MSc Computer Science
Final Project

Temporal Aspects of Stock Price Prediction:
Quantifying the Role of Historical Data using
Partitioned Dynamic Bayesian Networks

Cristian Verdecchia

Supervisors: Peter Lucas, Jorg Osterrieder

October, 2024

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

UNIVERSITY OF TWENTE.

Contents

Abstract

Acknowledgments

1

Introduction
1.1 Introduction to Stock Market Analysis

Related Research

2.1 Random Walk and Efficient Market Hypothesis
2.2 Behavioural Finance in the Efficient Market Hypothesis
2.3 Consequences of the Efficient Market Hypothesis
2.4 Different Trading Paradigms

Background
3.1 Time series Approaches
3.2 Bayesian Networks Approach

3.3 DataUsage e
Preliminaries
4.1 Data s

4.1.1 Types of Market Data
4.2 Partitioned Dynamic Bayesian Networks
4.2.1 Directed acyclic graph L
4.2.2 Bayesian Networks,
4.2.3 Dynamic Bayesian Networks
4.2.4 Learning a Bayesian Network
4.2.5 Partitioned Dynamic Bayesian Networks

Methodology

5.1 Data Extraction and preparation
5.1.1 Retrieval of the S&P 500 constituents
5.1.2 Retrieval of historical data
5.1.3 Retrieval of sectors data 0L

5.2 Application of Partitioned Dynamic Bayesian Networks.

Results

Discussion
7.1 Tool Selection and Transition to R
7.2 Data Handling and Factor Representation

11

12
12
12
14
14
14
17
19
28

31
31
31
32
34
34

40

Contents

7.3 Tested Modeling Approaches
7.4 Final Approach and Computational Improvements
7.5 Prediction Methods and Execution Time
7.6 Influence of Historical Trends on Predictions

8 Conclusions and Future Developments

8.1 Final Model and Prediction Approach
8.2 Results Analysis

8.3 Limitations
84 Future Work

Appendices
A Results of Executions with Structure Learning

B Results of Executions Without Structure Learning

Abstract

Financial markets, characterized by their perpetual evolving nature, have long been an ac-
tive research field. With new artificial intelligence technologies emerging, and the increasing
availability of data, there is a growing need to uncover the relationship between historical
data and actual predictions. Despite the abundance of studies in this area, few have in-
vestigated Bayesian Networks, which are traditionally perceived as unsuitable for financial
forecasting due to their inherent complexities. Despite this, we believe that the Standard
and Poor’s (S&P) 500 index, known to be a good reflection of the status of the American
economy, presents an ideal case study for this research. Comprising a vast amount of com-
panies across various sectors, the S&P 500 offers a rich dataset for analysis. Despite their
complexities, the explainability that Bayesian Networks (BNs) inherently bring, could in
the future, provide important information on hidden market dynamics. Leveraging Parti-
tioned Dynamic Bayesian Networkss (PDBNs), originally designed for health-related data,
provides a unique opportunity to test the evolving behavior of the market. Their abil-
ity to change in structure provides a great advantage over the more traditional Dynamic
Bayesian Networks (DBNs) when dealing with this type of data. In this thesis, great em-
phasis was dedicated to acquiring high-quality data tailored for this approach. Multiple
networks were created capturing various aspects of PDBNs through which the effects of
historical data on predictions were analyzed. The models were compared to evaluate their
performances where the final employed model provided a good balance between specificity
and sensitivity.

Keywords: Partitioned Dynamic Bayesian Network, Bayesian Network, Machine Learning,
Quantitative Finance, Stock Price Prediction, Financial Forecasting

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor, Peter
Lucas. His invaluable guidance, support, and availability, even during his holidays, have
been essential to the successful completion of this project. I am also grateful to my second
supervisor Jorg Osterrieder, for introducing me to this field and sharing his technical
expertise.

I would also like to express my heartfelt appreciation to my family, who, despite the
distance, offered constant encouragement and emotional support on countless calls. With-
out your unwavering belief in me and your sacrifices, this project would have never been
possible. A special thanks to my cousin Samuel, for his patience and for always being
willing to listen to my endless explanations and ideas.

My gratitude goes also to my far friends, and close ones - thank you for enduring my
endless complaints and occasional meltdowns in the past years over a countless number of
coffees that fueled my energies and spirit.

Last but definitely not least, I would like to thank my colleagues Carlos and Ruben
for the flexibility given and for accommodating my many requests throughout this period,
allowing me to achieve this result.

Chapter 1

Introduction

1.1 Introduction to Stock Market Analysis

Stock price prediction is one of the most challenging tasks in the financial domain due to
the amount of variables involved in this process. This complexity is further amplified when
combined with the inherent volatility and non-stationarity of the data in financial mar-
kets. Traditional time series models, renowned for their ability to model time dependent
variables, often struggle with these challenges, leading to suboptimal predictions. This
research explores the application of Partitioned Dynamic Bayesian Networkss (PDBNs) in
improving the accuracy of stock price forecasting, specifically in the context of predicting
financial indexes, where an evaluation of the historical data and how the amount used
affects the prediction is conducted.

In the 1960s Eugene Fama proposed a theory asserting that in financial markets the
price of a security reflects the information available at any given time. This theory became
known as the Efficient market hypothesis (EMH). Despite its success, this hypothesis faced
a lot of opposition. Notably, Taylor (1982) [42] challenged a theory defining that prices
cannot be predicted since they follow a random path. This theory known as the Random
Walk Hypothesis (RWH), is considered a component of the EMH. Taylor demonstrated that
previous statistical tests done to test this theory were inadequate. When Taylor applied
more robust statistical methods, empirical results indicated a rejection of the random walk
hypothesis. This ongoing debate [47| highlights the complexity and unpredictability of
financial markets, displaying the need for sophisticated predictive models.

Given the implications of those theories, we can say that non-stationarity and noise
are essential aspects to take into account. Non-stationarity refers to the inconsistency of
statistical properties like mean and variance, over time. This inconsistency is common in
stock market data where long-term trends are prevailing. For instance, market indexes like
the S&P 500 have exhibited a consistent upward trend over decades, contrasting with the
varied short-term patterns and downward trends. In the study by Liu [26], the dynamics
of stock price changes - defined as S(t) - are characterized as a stochastic process. The
immediate return of a stock, denoted as R(t,ts), over a brief time interval, is presumed to
follow a normal distribution. This assumption implies that the stock price follows a log-
normal distribution in the short run. However, as our view is extended to the long-term
behavior of the stock market, it diverges from the simple patterns of short-term movements
exhibiting more complex dynamics.

Traditional forecasting models typically assume data stationarity, which simplifies the
mathematical complexity but often leads to overfitting and poor future predictions due
to the incapacity to deal with evolving patterns. These models may perform well on

1.1 Introduction to Stock Market Analysis 3

historical data but usually struggle to adapt to new data exhibiting different statistical
properties. This thesis addresses these issues by employing PDBNs, which offers a novel
approach to modeling time-series data. PDBNs partition the data into segments that
can be independently modeled through the use of DBN, thereby improving the effect of
non-stationary behaviors on the data and enhancing predictive performances.

The importance of this research lies in understanding how Bayesian networks designed
to address specific problems, particularly those involving temporal data, can improve the
current state of the art in stock price prediction. By exploring the temporal aspect of
PDBNSs, and thanks to their inherent explainability, we can make more precise assumptions
about market behavior, leading to better performance in predictive tasks. The analysis of
the effects of historical data on predictions, despite being tailored to this type of networks,
can gain insights that can have broader implications, potentially benefiting other fields
where the time domain is a critical aspect.

Motivation

Stock markets are entities that mediate between traders and that allow for companies’
shares to be exchanged. Two parties, buyers and sellers, are always involved in the mar-
ket, the higher the demand compared to the offer, the higher the price of a certain asset,
building wealth for investors. Since the beginning of the stock market, investors tried to
find ways to "beat" the market and obtain higher returns compared to the performance
of the reference index. Over the decades many techniques were tested and machine learn-
ing methods proved somewhat useful to increase returns. In the current era of data and
machine learning-driven approaches, there is a growing demand for more and better per-
forming techniques that can achieve higher returns. In this regard, time series approaches,
renowned for their capacity to identify patterns that evolve over time, are often employed.
This is proved by the literature that is rich in evidence of their effectiveness in many con-
texts when dealing with unimodal data distributions, where data displays a single pattern
or trend. However, applying these kinds of models to financial time series does not come
without its drawbacks. Inherited in their mathematical background, time series methods
mostly fail to grasp the behavior of multimodal distributions, a common characteristic of
most financial data. In this context, data is influenced by a multitude of factors, leading
to different patterns. Specifically, the additional complexity could be caused by geopo-
litical events, news, economic indicators, the market sentiment that can itself be affected
by news, the macroeconomic situation, and other complex factors. Each of these aspects
can modify trends by changing what initially could look like a unimodal distribution into
a multimodal distribution. Exploring the complexities of financial data necessitates so-
phisticated modeling approaches. Bayesian networks have emerged as a viable solution,
being able to better cope with multimodal distributions. In particular, DBNs, an extension
of the more classic BNs, were found to be better able to capture temporal dependencies
compared to BNs. In the financial domain, the variable of time is a fundamental factor
that exponentially increases the complexity of data by creating new patterns and trends.
Despite the improvements obtained in this context, DBNs are not without limitations.
Their inability to model time-varying structures, especially in a domain where temporal
dynamics are crucial, poses a big constraint. This architectural gap is the motivation for
exploring PDBNs. PDBNs introduce the concept of time partitioning, instead of using a
single network structure for all time steps, PDBNs dissect time into discrete intervals or
partitions. Each partition represents a specific time period during which the relationships
between variables are considered relatively constant. This innovative structure is designed
to handle non-homogeneous data, characterized by processes evolving over time. Every

1.1 Introduction to Stock Market Analysis 4

partition, distinguished by its distinct time frames, should facilitate the stock analysis.
This approach is well-suited to manage the variability and swift changes characteristic of
financial markets.

Thesis Structure

We begin this work with a literature review that outlines the existing research, starting
from time-series approaches and proceeding to Bayesian networks and their applications
in the financial sector. Next, we present the methodology section, which begins by intro-
ducing fundamental technical concepts. This section includes a description of the types
of data in the stock market, followed by an explanation of Bayesian Networks (BNs),
Dynamic Bayesian Networks (DBNs), and the foundational blocks for constructing these
networks that are parameters and structure learning. These concepts are foundational for
understanding the functioning of Partitioned Dynamic Bayesian Networkss (PDBNs) that
are the primary model used in this research. Following the methodology, we discuss the
process of extracting and processing the data, as well as the construction of the Partitioned
Dynamic Bayesian Networks (PDBN). The results of the conducted experiments are then
provided. Finally, a conclusion and discussion are given where those results are discussed
together with the key findings of the project.

Chapter 2

Related Research

2.1 Random Walk and Efficient Market Hypothesis

The study of stock market behaviors has a longstanding history. In 1965, after his first
publication of the efficient market hypothesis, as explained at the beginning, Fama brought
attention to an intriguing concept known as the Random Walk Hypothesis (RWH) [19],
a notion originally introduced by Louis Bachelier in 1900 [9]. Bachelier defined this the-
ory by comparing the movement of stock prices to a random walk, like that of a drunk
man. In essence, this theory posits that the consistent prediction of stock movements is
impossible given the randomness of the stock market behaviour. Note that it is important
not to confuse the two topics, while the RWH describes the unpredictability of stock price
movements, the Efficient market hypothesis (EMH) asserts that prices of a certain secu-
rity already reflect all available information. Over the years many doubts surged over the
EMH, in 1978 Ball [10], after examining previous studies on the correlation between earn-
ings announcements and the stock price, found abnormal results in the price adjustments
post release when compared to Fama’s, in fact returns in the period post announcement
are non-zero. The explanation that Ball gives to this behaviour is the inadequacy of the
test used to compute the returns, and a more powerful asset pricing model could instead
provide a better overview of the actual returns.

2.2 Behavioural Finance in the Efficient Market Hypothesis

Subsequent years saw an increasing influx of research dedicated to evaluating the validity of
the Efficient market hypothesis (EMH). In the 1990s we can distinguish a pivotal moment
when Richard Thaler, an advocate of the behavioral finance paradigm - a field that explores
the effects of human psychology to understand how this is reflected in the movements of
the stock market - unveiled his work in the book Advances in Behavioral Finance [43]
where he delineated the basis of the behavioral finance in the context of the efficient
market hypothesis. In his work, Thaler wasn’t aiming to counter the EMH but rather
expend upon it. He delved into how different types of information influence investors with
obvious results being reflected in the stock market. For this reason, he categorizes the
levels of market efficiency based on the extent of information that is believed to be already
incorporated into asset prices, the three proposed variants are: weak, semi-strong, and
strong form. The principles under which those are based, have to do with the rationality
of the people trading in the stock market. In the weak form, it’s recognized that investors
can sometimes act irrationally, leaving some space for market inefficiencies. However, this
behavior doesn’t last long thanks to other players in the market playing an important role

2.3 Consequences of the Efficient Market Hypothesis 6

in correcting these misalignments at some points in the future. On the other hand, the
semi-strong form asserts that systemic issues exist, this causes prices to frequently and
significantly deviate from correct levels for extended periods. The strong form escalates
this perspective, suggesting that there is little correlation between the security prices and
the company’s underlying financial performance. Instead, it suggests that price movements
are largely influenced by the overall sentiment and current market trends. In the following
years, the debate surrounding the EMH and behavioral finance continued. Although a few
more papers on the topic were published, no definitive conclusion was reached.

2.3 Consequences of the Efficient Market Hypothesis

The presence of a role between human psychology and market dynamics is evident where
both individual and collective psychological behaviors, including those affected by new
information, have an impact on the fluctuations of the markets. Understanding these
dynamics is crucial for developers aiming to use machine learning models to make future
predictions about market movements. In a Utopian world where markets are fully efficient,
and promptly and accurately react to every news and information available, predicting
future prices wouldn’t be possible. In such a scenario, every variable that could influence
the markets’ valuations and price changes would instantaneously be accounted for, making
predictions redundant and unnecessary.

However, the reality is far different from this. In the real world, even in the most
efficient markets, the efficiency would not be absolute. As also described by Fama [20],
abnormalities may exist in the short term but those tend to disappear in the long term,
bringing with them the ability to predict future movements, which, in the worst-case
scenario are equivalent to short-term predictions. Even in such a scenario, an additional
challenge persists due to the nature of the financial markets which is always changing.
While a machine learning model may effectively predict market trends in the short term,
its efficiency shrinks over an extended period due to the markets and players’ constant
evolution. This phenomenon is also described by Lépez de Prado in his "Advances in
Financial Machine Learning" book [28]. He underscore the necessity to iterate over different
models, frameworks and types of data to be able to be competitive in the market. Over
time financial strategies decay and must be abandoned when their performance consistently
falls below anticipated benchmarks.

In essence, the task of forecasting market movements necessitates an ongoing effort,
being able to create a model that is better able to take into account the time domain is a
crucial feature.

2.4 Different Trading Paradigms

Within the automated financial trading landscape, various specialized tasks can be distin-
guished where each offers different approaches. As delineated in [34], four main categories
can be defined: quantitative trading, algorithmic trading, Automated Trading System
(ATS), High-Frequency Trading (HFT).

Quantitative trading makes use of complex mathematical models to identify trading
opportunities. Algorithmic trading does not employee complex models but usually uses
rules defined by the users based on time, price, volume, and other metrics that are usually
provided by the trading platforms. These sets of rules allow to automate trades to minimize
human errors and avoid overreacting due to emotional involvement. ATS extends these
types of automations, making use of algorithms managed by software to issue and execute

2.4 Different Trading Paradigms 7

market orders with usually no human intervention needed. HFT is a version brought to
its extreme of an ATS characterized by elevated speed in retrieving and processing data,
allowing the execution of a vast number of orders within seconds. Each of the defined
category serves a different role, in the context of this thesis we will be mostly focusing in
ATS.

Chapter 3

Background

The use of Bayesian Networks (BNs) in the financial sector is relatively rare. Despite the
broad application of Bayesian and Dynamic Bayesian Networks (DBNs), thanks to their
explainability and ability to model complex relationships, their application to "simple"
stock price prediction tasks is limited. Traditional Bayesian Networks are not typically
considered to be effective for this purpose. While there is more extensive research involving
DBNs, to the best of my knowledge, no studies have yet applied Partitioned Dynamic
Bayesian Networkss (PDBNs), as defined by Bueno [11], to stock price prediction.

In this section, we will provide the background context necessary to understand the
reasoning behind this project. We will begin by explaining the EMH and how we can
possibly trade in the markets. Following, we will introduce time series approaches for
stock price prediction and continue with reviewing research involving Bayesian Networks
(BNs) in the financial field, including stock price prediction.

3.1 Time series Approaches

As mentioned earlier, the time domain analysis is a crucial aspect in the field of stock
price prediction. Over the years, multiple time series algorithms have been employed to
analyze stock price data and among these algorithms, the AutoRegressive Integrated Mov-
ing Average (ARIMA) model has gained popularity and demonstrated its efficacy across
diverse domains, as evidenced by several studies [14, 44, 30]. Notably, the ARIMA model
has also found application in the specific task of stock price prediction [8] where historical
Open, High, Low, Close, Volume (OHLCV) data from both the New York Stock Exchange
(NYSE) and the Nigeria Stock Exchange (NSE) were employed. This model makes use of
a combination of three different ideas, notably, the Auto Regressive (AR), Integrated (I),
Moving Average (MA). The AR is a representation, part of the model, that outputs a value
obtained as a linear combination of the previous values. The ’Integrated’ part denotes a
crucial component that represents the transformation process to obtain stationarity in a
time series dataset. This implies that statistical properties such as mean and variance
remain invariable over time. This transformation is often obtained by computing the dif-
ference between the raw observations. Finally, the MA accounts the prediction errors of the
past stock prices to smooth the prediction. This process is fundamental to avoid outliers
in the data that could be obtained for multiple reasons (for instance, at the opening of the
stock market all the orders that were waiting are processed at a faster rate, this creates
periodical high fluctuation in the price). In addition to the ARIMA model, in literature,
multiple other time-series models were employed for stock price prediction. Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) is one of such models. GARCH

3.2 Bayesian Networks Approach 9

as used in [22] is a statistical model that helps identify how the volatility of stock returns
changes over time. In ARIMA, while the moving average component can help mitigate the
impact of high volatility to some extent, it may not fully capture time-varying volatility
patterns. In financial time series this has a high degree of importance since the volatility, as
already said, is not constant and can fluctuate based on the time period. By being able to
evaluate the fluctuations, GARCH is also able to enhance the accuracy of the predictions.

3.2 Bayesian Networks Approach

Application of Bayesian Networks in the Financial Domain

Moving towards machine learning approaches in the financial domain that made use of
Bayesian Networks (BNs), we find the research conducted by Liu et al. (2021) [27]. This
research explores the relationship between China’s macroeconomy and its stock market
through the application of Dynamic Bayesian Networks (DBNs). The study employs Gaus-
sian Bayesian Networks (GBNs) - a variant of BNs - that makes use of logarithmic rates
of return for various indexes. The rate of return indicates the growth - expressed as a
percentage - of a certain asset where the return is compounded over time. By analyzing
data from different sectors over the period 2007 to 2020, the researchers investigated the
relationships between the selected indexes and other macroeconomic indicators, such as the
export growth rate and the Industrial Added Value (IAV) growth rate, which measures the
industrial sector’s contribution to the Gross Domestic Product (GDP) through its produc-
tion processes. The study makes use of a sliding window approach, where per each month,
a network is constructed based on data from the previous 12 months. This approach helps
in tracking the evolution of the relationship between China’s macroeconomy and the stock
market over time.

Fonseca and Carvalho (2021) [21] employ DBNs to model the dependencies between
different sectors within the U.S. economy and investigate how these relationships are af-
fected during financial crises. Specifically, they analyze the so-called contagion effect, that
is the correlation between sectors in terms of how each sector impacts each other positively
or negatively. In their research, they employed a Dynamic Bayesian Network (DBN) where
each node represents the index of a specific economic sector from the Dow Jones Industrial
Average (DJI) indices such as insurance, real estate, and oil and gas. In the network, each
node represents the daily log returns of a sector. The study found that certain sectors —
like Oil and Gas and Real Estate — propagate their effects (downturns or upturns in the
market) more frequently than other sectors.

General Application of Bayesian Networks in Stock Price Prediction

As also highlighted in the motivation section (chapter 1.1), traditional time series models
encounter significant issues when applied to financial data. This limitation derives from
their inherited mathematical structure that is not well-suited for multimodal data distri-
butions nor for data that follow an evolving trend. On the other hand, Bayesian networks
have often been employed as a good substitution for time-series algorithms. Zuo and Kita
in their paper "Stock price forecast using Bayesian network" [48] compare the Bayesian net-
work method to time-series algorithms such as AR, MA, AutoRegressive Moving Average
(ARMA) and Autoregressive Conditional Heteroskedasticity (ARCH) models. The com-
parison involves evaluating forecast accuracy and correlation coefficients, demonstrating
the advantages of the Bayesian network approach over the mentioned traditional time-
series methods for stock price forecasting. Despite its advantages, Bayesian Networks are

3.2 Bayesian Networks Approach 10

not able to cope with continuous variables, in the mentioned paper both uniform clustering
and the Ward method were employed as clustering algorithms to discretize the continuous
variables. As demonstrated, the clustering algorithm plays a crucial role in obtaining an
accurate prediction. In this case the Ward algorithm was proved to improve the accuracy
by 15% on the NIKKEI (an index reflecting the Japanese stock market) stock average and
20% on the Toyota sock price when comparing it to the uniform clustering method.

Dynamic Bayesian Networks and Hierarchical Models

Dynamic Bayesian Networks (DBNs) extend the more traditional Bayesian Networks (BNs)
by incorporating temporal dynamics, making them particularly suitable for time-series data
like stock prices.

A study by Jangmin et al.|23] proposes a three-level Hierarchical Hidden Markov Model
(HHMM) - a variant of DBNs - to predict stock prices and generate trading signals based
on the predicted values. In this kind of structure, each level has a different role. The
first level categorizes the trends into five states: strong bear, weak bear, random walk,
weak bull, and strong bull, where a bear pattern is considered to be a market following
an uptrend and a bull one is a market following a downtrend. The second layer provides
a higher-level categorization of the trends derived from the first layer. Finally, the third
layer contains Hidden Markov Models (HMMs) that are responsible for emitting observable
outputs. Training the HHMM involves a semi-supervised learning approach. The trend
states in the first level are manually labeled based on the gradient of the moving average
of stock prices. The Expectation Maximisation (EM) algorithm is then used to refine
the model parameters. Their HHMM-based system uses the probability distributions of
different trend states to generate trading signals. For example, a buy signal is generated if
the combined probability of the strong bull and weak bull states exceeds a certain threshold,
and a sell signal is generated if the combined probability of the strong bear and weak bear
states falls below a threshold. Experimental results were conducted on 20 companies from
the Korean stock market and showed that the proposed HHMM outperformed the Triple
Exponential Average (TRIX) technical indicator, which identifies when a certain market is
overbought or oversold, particularly in minimizing losses during market downturns.

In its paper Duan (2016) [17] introduces a new model for stock price prediction called
Auto-Regressive Dynamic Bayesian Network (AR-DBN). This model improves on tradi-
tional Dynamic Bayesian Network (DBN) by adding connections between consecutive ob-
served stock prices, which help to better understand the trends in the stock market prices.

In a traditional DBN, each observed stock price is only influenced by hidden variables
that represent underlying factors. However, in reality, stock prices are also influenced by
their previous values. The term "auto-regressive" means that the model takes into account
that today’s stock price is partly determined by past stock prices. The AR-DBN model
adds connections between consecutive observed stock prices, allowing the prediction of
future prices to be influenced by past ones. The model uses the Expectation Maximisation
(EM) algorithm to find the best parameters for these connections. Experiments executed
using historical Standard and Poor’s (S&P) 500 data show that AR-DBN provides better
predictions and faster convergence compared to traditional DBNs.

Shen and Winstanley (2019) [38] in their project propose using Dynamic Bayesian
Networks (DBNs) to model and predict the behavior of prediction markets which are
platforms where participants trade securities based on the outcomes of public events like
presidential elections. This kind of market aggregates public opinion given the information
provided by the polling prices. For example, the price trend for a bet in the case of
presidential elections might reflect the public opinion of the candidates or their chances of

3.3 Data Usage 11

winning.

The authors use DBNs to model the political climate and predict future outcomes, in-
corporating both hidden variables (political climate) and observed variables (polling data)
represented by the polling prices. The model is validated using data from the 2012 U.S.
presidential election, showing that it outperforms the baseline models used, by accurately
capturing market trends and handling noisy data. This research does not make use of stock
market data. However, the type of data used and the structure employed have a structure
similar to financial data and their applications.

In the study by Malagrino [33], the authors evaluate the influence of global stock
market indices on Brazil’s primary index, iBOVESPA. The research proved effective in the
prediction of the daily direction and also provided insights into which markets are the most
influential for iBOVESPA’s trend prediction. The best results were obtained when using
a single index per continent. Index data was input to the network for multiple indexes
(different amount of indexes were used in each combination tested) and this was used to

predict iBOVESPA’s trend.

3.3 Data Usage

The concept of forecasting financial markets dates back to the beginning of the stock
markets although in the latest years thanks to new tools and methods, this process has
evolved significantly and so has the amount of data used in the process. Already in 2003,
Wang et al. in [45], applied artificial neural networks on financial forecasting placing
emphasis on trading volume as a distinctive feature of stock market data. Their research
involved two major datasets: the Standard and Poor’s (S&P) 500 and the Dow Jones
Industrial Average (DJI). Their results show that trading volume can sometimes be an
indicator of market sentiment, however, its effectiveness can vary depending on the dataset
and model. One of their primary observations was that, in general, trading volume did
not significantly improve the forecasting accuracy within the scope of their study. Trading
volume is just one of many data points researchers and analysts use for stock market
prediction. Over time, multiple types of data have been employed, each offering its unique
insights. Several instances of BNs applied in stock price prediction can be cited from past
studies. In [48|, Zuo made a noteworthy contribution by utilizing Bayesian networks in
combination with the K2 algorithm to obtain the optimal network structure. In this study,
they made use of the Price/Earnings (P/E) ratio of the NIKKEI index and Toyota Motor
Corporation stock. In [23]|, Jangmin utilized the relative closing price built as a function
of the closing price. This research showed that utilizing their approach outperforms the
TRIX technical indicator showcasing the importance of using historical data as a baseline
for machine learning models. A similar approach was followed by Malagrino in [33] that
by comparing each day’s closing price to the previous day was able to classify the data into
“higher” or “lower” respectively based on the increase or decrease compared to the previous
day’s price. Each of these studies outlines a different perspective in terms of data used,
highlighting the high degree of versatility of Bayesian networks.

Chapter 4

Preliminaries

4.1 Data

In the landscape of asset management, engineers often opt for uniqueness and innovation
in their data sources and data processing techniques. It’s relatively rare for them to utilize
data that has been previously employed by other entities, shared data sources can lead to
similar, if not identical, conclusions and insights, reducing the competitive advantage over
other companies. The need for differentiation in the final outcome drives engineers towards
the use of raw, unprocessed data. This strategic choice also provides them with the ability
to build their own pre-processing and modeling steps. Financial data is renowned for its
complexity and high degree of variance, in such context, the kind used in stock market
prediction tasks can vary a lot, both in terms of type and how those are processed. In [28|
De Prado divided the types of financial data into four different categories, among the most
used we can find: market data, analytics and fundamental data. In addition to those, it
is possible also to find alternative source of data such as Google searches trends, Twitter
derived data, satellite or CCTV images and more. All of those types can be further divided
into multiple categories. In table 4.1 I highlighted the main categories where each offers
unique insights into market dynamics.

TABLE 4.1: Types and Categories of Data

Market Data | Analytics Fundamental Data | Alternative Data
Price News Sentiment Assets Satellite/ CCTV
Yield Earnings Expectations Liabilities Google Searches
Volume Analyst Recommendations | Sales Twitter

Dividends Costs/Earnings

4.1.1 Types of Market Data

Market data include all the daily activities that take place in an exchange, every participant
in the stock market leaves a footprint whenever exchanging a security, leading to terabytes
of data being generated on a daily basis, this makes it one of the most used types of data
in the context of stock price prediction due to its high availability level, low price, and
amount of data that can be obtained. Within the family of market data, we can find key
metrics such as the price, which represents the amount of money that sellers are asking
for a single share of a stock and the amount that buyers are willing to pay for that same
share. When discussing price, it’s important to understand the different types of data we

12

4.1.1 Types of Market Data 13

can access. For instance, the "order table" or "order book" offers an in-depth snapshot of
live market orders. Each entry in this ledger details the number of shares an entity wishes
to exchange and the associated price. Such data can be relevant for predicting short term
prices although more difficult to retrieve due to the amount of data processed per second.
Since not everyone requires such granularity, some analysts or investors might be more
interested in broader price trends over time. For the described purpose, it is possible to
retrieve an alternative type of data where prices are averaged over specific time intervals
(the most common ones are one or five minutes ranges). These intervals can be particularly
useful when creating charts and executing technical analysis, as they are able to capture
smaller price oscillations and can help highlight patterns or trends when predicting over a
short interval. When retrieving prices most data providers offer not just the average price
but also the volume exchanged in a specific time frame, minimum, and maximum prices.
A really interesting additional metric that can be used in combination with the price, is
the Volume Weigthed Average Price (VWAP) which is a metric used to provide an average
price to which a certain security traded during the day. As defined in eq 4.1, this metric is
computed by multiplying the volume and price for each timeframe and dividing it by the
total volume traded on a specific day. For instance, on a 5 minutes timeframe, the VWAP
would compute the volume processed in the five minutes, times the average price in the
same period divided by the cumulative daily volume. This ensures that more importance
is given to timeframes with a higher exchange in terms of volume.

> (Volume x Price)

VWAP = Total Volume

(4.1)

Moreover, it’s worth noting that in today’s world, high-frequency trading systems often
use really short time frames, making even minute-by-minute data seem relatively broad,
which is also one of the reasons for using order tables as a source of truth for those highly
advanced models that usually execute hundreds of operations in the stock market every
hour. In the context of the VWAP, the metric can be re-computed at every exchange of a
security.

