

Determining a safety stock level for the waiting list of
the KNO department at the UMC Utrecht

Author: Lucas van Haandel (S2628449)

Supervisor: S. Rachuba

UMC Utrecht supervisor: A. Glerum

2

Acknowledgements
I want to thank everyone at the capacity management team at the UMC Utrecht for the
continuous support during my stay in with them.

3

Management summary
The objective of this research is to find out how to calculate the necessary safety stock a
surgical specialty should have on the waiting list to prevent stockouts in the operating room. The
main goal of this research is to improve the resource capacity planning of operating rooms in
hospitals at a tactical level. This is done by answering the research question:

What is the necessary safety stock in hours of work for the KNO department at UMC Utrecht to
ensure a prespecified OR utilization using the MSS for June 2024?

This question is answered by first exploring literature on the evaluation methods of Master
surgery schedules (MSS), and seeing what methods can be adapted to calculate a safety stock.
Then the problem situation at the UMC Utrecht is analysed to give context to the scope of the
models , and to gather the relevant data necessary for the model inputs. Then we build the most
promising models, on which we base our conclusions.

The evaluation techniques that seemed the most promising are a Markov model and discrete
event simulation. The Markov model was applied by modelling the waiting list as a Markov chain
in a macro-enabled Excel file, and analysing the waiting list once a steady state was reached.
The discrete event simulation was applied by modelling a simplification of the admissions
planning process, and analysing the waiting list once the simulation had been completed.

The most important finding is that a Markov model is the best out of the two methods to analyse
surgical waiting lists. Verification and validation of a discrete event simulation is very difficult.
There are a lot of cases where there is no data or no formal strategy, so it becomes more difficult
to make sure the model resembles reality. The Markov model does not have this issue, because
it only uses the transition probabilities, so the only necessary input data, apart from the MSS,
are the patient arrival distribution and the surgery duration distribution. The Markov model is the
only model that was found that could be validated.

The recommended safety stock level
in hours of work for the KNO
department at the UMC Utrecht
depends on the desired expected OR
utilization, called the service level,
and is given in FiFigure 1. The
necessary safety stock level and the
prespecified service level have an
exponential relationship, with the
necessary safety stock level steeply
increasing when the service level
exceeds 90%.

F
i
Figure 1 The necessary safety stock level to achieve
a prespecified service level

4

The next step for the UMC Utrecht is to calculate the safety stock level for all their surgical
departments, so they can use the data to improve their tactical planning decisions. This safety
stock level is also useful when a hospital wants to implement a dynamic master surgery
schedule. The safety stock can then be used to monitor whether a surgical specialty could use
more or less OR hours, and if a surgical specialty can be expected to utilize the OR enough
using a proposed new MSS.

5

Contents
Acknowledgements .. 2

Management summary .. 3

Table of figures ... 6

Operating room planning .. 8

Planning at UMC Utrecht .. 9

Problem definition .. 9

Global problem solving approach .. 10

Research aim .. 10

Research questions .. 11

Relevance and scope ... 12

Theory ... 14

System description .. 16

Modeling objectives .. 16

Problem situation ... 17

Assumptions .. 18

Data ... 19

Markov model .. 21

Queue length calculation .. 22

The number of surgeries .. 22

Calculating the steady state .. 23

Utilization ... 23

Tool .. 24

Simulation model ... 26

The conceptual model .. 26

Scope ... 26

Level of detail ... 27

Planning process .. 29

Model design .. 31

Process flow ... 32

Validity and verification ... 33

Warmup, replications, runtime .. 33

Experiments .. 36

Strategy.. 36

6

Variable inputs .. 38

Sensitivity analysis ... 39

Case: KNO department at UMC Utrecht .. 42

Simulation .. 42

Markov ... 42

Discussion .. 43

Data ... 43

Markov ... 43

Simulation ... 43

Future research .. 44

Conclusion .. 44

Recommendation .. 45

Bibliography ... 46

Appendix 1: Logic Flows .. 48

Appendix 2: Warmup time and number of replications ... 54

Appendix 3: VBA code ... 55

Appendix 4: binary strategy results .. 63

Appendix 5: plant simulation code .. 63

Appendix 6: Expected shrinkage and growth tool.. 82

Table of figures
FiFigure 1 The necessary safety stock level to achieve a prespecified service level 3
Figure 2 A framework for healthcare planning and control (Hans et al., 2012) 8
Figure 3 Problem cluster for operating room scheduling inefficiencies caused by tactical
planning mistakes. ... 10
Figure 4 Graphical view of the solution approach ... 11
Figure 5 The best fitting distribution to the surgery time data. ... 20
Figure 6 A screenshot from the Markov chain tool, showing the dashboard. 24
Figure 7 The artefacts of conceptual modeling (Robinson, 2011). ... 26
Figure 8 Visual explanation for the slot quality calculation. .. 31
Figure 9. A screenshot of the model. ... 32
Figure 10, The process flow for patients in the model. .. 32
Figure 11 Screenshot of the inputdata used in the warmup time calculations. 33
Figure 12 Warmup time calculated using the MSER method. .. 34
Figure 13 The cumulative mean time in the system with 95% confidence intervals. 34
Figure 14 The input values for all 16 experiments. .. 36

7

Figure 15 The sum of the results of 16 different planning strategies tested for 5 different cases,
with their associated input data. The colours in the columns are formatted so that the highest
number is the most saturated, and the lowest number is the least saturated. 37
Figure 16 A screenshot of the input values of the genetic algorithm and a screenshot of part of
the auto generated report. .. 38
Figure 17 The chosen inputdata for all 4 variables, and their associated outcomes. 39
Figure 18 Graphs showing the relationship between LeaveSlotsOpenPercent and each KPI. ... 39
Figure 19 The chosen inputdata for all 4 variables, and their associated outcomes. 40
Figure 20 Graphs showing the relationship between LeaveUrgentSlotsOpenPercent and each
KPI. ... 40
Figure 21 The chosen inputdata for all 4 variables, and their associated outcomes. 41
Figure 22 Graphs showing the relationship between the safety stock level and each KPI. 41
Figure 23 The necessary safety stock level to achieve some desired service level. 42
Figure 24 Logic flow 'MovePatient' ... 48
Figure 25 Logic flow 'PlanPatientCaller' ... 48
Figure 26 Logic flow PlanPatient.. 49
Figure 27 Logic flow urgent kicking/planning process from planpatient 49
Figure 28 Logic flow FindBestSlotFor30Days ... 49
Figure 29 Logic flow FindBestSlotforDay .. 50
Figure 30 The part of FindBestSlotforDay's logic flow that calculates a slot’s quality 51
Figure 31 Logic flow IsSlotAvailable .. 51
Figure 32 Logic flow IsDayOpen .. 51
Figure 33 Logic flows StartTime and EndTime .. 52
Figure 34 Logic flows for IsitBusy, based on a patients urgency. .. 52
Figure 35 Logic flow for SpreadQuality .. 53
Figure 36 Logic flows for Initday and LeaveOr .. 54
Figure 37 A small sample of the calculations done to calculate the warmup time 54
Figure 38 A small sample of the input data for the warmup calculations 55
Figure 39 Calculations for the number of replications .. 55

8

Operating room planning
It is estimated that over one third of health expenditures can be attributed to waste (Oecd,
2017).

About 40 percent of a hospital’s expenses come from their operating theatre (OT) (Marrin et al.,
1997). It is a general objective that the OT gets used as optimally as possible while upholding a
good quality of care. A substantial sub objective is to schedule operations as optimally as
possible. Because operating room (OR) planning is a complex problem with many constraints
(patients, staff, materials, post operation bed availability, etc.), an optimal schedule is
impossible to make. Instead, hospitals often split OR planning into a strategic, tactical, and
operational component. This was expanded upon by (Hans et al., 2012) Into a framework for
healthcare planning and control, as shown in Figure 2.
On a strategic level, Structural decisions, like policies and company strategy are decided. For
example, hospitals decide how many of a type of surgery they plan to do in a year, and how
much time they expect each surgery to take.
The operational level involves short-term decisions that are meant to execute the healthcare
delivery process. It involves both an offline – in advance- and an online – reactive- part. An
example of offline operational planning is surgery scheduling. An example of online operational
planning is handling emergency arrivals, or other unforeseen complications that arise.
Tactical planning involves actions that are in between strategic and operational planning in
scope and planning horizon. Because it involves a larger planning horizon than operational
planning, tactical planning decisions rely more on trends and patterns than operational
planning. Decisions are also more flexible, as they are made further in advance. For example, in
tactical planning surgical schedules are made that allocate surgery time in blocks to surgical
specialties, without specifying what surgeries will be performed. In operational planning, these
blocks are filled in with surgeries.

Figure 2 A framework for healthcare planning and control (Hans et al., 2012)

9

Planning at UMC Utrecht
The UMC Utrecht is exploring to improve the current Tactical planning process by introducing a
dynamic master surgery schedule (MSS), where most of the OR time is assigned to specific
specialties, but some of the OR blocks are kept unassigned. These blocks can then later be
assigned to the specialty that needs it the most. This introduces a trade-off between stability
and flexibility where leaving more slots unassigned leads to the slots being allocated to the
specialties that need it most, but there is less time to schedule patients and doctors.

Research shows that introducing even a small amount of flexibility into the MSS leads to great
improvements in OT performance (Oliveira & Marques, 2021). The downside of introducing
flexibility is that it is known much later what surgery will take place where. This is important to
stakeholders such as surgeons and surgical staff.

Deciding what part of the MSS should be stable is a strategic decision that would take too long
to research in this project, and is part of a multi year project the UMC Utrecht is working on to
change tactical planning.
Deciding when a specialty should receive an unassigned OR block is mostly answered by rules
in place through quality of care purposes. The patients should not wait for so long that their
health deteriorates while waiting for surgery. So when planners see these waiting times tick up,
they should receive extra operating sessions.
Deciding when a specialty does not need an unassigned OR block is the problem that this
project focuses on. This decision depends on many factors. Some of these are: the number of
surgeries the specialty is budgeted to fulfil, the number of surgery hours on the waiting list, the
expected change to the specialties waiting list considering the current schedule, and the UMC
Utrecht’s strategic position.
Because these decisions depend on many factors and have an impact on the surgery
scheduling at a tactical level, they impact many different stakeholders at the hospital. The
tactical planners have to come to a consensus that the decision being made is the best one for
all the stakeholders involved. This research project assists in this decision making process by
presenting a safety stock level for the patient waiting list length. This safety stock is the lowest
necessary number of hours of work needed on the waiting list to ensure there is enough work to
service the given OR hours. This tells the tactical planners if their current waiting list is large
enough for their OR hours, or if they can take away OR hours and still ensure timely surgeries.
When the safety stock level for the surgical specialties is known, the tactical planners can base
their planning decisions on data, which is necessary when a consensus needs to be reached in
a timely manner.

Problem definition
The main management problem is:

Operating rooms are not assigned to surgical specialties optimally.

This problem Has many causes, part of whom are given in the problem cluster in Figure 3. The
MPSM method is used to find the best fitting core problem (Heerkens & Van Winden, 2011.).
This problem cluster only focuses on causes in tactical planning, because different causes fall

10

outside the scope of this research.

Suboptimal tactical planning is caused by either a suboptimal MSS, or by not adjusting the MSS
to the current situation. A suboptimal MSS can have many causes. Generally, it is either caused
by using a suboptimal modelling technique, or by using the same MSS for too long, and not
changing it for seasonality or other dynamic changes, such as surgeon availability or holidays.
The MSS does not get adjusted to the current situation properly for two reasons. Either the MSS
does not have enough flexibility and cannot change, or the proposed changes in the MSS made
during the tactical planning meeting were not the optimal decisions.
Suboptimal decision making during the tactical planning meeting also has many causes, the
most valuable of which is ‘Safety stock for the waiting lists is unknown’. This is the chosen core
problem for this research.

Figure 3 Problem cluster for operating room scheduling inefficiencies caused by tactical planning mistakes.

This problem is both relevant to UMC Utrecht and unexplored in literature. To make sure the
problem fits in the scope of a bachelor’s assignment, this project focuses on calculating safety
stock levels for the patient waiting list for the KNO department at UMC Utrecht. The result from
this project can be used to make informed planning decisions based on patient waiting lists.

Global problem solving approach

Research aim
The goal for this research is to calculate safety stock levels for patient waiting lists for surgery
specialties based on key performance indicators (KPI’s). The results from this project can be
used to support decision making for flexible surgery scheduling.

11

The knowledge question associated with this research aim is:

What is the necessary safety stock in hours of work for the KNO department at UMC Utrecht to
ensure a prespecified OR utilization using the MSS for June 2024?

Research questions
The problem is broken down into 4 stages, given in Figure 4. First we have to understand the
current situation. There is no clear idea on what service levels are desired, nor do we know the
characteristics of patients undergoing surgery. The second step is to review literature, both on
safety stock and on techniques to evaluate MSSs. This will show the possible methods that exist
to calculate waiting list lengths for surgical specialties, and what needs to be added to
calculate a safety stock level. The available model methods that seem to fit the problem
context best are adapted to the context of safety stock in the solution design, where different
scenarios will be tested. After that key insights and recommendations will be given.

Figure 4 Graphical view of the solution approach

The literature review will be researched through a narrative literature review for each research
question. The research questions for the literature research are:

1. What techniques to evaluate the impact of an MSS exist?
2. How is safety stock calculated, and how does this translate to a hospital setting?

The goal for the literature review is to describe theories, models, and frameworks developed in
past studies. A narrative literature review is used (King & He, 2005). We choose this method
because the number of papers with different models is limited, and most models are
adaptations from one another. The literature review will create a toolbox with possible methods
to model tactical planning and to calculate safety stock. This implies that this project is limited
by the models currently available in literature, but the models can be adapted to fit the research
goal. Research questions 1 and 2 are answered in the chapter ‘Theory’.

The context analysis will be researched through semi-structured interviews with employees at
UMC Utrecht that are involved in the tactical planning process, and by using data from UMC

12

Utrecht. The analysis will deliver an analysis and statistical distributions for these main patient
characteristics. The research questions for the context analysis are:

3. What are the main patient characteristics?
a. What are the statistical patient arrivals?
b. What are the statistical surgery durations?

4. Wat strategy is used to plan patients in OR blocks at the KNO department at the
UMC Utrecht?

The context analysis is given in the chapter ‘System description’. The research questions for the
context analysis are both descriptive questions. They are all meant to elaborate on the current
planning policy and situation at UMC Utrecht. These semi-structured interviews focus both on
answering the specific questions, while also allowing the interviewees to expand and delve into
aspects that they consider important, but are not explicitly mentioned. Semi-structured
interviews allow for the collection of both quantitative and qualitative (questions 3 and 4,
respectively) data (Dicicco-Bloom & Crabtree, 2006). Research questions 3 and 4 are answered
in the chapter ‘System description’.

The research questions regarding the solution design and recommendations are answered by
estimating what type of method to evaluate the MSS works best for the situation, building this
method, and testing scenarios and configurations. The research questions for the solution
design and recommendations are:

5. What models work best to estimate the necessary safety stock levels for surgical
departments?

6. What is the relationship between OR performance and safety stock levels?
7. What are the practical insights gained from these models?

The research questions for the conclusions and recommendations answer the original problem
statement for the project. The answer to question 5 validates the information provided in
question 6. This question gives the insight necessary to answer question 7. To answer question
6, experiments need to be conducted. Question 5 is answered by evaluating the quality of the
models designed during the project. Research questions 5, 6, and 7 are answered in the
conclusion.

Relevance and scope
There are no papers on cases where safety stock was calculated for operating rooms. Only on
theoretical models, as part of a simulation-optimization approach, expected waiting list lengths
have been calculated (Razali et al., 2022). These waiting list lengths are not calculated using
very robust methods, as the actual values are not important for optimization. It is only important
to see whether the expected waiting list length goes up or down when making changes in the
MSS. The specific methods used to calculate these waiting list levels are only vaguely explained
and not reproducible (Abedini et al., 2017; Kumar et al., 2018; Oliveira et al., 2022). This project
bridges the gap between studies that focus on theoretical models and using these models in a
practical setting, while adapting the models to more accurately reflect the real world. This
makes the results given by the models accurate enough to be used in a real world setting.

13

The information given in this project is relevant to UMC Utrecht, and helps them improve their
tactical planning process. Results given by this project help improve decisions made during
tactical planning meetings, where changes are made to the MSS based on the current situation
in the hospital.

To keep the project within the scope of a bachelor’s thesis, this project will focus on the
relationship between waiting list length and operating room utilization.

14

Theory
The goal for the theory chapter is to answer research questions 1 and 2:

1. What techniques to evaluate the impact of an MSS exist?
2. How is safety stock calculated, and how does this translate to a hospital setting?

First we gather what modelling techniques have been used to evaluate MSSs. Then we see how
safety stock can be calculated in the context of the OR at a hospital. Finally we determine what
techniques could be adapted to calculate the safety stock level for an OR.

