of one 

number of people on the waitlist is 1 

                    AP(i, j) = 1 

                    BP(i, j) = 0 

                Else 
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                    AP(i, j) = 0 'the rest is just cleaning up the array for safety 

                    BP(i, j) = 0 

                End If 

            Next j 

        Next i 

'    Else 

'        For i = 0 To NrOfdays 

'            For j = 0 To listlength 

'                If i = 0 Then 'at the start, the probability after planning on day 

0 is the 

'                    AP(i, j) = AP(NrOfdays, j) 

'                    BP(i, j) = 0 

'                Else 

'                    AP(i, j) = 0 'the rest is just cleaning up the array for 

safety 

'                    BP(i, j) = 0 

'                End If 

'            Next j 

'        Next i 

'    End If 

 

    For d = 1 To NrOfdays 

     

        'add the chances of i people existing on the waiting list before planning. 

Based on the chance that i-j people arrive, given the probability of yesterdays 

waiting list length being i 

        For i = 0 To listlength 

            If i <> listlength Then 

                For j = 0 To i 

                    BP(d, i) = BP(d, i) + AP(d - 1, j) * 

WorksheetFunction.Poisson_Dist((i - j), L, False) 

                Next j 

            Else 

                For j = 0 To i 

 

                        BP(d, i) = BP(d, i) + AP(d - 1, j) * CumProbability((i - 

j), L) 
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                Next j 

            End If 

         

        Next i 

         

        'add the chances of people existing after planning, based on whether the OR 

is open today 

        If MSS(d) = True Then 

 

         

            For i = 0 To listlength 

                For j = 0 To listlength - i 

                    'the probability that there are i people after planning, is the 

probability that there were i+j people before planning* the probability that j-i 

people were planned 

                     

                    AP(d, i) = AP(d, i) + BP(d, i + j) * NrOfSurgeries(j, i) 

                Next j 

     

            Next i 

        Else 

            For i = 0 To listlength 

                AP(d, i) = BP(d, i) 

            Next i 

        End If 

 

 

         

    Next d 

     

 

'        WeightedAverageNew = 0 

'        For i = 0 To listlength 

'                WeightedAverageNew = WeightedAverageNew + (i * BP(1, i)) 

'        Next i 

' 
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'        Convergence = WeightedAverageNew - WeightedAverageOld 

'        WeightedAverageOld = WeightedAverageNew 

'        With ThisWorkbook.Sheets("Dashboard") 

'            .Cells(8, "G").value = loopnr 

'        End With 

' 

'        loopnr = loopnr + 1 

         

' 

'    Loop 

     

    totalservicelevel = 0 

     

    For d = 1 To NrOfdays 

        ServiceLevel = 100 

         

        If MSS(d) = True Then 

         

            For i = 0 To listlength 

                    ServiceLevel = ServiceLevel - 100 * (BP(d, i) * 

utilityprobability(i)) 'the probability that our expected lost utilization is not 

below our service level 

            Next i 

             

            If ServiceLevel > UtilityThreshold Then 

            totalservicelevel = totalservicelevel + 1 

            End If 

        Else 

            totalservicelevel = totalservicelevel + 1 

        End If 

         

    Next d 

     

    MarkovChains = totalservicelevel / NrOfdays 
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End Function 

 

Function MSS(day As Integer) As Boolean 

 

    Select Case day 

        Case 1, 2, 8, 12, 13, 14, 18, 20 

            MSS = True 

        Case Else 

            MSS = False 

    End Select 

 

End Function 

 

Function CumProbability(x As Integer, L As Double) As Double 

 

If x = 0 Then 

        CumProbability = 1 

Else 

        CumProbability = 1 - WorksheetFunction.Poisson_Dist(x - 1, L, True) 

End If 

 

End Function 

 

Function NrOfSurgeries(vectorsize As Integer, state As Integer) As Double 

 

'The NrOFSurgeries is the probability that the amount of OR minutes on the waiting 

list is enough to perform vectorsize surgeries 

'The Nrofsurgeries is thus the probability of at least vectorsize surgeries - the 

probability of at least vectorsize+1 surgeries 

 

Dim probability As Double 

 

If state = 0 Then 

    If vectorsize = 0 Then 

        probability = 1 

    Else 
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        probability = WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime / 

vectorsize), mean, stdev, True) 

    End If 

ElseIf state = listlength Then 

        probability = 1 - WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime / 

(vectorsize + 1)), mean, stdev, True) 

Else 

    If vectorsize = 0 Then 

        probability = 1 - WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime / 

(vectorsize + 1)), mean, stdev, True) 

    Else 

        probability = 1 - WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime / 

(vectorsize + 1)), mean, stdev, True) - (1 - 

WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime / vectorsize), mean, stdev, 

True)) 

    End If 

End If 

 

 

NrOfSurgeries = probability 

 

End Function 

 

Function utilityprobability(state As Integer) As Double 

'the utilityprobability is the probability that the amount of OR minutes is at 

least the ORtime, given the number of people on the waiting list(state) 

'the utilityprobability is the probability that with state number of surgeries, we 

still dont have enough ORtime to fill the entire schedule 

'the utilityprobability is therefore the probability that state surgeries take less 

than the ortime. 

'the probability that x surgeries take less than the ortime is the probability that 

one surgery takes less than ln(ortime/x) 

'if our state number of surgeries is 0, the probability of not having enough ORtime 

is 1 

Dim LNOR As Double 

 

If state = 0 Then 

    utilityprobability = 1 

Else 
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    LNOR = WorksheetFunction.Ln(ORtime / state) 

    utilityprobability = WorksheetFunction.Norm_Dist(LNOR, mean, stdev, True) 

End If 

 

End Function 