An additional metric often used is the Yield. This metric computes the annual return
on an investment based on the dividends a certain company pays out every year, usually
represented as a percentage Year Over Year (YOY) of its current price, as defined in
formula 4.2. Note that although most companies pay out dividends, not all companies do,
those who pay out dividends do so to attract new investors and prove the good financial
situation of the company.

Dividend Yield — (Annual Dividends per Share) « 100

(4.2)

Price per Share

One of the disadvantages of the price bars is the arbitrariness in the number of ticks
since we consider specific time periods when retrieving the data. For instance, if we retrieve
data with a time window of five minutes, we will retrieve the averaged price value in this
time frame, this could lead to a loss of information due to the inability to grasp the actual
behaviour of the transactions in this five minutes period. To better solve this issue Clark
[13] in 1973, realised that by sampling the returns by volume instead of price, we can achieve
better results. In fact, the price is averaged over the specific time frame independently from
the amount of volume exchanged over that specific time period. For this reason we can

4.2 Partitioned Dynamic Bayesian Networks 14

consider the volume a critical metric to be used for stock price prediction. The way volume
works is by sampling ticks based on the amount exchanged. For instance, one could sample
a tick every 1 million shares exchanged, and the price will be averaged. In this way we
can overcome the issue of oversampling during low peak hours and undersampling during
high peak hours. However, note that the amount of shares we sample is a critical metric
that needs to be correctly and accurately defined to avoid undersampling during low peak
hours that could lead to missed patterns.

4.2 Partitioned Dynamic Bayesian Networks

Partitioned Dynamic Bayesian Networkss (PDBNs) initially presented in the paper "Un-
derstanding disease processes by partitioned dynamic Bayesian networks" [11], are a spe-
cialized variant of Dynamic Bayesian Network (DBN). These networks are specifically
designed to address challenges associated with data scarcity and non-homogeneous time
distributions. In the medical domain data scarcity is a common problem, a standard ap-
proach to deal with it is to stretch the available data across the entire time frame to build
a comprehensive model. A common generalisation to multivariate problems makes use
of DBNs for this approach. In the following chapters, we will begin with an exploration
of directed acyclic graphs, which serve as the building blocks for BNs. After discussing
the technical foundations, we will move on to a detailed look at how Bayesian Networks
(BNs) operate. Following, our focus will move towards specialized adaptations of these net-
works, specifically Dynamic Bayesian Network (DBN) and Partitioned Dynamic Bayesian
Networks (PDBN), to gain insights into their advanced functionalities and applications.

4.2.1 Directed acyclic graph

Directed Acyclic Graphs (DAGs) are a concept mainly relevant in graph theory with dif-
ferent fields of application. A DAG is a graph characterized by the absence of direct
cycles, meaning that each edge is unidirectional, connecting one vertex (also called node)
to another, in a way that does not form a closed loop. The non-cyclic behaviour is a
key property and distinguishing feature of this graphs, it is crucial for certain applications
since it enables the chronological ordering of the vertexes. The acyclic component of these
kind of graphs is a consequence of the exclusive presence of direct edges. This structural
characteristic ensures that every node can’t be revisited via the same path.

4.2.2 Bayesian Networks

Bayesian Networks (BNs), otherwise known as Belief Networks, are a specific category of
probabilistic graphical models. A common challenge in statistics is analyzing events that
are inherently uncertain. A typical way to do it is through the use of random variables to
which we assign different values to portray possible states of the world.

The choice of the most suitable probabilistic model to employ depends on the specific
domain and nature of the data involved. BNs are particularly known for their ability to
provide a detailed representation of the intricate relationships among real-world events or
objects. Although HMMs have been the go-to models for tasks involving time-varying
patterns, the advent of DBNs introduced a new paradigm for dealing with time-series data
thanks to their ability to deal with multivariate problems.

Mathematically, a BN can be defined as follows. Given a DAG G and a joint probability
distribution P, a Bayesian Network B = (G, P) is defined as a probabilistic graphical model
representing a set of random variables and their conditional dependencies. The DAG is

4.2.2 Bayesian Networks 15

defined as G = (V, E') where V is the set of nodes (or vertices) and F is the set of directed
edges. In a BN each node v € V represents a random variable X, while the relationships
between nodes - conditional dependencies - are identified through the use of directed edges
(v,w) € E where (v, w) denotes a directed edge from node v to node w.

These networks utilize DAGs to represent a group of variables along with the condi-
tional dependencies between them as in fig 4.1. In a DAG nodes are linked to represents
general dependencies between nodes. A Bayesian network extends this concept, each node
symbolizes a random variable and the edges connecting these nodes illustrate probabilistic
dependencies. These dependencies demonstrate the relationships between the correspond-
ing random variables, while the absence of an edge represent conditional independence
between random variables.

Directed Acyclic Graph (DAG) Bayesian Network

Node D Node D P(D | B) Node H P(H | D)

1

Node H ‘

y

Node B P(B | A)

\

Node E Node I

Node E P(E | B) }—»

Node F P(F | C)

Node C P(C'| A) Node J P(J | F,G)

Node G P(G | C)

Node I P(I | E) ‘

Node A P(A)

Node F

Node G

FIGURE 4.1: Directed Acyclic Graph (DAG) and Bayesian Network compared

Node J

For every node in the network, there is an associated probability function, that assigns
probabilities to the various possible states of the node’s corresponding variable. This prob-
ability function is typically represented as a Conditional Probability Table (CPT), which is
a table outlining the probability of each possible state of the node, given every combination
of states for the node’s parent. The joint probability distribution in a Bayesian Network
(BN) is a way to describe the probability of an outcome as a combination of the involved
random variables. Computing the full joint probability distribution can sometimes be im-
practical due to the elevated number of combinations. To overcome the issue, Bayesian
Networks make use of the conditional independence assumption represented in the network
structure to factorize the joint probability distribution into a simpler problem making it
more manageable.

Given a set of random variables Xy = {Xi,Xs,...,X,,} with n = |V, the joint
probability distribution P can be defined as:

P(XV = -TV) = H P(Xv = Ty | XPa(v) = xPa(v)) (43)
veV

In this formulation, Pa(v) represents the set of parent nodes of the node v € V' and
P(Xy = oy | Xpa(w) = Tpa(v)) stands for a family of conditional probability distributions,

4.2.2 Bayesian Networks 16

one distribution for each value Xp,(,) = Tpay), which when lumped together is called a
CPT (a table detailing the conditional probability distributions of the random variable X,
given the values of its parent variables Xp,(,)).

It follows that a node X, where Pa(X,) = (), the conditional probability for X, given
its parents - P(X,|Pa(X,)) - is simply the node’s marginal probability, denoted as P(X,),
reflecting that its probability distribution is not conditioned on any other node.

Let’s now consider a scenario where V' = {1,2,3}, v = 1 and Pa(v) = {2, 3} are the
corresponding variables X7, Xo and X3 are binary (can assume one of two values). The
CPT for node X, given the parents Xp,,) would look like in Table 4.2. Note that according
to the laws of probability theory we have that P(X; = no | X3, X3) =1 — P(X; = yes |
Xo, X3) for all values of Xy, X3.

TABLE 4.2: Example computation of a CPT

| Xo [X5 [P(X1 = yes | X, X3) |

no | no 0.4
no | yes 0.2
yes | no 0.9
yes | yes 0.7

Constructing or learning CP'Ts are an important step in the construction of a Bayesian
Network. By making use of posterior probability distributions, the constructed probability
distributions P(Xy) can be used for probabilistic inference that is the process of forecasting
outcomes or states based on known information or evidences. The posterior probability
distribution updates the probabilities after considering the evidences E. Mathematically,
this can be represented as:

P(XU,XE = %E)

(4.4)

where Xg = xp is a set of evidence variables with assigned values, i.e. observations of a
set of particular variables Xg = {X, | v € E'}, and Xy represent the random variables for
which we want to compute the probability distribution given the evidence where in most
cases ENU =) (otherwise the probability will be 1, as P(X, = x, | X, = x,) = 1 by
definition).

Computing probabilistic inference through the posterior probability distribution al-
though a crucial task for prediction, is a NP-hard problem. In real life situations, comput-
ing exact inference is not always possible due to the task being computationally intensive.
For this reason, researchers have developed approximation algorithms, which have also
shown to be NP-hard [16]. The network structure is an important factor in determining
the computational speed of probabilistic inference. By exploiting conditional indepen-
dence, as imposed by the network structure and therefore reflected in the joint probability
distribution, probabilistic inference is usually feasible.

Application of Bayesian Networks

Bayesian Networks can be used for a variety of tasks and are often preferred in situations -
like the healthcare domain - where making decisions can have a high impact not just as a
monetary aspect. Their importance is specifically relevant in this domain since graphical
visualizations can be employed for understanding the reasoning behind the choices made by

4.2.3 Dynamic Bayesian Networks 17

the network. Additionally, the use of visualizations can be combined with domain experts
knowledge that can incorporated in the network by identifying how valid the network’s
choice is and help achieve the best result. In a Bayesian Networks (BNs), each node
represents a random variable. In the context of the research, these variables can represent
factors such as the price of a company, the sector it belongs to, or the price change of the
S&P 500. While BNs are mainly designed to handle discrete variables, they can also be
adapted to incorporate continuous random variables.

One common approach for handling continuous variables is the use of discretization
techniques, where continuous random variables are divided into discrete buckets based on
their values. For example, an increase in the stock’s price as a percentage of the company’s
value, could be divided into ranges representing different levels of increase.

An additional method to incorporate incorporating continuous variables involves using
Gaussian distributions, where the data is represented through the use of tuples consisting
of mean and standard deviation.

Although continuous variables can be used, handling discrete data is less challenging
and can be analysed in an easier way compared to continuous distributions. In both cases,
the data distribution is typically represented in the form of Conditional Probability Tables
(CPTs).

4.2.3 Dynamic Bayesian Networks

In real-world scenarios, we often have to deal with problems where uncertainty is om-
nipresent. How likely is it for a mail to be spam? How likely is it for the weather to be
rainy tomorrow? Bayesian Networks (BNs) in general are well suited to cope with missing
data and uncertainty and are well renowned for being able to incorporate prior or domain
experts knowledge in the network where by looking at the nodes in a network as natural
events or actions, we can model - most of the times - complex scenarios. Although Bayesian
Networks (BNs) are powerful tools for representing relationships and dependencies among
a set of variables, due to their nature, they lack the mechanism to represent temporal
evolution. By using BNs, we can have a model with a good representation of spam emails
as in [18], however, the prediction of events where time is a fundamental aspect, as in a
weather forecasting task, gets more complex.

Dynamic Bayesian Networks (DBNs) - similarly to Bayesian Networks (BNs) - are a
kind of probabilistic graphical model structured in the form of Directed Acyclic Graphs
(DAGS) and can better cope with this issue by extending BNs to model the temporal aspect,
capturing the probabilistic dependencies among variables across different time steps. This
new approach has led to a growing interest in exploring those networks further, especially
in the context of interpreting diverse types of data sources.

This enhancement allows time series data to be effectively used by capturing the tem-
poral dynamics to define the development of the process over time. In a DBN nodes are
duplicated across consecutive time slices, creating connections between nodes from one
time slice and those in the consecutive one.

DBNs employ a Markovian approach to delineate the evolution of a system’s state
over time. The Markov principle posits that the condition of a system at any given time,
denoted as t, is influenced solely by its state at the preceding moment, ¢ — 1, meaning that
each state transition doesn’t depend on the entire history of the system but only on the
previous state. This is an important concept in the field of DBNs since we can think of
nodes and edges in terms of Markov chains.

As visible in figure 4.2 that represents an expanded DBN, the network isn’t restricted to
connections within the same time slices, called intra-slice connections. It instead extends

4.2.3 Dynamic Bayesian Networks 18

Time t

FIGURE 4.2: A Dynamic Bayesian Network represented over multiple time slices.

also to inter-slice connections, which bridge states across consecutive time frames. These
connections are a fundamental aspect of DBNs, as they represent conditional dependencies
between variables spanning between different time intervals. These transitions create a
joint probability distribution over multiple time steps as represented in formula 4.5.

T
P(x*T) = P(x) [T T PCxS | X5l (45)
t=1veV

Here, P(X%T) denotes the joint probability distribution of the set of random variables
X from time ¢t = 0 to time ¢ = T. P(Xp) is the initial probability distribution of the
random variables at time ¢ = 0, and P(X! | Xg(lv)) represents the conditional probability
distribution of each random variable X, where v € V' at time ¢, given its parents Xp,,)
at time ¢ — 1. It follows that, to compute the joint probability for the variables in two
consecutive time steps, the formulation is as follows:

P(X*', X" = P(X") [[P(XST | Xbagw) (4.6)
veV

In a DBN each slice represents the state of the system at a specific time ¢ consisting of
nodes and edges, structured similarly to a Bayesian Network. Dependencies are represented
through the use of edges that connect nodes between consecutive time slices, displaying
the temporal evolution of variables.

Considering the example previously used where node X, has two parents Xpg, () and
XPay(v) and considering a DBN with two time slices, the smallest DBN structure can be
represented as in figure 4.3.

In this example we can see how the variables at time ¢ affect the variables at time ¢+ 1.
This graph allows the Dynamic Bayesian Network to show and deal with the evolution of
the data over time. For instance, in the hypothesis of financial data, a structure of this
kind might represent the evolution of the prices where each time frame represent a week
of data. By modelling temporal dependencies, DBNs provide more accurate forecasts into
the future behaviour of financial markets.

Understanding how things change over time is crucial in a DBN. To help us understand
how conditional probabilities are employed in DBNs, we need to look at one tool that helps
us to understand the transition dynamics that is called Conditional Probability Table

4.2.4 Learning a Bayesian Network 19

time ¢ ‘ time ¢ + 1

FIGURE 4.3: Dynamic Bayesian Network with two time slices

(CPT). As detailed in sec 4.2.2, think of a CPT as a detailed chart that contains specific
information on how likely it is for the system to move from one state to another at each
time step and between time steps in the case of DBNs Even within a single moment in time,
there are often numerous variables and factors at play, each interacting with the others in
complex ways. CPTs aren’t just useful for understanding changes over time; they are also
handy for mapping out the relationships and interactions between different variables at any
given moment (referred to as "intra-slice" Conditional Probability Distributions (CPDs)).
In table 4.3 we can see a classic example where we want to predict the weather.

W, s, P(Wii1|We, St)
Sunny | Rainy | Cloudy
Sunny | Winter 0.4 0.4 0.2
Sunny | Summer 0.6 0.3 0.1
Rainy | Winter 0.2 0.5 0.3
Rainy | Summer 0.3 0.4 0.3
Cloudy | Winter 0.3 0.4 0.3
Cloudy | Summer 0.5 0.3 0.2

TABLE 4.3: Conditional Probability Table for Wy,

The right side of the table, represents the weather probabilities for the next day, while
the first two columns represent the different combinations that we might encounter. As-
suming that today (Time t) is sunny and it is winter, we can see that the probability of
tomorrow being sunny is equal to 0.4 which represents a 40% chance. In figure 4.4 we can
see the graphical representation of a DBN that depicts this example.

4.2.4 Learning a Bayesian Network

Training a Bayesian Network is a complex task that can involve a combination of two pro-
cesses: structure learning and parameters learning. Figure 4.5 outlines some of the different
options for learning the network grouped by category. Structure learning is the process of
determining how nodes are interconnected through edges to build a DAG. The structure
represents conditional dependencies and independencies between random variables and is
usually represented as a state transition matrix, while the parameters represent the con-
ditional probabilities in the form of Conditional Probability Tables (CPTs). Despite the

4.2.4 Learning a Bayesian Network 20

Time t

FIGURE 4.4: A Simplified Dynamic Bayesian Network illustrating dependencies
between weather and season over two consecutive days.

two being tightly coupled, you do not necessarily need the exact parameters to learn the
structure of the BN for its correct functioning, although this is dependent on the kind of
approach that is followed. The motivation behind it is that by having enough observations,
the patterns and dependencies between variables can still be detected despite not having
the exact conditional probability distributions. Vice versa, the data distributions can be
learned from the data. However, it is not possible to infer the parameters without knowing
the structure. In fact, parameters are nothing less than the probabilities that define the
relationships represented by the structure.

[Bayesian Network j

Structure Learning Paramt?ters
Learning
s — Bayesian Frequentist
Methods Methods
e Akaike Information
Criterion (AIC) e Maximum Likelihood
o Bayesian Information > PIST'CQZCIM‘k Algorithm e Maximum A Posteriori Estimation (MLE)
Criterion (BIC) () (MAP) o Expectation-
o K2 e Fast Causal Inference e Gibbs Sampling Maximization (EM)
. o e Gradient Descent
e Hill Climbing

FIGURE 4.5: Example of possible algorithms for structure and parameters learning

Structure Learning

Structure learning algorithms identify which variables are likely to be correlated and this
information can be combined together with domain knowledge to build more accurate
models. In general, to model a network structure (a DAG), we can identify two different

4.2.4 Learning a Bayesian Network 21

approaches called constraint-based and score-based. An additional approach is also possi-
ble and this involves a combination of the two mentioned approaches to create a hybrid
approach.

The score-based is a model selection approach that comprises of two steps. First,
these methods assign a numerical score to each model based on how well they fit a given
dataset D. The goal is to find the structure that best fits the data, hence, we want to
retrieve the model with the highest score. Once we have a scoring function to retrieve the
optimal model, it is necessary to define a search strategy to go through all the possible
combinations of models that apply to a certain dataset so as to be able to select the
optimal model. The scoring functions can be classified into two different categories based
on the approach they are based on, that is Bayesian and information-theoretic scoring
functions. Among some of the most used scores, we can find the K2 score, also used in
[48] and information-theory-based criteria such as Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC).

Both AIC and BIC help us understand how well a model fits the data. However,
in a Bayesian Network (BN) as the amount of parameters increases, so do the nodes in
the network. To obviate this problem the scoring functions add some regularization to
reduce the complexity of the model and avoid overfitting on the training data. Despite
its similarities, the two functions are based on different concepts. The AIC in eq. 4.7, as
defined by Koller [24], is an estimate of the distance between the true likelihood function
and the actual likelihood function of our model. In simple terms, it provides us with a
greater understanding of the difference between the real data and what our model predicts.

AlCqcore(G|D) = €(8,|D) — Dim(G) (4.7)

On the other hand, the BIC in eq. 4.8, also defined by Koller [24], approximates the
model’s marginal likelihood with the aim of selecting the "correct" model from a large set
of candidates.

BICucore(G|D) — ¢(d,D) — 22121

Dim(G) (4.8)

The main goal of both scoring functions is to find a balance between the model’s ac-
curacy and complexity. As visible in the defined equations 4.7 and 4.8 both compute the
log-likelihood of a graph G given a dataset D knowing the parameters ég. A higher log-
likelihood value also means a better fit. The second part of the functions, also called the
penalty term, is what actually differentiates the two. This term promotes simpler models.
When it’s subtracted from the model’s likelihood, a lower AIC or BIC value indicates a
better model. The term Dim(G) represents the number of independent parameters in the
network G while |D| represents the number of elements of the dataset D. As we have
more and more data, the sample size |D| increases and so does the penalty term, leading
to a higher penalty for more complex (large) models. This means that for large datasets,
AIC will tend to go in favour of larger networks compared to BIC. Given the features they
provide, we can say that there is not a favourite function between the two and both are
useful in different contexts. In cases where |D| is small, AIC could better represent the
data, whereas in cases where we have a larger dataset BIC might be favorable to reduce
the network complexity and avoid overfitting.

4.2.4 Learning a Bayesian Network 22

Score-based approaches use the output value of the scoring functions as a discriminant
for choosing the best model. In contrast, constraint-based approaches employ statistical
tests to determine which nodes or variables are related, with the objective of identifying the
connections that should exist between nodes based on observed data. A popular method
among constraint-based algorithms is the Peter Clark (PC) algorithm, named after Peter
Spirtes and Clark Glymour. As defined in [40], in this algorithm, we start with creating a
fully connected undirected graph. Let V' be the set of nodes (or vertices) V' = {v1, v, ...vn }
and let E be the set of undirected edges F = {{u,w} | u,w € V and u # w}. We define
as fully connected - or complete - a graph G = (V, E') where for every pair of nodes (u,w),
there exists one and only one edge e € E such that e = {u, w}. Formally, this is described
as: Vu,w eV, u 2w = {u,w} €FE

For each pair of nodes (or variables) we employ a statistical test to test the conditional
independence. By identifying the conditional dependencies and independences, we are able
to construct the so-called "skeleton" by removing the edges between independent nodes
starting from the fully connected graph. When using the PC algorithm, multiple statistical
tests can be employed to assess the (conditional) independence. As described by Parab
[31], the choice of the statistical test is based on the needs. The data type is an important
discriminating factor for its choice. For discrete data, the Chi-Squared and Fisher’s Exact
tests can be used, for continuous data, the Student’s t-test is ideal. In both cases, with
discrete or continuous data, the mutual information can be utilized. Once the process
of computing the independence of the variables through statistical tests is complete, we
continue testing the conditional independence by conditioning on additional other variables
in the network. The process first starts by conditioning on one variable, then two, and
so on until a specified depth is reached or an independence is found. As done in the step
before, if a conditional independence is found, the edge between the two nodes is removed.
After determining the skeleton, the algorithm orients the edges by applying some rules.

NS N

(A) Undirected Form of the V- (B) Directed Form of the V-
Structure Structure

FIGURE 4.6: Comparison of a V-Structure and its Directed Form

In the PC algorithm, the second step is orienting V-structures that are defined as sets
of three variables where one of the pairs is conditionally independent - no edge links the
nodes. For every set of three variables X, Y and Z, as in fig 4.6a. Assuming that there
is no dependence between X and Y, we check if Z is part of the set that makes X and
Y conditionally independent. If Z is not part of this set, then the edges are oriented as
X—>Z and Y— > Z as depicted in picture 4.6b. Once this step is done for each triple
of nodes, then an additional step is necessary to ensure that the graph follows the rules of
a DAG. For easier interpretation, in table 4.4 we can see a representation of the steps that
the algorithm takes. The first rule, which is also the one just described, is applied once;
the other rules (2 to 4) are applied iteratively until all the edges are oriented.

4.2.4 Learning a Bayesian Network

23

Initial Graph

Rule

Outcome

@\

V(X,Y, Z), such that X and Z, and
Y and Z are adjacent, but X and
Y are not, reorient X — Z — Y as
X - Z « Yif Z ¢ sepset(X,Y),
i.e. if the set of variables that, when
conditioned upon, renders Y and 72
conditionally independent.

N

®\

V(X,Y,Z),orient Z —Y as Z —» Y if
3 a directed edge X — Z such that
X and Y are not adjacent.

O

4

N

V(X,Y,Z), orient X —Y as X —» Y
if3I(X - Z-=Y).

N

s

v
@\@
1%

V(X,Y,Z, W), orient X — Z as X —
ZifIX—->Y—>Zand X - W —
Z) such that Y and W are not adja-
cent.

@g}@

TABLE 4.4: Steps of the PC Algorithm

4.2.4 Learning a Bayesian Network 24

Parameters Learning

Once the structure is determined, the next step to construct a Bayesian Network is to esti-
mate the Conditional Probability Distributions (CPDs) of the network that are contained
in CPTs and represent the causal relationship between a child and its parents’ nodes. Pa-
rameters learning is nonetheless than the task of learning the CPT. The estimation is a
step needed in most of the cases to obtain the probability distributions. Due to the com-
plexity of the model and due to the amount of data, it is often not possible to obtain a
fully observed model, meaning a model where all the variables in the network are observed
or known for each possible case. Essentially, this means that there are no missing values or
hidden variables in the data. When all variables are observed, the conditional probability
distributions can be directly estimated from the data by counting the occurrences in the
dataset, hence, no parameter estimation algorithm is needed. In fact, counting occurrences
acts as a mazimum likelithood estimator for multinomial distributions. This is derived from
the computation of the first derivative of the probability mass function with respect to the
probability parameters, eliminating the need for parameter estimation algorithms in this
scenario.

This can be demonstrated by computing the maximum likelihood estimation as follows.
Consider a multinomial distribution with parameters Py = (p1, p2, ..., px) where p; is the
probability of the i-th category, K = |V|, where V' is the number of nodes (or vertices) in
the network and Zfil p; = 1. Given a dataset with counts Ny = (ni,ng,...,nx), where
n; is the number of occurrences of the i-th category, the probability mass function (PMF)
is:

N‘ 71, N2 Us:e
p(Ny =ny | Py =py,N) = m "Dy P2”--Pi
= NI. i
i=1

where N = Zfil is the total number of observations. Given the obtained PMF, the
log-likelihood becomes as in formula 4.10.

log(p) =log(N!-] | 7
i=1 v
M p (4.10)
= log N! — Zlogm! + Znilogpi
i=1 i=1

To be able to differentiate the log-likelihood to maximize the function, we need to
implement the previously defined constraint Efil p; = 1. A fundamental property of
probability distribution is that the sum of the probabilities must be equal to 1, as a
consequence, this constraint represents the probabilities of the different variables in the
multinomial distribution. When all the variables are observed, this constraint must always
hold. The implementation can be done using the Lagrangian where A represents the
Lagrangian multiplier, a term used to penalize deviations from the defined constraint, as
in formula 4.11.

4.2.4 Learning a Bayesian Network 25

L(p, \) = log(p +)\<12p1>

=log N! — Zlogni! + Znilogpi
i=1 i=1

(4.11)

We now maximize the log-likelihood by differentiating the Lagrangian with respect to p;
and then setting the result to 0 to obtain p;:

0 0
=L(p,A\) = lo Di)
gy, = LX) = 5-log(p) Z i
0
= 5,-log(p) — A
pi (4.12)
2 o1~ S g+
= (log N! — logn!+ Y n;logp;) — A
Opi i=1 i=1
= & -\ = Pi = ni
i A
Using the initial constraint Zfi 1 pi = 1, it follows that:
K
' X_I:)\ Zn1:>>\ N
i=1 =1 (4 13)
Coming back to the previous equation, we find that: '
n;
pi = N

The derivation confirms that the parameter estimation using Maximum Likelihood Esti-
mation (MLE), in cases where all the variables are known, is the same as counting the
occurrences of the variables.

As we will see later in the project, this is an ideal scenario that simplifies both the
learning and the inference processes. However, in the real world, we often have to deal with
variables that are not always known, making it necessary to use algorithms for learning the
parameters through estimations. In figure 4.5, we can see how the parameters learning can
be categorized in two main approaches, Bayesian and Frequentist methods. The former
aims to calculate the probability of the parameters 6 given the data D, it provides a
full tree of possibilities for the parameters § where the parameters are weighted by their
probabilities. The latter, instead, aims at finding the point estimation of the parameters
0, which is the single most likely set of parameters.

In the frequentist statistics, the MLE is employed to obtain a point estimate of the
model’s parameters, symbolized by 6. To begin, the log-likelihood function is determined.
This function represents the natural logarithm of the probability of the observed data, given
a specific parameter set, and is chosen over the likelihood function due to computational
advantages. Given a dataset D = {dj,ds,...,d,} and a Bayesian network with parameters
0, the log-likelihood function £(6) is defined as in 4.14.

4.2.4 Learning a Bayesian Network 26

L(0) =log P(D|0)

= log [[P(dil6)

i=1

= log P(d;|6) (4.14)
=1

=" log P(X; = wij | Xpagy) = Tpagiyis 0)
=1 7

Where X is the j-th variable (or node) in the network and X p, ;) represents the parents
of the node X;. The log-likelihood is preferred to the likelihood function itself because by
transforming the products of probabilities into sums it simplifies the derivatives and we
avoid having to compute multiplications that are computationally more expensive. The
goal of the MLE method is to maximize the log-likelihood function, to obtain the best
estimate of the parameters /7 as in eq 4.15.

OriLe = arg mazeL(0) (4.15)

To maximize £(#), we compute the first partial derivative with respect to each param-
eter 0, where k € 6 and 0, is the k-th element of the set 8, and set it to O:

aL(6)

a6, =0 vk

(4.16)

) n
87(9k (;logP(X] = Tij | XPa(j)ia 0)) =0 vk

As an example for the family of the frequentist approaches, let’s now introduce a well-
known algorithm called EM that comprises of two main phases that are executed iteratively.
The first step - also called the E-step where E stands for Expectation - given the observed
data and the current estimates of the parameters, computes the expected value of the
log-likelihood function of the complete data (that includes observed and latent data). In
the context of Bayesian Networks, the EM algorithm is a prime example of how to deal
with partial data. When incomplete data is used as part of the learning process, some
variables will not have observed values in the network. To solve the issue, the algorithm
infers the most likely states of these hidden variables, given the observed data and the
network’s structure. Following, once the E-step is computed, the M-step - Maximization
step - is used to find the parameter values such that the log-likelihood function obtained
from the E-step is maximized. The output of this process is then used as an input to the
E-step for the following iteration. This algorithm requires a threshold to be set and the
process stops when the increase in likelihood falls below a certain threshold, the estimated
parameters at the end of this process will then become the model’s parameters.

Bayesian approaches differ in the process from the frequentists. While in the frequentist
approach parameters are considered to be fixed quantities and the focus is more on the

4.2.4 Learning a Bayesian Network 27

likelihood of the data, in Bayesian inference, both data and parameters are treated as
random variables. In addition, those methods allow for prior knowledge to be incorporated
into the network through the use of prior distributions, which is a fundamental aspect of
Bayesian Networks (BNs) since it allows for experts knowledge to be incorporated in the
network itself. This prior distribution represents our beliefs about the parameters before
observing any data, incorporating prior beliefs in a network, means manually defining
the prior probabilities given our knowledge of the distribution. Despite this being an
advantage of Bayesian inference, appearances can sometimes be deceiving. The reason is
that it is highly influenced by the subjectivity of the definition of the prior distribution since
local maxima are obtained in the learning process. Hence, starting from a different prior
distribution also leads to reaching a different posterior distribution, which in substance
means reaching different conclusions.