One of the biggest improvements in recent years to tactical planning in hospitals is introducing
flexibility to the MSS. In dynamic MSS planning, operating room time for surgical specialties is
adjusted depending on changes in staff availability and changes in the demand pattern (Oliveira
& Marques, 2021).

MSSs are evaluated to understand their expected quality, or their effect on performance
indicators (Razali et al., 2022). Literature often benchmarks their own planning technique
against established modelling methods. For example, (van der Sande, 2023) used the data from
(Adan et al., 2009) to compare results. (Dellaert et al., 2016) used Markov chains to model and
evaluate the waiting list length, and (Pulido, 2014) used Monte Carlo simulation for scenario
reduction. Simulation is also often used to evaluate schedules (Zhu et al., 2019).

Discrete-event simulation is also often used to test and evaluate master surgery schedules in a
stochastic environment. (Kumar et al., 2018), (Britt, 2016) and (Abedini et al., 2017) used
discrete-event simulation to evaluate and test their optimization model. (Bovim et al., 2020) and
(Oliveira et al., 2022b) use the expected waiting time these simulations to make changes in their
master surgery schedule, as part of a simulation-optimization approach.

One way to make dynamic decisions more informed is by introducing safety stocks for surgical
specialties. Safety stock are the extra resources that a company will keep on hand to reduce the
probability of a stockout in case of variability in demand, lead times, or forecast inaccuracies.
The more accurate the forecast, the less safety stock that is required, because safety stock is
the buffer to counterbalance forecast variability (Monk & Wagner, 2008).
Safety stock can also prevent stockouts in case of uncertain yield rates from variability in
production processes (Hung & Chang, 1999).
Safety stock is not meant to eliminate all stockouts, just the majority of them. The amount of
time where safety stock prevents a stockout is called the service level. A high service level will
mean higher safety stocks and costs, but fewer stockouts.

In a hospital setting, the safety stock should prevent the OR from operating without there being
any work to be done. The safety stock level is therefore the minimum number of hours of work
necessary on the waiting list to achieve a prespecified OR utilization with a certainty described
by the service level. The forecast variability comes from both the uncertainty of patient arrivals,
and the uncertainty in surgery times. When there are not enough hours of work on the waiting
list to fill the OR schedule the prespecified amount, The hospital has a stockout. The OR
utilization and the service level can be determined by the UMC Utrecht depending on their own
goals. Choosing a higher OR utilization or necessary service level leads to a higher necessary

15

safety stock level, but fewer stockouts compared to choosing a lower OR utilization and service
level.

To calculate the necessary safety stock for the KNO department at the UMC Utrecht,
techniques that evaluate the waiting list will be adapted to evaluate whether a certain amount
of work on the waiting list is enough to achieve a prespecified service level. The modelling
techniques that have been used to evaluate the waiting list are from (Dellaert et al., 2016), who
use a Markov model to evaluate the waiting list, and (Oliveira et al., 2022), who use discrete
event simulation to evaluate waiting time, although they were not able to validate their model.
Both these techniques will be explored in the solution design. The other techniques mentioned
focus on something other than waiting list lengths, and will not be used in the solution design.

16

System description
The system description describes the system that the real world problem resides in. Where the
real world is unknown, assumptions are made. First the objective of the model is given, to give
context on the scope of the description of the problem situation (Robinson & Macmillan, 2014).
The system description describes the situation that the Markov model and the discrete event
simulation are based on, and answers research questions 3 and 4:

3. What are the main patient characteristics?
c. What are the statistical patient arrivals?
d. What are the statistical surgery durations?

4. Wat strategy is used to plan patients in OR blocks at the KNO department at the
UMC Utrecht?

Modelling objectives
The modelling objectives help inform the content of the model. This chapter focuses on the
scope of the model, with the aim to clarify the breadth of the system that is to be modelled.

Specific objective

Determine the minimum amount of surgery time necessary on the waiting list at the KNO
department at UMC Utrecht to achieve a prespecified service level for any OR utilization level
for the MSS of May2024.

General objectives

General project objectives:

• The model should be as simple as possible
• The model should be as user friendly as possible
• The model should be as adaptable as possible, so the model might be used for

different surgical departments than KNO at UMC Utrecht, or different surgical
departments at different hospitals.

Model inputs and outputs

The inputs are the experimental factors that we use to achieve the modelling objectives.
(Robinson & Macmillan, 2014). These factors are:

• A distribution for patient arrival rates.
• A distribution for patient surgery durations.
• A distribution for patient urgency types.
• The MSS.
• A desired utility level.
• A desired service level.

The outputs of the model are the statistics that show whether the modelling objectives were
met (Robinson & Macmillan, 2014). The outputs for this model are:

• The service level, the percentage of days that the utilization threshold is reached.

17

• The operating room utilization, the percentage of OR time that is used.
• The percentage of patients that were operated on before their deadline.
• The necessary safety stock to achieve the service level objective.

Problem situation
The problem situation outlines the aspects of the real world that are of interest in the model
design. The problem situation is used to make decisions on the scope and level of detail of the
conceptual model.

The KNO (ear, nose, and throat) department at UMC Utrecht has the longest waiting list for
surgery at the hospital. People get added to the waiting list when they are scheduled for surgery
by their doctor, and they get removed from the waiting list when they are planned in for surgery.
If they need to receive surgery again, or need to be planned again, they are added to the waiting
list again.

The patients get scheduled for surgery by the KNO admissions coordinator. The admissions
coordinator is in charge of scheduling patients for surgery during the OR time the KNO
department has been given in the MSS. The OR time given to the KNO department can change
monthly from the tactical planning process, where the hospital tries to balance all the available
OR time in the hospital with the needs for every surgical department. The given OR time can
also change every year because of the strategic planning process, where the hospital
recalibrates their plans, priorities, and budgets.

When a patient has been scheduled, they get a label in the planning software indicating that
they have been scheduled. After their surgery, patients are removed from the waiting list and
leave the system. If the patient is in need of surgery again, they are added to the waiting list
again.

Planning strategy

When scheduling patients, the admissions coordinator has to balance many interests. These
include:

• The patients interests, making sure that the patient is available during their surgery (not
on holiday for example), and that the patient receives surgery on time.

• The doctors interests, making sure that the patient is scheduled on a day when their
doctor is also scheduled to perform surgery.

• The OR’s interests. They prefer to finish with a shorter surgery, so it can be cancelled
when they are risking overtime.

• The organizations interests: making sure that the OR capacity is utilized adequately.
• Other interests: When an anaesthetist is assigned to multiple operating rooms, the

surgery can only start when the anaesthetist has done their job. This means that if 2
surgeries start at the same time, one surgery might have to wait until the anaesthetist is
finished with the first patient to get to the second, which delays surgery time.

The admissions officer usually gets the MSS at least 6 weeks ahead, so their planning horizon is
at least 6 weeks. The expected surgery time and the patients urgency are given by the patient’s

18

doctor. This means that a more experienced surgeon might give a lower expected surgery time
for a routine surgery than a less experienced surgeon.

When selecting patients to schedule, the admissions coordinator works with a FIFO (first in first
out) approach. Patients who have been waiting the longest get planning priority. The exception
to this rule is that patients with a higher urgency label get priority first, and patients with a lower
urgency label get priority second. During office hours, the admissions coordinator keeps
constant watch over the waiting list, and tries to schedule patients as soon as they enter the
waiting list.

When scheduling patients far before their date of surgery, the admissions officer has to keep
some space in the schedule in case semi- urgent patients with a high urgency show up. In the
case that someone with high urgency arrives on the waiting list, and there is no space for them
in the schedule, the admissions coordinator might replan a patient with a lower urgency from
the schedule to make room for this high urgency patient. In general, everything is provisional,
and semi-urgent cases can always take your place. If a patients place is taken, the admissions
officer does not place them in the back of the waiting list, but tries to plan them in as fast as
possible, because the patient might have waited in the waiting room for the OR the entire day.

When the waiting list gets long, as is the case with the KNO department, the admissions
scheduler has to make a decision for how many patients with a lower urgency (over 3 months) to
schedule, and how much room to leave open for patients with a higher urgency (under 3
months). This decision is left up to the admissions coordinator.

If there are not enough patients on the waiting list to fill up the given OR time, the KNO
department tries to shop for surgeries at divisions with similar specialties. For KNO this is only
the ‘kaak’ (Maxillofacial) department. Different divisions cannot make effective use of the KNO’s
OR time, because their requirements in surgical equipment or surgical staff might be different.
In general, giving back unused OR time to the OR division is difficult, because no division can
get their staff ready to use the operating room within a short timeframe.

The goal for the admissions coordinator is to fill up all the given surgery time with surgeries,
while keeping the interests of all the parties in mind, and keeping the patients waiting time as
short as possible. There is no simple ‘best’ approach for admissions planning at UMC Utrecht. It
is a skill and an art, that you get better at over time. Admissions planning is difficult at UMC
Utrecht, because it is a tertiary hospital. This means that every incoming patient has different
complexities and needs that must be taken into account, and the variety in surgery durations
and surgery types is high.

Assumptions

• It is assumed that the arrival of patients is a memoryless process. This means that
patients arrive to the waiting list independent of each other.

• It is assumed that the surgery time that was planned in by the doctor is the amount of
time the surgery actually took.

• It is assumed that there are always the necessary OR personnel available during the
given OR hours.

19

• It is assumed that OR-time allocated to the KNO department cannot be shared with
other specialties.

Because there is no given method of admission’s planning, it is assumed for the conceptual
model that any planning strategy that either improves OR utilization, the percentage of patients
planned within their deadline, or both of these factors, when compared to not using this
strategy, is a valid planning strategy to add to the conceptual model. The goal for the finished
model is to get these KPI’s as high as possible, because the assumption is that an actual
admissions coordinator can always plan better than a computer model that makes
assumptions and simplifications.

Data
The data is obtained from the KNO department at UMC Utrecht. Where there was no available
data, the best guess of the KNO admissions officer is used.

Patient type distribution

Within the given data there is no distinction between different patient types. The KNO
admissions officer’s best guess is that the patient distribution is: 0% semi-urgent, 25% deadline
within 3 months, 75% deadline over 3 months. In the simulation, 25% of patients will be
assumed to have a normal urgency, and 75% of patients will be assumed to be ‘not urgent’.

Patient interarrival times

Within the given data there is no indication when patients arrive to the system. Only when they
leave. It is assumed that The patients that left the system arrived independent from each other.
The dataset contains all the departures from surgery from the KNO department at UMC Utrecht
starting in 2023. We only look at data starting in 2023, because before 2023 the KNO
department had a different schedule, because of the covid pandemic. The average interarrival
time to the KNO department at the UMC Utrecht since the start of 2023 has been 11:06:40. We
use this average as the mean interarrival time in a Poisson distribution.

Surgery times

Surgery times are usually assumed to be lognormally distributed (Marques & Captivo, 2017),
therefore, the data for realized surgeries at the KNO department is used to find a fitting
lognormal distribution. The dataset contains the realized surgery times from the KNO
department at UMC Utrecht since the start of 2019. Surgery times shorter than 30 minutes and
longer than 240 minutes are removed from the dataset, because the data seems mostly faulty.
There are over 20 surgeries that claim to have taken over 1500 minutes, for example. Figure 5
Shows the best fitting normal distribution for the natural log of the data’s realized surgery times.
Both with 30 and 58 bins, we are not able to reject the null hypothesis using the chi squared
test. However, because literature suggests that surgery times are lognormally distributed, and
cannot find a probability function that fits the data better, this statistical distribution is used in
the model. The best fit with 30 bins is chosen, because using 58 bins (the square root of the
number of data points) gives peaks in the data from bins having an inconsistent size. Using 30
bins eliminates this problem: the data is between 30 and 240 minutes, meaning that every bin
has a size of 7. The excel solver is used to find a mean and standard deviation that fit the dataset
the best. This distribution is used as input for the Markov model. The simulation model

20

generates a sample surgery duration from the lognormal distribution associated with this
normal distribution. If the surgery duration is not between 30 and 240 minutes, the sample is
regenerated. If the surgery duration is between these values the sample is accepted. We do this
because it fits the data we have more accurately. We do not do this for the Markov model
because we cannot write this into mathematical form.

Figure 5 The best fitting distribution to the surgery time data.

MSS

The MSS for June 2024 for the KNO department at UMC Utrecht is used as an input for the
schedule for the model. The OR is assumed to be opened between 8:00:00 and 16:00:00.

21

Markov model
The mathematical model evaluates the MSS by modelling the waiting list as a Markov chain.
Once the Markov chain has reached a steady state, the expected OR utility is calculated. This
method is introduced by (Dellaert et al., 2016), and practically explained by (van der Sande,
2023). This section expands on the established theory by adding uncertainty of surgery lengths
into the model, which greatly improves the model’s practical usability.

Notation

Parameters

𝐴 Safety stock level that is being tested.

𝑆 Service level to be achieved.

𝑇 Length of the master surgery schedule (MSS),
in days.

𝑍𝑡 The amount of time the OR is open on day t.

Variables

𝑡 Day index, integers in the range [0,∞ >.

𝑦 The number of patients arriving on a day.
Integers in the range [0,∞ >

𝑌(𝑦, 𝑡) The probability of 𝑦 patients arriving on day 𝑡.
A large y has an incremental smaller
probability.

𝑞𝑡
BP, 𝑞𝑡AP The number of patients in the queue before

and after planning on day t, respectively.
BP stands for Before Planning
AP stands for After Planning
Both 𝑞𝑡BP and 𝑞𝑡AP are integers in the range
[0, 𝐴].

𝑄𝑡
BP(𝑞𝑡

BP), 𝑄𝑡AP(𝑞𝑡AP).

The probability that the number of patients in
the queue before and after planning on day 𝑡
equals 𝑞𝑡BP and 𝑞𝑡AP, respectively.

𝑥 The number of surgeries that can be
performed on a day. This is an integer in the
range [0,∞ >.

𝑋(𝑥, 𝑞𝑡
𝐵𝑃) The probability of having enough time to

perform exactly 𝑥 surgeries, given that there
were 𝑞𝑡𝐵𝑃people on the waiting list before
planning, and 𝑥 = 𝑞𝑡𝐵𝑃 − 𝑞𝑡𝐴𝑃.

𝑈(𝑡)

𝜀

Expected OR utilization on day t.

The difference between the average expected
waiting list length for some MSS cycle 𝑒, and
the average expected waiting list length for
MSS cycle 𝑒 − 1

22

Queue length calculation
The number of patients that are in the queue after planning on day 𝑡 equals the number of
people in the queue before planning, minus the number of people that can be planned:

𝑞𝑡
AP = 𝑞𝑡

𝐵𝑃 −𝑚𝑖𝑛(𝑥, 𝑞𝑡
𝐵𝑃)

The number of patients on the waiting list before the surgery session on day 𝑡 is the number of
people on the waiting list after planning the day before, plus the number of new arrivals:

𝑞𝑡
BP = 𝑞𝑡−1

𝐴𝑃 +𝑚𝑖𝑛(𝑦, 𝐴 − 𝑞𝑡−1
𝐴𝑃)

The number of surgeries
The number of surgeries that can be performed in a day depends on the amount of time 𝑧𝑡 the
OR is open, and the length of the surgeries. Because the length of the surgeries is stochastic
there exists some probability that on day t there is enough time to perform 𝑥 surgeries.

The probability that there is enough time to perform at least 𝑥 surgeries during the given OR time
𝑍𝑡 is the probability that the sum of the surgery times of 𝑥 people exceeds 𝑍𝑡.
Because patient surgery times can best be described by a lognormal distribution(Marques et
al., 2019), we can rewrite the surgery time distribution to a normal distribution to make use of
the normal distributions additive property. The probability that there is enough time to perform
at least 𝑥 surgeries then becomes:

𝑃 (𝑋 > 𝑙𝑛 (
𝑍𝑡
𝑥
)) , where 𝑋 ∼ Normal (𝜇, 𝜎)

with 𝜇 being the mean of the natural log of the surgery time distribution, and 𝜎 being the standard

deviation of the natural log of the surgery time distribution.