Let’s now introduce the Maximum A Posteriori (MAP) to understand this process.
At the foundation of the Bayesian approach, we find the Bayes theorem, defined as in
4.17. In this formula P(6|D) represents the posterior probability, P(D|#) the likelihood
of observing the dataset D given the parameters § and P(6) the prior probability of the
parameters 6

P(D[o)P ()

POID) = =55

(4.17)

The goal of the MAP approach is to find the parameters 6 that maximize the posterior
probability, resulting in what is called point estimation. In this project, since the dataset
D is fixed, the denominator P(D), which represents the marginal likelihood, is a constant.
However, because it does not depend on 6, it does not affect the optimization of the
parameters. Therefore, P(D) can be omitted from the optimization process, simplifying
the formula to maximize the product of the likelihood P(D|6) and the prior P(f) as in
4.18. This simplification reduces the complexity and speeds up the computation.

Orrap = arg max,y(P(D|0) - P(9)) (4.18)

In the context of a full Bayesian learning approach, the denominator P(D) would nor-
mally be defined as:

P(D) = / P(D|0) - P(6), 9 (4.19)

Integrating the product of the likelihood and the prior over all possible parameters can
be challenging, especially with a large number of parameters.

4.2.5 Partitioned Dynamic Bayesian Networks 28

4.2.5 Partitioned Dynamic Bayesian Networks

Partitioned Dynamic Bayesian Networkss (PDBNs) offer an advanced method for non-
homogeneous modeling processes, which are processes that vary over time, unlike tradi-
tional Bayesian Networks (BNs), which treat the entire period uniformly. While the ap-
proach of BNs simplifies the modeling process, it fails to capture the intricacies of temporal
data, leading to models that do not accurately reflect the underlying process dynamics.
This is particularly problematic in fields like the medical one, where data sparsity and
dynamic changes are common. PDBNs leverage limited data more efficiently than BNs
and their extension DBNs.

DBNs improve temporal modeling by duplicating random variables (nodes) over time,
with each time frame having an instance of the variables, and edges between different time
frames used to represent conditional (in)dependencies between nodes as time progresses.
This peculiarity makes DBNs better suited to capture the temporal domain when compared
to more classic models. However, this comes with its own limitations. The limitation
of these kinds of networks resides in their inability to model changes in the structure
of the networks, the idea behind it is to model a dynamic system where probabilistic
dependencies between variables evolve over time, but the structure of the graphical model
remains unchanged.

Partitioned Dynamic Bayesian Networkss (PDBNs), on the other hand, address this
limitation by following a different approach. In the original paper by Marcos Bueno [11],
a structure learning approach was proposed where a homogeneous model first captures
the overall temporal pattern, and sub-models are subsequently incorporated for discrete
intervals. This technique permits an increase in model complexity only when a proposed
partitioning of a sub-model yields better predictive accuracy across both training and
testing datasets. It’s important to notice that this partitioning is applied uniformly across
all features at the point in time where the new partition was created, ensuring that there
is a common division at each "juncture".

In essence, PDBNs dissect the timeline into chunks or periods, each of which is modeled
distinctly. For each time slice, a separate DBN model is created, which fits that period
within the larger sequence. This is represented in figure 4.7b where it is possible to notice
that each submodel represents a Dynamic Bayesian Network (DBN). The original paper
on PDBN introduces the term "distribution cuts" to describe the points in time in which
the process is segmented. A network with "k" distribution cuts, denoted as PDBN-k
divides the timeline into k + 1 separate parts, where each part is modeled independently.
It follows that a PDBN with a single cut - PDBN-1 - is equivalent to having a cut at T
where T represents the full extent of the timeline, as represented in figure 4.7a. A PDBN
with a single cut, is effectively the same as a standard Dynamic Bayesian Network (DBN);
no "partitioning" is created since only one model is present over the entire timeline. In
substance, a PDBN-1 covers all the timeframes of the DBN whose range is {0, ... T}.

4.2.5 Partitioned Dynamic Bayesian Networks 29

Sub-model

Sub-model
1

Sub-model
2

Sub-model
k

(B) PDBN with & distribution cuts

FIGURE 4.7: Comparative illustration of PDBNs with different numbers of distri-
bution cuts.

From the given description of the network, we can derive the joint probability distri-
bution which plays a crucial role in capturing the evolving dynamics. The joint probability
distribution empowers the calculation of the probability of future events given current ob-
servations, allowing inference on past states or future predictions. The joint probability
distribution formulation as defined by Bueno [11] is expressed in Equation 4.20, where the
equation represents the joint probability over all variables X(OT) from timet =0tot = T.

tr—1 n

XOT)) HP((0)|7TXZ,BO>H 11 HP(C | R(X5By)) (4.20)

r=1t=t,_1 i=1

As visible in the formulation, there is a clear distinction between the components of the
function. It can be considered as split into two main parts, where the first part, displayed
in Equation 4.21 represents the initial probability distribution at time ¢ = 0, while the
second part accounts for the transitions between subsequent time steps.

HPO (| 7o(XZ,BO)> (4.21)

This term describes the probability of each variable X; at the initial time step t =
0, conditioned on its parents w(X;, By) where By represents the structure of the initial
Dynamic Bayesian Network (DBN).

The second term in the formula represents the transitions between different cutsets.
For each cutset r, representing a different DBN, the joint distribution over the networks is
computed as in Equation 4.22.

gt

This term iterates over the different time slices t1,1%9,..., s, available in each cutset,
the product computes the probability of each variable X; at time ¢ 4+ 1, given its parents
7(X;, By) and the Dynamic Bayesian Network (DBN) structure B,.

ﬁ (. (Xi,Br)) (4.22)

4.2.5 Partitioned Dynamic Bayesian Networks 30

This part of the equation indicates that the state of a variable at the next time step
(t + 1) depends on the current state of its parents. To provide an example, it follows that
the price of the S&P 500 depends on the previous day price of the companies composing
the index.

When dealing with sparse data, Partitioned Dynamic Bayesian Networks (PDBN) show
their full strength sustaining a high accuracy and generally low possibility of overfitting.
A PDBN can construct a model that adapts its complexity progressively, which is a good
way to mitigate the risk of overfitting. Learning the network structure happens through
an algorithm designed to partition a dataset sequentially in time. Initially, the algorithm
considers the entire timeline as a single segment (as previously defined, this corresponds to
a PDBN-1). It then introduces distribution cuts to create partitions, thereby segmenting
the timeline into discrete, smaller models that describe different periods. Each of these
cuts are methodologically placed based on a scoring function which has a primary role in
the construction of the network. The goal of the scoring function is to reward simpler
models while maximizing accuracy. This process continues until no further cuts improve
the model, indicating that the current complexity is adequate.

When moving from one segment to the next, the final state of the variables at the end of
one segment serves as the initial state for the next. This process is also called conditioning.
The CPDs of the initial state at time ¢+ 1 are conditioned on the final state of the previous
segment at time t. Through this process the model captures temporal dependencies across
different segments. To use an analogy, we can think of it like a relay race. In this case,
each runner represents a cut and has to pass the baton to the next runner where the baton
represents the state of the system between the two runners that represent two different
cuts. Using this analogy, it is easy to understand that the way the first runner finishes
influences how the second runner starts his part of the race.

In substance, when moving to a new segment, you don’t start from scratch, instead,
you start based on where the last segment left off. Hence, the initial state of the next
segment’s CPDs depends on the final state of the previous segment’s CPDs.

Chapter 5

Methodology

5.1 Data Extraction and preparation

In this research, the focus was placed on the predictive analysis of the Standard and Poor’s
(S&P) 500 index whose data is highly available and easy to access. Given the strategic
importance of this index, it is an ideal candidate for the application of predictive models.
Comprising 500 of the largest companies listed on the United States stock exchanges, the
S&P 500 is a good indicator of the health and trends in the American economy. By
delving into the stock prices of the companies that constitute the index, the research aims
to capture the intricate dynamics and relationships that drive the overall performance of
the index, to assess how the amount of historical data affects the overall prediction. The
data used for this analysis can be categorized into four distinct groups: the composition
of the companies included in the index, the historical prices of the S&P 500, the sectors
to which each of these companies belong, and the daily price change of the companies
composing the S&P 500 index itself. Let’s now discuss how each was obtained.

5.1.1 Retrieval of the S&P 500 constituents

Ticker symbols are a unique combination of letters and, sometimes, numbers allowing for
quick identification of publicly traded companies in financial markets. For instance, the
company Apple Inc. is identified with the symbol "APPL". These ticker symbols assume
high importance when retrieving financial data since they are used as a primary key to
identify each company in the financial markets. To understand how the S&P 500 index
composition works, let’s now introduce some concepts. As previously stated, the S&P 500
index consists of the 500 most valuable companies listed in the American stock exchanges.
The value of these companies fluctuates over time, influenced by market conditions and
individual company performance, and the fluctuations are reflected in the companies’ stock
prices, which in turn affect their market capitalization.

Market capitalization, often referred to as "market cap", is a measure of a company’s
total value in general related to the stock market but applicable to every ambiance. It can
be calculated using the formula as in eq 5.1.

Market Capitalization = Number of Outstanding Shares x Share Price (5.1)

The term "Number of Outstanding Shares" refers to the total number of shares of a
company that are currently held by all of its shareholders - including institutional investors.
On the other hand, "Share Price" denotes the current trading price of a single share of

31

5.1.2 Retrieval of historical data 32

the company’s stock. This is the price at which a share can be bought or sold in the open
market at any given time. This calculation helps the investors determine the companies’
size. In the context of the S&P 500, the index is mainly weighted by market capitalization,
meaning that companies with larger market capitalization have a greater impact on the
index’s performance. Such a weighting mechanism ensures that the index reflects the
market dynamics giving more importance where it’s due. Several factors are taken into
account to assess whether a company is eligible to be part of this index [39] where market
capitalization is the primary factor.

This is an important concept due to the index being periodically reviewed to ensure
it remains representative of the market’s current state. Companies whose market capital-
ization grows significantly may be added to the index, replacing those with lower market
values. The consequence of this process is an always-evolving and changing index where
the constituents retrieved on a specific day will not be the same retrieved the following
year, enforcing the need to retrieve all the constituents in different periods. This is further
proven by the number of companies retrieved which is a total of 914 different ticker sym-
bols although the index is only composed of circa 500 companies at each period in time.
Retrieving the ticker symbols was a tedious process that involved obtaining the composi-
tion of the S&P 500, whose data was sourced from the iShares website [1]. iShares is a
company active in the financial sector that allows the trading of Exchange-Traded Fundss
(ETFs), which are funds that try to replicate the performances of various indices. For a
private investor, buying ETFs is a big advantage since acquiring a portion of an index is the
equivalent of acquiring a portion of all the companies that compose the index without the
need to buy each individual company the index is composed of. The iShares website offers
technical and financial information about all the funds managed by them. Together with
the financial data, they also provide the daily composition of the indexes, which, however,
is not already available in the form of a dataset, but is accessible on their platform through
the form of a table.

To retrieve this data from their website [1], a Python script was put in place to automate
the extraction process. Selenium [4] is a Python library that enables the user to easily
interact with web pages. In this case, the library was employed to execute a web scraping
process designed to iterate across different dates, capturing all the available information on
the index’s composition. It’s important to notice that the retrieved data not only includes
the list of constituent companies but also details like the market value and the number of
shares of each company. This step allowed the retrieval of data regarding the ticker symbols
of all the companies that compose the index per day that the company was available in
the index itself.

5.1.2 Retrieval of historical data

Once the composition of the S&P 500 index was determined for various historical periods,
the next phase of the research involved the collection of historical price data for each
constituent company. Given the full list of companies, APIs were used to access historical
data. This was done by identifying the first and last dates of a company’s presence within
the index, thereby defining a specific period for which historical price data was needed.
The APIs then provided daily stock prices for these companies, covering the entire span of
their inclusion in the index. This type of data retrieval approach ensured that the analysis
would include the precise time frames relevant to each company’s impact on the S&P 500.

The data collection process utilized two distinct APIs: the "Nasdaq Data Link" pro-
vided by the National Association of Securities Dealers Automated Quotations (NASDAQ)
stock exchange [29], and the Yahoo Finance API [46]. The NASDAQ is an American stock

5.1.2 Retrieval of historical data 33

exchange ranked second only behind the NYSE, in terms of market capitalization, calcu-
lated as the sum of the market capitalization of the individual companies that are listed in
the exchange itself. The exchange can be viewed as a market that facilitates the trading
of securities where securities are tradable financial assets that have an intangible value,
like stocks and bonds among the most famous ones. Any type of entity that allows the
exchange of companies’ stocks, like banks and trading platforms, needs an intermediary.
It is here that stock exchanges come into play, setting the rules and boundaries to be fol-
lowed for a company’s stock to be traded. The NASDAQ stock exchange, in addition to
offering a platform for the exchange of stocks, also serves as an important hub for financial
data where datasets of various types are available. In this platform, a large amount of
financial data is available, including direct trading activities and companies’ stock prices,
through a digital marketplace where both the NASDAQ and third-party vendors can sell
their market-related data services. The NASDAQ’s extensive repository of datasets and
APIs, although mostly accessible upon payment, contains many resources for real-time
data analysis and offers some datasets for free for research purposes. Accessibly via an
academic account, the Nasdaq Data Link grants access to stock price data. Similarly, Ya-
hoo Finance API not only offers historical price data but also provides access to additional
information for publicly traded companies. While the dataset initially comprised of 914
companies identified as constituents of the index, successful data retrieval was achieved for
only 701 companies using the Nasdaq API. Several factors contributed to this discrepancy
in terms of the amount of data retrieved through their API. Firstly, some companies might
have been delisted from the exchange due to financial difficulties or bankruptcy. Secondly,
mergers and acquisitions could have resulted in companies becoming private and not listed
on the stock market anymore. Lastly, a company might change its stock ticker symbol that
can happen for the above-mentioned factors (delisting, mergers, and acquisitions) as well
as being a common occurrence when a company decides to change its name, which usually
triggers a change in the ticker symbol to maintain user recognition and association. To
address the shortfall in data collection, a second approach using the Yahoo Finance API
was employed. By focusing solely on those tickers for which the Nasdaq API retrieved no
data, 71 additional companies were identified increasing the total of companies for which
the data was retrieved to 772 out of 914.

After employing the mentioned APIs, the data retrieved was in the form of Open,
High, Low, Close, Volume (OHLCV). Starting from this dataset, a decision had to be
made on which specific metric to use. After analyzing the data, we noticed that the APIs
were already providing adjusted data, that is data where stock splits and dividends are
already taken into account. In financial markets, there are times when companies decide
that increasing or decreasing the number of shares available can profit the company. This
so-called "stock split" does not change the overall market capitalization of a company,
however, it changes the intrinsic value of each share. Moreover, companies can decide
to release dividends, that are profits that are released to investor as a return for their
investments. It is in this situations that adjusted data comes to our aid providing prices
that are independent of how many or what kind of splits happened throughout the years
and independently from the dividends released, providing a clearer vision of how companies’
prices changed over the years. The final decision in terms of choice of source of truth for
the daily market price of companies, went for the adjusted close price.

Once the adjusted close price was retrieved for each company, this was transformed into
a percentage representing the daily price increase when compared to the previous day and
discretized to be better handled by the network. Considering that each company can have
a different behavior, which is also dependent on the liquidity of the companies’s shares -

5.1.3 Retrieval of sectors data 34

that is the number of shares available for each company - the discretization was computed
per company. Figure 5.1 displays the ranges used for discretizing the data.

Range Label

Below 10th percentile | High Decrease

10th to 30th percentile Decrease

30th to 45th percentile | Low Decrease

45th to 55th percentile No Change

55th to 70th percentile | Low Increase

70th to 90th percentile Increase

Above 90th percentile | High Increase

TABLE 5.1: Percentile Ranges and Corresponding Labels

Given a company’s daily price change as a percentage of the company’s total value,
percentiles were computed and the prices discretized for all the companies, where the price
of the S&P 500 index, followed the same approach.

5.1.3 Retrieval of sectors data

To further enhance the predictive capabilities of the network, sectors data were included in
the dataset. The Global Industry Classification Standard (GICS) [41] a widely recognized
framework within the financial sector, categorizes companies into specific sectors, providing
investors with a clearer understanding of the companies’ primary focus. In addition to clas-
sifying by each sector, the standard further divides companies into additional subgroups,
offering a more in-depth view of the different types of business. For this research, compa-
nies were assigned to their respective primary sectors. After retrieving a subset of the data
spanning a 10 years period comprising of a total of 596 companies, the Yahoo Finance API
was initially employed to retrieve each company’s sector. However, as mentioned in the
previous section, this approach encountered limitations, which led to the absence of sector
information for some companies. Consequently, sector information for only 484 companies
was successfully retrieved. For the remaining 112 companies, sectors were assigned manu-
ally by analyzing each ticker’s historical data to determine the corresponding company and
subsequently classifying it into the correct sector. Financial websites, that provide finan-
cial news or historical stock price data like Marketwatch [2], Yahoo Finance [5], Nasdaq
[3], and CNBC [6] were used as a primary source for this research.

Overall, the companies were divided into the eleven sectors defined by GICS. Table 5.2
provides an overview of the sectors and the number of companies identified within each
category.

5.2 Application of Partitioned Dynamic Bayesian Networks

Let’s now introduce how the Partitioned Dynamic Bayesian Networks (PDBN) network
[15] was constructed in this project. As defined in Chapter 4 Section 2.5, the development
of the network involved the construction of multiple Dynamic Bayesian Networks (DBNs),

5.2 Application of Partitioned Dynamic Bayesian Networks 35

Sector Number of companies Percentage (%) of the total
Financial Services 87 14.59 %
Industrials 80 13.42 %
Technology 75 12.57 %
Healthcare 73 12.24 %
Consumer Cyclical 72 12.08 %
Energy 45 7.54 %
Consumer Defensive 41 6.87 %
Basic Materials 34 5.70 %
Real Estate 33 5.53 %
Utilities 29 4.87 %
Communication Services 27 4.53 %

TABLE 5.2: Number of companies by sector and their percentage share

as many as the defined number of cutsets. This development process happened through
the use of the library bnlearn [37] and the programming language R.

The phases detailed below, highlight, step-by-step, the process followed for the con-
struction of the model. Starting with the foundational steps that involved data prepara-
tion and cleaning, the process advanced through the manual and automated construction
of each Dynamic Bayesian Networks (DBNs). Subsequently, starting from the newly de-
fined DBNs, the structures were unrolled and the CPTs constructed for each network’s
node. The final phase involved learning the parameters given the provided dataset.

The development of the network can be logically divided into different phases as follows:

1. Data preparation: Initial organization and cleaning of data.
2. Manual construction of Dynamic Bayesian Networks

3. Structure Learning: determining the structure of each Dynamic Bayesian Network
from the data

4. Partitioned Dynamic Bayesian Network construction - Structure Unrolling:
Assembling the PDBN by extending the structure of individual DBNs

5. Partitioned Dynamic Bayesian Network construction - Parameters Un-
rolling: Construct the Conditional Probability Tables (CPTs) for the unrolled PDBN

6. Parameter Learning: Learn the network parameters from the data

Each of these phases is further detailed in the following sections to provide a comprehensive
understanding of the network development process.

Data Preparation

After downloading the S&P components and their corresponding sectors as defined in
chapter 5.1.1, the initial step involved a preparation process to structure the data. Despite
this careful preparation phase, it quickly became evident that an additional step was
indispensable to align the data with the requirements of our network. The network’s
structure can significantly vary based on the change in the data and based on the specific
cutset chosen for the analysis. To tackle this challenge, we began by loading the data

5.2 Application of Partitioned Dynamic Bayesian Networks 36

for each company, which includes the daily price changes. This data is then merged with
the sectors associated with each company, employing a row-wise combination approach.
Through this process, we create a structure where, for each day and each company, a single
row represents the daily price change of that particular company. The structure resulting
from this process is illustrated in table 5.3.

Ticker Sector Change
APPL Technology Increase
AMZN Technology Decrease
ABT Healthcare Low Increase
AMP Financial Services No Change

TABLE 5.3: Example of the processed data structure before the subdivision in time
frames

The process just described is necessary for the creation of differently large networks.
Specifically, when defining the transitions within each DBN we need to take an extra step
to ensure they accurately reflect the transitions in stock price movements. This involves
collecting data in a quantity proportional to the number of divisions or cutsets in the
network. For example, if we are working with a network divided into five different DBNs,
like a PDBN with five cuts (PDBN-5), we would use 20% of the dataset for training the
structure of each segment (or cut). This collected data is again divided into two parts,
where each of the two parts identifies one side of the transition of the DBN. This is crucial
to ensure that each node in the network accurately models the transition between different
phases of prices transitioning from one day to the following.

After gathering the data, the combined data (as in table 5.3) undergoes a structuring
phase. This is where the data is prepared for further analysis, to facilitate the unrolling and
learning of the network’s parameters. The data is organized so that changes in company
prices and the S&P 500 index, are split into columns. The data within these columns is
distributed in proportion to the network’s segments, as described above. For instance, if a
PDBN-5 has a total of 50 transitions and we focus on the first 10 transitions, we will make
use of 20% of the available data for this purpose. This extracted subset is then utilized to
learn the parameters of the first five transitions, an example structure can be seen in table
5.4.

Ticker | Sector Change 1 Change 2 SNP Price 1| SNP_Price 2

APPL Technology | Increase Low Decrease | High Increase Low Increase

ABT Healthcare | Low Increase | Increase Low Increase High Decrease

AMP Financial No Change Low Decrease | Increase No Change
Services

APPL Technology | Decrease Low Increase | Low Decrease Increase

ABT Healthcare | Increase Low Increase | Low Increase Low Decrease

AMP Financial High Increase | Decrease Decrease Low Decrease
Services

TABLE 5.4: Example of the processed data structure divided in time frames

5.2 Application of Partitioned Dynamic Bayesian Networks 37

Manual Construction of Dynamic Bayesian Networks

Constructing the structure of a BN is a challenging task, with a lot of research that
has been done over the years, mostly involving the use of structure learning, which, as
explained in chapter 4.2.4, is a significant component of building a Bayesian Network.
Unlike manual structure construction, which relies heavily on expert knowledge and domain
understanding, structure learning enables the creation of networks directly from data,
avoiding the need for human intervention in specifying the network topology.

Although from an external perspective structure learning seems to have many advan-
tages and seems to always play a crucial role, this does not come without drawbacks. The
complexity of the structure learning problem cannot be, in fact, understated. As demon-
strated by Chickering (1996) [12], this problem is NP-hard, indicating its computational
difficulties and the absence of polynomial-time algorithms capable of solving all instances
of the problem. For small networks involving few nodes, creating all possible combinations
is computationally feasible, however, as the number of nodes increases, so does the number
of permutations which increases exponentially. In cases where the domain is vast, auto-
mated methods may become impractical or fail to produce a model in a reasonable time
frame. As a consequence, optimization algorithms have to be employed, to approximate
solutions by choosing a network structure that offers improved performances compared to
the vast search space of possible structures.

One of the advantages of Bayesian Networks is the ability to incorporate experts’ knowl-
edge via the manual creation of networks, this manual creation can be beneficial when
dealing with a scarcity of data that can lead to a sparse representation when learning the
network’s structure. In an ideal scenario, the structure learning algorithm would find the
optimal structure that maximizes the prediction accuracy and log-likelihood. However, in
most cases, the algorithm reaches a local optima, a point in which the network is unable
to improve any further given the current configuration, impeding improved performances.

To effectively exploit both the available data and the domain knowledge, a hybrid
methodology was implemented. This approach began by constructing a manual structure
based on the domain knowledge and subsequently fine-tuned the network architecture
through structure learning techniques. When defining the approach, the final one adopted
for representing the data ensured that the variety of nodes within the network remains
limited. The dataset, as previously described, comprises company stock price changes,
fundamental company information (such as ticker symbols and sectors), and variations in
the S&P 500 index price. This streamlined dataset allowed for the manual construction of
the network by following basic intuition rules.

Given the interdependent nature of the variables within the dataset, constructing the
network manually proved relatively straightforward. For instance, a company’s sector is
inherently linked to the company itself (represented with the ticker symbol), likewise, the
impact of company performances on the S&P index fluctuations is a natural correlation
due to the S&P 500 representing the overall movement of its constituents.

This manual network construction created the foundations for further improvements
through structure learning. Using the constructed data as in table 5.4, the network was
trained making use of the Hill Climbing (HC) algorithm. The Hill Climbing algorithm [32]
is part of the family of score-based methods, as described in 4.2.4 this family of methods
assigns a score to each candidate Bayesian Network and tries to maximize this score. The
difference between score-based methods lies in how each candidate is found and based on
the chosen scoring function utilized to evaluate the model. This algorithm computes what
is defined as a greedy search by looking at its neighboring models. The search is defined as
greedy since the algorithm chooses the most immediate, or locally optimal, choice at each

5.2 Application of Partitioned Dynamic Bayesian Networks 38

step of the process to obtain the best outcome.
The basic hill climbing algorithm works as in Algorithm 1.

Algorithm 1 Hill Climbing Algorithm

1: Evaluate the initial state
2: while not termination condition do
Select an operator not yet applied to the current state (insertion, deletion, or re-
versing an edge)
Apply the operator to generate a new state
Evaluate the new state
if new state is a final state then
return new state as the solution
else if new state is better than the current state then
Set current state to new state
10: end if
11: end while
12: return current state

w

The bnlearn library, employed extensively throughout the project, supports the usage
of various scoring functions such as BIC and AIC, defined in chapter 4.2.4. By default,
the library uses BIC as the scoring function. While bnlearn is not designed with specific
functions for training Dynamic Bayesian Networks (DBNs) - which differ in the structure
to Bayesian Networks, primarily in their edge directions restricted in "forward" movements
across time periods - this limitation can be overcome. The library allows modifications to
the network structure through the use of whitelist and blacklist passed as parameters to
the function used for the structure learning. Both the parameters contain lists of tuples
representing edges. The whitelist comprises of edges that should always be included in
the network, thereby unremovable. The blacklist, instead, comprises of edges that should
not appear in the network, guiding the structure learning algorithms to avoid undesirable
connections. Through the usage of those two parameters one can learn the structure of a
Dynamic Bayesian Network. The blacklist was used to prevent edges that go "backwards",
for each node at time ¢ + 1, the blacklist includes an edge linking the node at time ¢ + 1
to the node at time ¢ ensuring that only forward temporal connections are possible. The
whitelist can also play a crucial role in the learning of the structure. In fact, one of the
experiments conducted involved its use. After the manual network structure is defined,
the edges involved in the network are passed through the use of this parameter, resulting
in creating a network that retains the defined manual edges, while still incorporating
additional edges learned through the algorithm.

Partitioned Dynamic Bayesian Network construction - Structure Unrolling

For building the Partitioned Dynamic Bayesian Networks (PDBN), the process of con-
structing the Dynamic Bayesian Network (DBN), previously described, has to be repeated
as many times as the number of cuts present in the PDBN -+ 1. This creates multiple DBNs
where each potentially has a different structure based on the distribution of the batch of
data utilized for its construction. The library bnlearn, although a powerful library under
various aspects, does not natively support the use of PDBNs as a mean of a sequence
of Dynamic Bayesian Networks. To overcome this limitation, a common technique called
structure unrolling has to be employed. The goal of this technique is to transform a DBN
into a standard Bayesian Network by explicitly representing each time slice. In Figure 5.1

5.2 Application of Partitioned Dynamic Bayesian Networks 39

we can see a representation of this process for a Dynamic Bayesian Network with 4 time
slices, where Figures 5.1a and 5.1b respectively represent the network before and after
unrolling the structure. After obtaining the structure of each sub-network, the following
process involved connecting these sub-networks into a unique network that forms the Par-
titioned Dynamic Bayesian Network. To make sure that links were added to connect two
different Dynamic Bayesian Networks, the edges in a network at time ¢ + 1 were used as
a bridge between the two networks at time ¢ + 1 and ¢. Once this process was completed,
the resulting network is a full Partitioned Dynamic Bayesian Network.

Change_ t0

(A) DBN before unrolling its structure

SNP_ Price_4

) DBN after unrolling its structure

FI1GURE 5.1: Example representation of the unrolling of a Dynamic Bayesian Net-
work

Chapter 6

Results

In this chapter, an analysis of the results of the experiments conducted is presented. This
involved extensive testing and evaluation across multiple network structures, structure
learning techniques, and varying amounts of data. The objective was to rigorously assess
the performance of the models and the impact of the amount of data under different
configurations and data scales.

To this end, various network structures and cutset configurations were explored. The
specific cutset tested are as in table 6.1.

Cutset Configuration | Model Description
{5, 10, 15} PDBN-3 (Three cuts at time transitions 5, 10, 15)
{5, 10, 15, 20} PDBN-4 (Four cuts at time transitions 5, 10, 15, 20)
{5, 10, 15, 20, 25} PDBN-5 (Five cuts at time transitions 5, 10, 15, 20, 25)
{5, 10, 15, 20, 25, 30} | PDBN-6 (Six cuts at time transitions 5, 10, 15, 20, 25, 30)
{15, 30, 45} PDBN-3 (Three cuts at time transitions 15, 30, 45)

TABLE 6.1: Cutset Configurations and Corresponding Models

These configurations represent different variations of the proposed structure, where, for
instance, {5, 10, 15} corresponds to a PDBN-3, which is a Partitioned Dynamic Bayesian
Networks (PDBN) model that incorporates three distinct cuts at the specified time transi-
tions. Each cutset was chosen to evaluate the effects that the structure learning algorithm
has on the model’s performance and the impact of different temporal granularities.

The temporal granularity is particularly relevant when training the network with dif-
ferent training data sizes to assess the impact on the network’s prediction capabilities. The
experiments were conducted with varying dataset sizes, ranging from 500 to 2450, parti-
tioned according to each cutset configuration, to evaluate how different data volumes and
partitioning affect the model’s performance. Additionally, to analyze changes in market
behavior and the impact of different prediction intervals, the metrics were tracked every
50 predictions, up to a maximum of 500 predictions. The specific cutset configurations,
dataset sizes, and the corresponding amount of days of data used per each time slice are
summarized in Table 6.2.

Tables 6.3 and 6.4 present the results and the associated metrics for the experiments
conducted on models constructed using structure learning and not, respectively.

40

Cutset Configuration | Dataset Size | Days of Data per Time Slice
{5, 10, 15} 500 33
{5, 10, 15} 750 50
{5, 10, 15} 1000 67
{5, 10, 15} 1250 83
{5, 10, 15} 1500 100
{5, 10, 15} 1750 117
{5, 10, 15} 2000 133
{5, 10, 15} 2250 150
{5, 10, 15} 2450 163
{5, 10, 15, 20} 500 25
{5, 10, 15, 20} 750 38
{5, 10, 15, 20} 1000 50
{5, 10, 15, 20} 1250 63
{5, 10, 15, 20} 1500 75
{5, 10, 15, 20} 1750 88
{5, 10, 15, 20} 2000 100
{5, 10, 15, 20} 2250 113
{5, 10, 15, 20} 2450 123
{5, 10, 15, 20, 25} 500 20
{5, 10, 15, 20, 25} 750 30
{5, 10, 15, 20, 25} 1000 40
{5, 10, 15, 20, 25} 1250 50
{5, 10, 15, 20, 25} 1500 60
{5, 10, 15, 20, 25} 1750 70
{5, 10, 15, 20, 25} 2000 80
{5, 10, 15, 20, 25} 2250 90
{5, 10, 15, 20, 25} 2450 98
{5, 10, 15, 20, 25, 30} 500 17
{5, 10, 15, 20, 25, 30} 750 25
{5, 10, 15, 20, 25, 30} 1000 33
{5, 10, 15, 20, 25, 30} 1250 42
{5, 10, 15, 20, 25, 30} 1500 50
{5, 10, 15, 20, 25, 30} 1750 58
{5, 10, 15, 20, 25, 30} 2000 67
{5, 10, 15, 20, 25, 30} 2250 75
{5, 10, 15, 20, 25, 30} 2450 82
{15, 30, 45} 500 11
{15, 30, 45} 750 17
{15, 30, 45} 1000 22
{15, 30, 45} 1250 28
{15, 30, 45} 1500 33
{15, 30, 45} 1750 39
{15, 30, 45} 2000 44
{15, 30, 45} 2250 50
{15, 30, 45} 2450 54

TABLE 6.2: Cutset Configurations and Days per Node for Each Dataset Size

Executions with Structure Learning

MAE RMSE R Squared Log-Likelihood Exact Accuracy Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

500 500 15 30 45 1.865732 2.210292 -1070.512858 -1.755748 0.194 0.380944 97 132
750 15 30 45 1.982211 2.261116 -1179.792355 -1.744432 0.188 0.368470 94 132
1000 15 30 45 2.040465 2.354330 -1111.017423 -1.824024 0.194 0.350461 97 133
1250 15 _30_45 2.082159 2.359415 -1095.791854 -1.892081 0.190 0.327777 95 126
1500 15 _30_45 1.973429 2.222980 -938.967996 -1.888283 0.204 0.355178 102 133
1750 15 30 45 1.770959 2.012041 -841.771214 -1.878328 0.248 0.384650 124 144
2000 15 _30_45 1.826911 2.049640 -945.065500 -1.896317 0.192 0.349001 96 143
2250 15 _30_45 1.987005 2.210760 -1088.518929 -1.885416 0.218 0.334374 109 126
2450 15 30 45 2.052136 2.292538 -1123.743773 -1.845320 0.194 0.337652 97 108
500 5 10 _15 1.822328 2.062688 -1062.899750 -1.750503 0.252 0.390117 126 126
750 5 10_15 1.933162 2.115694 -1190.078756 -1.740421 0.198 0.372663 99 134
1000 5 10 15 2.085298 2.379187 -1109.786655 -1.814685 0.200 0.344056 100 116
1250 5 _10_15 2.086942 2.351504 -1150.170113 -1.895525 0.184 0.325094 92 109
1500 5_10_15 1.952572 2.196272 -964.777628 -1.888587 0.208 0.352300 104 122
1750 5 10 15 1.836646 2.075793 -843.440990 -1.893769 0.218 0.370687 109 148
2000 5 _10_15 1.846394 2.065205 -958.323813 -1.901557 0.222 0.348680 111 134
2250 5_10_15 1.916873 2.134556 -1049.310887 -1.877415 0.210 0.348633 105 139
2450 5 10 15 2.020900 2.249550 -1145.306781 -1.858285 0.190 0.335753 95 135
500 5 10 15 20 1.796897 2.047302 -1052.363127 -1.747373 0.224 0.392660 112 128
750 5 10 _15_20 1.934442 2.129304 -1225.739039 -1.744698 0.254 0.372497 127 115
1000 5 10 15 20 2.085707 2.389248 -1115.392463 -1.821467 0.184 0.341943 92 101
1250 5 10 _15_ 20 2.080624 2.354345 -1124.363169 -1.893655 0.192 0.327825 96 118
1500 5 10 15 20 1.957230 2.203632 -958.035916 -1.890334 0.210 0.352895 105 137
1750 5 10 15 20 1.841321 2.081039 -855.280591 -1.895130 0.220 0.368195 110 149
2000 5 _10_15 20 1.845762 2.066433 -955.386661 -1.898447 0.198 0.350807 99 164
2250 5 10 15 20 1.912864 2.130891 -1050.678802 -1.873591 0.224 0.352653 112 120
2450 5 10 15 20 2.008341 2.236363 -1138.114800 -1.853656 0.214 0.341275 107 113
500 5 10 _15 20 25 1.783975 2.045089 -1017.828267 -1.751546 0.216 0.392853 108 140
750 5 10_15 20 25 1.934690 2.160582 -1196.562960 -1.744036 0.216 0.374907 108 117
1000 5 10 15 20 25 2.076004 2.387042 -1117.755384 -1.820042 0.210 0.344062 105 114

Continued on next page

TABLE 6.3: Execution Results and Metrics: 500 predictions with structure learning (continued)

MAE RMSE R Squared Log-Likelihood Exact Accuracy Weighted accuracy Exact Prediction Near Miss
Predictions Days Cutset

1250 5 10 _15 20 25 2.097467 2.373850 -1122.133270 -1.894705 0.192 0.325256 96 128
1500 5 10 15 20 25 1.957388 2.209263 -954.987225 -1.893982 0.194 0.351464 97 145
1750 5 10 15 20 25 1.819415 2.060949 -850.194729 -1.890791 0.214 0.372280 107 140
2000 5 10 15 20 25 1.836981 2.059868 -944.056772 -1.891174 0.194 0.352187 97 163
2250 5 10 15 20 25 1.926692 2.151140 -1054.467796 -1.875209 0.206 0.349247 103 147
2450 5 10 15 20 25 2.011312 2.239885 -1137.456634 -1.852128 0.186 0.340685 93 127
500 5 10 15 20 25 30 | 1.848348 2.154630 -1039.961795 -1.755147 0.226 0.384152 113 139
750 5 10_15 20 25 30 | 1.958190 2.189915 -1180.587658 -1.747305 0.244 0.371686 122 115
1000 5 10 15 20 25 30 | 2.078447 2.393738 -1110.557259 -1.821765 0.184 0.344690 92 130
1250 5 10 _15 20 25 30 | 2.089168 2.371296 -1122.756183 -1.893381 0.188 0.328081 94 123
1500 5 10 15 20 25 30 | 1.973405 2.225978 -959.964686 -1.896693 0.196 0.351670 98 134
1750 5 10 15 20 25 30 | 1.813873 2.053255 -849.991615 -1.888172 0.226 0.374398 113 145
2000 5 10 15 20 25 30 | 1.823130 2.046540 -938.098492 -1.889542 0.222 0.353021 111 147
2250 5 _10 15 20 25 30 | 1.940443 2.162325 -1060.095667 -1.877816 0.198 0.345469 99 139
2450 5 10 15 20 25 30 | 2.038922 2.274503 -1133.625889 -1.850515 0.208 0.337207 104 105

End of the table

TABLE 6.3: Execution Results and Metrics: 500 predictions with structure learning (end)

Executions without Structure Learning

MAE RMSE R Squared Log-Likelihood Exact Accuracy Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

500 500 15 30 45 1.003860 1.783121 -598.455081 -1.430377 0.254 0.676417 127 202
750 15 30 45 1.182149 1.949456 -721.149239 -1.441832 0.258 0.622169 129 175
1000 15 30 45 1.240127 2.000143 -711.614552 -1.456160 0.268 0.607780 134 190
1250 15_30_45 1.251528 1.984559 -741.262985 -1.466726 0.222 0.599737 111 185
1500 15 _30_45 1.252617 1.964543 -713.068213 -1.461650 0.244 0.595009 122 167
1750 15 30 45 1.163691 1.810748 -656.640681 -1.433268 0.282 0.608998 141 185
2000 15 _30_45 1.192097 1.802263 -688.222492 -1.445674 0.240 0.593797 120 194
2250 15 _30_45 1.401071 2.045905 -845.025705 -1.501595 0.262 0.540820 131 172
2450 15 30 45 1.546524 2.222936 -954.528388 -1.529078 0.202 0.509827 101 157
500 5 10 _15 1.000672 1.775279 -585.874903 -1.428318 0.334 0.678012 167 162
750 5 10_15 1.174124 1.933820 -729.842386 -1.440118 0.260 0.623280 130 162
1000 5 10 15 1.275999 2.042256 -727.811903 -1.461322 0.252 0.598189 126 171
1250 5 _10_15 1.259280 1.990962 -766.485579 -1.466463 0.252 0.598268 126 172
1500 5_10_15 1.232461 1.941322 -702.429296 -1.458755 0.260 0.600158 130 176
1750 5 10 15 1.218870 1.881911 -673.846362 -1.454753 0.294 0.595416 147 165
2000 5 _10_15 1.192608 1.805656 -692.302117 -1.444125 0.300 0.594656 150 168
2250 5_10_15 1.332997 1.964654 -798.319349 -1.481043 0.278 0.558525 139 171
2450 5 10 15 1.521165 2.189246 -956.945824 -1.527951 0.216 0.513039 108 157
500 5 10 15 20 0.996833 1.767818 -583.328464 -1.427680 0.298 0.678315 149 193
750 5 10 15 20 1.169432 1.926131 -732.951444 -1.440701 0.272 0.624027 136 178
1000 5 10 15 20 1.272719 2.037206 -725.524251 -1.461708 0.294 0.598682 147 159
1250 5 10 _15_ 20 1.251278 1.981806 -756.954103 -1.465633 0.242 0.600219 121 189
1500 5 10 15 20 1.234078 1.941893 -706.067276 -1.460016 0.270 0.599064 135 168
1750 5 10 15 20 1.215934 1.874975 -671.019822 -1.453090 0.236 0.595637 118 196
2000 5 _10_15 20 1.193193 1.805532 -685.291083 -1.443624 0.276 0.595485 138 189
2250 5 10 15 20 1.338484 1.971922 -809.143372 -1.481993 0.282 0.557199 141 168
2450 5 10 15 20 1.516373 2.183911 -951.537216 -1.526412 0.244 0.514161 122 154
500 5 10 _15 20 25 0.995290 1.765190 -584.418517 -1.427930 0.372 0.678173 170 186
750 5 10_15 20 25 1.166645 1.925571 -718.414778 -1.439983 0.278 0.624910 139 170
1000 5 10 15 20 25 1.268464 2.030482 -719.746151 -1.460244 0.242 0.599831 121 176

Continued on next page

TABLE 6.4: Execution Results and Metrics: 500 predictions without structure learning (continued)

MAE RMSE R Squared Log-Likelihood Exact Accuracy Weighted accuracy Exact Prediction Near Miss
Predictions Days Cutset

1250 5 10 _15 20 25 1.251035 1.984003 -745.812097 -1.465449 0.260 0.600409 130 170
1500 5 10 _15 20 25 1.239391 1.946627 -708.998569 -1.462271 0.292 0.597481 146 161
1750 5 10 15 20 25 1.206401 1.861678 -670.816302 -1.449747 0.276 0.597365 138 182
2000 5 10 15 20 25 1.188123 1.799993 -685.904966 -1.441226 0.390 0.596418 133 195
2250 5 10 15 20 25 1.347470 1.983980 -814.493280 -1.485908 0.244 0.554917 122 187
2450 5 10 15 20 25 1.516362 2.183854 -946.249634 -1.527007 0.222 0.514380 111 160
500 5 10 15 20 25 30 | 1.000525 1.776164 = -582.484077 -1.429221 0.352 0.677437 154 176
750 5 10 15 20 _25 30 | 1.172594 1.936522 -717.232988 -1.441371 0.242 0.624415 121 172
1000 5 10 15 20 25 30 | 1.261875 2.023666 -718.998029 -1.459552 0.248 0.601708 124 170
1250 5 10 _15 20 25 30 | 1.253450 1.986978 -748.302426 -1.465262 0.248 0.599589 124 165
1500 5 10 15 20 25 30 | 1.251744 1.961588 -716.253209 -1.463692 0.276 0.594897 138 190
1750 5 10 15 20 25 30 | 1.193727 1.847542 -665.922985 -1.445291 0.282 0.601954 141 178
2000 5 10 15 20 25 30 | 1.183880 1.794923 -687.621372 -1.440808 0.268 0.597027 134 187
2250 5 10 15 20 25 30 | 1.359063 1.997024 -821.231622 -1.490161 0.252 0.551301 126 170
2450 5 10 15 20 25 30 | 1.530083 2.202827 -949.085000 -1.527199 0.204 0.512623 102 171

End of the table

TABLE 6.4: Execution Results and Metrics: 500 predictions without structure learning (end)

46

These tables focus solely on the most extensive prediction setting, which is the one
where the number of predictions considered reached the maximum of 500. The tables
include a variety of metrics, crucial for evaluating the effectiveness and better analyzing
the model, such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
R-squared, Log-Likelihood, Exact accuracy, Weighted Accuracy, the number of Exact Pre-
dictions and the number of Near Misses. The entries highlighted in red in each table denote
the best values for each computed metric across all tested configurations (within the table
content). The MAE is a metric that evaluates the accuracy of a model by measuring the
absolute difference between the prediction and the actual value. Unlike other metrics, only
the magnitude is taken into account and not the direction. This property ensures that the
metric is not affected by over and under estimations, as shown in eq 6.1

N
1 .
MAE:N2;|yi—yi\ (6~1)

where NV represents the total number of predictions, y; denotes the actual value for the
i-th observation, and g; is the predicted value for the i-th observation.

In this context, the labels that were created, representing the change in direction of
the price of a specific company compared to the previous day, were used to compute this
metric. To achieve this, these changes in direction were categorized into seven distinct
classes: High Decrease (1), Decrease (2), Low Decrease (3), No Change (4), Low Increase
(5), Increase (6), High Increase (7). Each label was assigned a numerical value enabling
the calculation of the distance between actual and predicted observations.

A similar approach was used to compute the weighted accuracy, obtained by taking
into account the distance between the prediction and the actual value. A lower value
was given where the distance from the prediction to the actual value was higher. This
approach was taken into account only for neighboring predictions, that is, those where
the distance between the prediction and the actual value was not greater than 1, giving a
maximum score for a correct prediction and 0.5 for a neighboring prediction. Let y; and
7; respectively be the actual and predicted labels for i-th observation, and N the total
number of observations, the weighted score is defined as:

1 if ‘ Y; — Ql ‘: 0
w; =405 if |y —9i|=1, (6.2)

0 otherwise.

The weighted accuracy W is computed as the average of these weighted scores as:

1 N
N (6.3)

For a deeper exploration of all tested configurations, including varying numbers of
predictions and different temporal granularities, a complete dataset containing all the con-
ducted tests is provided in Table A.1 in the appendix for models where structure learning
was applied, and in Table B.1 for model where structure learning was not applied.

After analyzing the results of the various runs, confusion matrices were created to
evaluate the distribution of the predictions. Tables 6.5 and 6.6 summarize the predictions

47

across all models when structure learning was applied and when it was not, respectively.
These tables show the cumulative counts of predictions for each scenario. To provide a
clearer view of the prediction distribution, Tables 6.7 and 6.8 show the accuracy of the
predictions per label.

Actual Value

High Decrease Decrease Low Decrease No Change Low Increase Increase High Increase Total
High Decrease 7007291 3681890 2982437 4621016 3859630 3659964 2477005 28289233
Decrease 354803 481027 279099 245550 142030 113730 76586 1692825
'8 o Low Decrease 433228 462117 795219 417494 256832 314823 185581 2865294
32
3
% E No Change 4757189 2882308 3154565 7650639 4066708 4315533 3064766 29891708
d
i Low Increase 1417555 622486 608871 1309980 1624589 1132879 828973 7545333
Increase 471674 232812 409571 651679 473289 786394 368899 3394318
High Increase 13055 5204 10529 13747 12288 6517 14899 76239
Total 14454795 8367844 8240291 14910105 10435366 10329840 7016709 73754950
TABLE 6.5: Combined Predictions for all tested models with Structure Learning
Actual Value
High Decrease Decrease Low Decrease No Change Low Increase Increase High Increase Total
High Decrease 8797817 1986810 478467 1409045 2125071 1521610 1338885 17657705
Decrease 1143981 4887271 174311 312147 447960 274352 236486 7476508
3 o Low Decrease 395366 142130 4488305 1113185 363279 580396 284673 7367334
2
3
'—5 ; No Change 1339732 369640 1932557 9045120 1577925 2240044 1392193 17897211
o}
ﬁ‘: Low Increase 1393689 523004 359699 1128976 4448972 1076285 907961 9838586
Increase 875759 279090 594729 1355324 970370 4154589 801228 9031089
High Increase 508451 179899 212223 546308 501789 482564 2055283 4486517
Total 14454795 8367844 8240291 14910105 10435366 10329840 7016709 73754950
TABLE 6.6: Combined Predictions for all tested models without Structure Learning
Actual Value
High Decrease Decrease Low Decrease No Change Low Increase Increase High Increase
High Decrease 48.48 44.00 36.19 30.99 36.99 35.43 35.30
Decrease 2.45 5.75 3.39 1.65 1.36 1.10 1.09
9 Low Decrease 3.00 5.52 9.65 2.80 2.46 3.05 2.64
£ 9
kS T::s’ No Change 32.91 34.45 38.28 51.31 38.97 41.78 43.68
g >
—
=9 Low Increase 9.81 7.44 7.39 8.79 15.57 10.97 11.81
Increase 3.26 2.78 4.97 4.37 4.54 7.61 5.26
High Increase 0.09 0.06 0.13 0.09 0.12 0.06 0.21

TABLE 6.7: Accuracy of models constructed with Structure Learning

48

Actual Value

High Decrease Decrease Low Decrease No Change Low Increase Increase High Increase

High Decrease 60.86 23.74 5.81 9.45 20.36 14.73 19.08
Decrease 7.91 58.41 2.12 2.09 4.29 2.66 3.37

T Low Decrease 2.74 1.70 54.47 7.47 3.48 5.62 4.06
% ;:3 No Change 9.27 4.42 23.45 60.66 15.12 21.69 19.84
i g Low Increase 9.64 6.25 4.37 7.57 42.63 10.42 12.94
Increase 6.06 3.34 7.22 9.09 9.30 40.22 11.42

High Increase 3.52 2.15 2.58 3.66 4.81 4.67 29.29

TABLE 6.8: Accuracy of models constructed without Structure Learning

The Pearson correlation coefficient measures the strength and the direction of the
relationship between two datasets. Figures 6.1 and 6.2, use this coefficient to understand
how the predictive capabilities of the network are affected when predicting older data
points. The first figure focuses on models that make use of structure learning, while the
second examines models without. The tables show a variety of correlations between the
number of predictions in the past — representing the amount of data that was predicted,
the more the predictions, the further in the past it was predicted — and several performance
metrics such as the Weighted Accuracy, Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), R-Squared, and Log-Likelihood, where each is categorized by the number
of predictions that were executed for each batch.

| | | | | — 1
50 - 0.062 —0.295 —0.345 0.103 0.417 B
I 10.8
100 - —0.207 —0.207 —0.294 0.011 0.700 B
2 - 10.6
£ 150 - —0.331 —0.183 —0.319 0.057 0.819 B
2 - 104
o 200 - —0.271 —0.235 —0.353 0.104 0.795 B
-= - 0.2
g 250 —0.221 —0.234 —0.338 0.176 0.770
= -0
% 300 - —0.177 —0.238 —0.337 0.269 0.711 B
& -+ —0.2
350 —0.330 —0.150 —0.286 0.092 0711
© - | —0.4
Z 400 - —0.336 —0.122 —0.253 0.018 0.719 B
A - |1 —0.6
450 - —0.466 —0.021 —-0.171 0.190 0.734 B
I | —0.8
500 -~ —0.501 0.006 —0.143 0.281 0.716 B
| | | | | o 71
Weighted Accuracy MAE RMSE R-Squared Log Likelihood
Metrics

FIGURE 6.1: Pearson correlation between training sample size and metrics, grouped
by the number of days of historical data used for predictions with structure learning

In statistics, when there is a high variance in the correlation, relying solely on the

49

| ! \ ! \ __
50 - —0.336 0.148 —0.097 —0.267 -0.037
100 -+ —0.587 0.370 —0.001 —0.361 0.313 .
E 150+ —0.760 0.574 0.081 —0.424 0.605 a
%: 200 + —0.780 0.595 0.123 —0.516 0.619 e
'% 250 + —0.789 0.595 0.119 —0.465 0.578 .
% 300+ —0.777 0.592 0.159 —0.512 0.491 .
E; 350 + —0.828 0.677 0.262 —0.654 0.595 e
Eg 400 + —0.872 0.750 0.366 —0.706 0.691 N
450 + —0.873 0.754 0.396 —0.717 0.707 -
500 + —0.887 0.775 0.442 —0.697 0.725 B
\Vegﬂmed Accuracy MAE RMSE R-Squared Loglﬁﬁehhood -
Metrics

FIGURE 6.2: Pearson correlation between training sample size and metrics, grouped
by the number of days of historical data used for predictions when no structure
learning is applied

Pearson correlation coefficient without accounting for a third influencing random variable
can result in misleading conclusions. In such cases, partial correlation provides more
accurate results. Partial correlation helps to remove the effect of this third variable — in
this case, the number of predictions — isolating the relationship to the variables we are
more interested in.

To compute the partial correlation between two variables while controlling for the effect
of a third variable, we first need to regress each variable (the metrics and the number of
training days) on the third variable (the number of predictions) and obtain their residuals.
The residuals represent the portion of the variables that cannot be explained by the third
variable, allowing us to examine their direct relationship.

Regressing a variable Y on another variable X means modeling Y as a function of X,
to understand the relationship between them. Mathematically, this means fitting a linear
equation of the form:

Y =B+ BiX +e (6.4)

In this regression equation, Y is the dependent variable we want to explain, such as a
model’s metric (e.g. weighted accuracy). X is the independent variable used to explain
changes in Y, such as the number of predictions made. The term By is the intercept,
representing the value of the metric when the number of predictions is zero. The coefficient
[1 is the slope, indicating how much the metric Y changes with a one-unit increase in X
(the number of predictions). For example, a positive 1 suggests that more predictions
lead to higher accuracy.

0.8

0.6

0.4

0.2

-0.2

—-0.4

-0.6

—-0.8

50

The error term, €, represents the residuals — the part of Y not explained by X. By
examining these residuals, we can isolate the effect of the number of predictions and better
understand how other factors, like training days, independently affect the metric.

Considering the computed metrics (denoted as metric) and the number of days of data
used for the training (denoted as days), the variable representing the number of predictions
(denoted as predictions) is treated as the control variable. The following step is to regress
the metric and days on the number of predictions using Ordinary Least Squares (OLS)
regression to obtain the residuals.

Finally, the partial correlation is obtained by computing the Pearson correlation coef-
ficient given the residuals €44ys and €petrics as in eq 6.5.

metric = By + B1 - predictions + €metric

days = o + aq - predictions + €4ays (6.5)

Tpartial = COT’T(&dayS, 8metrics)

In addition to this approach, a weighted Pearson correlation coefficient was also cal-
culated. In this method, each entry from Figures 6.1 and 6.2 was weighted based on the
number of predictions computed in each batch, represented by the Y axis, and averaged
over the total number of tests executed. The results of both the partial and weighted
correlation analyses are presented in Table 6.9 which gathers both approaches (partial and
weighted correlation).

‘ With Structure Learning Without Structure Learning

‘ Partial Correlation Weighted Correlation Partial Correlation Weighted Correlation

Weighted Accuracy -0.208437 -0.208132 -0.703073 -0.698492
MAE -0.174929 -0.174534 0.519402 0.515491
RMSE -0.274799 -0.274154 0.133663 0.132440
R-Squared 0.107454 0.105765 -0.491547 -0.480551
Log Likelihood 0.694201 0.689369 0.428697 0.426119

TABLE 6.9: Comparison of Partial and Weighted Pearson Correlations with and
without Structure Learning

The log-likelihood is a fundamental statistical function used to measure how well a
particular model explains a given set of data. In the context of this thesis, it was employed
in all the tests conducted, as presented in Tables 6.3 and 6.4, and in Figures 6.1 and 6.2.

In a Bayesian Network (BN) we consider a set of random variables X = {X1, Xo,..., Xy}
where each X; corresponds to a node, and N is the total number of nodes in the network.
Each 6 = {61,02,...,0n} is a set of parameters that represents the CPTs of a node. Specif-
ically, for each node X;, there is an associated set of conditional probabilities 8; given every
possible configuration of its parents Pa(X;).

The likelihood function, denoted as L(0; D), tells us how plausible our observed data
D is, given the parameters 6 of the model. In the context of a BN, it essentially quantifies
how well the network’s structure, with its current parameters, explains the observed data.

Given a dataset D = {dj,ds,...,ds} consisting of M independent observations, the
likelihood function is expressed as in eq 6.6.

o1

M
L(6;D) = P(D | 6) H d; | 0) (6.6)

where P(d;|6) is the probability of observing the j-th data instance d; given the model
parameters. However, directly computing the likelihood often involves multiplying small
probabilities multiple times. Since probabilities are values between 0 and 1, their product
can become extremely small. This repeated multiplication can lead to a numerical issue
called underflow. Underflow occurs when the product of a multiplication is smaller than
the smallest value a computer can represent with its floating-point precision. As a conse-
quence, the really small values are approximated to zero, which leads the overall likelihood
computation to also become zero.

To avoid underflow and simplify computations, the logarithm of the likelihood function
is taken, which leads to converting the product of probabilities into a sum of logarithms.
This results in the log-likelihood, which is then averaged over the number of predictions
as defined in equation 6.7.

((|D) = ZlogP d;|6) (6.7)

Figures 6.3a and 6.3b, show the log-likelihood values plotted against the number of
predictions on the x-axis. Figure 6.3a displays the results for models that employed struc-
ture learning, while Figure 6.3b presents the results for models without structure learning.
Different models, trained using increasing amounts of historical data, are distinguished by
color coding while the red line represents the linear regression fitted across all the data
points to highlight the overall trend as we predict more into the past.

52

Log Likelihood

Log Likelihood

-1.70 ® ®
® ®] ' ['
-175{ @ ' ' hd ' 8 H '
' 0
s ¢ : 8
-180{ @ 4 ® ']
A
o m]
—~1.85 . __________________________________
T
I ' 1 % s
-1.90{ — e g :
- f
v L 4 " e] i
§ 8 - ¥
-1.95{ @ :
e 3
—2.00 ®
L]
8
@
~2.05 1 . . | ; .
100 200 300 400 500
Number of Predictions
(A) Log Likelihood when structure learning is applied
-1.251
-1.30
-1.351
1.40 :
~1.401 o
© 0 t .
I * s o ¢
1451 #—— & 8 B o ‘
: i
S | v
s 8
—1.50 A ' ®

100 200 300 400 500
Number of Predictions

(B) Log Likelihood when no structure learning is applied

2250

2000

1750

1500

ays of Historical Data

1250 §

1000

750

500

2250

2000

1750

1500

Days of Historical Data

[
]
[
[=]

1000

750

500

FIGURE 6.3: Log Likelihood for models with and without structure learning ap-
plied, grouped by the number of predictions and colour coded by the amount of
historical data used for training.

93

To better understand how the log-likelihood evolves as we predict further in the past,
the log-likelihood was additionally plotted for each batch of predictions. Figure 6.4 shows
the results when no structure learning is applied, whereas Figure 6.5 displays the results
when structure learning is applied.