Let 𝑋(𝑥, 𝑞𝑡
𝐵𝑃) be the probability of having enough time to perform exactly 𝑥 surgeries, when 𝑥 =

 𝑞𝑡
𝐵𝑃 − 𝑞𝑡

𝐴𝑃 . This probability is dependent on 𝑞𝑡
𝐵𝑃 because there are 5 cases:

1. If 𝑞𝑡
𝐵𝑃 > 𝑥, 𝑎𝑛𝑑 𝑥 > 0: 𝑋(𝑥, 𝑞𝑡

𝐵𝑃) is the probability that we have enough time to perform at

least 𝑥 surgeries, minus the probability that we have enough time to perform at least 𝑥 + 1

surgeries:

𝑋(𝑥, 𝑞𝑡
𝐵𝑃) = 𝑃 (𝑋 > 𝑙𝑛 (

𝑍𝑡
𝑥
)) − 𝑃 (𝑋 > 𝑙𝑛 (

𝑍𝑡
𝑥 + 1

)) , where 𝑋 ∼ Normal (𝜇, 𝜎)

2. If 𝑞𝑡
𝐵𝑃 > 𝑥, 𝑎𝑛𝑑 𝑥 = 0: 𝑋(𝑥, 𝑞𝑡

𝐵𝑃) is the probability that we have enough time to perform at

least 0 surgeries, minus the probability that we have enough time to perform at least 1

surgery:

𝑋(𝑥, 𝑞𝑡
𝐵𝑃) = 1 − 𝑃(𝑋 > 𝑙𝑛(𝑍𝑡)), where 𝑋 ∼ Normal (𝜇, 𝜎)

3. If 𝑞𝑡
𝐵𝑃 = 𝑥, 𝑎𝑛𝑑 𝑥 > 0: It is impossible to perform more than 𝑞𝑡

𝐵𝑃 surgeries, so 𝑋(𝑥, 𝑞𝑡
𝐵𝑃) is

the probability that we have enough time to perform at least 𝑥 surgeries:

𝑋(𝑥, 𝑞𝑡
𝐵𝑃) = 𝑃 (𝑋 > 𝑙𝑛 (

𝑍𝑡
𝑥
)) , where 𝑋 ∼ Normal (𝜇, 𝜎)

4. If 𝑞𝑡
𝐵𝑃 = 𝑥, 𝑎𝑛𝑑 𝑥 = 0: It is impossible to fill up your OR time when there is nobody on the

waiting list:
𝑋(𝑥, 𝑞𝑡

𝐵𝑃) = 0

23

5. If 𝑞𝑡
𝐵𝑃 < 𝑥: It is impossible to perform surgery on more people than there exist on the

waiting list:

𝑋(𝑥, 𝑞𝑡
𝐵𝑃) = 0

Calculating the steady state

If we want to calculate 𝑄𝑡𝐵𝑃(𝑞𝑡𝐵𝑃), note that for each integer 𝑘 in the interval [0, 𝑞𝑡𝐵𝑃],
𝑄𝑡−1
𝐴𝑃 (𝑘) and 𝑌(𝑞𝑡𝐵𝑃 − 𝑘, 𝑡) contribute to the probability of having 𝑞𝑡𝐵𝑃 with probability 𝑄𝑡−1𝐴𝑃 (𝑘) ∙

 𝑌(𝑞𝑡𝐵𝑃 − 𝑘, 𝑡), hence:

 𝑄𝑡𝐵𝑃(𝑞𝑡𝐵𝑃) = ∑ 𝑄𝑡−1
𝐴𝑃 (𝑘) ∙ 𝑌(𝑞𝑡

𝐵𝑃 − 𝑘, 𝑡)
𝑞𝑡
𝐵𝑃

𝑘=0 .

However, because 𝑦 has no upper bound and 𝑞𝑡𝐵𝑃 has upper bound 𝐴, we have to consider the
case 𝑞𝑡𝐵𝑃 = 𝐴 separate: In this case all 𝑦 > 𝐴 − 𝑞𝑡−1𝐴𝑃 contributes to 𝑄𝑡𝐵𝑃(𝐴), 𝑠𝑜 the 𝑌(𝑞𝑡𝐵𝑃 −
𝑘, 𝑡) factor is not only 𝑌(𝐴 − 𝑘, 𝑡) with 𝑦 = 𝐴 − 𝑘 but with ∑ 𝑌(𝑦, 𝑡)∞

𝑦=𝐴−𝑘 .

In conclusion:

𝑄𝑡
𝐵𝑃(𝑞𝑡

𝐵𝑃) =

{

∑𝑄𝑡−1

𝐴𝑃 (𝑘) ∙ 𝑌(𝑞𝑡
𝐵𝑃 − 𝑘, 𝑡),

𝑞𝑡
𝐵𝑃

𝑘=0

 𝑤ℎ𝑒𝑛 0 ≤ 𝑞𝑡
𝐵𝑃 < 𝐴

∑𝑄𝑡−1
𝐴𝑃 (𝑘) ∙ ∑ 𝑌(𝑦, 𝑡)

∞

𝑦=𝐴−𝑘

,

𝑞𝑡
𝐵𝑃

𝑘=0

 𝑤ℎ𝑒𝑛 𝑞𝑡
𝐵𝑃 = 𝐴

0, 𝑤ℎ𝑒𝑛 𝑞𝑡
𝐵𝑃 > 𝐴

Similar to this derivation, 𝑄𝑡𝐴𝑃(𝑞𝑡𝐴𝑃) can be expressed as follows:

𝑄𝑡
𝐴𝑃(𝑞𝑡

𝐴𝑃) =

{

∑ 𝑄𝑡

𝐵𝑃(𝑞𝑡
𝐴𝑃 + 𝑘)

𝐴−𝑞𝑡
𝐴𝑃

𝑘=0

∗ X(𝑘, 𝑞𝑡
𝐴𝑃 + 𝑘), 𝑤ℎ𝑒𝑛 0 < 𝑞𝑡

𝐴𝑃 ≤ 𝐴

∑𝑄𝑡
𝐵𝑃(𝑘) ∙ ∑𝑋(𝑥, 𝑘)

∞

𝑥=𝑘

𝐴

𝑘=0

, 𝑤ℎ𝑒𝑛 𝑞𝑡
𝐴𝑃 = 0

0, 𝑤ℎ𝑒𝑛 𝑞𝑡
𝐴𝑃 > 𝐴

We use the power method (Bolch, 1998) until the values of 𝑄𝑡BP(𝑞𝑡BP) and 𝑄𝑡AP(𝑞𝑡AP) reach their
steady state. Obtaining the steady state probabilities allows for the calculation of the expected
OR utilization.

Utilization
The utilization 𝑈(𝑡) is the probability that there are enough people on the waiting list to service
all the surgery time. It is therefore also 1 – the probability that there are not enough people on
the waiting list before planning to utilize all the given OR time. This is given by the formula:

24

𝑈(𝑡) = 1 − ∑

{

𝑄𝑡
𝐵𝑃(𝑞𝑡

𝐵𝑃), 𝑤ℎ𝑒𝑛 𝑞𝑡
𝐵𝑃 = 0

𝑄𝑡
𝐵𝑃(𝑞𝑡

𝐵𝑃) ∙ ∑ 𝑋(𝑥, 𝑞𝑡
𝐵𝑃)

∞

𝑙=𝑞𝑡
𝐵𝑃+1

, 𝑤ℎ𝑒𝑛 0 < 𝑞𝑡
𝐵𝑃 ≤ 𝐴

𝐴

𝑞𝑡
𝐵𝑃=0

Tool
The tool is made in a macro-enabled Excel document. The VBA code can be found in Appendix
3: VBA code. This chapter explains how the safety stock level is calculated, what is used as an
input in the tool, and what the tool shows as an output. Figure 6 shows a screenshot of the
dashboard for illustration.

Figure 6 A screenshot from the Markov chain tool, showing the dashboard.

Determining the safety stock level

We let 𝜀 be the difference between the average expected waiting list length for some MSS cycle
𝑒, and the average expected waiting list length for MSS cycle 𝑒 − 1 . If 𝜀 is smaller than our
desired input value, we assume that the steady state has be reached. If 𝜀 is not smaller than the
desired input value, the steady state has not yet been reached and we calculate the transitions
in the Markov chain for another MSS cycle (𝑇 days), after which we evaluate 𝜀 again. This is the
Power method, as described by (Bolch, 1998).

We let 𝑆 be the necessary service level we want to achieve. To calculate the necessary safety
stock we test whether, after reaching a steady state, 𝑈(𝑡) ≥ 𝑆 for the entire MSS cycle
(𝑇 𝑑𝑎𝑦𝑠), given safety stock 𝐴. If this is true, 𝐴 is a sufficient safety stock level, if this is not true,
we try again with 𝐴 = 𝐴 + 𝐼, where 𝐼 is an index for how much we increase the safety stock level
after not reaching the service level with safety stock level 𝐴. If an appropriate safety stock level
is found within the given run time, the tool returns this safety stock level with additional
information on waiting list lengths and waiting time. Figure 6 shows what the input and output
data look like in the computer model. Note that the safety stock level that the tool recommends
is a number of people on the waiting list. If you want to how many hours of buffer stock you
need, the safety stock level should be multiplied by the average surgery time.

25

Input

The input data is the data from the surgery department that is being tested. This includes
surgery days, a patient arrival rate, and a surgery time distribution. The input parameters can be
chosen by whoever is evaluating their surgical department. These parameters have an impact
on the service level the tool is testing, the time it takes to get a steady state with the power
method, and the safety stock levels that are being tested. These parameters have a large impact
in the run time for an experiment.

Output

The output data shows the safety stock level that was found to be sufficient, and the amount of
warmup cycles it took to get the calculation. Additional graphs are also given to give context on
the average waiting list length and patient waiting time.

26

Simulation model
The simulation model chapter shows the process of creating the discrete event simulation
model, following the steps as recommended by (Robinson & Macmillan, 2014). Figure 7 shows
the artefacts of conceptual modelling. This chapter covers the conceptual model, model
design, and the computer model. The system description has already been given in a previous
chapter.

Figure 7 The artefacts of conceptual modeling (Robinson, 2011).

The conceptual model
The conceptual model uses the system description as an input for the breadth of the
conceptual model, and clarifies the level of detail the model goes into, and any simplifications
that are made for the sake of simplicity (Robinson & Macmillan, 2014). Choices for the model
scope and level of detail are based on the given modelling objectives, and explained in this
chapter.

Scope
The scope highlights parts of the system description and addresses whether they are included
in the conceptual model or not.

Component Include/exclude Justification
Entities:
Patients Include These are the entities that flow through the model
Activities:
Postoperative care Exclude Has some impact on the planning process in a

practical setting, but this impact is outweighed by the
complexities adding the postoperative care to the
model would bring, because the impact on the
planning process is difficult to measure.

diagnostics Exclude Simplification: patients arrive not through a

27

diagnostic process, but through poisson arrivals
based on past arrival data.

planning Include Experimental factor, required for the patients to flow
through the model

Surgery Include Including surgery makes the model easier to read for
outsiders and thus improves ease of use.

Queues:
Waiting before
planning

Include Required for safety stock level calculations

Waiting after planning Include Required when patients need to be replanned
Waiting on surgery
day

Exclude This has no impact on experimental factors

Resources:
Surgeons Exclude Collecting data on what surgeons are linked to what

surgery is too time consuming, and the impact of
surgeon specific factors is expected to be small

Admissions planner Exclude The planning is included, the planner themself is not
Other OR personnel Exclude Assumption: There are always enough OR personnel

available during given OR hours.
Nursing staff Exclude Postoperative and preoperative care are not being

modeled.
OR schedule Include This is the schedule that the planner uses to

schedule patients, and is therefore essential to
achieve the modeling objectives.

Level of detail
The level of detail highlights details of components that are included in the conceptual model
and addresses whether they are included in the conceptual model or not. If there are details
that are not addressed in this chapter, they can be assumed to be excluded in the conceptual
model.

Component Detail Include/exclude Justification
Patients Quantity: 1 entity

represents 1 patient
Include Necessary to achieve the modeling

objectives
 Arrival pattern:

patients are referred
by a doctor

exclude Simplification: patients arrive
according to a poisson distribution
based on realized patient arrival
data.

 Different types of
patients

Include Simplification: Patients are assumed
to be part of one of three groups:
Semi-urgent, normal, and not urgent.
Each of these groups has a different
surgery deadline. Patients are
divided into each group based on
expected arrival rates to the KNO
department. Patient types are
pooled by deadline instead of e.g.
illness because it is the main
overarching patient characteristic

28

that can be extrapolated from the
data.

 Attributes: surgery
time

include Simplification:
Patients are given an expected
surgery time based on a lognormal
distribution based on realized
surgery times.

 Attributes: urgency
level

include Simplification: Patients are given a
specific deadline based on expected
patient urgency distribution

Planning Patient availability Exclude Assumption: There is no data for
patient availability. Patients are
expected to be available for surgery
whenever they are scheduled

 Doctor’s availability Exclude Connecting data for surgeries to
doctors is too time consuming. It is
added as a feature in the model
design, but this feature is turned off.

 OR interests Exclude The complexity and modeling time
this adds to the model does not
weigh with the accuracy it would add
to the model

 Organization’s
interests

Include Making adequate use of the OR
capacity is the specific objective of
this model.

 Other interests exclude The complexity and modeling time
this adds to the model does not
weigh with the accuracy it would add
to the model

 Planning horizon Include Simplification: The planning horizon
is assumed to always be 6 weeks
ahead.

 Discipline: first in first
out with priority
exceptions

Include Simplification: Patients are planned
based on their deadline. A faster
deadline means higher priority. This
balances patient arrival times being
scheduled based on FIFO principles,
and higher urgency (faster deadlines)
getting priority. This ensures that
patients are planned within their
deadline, which is a high priority in
the planning process.

 Operating hours: Include Simplification: The model attempts
to plan all patients on the waiting list
at 9:00:00 every day, and attempts to
plan patients that arrive to the
waiting list if they arrive between
9:00:00 and 17:00:00.

 Leaving space for
semi-urgent patients

Include This is an experimental factor, called
‘LeaveUrgentSlotsOpenPercent’

 Among of low urgency Include This is an experimental factor, called

29

patients to plan ‘LeaveSlotsOpenPercent’
 Shopping at other

divisions to fill OR
time

Exclude Including this adds unnecessary
complexity to the model and defeats
the purpose of achieving the
modeling objectives

 Specific planning
strategy

Include A specific planning strategy is
necessary to maximize the model
outputs, but does not formally exist
at UMC Utrecht. It is elaborated on in
the planning process paragraph.

 Making space in the
OR for semi-urgent
patients

Include Replanning patients to make space
for semi-urgent patients has great
impact on the model outputs, adds
model accuracy, and helps the
model plan in patients that it might
have not been able to, which can
clog the model and reduce accuracy.

Surgery Operating time Include The activity ‘surgery’ only exists to
show patients existing in the
operating room, which helps in
model validation and model
explanation. Therefore, only the
operating time is included in the
conceptual model. Any other details
like the doctor being in the room or
surgery specific tasks being
completed are excluded.

Waiting
before
planning

Capacity: safety
stock level

Include Experimental factor.

Waiting
after
planning

Capacity: unlimited Include No limit to the number of people that
can be waiting for their surgery after
they were planned.

OR
Schedule

Level of detail: slot
size: 5 minutes

Exclude Simplification: To balance model
running time and level of detail, The
OR schedule is split in 15 minute
timeslots that can be given to
patients.

 Schedule: follows the
MSS every month

Exclude Simplification: Because the model
objective is to test the necessary
safety stock of one MSS cycle, the
OR schedule repeats one given MSS
cycle every month.

Planning process
The model includes a planning process, but there is no given protocol for admissions planning
at UMC Utrecht. This chapter proposes different planning strategies, and the planning strategy
that fits the problem the best is chosen as the preferred planning strategy for the model.

Although there are general principle and ideas for an admissions planner to follow, there is no
specific and protocolized planning protocol to follow, especially for what timeslot a patient

30

should be planned into. It is reasonable to assume that an (experienced) admissions planner is
always better at planning surgeries in a way that all stakeholders interests are met, than a
computer model that makes assumptions and simplifications. Under this assumption, we can
argue that a model is closer to reality, and therefore better, if the output values that the model
achieves are higher. Note that this assumption and argument only relates to the planning
strategy used by the admissions planner.

Choosing what patient to plan

Instead of simply planning FIFO, We plan based on deadline. This is the same as FIFO, but
patients with higher urgency are automatically put higher to the waiting list.

Additionally, patients can change urgency levels, based on the time until their expiration date.
This means that even when semi-urgent patients don’t arrive to the system, they can turn into
semi-urgent patients when they exist in the system for long enough. Patients change urgency
levels depending on how close to their deadline they are. This does not have a big impact on the
planning process, as patients are mainly planned based on FIFO principles, but when the
strategies of planning patients with an urgent deadline are different from the planning strategies
of patients with a non-urgent deadline, the planning process can be different.

Order of importance when choosing a surgery day

When a patient is chosen to be planned in for surgery, the model looks for suitable timeslots to
perform surgery in for the next 30 days. Every timeslot has an associated quality, and a
spreadquality. The quality indicates how well the surgery fits in the schedule. The spreadquality
indicates how well spread out over the complete planning horizon the planning would be if the
suggested timeslot is chosen. The suggested timeslots are sorted by quality of fit first,
spreadquality second, and daynumber third. Quality is always sorted in descending order.
Spreadquality and daynumber can be sorted in either ascending or descending order,
depending on the chosen planning strategy.