Log Likelihood vs. Days of Historical Data for 50 Predictions
-

Log Likelihood vs. Days of Historical Data for 100 Predictions

-1.25 7 -1.25 1
---- Sine Fit . ---- Sine Fit
-1.30 4 ~1.30
[]
B 1 B 1
g -1.35) g -1.35 .
= -1.401 £ \ % 1401
/ / []
g f / / / g LY H
3 / J/ N a2 | e L., e -
—-1.45 . \ ; 5 —-1.45 . -@ -
_1.50 4+ ‘,/" . ¥ ~1.50 ' '
500 750 1000 1250 1500 1750 2000 2250 2450 500 750 1000 1250 1500 1750 2000 2250 2450
Days of Historical Data Days of Historical Data
Log Likelihood vs. Days of Historical Data for 150 Predictions Log Likelihood vs. Days of Historical Data for 200 Predictions
-1.25 5 —1.25 1
---- Sine Fit ---- Sine Fit
-1.30 4 ~1.30
B - B -
g -135 g -135
£ £
g g
= -1.407 = -1.40
o ° o
o o
4 rem————- - 4 T el
—1.45 4 L 8 - —1.45 ' et . o
R ——
-1.50 4 -1.50
(]
500 750 1000 1250 1500 1750 2000 2250 2450 500 750 1000 1250 1500 1750 2000 2250 2450
Days of Historical Data Days of Historical Data
Log Likelihood vs. Days of Historical Data for 250 Predictions Log Likelihood vs. Days of Historical Data for 300 Predictions
—1.25 7 —1.25
---- Sine Fit ---- Sine Fit
-1.301 —1.30 1
3 1 3 1
g -135 g -135
£ £
g g
= -1.407 = -1.40 (]
o =y e .
8 . 8 SR T
—1.45 4 A) ' —1.45
S B B 8 ST S BN
- 'Y - RS -
-1.50 1 0 ~1.50
500 750 1000 1250 1500 1750 2000 2250 2450 500 750 1000 1250 1500 1750 2000 2250 2450
Days of Historical Data Days of Historical Data
Log Likelihood vs. Days of Historical Data for 350 Predictions Log Likelihood vs. Days of Historical Data for 400 Predictions
=1.259 =125
---- Sine Fit ---- Sine Fit
-1.30 4 ~1.30
B 1 B 1
S -1.35 S —-1.35
£ £
g g
= -1.407 o = -1.40 1
o o
g o g 8 E LI J—
-1.45 4 et -1.45 e -
. o e e] 8 o 073
SR | - S -
~1.50 4 ~1.50
500 750 1000 1250 1500 1750 2000 2250 2450 500 750 1000 1250 1500 1750 2000 2250 2450
Days of Historical Data Days of Historical Data
Log Likelihood vs. Days of Historical Data for 450 Predictions Log Likelihood vs. Days of Historical Data for 500 Predictions
-1.25 5 —1.25 1
---- Sine Fit ---- Sine Fit
-1.30 4 ~1.30
B - B -
g -135 g -135
£ £
g g
= -1.407 = -1.40
o o
S L S P— - o e @ -
3 — T 3 b e
—1.45 1 = R | - —1.45 - e | e
-0 ° o ! ° o
-1.501 i = ~1.50 e ! =
500 750 1000 1250 1500 1750 2000 2250 2450 500 750 1000 1250 1500 1750 2000 2250 2450

Days of Historical Data

Days of Historical Data

FI1GURE 6.4: Log Likelihood vs amount of historical data used for training each
model, grouped by the number of predictions, when no structure learning is applied

o4

Log Likelihood vs. Days of Historical Data for 50 Predictions

Log Likelihood vs. Days of Historical Data for 100 Predictions

-1.70] = ~1.70 =
---- Sine Fit ---- Sine Fit
=1.751 =175+
5 -1.807 5 —1.801
o K o
2 / 2
= -1.851 e = -1.85
ko 8 g
3 3
o —1.90 @ o —1.90 1
3 ® \ 3
-1.954 1 -1.95
~2.00 4 [] —2.00
500 750 1000 1250 1500 1750 2000 2250 2450 500 750 1000 1250 1500 1750 2000 2250 2450
Days of Historical Data Days of Historical Data
Log Likelihood vs. Days of Historical Data for 150 Predictions Log Likelihood vs. Days of Historical Data for 200 Predictions
-1.70 4 L4 = ~1.70 ® =
-=== Sine Fit . -=== Sine Fit
-1.75 4 ! ~1.75
L]
5 -1.807 - 5 —1.801
o . e o
2 2
= 1851 = -1.85
el el
= ! =
- -
~1.90 4 ~1.90
g ° g
s s
~1.95 4 ~1.95
~2.00 4 ~2.00
500 750 1000 1250 1500 1750 2000 2250 2450 500 750 1000 1250 1500 1750 2000 2250 2450
Days of Historical Data Days of Historical Data
Log Likelihood vs. Days of Historical Data for 250 Predictions Log Likelihood vs. Days of Historical Data for 300 Predictions
=1.70 q =170 1
---- Sine Fit ' ---- Sine Fit
-1.75 4 ~1.75
5 -1.807 5 —1.80 1 =
=] =]
2 . 2 4
= -1851 = -1.851
1 1
X X
- -
o —1.90 & —1.90
o o
8 8
~1.95 4 ~1.95
~2.00 4 ~2.00
500 750 1000 1250 1500 1750 2000 2250 2450 500 750 1000 1250 1500 1750 2000 2250 2450
Days of Historical Data Days of Historical Data
Log Likelihood vs. Days of Historical Data for 350 Predictions Log Likelihood vs. Days of Historical Data for 400 Predictions
-1.70] ~1.70
---- Sine Fit ---- Sine Fit
—1.75 4 ° [] —1.75 4 .\\
5 -1.807 5 —1.801
o o
2 2
= -1.851 = -1.85
[[
X X
3 3
o —1.90 1 o —1.90 7
5 5
3 3
-1.95 4 ~1.95
~2.00 4 —2.00
500 750 1000 1250 1500 1750 2000 2250 2450 500 750 1000 1250 1500 1750 2000 2250 2450
Days of Historical Data Days of Historical Data
Log Likelihood vs. Days of Historical Data for 450 Predictions Log Likelihood vs. Days of Historical Data for 500 Predictions
-1.70 § ~1.70
---- Sine Fit ---- Sine Fit
-1.75 4 ~1.75
5 -1.807 5 —1.801
Q Q
2 2
= 1851 = -1.85
F] F]
X X
3 3
& —1.90 o —1.90 4
S S
~1.95 4 ~1.95
~2.00 4 ~2.00

1250 1500 1750 2000 2250 2450

Days of Historical Data

500 750 1000

1250 1500 1750 2000 2250 2450

Days of Historical Data

500 750 1000

FI1GURE 6.5: Log Likelihood vs amount of historical data used for training each
model, grouped by the number of predictions, with structure learning applied

95

In addition to the log-likelihood, the MAE and the computed weighted accuracy were
also visualized. Figure 6.6a presents these metrics for models that employed structure
learning, while Figure 6.6b shows the results for models without structure learning. Both
metrics are plotted together to highlight their indirect relationship, whereas the MAE
improves (i.e. decreases), the weighted accuracy is expected to increase.

56

2.254

2.004

175

—e— MAE (Cutset: {15, 30, 45})
150 1 —8— MAE (Cutset: {5, 10, 15})

—e— MAE (Cutset: {5, 10, 15, 20})

—®— MAE (Cutset: {5, 10, 15, 20, 25})

MAE (Cutset: {5, 10, 15, 20, 25, 30})

=*- \Weighted Accuracy (Cutset: {15, 30, 45})
=*- Weighted Accuracy (Cutset: {5, 10, 15})
—¥- Weighted Accuracy (Cutset: {5, 10, 15, 20})
1.00 4 ~*~ Weighted Accuracy (Cutset: {5, 10, 15, 20, 25})
—*- Weighted Accuracy (Cutset: {5, 10, 15, 20, 25, 30})

1254

Metric Value

0.75 1
0.50 1
E 11 T T _==l==
LT ..,;....------*;“.."."“"________*____-.-- ®
0.25 1
0.00 T T T T T T T T T
500 750 1000 1250 1500 1750 2000 2250 2500

Days of Historical Data Used for Training

(A) MAE and Weighted Accuracy Over Time with Structure Learning Applied.

2.50
—8— MAE (Cutset: {15, 30, 45})
—&— MAE (Cutset: {5, 10, 15})
—®— MAE (Cutset: {5, 10, 15, 20})
2.257 —e— MAE (Cutset: {5, 10, 15, 20, 25})
MAE (Cutset: {5, 10, 15, 20, 25, 30})
—- Weighted Accuracy {Cutset: {15, 30, 45})
2.001 —%- Weighted Accuracy (Cutset: {5, 10, 15})
. —¥- Weighted Accuracy (Cutset: {5, 10, 15, 20})
—x- \Weighted Accuracy (Cutset: {5, 10, 15, 20, 25})
=»=- \Weighted Accuracy (Cutset: {5, 10, 15, 20, 25, 30})
175 A
1.50 1
<]
=2
©
>
U 125
=
=
]
=
1.00
0.75 1
)Q--...,__
-
e —— emmme R N ——— ¥
P g = SeSsjsaaasmmsssSESamasIEn B S0 1T
SR Bmagy
0.50 1
0.25 1
0.00 T T T T T T T T T
500 750 1000 1250 1500 1750 2000 2250 2500

Days of Historical Data Used for Training

(B) MAE and Weighted Accuracy Over Time without Structure Learning Ap-
plied.

FIGURE 6.6: MAE and Weighted Accuracy Over Time for models with and without
structure learning applied, with linear regression to indicate the trend direction

Figures 6.7a and 6.7Db illustrate the structure of a Partitioned Dynamic Bayesian Net-

o7

works (PDBN). Figure 6.7a represents a PDBN-3 with a cutset of {5, 10, 15}, while Figure
6.7b shows a PDBN-3 with cutset of {15,30,45}. These figures are presented to highlight
the differences in size between two networks when the same number of cutsets is used, but
with each cut spanning 5 and 15 time transitions, respectively.

(A) 3-PDBN - Partitioned Dynamic (B) 3-PDBN - Partitioned Dynamic
Bayesian Network 5, 10, 15 with 3 cuts Bayesian Network 15, 30, 45 with 3 cuts
- structure learning applied - structure learning applied

FIGURE 6.7: Comparison of two Partitioned Dynamic Bayesian Networks (PDBNs)
with different sizes and structures.

To compare the impact that the structure learning algorithm has on the network, Figure
6.7a is further analysed in Figure 6.8, where the network’s structure is fully represented,
allowing each node to be viewed in detail. In figure 6.9, the same network (a PDBN-
3 with cutset {5,10,15}) is displayed, to highlight the differences in the construction of
the network. In the first case, it can be seen how each cutset has a different number of
connections, reflecting the influence of the structure learning algorithm. In the second
case, the constructed network is equivalent to a Dynamic Bayesian Network (DBN) with
two time-invariant nodes, represented by the nodes "Sector" and "Company".

o8

F1GURE 6.8: 3-PDBN - Partitioned Dynamic Bayesian Network 5, 10, 15 with 3
cuts - structure learning applied

Chapter 7

Discussion

7.1 Tool Selection and Transition to R

Developing the PDBN involved different steps, during which several challenges were en-
countered, particularly due to limitations in the libraries initially chosen. The project
began with the use of Python to maintain consistency with the data preparation phase.
However, the need for a more suitable programming environment led to a shift towards
using R.

Initially, the PGMPY [7] and pomegranate [35] libraries were selected for their full focus
on Bayesian networks, and their ability to rapidly implement networks, which also allowed
the representation of continuous variables through the usage of normal distributions. De-
spite these advantages, the libraries proved insufficiently flexible for the construction of
a PDBN, especially due to their inability to link multiple Dynamic Bayesian Networks
(DBNs) together. This capability is crucial for the successful construction of the network,
which consequently meant a reassessment of the tools employed moving from Python to R
where the library bnlearn [37] was used instead.

7.2 Data Handling and Factor Representation

One of the issues faced during the development involved limitations brought by the pro-
gramming language and the complexity of the problem. Learning the parameters meant
having to divide the dataset into multiple parts where each was fed to learn the parameters
of each node of the network. This division meant the use of so called "factors" which are
a type of data structure used in R for categorical data. This type of data structure differs
from lists, which are capable of storing every type of data. Factors can be associated with
the more classic enum that can be found in different programming languages like C, C++,
and Java. Enum (which stands for "enumeration") is a data type composed of a set of
constants where each constant is associated with an integer. Similarly, factors define cat-
egorical types of data. In this project, the labels represent the daily price changes, where
the so-called "levels" correspond to these labels, whereas the values inside are represented
by integers. In an ideal scenario, the factors would be structured as follows:

{High Decrease = 1, Decrease = 2, Low Decrease = 3, No Change =4, Low Increase =
5, Increase =6, High Increase =7}

When splitting the data into smaller subsets, the number of factor levels can become
inconsistent across different time transitions if one of the seven defined labels is absent
in the created subset. Additionally, since each label is associated to an integer value,
the order in which this levels are stored is meaningful when combining different factors.

60

7.3 Tested Modeling Approaches 61

In particular, when using the employed library bnlearn, it was necessary to establish a
standardized level for each of the subsets created.

7.3 Tested Modeling Approaches

The project’s development had different phases, the initial approach saw the use of one
node per company, and the idea was evaluating whether each company carried enough
information in its price to be able to infer relationships between companies and the price
of the S&P 500. Unfortunately, the results obtained were not convincing, it led to low pre-
diction accuracy, high error rate, and mostly an unfeasible amount of time for the structure
and parameter learning of the networks. Learning the structure of the network requires the
companies’ data to be more informative, as the number of companies — random variables
— increases, so does the complexity of the calculations to identify relationships between
different nodes meaning that a larger amount of data is required.

To reduce complexity and increase the information on companies, sector data were
incorporated. As described in 5.1.3, each company was assigned to its corresponding
GICS sector. The aim was to model the PDBN by grouping companies being part of the
same sector, constructing a model where each random variable — or node — represented
the distribution of the daily stock price changes from day t to day ¢ + 1. However, this
approach was also found to be not optimal. Assigning all companies to a single node
without accounting for individual characteristics about the company resulted in treating
each company with the same importance, thereby losing any unique property that might
influence price movements.

To address this, “Company” was included as an external entity, influencing sector-level
dependencies. However, the S&P 500 is an index where companies are weighted based
on their market capitalization, where larger companies constitute 6 — 7% of the index
each while the smaller companies represent as little as 0.01%. This significant difference
in weight, combined with the sector-based structure means that some sectors might be
considered more important than others, not only due to their weight in the index but also
because of the uneven distribution of companies across sectors, as shown in Table 5.2.
Moreover, attempts to apply any kind of structure learning technique led to the incorrect
assumption of conditional independence between sectors and the overall S&P 500 price
changes. Since every sector — although in different amounts — contributes to the final
index price, this led to incorrect assumptions.

7.4 Final Approach and Computational Improvements

The final approach followed is as defined in Chapter 4 Section 2.5 where one random
variable represents the price change of the companies and two different nodes (per time
transition) are used to define the company and sectors. This approach allows to continue
modeling both the individual companies and the sectors they belong to, while also capturing
the connections between them. By using separate nodes for “Company” and “Sector”, the
model keeps the unique behavior of each company, while still taking advantage of the
broader patterns seen in the sectors. By structuring the model this way, the complexity
is reduced compared to the original approach of treating each company separately. Using
sectors helps to include more information in each variable, making it easier to learn the
connections in the network. Adding the company as an external factor solves the earlier
issue of treating all companies the same, ensuring that larger companies, that have more
impact on the market, are given the right importance. This approach also fixes the problem

7.5 Prediction Methods and Execution Time 62

with the sectors-only model, where all companies in a sector are treated equally, leading to
poor predictions. Now, the model accounts for both sector-level influences and individual
company differences, which makes it more accurate in predicting stock price changes.

7.5 Prediction Methods and Execution Time

During the development of the first approach where each company was represented as a
separate random variable, a revision of how the parameters were constructed was found to
be necessary. The original method presented in [11] was used as a starting point, however,
this method was soon found to be computationally intensive not just for learning the
structure or obtaining predictions, but for the construction of the CPTs themselves. For
this reason, the approach was revised to speed up the computation. While the revisions
did result in improvements, the process still required a significant amount of time for its
execution. To further optimize it, the construction of the Conditional Probability Tables
(CPTs) was parallelized which significantly reduced the execution time, transforming a
process that was previously taking hours into one that now takes just a few minutes.
When working with the library bnlearn in R to make predictions using Bayesian Net-
works, there are several methods that can be used, each with its own strenghts and trade-
offs in terms of computational efficiency and accuracy. One of the challenges faced when
predicting future values in these networks, particularly for complex or large-scale problems,
is the time it takes to compute these predictions. A single prediction was initially taking
several hours, which was impractical to execute all the tests needed. To address this issue,
predictions were also run in parallel, which significantly reduced the computation time.
The library bnlearn provides three main types of prediction methods: parents, exact
and bayes-1lw. Each of these method approaches the problem differently. The parents
method is the simplest and fastest of the three, for this reason it was initially employed in
the case where each node represented a company. This method uses the parent nodes of the
node we would like to predict and uses the local probability distribution of the target node
to compute the prediction. This means that it does not consider the broader network or any
indirect relationship between the nodes, instead, it focuses solely on the direct dependen-
cies and distribution of the data in its parent’s node. The advantage of this approach is the
speed, with the drawback of not being able to capture the full complexity of the network,
nor taking advantage of all the historical data fed as observations for the computation of
the prediction. The exact method, takes a different approach by using exact inference
techniques. This involves constructing a junction tree and performing belief propagation,
allowing the method to compute the maximum a posteriori estimates given all the observed
evidence. Finally, the bayes-1w method uses a technique known as Likelihood Weighting
[25], which is a form of Monte Carlo simulations [36], for approximate inference. The al-
gorithm is used to approximate posterior probabilities and is particularly useful when no
evidence is provided for certain nodes. In these cases, their values are sampled based on
their conditional probability distributions. In the case of this research, observations are
provided for each node except the one that needs to be predicted, as those observations
represent all the data prior to the node we would like to predict. The prediction process
becomes largely deterministic since there is no need for sampling for the observed nodes.
Only the target node (the one we want to predict) requires sampling. Specifically, for each
node with known evidence, we use the observed data to directly calculate the likelihood of
that node’s observed value, conditioned on the values of its parents (as defined by the Con-
ditional Probability Tables (CPTs)). The likelihoods of the observed nodes are combined
by multiplying them to get the total likelihood of the entire set of evidence. Since there

7.6 Influence of Historical Trends on Predictions 63

is no randomness for the observed nodes, the counts are updated directly using this like-
lihood. For the target node (which has no evidence since it represents the node we would
like to predict), its value is randomly chosen based on the probabilities determined by its
parent nodes’ observed values. After sampling, the algorithm updates the counts for the
target node’s predicted values, using the likelihood of the evidence to weight the counts.
This process is repeated N times (in this case, N = 500). After each round of sampling, the
count for the target node’s sampled values is updated, weighted by the overall likelihood of
the evidence. Finally, the posterior probability of the target node is computed by dividing
the weighted count of the target node’s sampled values by the total weighted count of the
evidence. The final choice in the project went for this prediction method, which, although
it can be computationally intensive based on the number of samples that are generated,
for large networks, provides big improvements over the exact inference computed by the
exact method.

7.6 Influence of Historical Trends on Predictions

After describing the ways the predictions were obtained, let’s now focus on the results.
The confusion matrices of the model (tables 6.5, 6.6, 6.7, 6.8) reveal that the predictions
are generally correct, predicting the correct labels more frequently than they misclassify
them. This observation indicates that the models achieve an accuracy that is higher than
that of a random guess. When no structure learning technique was used, the models did
a better job at predicting the correct datapoints. This is shown in the highlighted (red)
cells where the labels predicted were often incorrect in the case of models making use of
structure learning. This is the case for the actual labels being: Decrease, Low Decrease,
Low Increase, Increase, and High Increase, which represents the majority of the cases.
Figures 6.1 and 6.2 show the correlation between the metrics and amount of training data
used for the prediction. The correlations were computed by grouping each instance based
on the number of predictions made. It is evident that the number of predictions highly
affects these metrics due to the inherent nature of the predicted data, where predicting
more data points means predicting data points further in the past. The Pearson correlation
indicates that the metrics generally worsen as the of predicted data points increases. This
pattern is visible for most of the computed metrics, regardless of whether structure learning
is applied or not. Specifically, weighted accuracy shows a strong negative correlation, while
the MAE display a strong positive correlation. This suggests that as the historical data used
for training increases, the weighted accuracy declines, whereas the error rate, measured
by the MAE, rises. On the other hand, the Log-Likelihood improves as the number of
predictions increases. This improvement can be attributed to the growing amount of
historical data available for training, which enhances the model’s understanding of older
data distributions. When the number of predictions is low (e.g. 50) the Pearson coefficient
does not display any correlation. However, as the number of predictions increases —
which corresponds to predicting data points further in the past — the correlation becomes
more clear. More historical data allows the predictor nodes (and their parent nodes) with
better knowledge of past data distributions, which in substance, enables the model to
more accurately explain this older periods. From these correlations, two main insights
emerge: first, predicting past datapoints using nodes trained on more recent data reduces
the prediction accuracy, likely due to a shifting market behaviour over time. The second
aspect that can be inferred is that, increasing the amount of historical data can, at times,
benefit the model, improving its ability to interpret unexpected scenarios.

Although a powerful indicator, the Pearson correlation coefficient assumes linearity

7.6 Influence of Historical Trends on Predictions 64

in the data. However, financial data, and the computed metrics, often violates this as-
sumption displaying non-linear patterns and non-uniform distributions. Therefore, it is
also necessary to interpret the results from a different perspective to account for multiple
aspects.

In Figure 6.3, the log-likelihood was plotted to display how differently it behaves de-
pending on the amount of historical data used. In both conditions — whether with or
without structure learning — a distinction can be noticed where using more historical
data results in a worse log-likelihood score. However, it is worth noticing that this distinc-
tion is highly attenuated when no structure learning technique is applied. When analyzing
the same metric from a different perspective, evaluating how it changes over time, like in
Figures 6.4 and 6.5, a different kind of behavior is noticeable. The log-likelihood seems
to follow more of a wave-like pattern where increasing the amount of historical data con-
sequently adds more information. Depending on the market behavior in the considered
period, it can improve or worsen the predictions.

S&P 500 Close Prices & Days of Historical Data

2200

2500 - — Days of Historical Data
—— S&P 500 Close Price

[2000

2000 L 1500

I 1600 8

1500 +

F 1400

1000 -

Days of Historical Data
&P 500 Close Pric

b 1200 2

500 I 1000

[800

FIGURE 7.1: S&P 500 and number of predictions

To further understand how the market direction affects the predictions, we need to
understand the behaviour in the period under consideration. Figure 7.1 presents two key
pieces of information: the closing price of the S&P 500 (red line) over the 10 years from
January 2006 to December 2015, and the number of days of historical data used in the
model’s training (blue line).

The red line displays the price changes in the S&P 500 index where the index daily
closing price was used. From the plot, we can notice how relevant events, such as the 2008
financial crisis, are clearly visible. This financial crisis represented a negative period for
the American economy resulting in a drop in the index price, which was followed by a
period of recovery and growth reaching its peak towards the end of the dataset, showing
the overall upward trend after 2012.

On the other hand, the blue line represents the accumulation of training data with a
total of 2500 days of data available. As more and more training data is used, we move
further in the past where data is added to the training set. For instance, we can see that
the 1000th day of historical data in the dataset corresponds to Q4 (4th quarter) 2011.
This representation helps us understand how trends in the S&P 500 index influenced the

7.6 Influence of Historical Trends on Predictions 65

network predictions as more historical data were incorporated into the prediction. The
direction of the amount of training data is opposite to the time direction. The reason why
this line has a different trend is that increasing the amount of data used for training means
increasing the amount of historical data while leaving the previously used data unchanged.

To understand how trends affected the predictions, the S&P 500 was overlapped to
the previously computed Mean Absolute Error (MAE) and Log-Likelihood across all the
tested models, shown in Figures 6.6 and 6.3.

Figures 7.2 and 7.3 display this comparison where no structure learning and structure
learning were used, respectively. Both metrics (MAE and log-likelihood) were averaged
over the cutset and the number of days of historical data used, minimizing unnecessary
noise and leading to a mean that does not take into account the number of predictions
computed per each model to focus more on the variance of the different cutsets.

S&P 500 Close Prices, Days of Historical Data, and MAE Over Time (No Structure Learning)

2200 FL15
2500 Days of Historical Data
S&P 500 Close Price

2250 MAD I 2000
Fl4
2000 4 L 1500

1750 1 .
F13

I 1600 8

1500

1250 4 r 1400

1000

&P 500 Close Pric

I 1200 2

Days of Historical Data

rl1
[1000

(A) S&P 500, Mean Absolute Error (MAE) over time (No Structure Learning
Applied)

S&P 500 Close Prices, Days of Historical Data, and Log Likelihood Over Time (No Structure Learning)

2500 Ju™=== Days of Historical Data .
Close Price
2250 4 —®— Log Likelihood | 2000

F-1.44

2000 4 L 1800

1750 4

r—1.46
F 1600

1500 §
1250 4 r 1400
-—1.48

Log Likelihood

1000

Days of Historical Data
S&P 500 Close Price

,_.
o
<}
=}

750 1

F-1.50
00 | 1000

(B) S&P 500, Log-Likelihood over time (No Structure Learning Applied)

FIGURE 7.2: S&P 500 and Days of Historical Data compared to metrics (No Struc-
ture Learning Applied)

7.6 Influence of Historical Trends on Predictions 66

S&P 500 Close Prices, Days of Historical Data, and MAE Over Time (Structure Learning)

2200
2500 ™= Days of Historical Data L2.15
—— S&P 500 Close Price
2250 1 7® MAE | 2000
r2.10
2000 4 | 1800
2.05
o 17501
= v
s F16005 |50
= 1500 1 ct
S o
£ bl
s ° w
4 1250 F14000 195 <
T =] -
5 7
& 1000 o
7 L1200 [1290
[=]
750 4
[1000 165
500 1
r18eo
250 800
04 rL75
L L e T S e e T s e e e L e e e e L S e e e e I A S S
a“\«&ﬁé‘:p "j\,ci‘:\,d’f\p“ﬁd“%p PLR;& Q;’DZ'D‘\DIO lﬂ.’&q’&o’&o&u’& u’d" '»&x’&x’&Vobluoxw’&'v&fuozp\":’&a’&'ﬁ&h’&u’o lb"&b‘p:idtidtf& ho’
E R L N L N N R e
A A A AR A AT A A A A AR AR AR AR D A A A AR AR AR TS AR D AR AR AR AR AR D AR D AR TR AR AR DA D AR
Date
(A) S&P 500, Mean Absolute Error (MAE) over time (Structure Learning Ap-
plied)
S&P 500 Close Prices, Days of Historical Data, and Log Likelihood Over Time (Structure Learning)
2200
2500 Ju™= Days of Historical Data
—— S&P 500 Close Price
22504 —® Leg Likelihood [2000
F-1.75

2000 L 1500

1750 §

w

F 1600 r—1.80

1500 4

1250 + r 1400

Log Likelihood

T
|
3
&

1000 4

Days of Historical Data
S&P 500 Close Pric

,_.
)
o
=3

F 1000
r—1.90

I 800

(B) S&P 500, Log-Likelihood over time (Structure Learning Applied)

FIGURE 7.3: S&P 500 and Days of Historical Data compared to metrics (Structure
Learning Applied)

This comparison is key to understanding how increasing the amount of training data
impacts the predictions and model performance. Both metrics were placed at the point
in time that represents the amount of historical data used for obtaining that prediction.
It in fact represents the value of the metric computing a prediction where the amount
of data used is equals to all the data from the last day of data available until the date
where the metric result is placed. When looking at the period post 2011 until the end of
the dataset (2016), an increase in the amount of training data used for the training (that
means going further in the past) corresponded to a rise in the MAE and a decline in the
log-likelihood, with a consequent decrease in the weighted accuracy (as visible in Figure
6.6). The period 2011-2016 is characterized by strong and continuous long-term growth.
Given the mono-tonal trend, this suggests that increasing the amount of historical data
likely led to overfitting, where the model has more likely seen upward movements compared
to downwards.

7.6 Influence of Historical Trends on Predictions 67

The period going from late 2007 to 2011, saw a different kind of trend. This is the
period hit by the financial crisis and the following recovery, which meant a total change
in the market behaviour with steep declines and rises. The impact that implementing
this period had on the predictions differed between the approaches followed. When no
structure learning was applied, the MAE remained quite stable with a slight improvement
when looking at the log-likelihood. On the other hand, when structure learning was applied,
the MAE saw improvements with a log-likelihood that slightly worsened.

The behavior visible in these figures seems to also point towards a wave-like movement
of the metrics. However, before reaching any conclusions, we must point out that this
behaviour is not the direct consequence of adding the exact historical periods as mentioned
above. While it is true that incorporating certain periods of data influences the predictions,
the placement in time of the metrics on the plots, reflects the data used to train the full
extent of the network without taking into account the Markov order employed during the
actual predictions. The Markov order represents the depth in the dependencies of the
three for the variables involved in the decision process of the network (e.g. a First order
Markov dependency indicates that only the direct parents of a node are involved in the
computation of the actual predictions). Although the data used to train the network is
quite extensive and spans from the end of the graph (April 2015) to the day where the
metrics are placed (represented by the x-axis), the effects are conditioned only on the most
recent data due to the First-order Markov assumption used by the model. As previously
explained in section 7.5, despite attempting to use all the available methods, the final one
used for the results displayed in this research, involved the usage of Likelihood Weighting.
This technique makes use of approximate inference where a first-order Markov assumption
is employed.

In Figures 7.5 and 7.4, a more focused explanation of the data employed for training
the nodes involved in the prediction process is displayed. In this case the focus went for
the nodes used under the first-order Markov assumption, which involves the node we would
like to predict and its direct parents.

The plot illustrates how the S&P 500 Close Price, displayed thorough the blue line,
evolves over time . The period shown varies based on the amount of data used for training
the network. Fluctuations in the S&P 500 prices help to understand how the model reacts
to different market conditions and how training data contributes to those predictions.

The number of training days per time slice is one of the key focus, this number -
represented by green dots scattered across the timeline - represents the amount of data
used for training each node for the specific cutset defined on the graphs’ title. Not only
does this represent the amount of training data per node, but the green dot specifically
represents the period of data that was used to train the predictor node. By tracing a line
from the right end of the graph, which coincides approximately with December 2015, to
the green dot, the S&P 500 price changes in this area represents the data used for its
prediction. The reason why this was plotted is to help understand the amount of historical
data the prediction relied on and the following log-likelihood derived from this prediction.
For instance, as more training data is used, we expect that the model is better able to
generalize, obtaining better predictions and improved log-likelihood, though this may not
always translate into higher accuracy due to factors such as model complexity or market
volatility.

Additionally, the red dots represent the log-likelihood of the model when the amount
of data the node was trained with was equal to the quantity defined on the red axis on the
top part of each plot. To better display what portion of the data was used to train this
node, dotted lines connecting the green and red dots were drawn. The area between those

S&P 500 Close Price

S&P 500 Close Price

S&P 500 Close Price

2100

2050

2000

1950

1900

2100

2050

2000

1950

1900

2100

2050

2000

1950

1900

1850

7.6 Influence of Historical Trends on Predictions 68

two points, represents the portion of the data the parent node was trained on. Numerical
values were included to display how much data was used for training, not only the specific
parent node but also each node in which the node was part of, offering a clear visual of
how training data allocations vary across nodes as the amount data for training varies.

The log-likelihood, shown on the right-hand axis, measures how well the model fits
the observed data. As the amount of training data increases, the log-likelihood typically
improves, indicating that the model is becoming more confident in its predictions. In the
case of this project, this correlation is not always visible.

Cutset {15, 30, 45} Cutset {5, 10, 15, 20, 25, 30}
Training Days Parent Node Training Days Parent Node
108 100 88 78 66 56 4 34 22 164 150 134 116 100 84 66 50 34

Training Days per Time Slice Training Days per Time Slice
54 50 82 75

67 58 50 42 33 25 17

44 39 33 28 22 17 11

-1.44 2100 —1.44
-146 gy 200 -1.46
I
g o
£ 8
T © 2000
g
-148735 o -1.48
& 3
3 o
3
¥ 1950
-1.50 150
1900
-1.52
2015-07 2015-08 2015-09 2015-10 2015-11 2015-12 2015-04 2015-05 2015-06 2015-07 2015-08 2015-09 2015-10 2015-11 2015-12
Date Date
Cutset {5, 10, 15, 20, 25} Cutset {5, 10, 15, 20}
Training Days Parent Node Training Days Parent Node
196 180 160 140 120 100 80 60 40 246 226 200 176 150 126 100 76 50
Training Days per Time Slice Training Days per Time Slice
98 9 80 70 60 50 40 30 20 123113 100 88 75 63 50 38 25
-144 2100 —1.44
2050
-1.46 g -1.46
g &
]
g o
£ 8
T G 2000
“487 3 -148
9 o
&
" 1950
-150 150
1900
® ° -1.52
2015-03 2015-04 2015-05 2015-06 2015-07 2015-08 2015-09 2015-10 2015-11 2015-12 2015-01 2015-03 2015-05 2015-07 2015-09 2015-11
Date Date
Cutset {5, 10, 15}
Training Days Parent Node
326 300 266 234 200 166 134 100 66
Training Days per Time Slice
163 150 133 1n7 100 83 67 50 33
R T EET O O . PO EE) .
o 00.. ° -1.44
. oy °
° 1 s
YA
¢ - ~1.46
o\ W ur. .
.83
L4 A —1.48
-1.50
@remrermenenerm e e Ml BB 152
2014-09 2014-11 2015-01 2015-03 2015-05 2015-07 2015-09 2015-11
Date

FI1GURE 7.4: Likelihood per cutset in Relation to the Amount of Data Used to train
each node (No Structure Learning Applied). The area between the green dots and
the right end of the plot represents the data used for training the predictor node
and the area between the red and green dots represents the data used for training
the parent nodes.

Log-Likelihood

Log-Likelihood

Log-Likelihood

2100

2050

2000

S&P 500 Close Price

1950

1900

2100

2050

2000

S&P 500 Close Price

1950

1900

2100

2050

2000

S&P 500 Close Price

1950

1900

1850

7.6 Influence of Historical Trends on Predictions

69

88

Cutset {15, 30, 45}
Training Days Parent Node
66 5¢ 44 34 22

Cutset {5, 10, 15, 20, 25, 30}
Training Days Parent Node
116 100 84 66 50 34

Training Days per Time Slice
54 50 44 39 33 28 22 17 11

Training Days per Time Slice
2 67 58 50 42

-1.750
L-175 2100 Jp—
-1.800
g 200
F-180 4 £ o
g v -1825 8
£ 2 =
3 G 2000 K]
33 -1.850 3
2 3 &
r-1853 [3
@ 1950 -1.875
-1.900
F—1.90 1900
-1.925
@50 .
2015-07 2015-08 2015-09 2015-10 2015-11 2015-12 2015-04 2015-05 2015-06 2015-07 2015-08 2015-09 2015-10 2015-11 2015-12
Date Date
Cutset {5, 10, 15, 20, 25} Cutset {5, 10, 15, 20}
Training Days Parent Node Training Days Parent Node
196 180 160 140 120 100 80 60 40 246 226 200 176 150 126 100 76 50
Training Days per Time Slice Training Days per Time Slice
98 %2 8 70 50 40 30 20 123113 100 88 75 63 50 38 25
t-1.750 —1750
2100
L1775 -1.775
t-1.800 o 200 -1.800
3 H
F-1825 £ 2 -1.825 £
g U 2000 K]
28 3
F-1850 & @ -1850 &
2 o 3
4
¥ 1950
| —1.875 -1.875
[—1.900 1900 -1.900
SRS SO -1V A R, F-1.925 ~1.925
2015-03 201504 201505 201506 201507 201508 201509 201510 201511 2015-12 2015-01 2015-03 2015-05 2015-07 2015-09 2015-11
Date Date
Cutset {5, 10, 15}
Training Days Parent Node
326 300 266 234 200 166 134 100 66
Training Days per Time Slice
163 150 133 17 100 83 67 50 33
-1.750
-1.775
-1.800
-18253
g
£
3
-1.850 5
)
El
-1.875
-1.900
-1.925
.- L2000 e
2014-09 2014-11 2015-01 2015-03 2015-05 2015-07 2015-09 2015-11

Date

FIGURE 7.5: Likelihood per cutset in Relation to the Amount of Data Used to
train each node (With Structure Learning Applied). The area between the green
dot and the right end of the plot represents the data used for training the predictor
node.

Chapter 8

Conclusions and Future
Developments

In this section, we will summarise what was discovered during the development of the
project. This thesis aimed to model price changes in the S&P 500 index by leveraging
Partitioned Dynamic Bayesian Networkss (PDBNs). The goal was not to obtain the best
predictive model possible when employing PDBNs but to understand the relationship be-
tween the amount of historical data used and the prediction accuracy of a model.

Our journey through this complex task involved a series of challenges faced during
the construction of the model that ultimately shaped its final version. In Chapter 5 we
discussed how the data was retrieved and processed. Data handling was a big obstacle that
was faced in multiple circumstances, both during the retrieval process and during the later
transformations when constructing the network. This issue became recurrent as multiple
approaches were tested during the evolution of the project, each of which involved different
data processing steps.

In Chapter 7 Section 3 the different modeling approaches tested were discussed. The
initial approach involved the creation of one node per company being part of the S&P 500
to evaluate their relationships and possibly decrease the number of connections through
the effect of conditional independence given by structure learning techniques. We soon
realised the unfeasibility of following this approach, which was also found to be limiting
when concerning the creation of manual structures. The main reason for this approach
being unsuccessful is the need for a huge amount of data that grows with the growth of
the number of companies involved.

The second approach, which involved the construction of the network making use of
sectors as the main source of truth, is not a suggested approach. With each sector having
a different number of companies as part of it, it makes it highly unbalanced. Depending
on the library or programming language used, this approach could also have additional
limitations. Some libraries do not allow for a different amount of data to be used per node,
which due to the unbalanced dataset, would be the case when following this approach. An
additional consequence of this highly unbalanced dataset is that the network might try to
predict the overall trend making use of one or two sectors among the ones that it detects as
the most relevant ones. This leads to disregarding companies that might instead be more
relevant in different periods and also disregarding individual companies’ characteristics
leading to a low prediction accuracy.

70

8.1 Final Model and Prediction Approach 71

8.1 Final Model and Prediction Approach

To address the previously found limitations, as described in Chapter 4 Section 2.5 and
Chapter 7 Section 4 changes to the model finally struck a balance between complexity and
specificity by employing separate nodes for "Company" (representing the price change of
each company) and "Sector" across time transitions. In this way, we were able to preserve
the individual behavior of companies given by the trends available in the individual stock
price changes while still capturing the broader patterns given by the sectors. This not only
decreased the complexity compared to the company-specific approach but also resolved
issues with overweighting specific sectors compared to the sectors-specific approach. De-
spite this approach having significantly improved various aspects of the model, the impact
of adding the sector component on the predictions remains unclear and was not further
investigated, particularly on how their probabilities shifted and the nature of those changes.

In Chapter 7 Section 5 we discussed the various methods available and the one that
was ultimately employed. The final approach involved the use of the Likelihood Weighting
prediction method, which was chosen out of necessity due to the impossibility of comput-
ing the exact inference because of the computational complexity. While approximation
methods often yield good results, they can, at times, be inaccurate. These methods of-
fer multiple advantages, including greater memory efficiency and better scalability as the
networks grow larger and more complex. On the other hand, approximation methods
introduce a degree of error. In contrast to the exact inference which is deterministic, ap-
proximation methods generate different results depending on the sampled data. In the
case of Likelihood Weighting, the convergence of those approaches to the prediction com-
puted from the exact inference improves with an increased number of samples. However,
with this improvement comes also an increase in computational complexity. Additionally,
when dealing with discrete variables, like the labels involved in the development of this
project, an increase in their number leads to less reliability in the approximation which
would require a higher number of samples.

8.2 Results Analysis

Our analysis conducted in Chapter 7 Section 6 revealed that models that made use of
structure learning generally under-performed their counterparts. The confusion matrices in
Tables 6.5, 6.7, 6.6 and 6.8 confirmed this aspect, with the prediction accuracy indicating
a higher rate of correct predictions and the Mean Absolute Error (MAE) in Figure 6.6
indicating a lower error rate in the absence of structure learning.

This outcome suggests that the employed hill-climbing algorithm was not able to im-
prove the structure. The hypothesis is that the variance in the data is too high, while the
amount of data too low, for the algorithm to better understand the patterns. Moreover, the
employed random variables, defined as: "Company", "Sector", "Company Price Change"
and "S&P Price Change" are all relevant variables for the prediction of the S&P price,
the removal of a single variable in this context will hardly achieve a similar accuracy as
the accuracy deriving from the PDBN built without structure learning and would instead
introduction additional biases and incorrect assumptions.

The effects of historical data on the predictions were varied. We observed different
patterns where increasing the amount of historical training data had both positive and
negative effects. In general, the predictions followed a wave-like pattern, where, based on
the historical period included in the training data, the prediction improved or worsened.
While more historical data enhanced the model’s ability to explain older data distribu-

8.3 Limitations 72

tions and consequently improved the generalization of the model, it often led to decreased
weighted accuracy and increased mean absolute error (MAE) when predicting data points
further in the past. This is reflected in the improved log-likelihood scores and in figure 6.3
where (mostly in the case of a model where structure learning is applied as in figure 6.3a),
we can see that increasing the amount of data improves the accuracy of older predictions.

Our findings seem to indicate that the market behavior evolves over time, and models
trained with a large amount of data, although might behave better in terms of generaliza-
tion, might not correctly capture fast market movements during volatile periods which are
less likely to happen. This underscores the importance of incorporating mechanisms within
the model to account for shifting market conditions like Partitioned Dynamic Bayesian
Networkss (PDBNS).

8.3 Limitations

During the development of this project, some compromises had to be made to be able to
obtain results in a reasonable time frame. Two are the main limitations that we are now
going to discuss.

Companies Weights

When computing the predictions through the library bnlearn, predictions were made by
providing the observations row-wise, where each row represented a company, its sector,
and the data observations up to the day before the prediction day target. With this kind
of approach, for each company, one S&P 500 prediction was generated at each iteration.
The predictions were then downsampled to produce a single prediction which was then
compared to the actual value of the S&P 500 on the day we wanted to predict. The
process of downsampling was executed by fitting a normal distribution to the sampled
values, from which a single prediction value was extracted.

As explained in Chapter 5 Section 1.1 the S&P 500 is a weighted index, meaning that
its constituents have different weights, primarily based on their market capitalization when
compared to the total capitalization of the companies composing the index. The weight
of each company in the index changes daily depending on the growth that the company
sustains. Due to the absence of weights data in the constructed dataset and the challenges
in retrieving it, we made the incorrect assumption that each company had the same weight
during the development process.

Additionally, the index consists of the largest companies listed in the United States
stock exchanges. As companies grow in market capitalization, they become eligible to
be included in this index, and vice versa, companies that shrink in size are removed and
substituted by larger ones. As a consequence, companies are not permanently part of the
index. Due to the challenges in retrieving data, the specific dates when companies were
added or removed from the index were not considered. As a result, some companies in the
dataset may no longer have been part of the index in the period analyzed, or they may
not have been included yet. This limitation decreased the quality of the dataset, which
included periods where companies were not part of the index at that specific time.

Look-ahead Bias

An additional limitation involved executing predictions for nodes that were trained with a
set of data that included the exact data point we aimed to predict. This kind of approach
introduces a look-ahead bias, where the model has access to future information that should

8.4 Future Work 73

have otherwise been hidden at prediction time. The limited amount of data available
for this project had left little room for the creation of separate training and test sets.
Additionally, including different companies for executing the prediction or even using only
a portion of the available companies would have defeated the purpose of this project since
we aimed to analyze the companies part of the S&P 500 index. Ideally, the network would
have been trained with data from the first available day (in the past) up to the day prior to
the prediction day, and the prediction would have been executed for the following day. This
approach would have avoided the network interaction with the target data point. However,
it would have meant retraining the network as many times as the number of predictions
computed (500 per each model that was tested). Following such an approach would have
been prohibitive and it would have limited the number of predictions performed for each
tested model.

8.4 Future Work

As described in section 8.3 above, one of the major limitations encountered was the absence
of a fully detailed dataset. The consequence of this absence meant the use of incorrect
assumptions to be able to proceed with the project. A key aspect for future development
would be to incorporate the actual weights assigned to each company. After computing
the prediction, each company’s prediction would then be weighted based on the company’s
weight in the S&P 500, resulting in a more representative prediction. However, it is
important to note that while this approach may better reflect the actual behavior of the
index where each company is weighted accordingly, it might not necessarily lead to an
improved model accuracy. One more step towards an improved dataset would be including
the dates detailing when companies were included or removed from the index. By including
those dates, we would be able to remove companies no longer part of the index, in each
time slice, removing unnecessary noise and decreasing the computational complexity.

Additional future work may focus on enhancing how the predictor node is trained,
trying to improve the look-ahead bias described in 8.3. The idea here is to design a cross-
validation approach where the predictor node would be re-trained multiple times and at
each time a different set of companies is used to train the node to predict the companies
that were not included instead. By following this process multiple times, we would end
up with a set of predictions that can then be averaged to obtain the actual prediction.
This process would not require training the full network multiple times, in this way we
can speed up the time required for the network construction. Instead of learning the full
network, after a change in the predictor node, only the parameters and the structure of
the last Dynamic Bayesian Network (DBN) would be reprocessed.

One additional approach that would be interesting to test to improve the predictions
is the impact of higher-order Markov chains on the predictions. The method explained
in Chapter 5 Section 2 made use of the Likelihood Weighting approach where first-order
Markov chains are employed. In the case of the model built in this project, where the
network was constructed without the use of structure learning. The first-order Markov
chains meant that only the predictor node and the previous time slice were used for the
prediction, disregarding the rest of the network and the historical data the network was
trained with. Employing higher-order Markov chains might reveal more aspects of how the
historical data employed helps in predicting further in the future.

Finally, as highlighted in Chapter 7 Section 6, all the employed variables are equally
important and provide additional information at any given time. Since employing structure
learning did not seem to improve the network’s performance, adding more company-related

8.4 Future Work 74

information that also evolves over time — such as the P/E ratio or the daily trading
volume — could not only improve the prediction accuracy but also help structure learning
algorithms better identify relationships between random variables. This approach could
help maintaining only important variables, taking better advantage of the conditional
independence property of Bayesian Networks (BNs).

Appendix A

Results of Executions with Structure Learning

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset
50 500 15 _30_45 1.822944 2.170368 -742.525470 -1.839098 0.396986 6 24
750 15 _30_45 2.122886 2.371014 -1387.353508 -1.769414 0.340076 10 9
1000 15 30 _45 2.056110 2.449696 -764.641740 -1.725850 0.376106 14 10
1250 15_30_45 2.125300 2.386628 -886.667240 -1.875704 0.334508 11 12
1500 15_30_45 1.744130 1.882248 -792.223452 -2.037184 0.322030 11 16
1750 15 _30_45 1.815004 2.069740 -914.974178 -1.860742 0.395570 16 9
2000 15 _30_ 45 1.816038 2.097036 -1050.260530 -1.843026 0.361940 8 15
2250 15 30_45 1.816408 1.996834 -1118.406510 -1.907016 0.358240 10 15

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 15 _30_45 2.004998 2.217572 -979.323588 -1.997498 0.335020 11 12
500 5 10 15 1.657914 1.905992 -604.047936 -1.856908 0.424982 14 12
750 5 10 15 2.141112 2.304770 -1621.760446 -1.852698 0.309278 7 14
1000 5 _10_15 2.117618 2.451478 -826.260396 -1.754486 0.364866 11 12
1250 5 _10_15 2.342222 2.592902 -1462.219448 -1.951684 0.252938 6 9
1500 5 _10_15 1.767382 1.913824 -843.705900 -2.019488 0.321104 13 13
1750 5_10_15 2.040032 2.239352 -837.721072 -1.920670 0.339736 11 12
2000 5 10 15 1.836946 2.124210 -623.544304 -1.905772 0.402696 14 13
2250 5 _10_15 1.198826 1.384046 -599.400174 -1.813142 0.482152 14 20
2450 5 10 15 1.934560 2.131186 -1312.018522 -1.995176 0.303808 9 13
500 5 10 15 20 1.540204 1.799918 -661.506636 -1.834064 0.449684 11 20
750 5 10 15 20 2.049428 2.227982 -1776.217476 -1.807680 0.338996 15 7
1000 5 10 15 20 2.207142 2.531666 -749.918094 -1.775664 0.354998 8 9
1250 5 10 15 20 2.260236 2.532094 -1144.064168 -1.927228 0.285052 7 9
1500 5 10 15 20 1.673492 1.834638 -774.221960 -1.982922 0.354162 9 19
1750 5 _10_15_ 20 2.057346 2.256170 -846.222344 -1.891716 0.330280 9 12
2000 5 10 15 20 1.835830 2.123620 -808.309480 -1.873094 0.415984 14 16
2250 5 10 _15 20 1.091336 1.291444 -478.105242 -1.768806 0.523190 12 25

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 _15 20 1.919360 2.137220 -1212.122646 -1.992282 0.340268 11 20
500 5 10 15 20 25 1.541294 1.807332 -648.234782 -1.843594 0.441604 15 15
750 5 10 _15 20 25 2.052282 2.239774 -1630.088440 -1.798404 0.346720 12 10
1000 5 10 _15 20 25 2.202186 2.549852 -786.823698 -1.768162 0.352174 9 14
1250 5 _10_15 20 25 2.184062 2.445712 -1023.828400 -1.911424 0.309534 9 13
1500 5 10 _15 20 25 1.728724 1.891688 -832.617136 -1.995868 0.348520 9 19
1750 5_10_15 20 25 1.905338 2.108318 -942.473136 -1.871688 0.355062 9 14
2000 5 10 15 20 25 1.829098 2.122762 -850.514814 -1.839272 0.410868 12 16
2250 5 10 15 20 25 1.199768 1.391444 -565.688226 -1.791234 0.494868 18 17
2450 5 10 15 20 25 2.009222 2.205388 -1219.434654 -2.001522 0.304262 7 16
500 5 10 15 20 25 30 | 1.687316 1.999842 -696.099248 -1.858162 0.420082 15 12
750 5 10 15 20 25 30 | 2.093218 2.280186 -1354.133550 -1.833300 0.327282 10 13
1000 5 10 15 20 25 30 | 2.169294 2.534122 -757.175222 -1.751928 0.371158 9 14
1250 5 10 15 20 25 30 | 2.119300 2.397120 -953.664922 -1.906446 0.317282 7 14
1500 5 10 15 20 25 30 | 1.786574 1.945680 -863.654876 -2.026278 0.332868 13 15
1750 5 _10_15 20 25 30 | 1.959232 2.158250 -979.687578 -1.896294 0.336492 8 18
2000 5 10 15 20 25 30 | 1.725972 2.044548 -874.883238 -1.811528 0.413136 12 16
2250 5 10 15 20 25 30 | 1.425602 1.601536 -656.212816 -1.864280 0.430952 9 22

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 30 | 2.000876 2.193760 -1143.002820 -2.004746 0.311054 14 9

100 500 15 _30_45 1.813872 2.171767 -808.991720 -1.756627 0.404706 15 37
750 15 30_45 2.043223 2.317726 -1398.515161 -1.693932 0.366347 18 21

1000 15 _30_45 1.992082 2.337531 -733.661499 -1.771315 0.372037 21 26

1250 15_30_45 2.179765 2.454559 -1032.867545 -1.888301 0.325169 19 26

1500 15 _30_45 1.967934 2.180081 -841.954529 -1.995978 0.301770 18 27

1750 15_30_45 1.876965 2.117795 -743.051692 -1.925928 0.370956 25 26

2000 15 30 45 1.944879 2.188178 -1166.592713 -1.891268 0.342588 16 30

2250 15 30 45 2.049178 2.241023 -1022.227951 -1.949530 0.292229 18 29

2450 15 30 45 2.031710 2.264051 -997.047134 -1.942241 0.348973 24 22

500 5 10 15 1.734696 1.986135 -682.411676 -1.795430 0.409190 24 29

750 5 10 15 2.098875 2.266019 -1628.145382 -1.779008 0.328172 18 25

1000 5 10 15 2.170721 2.484319 -807.872893 -1.775323 0.334941 21 22

1250 5 10 15 2.267605 2.534192 -1153.827512 -1.912390 0.289320 16 18

1500 5 10 _15 1.749363 1.938444 -773.619060 -1.986182 0.355780 26 29

1750 5 10 _15 1.994111 2.216941 -760.371987 -1.921248 0.351686 23 26

2000 5 _10_15 1.834360 2.107037 -992.953000 -1.884309 0.377657 26 23

2250 5 _10_15 1.658070 1.843850 -906.816647 -1.869694 0.384670 25 32

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5_10_15 1.905049 2.132651 -1079.118447 -1.935745 0.339994 21 29
500 5 10 _15_20 1.693693 1.956853 -710.613740 -1.786006 0.418994 23 30
750 5 10 _15 20 2.022651 2.207226 -1657.265582 -1.753588 0.351864 27 14
1000 5 10 _15_ 20 2.161405 2.484775 -739.051168 -1.782087 0.332647 13 20
1250 5 10 _15_ 20 2.218106 2.495462 -988.921026 -1.900147 0.306115 15 20
1500 5 10 15 20 1.743170 1.945161 -820.204044 -1.976349 0.361207 21 36
1750 5_10_15_ 20 1.999580 2.234355 -788.300402 -1.911132 0.351389 22 23
2000 5 10 15 20 1.859644 2.128372 -990.398385 -1.885741 0.370019 20 30
2250 5 10 15 20 1.630815 1.827168 -825.255080 -1.859259 0.400958 20 42
2450 5 10 15 20 1.858890 2.091776 -1035.040890 -1.928937 0.360153 22 30
500 5 10 15 20 25 1.697794 1.973203 -695.307453 -1.783325 0.421675 21 36
750 5 10 15 20 25 2.048654 2.253947 -1577.113129 -1.746372 0.351402 21 22
1000 5 10 15 20 25 2.140875 2.467889 -707.966974 -1.779311 0.335854 22 21
1250 5 10 15 20 25 2.250521 2.523129 -967.342700 -1.887970 0.307310 15 23
1500 5 10 15 20 25 1.818153 2.023275 -880.969081 -1.976755 0.346173 20 32
1750 5 10 15 20 25 1.970171 2.204540 -813.577082 -1.922140 0.349835 21 24
2000 5 10 15 20 25 1.873202 2.147799 -1081.042793 -1.865115 0.368118 16 34
2250 5 10 15 20 25 1.726192 1.918982 -913.589906 -1.883266 0.375509 23 29

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 1.930450 2.159158 -1033.253762 -1.943732 0.346316 18 26

500 5 10 _15 20 25 30 | 1.844480 2.160820 -649.658494 -1.805126 0.396264 27 27

750 5 10_15 20 25 30 | 2.045886 2.258047 -1407.337080 -1.761069 0.349326 27 20

1000 5 _10_15_20_25 30 | 2.129512 2.471361 -692.745624 -1.796427 0.345605 18 25

1250 5 _10_15_20_25 30 | 2.181041 2.467552 -936.708354 -1.872929 0.328573 15 26

1500 5 10 _15_20_25 30 | 1.882549 2.087309 -896.884910 -2.015181 0.327299 22 31

1750 5_10_15 20 25 30 | 1.980321 2.209425 -804.592845 -1.930392 0.348623 20 31

2000 5 10 15 20 25 30 | 1.910317 2.184096 -1174.038092 -1.864728 0.354075 17 32

2250 5 10 _15 20 25 30 | 1.834128 2.022704 -1012.828147 -1.902689 0.346481 16 34

2450 5 10 15 20 25 30 | 2.006007 2.234708 -1009.783576 -1.951881 0.333609 24 20

150 500 15 30 45 1.885916 2.246567 -780.568171 -1.777147 0.387438 22 49
750 15 30 45 2.038859 2.308967 -1310.986791 -1.697615 0.356048 27 33

1000 15 30 45 1.953991 2.297909 -896.306035 -1.732797 0.385714 33 39

1250 15 30 45 2.163469 2.463009 -973.351165 -1.883824 0.325415 27 37

1500 15 30 45 2.014361 2.246337 -1030.856621 -1.923241 0.308160 27 36

1750 15 _30_45 1.875249 2.116945 -768.229388 -1.893760 0.384903 37 37

2000 15 30_45 1.813597 2.046899 -1115.158505 -1.883647 0.354661 30 43

2250 15 _30_45 2.026377 2.248803 -940.446858 -1.921908 0.313319 28 37

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 15 _30_45 1.922707 2.159245 -988.105563 -1.921814 0.360833 36 35
500 5 10_15 1.725023 1.981575 -727.331791 -1.733247 0.423403 36 42
750 5 10_15 2.018353 2.188913 -1465.772890 -1.740067 0.346874 31 40
1000 5 _10_15 2.067820 2.375679 -855.806669 -1.774165 0.354031 34 36
1250 5 _10_15 2.220329 2.504281 -1073.488645 -1.903445 0.306898 23 29
1500 5 _10_15 1.949967 2.166844 -923.873949 -1.955598 0.313519 33 36
1750 5_10_15 1.877564 2.097030 -763.830845 -1.933465 0.361097 31 42
2000 5 10 15 1.905167 2.151588 -1074.210677 -1.913425 0.356301 34 37
2250 5 10 _15 1.842742 2.036594 -901.873012 -1.900053 0.347111 35 43
2450 5 10 15 1.889363 2.109189 -992.230071 -1.931307 0.350864 36 47
500 5 10 15 20 1.717706 1.981809 -740.773067 -1.731781 0.422673 34 40
750 5 10 15 20 2.023231 2.204051 -1507.695667 -1.733718 0.351658 38 28
1000 5 10 15 20 2.055065 2.375705 -867.770159 -1.783315 0.353969 26 29
1250 5 10 15 20 2.208045 2.504427 -980.444766 -1.899532 0.313082 22 30
1500 5 10 15 20 1.947527 2.174291 -942.889265 -1.944216 0.319703 27 42
1750 5 10 15 20 1.891161 2.115159 -771.818921 -1.924135 0.360265 31 42
2000 5 10 15 20 1.890569 2.139365 -1086.342911 -1.897878 0.361165 28 48
2250 5 10 15 20 1.853575 2.057542 -864.413690 -1.889715 0.353033 26 50

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 1.873522 2.097149 -971.910502 -1.934460 0.363226 30 45
500 5 10 _15 20 25 1.752611 2.023427 -736.758799 -1.742299 0.415855 32 47
750 5 10 _15 20 25 2.018072 2.229297 -1399.276867 -1.720867 0.357183 33 32
1000 5 10 _15 20 25 2.044529 2.378733 -868.377441 -1.768632 0.361157 35 36
1250 5 _10_15 20 25 2.201881 2.503534 -953.075788 -1.892997 0.316811 27 36
1500 5 10 _15 20 25 1.966665 2.203211 -932.580834 -1.938801 0.314221 24 42
1750 5 10 _15 20 25 1.881584 2.105413 -793.263833 -1.920245 0.369730 36 39
2000 5 10 15 20 25 1.863889 2.116263 -1078.749045 -1.883227 0.364778 28 48
2250 5 10 15 20 25 1.905078 2.113787 -869.544869 -1.904141 0.344545 31 39
2450 5 10 15 20 25 1.924330 2.137221 -1082.127853 -1.936783 0.345243 27 40
500 5 10 15 20 25 30 | 1.866331 2.190147 -784.665285 -1.762198 0.395791 36 46
750 5 10 15 20 25 30 | 2.046521 2.260791 -1341.434845 -1.730878 0.346687 43 26
1000 5 10 15 20 25 30 | 2.033211 2.376179 -855.206561 -1.762273 0.370039 27 35
1250 5 10 15 20 25 30 | 2.192803 2.501715 -969.529566 -1.886919 0.318339 22 35
1500 5 10 15 20 25 30 | 1.975143 2.215461 -1006.469265 -1.938073 0.317125 28 41
1750 5 _10_15 20 25 30 | 1.891991 2.113675 -800.798358 -1.914471 0.371751 33 45
2000 5 10 15 20 25 30 | 1.849093 2.101248 -1080.755052 -1.876931 0.362885 32 46
2250 5 10 15 20 25 30 | 1.959441 2.168561 -912.736607 -1.913276 0.330747 21 47

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 30 | 1.926991 2.145696 -1059.146208 -1.933475 0.350085 36 36

200 500 15 _30_45 1.875333 2.227281 -842.596749 -1.789594 0.376064 31 62
750 15 30_45 1.962391 2.241351 -1406.156118 -1.703279 0.379581 41 48