Finding the best timeslot for a day based on its quality.

Timeslots are given a value based on the quality of the timeslot. The quality is based on the
number of timeslots left over at the start or at the end of the surgery. Because most surgeries
are 90 minutes or more, leaving 6 or more timeslots available before or after a surgery gives the
highest quality. Specific numbers for the quality calculation are given in Figure 30 in Appendix 1:
Logic Flows. Figure 8 Shows how the chosen slot quality calculation impacts how slots are
ranked by the model. If a surgery fits the available OR time perfectly it is given the highest quality
score. If scheduling a surgery leaves 6 or more 15 minute timeslots after surgery, it is given the
second highest quality score. If scheduling a surgery leaves less than 6 15 minute timeslots
after surgery, The quality is higher the more slots are left over. The quality is lowest if there are
less than 6 slots left before and after surgery. The reason why having more slots left over after a
planned surgery gives a higher quality level, is because the chance is higher that another patient
will arrive that can be scheduled in the leftover time when there are more slots left over.

31

Figure 8 Visual explanation for the slot quality calculation.

When planning less than one week ahead, non urgent patients can be planned according to the
LeaveUrgentSlotsOpen benchmark, instead of LeaveSlotsOpen. If this is done, there will be less
space in the schedule for semi-urgent patients, but the amount of space in the schedule for
normal patients will remain the same. This is hypothesized to be useful when a lot of normal
patients are expected to arrive, but not a lot of semi-urgent patients.

LeaveSlotsOpen and LeaveUrgentSlotsOpen

Because there is no information on the amount of space to leave open for urgent patients, and
the amount of space to give to non urgent patients, they are turned into experimental factors
within the conceptual model. Their optimal values are determined in experiments in a later
chapter.

Model design
The model design shows the constructs and logic of the computer model in terms of the
software being used (Fishwick, 1995). This chapter gives a process flow diagram for patients,
Logic flow diagrams for model processes, and this chapter explains the modelled planning
process in detail. Additionally, this chapter goes into the data necessary to run the model.
Figure 9 gives a screenshot of the model, to give a high level illustration for how the flows work
together. Additionally, the logic flows are shown and explained in Appendix 1: Logic Flows, and
the code in all the methods can be found in Appendix 5: plant simulation code.

32

Figure 9. A screenshot of the model.

Process flow
The process flow of patients in the model is highlighted in Figure 10. Patients arrive in the
system, and go to either the waiting before planning queue, or they leave the system if the
queue is at capacity. When a patient is scheduled for surgery they go to the waiting after
planning queue, after which they go to the operating room, followed by leaving the system. One
exception is when a patient gets removed from the schedule to make room for a more urgent
patient, in which case the patient gets removed from the waiting after planning queue and
added to the waiting before planning queue. The process flow can be found in the model in
Figure 9 in the orange box named ‘simulation’.

Figure 10, The process flow for patients in the model.

33

Validity and verification
First, we determine the warmup time, number of replications, and the runtime per replication
using methods recommended by (Robinson & Macmillan, 2014). Then the model is verified and
validated.

Warmup, replications, runtime
Additional information for the warmup time and number of replications calculations can be
found in Appendix 2: Warmup time and number of replications

Warmup

The warmup time for the simulation is calculated according to the marginal standard error rule
(MSER) as described in (Robinson & Macmillan, 2014). Because the number of replications is
expected to be more than 1, the MSER is applied to an average of multiple replications. The
input data used to calculate the warmup time is the data given in the chapter data. The strategic
input choices are given in Figure 11. The chosen number of replications is 20, with a simulation
length of 1000 days per replication. These numbers are chosen to ensure that the warmup time
falls within the replication length, while not letting the computation time get too long.

Figure 11 Screenshot of the input data used in the warmup time calculations.

The output values given in the conceptual model cannot be used in the warmup time
calculations, because their variability is very high. Daily operating room utilization is 0 when the
OR is closed, and 100 when all timeslots are filled. A different output value needs to be decided
on that shows that the model is running without an initialization bias. This value is the daily
average waiting time in the waiting room. When the daily average waiting time in the waiting
rooms becomes stable, it shows that the waiting room contents are not affected by initialization
bias. Every day the average waiting time of all the patients in the waiting rooms is calculated.

Figure 12 shows a table with the outcome of the MSER calculation, showing that the output
value becomes stable after about 300 days. The chosen warmup time is 306 days.

34

Figure 12 Warmup time calculated using the MSER method.

Number of replications

The number of replications for the simulation is calculated using the confidence interval
method as described by (Robinson & Macmillan, 2014). The data used in the calculations is the
same data that was used to calculate the warmup time, with the first 306 days removed, to
account for the initialization bias. The run length for this data is therefore 1000-306 = 694 days.
Figure 13 shows the cumulative mean time in the system, with 95% confidence intervals. The
chosen number of replications is 10, because the figure clearly shows that increasing the
number of replications barely decreases the size of the confidence intervals.

Figure 13 The cumulative mean time in the system with 95% confidence intervals.

Run length

There exists no method to calculate the necessary run length, when the warmup time and
number of replications have already been calculated. A rule of thumb is to make sure that the
run length is at least 10 times the warm up length, to make sure the initialization bias is properly
gone. This is not feasible considering the model’s speed. Figure 13 shows that after 306 days we
can be reasonably confident that the initialization bias is removed. Because the number of
replications was calculated using a run length of 694 days, and the confidence interval after 10
replications is reasonably narrow, this will be the chosen run length.

Verification and validation

Verification in discrete event simulation models is notoriously difficult (Robinson & Macmillan,
2014). To help the reader, every method in the simulation model is outfitted with its function,

35

where it is called from, and when it is called, to improve understandability. The code for all the
methods can also be found in Appendix 5: plant simulation code.

The problem situation was created from conversations with both UMC Utrecht’s KNO
admissions planner, and the UMC Utrecht supervisor. The choices made in the conceptual
model have been looked at and agreed to by the UMC Utrecht supervisor.

The model design is validated by testing certain cases that give predictable outcomes. The
model outcome is compared to the expected outcome. For these cases, certain design choices
might be changed to allow for testing.

Cases:

Case Expected outcome Model outcome
Arrival rate is 0 Utilization = 0

Notontimepercent = 0
Utilization = 0
Notontimepercent = 0

1 person arrives per day at
7:59:59, with an operating
time of 8 hours. The OR is
open for 8 hours every day.
We plan the patient as early
as possible with no ‘slots left
open’ strategy.

Utilization = 100%
Notontimepercent = 0
Waiting list max contents: 1

Utilization = 100%
Notontimepercent = 0
Waiting list max contents: 1

2 persons arrives per day at
7:59:59, with an operating
time of 4 hours. The OR is
open for 8 hours every day.
We plan the patients as early
as possible with no ‘slots left
open’ strategy.

Utilization = 100%
Notontimepercent = 0
Waiting list max contents: 2

Utilization = 100%
Notontimepercent = 0
Waiting list max contents: 2

1 persons arrives per day at
7:59:59, with an operating
time of 4 hours. The OR is
open for 8 hours every day.
We plan the patients as early
as possible with no ‘slots left
open’ strategy.

Utilization = 50%
Notontimepercent = 0
Waiting list max contents: 1

Utilization = 50%
Notontimepercent = 0
Waiting list max contents: 1

1 persons arrives every 3 days
at 7:59:59, with an operating
time of 8 hours. The OR is
open for 8 hours every day.
We plan the patients as early
as possible with no ‘slots left
open’ strategy.

Utilization = 33.33%
Notontimepercent = 0
Waiting list max contents: 1

Utilization = 33.27%
Notontimepercent = 0
Waiting list max contents: 1

Explanation: because the
number of simulation days is
not divisible by 3 the utilization
is not exactly one third.

36

Experiments
First the planning strategy that gives the best results is chosen. The Boolean strategy inputs will
be chosen by running experiments with 4 cases. After that, the GAWizard tool built into plant
simulation is used to find the best values for the variable inputs, given the best performing
planning strategy.

With the chosen inputs, a sensitivity analysis will be given for the patient spread and the safety
stock level, showing the impact these have on the output of the model.

Finally, different cases will be entered into the model.

Strategy
Spreading patients evenly or unevenly, and planning early or late

Patients, depending on their urgency level, can be planned either as early or as late as possible,
as long as the patient is planned within both the patient’s deadline, and the planning horizon. It
can also be decided to spread patients either as evenly or as unevenly as possible over all the
days. Planning patients evenly means that the model tries to fill all days equally, while planning
patients unevenly leads to the model first filling up an entire day before moving on to the next. It
is assumed that planning semi-urgent patients as early as possible is always preferred. Spread
quality also does not matter for semi-urgent patients. In total there are 16 different planning
strategies. Figure 14 shows the strategies and the related input values for all 16 experiments.

Figure 14 The input values for all 16 experiments.

37

Figure 15 Shows the impact that the 16 available planning strategies have on the output
variables, when given 5 cases. All 16 ∙ 5 = 80 experiments use the same random number
seeds. The cases have the same given safety stock level of 50, but use a different planning
strategy, based on different values of leaveslotsopenpercent and leaveurgentslotsopenpercent.
This shows how the binary decisions behave when given different planning strategies. The 5
cases are:

Leaveslotsopenpercent leaveurgentslotsopenpercent
20 0
50 0
20 20
50 20
25 0

The results of all 80 individual experiments is shown in Appendix 4: binary strategy results.

Figure 15 The sum of the results of 16 different planning strategies tested for 5 different cases, with their associated
input data. The colours in the columns are formatted so that the highest number is the most saturated, and the lowest
number is the least saturated.

Experiment 4 scores the best when looking at the average level of the KPI outputs, and will be
used for the variable inputs and the sensitivity analysis.

38

Variable inputs
The optimal values for leaveslotsopenpercent and leaveurgentslotsopenpercent are found by
using the GAWizard built into Tecnomatix Plant Simulation. The optimization parameter is the
service level. The chosen generation size is 5, and the chosen number of generations is 20, with
10 observations per individual per generation. These values are chosen because it keeps the
running time of the optimization within reasonable bounds. The running time of the optimization
ended up being 7:23:18. The optimal values for leaveslotsopenpercent and
leaveurgentslotsopenpercent is 20 and 0 respectively. Figure 16 Shows the input values and a
part of the report in Plant Simulation. The evolution of the fitness value graph shows that the
optimal solution did not change after generation 6, so we assume that the solution that was
found is optimal.

Figure 16 A screenshot of the input values of the genetic algorithm and a screenshot of part of the
auto generated report.

39

Sensitivity analysis
A sensitivity analysis for 3 input variables is given. The non-variable input values are the ones
determined in the previous chapter. No sensitivity analysis for the utility threshold is given,
because the utility threshold has no impact on the planning process, only on the evaluation of
the planning process. Because each experiment uses the same seed values, the utility is the
same for each day in each experiment and the graph is flat.

Leaveslotsopenpercent

Figure 17 The chosen input data for all 4 variables, and their associated outcomes.

Figure 18 Graphs showing the relationship between LeaveSlotsOpenPercent and each KPI.

Figure 17 shows the input values chosen for the sensitivity analysis of leaveslotsopenpercent,
and their associated output values. Figure 18 shows the relationship between
leaveslotsopenpercent and each output value graphically. The figure shows that between a
leaveslotsopenpercent value of 15 and 40 the service level remains relatively stable. As
leaveslotsopenpercent increases over 40 and decreases under 15, the service level starts
slowly dropping. After it increases over 60 the service level dives to 0, with a small bump when
reaching 100. The utility also continuously dips at the same time, without the small bump. The
small bump in the service level can be explained by the model only scheduling urgent patients
at a leaveslotsopenpercent level of 100, while there were still some non urgent patients being

40

planned before. This means that the overall number of patients operated on is lower, but the
number of days when the OR was opened and it was filled completely was relatively higher,
given that the patient arrivals for both experiments were the same.
Figure 18 shows that using a leaveslotsopenpercent values of at least 15 is necessary to plan all
the patients on time. It is also clear that using a leaveslotsopenpercent value of over 60 has
detrimental effects on the service level.

Leaveurgentslotsopenpercent

Figure 19 The chosen inputdata for all 4 variables, and their associated outcomes.

Figure 20 Graphs showing the relationship between LeaveUrgentSlotsOpenPercent and each KPI.

Figure 20 shows that using a leaveurgentslotsopenpercent values of over 75 has detrimental
effects on the service level. There is also a slight bump in the service level when
leaveurgentslotsopenpercent is at 100, which can be explained in the same way as the bump
for leaveslotsopenpercent. Note that the utilization and service level are low, because a
leaveslotsopenpercent value of 100 has to be chosen to perform this sensitivity analysis,

41

because leaveurgentslotsopenpercent can not be higher than leaveslotsopenpercent, and we
want to analyze the entire range of leaveurgentslotsopenpercent.

SSlevel

Figure 21 The chosen inputdata for all 4 variables, and their associated outcomes.

Figure 22 Graphs showing the relationship between the safety stock level and each KPI.

Figure 22 shows that using a safety stock level lower than 10 hours affects the KPI’s negatively,
but any safety stock level over 10 hours does not improve the KPI levels in any significant way.
This means that having at least 10 hours of surgeries on the waiting list is enough to plan every
patient on time, and ensure the OR is always occupied. Increasing the safety stock level beyond
10 hours has no impact on the KPI’s, because the amount of hours on the waiting list never
exceeds 10 hours.

42

Case: KNO department at UMC Utrecht
To determine the necessary safety stock level at the KNO department at UMC Utrecht, the data
for patient arrivals, surgery duration, and the MSS are entered into the simulation, and the
Markov model.

Simulation
Because the data for the KNO department was used to perform the sensitivity analysis, there is
no reason to perform these experiments again. The results from the sensitivity analysis are
used.

Markov
The data for the KNO department will be entered into the Markov model to analyse the
relationship between the desired service level and the necessary safety stock level. The chosen
epsilon level is 0.000001. Note that the tool gives the safety stock level as a number of patients,
and not the amount of hours of surgeries. Figure 23 shows the relationship between the desired
service level and the safety stock level. The safety stock level is expressed in hours by
multiplying the number of people required by the average surgery time. The graph shows that as
the desired service level approaches 100%, the necessary safety stock increases exponentially.

Figure 23 The necessary safety stock level to achieve some desired service level.

43

Discussion

Data
There are multiple flaws in the data that must be discussed. First, the patient arrival rate. The
data used to calculate the arrival rate is the KNO department’s departure rate. The number of
patient departures was divided by the number of weekdays since the start date in the data set.
From this we devised an average number of patients arriving per weekday. In reality, patients
arrive on the waiting list when their doctor decides that they require surgery. This means that the
patient arrival rate is 0 when the doctors are not diagnosing patients, but doing something else,
like performing surgery for example. This detail cannot be captured by using data from the
patient departures.

Second, the patient departure rate. The Markov model uses a lognormal distribution to
calculate the probability of there being enough time to perform some number of surgeries. This
lognormal distribution has range [0,∞ >. In reality however, the probability of there being
enough time to perform e.g. 50 surgeries in one day is 0, because this simply is not realistic.
Although this probability is low in the lognormal distribution, it is not 0. However, the probability
of having enough time to perform a large number of surgeries is low enough that the difference
between the lognormal distribution and reality is insignificant. This does mean that for any
safety stock level the associated service level is at least the service level given by the tool, but
the service level could also be higher.

Third, the patient deadline distribution. There is no available data to make a probability
distribution for the length of a patient’s deadline, so we had to use the admission’s planner’s
best guess. We cannot prove any confidence for how accurate this guess is.

Markov
The tool is 𝛺(𝑁3) in Big O notation. This is because the number of calculations performed per
day goes up exponentially when the safety stock level that we test goes up, and the necessary
warm up length goes up too. There are features built into the tool to reduce runtime and stop an
experiment when the runtime gets too long, but the mathematical model would need to be
changed fundamentally if we want to solve this problem. This means that the model runs fine
when testing lower safety stock levels, but testing a safety stock level of 80 already requires over
a minute. When using the tool however, often a safety stock level below 80 will be enough to
achieve the desired service level.

Simulation
Admissions planning at UMC Utrecht does not follow a strict protocol, because the admissions
planner has to juggle many interests from surgeons, patients, other OR staff etc. These interests
are not expressed in data. There is no data for a patient’s availability for surgery for example. It is
also difficult to verify what parts of the planning process were modelled accurately, and what
parts were not. This makes it difficult to turn admissions planning into a simulation model
whose resulting KPI’s can be trusted to reflect reality. That is the case for this simulation model.
In this case the result from the simulation model is 90% lower than the result from the Markov

44

model, while it is not clear where that difference comes from. This stems from how difficult it is
to verify and validate the simulation model, especially considering how abstract the current
planning process at the UMC Utrecht is. We cannot verify that the planning process in the
model reliably mimics the planning process followed by the admissions planners. Because of
these reliability issues we cannot use the simulation model to recommend a safety stock level.

This does not mean that the simulation model is useless. The simulation model reflects reality
to a level where it can give insight into what planning strategy would probably work the best for a
prespecified patient mix. Even though the KPI levels resulting from the simulation cannot be
trusted to be accurate enough to reflect reality, we can see if and how much different planning
strategies change the KPI levels. Although we cannot say that the KPI levels from some strategy
in the simulation can be expected in reality, we can expect that if we test multiple strategies for
admissions planning in the simulation, the one that results in the highest KPI levels will likely
also work the best in reality.

Future research
A safety stock level alone is not enough to make an informed decision on whether changing an
OR schedule is a good decision. Another important factor is the waiting list’s growth factor. If a
waiting list is smaller than its recommended safety stock level, but the waiting list is growing,
changing the schedule might not be a smart idea, because the waiting list can be expected to
grow larger than the safety stock level. On the other hand, changing the OR schedule might be a
smart decision when the waiting list is larger than the safety stock level, but the waiting list is
actively shrinking. Future research could explore how the growth of a waiting list and its safety
stock levels are connected, to be able to make recommendations for when an OR schedule
should be changed. The expected shrinkage or growth of a waiting list can be calculated
mathematically by adapting the Markov tool created in this research. A screenshot for this tool
and its accompanying code are given in Appendix 6: Expected shrinkage and growth tool.

Conclusion
First we will answer research questions 5, 6, and 7. After these are answered the answer to the
main research question is given.

5. What models work best to estimate the necessary safety stock levels for surgical
departments?

While at first both discrete event simulation and a Markov model seem promising, the amount
of data required to make a reliable discrete event simulation is almost impossible in practice. In
addition, verification and validation for the simulation model is difficult. A discrete event
simulation is not a feasible method to calculate the necessary safety stock level for a surgical
specialty, at least when the simulation mimics an admissions planner.
A Markov model is a feasible method to calculate the safety stock level for surgical
departments, given that there is reliable data for patient arrivals and surgery durations. In larger
systems the necessary computation time might get too long, but this is unlikely.

45

6. What is the relationship between OR performance and safety stock levels?

We can conclude that there is an exponential relationship between OR performance and safety
stock level, as shown by the Markov model. This is to be expected, as the relationship between
safety stock and service level is usually exponential (Hung & Chang, 1999). The exact values for
this relationship depend on the patient arrival rate, the surgery length distribution, and the MSS,
and are therefore different for every surgical specialty. The relationship between OR
performance and safety stock levels for the KNO department at UMC Utrecht is shown in Figure
23.

7. What are the practical insights gained from these models?

From the simulation model we have found that it is almost impossible to model the admissions
planning process in a way that can be verified and validated. We can also hypothesize that an
effective way to approach the planning process is to plan all the patients as early as possible,
while focusing on completely filling one OR day before starting to plan patients into the next.
From the Markov model we can find a suggested safety stock level using a method that is easily
verifiable.

The research main research question is:

What is the necessary safety stock in hours of work for the KNO department at UMC Utrecht to
ensure a prespecified OR utilization using the MSS for June 2024?

We recommend the KNO department at UMC Utrecht to keep at least 104 hours of surgeries on
the waiting list, because this ensures that we can expect at least 99% of the given OR time to be
utilized. Keeping the safety stock higher has diminishing effects, and lowering the safety stock
will cause the expected utilization to drop off quickly. For different OR utilizations the necessary
safety stock level is given in Figure 23.

Recommendation
The UMC Utrecht is recommended to use the Markov tool to evaluate the necessary safety
stock levels for all the surgical departments, so the safety stock levels can be used to inform
decisions that need to be made when planning the MSS dynamically in the future. Additionally,
when different MSSs are proposed, it is recommended to see whether the current waiting list
length is above the recommended safety stock length as given by the Markov model. This allows
the admissions planners to see if they can expect to fill their given OR hours with the new MSS.
If the admissions planners want to see if their waiting list is large enough to achieve enough OR
utilization for the current MSS, without regard for the next MSS, they are recommended to use
the tool from Appendix 6: Expected shrinkage and growth tool.

The UMC Utrecht is recommended to improve the admissions planning for the KNO department
by following the planning strategy discussed in the conclusion, if they do not expect it to be a
problem for patients to be informed about their surgery date only one week in advance.

The UMC Utrecht is recommended to use the Simulation model if they want to know whether a
change in admissions planning strategy will actually lead to improvement for any department.

46

Bibliography
Abedini, A., Li, W., & Ye, H. (2017). An Optimization Model for Operating Room Scheduling to

Reduce Blocking Across the Perioperative Process. Procedia Manufacturing, 10, 60–70.
https://doi.org/10.1016/J.PROMFG.2017.07.022

Adan, I., Bekkers, J., Dellaert, N., Vissers, J., & Yu, X. (2009). Patient mix optimisation and
stochastic resource requirements : a case study in cardiothoracic surgery planning. Health
Care Management Science, 12(2), 129–141. https://doi.org/10.1007/S10729-008-9080-9

Bolch, G. (1998). Enhanced Reader.

Bovim, T. R., Christiansen, M., Gullhav, A. N., Range, T. M., & Hellemo, L. (2020). Stochastic
master surgery scheduling. European Journal of Operational Research, 285(2), 695–711.
https://doi.org/10.1016/j.ejor.2020.02.001

Britt, J. (2016). Stochastic Goal Programming and a Metaheuristic for Scheduling of Operating
Rooms.

Dellaert, N., Cayiroglu, E., & Jeunet, J. (2016). Assessing and controlling the impact of hospital
capacity planning on the waiting time. International Journal of Production Research, 54(8),
2203–2214. https://doi.org/10.1080/00207543.2015.1051668

Dicicco-Bloom, B., & Crabtree, B. F. (2006). The qualitative research interview. Medical
Education, 40, 314–321. https://doi.org/10.1111/j.1365-2929.2006.02418.x

Fishwick. (1995). 1995_0029.

Hans, E. W., Van Houdenhoven, M., & Hulshof, P. J. H. (2012). A framework for healthcare
planning and control. International Series in Operations Research and Management
Science, 168, 303–320. https://doi.org/10.1007/978-1-4614-1734-7_12/FIGURES/2

Heerkens, H., & Van Winden, A. (n.d.). Solving Managerial Problems Systematically 1 e edition.

Hung, Y. F., & Chang, C. Bin. (1999). Determining safety stocks for production planning in
uncertain manufacturing. International Journal of Production Economics, 58(2), 199–208.
https://doi.org/10.1016/S0925-5273(98)00124-8

Ingegneria Gestionale, D., Pulido Martínez, R., García Sánchez, Á., & Brun, A. (n.d.). In
cooperation with Politecnico di Milano Analysing the complexity of the model-based
decision making processes within the industrial management context.

King, W. R., & He, J. (2005). Understanding the Role and Methods of Meta-Analysis in IS
Research. Communications of the Association for Information Systems, 16, 665–686.
https://doi.org/10.17705/1CAIS.01632

Kumar, A., Costa, A. M., Fackrell, M., & Taylor, P. G. (2018). A sequential stochastic mixed integer
programming model for tactical master surgery scheduling. EUROPEAN JOURNAL OF
OPERATIONAL RESEARCH, 270(2), 734–746. https://doi.org/10.1016/j.ejor.2018.04.007

47

Marques, I., & Captivo, M. E. (2017). Different stakeholders’ perspectives for a surgical case
assignment problem: Deterministic and robust approaches. European Journal of
Operational Research, 261, 260–278. https://doi.org/10.1016/j.ejor.2017.01.036

Marques, I., Captivo, M. E., & Barros, N. (2019). Optimizing the master surgery schedule in a
private hospital. Operations Research for Health Care, 20, 11–24.
https://doi.org/10.1016/j.orhc.2018.11.002

Marrin, C. A. S., Johnson, L. C., Beggs, V. L., & Batalden, P. B. (1997). Clinical Process Cost
Analysis.

Monk, E., & Wagner, B. (2008). Concepts in Enterprise Resource Planning.

Oecd. (2017). Tackling Wasteful Spending on Health.

Oliveira, M., & Marques, I. (2021). Facing Dynamic Demand for Surgeries in a Portuguese Case
Study. Springer Proceedings in Mathematics and Statistics, 374, 79–94.
https://doi.org/10.1007/978-3-030-85476-8_7

Oliveira, M., Visintin, F., Santos, D., & Marques, I. (2022). Flexible master surgery scheduling:
combining optimization and simulation in a rolling horizon approach. Flexible Services and
Manufacturing Journal, 34(4), 824–858. https://doi.org/10.1007/S10696-021-09422-
X/FIGURES/7

Razali, M. K. M., Rahman, A. H. A., Ayob, M., Jarmin, R., Qamar, F., & Kendall, G. (2022).
Research Trends in the Optimization of the Master Surgery Scheduling Problem. IEEE
Access. https://doi.org/10.1109/ACCESS.2022.3202546

Robinson, S. (2011). Choosing the right model: Conceptual modeling for simulation.
Proceedings - Winter Simulation Conference, 1423–1435.
https://doi.org/10.1109/WSC.2011.6147862

Robinson, S., & Macmillan, P. (2014). The Practice of Model Development and Use Second
edition.

van der Sande, L. (2023). Solving the Master Surgery Scheduling Problem to improve waiting list
management at the cardiothoracic surgery department of the MUMC+.

Zhu, S., Fan, W., Yang, S., Pei, J., & Pardalos, P. M. (2019). Operating room planning and surgical
case scheduling: a review of literature. Journal of Combinatorial Optimization, 37(3), 757–
805. https://doi.org/10.1007/S10878-018-0322-6/TABLES/5

48

Appendix 1: Logic Flows
The logic flows illustrate decisions made and actions performed by the model to move patients
around. Every logic flow given in this chapter refers to an entity in the blocks ‘methods’ or
‘functions’ in Figure 9. Blue blocks in the logic flow figures are references to different logic flows.

Figure 24 Logic flow 'MovePatient'

Figure 24 Describes the logic flow ‘MovePatient’. MovePatient is triggered whenever a patient
enters the system. It gives the patient their attribute values. Then it moves the patient to the
waiting list if there is space. Otherwise the patient leaves the system. If the patient arrives within
office hours, it immediately tries to plan the patient using PlanPatient (Figure 26).

Figure 25 Logic flow 'PlanPatientCaller'

Figure 25 describes the logic flow PlanPatientCaller. It is triggered every day at 9:00:00, and tries
to plan every patient in the waiting before planning queue using ‘PlanPatient’ (Figure 26).

49

Figure 26 Logic flow PlanPatient

Figure 26 describes the logic flow PlanPatient. It is triggered whenever a patient needs to be
planned in. Planpatient determines the patient’s urgency based on the time until their deadline
expires, and plans them in based on the suitable timeslots found by the method
‘FindBestSlotsFor30Days’. PlanPatient returns true or false based on whether the planning was
successful. If the patient is semi-urgent and the planning was not successful, planpatient starts
the urgent kicking/planning process (Figure 27) to find a suitable person on the schedule to
replace.

Figure 27 Logic flow urgent kicking/planning process from planpatient

Figure 27 describes the urgent kicking/planning process from planpatient. The process looks at
every scheduled patient to check if they were scheduled in the necessary timeframe, and if their
own deadline is further away than the patient we are trying to swap in. It also checks if the
patient occupies enough OR timeslots to be able to be rescheduled. After that the process
chooses the patient whose swap leaves the least unoccupied timeslots first, and who has the
furthest away deadline second.

Figure 28 Logic flow FindBestSlotFor30Days

50

Figure 28 describes the process to find the best slot for 30 days. The process looks at multiple
days using the FindBestSlotforDay process (Figure 29).
The days it looks at depend on a patients urgency level. For a semi-urgent patient the process
looks from 1 day ahead to the patients deadline, unless the patient’s deadline has already
expired. Then it looks from 1 to 5 days ahead. For a normal patient the process looks from 1 day
to 30 days ahead. For a non urgent patient the process looks from 5 days to 30 days ahead.
The way the patients are planned also depends on their urgency level. All the possible slots are
collected and sorted by quality first, spread quality second, and surgery day third. ‘Quality’ is
elaborated on in ‘FindBestSlotforDay’ (Figure 29) and ‘spread quality’ is elaborated on in ‘spread
quality’ (Figure 35) The direction these patients are sorted in is based on a patients urgency
level.
A semi-urgent patient is planned in the spot with the highest quality first, with the worst spread
second, on the earliest day third.
A normal patient is planned in the spot with the highest quality first, with the worst spread
second, on the earliest day third.
A non urgent patient is planned in the spot with the highest quality first, with the best spread
second, on the latest day third.
Planning semi-urgent and normal patients on during times where they cause the worst spread
leaves large holes in the planning that can be used for patients with a high urgency and a high
surgery time. This method of planning gives the best resulting output variables that we could
find.

Figure 29 Logic flow FindBestSlotforDay

Figure 29 describes the logic flow for FindBestSlotforDay. When given a day and a patient, it
checks whether the OR is open that day using ‘isdayopen’ (Figure 32) and if it is too busy to
schedule this patient using ‘IsItBusy’ (Figure 34). Then it calculates the quality of the spread
that would result if we planned the patient on this day using ‘SpreadQuality’ (Figure 35). After
that the start- and end times for the OR that day are calculated using ‘StartTime’ and ‘EndTime’
(Figure 33). The process loops from the starttime to the endtime and checks whether each slot
is available using ‘IsSlotAvailable’ (Figure 31). If the slot is available it checks whether we have
enough future slots available to schedule our patient using ‘NextUnavailableSlot’. If this comes
back true, FindBestSlotForDay calculates the quality of the timeslot (Figure 30). After looping
through every timeslot the timeslot with the highest quality is returned.

51

Figure 30 The part of FindBestSlotforDay's logic flow that calculates a slot’s quality

Figure 30 Describes how a slot’s quality is calculated. The quality of every slot is given a value
based on how many slots are left open before and after a proposed surgery is scheduled. If a
surgery fits perfectly, its value is put very high.

Figure 31 Logic flow IsSlotAvailable

Figure 31 describes logic flow IsSlotAvailable. This process checks if there is OR time available
on this day, and returns true or false.

Figure 32 Logic flow IsDayOpen

Figure 32 describes logic flow IsDayOpen. This process checks if there was OR time given on
this day, and returns true or false.

52

Figure 33 Logic flows StartTime and EndTime

Figure 33 describes logic flows StartTime and EndTime. These logic flows look at what the
opening and closing times are for the OR on a given day that the OR is open.

Figure 34 Logic flows for IsitBusy, based on a patients urgency.

Figure 34 describes the logic flows for IsitBusy. These processes check whether it is too busy to
plan a patient based on their urgency, and the experimental factors LeaveSlotsOpenPercent
and LeaveUrgentSlotsOpenPercent. It is never too busy to plan a semi-urgent patient.

53

It is too busy to plan a normal patient if planning the normal patient means we exceed the
percentage of urgent slots that we are supposed to leave open.
It is too busy to plan a non urgent patient one week in advance if planning the patient means we
exceed the percentage of urgent slots that we are supposed to leave open, and it is too busy to
plan a non urgent patient up to 6 weeks in advance if planning the patient means we exceed the
percentage of non urgent slots that we are supposed to leave open.

Figure 35 Logic flow for SpreadQuality

Figure 35 describes the logic flow for SpreadQuality. The spreadquality calculates the quality of
the spread when planning normal or non urgent patients. SpreadQuality does not matter when
planning semi-urgent patients. SpreadQuality calculates the difference in quality between the
patient spread before and after we hypothetically plan in a patient on a day. The quality is
calculated for the next 30 days by adding the difference between the benchmark utilization and
the actual utilization squared for every day. SpreadQuality returns the quality of planning a
patient on a given day.

54

Figure 36 Logic flows for Initday and LeaveOr

Figure 36 Describes the part of logic flows InitDay and LeaveOr that calculate the output
variables SlotsUtility and NotOnTimePercent. SlotsUtility is calculated by adding the total
available slots yesterday to the total, and adding the total number of unused slots yesterday to
the total. The total slot utilization is 100- the percentage of the total number of unused slots.

The NotontimePercent is calculated whenever someone leaves the operating room. It checks
whether the person that was just operated on was operated on on time. NotontimePercent is
the percentage of people who were operated on too late.

Appendix 2: Warmup time and number of replications

Figure 37 A small sample of the calculations done to calculate the warmup time

55

Figure 38 A small sample of the input data for the warmup calculations

The warmup time is calculated using the tool provided in (Robinson & Macmillan, 2014). Figure
37 and Figure 38 fhow some of the inputdata and calculations made in the tool. Figure 27 shows
the calculations done to determine the number of replications.