1000 15 _30_45 1.988430 2.316216 -1049.746054 -1.741073 0.378620 38 54

1250 15_30_45 2.159037 2.455942 -1073.587268 -1.854777 0.332248 36 50

1500 15 _30_45 2.047675 2.274548 -1130.435675 -1.914581 0.314813 35 49

1750 15 _30_45 1.814792 2.064289 -810.483884 -1.867456 0.400460 55 50

2000 15 30 45 1.808478 2.028332 -972.583196 -1.897148 0.349464 42 58

2250 15 30 45 1.935731 2.164808 -1020.429346 -1.919219 0.319768 42 49

2450 15 _30 45 1.940126 2.166921 -1172.873572 -1.883773 0.363034 45 51

500 5 10 15 1.763564 2.015452 -773.926380 -1.757557 0.408517 50 54

750 5 10 15 2.024352 2.193109 -1506.704522 -1.739093 0.349374 42 49

1000 5 10 15 2.003900 2.307477 -984.588736 -1.761363 0.368447 41 49

1250 5 10 15 2162395 2.456282 -1073.692785 -1.879290 0.316771 34 36

1500 5 10 _15 1.993927 2.221940 -1000.487340 -1.932432 0.314704 43 50

1750 5 10 _15 1.932688 2.157650 -808.880675 -1.895498 0.372672 43 54

2000 5 _10_15 1.801913 2.037595 -990.343839 -1.897724 0.365729 43 58

2250 5 _10_15 1.864524 2.081205 -965.415733 -1.893972 0.344718 44 55

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5_10_15 1.855857 2.078012 -1077.422780 -1.909191 0.363392 49 62
500 5 10 _15_20 1.751243 2.010255 -775.850119 -1.767275 0.405805 43 54
750 5 10 _15_20 1.973925 2.163205 -1495.808335 -1.719390 0.367087 51 39
1000 5 10 _15_ 20 1.996012 2.312425 -995.541814 -1.760847 0.370558 37 40
1250 5 10 _15_ 20 2.165647 2.466537 -1043.078782 -1.877611 0.322701 33 44
1500 5 10 15 20 1.991518 2.223546 -998.748936 -1.922775 0.319336 37 52
1750 5_10_15_ 20 1.952834 2.179531 -842.415514 -1.897980 0.368185 46 51
2000 5 10 15 20 1.802918 2.038469 -982.164878 -1.894020 0.369210 43 65
2250 5 10 15 20 1.872631 2.088623 -952.077854 -1.893629 0.342874 38 58
2450 5 10 15 20 1.853245 2.077122 -1058.846829 -1.903284 0.370570 47 55
500 5 10 15 20 25 1.770668 2.037230 -786.409453 -1.780277 0.399585 38 66
750 5 10 15 20 25 1.974058 2.192261 -1435.634047 -1.719349 0.367794 49 38
1000 5 10 15 20 25 2.019229 2.343213 -1046.414352 -1.753286 0.368073 48 47
1250 5 10 15 20 25 2.195931 2.493950 -1077.024280 -1.877545 0.317868 33 48
1500 5 10 15 20 25 2.007830 2.246162 -1013.603609 -1.927172 0.315729 32 57
1750 5 10 15 20 25 1.905952 2.139282 -834.823276 -1.886883 0.378670 50 50
2000 5 10 15 20 25 1.784386 2.023105 -959.320319 -1.885829 0.370860 37 70
2250 5 10 15 20 25 1.871787 2.099185 -960.291224 -1.891696 0.345770 43 57

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 1.883416 2.101489 -1142.575779 -1.902662 0.363339 39 55

500 5 10 _15 20 25 30 | 1.855035 2.171438 -779.773931 -1.788241 0.386373 51 54

750 5 10_15 20 25 30 | 1.955402 2.184492 -1349.730694 -1.722290 0.371308 58 37

1000 5 _10_15_20_25 30 | 2.038809 2.364537 -1040.442404 -1.760582 0.367970 34 55

1250 5 _10_15_20_25 30 | 2.188812 2.488755 -1071.000634 -1.873727 0.319504 31 44

1500 5 10 _15 20 25 30 | 2.039696 2.282606 -1039.880238 -1.928257 0.313809 39 49

1750 5_10_15 20 25 30 | 1.890897 2.125158 -827.603119 -1.884402 0.382953 47 54

2000 5 10 15 20 25 30 | 1.779118 2.017275 -972.370507 -1.879581 0.364742 40 63

2250 5 10 15 20 25 30 | 1.886276 2.112913 -975.703227 -1.901310 0.339473 36 57

2450 5 10 15 20 25 30 | 1.909521 2.133267 -1157.445481 -1.895411 0.362791 50 48

250 500 15 30 45 1.882597 2.229282 -969.089532 -1.796684 0.371205 43 74
750 15 30 45 1.976690 2.250446 -1298.529212 -1.721486 0.372263 49 60

1000 15 30 45 2.052542 2.376597 -1116.747211 -1.770769 0.357426 50 63

1250 15 30 45 2.089215 2.371145 -1051.556524 -1.882870 0.337862 49 64

1500 15 30 45 2.066772 2.288996 -1078.974254 -1.909732 0.312782 42 67

1750 15 _30_45 1.842148 2.098712 -780.226742 -1.867338 0.401683 69 64

2000 15 30_45 1.693139 1.910482 -897.215365 -1.869940 0.372810 53 81

2250 15 _30_45 1.948926 2.175899 -1009.838457 -1.930839 0.323206 53 65

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 15 _30_45 1.950388 2.173792 -1148.545441 -1.868978 0.362289 56 61
500 5 10_15 1.793374 2.037587 -816.289918 -1.776189 0.393754 61 66
750 5 10_15 1.931434 2.109355 -1419.896905 -1.732947 0.372240 54 66
1000 5 _10_15 2.030112 2.330527 -1015.979470 -1.759163 0.363643 55 54
1250 5 _10_15 2.168970 2.446933 -1160.910418 -1.886142 0.319151 43 46
1500 5 _10_15 2.010079 2.233847 -1107.865484 -1.911625 0.322152 52 62
1750 5 _10_15 1.881572 2.121188 -792.011022 -1.870471 0.384655 57 66
2000 5 10 15 1.792132 2.015704 -901.431558 -1.894985 0.361304 54 72
2250 5 10 15 1.875378 2.088328 -1029.440771 -1.910067 0.337624 51 70
2450 5 10 15 1.894691 2.115909 -1168.923665 -1.884617 0.362515 58 7
500 5 10 15 20 1.784860 2.032242 -827.016276 -1.781980 0.389056 51 70
750 5 10 15 20 1.930750 2.121356 -1450.369208 -1.723312 0.375033 63 52
1000 5 10 15 20 2.039768 2.346997 -1063.400176 -1.771830 0.359256 45 49
1250 5 10 15 20 2.163174 2.449496 -1113.962771 -1.887172 0.321393 45 51
1500 5 10 15 20 2.003860 2.229156 -1100.988395 -1.907689 0.325697 47 64
1750 5 _10_15_ 20 1.899482 2.138394 -788.554030 -1.877752 0.380926 61 59
2000 5 10 15 20 1.787798 2.009858 -928.169999 -1.891005 0.358848 54 84
2250 5 10 15 20 1.879346 2.098137 -998.064552 -1.908652 0.343210 49 67

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 1.872541 2.092044 -1149.764053 -1.878885 0.369989 58 63
500 5 10 _15 20 25 1.795527 2.050984 -859.372555 -1.786222 0.383774 45 76
750 5 10 15 20 25 1.930219 2.148315 -1381.261820 -1.724346 0.377977 61 53
1000 5 10 _15 20 25 2.035922 2.359087 -1083.864483 -1.767317 0.360720 56 60
1250 5 _10_15 20 25 2.159845 2.445232 -1103.294794 -1.886002 0.323894 45 61
1500 5 10 _15 20 25 2.029122 2.259954 -1088.911905 -1.909642 0.319180 38 74
1750 5_10_15 20 25 1.874526 2.118899 -794.205789 -1.879716 0.385802 63 59
2000 5 10 15 20 25 1.758246 1.983249 -903.464542 -1.878437 0.365611 46 89
2250 5 10 15 20 25 1.893986 2.116078 -1005.122643 -1.908499 0.339433 53 70
2450 5 10 15 20 25 1.896994 2.115645 -1144.175806 -1.880738 0.363433 49 64
500 5 10 15 20 25 30 | 1.842960 2.149036 -897.507633 -1.784065 0.381863 61 68
750 5 10 15 20 25 30 | 1.941019 2.164498 -1323.109140 -1.731995 0.372570 68 50
1000 5 10 15 20 25 30 | 2.073759 2.399230 -1096.502620 -1.769922 0.357501 43 68
1250 5 10 15 20 25 30 | 2.130338 2.416623 -1093.898490 -1.882041 0.327940 42 58
1500 5 10 15 20 25 30 | 2.038011 2.274369 -1088.367167 -1.912510 0.319900 51 62
1750 5 _10_15 20 25 30 | 1.898140 2.139208 -803.604576 -1.883701 0.385286 60 66
2000 5 10 15 20 25 30 | 1.722434 1.948902 -892.503579 -1.868190 0.371162 55 80
2250 510 15 20 25 30 | 1.905337 2.125196 -1002.881525 -1.916100 0.335034 45 74

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10_15_20 25 30 | 1.914274 2.139438 -1134.130236 -1.876212 0.362504 62 59

300 500 15 _30_45 1.886979 2.228346 -1018.161494 -1.786952 0.369735 56 82
750 15 _30_45 1.982767 2.264879 -1196.365063 -1.720605 0.373488 60 71

1000 15 _30_45 2.039774 2.357621 -1080.766308 -1.787820 0.357944 65 74

1250 15_30_45 2.026025 2.294072 -1009.735608 -1.906979 0.336211 56 84

1500 15 _30_45 2.023747 2.255936 -1053.881476 -1.901375 0.328156 53 83

1750 15_30_45 1.832964 2.095054 -823.170561 -1.862693 0.396453 79 81

2000 15 30 45 1.712430 1.922729 -929.710143 -1.874320 0.370588 64 98

2250 15_30_45 1.968121 2.200769 -1008.742662 -1.922261 0.329970 61 80

2450 15 _30 45 2.011666 2.236541 -1147.351039 -1.863704 0.345906 62 68

500 5 10 15 1.836358 2.078547 -931.974070 -1.786834 0.383928 74 76

750 5 10 15 1.952868 2.130818 -1309.518667 -1.730996 0.370563 60 83

1000 5 10 15 2.082823 2.376045 -1102.681922 -1.790085 0.346047 61 64

1250 5 10 15 2.083594 2.343161 -1094.766611 -1.903614 0.325913 56 61

1500 5 10 _15 2.019730 2.243856 -1069.418973 -1.910120 0.323695 60 7

1750 5 10 _15 1.875605 2.124752 -762.391151 -1.875371 0.387834 69 81

2000 5 _10_15 1.693947 1.911233 -852.508727 -1.878489 0.381123 71 90

2250 5 _10_15 1.876121 2.098250 -997.055853 -1.902910 0.343872 64 79

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5_10_15 1.939811 2.160561 -1114.739671 -1.871601 0.352597 67 88
500 5 10 _15_20 1.792262 2.041984 -939.644630 -1.778850 0.389856 61 79
750 5 10 _15 20 1967136 2.156406 -1321.398571 -1.726303 0.371960 76 64
1000 5 10 _15_ 20 2.068678 2.370772 -1086.013391 -1.793777 0.348209 56 55
1250 5 10 _15_ 20 2.074095 2.342621 -1048.245898 -1.899920 0.329208 55 72
1500 5 10 15 20 2.017177 2.243619 -1062.735134 -1.901045 0.325351 58 75
1750 5_10_15_ 20 1.890714 2.139626 -790.471787 -1.875977 0.386561 71 80
2000 5 10 15 20 1.673707 1.891929 -854.610599 -1.867825 0.385373 69 106
2250 510 15 20 1.866228 2.092237 -971.526504 -1.900587 0.349078 64 7
2450 5 10 15 20 1.917554 2.138029 -1123.427722 -1.864753 0.361758 68 7
500 5 10 15 20 25 1.792704 2.051773 -934.407060 -1.782540 0.388732 58 90
750 5 10 15 20 25 1.965518 2.184404 -1265.317921 -1.726653 0.374104 72 67
1000 5 10 15 20 25 2.053507 2.366070 -1076.750138 -1.788291 0.353383 68 70
1250 5 10 15 20 25 2.087987 2.358815 -1058.237081 -1.903556 0.328377 59 80
1500 5 10 15 20 25 2.014889 2.246153 -1071.799601 -1.901768 0.324006 49 89
1750 5 10 15 20 25 1.872525 2.125938 -804.609276 -1.872631 0.388552 72 72
2000 5 10 15 20 25 1.666816 1.886312 -847.933477 -1.860136 0.386289 58 112
2250 5 10 15 20 25 1.890866 2.121598 -977.001031 -1.902947 0.346911 66 84

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 1.945202 2.162725 -1130.254098 -1.868917 0.353282 58 7

500 5 10 _15 20 25 30 | 1.851594 2.154472 -943.832153 -1.788708 0.379885 69 87

750 5 10_15 20 25 30 | 1.959882 2.188569 -1213.333180 -1.728347 0.375052 81 60

1000 5 _10_15_20_25 30 | 2.067964 2.386608 -1072.531459 -1.789250 0.352316 56 74

1250 5 _10_15_20_25 30 | 2.068413 2.341394 -1052.415147 -1.902863 0.330777 55 7

1500 5 _10_15_20_ 25 30 | 2.030380 2.264462 -1078.126211 -1.908216 0.321380 59 79

1750 5_10_15 20 25 30 | 1.872316 2.126149 -815.552654 -1.871332 0.388782 72 78

2000 5 10 15 20 25 30 | 1.672790 1.890793 -852.302471 -1.864112 0.381084 70 97

2250 5 10 15 20 25 30 | 1.929486 2.157760 -981.054397 -1.913048 0.337031 56 85

2450 5 10 15 20 25 30 | 1.960725 2.184772 -1131.410451 -1.866227 0.351392 70 66

350 500 15 30 45 1.879429 2.225628 -1038.956254 -1.762360 0.375714 69 91
750 15 30 45 1.966486 2.247151 -1123.684974 -1.736639 0.373493 67 88

1000 15 30 45 2.069179 2.380842 -1095.989519 -1.804665 0.350735 72 86

1250 15 30 45 2.057825 2.335989 -1005.571338 -1.915164 0.329144 64 95

1500 15 30 45 2.011817 2.246046 -985.852079 -1.915092 0.331511 64 93

1750 15 _30_45 1.861045 2.117257 -880.630503 -1.879009 0.386303 85 96

2000 15 30_45 1.791455 2.002959 -929.913523 -1.890779 0.351824 71 107

2250 15 _30_45 1.931639 2.165542 -1001.724320 -1.915303 0.337786 76 93

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 15 _30_45 2.060747 2.283012 -1242.715832 -1.860449 0.335059 69 75
500 5 10_15 1.847271 2.086813 -1001.812291 -1.770223 0.379663 86 86
750 5 10 15 1.980358 2.157534 -1231.038363 -1.742813 0.360952 66 97
1000 5 _10_15 2.088095 2.377574 -1067.411832 -1.799337 0.344224 71 79
1250 5 _10_15 2.038839 2.300168 -1041.283981 -1.916373 0.333165 65 80
1500 5 _10_15 2.003647 2.233611 -1015.709169 -1.911827 0.331897 70 86
1750 5_10_15 1.863913 2.116891 -847.422682 -1.873011 0.384351 80 100
2000 5 10 15 1.755392 1.968451 -902.791383 -1.885324 0.367528 7 104
2250 5 10 15 1.875030 2.094815 -970.210895 -1.903458 0.348182 75 98
2450 5 10 15 1.978064 2.195420 -1169.418610 -1.868428 0.344159 74 99
500 5 10 15 20 1.798803 2.049565 -985.649265 -1.763951 0.386703 73 88
750 5 10 15 20 1.969531 2.160537 -1229.529397 -1.738176 0.364726 84 79
1000 5 10 15 20 2.076872 2.375513 -1050.364124 -1.805705 0.345500 63 66
1250 5 10 15 20 2.036551 2.309667 -1027.381563 -1.912824 0.335075 67 87
1500 5 10 15 20 1.995141 2.232724 -1016.829161 -1.905273 0.336682 70 87
1750 5 _10_15_ 20 1.883580 2.135903 -843.717906 -1.879546 0.379427 80 92
2000 5 10 15 20 1.746547 1.961984 -899.669851 -1.879879 0.370039 7 122
2250 5 10 15 20 1.876747 2.097510 -955.052948 -1.904623 0.351259 76 91

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 1.985971 2.200333 -1202.287130 -1.865793 0.344958 76 87
500 5 10 _15 20 25 1.802121 2.062714 -978.752097 -1.767187 0.383599 68 101
750 5 10 15 20 25 1.968589 2.187180 -1169.115269 -1.738299 0.367856 82 78
1000 5 10 _15 20 25 2.079685 2.388455 -1052.818471 -1.798409 0.347861 78 79
1250 5 _10_15 20 25 2.062518 2.336548 -1042.287829 -1.913163 0.331317 69 99
1500 5 10 _15 20 25 2.006449 2.247538 -1014.906591 -1.910716 0.330969 63 98
1750 5_10_15 20 25 1.872859 2.129313 -875.439437 -1.876151 0.381462 80 83
2000 5 10 15 20 25 1.749261 1.966278 -902.542832 -1.876438 0.368453 69 125
2250 5 10 15 20 25 1.896398 2.120494 -1006.027345 -1.904907 0.345777 71 105
2450 5 10 15 20 25 1.995820 2.207264 -1211.711917 -1.866329 0.340369 64 90
500 5 10 15 20 25 30 | 1.855695 2.161635 -988.025401 -1.770212 0.378818 82 99
750 5 10 15 20 25 30 | 1.970393 2.198070 -1126.187793 -1.748677 0.367331 90 72
1000 5 10 15 20 25 30 | 2.080983 2.396943 -1047.402493 -1.796953 0.353157 68 89
1250 5 10 15 20 25 30 | 2.059546 2.334291 -1038.289865 -1.922673 0.329467 61 94
1500 5 10 15 20 25 30 | 2.014736 2.256852 -1013.342420 -1.914630 0.331077 69 93
1750 5 _10_15 20 25 30 | 1.890302 2.144509 -896.658827 -1.880250 0.378337 80 96
2000 5 10 15 20 25 30 | 1.754649 1.971306 -922.979769 -1.875431 0.364668 79 108
2250 5 10 15 20 25 30 | 1.908745 2.132431 -1005.579665 -1.909785 0.343121 72 99

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 30 | 2.035046 2.254537 -1217.301989 -1.864423 0.335918 76 72

400 500 15 _30_45 1.894807 2.234578 -1054.140407 -1.757466 0.371032 7 104
750 15 30_45 1.939803 2.223992 -1127.917856 -1.722761 0.381032 79 105

1000 15 _30_45 2.079361 2.393469 -1072.998548 -1.814568 0.345834 79 97

1250 15_30_45 2.065123 2.349094 -1065.489859 -1.896046 0.328387 74 104

1500 15 _30_45 2.000499 2.236085 -966.514090 -1.905929 0.339732 80 101

1750 15_30_45 1.826582 2.077762 -899.417258 -1.879009 0.383829 97 112

2000 15 30 45 1.819645 2.040638 -909.450791 -1.887350 0.352609 79 116

2250 15 30 45 1.939493 2.167784 -1088.427340 -1.898315 0.341808 89 102

2450 15 _30 45 2.065427 2.297841 -1219.018519 -1.861487 0.335298 76 88

500 5 10 15 1.842080 2.080588 -1010.156657 -1.757650 0.381558 96 104

750 5 10 15 1.953417 2.133128 -1188.911075 -1.744380 0.366207 80 109

1000 5 10 15 2.098170 2.389450 -1052.363055 -1.809905 0.343373 78 91

1250 5 10 15 2.075129 2.341592 -1068.858305 -1.910702 0.322331 72 88

1500 5 10 _15 1.962096 2.191869 -991.335259 -1.920988 0.336880 80 102

1750 5 10 _15 1.881121 2.129986 -887.247310 -1.887525 0.375839 89 113

2000 5 _10_15 1.819483 2.032477 -902.211693 -1.896148 0.355446 85 109

2250 5 _10_15 1.861365 2.081392 -1015.076723 -1.895794 0.354618 87 114

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5_10_15 1.983814 2.206598 -1194.247758 -1.862434 0.343547 84 113
500 5 10 _15_20 1.813584 2.060463 -997.310344 -1.757261 0.384704 85 98
750 5 10 _15_20 1.948553 2.143004 -1210.329528 -1.742424 0.368055 99 95
1000 5 10 _15_ 20 2.100506 2.402174 -1054.498154 -1.817092 0.341162 74 75
1250 5 10 _15_ 20 2.076357 2.354706 -1053.807982 -1.905727 0.324684 71 98
1500 5 10 15 20 1.960539 2.194670 -988.376126 -1.914062 0.340107 82 110
1750 5_10_15_ 20 1.887846 2.138575 -890.112341 -1.886364 0.374442 87 114
2000 5 10 15 20 1.820671 2.036867 -904.701351 -1.889652 0.356752 83 131
2250 5 10 15 20 1.869222 2.089848 -999.913850 -1.893129 0.356349 89 101
2450 5 10 15 20 1.978450 2.200134 -1198.229662 -1.862536 0.346073 89 96
500 5 10 15 20 25 1.805865 2.064435 -964.789586 -1.756947 0.384619 82 110
750 5 10 15 20 25 1.944507 2.167936 -1162.406207 -1.737468 0.374067 91 93
1000 5 10 15 20 25 2.096889 2.408704 -1054.450928 -1.813565 0.342598 83 92
1250 5 10 15 20 25 2.091284 2.372288 -1052.262660 -1.903001 0.322545 76 109
1500 5 10 15 20 25 1.974553 2.213183 -989.538282 -1.915086 0.338236 79 114
1750 5 10 15 20 25 1.867658 2.120643 -894.440128 -1.884532 0.377072 88 98
2000 5 10 15 20 25 1.821076 2.039818 -888.649217 -1.886426 0.357203 78 136
2250 5 10 15 20 25 1.882136 2.108410 -1043.106917 -1.891781 0.354747 82 120

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 2.006665 2.225501 -1219.910840 -1.864903 0.337886 73 104

500 5 10 _15 20 25 30 | 1.868032 2.171123 -993.572747 -1.760450 0.377441 92 109

750 5 10 15 20 25 30 | 1.939512 2.170930 -1122.304985 -1.738366 0.375725 102 89

1000 5 _10_15_20_25 30 | 2.108847 2.427597 -1061.294128 -1.814938 0.343270 77 100

1250 5 _10_15_20_25 30 | 2.076478 2.360483 -1076.169893 -1.899554 0.326675 77 100

1500 5 10 _15_20_25 30 | 1.983267 2.224232 -993.567640 -1.914801 0.339315 81 110

1750 5_10_15 20 25 30 | 1.873897 2.124231 -897.969949 -1.885804 0.376605 90 114

2000 5 10 15 20 25 30 | 1.817218 2.037960 -895.149278 -1.883436 0.356446 89 116

2250 5 10 15 20 25 30 | 1.902833 2.127228 -1058.149550 -1.893913 0.350746 82 114

2450 5 10 _15 20 25 30 | 2.024509 2.251022 -1245.843541 -1.862167 0.337651 86 84

450 500 15 30 45 1.868505 2.215253 -1100.157518 -1.755785 0.381648 89 115
750 15 30 45 1.952423 2.232757 -1167.160444 -1.726809 0.378638 87 124

1000 15 30 45 2.074237 2.390473 -1108.759682 -1.805738 0.347608 90 111

1250 15 30 45 2.076951 2.357425 -1117.208751 -1.893310 0.329202 84 115

1500 15 30 45 1.972535 2.214124 -968.566889 -1.892378 0.349675 90 118

1750 15 _30_45 1.824034 2.068658 -861.705966 -1.890136 0.377423 108 128

2000 15 30_45 1.803671 2.027462 -942.745182 -1.888649 0.350887 88 128

2250 15_30_45 1947112 2.172536 -1084.174274 -1.888704 0.343041 100 114

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 15 _30_45 2.075666 2.309026 -1163.263931 -1.856937 0.330449 83 97
500 5 10_15 1.851625 2.088347 -1059.970429 -1.755736 0.381316 109 111
750 5 10_15 1.927042 2.110168 -1204.044585 -1.739789 0.373056 90 123
1000 5 _10_15 2.085290 2.378464 -1062.654822 -1.809176 0.343532 91 101
1250 5 _10_15 2.081017 2.349745 -1095.363873 -1.904388 0.322299 83 94
1500 5 _10_15 1.974666 2.208656 -986.593649 -1.902955 0.345034 94 109
1750 5_10_15 1.850102 2.092873 -874.997649 -1.891037 0.373958 96 136
2000 5 10 15 1.833466 2.055477 -925.032156 -1.893505 0.353841 99 122
2250 5 10 15 1.883872 2.102747 -1070.468969 -1.884087 0.355179 98 126
2450 5 10 15 2.043081 2.266302 -1196.950480 -1.865948 0.330397 87 120
500 5 10 15 20 1.809658 2.059722 -1037.322304 -1.750465 0.388409 98 111
750 5 10 15 20 1.920204 2.118057 -1222.423415 -1.735020 0.376448 115 106
1000 5 10 15 20 2.087713 2.391469 -1078.725301 -1.813561 0.343326 86 87
1250 5 10 15 20 2.080036 2.359182 -1072.821922 -1.900576 0.324658 83 105
1500 5 10 15 20 1.981020 2.218334 -996.895557 -1.901219 0.345910 92 123
1750 5 _10_15_ 20 1.856240 2.100447 -868.346657 -1.891929 0.374203 100 132
2000 5 10 15 20 1.834754 2.055846 -933.539980 -1.890861 0.352274 92 145
2250 5 10 15 20 1.881269 2.099486 -1055.930766 -1.881122 0.357422 102 111

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 2.035036 2.256869 -1185.459442 -1.863234 0.333072 94 102
500 5 10 _15 20 25 1.811266 2.071701 -1033.210593 -1.755792 0.384524 95 121
750 5 10 15 20 25 1.933447 2.158682 -1201.153446 -1.733110 0.377290 100 105
1000 5 10 _15 20 25 2.092924 2.404078 -1101.487598 -1.811473 0.342512 90 103
1250 5 _10_15 20 25 2.093003 2.374662 -1082.081759 -1.902642 0.323442 87 121
1500 5 10 _15 20 25 1.976326 2.220209 -987.656821 -1.899518 0.345494 86 134
1750 5_10_15 20 25 1.837374 2.084576 -863.356211 -1.890111 0.376535 98 118
2000 5 10 15 20 25 1.814826 2.040956 -918.272577 -1.882142 0.357437 88 152
2250 5 10 15 20 25 1.892566 2.119139 -1054.339739 -1.881890 0.355424 95 130
2450 5 10 15 20 25 2.050996 2.271101 -1184.513852 -1.866029 0.327203 81 114
500 5 10 15 20 25 30 | 1.864902 2.173983 -1047.338893 -1.755836 0.380574 101 122
750 5 10 15 20 25 30 | 1.943302 2.174205 -1171.350212 -1.738767 0.376172 111 102
1000 5 10 15 20 25 30 | 2.107961 2.423656 -1097.357765 -1.812892 0.342055 84 114
1250 5 10 15 20 25 30 | 2.096451 2.381736 -1096.985176 -1.900379 0.324933 83 112
1500 5 10 15 20 25 30 | 1.977412 2.223497 -986.051897 -1.901113 0.347068 89 123
1750 5 _10_15 20 25 30 | 1.843592 2.088881 -873.681930 -1.889190 0.374753 101 129
2000 5 10 15 20 25 30 | 1.800358 2.028245 -919.072909 -1.880614 0.358096 101 130
2250 5 10 15 20 25 30 | 1.907364 2.131306 -1054.503988 -1.883582 0.351892 91 130

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 30 | 2.072479 2.297684 -1189.008507 -1.867189 0.324498 94 88

500 500 15 _30_45 1.865732 2.210292 -1070.512858 -1.755748 0.380944 97 132
750 15 30_45 1.982211 2.261116 -1179.792355 -1.744432 0.368470 94 132

1000 15 _30_45 2.040465 2.354330 -1111.017423 -1.824024 0.350461 97 133

1250 15_30_45 2.082159 2.359415 -1095.791854 -1.892081 0.327777 95 126

1500 15 _30_45 1.973429 2.222980 -938.967996 -1.888283 0.355178 102 133

1750 15_30_45 1.770959 2.012041 -841.771214 -1.878328 0.384650 124 144

2000 15 30 45 1.826911 2.049640 -945.065500 -1.896317 0.349001 96 143

2250 15 30 45 1.987005 2.210760 -1088.518929 -1.885416 0.334374 109 126

2450 15 _30 45 2.052136 2.292538 -1123.743773 -1.845320 0.337652 97 108

500 5 10 15 1.822328 2.062688 -1062.899750 -1.750503 0.390117 126 126

750 5 10 15 1.933162 2.115694 -1190.078756 -1.740421 0.372663 99 134

1000 5 10 15 2.085298 2.379187 -1109.786655 -1.814685 0.344056 100 116

1250 5 10 15 2.086942 2.351504 -1150.170113 -1.895525 0.325094 92 109

1500 5 10 _15 1.952572 2.196272 -964.777628 -1.888587 0.352300 104 122

1750 5 10 _15 1.836646 2.075793 -843.440990 -1.893769 0.370687 109 148

2000 5 _10_15 1.846394 2.065205 -958.323813 -1.901557 0.348680 111 134

2250 5 _10_15 1.916873 2.134556 -1049.310887 -1.877415 0.348633 105 139

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5_10_15 2.020900 2.249550 -1145.306781 -1.858285 0.335753 95 135
500 5 10 _15_20 1.796897 2.047302 -1052.363127 -1.747373 0.392660 112 128
750 5 10 _15_20 1.934442 2.129304 -1225.739039 -1.744698 0.372497 127 115
1000 5 10 _15_ 20 2.085707 2.389248 -1115.392463 -1.821467 0.341943 92 101
1250 5 10 _15_ 20 2.080624 2.354345 -1124.363169 -1.893655 0.327825 96 118
1500 5 10 15 20 1.957230 2.203632 -958.035916 -1.890334 0.352895 105 137
1750 5_10_15_ 20 1.841321 2.081039 -855.280591 -1.895130 0.368195 110 149
2000 5 10 15 20 1.845762 2.066433 -955.386661 -1.898447 0.350807 99 164
2250 5 10 15 20 1.912864 2.130891 -1050.678802 -1.873591 0.352653 112 120
2450 5 10 15 20 2.008341 2.236363 -1138.114800 -1.853656 0.341275 107 113
500 5 10 15 20 25 1.783975 2.045089 -1017.828267 -1.751546 0.392853 108 140
750 5 10 15 20 25 1.934690 2.160582 -1196.562960 -1.744036 0.374907 108 117
1000 5 10 15 20 25 2.076004 2.387042 -1117.755384 -1.820042 0.344062 105 114
1250 5 10 15 20 25 2.097467 2.373850 -1122.133270 -1.894705 0.325256 96 128
1500 5 10 15 20 25 1.957388 2.209263 -954.987225 -1.893982 0.351464 97 145
1750 5 10 15 20 25 1.819415 2.060949 -850.194729 -1.890791 0.372280 107 140
2000 5 10 15 20 25 1.836981 2.059868 -944.056772 -1.891174 0.352187 97 163
2250 5 10 15 20 25 1.926692 2.151140 -1054.467796 -1.875209 0.349247 103 147