Figure 39 Calculations for the number of replications

Appendix 3: VBA code
Option Explicit

56

'global variables - input

 Dim L As Double

 Dim UtilityThreshold As Double

 Dim NrOfdays As Integer

 Dim RunLength As Single

 Dim mean As Double

 Dim stdev As Double

 Dim ORtime As Double

 Dim index As Integer

 Dim epsilon As Double

'global variables - useful during calculation

 Dim listlength As Integer

 Dim AP() As Double

 Dim BP() As Double

Sub ToolExecute()

Dim CurrentServiceLevel As Double

Dim i As Integer

Dim j As Integer

Dim d As Integer

Dim safetystock As Integer

Dim nextRow As Long

Dim WeightedAverage As Double

Dim total As Double

Dim probability As Double

Dim percentile As Integer

Dim startTime, elapsedTime As Single

Dim WasanswerFound As Boolean

With ThisWorkbook.Sheets("Dashboard")

 .Range("L2:M" & .Rows.Count).ClearContents

End With

With ThisWorkbook.Sheets("CalculationData")

 .Range("A2:P" & .Rows.Count).ClearContents

End With

With ThisWorkbook.Sheets("dashboard")

 UtilityThreshold = .Cells(13, "B").value

 L = .Cells(5, "B").value

 NrOfdays = .Cells(6, "B").value

 RunLength = .Cells(14, "B").value

 mean = .Cells(7, "B").value

 stdev = .Cells(8, "B").value

 ORtime = .Cells(9, "B").value

 safetystock = .Cells(15, "B").value - .Cells(16, "B").value

 index = .Cells(16, "B").value

 epsilon = .Cells(17, "B").value

 .Range("G5").ClearContents

 .Range("G8").ClearContents

57

 .Range("G9").ClearContents

End With

CurrentServiceLevel = 0

startTime = Timer

WasanswerFound = True

Do While CurrentServiceLevel < 1

 elapsedTime = Timer - startTime

 'If elapsed time is greater than allowed, exit the loop

 If elapsedTime > RunLength Then

 WasanswerFound = False

 Exit Do

 End If

 safetystock = safetystock + index

 CurrentServiceLevel = MarkovChains(safetystock)

 With ThisWorkbook.Sheets("dashboard")

 nextRow = .Cells(.Rows.Count, "L").End(xlUp).Row + 1

 .Cells(nextRow, "L").value = safetystock

 .Cells(nextRow, "M").value = CurrentServiceLevel

 If CurrentServiceLevel = 1 Then

 .Cells(5, "G").value = safetystock

 End If

 End With

Loop

With ThisWorkbook.Sheets("dashboard")

 .Cells(9, "G").value = WasanswerFound

End With

For d = 1 To NrOfdays

 WeightedAverage = 0

 probability = 100

 For i = 0 To listlength

 WeightedAverage = WeightedAverage + (i * BP(d, i))

 If MSS(d) = True Then

 probability = probability - 100 * (BP(d, i) *

utilityprobability(i))

 End If

 Next i

 With ThisWorkbook.Sheets("CalculationData")

 ' Find the next empty row in column A

 nextRow = .Cells(.Rows.Count, "A").End(xlUp).Row + 1

 ' Paste values into columAP A and B in the next empty row

 .Cells(nextRow, "A").value = d

 .Cells(nextRow, "B").value = WeightedAverage

 .Cells(nextRow, "C").value = probability

 .Cells(nextRow, "D").value = WeightedAverage / L

 End With

Next d

58

With ThisWorkbook.Sheets("CalculationData")

 For i = 0 To listlength

 .Cells(i + 2, "F").value = i

 .Cells(i + 2, "G").value = BP(NrOfdays, i) 'add the chances

that there are i people on the waitlist at the end just for extra

information

 Next i

End With

 ' Turn all the values in the array to 0 to be safe

 For i = 0 To NrOfdays

 For j = 0 To listlength

 AP(i, j) = 0

 BP(i, j) = 0

 Next j

 Next i

' Update the chart sizes

 Dim lastRow As Long

 Dim startRow As Long

 Dim rangeAddress1 As String

 Dim rangeAddress2 As String

 Dim rangeAddress3 As String

 ' Calculate the last row for the first range

 lastRow = NrOfdays + 1

 rangeAddress1 = "A2:B" & lastRow

 ' Update Chart 1

 With ActiveSheet.ChartObjects("Chart 4")

 .Activate

 Application.CutCopyMode = False

 ActiveChart.SetSourceData

Source:=Sheets("CalculationData").Range(rangeAddress1)

 ActiveChart.FullSeriesCollection(1).IsFiltered = True

 ActiveChart.FullSeriesCollection(2).IsFiltered = False

 End With

 ' Calculate the address for the second range

 startRow = 1

 rangeAddress2 = "A" & startRow & ":A" & lastRow & ",C" &

startRow & ":C" & lastRow

 ' Update Chart 2

 With ActiveSheet.ChartObjects("Chart 5")

 .Activate

 Application.CutCopyMode = False

 ActiveChart.SetSourceData

Source:=Sheets("CalculationData").Range(rangeAddress2)

 End With

 ' Calculate the address for the third range

59

 rangeAddress3 = "A" & startRow & ":A" & lastRow & ",D" &

startRow & ":D" & lastRow

 With ActiveSheet.ChartObjects("Chart 6")

 .Activate

 Application.CutCopyMode = False

 ActiveChart.SetSourceData

Source:=Sheets("CalculationData").Range(rangeAddress3)

 End With

End Sub

Function MarkovChains(safetystock As Integer) As Double

 Dim i As Integer

 Dim j As Integer

 Dim d As Integer

 Dim Servicelevel As Double

 Dim totalservicelevel As Integer

 Dim WeightedAverageNew, WeightedAverageOld As Double

 Dim Convergence As Double

 Dim loopnr As Integer

 ' Initialize the variables with some values (if needed)

 listlength = safetystock

 WeightedAverageOld = 0

 loopnr = 0

 Convergence = epsilon + 1

 ReDim AP(0 To NrOfdays, 0 To listlength)

 ReDim BP(0 To NrOfdays, 0 To listlength)

 Do While Convergence > epsilon

 ' Turn all the values in the array to 0 to be safe

 If loopnr = 0 Then

 For i = 0 To NrOfdays

 For j = 0 To listlength

 If i = 0 And j = 0 Then 'at the start, the chance of

no people on the waitlist is 1

 AP(i, j) = 1

 BP(i, j) = 0

 Else

 AP(i, j) = 0 'the rest is just cleaning up the

array for safety

 BP(i, j) = 0

 End If

 Next j

 Next i

 Else

 For i = 0 To NrOfdays

 For j = 0 To listlength

 If i = 0 Then 'at the start, the probability after

planning on day 0 is the

60

 AP(i, j) = AP(NrOfdays, j)

 BP(i, j) = 0

 Else

 AP(i, j) = 0 'the rest is just cleaning up the

array for safety

 BP(i, j) = 0

 End If

 Next j

 Next i

 End If

 For d = 1 To NrOfdays

 'add the chances of i people existing on the waiting list

before planning. Based on the chance that i-j people arrive, given

the probability of yesterdays waiting list length being i

 For i = 0 To listlength

 If i <> listlength Then

 For j = 0 To i

 BP(d, i) = BP(d, i) + AP(d - 1, j) *

WorksheetFunction.Poisson_Dist((i - j), L, False)

 Next j

 Else

 For j = 0 To i

 BP(d, i) = BP(d, i) + AP(d - 1, j) *

CumProbability((i - j), L)

 Next j

 End If

 Next i

 'add the chances of people existing after planning, based on

whether the OR is open today

 If MSS(d) = True Then

 For i = 0 To listlength

 For j = 0 To listlength - i

 'the probability that there are i people after

planning, is the probability that there were i+j people before

planning* the probability that j-i people were planned

 AP(d, i) = AP(d, i) + BP(d, i + j) *

NrOfSurgeries(j, i)

 Next j

 Next i

 Else

 For i = 0 To listlength

 AP(d, i) = BP(d, i)

 Next i

 End If

61

 Next d

 WeightedAverageNew = 0

 For i = 0 To listlength

 WeightedAverageNew = WeightedAverageNew + (i * BP(1,

i))

 Next i

 Convergence = WeightedAverageNew - WeightedAverageOld

 WeightedAverageOld = WeightedAverageNew

 With ThisWorkbook.Sheets("Dashboard")

 .Cells(8, "G").value = loopnr

 End With

 loopnr = loopnr + 1

 Loop

 totalservicelevel = 0

 For d = 1 To NrOfdays

 Servicelevel = 100

 If MSS(d) = True Then

 For i = 0 To listlength

 Servicelevel = Servicelevel - 100 * (BP(d, i) *

utilityprobability(i)) 'the probability that our expected lost

utilization is not below our service level

 Next i

 If Servicelevel > UtilityThreshold Then

 totalservicelevel = totalservicelevel + 1

 End If

 Else

 totalservicelevel = totalservicelevel + 1

 End If

 Next d

 MarkovChains = totalservicelevel / NrOfdays

End Function

Function MSS(day As Integer) As Boolean

 Select Case day

 Case 1, 2, 8, 12, 13, 14, 18, 20

 MSS = True

 Case Else

 MSS = False

 End Select

62

End Function

Function CumProbability(x As Integer, L As Double) As Double

If x = 0 Then

 CumProbability = 1

Else

 CumProbability = 1 - WorksheetFunction.Poisson_Dist(x - 1,

L, True)

End If

End Function

Function NrOfSurgeries(vectorsize As Integer, state As Integer) As

Double

'The NrOFSurgeries is the probability that the amount of OR minutes

on the waiting list is enough to perform vectorsize surgeries

'The Nrofsurgeries is thus the probability of at least vectorsize

surgeries - the probability of at least vectorsize+1 surgeries

Dim probability As Double

If state = 0 Then

 If vectorsize = 0 Then

 probability = 1

 Else

 probability =

WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime /

vectorsize), mean, stdev, True)

 End If

ElseIf state = listlength Then

 probability = 1 -

WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime /

(vectorsize + 1)), mean, stdev, True)

Else

 If vectorsize = 0 Then

 probability = 1 -

WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime /

(vectorsize + 1)), mean, stdev, True)

 Else

 probability = 1 -

WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime /

(vectorsize + 1)), mean, stdev, True) - (1 -

WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime /

vectorsize), mean, stdev, True))

 End If

End If

NrOfSurgeries = probability

End Function

Function utilityprobability(state As Integer) As Double

63

'the utilityprobability is the probability that the amount of OR

minutes is at least the ORtime, given the number of people on the

waiting list(state)

'the utilityprobability is the probability that with state number of

surgeries, we still dont have enough ORtime to fill the entire

schedule

'the utilityprobability is therefore the probability that state

surgeries take less than the ortime.

'the probability that x surgeries take less than the ortime is the

probability that one surgery takes less than ln(ortime/x)

'if our state number of surgeries is 0, the probability of not

having enough ORtime is 1

Dim LNOR As Double

If state = 0 Then

 utilityprobability = 1

Else

 LNOR = WorksheetFunction.Ln(ORtime / state)

 utilityprobability = WorksheetFunction.Norm_Dist(LNOR, mean,

stdev, True)

End If

End Function

Appendix 4: binary strategy results

Appendix 5: plant simulation code
-- .Models.Model.MovePatient

-- Function: gives the patient their attribute values. Moves the

patient to the waiting list if there is space. Otherwise the patient

leaves the system.

-- called by: whenever a patient arrives to the system

-- author: Lucas van Haandel

-- date: 2-07-2024

@.arrivaltime := eventController.simTime

var urgencynumber:real := z_uniform(38497,0,1)

if urgencynumber >= 0 and urgencynumber <= urgentpercent/100

 @.urgency := 1

64

elseif urgencynumber > urgentpercent/100 and urgencynumber <=

(urgentpercent/100 + normalpercent/100)

 @.urgency := 4

else

 @.urgency := 7

end

@.doctor := ceil(z_uniform(467,0,2))

if @.urgency = 1

 @.deadline:= 5*86400

elseif @.urgency = 2

 @.deadline:= 10*86400

elseif @.urgency = 3

 @.deadline := 20*86400

elseif @.urgency = 4

 @.deadline := 30*86400

else

 @.deadline := @.urgency*15*86400

end

--@.surgerytime:= 60*1*60

@.surgerytime := 240*61

while @.surgerytime > 240*60 or @.surgerytime < 30*60

 @.surgerytime := exp(z_normal(5,4.31,0.649))*60

end

Nrpatients += 1

@.PatientNr := nrpatients

if @.patientnr = 0

 debug

end

var queuelength: integer

var Queuetime: time:= 0

var j: integer

queuelength:= .models.model.waitingbeforePlanning.contentsList.ydim

for j := 1 to queuelength

 queuetime += waitinglist[2,j]

next

if queuetime + @.surgerytime > SSlevel*3600

 @.move(nospace)

else

 Waitinglist.appendrow(@.PatientNr, @.urgency ,@.surgerytime,

@.arrivaltime, @.arrivaltime + @.deadline, @.category)

 waitinglist.sort(4,"up")

 @.move(waitingbeforePlanning)

65

 if @.arrivaltime mod 86400 > 8*3600 and @.arrivaltime mod 86400

<= 16*3600

 planpatient(@)

 end

end

-- .Models.Model.PlanPatientCaller

--function: try to plan every patient on the waiting list.

--called by: called daily by initday

--author: Lucas van Haandel

--date: 2-07-2024

var waspatientplanned: boolean:= false

for var j:= 1 to waitinglist.ydim

 var patient: object

 var Patientnumber : integer

 var patientname: string

 patientnumber := waitinglist[0,j]

 patientname:= ".userobjects.patient:"+ patientnumber

 patient := patientname

 waspatientplanned:= planpatient(patient)

 if waspatientplanned = true

 exitloop

 end

next

if waspatientplanned = true

 planpatientcaller

end

-- .Models.Model.WarmUpCalculator

--called every day by initday to measure the average current dwell

time in the waiting lists.

var totaltimeinsystem: time:= 0

 var waitingbeforedimension: integer :=

.models.model.waitingbeforePlanning.contentslist.ydim

 var patient : object

 var contentlist: table

.models.model.waitingbeforePlanning.contentslist(contentlist)

 for var i := 1 to waitingbeforedimension

 patient := contentlist [1,i]

 totaltimeinsystem+= eventController.simtime -

patient.arrivaltime

66

 next

 contentlist.delete

 var waitingafterdimension: integer :=

.models.model.waitingafterplanning.contentslist.ydim

 .models.model.waitingafterPlanning.contentslist(contentlist)

 for var j := 1 to waitingafterdimension

 patient := contentlist[1,j]

 totaltimeinsystem+= eventController.simtime -

patient.arrivaltime

 next

 var avgtimeinsystem: real

 avgtimeinsystem := (totaltimeinsystem

/(waitingbeforedimension + waitingafterdimension))/86400

 var runNr: integer := experimentManager.CurrRunNo

 averageTimeinSystem[runNr, daynr]:= avgtimeinsystem

-- .Models.Model.PlanPatient

-- Function: plans a patient. Returns true or false based on whether

planning was successful

-- called by: planpatientcaller, movepatient(if the patient arrives

within working hours)

-- author: Lucas van Haandel

-- date: 16-07-2024

param patient: object

-> boolean

var slotsRequired:integer := ceil(patient.surgeryTime /900)

-- Find the most suitable slots for the next 30 days

var patientdeadline:integer:=

ceil((patient.arrivaltime+patient.deadline -

eventController.simtime)/86400)

var patienturgency: integer

if patientdeadline > 30

 patienturgency := 3 -- not urgent

elseif patientdeadline >5 and patientdeadline <= 30

 patienturgency := 2 -- normal

elseif patientdeadline <= 5

 patienturgency := 1

end

findbestslotFor30Days(patient, patienturgency)

if patienturgency = 1

 mostsuitableslots.sort(3,2,"up")

elseif patienturgency = 2

 mostsuitableslots.sort(3,4,2,sortnormal)

elseif patienturgency = 3

 mostsuitableslots.sort(3,4,2,sortnoturgent)

end

67

var ontime:boolean

-- Handle the chosen slot (e.g., update the schedule database, move

the patient from WaitingBeforePlanning to WaitingAfterPlanning)

if mostsuitableslots.ydim /= 0 then

 patient.move(WaitingAfterPlanning)

scheduledPatients.appendRow(patient.patientnr,mostSuitableSlots[1,

1], mostSuitableSlots[2, 1], slotsRequired, patient.deadline,

ontime, patient.arrivaltime)

 var ydim: integer:= scheduledpatients.ydim

 var surgerylength: integer := scheduledPatients[3,ydim]

 var surgerystart, surgerystop, currentvalue: integer

 surgerystart := scheduledPatients[1, ydim]

 surgerystop := scheduledpatients[1,ydim] + surgerylength - 1

 for var i:= surgerystart to surgerystop

 currentvalue :=

availableschedule[scheduledPatients[2,ydim],i]

 availableschedule[scheduledPatients[2,ydim],i] :=

currentvalue - 1

 next

 var i: integer := waitinglist.getrowno(patient.patientnr)

 if patient.arrivaltime + patient.deadline -

((mostsuitableslots[2,1]-1) * 86400) > 0

 ontime := true

 else

 ontime:= false

 end

 waitinglist.cutRow(i)

 var timetoOr: time:=

Scheduledpatients[2,scheduledpatients.ydim]*86400 +

(Scheduledpatients[1,scheduledpatients.ydim]-1)*900 -

eventcontroller.simtime

 &MovetoOR.methcall(timetoOR, patient)

 result:= true

 scheduledpatients[5, scheduledpatients.ydim] := ontime

 --remove the patient from the waiting list

elseif mostSuitableSlots.ydim = 0 and ceil((patient.arrivaltime +

patient.deadline)/86400) - daynr <= 5

68

 mightgetkicked.delete

 var urgentdeadline:integer := ceil((patient.arrivaltime +

patient.deadline)/86400)

 if urgentdeadline <daynr

 urgentdeadline := 4 + daynr

 end

 for var j := 1 to scheduledPatients.ydim

 if ceil((scheduledPatients[4,j]+

scheduledPatients[6,j])/86400)- daynr > 5 and

scheduledpatients[2,j]+1 - daynr >= 0 and scheduledpatients[2,j] <=

urgentdeadline and slotsrequired <= scheduledpatients[3,j]

 var urgentPatientnumber : integer

 var urgentpatientname: string

 var urgentpatientnamename: object

 urgentpatientnumber :=scheduledpatients[0,j]

 urgentpatientname:= ".userobjects.patient:"+

urgentpatientnumber

 urgentpatientnamename:= urgentpatientname

 if urgentpatientnamename /= void

 if urgentpatientnamename.location =

.models.model.waitingafterplanning

mightgetkicked.appendrow(scheduledpatients[0,j],scheduledpatients[4,

j] + urgentpatientnamename.arrivaltime, -1*(scheduledpatients[3,j]-

slotsrequired))

 end

 end

 end

 next

 mightgetkicked.sort(3,2,"down")

 if mightgetkicked.ydim /= 0

 var cutUrgentPatientnumber : integer :=

mightgetkicked[1,1]

 var cutUrgentpatientstring: string :=

".userobjects.patient:"+ cutUrgentpatientnumber

 var cutUrgentpatient: object := cutUrgentpatientstring

 var cutUrgentpatientrowno :=

scheduledpatients.getrowno(cutUrgentpatientnumber)

 --add new person to scheduledpatients

 scheduledpatients.appendrow(patient.patientnr,

Scheduledpatients[1,cutUrgentpatientrowno],Scheduledpatients[2,cutur

gentpatientrowno], slotsRequired, patient.deadline, ontime,

patient.arrivaltime)

69

 var funkyUrgenttimetoOr: time:=

Scheduledpatients[2,scheduledpatients.ydim]*86400 +

(Scheduledpatients[1,scheduledpatients.ydim]-1)*900 -

eventcontroller.simtime

 if patient.arrivaltime + patient.deadline -

((Scheduledpatients[2,cuturgentpatientrowno]-1) * 86400) > 0

 ontime := true

 else

 ontime:= false

 end

 -- add 1's back to the availableschedule if we have

slotsleftover

 var slotsleftover:= mightgetkicked[3,1]*-1

 if slotsleftover /= 0

 if slotsleftover <0

 debug

 end

 for var k:= 1 to slotsleftover

availableschedule[scheduledpatients[2,scheduledpatients.ydim],

scheduledpatients[1,scheduledpatients.ydim] +

scheduledpatients[3,scheduledpatients.ydim]-1+ k]+= 1

 next

 end

 scheduledpatients[5, scheduledpatients.ydim] := ontime

 &MovetoOR.methcall(funkyUrgenttimetoOR, patient)

 scheduledpatients.cutrow(cutUrgentpatientrowno)

waitinglist.cutrow(waitinglist.getrowno(patient.patientnr))

 patient.move(WaitingAfterPlanning)

 cutUrgentpatient.move(waitingbeforeplanning)

 waitinglist.appendRow(cutUrgentpatientnumber ,

cutUrgentpatient.urgency, cutUrgentpatient.surgerytime,

cutUrgentpatient.arrivaltime,

cutUrgentpatient.arrivaltime+cutUrgentpatient.deadline)

 waitinglist.sort(4,"up")

 if daynr > warmup+1 and daynr <= warmup +

simulationlength+1

 replannedpatients += 1

 replannedslotsReturned += slotsleftover

 end

 result:= true

 end

end

70

-- .Models.Model.FindbestSlotforDay

-- Function: finds the best slot for a patient within MSS opening

and closing times for a specific day. Returns the best slotsnumber,

the associated quality, and the quality of the planning spread that

planning the patient in the slot would provide.

-- called by: findbestslotfor30days

-- author: Lucas van Haandel

-- date: 16-07-2024

param patient: object, currentday: integer, endday: integer,

wasitbusy: boolean

-> list[real] -- best slot for that day, integer; the quality of

fit, Real; the quality of spread, real; wasitbusy, boolean

result.create

var isdayopen:boolean:= isdayopen(currentday)

var isittoobusy: boolean

--determine the patients urgency

var patientdeadline:integer:= ceil((

patient.arrivaltime+patient.deadline - eventController.simtime

)/86400)

var patienturgency: integer

var slotsRequired:integer := ceil(patient.surgeryTime /900)

if patientdeadline > 30

 patienturgency := 3 -- not urgent

elseif patientdeadline >5 and patientdeadline <= 30

 patienturgency := 2 -- normal

elseif patientdeadline <= 5

 patienturgency := 1

end

-- the part between this and the next comment exist to improve

performance and reduce the number of times the method isittoobusy is

called. References to wasitbusy in FindbestSlotfor30days or this

method are for the same reason.

-- explanation: if it was too busy to plan a patient on day x-1, it

would also be too busy to plan a patient on day x. Therefore today

'isittoobusy' will be the same as it was yesterday. The variable

wasitbusy exists to pass today's business status to the next

planning day.

-- exceptions: on day 1, we still need to calculate whether it is

too busy. When the benchmark for if it is too busy changes we also

need to recalculate whether it is too busy.

if patienturgency = 3 and currentday = daynr

 isittoobusy := isitbusy(patient, endday, patienturgency,

currentday)

elseif patienturgency = 3 and currentday-daynr = 5

 isittoobusy := isitbusy(patient, endday, patienturgency,

currentday)

elseif patienturgency = 3 and currentday-daynr /= 5 and currentday

/= daynr

71

 isittoobusy:= wasitbusy

elseif patienturgency = 2 and currentday = daynr

 isittoobusy := isitbusy(patient, endday, patienturgency,

currentday)

elseif patienturgency = 2 and currentday /= daynr

 isittoobusy := wasitbusy

elseif patienturgency = 1

 isittoobusy := false

end

-- the results list does not want to pass booleans, so we convert it

to a different datatype. It is converted back in

findbestslotfor30days.

var isittoobusyasreal: real

if isittoobusy = true

 isittoobusyasreal:= 1

elseif isittoobusy = false

 isittoobusyasreal:= 0

end

result[4] := isittoobusyasreal

-- end of the performance improvement part

if isdayopen = true and isittoobusy = false

 result[3] := spreadquality(patienturgency, slotsrequired,

currentday)

 var openingTime:integer := startTime(currentday) -- first cell of

mss where cell /= 0

 var closingTime:integer := EndTime(currentday, openingtime) --

first cell of mss where after the starttime cell = 0

 for var SlotNr := openingtime to closingtime

 var quality: real := 0

 var isavailable: boolean := isslotavailable(slotnr,

currentday) -- see if the slot is available

 if isavailable = true -- if it is available, check if there

are enough slots available

 var nextUnavailable := NextUnavailableSlot(currentday,

SlotNr, closingtime)

 -- Calculate the number of slots until the next

operation, or closing time

 var NumSlotsAvailable:integer := min(nextunavailable -

slotNr, closingtime - slotNr)

 -- Calculate the number of slots required for the

surgery

 -- Check if there are enough slots available until the

72

next slot or closing time

 if numslotsAvailable >= slotsRequired

 var slotsleftafter := numslotsavailable -

slotsrequired

 if slotsleftafter = 1

 quality += 0.1

 elseif slotsleftafter = 2

 quality += 0.3

 elseif slotsleftafter = 3

 quality += 0.7

 elseif slotsleftafter = 4

 quality += 1.5

 elseif slotsleftafter = 5

 quality += 3.1

 else

 quality += 6.3

 end

 var slotsleftbefore: integer

 for var i := 1 to 3

 if isslotavailable(slotNr - i, currentday) =

true

 slotsleftbefore += 1

 end

 next

 if slotsleftbefore = 1

 quality += 0.1

 elseif slotsleftbefore = 2

 quality += 0.3

 elseif slotsleftbefore = 3

 quality += 0.7

 elseif slotsleftbefore = 4

 quality += 1.5

 elseif slotsleftbefore = 5

 quality += 3.1

 else

 quality +=6.3

 end

 --if the slot fits perfectly in the given schedule,

the quality should be the highest it can possibly be. Higher than

keeping some slots before or after.

 if slotsleftbefore = 0 and slotsleftafter = 0

 quality := 9001

 end

 if quality > result[2]

 result[1] := slotNr

 result[2] := quality

 end

 end

 end

73

 next

end

-- .Models.Model.FindbestSlotfor30days

-- Function: looks for the best slots to schedule a patient for the

next 30 days. Fills these slots with associated qualities into the

'mostsuitableSlots' data table.

-- called by: planpatient

-- author: Lucas van Haandel

-- date: 16-07-2024

param patient: object, patienturgency: integer

mostSuitableSlots.delete

var endday:integer

var currentday: integer

var bestSlotandQuality: list

var bestslot: integer

var quality: real

var spreadquality: real

var wasitbusyasreal: real:=0

var wasitbusy:boolean:= false

var patientdeadline:integer:=

ceil((patient.arrivaltime+patient.deadline -

eventController.simtime)/86400)

if patientdeadline < 1

 patientdeadline := 5

end

if patienturgency = 3

 endday:= daynr + 29

for var dayOffset := 0 to 29

 currentDay := daynr + dayOffset

 if dravailability[patient.doctor, (((currentday-1) mod 20)+1)]

= true

 bestslotandquality := findbestslotforday(patient,

currentday, endday, wasitbusy)

 bestslot := bestslotandquality[1]

 quality := bestslotandquality[2]

 spreadquality:= bestslotandquality[3]

 wasitbusyasreal:= bestslotandquality [4]

 if wasitbusyasreal = 1

 wasitbusy:= true

 elseif wasitbusyasreal = 0

74

 wasitbusy:= false

 else

 debug

 end

 if bestSlot /= 0

 mostSuitableSlots.appendrow(bestSlot, currentday,

qualitynoturgent*quality, spreadqualitynoturgent*spreadquality)

 end

 end

next

elseif patienturgency = 2

 endday := daynr + patientdeadline - 1

for var dayOffset := 0 to patientdeadline-1

 currentDay := daynr + dayOffset

 if dravailability[patient.doctor, (((currentday-1) mod 20)+1)]

= true

 bestslotandquality := findbestslotforday(patient,

currentday, endday, wasitbusy)

 bestslot := bestslotandquality[1]

 quality := bestslotandquality[2]

 spreadquality:= bestslotandquality[3]

 wasitbusyasreal:= bestslotandquality [4]

 if wasitbusyasreal = 1

 wasitbusy:= true

 elseif wasitbusyasreal = 0

 wasitbusy:= false

 else

 debug

 end

 if bestSlot /= 0

 mostSuitableSlots.appendrow(bestSlot, currentday,

qualitynormal*quality, spreadqualitynormal*spreadquality)

 end

 end

next

elseif patienturgency = 1

 endday := daynr + patientdeadline - 1

 for var dayOffset := 0 to patientdeadline - 1

 currentDay := daynr + dayOffset

 bestslotandquality := findbestslotforday(patient,

currentday, endday, wasitbusy)

 bestslot := bestslotandquality[1]

 quality := bestslotandquality[2]

 spreadquality:= bestslotandquality[3]

 wasitbusyasreal:= bestslotandquality [4]

 if wasitbusyasreal = 1

 wasitbusy:= true

 elseif wasitbusyasreal = 0

 wasitbusy:= false

 else

75

 debug

 end

 if bestSlot /= 0

 mostSuitableSlots.appendrow(bestSlot, currentday, -

1*quality, spreadquality) --note that the spreadquality is always 0

for semi-urgent patients, because it does not matter.

 end

 next

end

-- .Models.Model.IsitBusy

-- Function: given a patient's urgency, calculates whether it is too

busy to plan a patient on a certain day.

-- called by: findbestslotforday

-- author: Lucas van Haandel

-- date: 16-07-2024

param patient : object, endday: integer, patienturgency:integer,

currentday:integer

-> boolean

var isittoobusy:boolean

--determine the total nr of slots, and the available slots

var totalslots: integer

var availableslots: integer

var startday: integer:= daynr -1

for var i:= startday to endday

 var mssday:= ((i-1) mod 20)+1

 for var j:= 1 to mss.ydim

 totalslots+= MSS[mssday,j]

 availableslots+= availableschedule[i,j]

 next

next

availableslots -= ceil(patient.surgerytime/900)

if totalslots = 0

 result:= true

 return

end

if patienturgency = 3

/* if currentday-daynr<=4

76

 if availableslots/totalslots >=

leaveurgentslotsopenpercent/100

 isittoobusy:= false

 else

 isittoobusy :=true

 end

 else*/

 if availableslots/totalslots >= leaveslotsopenpercent/100

 isittoobusy:= false

 else

 isittoobusy :=true

 end

 --end

elseif patienturgency = 2

 if availableslots/totalslots >= leaveurgentslotsopenpercent/100

 isittoobusy:= false

 else

 isittoobusy :=true

 end

elseif patienturgency = 1

 isittoobusy := false

else

 debug -- it is never too busy to plan a semi-urgent patient, so

this method should not be called for semi-urgent patients

end

result:= isittoobusy

-- .Models.Model.Spreadquality

-- Function: based on the patient's urgency, slots required, and the

current day that we are trying to plan the patient in, calculate how

much the quality of the spread improves if we were to actually plan

the patient on this day.

-- called by: findbestslotforday

-- author: Lucas van Haandel

-- date: 16-07-2024

param patienturgency, surgerylength, operationday: integer

-> real

--var benchmark: real

var oldspread, newspread: real

var slotspreadquality: real

oldspread := 0

newspread := 0

if patienturgency = 1--semi-urgent patients should always be planned

as soon as possible, no point in calculating.

 result:= 0

 return

end

77

var slotsfilled: integer:= 0

var availableslots: integer:= 0

var totalslots: integer:= 0

var mssday:= ((operationday-1) mod 20)+1

for var j:= 1 to mss.ydim

 totalslots+= MSS[mssday,j]

 availableslots+= availableschedule[operationday,j]

next

slotsfilled:= totalslots-availableslots

oldspread := pow((slotsfilled/totalslots)*100, 2)

newspread := pow(((slotsfilled+surgerylength)/totalslots)*100, 2)

slotspreadquality := newspread- oldspread

result:= slotspreadquality -- the lower this number, the more even

the slot spread quality.

return

-- .Models.Model.StartTime

-- Function: checks at what time the operating room opens based on

the MSS

-- called by: findbestslotforday

-- author: Lucas van Haandel

-- date: 2-07-2024

Param Currentday: integer

-> integer

var modexperiment := currentday - 1

var MssDay := ((modexperiment mod 20) +1)

for var i := 1 to MSS.yDim

 if MSS[MssDay, i] /= 0 then

 result := i

 return

 end

next

-- .Models.Model.Endtime

-- Function: checks when the operating room closes, based on the MSS

-- called by: findbestslotforday

-- author: Lucas van Haandel

-- date: 2-07-2024

Param Currentday, starttime: integer

-> integer

 var modexperiment := currentday - 1

78

var MssDay := ((modexperiment mod 20) +1)

if starttime = 0

 result:= 0

 return

end

for var i := starttime to mss.ydim

 if MSS[MssDay, i] = 0 then

 result := i

 return

 end

next

-- .Models.Model.NextUnavailableSlot

-- Function: checks when the next unavailable slot is based on some

current available slot.

-- called by: findbestslotforday

-- author: Lucas van Haandel

-- date: 2-07-2024

Param currentday, currentslot, closingtime: integer

-> integer -- the next unavailable slot after you had some available

slots

var nextslot := currentslot +1

for var i := nextslot to closingtime

 if availableschedule[currentday, i] = 0 and

availableschedule[currentday,i-1] /= 0

 result := i

 return

 end

next

-- .Models.Model.isslotavailable

-- Function: checks if a timeslot is available. returns true or

false.

-- called by: findbestslotforday

-- author: Lucas van Haandel

-- date: 2-07-2024

param slot, daynr: integer

-> boolean

if Availableschedule[daynr, slot] = 0

 result := false

else

 result := true

end

-- .Models.Model.Isdayopen

-- Function: checks if the operating room is opened on a day.

Returns true or false

79

-- called by: findbestslotforday

-- author: Lucas van Haandel

-- date: 2-07-2024

Param Currentday: integer

-> boolean

var modexperiment := currentday - 1

var MssDay := ((modexperiment mod 20) +1)

for var i := 1 to MSS.yDim

 if MSS[MssDay, i] /= 0 then

 result := true

 return

 end

next

result:= false

-- .Models.Model.MovetoOR

-- Function: moves a patient to the operating room.

-- called by: methcall from planpatient

-- author: Lucas van Haandel

-- date: 2-07-2024

param patient: object

if patient /=void and scheduledpatients.getrowno(patient.patientnr)

/= -1

 var patientrowno :=

scheduledpatients.getrowno(patient.patientnr)

 if patient.location = .models.model.waitingafterplanning and

scheduledpatients[2, patientrowno]*86400 +

(scheduledpatients[1,patientrowno]-1)*900 = eventcontroller.simtime

 patient.move(operatingroom)

 &Leaveor.methcall(patient.surgerytime, patient)

 end

end

-- .Models.Model.LeaveOR

-- Function: takes a patient out of the operating room. Updates some

KPI's

-- called by: methcall from movetoOR

-- author: Lucas van Haandel

-- date: 2-07-2024

param patient: object

patient.move(exit)

if daynr > warmup+1 and daynr <= warmup + simulationlength+1

 totaloperated += 1

 if

scheduledpatients[5,scheduledpatients.getrowNo(patient.patientnr)] =

false

 totalnotontime += 1

 end

80

end

-- .Models.Model.Init

-- Function: initialises data tables based on the input data.

calculates the total number of slots available during the

simulation.

-- called by: start of simulation

-- author: Lucas van Haandel

-- date: 2-07-2024

eventController.end := (warmup+simulationlength+1)*86400

noturgentpercent := 100 - urgentpercent-normalPercent

-- Clear the Schedule table before copying new data

availableSchedule.delete

var enddate: integer

enddate:=ceil(eventController.end/86400)+30

daynr += 1

-- Loop through the next 30 days

for var dayNr := 1 to enddate

 var dayIndex := ((dayNr-1) mod 20) + 1 -- Calculate the column

index based on the day, cycling every 20 days

 -- Assuming MSS and Schedule are tables and we need to copy data

from MSS to Schedule

 for var i := 1 to 96 -- Loop through the rows in MSS

 var rowData := MSS[dayIndex, i] -- Get the data from the

specific column in MSS

 availableSchedule[daynr, i]:= rowdata

 if rowdata/= 0

 availableschedule.setbackgroundcolorcolumn(daynr, 3)

 end

/* if daynr <= enddate -30 and daynr > 30

 totalslotsNR += rowdata

 end*/

 next

 if dayindex = 21

 debug

 end

next

-- .Models.Model.initDay

-- Function: calculates some KPI's and calls the planpatientcaller

every day, which tries to plan all the patients.

-- called by: called at 9:00:00 by generator startoftheday

-- author: Lucas van Haandel

-- date: 2-07-2024

81

if eventcontroller.simtime >= 86400

 daynr += 1

end

if daynr > warmup+1 and daynr <= warmup + simulationlength+1

 var unusedslotstoday := 0

 var totalslotstoday := 0

 if totaloperated /= 0

 ontimepercent := (1-(totalnotontime/totaloperated)) *100

 end

 for var i := 1 to 96

 nrofunusedSlots += availableschedule[daynr-1,i]

 unusedslotstoday += availableschedule[daynr-1,i]

 totalslotsNR += MSS[(((daynr-1)-1)mod 20)+1,i]

 totalslotstoday += MSS[(((daynr-1)-1)mod 20)+1,i]

 next

 if totalslotstoday /= 0

 slotsutility := (1-(nrofUnusedSlots/totalSlotsNR))*100

 daysmeasured += 1

 if (1-(unusedslotstoday/totalslotstoday))*100 >=

utilityThreshold

 daysWithGoodService += 1

 end

 end

 if daysmeasured /= 0

 serviceLevel:= (daysWithGoodService/daysmeasured)*100

 end

end

--warmuptimecalculator

 planpatientcaller

-- .Models.Model.Reset

-- Function: resets all necessary variables and data tables

-- called by: reset

-- author: Lucas van Haandel

-- date: 2-07-2024

deletemovables

NrPatients := 0

Waitinglist.delete({0,1}..{*,*})

DayNr := 0

nrofUnusedSlots := 0

82

totalSlotsNR := 0

totalnotontime:= 0

replannedslotsReturned := 0

totaloperated := 0

slotsutility := 0

ontimepercent := 0

replannedPatients := 0

serviceLevel := 0

daysmeasured := 0

dayswithGoodService := 0

availableschedule.setbackgroundcolorcolumn({0,0}..{*,*},

makeRGBValue(255,255,255))

availableschedule.delete({1,1}..{*,*})

mightgetKicked.delete({1,1}..{*,*})

scheduledPatients.delete({0,1}..{*,*})

mostsuitableSlots.delete({1,1}..{*,*})

--warmupSlotsUtility.delete({1,1}..{*,*})

--warmupslotsutility[experimentManager.

Appendix 6: Expected shrinkage and growth tool
The expected shrinkage and growth tool shows how a waiting list changes during an MSS cycle,
and how this change impacts the expected utilization and average patient waiting time. The
code is adapted from the original Markov tool, however instead of first calculating a steady
state, we simply input how many people we have on the waiting list at the start, and use that as
an input for the Markov chain. At the end of the cycle we calculate how the waiting list behaved
during the cycle.

75

80

85

90

95

100

105

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mean waiting list length per day

83

Sub ToolExecute()

Dim CurrentServiceLevel As Double

Dim i As Integer

Dim j As Integer

Dim d As Integer

Dim safetystock As Integer

Dim nextRow As Long

Dim WeightedAverage As Double

Dim total As Double

Dim probability As Double

Dim percentile As Integer

Dim startTime, elapsedTime As Single

100.000

100.000

100.000

100.000

100.000

100.000

100.000

100.000

0 5 10 15 20 25

Average OR utilization per day

38.000

39.000

40.000

41.000

42.000

43.000

44.000

45.000

46.000

47.000

0 5 10 15 20 25

Average patient waiting time per day

84

Dim WasanswerFound As Boolean

With ThisWorkbook.Sheets("Dashboard")

 .Range("L2:M" & .Rows.Count).ClearContents

End With

With ThisWorkbook.Sheets("CalculationData")

 .Range("A2:P" & .Rows.Count).ClearContents

End With

With ThisWorkbook.Sheets("dashboard")

 UtilityThreshold = .Cells(13, "B").value

 L = .Cells(5, "B").value

 NrOfdays = .Cells(6, "B").value

 RunLength = .Cells(14, "B").value

 mean = .Cells(7, "B").value

 stdev = .Cells(8, "B").value

 ORtime = .Cells(9, "B").value

 safetystock = .Cells(15, "B").value

 index = .Cells(16, "B").value

 epsilon = .Cells(17, "B").value

 .Range("G5").ClearContents

 .Range("G8").ClearContents

 .Range("G9").ClearContents

End With

CurrentServiceLevel = 0

startTime = Timer

WasanswerFound = True

Do While CurrentServiceLevel < 1

 elapsedTime = Timer - startTime

85

 'If elapsed time is greater than allowed, exit the loop

 If elapsedTime > RunLength Then

 WasanswerFound = False

 Exit Do

 End If

 CurrentServiceLevel = MarkovChains(safetystock)

 With ThisWorkbook.Sheets("dashboard")

 nextRow = .Cells(.Rows.Count, "L").End(xlUp).Row + 1

 .Cells(nextRow, "L").value = safetystock

 .Cells(nextRow, "M").value = CurrentServiceLevel

 If CurrentServiceLevel = 1 Then

 .Cells(5, "G").value = safetystock

 End If

 End With

 safetystock = safetystock + epsilon

Loop

With ThisWorkbook.Sheets("dashboard")

 .Cells(9, "G").value = WasanswerFound

End With

For d = 1 To NrOfdays

 WeightedAverage = 0

 probability = 100

 For i = 0 To listlength

 WeightedAverage = WeightedAverage + (i * BP(d, i))

 If MSS(d) = True Then

 probability = probability - 100 * (BP(d, i) *

utilityprobability(i))

 End If

 Next i

 With ThisWorkbook.Sheets("CalculationData")

 ' Find the next empty row in column A

86

 nextRow = .Cells(.Rows.Count, "A").End(xlUp).Row + 1

 ' Paste values into columAP A and B in the next empty row

 .Cells(nextRow, "A").value = d

 .Cells(nextRow, "B").value = WeightedAverage

 .Cells(nextRow, "C").value = probability

 .Cells(nextRow, "D").value = WeightedAverage / L

 End With

Next d

With ThisWorkbook.Sheets("CalculationData")

 For i = 0 To listlength

 .Cells(i + 2, "F").value = i

 .Cells(i + 2, "G").value = BP(NrOfdays, i) 'add the chances that there are

i people on the waitlist at the end just for extra information

 Next i

End With

 ' Turn all the values in the array to 0 to be safe

 For i = 0 To NrOfdays

 For j = 0 To listlength

 AP(i, j) = 0

 BP(i, j) = 0

 Next j

 Next i

' Update the chart sizes

 Dim lastRow As Long

 Dim startRow As Long

 Dim rangeAddress1 As String

 Dim rangeAddress2 As String

 Dim rangeAddress3 As String

 ' Calculate the last row for the first range

 lastRow = NrOfdays + 1

87

 rangeAddress1 = "A2:B" & lastRow

 ' Update Chart 1

 With ActiveSheet.ChartObjects("Chart 4")

 .Activate

 Application.CutCopyMode = False

 ActiveChart.SetSourceData

Source:=Sheets("CalculationData").Range(rangeAddress1)

 ActiveChart.FullSeriesCollection(1).IsFiltered = True

 ActiveChart.FullSeriesCollection(2).IsFiltered = False

 End With

 ' Calculate the address for the second range

 startRow = 1

 rangeAddress2 = "A" & startRow & ":A" & lastRow & ",C" & startRow & ":C" &

lastRow

 ' Update Chart 2

 With ActiveSheet.ChartObjects("Chart 5")

 .Activate

 Application.CutCopyMode = False

 ActiveChart.SetSourceData

Source:=Sheets("CalculationData").Range(rangeAddress2)

 End With

 ' Calculate the address for the third range

 rangeAddress3 = "A" & startRow & ":A" & lastRow & ",D" & startRow & ":D" &

lastRow

 With ActiveSheet.ChartObjects("Chart 6")

 .Activate

 Application.CutCopyMode = False

 ActiveChart.SetSourceData

Source:=Sheets("CalculationData").Range(rangeAddress3)

 End With

88

End Sub

Function MarkovChains(safetystock As Integer) As Double

 Dim i As Integer

 Dim j As Integer

 Dim d As Integer

 Dim ServiceLevel As Double

 Dim totalservicelevel As Integer

 Dim WeightedAverageNew, WeightedAverageOld As Double

 Dim Convergence As Double

 Dim loopnr As Integer

 ' Initialize the variables with some values (if needed)

 listlength = safetystock + index

' WeightedAverageOld = 0

' loopnr = 0

' Convergence = epsilon + 1

 ReDim AP(0 To NrOfdays, 0 To listlength)

 ReDim BP(0 To NrOfdays, 0 To listlength)

' Do While Convergence > epsilon

 ' Turn all the values in the array to 0 to be safe

' If loopnr = 0 Then

 For i = 0 To NrOfdays

 For j = 0 To listlength

 If i = 0 And j = safetystock Then 'at the start, the chance of one

number of people on the waitlist is 1

 AP(i, j) = 1

 BP(i, j) = 0

 Else

89

 AP(i, j) = 0 'the rest is just cleaning up the array for safety

 BP(i, j) = 0

 End If

 Next j

 Next i

' Else

' For i = 0 To NrOfdays

' For j = 0 To listlength

' If i = 0 Then 'at the start, the probability after planning on day

0 is the

' AP(i, j) = AP(NrOfdays, j)

' BP(i, j) = 0

' Else

' AP(i, j) = 0 'the rest is just cleaning up the array for

safety

' BP(i, j) = 0

' End If

' Next j

' Next i

' End If

 For d = 1 To NrOfdays

 'add the chances of i people existing on the waiting list before planning.

Based on the chance that i-j people arrive, given the probability of yesterdays

waiting list length being i

 For i = 0 To listlength

 If i <> listlength Then

 For j = 0 To i

 BP(d, i) = BP(d, i) + AP(d - 1, j) *

WorksheetFunction.Poisson_Dist((i - j), L, False)

 Next j

 Else

 For j = 0 To i

 BP(d, i) = BP(d, i) + AP(d - 1, j) * CumProbability((i -

j), L)

90

 Next j

 End If

 Next i

 'add the chances of people existing after planning, based on whether the OR

is open today

 If MSS(d) = True Then

 For i = 0 To listlength

 For j = 0 To listlength - i

 'the probability that there are i people after planning, is the

probability that there were i+j people before planning* the probability that j-i

people were planned

 AP(d, i) = AP(d, i) + BP(d, i + j) * NrOfSurgeries(j, i)

 Next j

 Next i

 Else

 For i = 0 To listlength

 AP(d, i) = BP(d, i)

 Next i

 End If

 Next d

' WeightedAverageNew = 0

' For i = 0 To listlength

' WeightedAverageNew = WeightedAverageNew + (i * BP(1, i))

' Next i

'

91

' Convergence = WeightedAverageNew - WeightedAverageOld

' WeightedAverageOld = WeightedAverageNew

' With ThisWorkbook.Sheets("Dashboard")

' .Cells(8, "G").value = loopnr

' End With

'

' loopnr = loopnr + 1

'

' Loop

 totalservicelevel = 0

 For d = 1 To NrOfdays

 ServiceLevel = 100

 If MSS(d) = True Then

 For i = 0 To listlength

 ServiceLevel = ServiceLevel - 100 * (BP(d, i) *

utilityprobability(i)) 'the probability that our expected lost utilization is not

below our service level

 Next i

 If ServiceLevel > UtilityThreshold Then

 totalservicelevel = totalservicelevel + 1

 End If

 Else

 totalservicelevel = totalservicelevel + 1

 End If

 Next d

 MarkovChains = totalservicelevel / NrOfdays

92

End Function

Function MSS(day As Integer) As Boolean

 Select Case day

 Case 1, 2, 8, 12, 13, 14, 18, 20

 MSS = True

 Case Else

 MSS = False

 End Select

End Function

Function CumProbability(x As Integer, L As Double) As Double

If x = 0 Then

 CumProbability = 1

Else

 CumProbability = 1 - WorksheetFunction.Poisson_Dist(x - 1, L, True)

End If

End Function

Function NrOfSurgeries(vectorsize As Integer, state As Integer) As Double

'The NrOFSurgeries is the probability that the amount of OR minutes on the waiting

list is enough to perform vectorsize surgeries

'The Nrofsurgeries is thus the probability of at least vectorsize surgeries - the

probability of at least vectorsize+1 surgeries

Dim probability As Double

If state = 0 Then

 If vectorsize = 0 Then

 probability = 1

 Else

93

 probability = WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime /

vectorsize), mean, stdev, True)

 End If

ElseIf state = listlength Then

 probability = 1 - WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime /

(vectorsize + 1)), mean, stdev, True)

Else

 If vectorsize = 0 Then

 probability = 1 - WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime /

(vectorsize + 1)), mean, stdev, True)

 Else

 probability = 1 - WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime /

(vectorsize + 1)), mean, stdev, True) - (1 -

WorksheetFunction.Norm_Dist(WorksheetFunction.Ln(ORtime / vectorsize), mean, stdev,

True))

 End If

End If

NrOfSurgeries = probability

End Function

Function utilityprobability(state As Integer) As Double

'the utilityprobability is the probability that the amount of OR minutes is at

least the ORtime, given the number of people on the waiting list(state)

'the utilityprobability is the probability that with state number of surgeries, we

still dont have enough ORtime to fill the entire schedule

'the utilityprobability is therefore the probability that state surgeries take less

than the ortime.

'the probability that x surgeries take less than the ortime is the probability that

one surgery takes less than ln(ortime/x)

'if our state number of surgeries is 0, the probability of not having enough ORtime

is 1

Dim LNOR As Double

If state = 0 Then

 utilityprobability = 1

Else

94

 LNOR = WorksheetFunction.Ln(ORtime / state)

 utilityprobability = WorksheetFunction.Norm_Dist(LNOR, mean, stdev, True)

End If

End Function