Continued on next page

TABLE A.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 2.011312 2.239885 -1137.456634 -1.852128 0.340685 93 127
500 5 10_15 20 25 30 | 1.848348 2.154630 -1039.961795 -1.755147 0.384152 113 139
750 5 10 15 20_25 30 | 1.958190 2.189915 -1180.587658 -1.747305 0.371686 122 115
1000 5 _10_15_20_25 30 | 2.078447 2.393738 -1110.557259 -1.821765 0.344690 92 130
1250 5 _10_15_20_25 30 | 2.089168 2.371296 -1122.756183 -1.893381 0.328081 94 123
1500 5 10 _15_20_25 30 | 1.973405 2.225978 -959.964686 -1.896693 0.351670 98 134
1750 5_10_15 20 25 30 | 1.813873 2.053255 -849.991615 -1.888172 0.374398 113 145
2000 5 10 15 20 25 30 | 1.823130 2.046540 -938.098492 -1.889542 0.353021 111 147
2250 5 10 15 20 25 30 | 1.940443 2.162325 -1060.095667 -1.877816 0.345469 99 139
2450 5 10 15 20 25 30 | 2.038922 2.274503 -1133.625889 -1.850515 0.337207 104 105

End of the table

Appendix B

Results of Executions Without Structure Learning

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset
50 500 15 _30_45 0.827744 1.599234 -388.616850 -1.429436 0.734854 15 21
750 15 _30_45 1.240404 2.012672 -733.447168 -1.446908 0.609886 11 13
1000 15 30 _45 1.318558 2.125340 -615.662262 -1.444556 0.597420 15 16
1250 15_30_45 1.491206 2.244324 -778.146118 -1.509678 0.538434 11 17
1500 15_30_45 0.839198 1.481826 -481.339836 -1.393024 0.706440 15 20
1750 15 _30_45 1.267274 1.972194 -729.776522 -1.456500 0.589852 11 21
2000 15 _30_ 45 1.242784 1.898828 -959.353704 -1.476410 0.572430 6 22
2250 15 30_45 1.075068 1.646386 -699.416416 -1.406542 0.620762 19 19

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 15 _30_45 1.412984 2.033200 -693.787966 -1.525646 0.537752 12 19
500 5 10_15 0.911048 1.678688 -381.404884 -1.437316 0.704712 15 19
750 5 10_15 1.130708 1.885472 -814.488622 -1.444470 0.637296 11 16
1000 5 _10_15 1.290634 2.073266 -556.322040 -1.450598 0.598916 13 19
1250 5 _10_15 1.519498 2.271380 -1084.160920 -1.512732 0.534316 17 12
1500 5 _10_15 0.856584 1.497382 -437.084728 -1.407678 0.693300 15 24
1750 5 _10_15 1.438024 2.124512 -715.487538 -1.513534 0.539308 12 15
2000 5 10 15 1.287652 1.961114 -590.845100 -1.469702 0.578778 13 17
2250 5 10 15 0.707758 1.217166 -445.835430 -1.268274 0.723356 15 26
2450 5 _10_15 1.318016 1.924044 -874.460834 -1.521450 0.547176 10 19
500 5 10 15 20 0.851430 1.597846 -369.231134 -1.432418 0.721578 13 22
750 5 10 15 20 1.090804 1.823296 -867.056730 -1.439548 0.642574 11 19
1000 5 10 15 20 1.310642 2.087844 -508.571264 -1.455652 0.592082 11 16
1250 5 10 15 20 1.482654 2.237886 -914.824566 -1.505514 0.543828 12 14
1500 5 10 15 20 0.840770 1.489978 -441.388830 -1.393276 0.702350 16 18
1750 5 _10_15_ 20 1.447376 2.131652 -743.883832 -1.512228 0.534498 8 21
2000 5 10 15 20 1.299704 1.975078 -682.137764 -1.463308 0.579604 14 18
2250 5 10 15 20 0.680602 1.196954 -434.096122 -1.246466 0.735520 21 22

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 1.335996 1.948576 -828.599540 -1.519472 0.549952 14 13
500 5 10 _15 20 25 0.778918 1.508240 -370.716280 -1.425038 0.741640 17 16
750 5 10 15 20 25 1.077380 1.809028 -759.006696 -1.436578 0.645736 11 25
1000 5 10 _15 20 25 1.323024 2.105748 -570.139008 -1.454066 0.587868 12 16
1250 5 _10_15 20 25 1487312 2.231710 -817.361716 -1.506878 0.538594 10 19
1500 5 10 _15 20 25 0.872788 1.527664 -488.474618 -1.401714 0.693576 20 13
1750 5_10_15 20 25 1.360832 2.025172 -770.855814 -1.499438 0.550396 15 18
2000 5 10 15 20 25 1.247886 1.914036 -681.097506 -1.455714 0.586900 13 15
2250 5 10 15 20 25 0.737758 1.261710 -460.130004 -1.273968 0.716828 16 26
2450 5 10 15 20 25 1.336876 1.930234 -810.865544 -1.519944 0.546948 16 19
500 5 10 15 20 25 30 | 0.784096 1.524074 -363.885058 -1.428736 0.739948 15 16
750 5 10 15 20 25 30 | 1.117652 1.859186 -705.363756 -1.446036 0.635890 11 17
1000 5 10 15 20 25 30 | 1.288078 2.072666 -532.961226 -1.446432 0.598992 16 17
1250 5 10 15 20 25 30 | 1.526474 2.281278 -822.009626 -1.507886 0.531626 9 12
1500 5 10 15 20 25 30 | 0.887688 1.538986 -524.674610 -1.408232 0.691456 23 18
1750 5 _10_15 20 25 30 | 1.369172 2.036546 -735.187560 -1.499526 0.552852 14 17
2000 5 10 15 20 25 30 | 1.223948 1.894914 -787.280374 -1.450632 0.589392 12 11
2250 5 10 15 20 25 30 | 0.863692 1.390356 -496.137572 -1.325042 0.677600 13 24

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 30 | 1.343120 1.946732 -817.653046 -1.518198 0.548762 15 16

100 500 15 _30_45 0.935624 1.716269 -458.926067 -1.425543 0.702116 26 45
750 15 30_45 1.244179 2.023193 -838.358323 -1.436529 0.608455 22 28

1000 15 _30_45 1.237520 2.015035 -558.831234 -1.446995 0.609174 31 30

1250 15_30_45 1.347268 2.089942 -716.094123 -1.481714 0.577764 27 36

1500 15 _30_45 1.064898 1.759794 -501.643782 -1.435960 0.645791 27 33

1750 15_30_45 1.241336 1.936039 -600.189201 -1.448340 0.599255 28 37

2000 15 30 45 1.320702 1.964899 -936.962618 -1.488225 0.557153 18 38

2250 15_30_45 1.292818 1.907014 -729.513124 -1.460402 0.573135 32 35

2450 15 _30 45 1.425455 2.064998 -704.249570 -1.516088 0.537835 19 37

500 5 10 15 0.916330 1.687491 -399.750031 -1.429484 0.707633 33 33

750 5 10 15 1.203476 1.967205 -857.309780 -1.443359 0.619041 20 30

1000 5 10 15 1.329559 2.114931 -629.793545 -1.461296 0.586545 24 39

1250 5 10 15 1.452300 2.206178 -822.699420 -1.498647 0.551733 29 27

1500 5 10 _15 0.945693 1.615477 -478.973165 -1.412893 0.679271 43 32

1750 5 10 _15 1.337165 2.027711 -615.704290 -1.479126 0.572229 27 26

2000 5 _10_15 1.287214 1.938680 -867.739413 -1.477798 0.568746 27 33

2250 5 _10_15 0.983041 1.538436 -576.652886 -1.369459 0.647951 28 39

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5_10_15 1.353623 1.984218 -786.494335 -1.515383 0.543078 22 34
500 5 10 _15_20 0.911701 1.674689 -385.498436 -1.428629 0.707482 30 42
750 5 10 _15_20 1.187131 1.947892 -902.051250 -1.437306 0.623344 24 38
1000 5 10 _15_ 20 1.315945 2.098422 -593.023919 -1.458892 0.588431 22 32
1250 5 10 _15_ 20 1.407605 2.158014 -731.459438 -1.491410 0.562809 22 33
1500 5 10 15 20 0.948522 1.619297 -507.009128 -1.411944 0.678741 32 34
1750 5_10_15_ 20 1.340118 2.039799 -598.307993 -1.471665 0.574640 20 40
2000 5 10 15 20 1.289047 1.946590 -870.751733 -1.474785 0.571394 29 36
2250 5 10 15 20 1.020475 1.586966 -574.323568 -1.375834 0.640193 36 37
2450 5 10 15 20 1.332430 1.966737 -757.916222 -1.508837 0.549993 22 32
500 5 10 15 20 25 0.912746 1.677758 -384.574432 -1.424852 0.707658 36 34
750 5 10 15 20 25 1.177617 1.940072 -861.953792 -1.433795 0.625726 26 38
1000 5 10 15 20 25 1.297570 2.077971 -546.762974 -1.453974 0.593613 29 33
1250 5 10 15 20 25 1.403371 2.146136 -682.953614 -1.489529 0.562075 20 40
1500 5 10 15 20 25 0.988192 1.660835 -524.406045 -1.420615 0.667548 33 34
1750 5 10 15 20 25 1.332627 2.023583 -632.224790 -1.473808 0.573198 31 31
2000 5 10 15 20 25 1.283992 1.940091 -893.449842 -1.470835 0.571762 30 30
2250 5 10 15 20 25 1.077368 1.654824 -665.130914 -1.392562 0.627289 23 48

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 1.375149 2.003655 -733.390695 -1.519810 0.540706 24 37

500 5 10_15 20 25 30 | 0.939230 1.717667 -348.882542 -1.429659 0.702507 29 36

750 5 10 15 20 25 30 | 1.197111 1.968366 -817.370590 -1.437967 0.622461 26 32

1000 5 _10_15_20_25 30 | 1.276890 2.055256 -536.150639 -1.455496 0.599353 30 36

1250 5 _10_15_20_25 30 | 1.394868 2.139858 -682.894132 -1.481856 0.565812 18 29

1500 5 10 15 20 25 30 | 1.034400 1.710364 -539.708741 -1.431562 0.655660 37 38

1750 5_10_15 20 25 30 | 1.331200 2.024010 -623.230123 -1.474060 0.575686 27 36

2000 5 10 15 20 25 30 | 1.287577 1.940301 -930.858225 -1.472757 0.568722 28 25

2250 5 _10_15 20 25 30 | 1.140487 1.722848 -712.621744 -1.414091 0.609556 27 39

2450 5 10 15 20 25 30 | 1.404414 2.041046 -725.033313 -1.521773 0.535932 26 32

150 500 15 30 45 0.973772 1.762631 -435.979172 -1.427631 0.690805 36 65
750 15 30 45 1.226760 2.003225 -812.080880 -1.438148 0.610956 36 46

1000 15 30 45 1.227282 1.991755 -655.129317 -1.440931 0.608672 48 49

1250 15 30 45 1.360204 2.110877 -695.260987 -1.478118 0.575265 36 58

1500 15 30 45 1.164363 1.867228 -681.754970 -1.446834 0.617587 41 46

1750 15 _30_45 1.240321 1.928032 -639.600973 -1.445313 0.599509 45 52

2000 15 30_45 1.197257 1.813879 -828.996273 -1.458534 0.584773 33 58

2250 15 _30_45 1.343690 1.974725 -689.080505 -1.473630 0.560943 41 55

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 15 _30_45 1.404027 2.040403 -781.264306 -1.515469 0.538876 28 58
500 5 10_15 0.957877 1.740517 -429.345565 -1.422776 0.697041 52 46
750 5 10_15 1.214980 1.976998 -871.937951 -1.442575 0.611867 31 47
1000 5 _10_15 1.262984 2.031654 -625.345562 -1.453083 0.600485 36 55
1250 5 _10_15 1.405605 2.158931 -755.155920 -1.485230 0.566465 42 46
1500 5 _10_15 1.068396 1.759758 -533.469017 -1.433379 0.643473 49 52
1750 5_10_15 1.248995 1.940337 -659.165187 -1.455306 0.597306 34 53
2000 5 10 15 1.287271 1.928097 -843.992866 -1.479776 0.567256 41 51
2250 5 10 _15 1.172138 1.764943 -630.478845 -1.421031 0.603847 36 55
2450 5 10 15 1.353612 1.983752 -739.438633 -1.510219 0.547019 36 46
500 5 10 15 20 0.959839 1.735120 -426.410090 -1.422792 0.694804 40 65
750 5 10 15 20 1.191935 1.950689 -864.558358 -1.439119 0.618231 37 58
1000 5 10 15 20 1.250743 2.016131 -638.816615 -1.453247 0.602648 40 49
1250 5 10 15 20 1.385071 2.139588 -698.529154 -1.481910 0.571946 34 51
1500 5 10 15 20 1.088143 1.784378 -577.658377 -1.433395 0.639777 45 46
1750 5 _10_15_ 20 1.257587 1.947041 -665.802311 -1.455563 0.593540 31 62
2000 5 10 15 20 1.277270 1.919887 -836.794475 -1.476260 0.570337 46 56
2250 5 10 15 20 1.205853 1.804987 -636.558550 -1.428109 0.595827 46 51

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 1.346385 1.975233 -734.892449 -1.509332 0.549515 35 52
500 5 10 _15 20 25 0.962165 1.738564 -428.370931 -1.423463 0.693433 52 53
750 5 10 _15 20 25 1.174005 1.934645 -799.897503 -1.434369 0.623182 37 54
1000 5 10 _15 20 25 1.251031 2.014709 -617.193517 -1.450308 0.602837 41 53
1250 5 _10_15 20 25 1.382147 2.138595 -671.964705 -1.479606 0.572917 38 57
1500 5 10 _15 20 25 1.121635 1.822476 -597.689331 -1.438930 0.631608 50 50
1750 5_10_15 20 25 1.261080 1.944421 -680.634407 -1.455959 0.592562 43 48
2000 5 10 15 20 25 1.253945 1.891515 -828.907385 -1.467935 0.574960 40 55
2250 5 10 15 20 25 1.235716 1.840468 -628.232807 -1.439456 0.587995 37 61
2450 5 10 15 20 25 1.366721 1.991173 -811.157047 -1.512915 0.543805 37 56
500 5 10 15 20 25 30 | 0.975014 1.760240 -433.414196 -1.427474 0.690198 37 56
750 5 10 15 20 25 30 | 1.185031 1.953913 -787.409478 -1.436865 0.621501 32 55
1000 5 10 15 20 25 30 | 1.236081 2.001700 -619.563372 -1.448125 0.607200 40 57
1250 5 10 15 20 25 30 | 1.379912 2.135761 -683.627798 -1.478227 0.572599 32 45
1500 5 10 15 20 25 30 | 1.145015 1.844402 -653.569209 -1.443928 0.624619 49 55
1750 5 _10_15 20 25 30 | 1.257165 1.940026 -670.587001 -1.454145 0.594855 39 55
2000 5 10 15 20 25 30 | 1.239246 1.872659 -840.919268 -1.464489 0.577821 46 46
2250 510 15 20 25 30 | 1.265247 1.876637 -638.388642 -1.451581 0.579185 36 52

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 30 | 1.384809 2.013154 -811.862427 -1.513573 0.541090 38 50

200 500 15 _30_45 0.970969 1.755470 -462.079652 -1.430742 0.690348 50 85
750 15 30_45 1.188543 1.952622 -827.441812 -1.437596 0.618617 52 64

1000 15 _30_45 1.234773 1.987716 -686.058189 -1.446184 0.604599 63 69

1250 15_30_45 1.379037 2.133621 -782.185255 -1.478216 0.571029 47 71

1500 15 _30_45 1.223542 1.924063 -751.091826 -1.460547 0.599213 52 65

1750 15 _30_45 1.247942 1.937328 -704.006638 -1.449415 0.594967 59 66

2000 15 30 45 1.176995 1.782362 -719.878522 -1.449515 0.592929 46 73

2250 15_30_45 1.304991 1.932942 -751.460736 -1.477596 0.564528 57 76

2450 15 30 45 1.440630 2.084168 -937.841099 -1.517652 0.529812 38 7

500 5 10 15 0.974119 1.752903 -452.154223 -1.427442 0.689468 73 62

750 5 10 15 1.191488 1.949775 -843.160839 -1.440711 0.617569 48 59

1000 5 10 15 1.245383 2.002559 -688.546059 -1.451912 0.601661 48 72

1250 5 10 15 1.392643 2.145066 -791.984145 -1.481392 0.567777 60 58

1500 5 10 _15 1.138938 1.838043 -628.782361 -1.443464 0.624358 56 66

1750 5 10 _15 1.286837 1.973170 -685.011362 -1.463958 0.585561 52 69

2000 5 _10_15 1.202216 1.826209 -763.119384 -1.452887 0.589809 60 68

2250 5 _10_15 1.214689 1.821495 -674.113087 -1.436245 0.592886 56 69

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5_10_15 1.379043 2.009753 -851.767961 -1.515763 0.538812 51 58
500 5 10 _15_20 0.966714 1.738455 -441.523683 -1.427387 0.690087 59 82
750 5 10 _15 20 1.173767 1.932294 -835.511557 -1.436158 0.623493 51 78
1000 5 10 _15_ 20 1.247107 2.003885 -693.792946 -1.451268 0.600983 56 61
1250 5 10 _15_ 20 1.388929 2.142696 -763.142733 -1.480095 0.569459 44 69
1500 5 10 15 20 1.147298 1.846875 -642.393240 -1.444432 0.621756 55 62
1750 5_10_15_ 20 1.292972 1.980228 -693.707228 -1.463843 0.583821 39 79
2000 5 10 15 20 1.200712 1.823379 -748.220779 -1.450388 0.592303 53 85
2250 510 15 20 1.234306 1.846623 -686.386700 -1.441412 0.588251 53 70
2450 5 10 15 20 1.375368 2.008419 -837.043097 -1.513977 0.541158 50 64
500 5 10 15 20 25 0.965457 1.736721 -443.872802 -1.428720 0.689907 69 75
750 5 10 15 20 25 1.166059 1.927219 -797.157867 -1.434459 0.625599 44 74
1000 5 10 15 20 25 1.251375 2.006333 -696.622075 -1.450592 0.599629 50 71
1250 5 10 15 20 25 1.394537 2.146377 -752.165918 -1.482586 0.567012 48 76
1500 5 10 15 20 25 1.167434 1.866153 -672.882869 -1.449901 0.615631 62 66
1750 5 10 15 20 25 1.280994 1.966422 -702.499392 -1.459729 0.586443 59 66
2000 5 10 15 20 25 1.193439 1.814015 -738.847725 -1.448325 0.592786 54 74
2250 5 10 15 20 25 1.245186 1.864571 -695.252437 -1.446942 0.585350 49 81

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 1.382332 2.010374 -862.182514 -1.516134 0.538878 49 70

500 5 10_15 20 25 30 | 0.975640 1.756789 -427.056195 -1.430254 0.688902 56 74

750 5 10 _15 20 25 30 | 1.166156 1.933934 -783.088730 -1.435107 0.626595 43 7

1000 5 _10_15_20_ 25 30 | 1.250265 2.002788 -694.178409 -1.452651 0.599775 49 69

1250 5 _10_15_20_25 30 | 1.396175 2.147845 -750.269102 -1.481445 0.566232 45 60

1500 5 10 15 20 _25 30 | 1.191370 1.893334 -696.465529 -1.453838 0.609818 62 77

1750 5_10_15 20 25 30 | 1.268127 1.952208 -690.560336 -1.457075 0.590299 51 74

2000 5 10 15 20 25 30 | 1.176658 1.791345 -738.819596 -1.446398 0.594981 59 68

2250 5 10 15 20 25 30 | 1.258809 1.878250 -700.500855 -1.456464 0.579411 52 68

2450 5 10 15 20 25 30 | 1.400578 2.032513 -886.560310 -1.515376 0.535834 46 72

250 500 15 30 45 0.967862 1.747265 -533.112799 -1.431915 0.689047 60 106
750 15 30 45 1.195096 1.961132 -794.826213 -1.441402 0.617522 62 85

1000 15 30 45 1.266384 2.024388 -717.730718 -1.453402 0.598108 72 93

1250 15 30 45 1.288880 2.030770 -744.824843 -1.467287 0.593613 58 93

1500 15 30 45 1.272681 1.977475 -769.006328 -1.471132 0.586747 59 85

1750 15 _30_45 1.272320 1.961304 -667.042320 -1.453344 0.589154 69 87

2000 15 30_45 1.083268 1.671544 -659.443936 -1.415452 0.618367 67 94

2250 15 _30_45 1.321940 1.948564 -736.743382 -1.485076 0.560775 68 96

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 15 _30_45 1.440155 2.088190 -929.501454 -1.518123 0.528996 48 94
500 5 10_15 0.976798 1.753070 -475.178253 -1.430228 0.688218 90 82
750 5 10_15 1.181600 1.939856 -851.398543 -1.439724 0.620040 60 7
1000 5 _10_15 1.267029 2.025253 -671.225022 -1.454149 0.596636 57 92
1250 5 _10_15 1.368746 2.117629 -825.517104 -1.479550 0.573141 70 75
1500 5 _10_15 1.206439 1.905808 -736.371594 -1.456885 0.604876 66 79
1750 5_10_15 1.298390 1.988638 -674.974270 -1.464861 0.581849 68 84
2000 5 10 15 1.170605 1.783106 -684.493641 -1.443892 0.597480 74 90
2250 5 10 15 1.230766 1.837865 -713.467992 -1.450750 0.585476 72 87
2450 5 10 15 1.396604 2.037180 -914.366320 -1.512020 0.537423 64 75
500 5 10 15 20 0.976547 1.748770 -473.410737 -1.430574 0.686920 71 103
750 5 10 15 20 1.172342 1.927920 -848.070190 -1.437975 0.622966 67 91
1000 5 10 15 20 1.269236 2.024341 -694.817933 -1.456515 0.594850 76 71
1250 5 10 15 20 1.355136 2.102980 -796.669122 -1.477892 0.576642 57 84
1500 5 10 15 20 1.206416 1.904835 -748.294650 -1.458146 0.604292 67 7
1750 5 _10_15_ 20 1.304465 1.994237 -673.618158 -1.466380 0.579570 53 99
2000 5 10 15 20 1.153537 1.761136 -681.004221 -1.439337 0.601960 65 104
2250 5 10 15 20 1.250014 1.863166 -710.751384 -1.454646 0.582129 76 85

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 1.388429 2.028588 -921.046434 -1.510804 0.539191 66 79
500 5 10 _15 20 25 0.981419 1.754223 -502.380034 -1.431663 0.684735 86 95
750 5 10 15 20 25 1.161285 1.916686 -808.462094 -1.436589 0.625573 58 89
1000 5 10 _15 20 25 1.268604 2.024866 -700.941496 -1.455553 0.595606 62 87
1250 5 _10_15 20 25 1.339870 2.086240 -773.444632 -1.474910 0.580206 58 91
1500 5 10 _15 20 25 1.220786 1.922857 -743.112981 -1.460860 0.601269 78 78
1750 5 10 _15 20 25 1.302722 1.988241 -683.344086 -1.466684 0.579053 71 84
2000 5 10 15 20 25 1.134113 1.737267 -669.041128 -1.430851 0.606916 65 98
2250 5 10 15 20 25 1.258283 1.873525 -718.653453 -1.459005 0.579729 61 101
2450 5 10 15 20 25 1.401799 2.041910 -902.015646 -1.513728 0.536356 60 88
500 5 10 15 20 25 30 | 0.979291 1.755693 -504.949674 -1.431739 0.685828 7 90
750 5 10 15 20 25 30 | 1.172166 1.934102 -801.454684 -1.439285 0.623443 53 94
1000 5 10 15 20 25 30 | 1.267542 2.024638 -702.334475 -1.455880 0.597154 60 86
1250 5 10 15 20 25 30 | 1.327846 2.073223 -769.892675 -1.471692 0.583093 60 81
1500 5 10 15 20 25 30 | 1.237754 1.941943 -759.888257 -1.464133 0.596483 74 95
1750 5 _10_15 20 25 30 | 1.303857 1.989463 -677.223937 -1.466068 0.580490 64 87
2000 5 10 15 20 25 30 | 1.111923 1.711588 -670.174231 -1.422806 0.612582 75 95
2250 510 15 20 25 30 | 1.271121 1.888070 -720.947023 -1.466056 0.574854 64 85

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 30 | 1.410059 2.051790 -915.081098 -1.513292 0.534499 55 91

300 500 15 _30_45 0.983989 1.764651 -550.636177 -1.431550 0.684099 72 122
750 15 _30_45 1.199326 1.972468 -753.443869 -1.439863 0.618699 73 102

1000 15 _30_45 1.288525 2.047943 -719.054028 -1.459994 0.592464 88 107

1250 15_30_45 1.206628 1.935066 -701.076538 -1.457146 0.615024 72 111

1500 15 _30_45 1.267554 1.976193 -763.184033 -1.468667 0.588830 73 102

1750 15_30_45 1.262090 1.948699 -710.349651 -1.455685 0.588443 87 104

2000 15 30 45 1.077813 1.662440 -661.769157 -1.412629 0.619835 81 112

2250 15 30 45 1.338815 1.970513 -731.373589 -1.487538 0.557693 79 112

2450 15 _30 45 1.489100 2.147519 -939.077413 -1.524739 0.518696 65 106

500 5 10 15 0.973658 1.748719 -508.084258 -1.429819 0.688512 106 100

750 5 10 15 1.182999 1.945302 -792.254122 -1.439232 0.621516 7 92

1000 5 10 15 1.293487 2.054850 -729.388411 -1.461693 0.590997 72 105

1250 5 10 15 1.274341 2.006323 -757.102632 -1.467691 0.596197 82 97

1500 5 10 _15 1.237212 1.939226 -731.763052 -1.464779 0.596678 7 98

1750 5 10 _15 1.292451 1.983432 -658.354312 -1.464425 0.583170 83 98

2000 5 _10_15 1.091204 1.686524 -644.419181 -1.413800 0.619223 94 111

2250 5 _10_15 1.254984 1.870301 -709.505673 -1.459428 0.578503 80 106

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5_10_15 1.434022 2.084391 -903.873232 -1.518665 0.528933 72 90
500 5 10 _15_20 0.966445 1.734401 -511.992377 -1.428798 0.688687 82 127
750 5 10 _15_20 1.180296 1.940246 -782.908726 -1.438835 0.622407 74 111
1000 5 10 _15_ 20 1.291197 2.050368 -726.480745 -1.462014 0.590663 88 91
1250 5 10 _15_ 20 1.259565 1.992278 -733.042063 -1.464582 0.600863 76 108
1500 5 10 15 20 1.237942 1.937589 -744.417394 -1.465592 0.595234 77 92
1750 5_10_15_ 20 1.298733 1.988631 -670.791649 -1.464886 0.581098 68 114
2000 5 10 15 20 1.070771 1.661447 -635.116336 -1.406569 0.625447 84 127
2250 510 15 20 1.261046 1.881182 -705.637429 -1.460908 0.577430 89 106
2450 5 10 15 20 1.427858 2.077423 -914.441715 -1.516284 0.530630 87 92
500 5 10 15 20 25 0.972736 1.741457 -525.678688 -1.429497 0.686319 100 114
750 5 10 15 20 25 1.173984 1.934914 -758.571399 -1.437812 0.623607 7 103
1000 5 10 15 20 25 1.288943 2.046366 -713.121854 -1.461206 0.591064 66 107
1250 5 10 15 20 25 1.253194 1.986879 -724.083030 -1.464175 0.601991 7 106
1500 5 10 15 20 25 1.237988 1.937796 -747.197254 -1.466422 0.594995 92 92
1750 5 10 15 20 25 1.291193 1.976655 -680.358545 -1.464061 0.581440 81 100
2000 5 10 15 20 25 1.064501 1.654357 -633.384999 -1.403504 0.626470 81 122
2250 5 10 15 20 25 1.282881 1.905824 -708.100172 -1.467757 0.572600 71 119

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 1.436169 2.084742 -909.416815 -1.519357 0.528405 69 106

500 5 10 _15 20 25 30 | 0.977921 1.750773 -520.885901 -1.431516 0.685056 93 109

750 5 10 15 20 25 30 | 1.177751 1.944883 -748.697787 -1.438197 0.623629 73 106

1000 5 10 _15 20 _25 30 | 1.294758 2.054650 -714.766326 -1.461711 0.590801 70 105

1250 5 _10_15_20_25 30 | 1.244285 1.975786 -723.478171 -1.462188 0.604247 76 96

1500 5 10 _15_20_25 30 | 1.254046 1.956798 -756.640478 -1.468992 0.591203 88 112

1750 5_10_15 20 25 30 | 1.284892 1.971052 -691.667383 -1.462498 0.584043 79 105

2000 5 10 15 20 25 30 | 1.067016 1.655252 -638.914803 -1.404962 0.624870 92 117

2250 5 10 15 20 25 30 | 1.301097 1.926913 -705.600396 -1.475067 0.567161 73 101

2450 5 10 15 20 25 30 | 1.449753 2.101279 -932.240850 -1.519766 0.525732 66 106

350 500 15 30 45 0.999469 1.782039 -580.996326 -1.429489 0.679498 86 139
750 15 30 45 1.181014 1.951979 -711.810698 -1.440169 0.622772 91 119

1000 15 30 45 1.268409 2.026747 -704.238253 -1.458207 0.598770 102 126

1250 15 30 45 1.211003 1.943477 -672.621007 -1.459643 0.613365 83 130

1500 15 30 45 1.253747 1.964196 -719.724070 -1.464833 0.593840 83 122

1750 15 _30_45 1.273565 1.954261 -733.082512 -1.461532 0.583950 98 124

2000 15 30_45 1.138260 1.734660 -675.334221 -1.425673 0.607471 93 131

2250 15 _30_45 1.337805 1.969337 -754.514896 -1.489955 0.556504 93 126

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 15 _30_45 1.526789 2.187688 -1018.554337 -1.530317 0.510889 73 122
500 5 10_15 0.988965 1.765642 -539.764295 -1.429304 0.683612 120 118
750 5 10 15 1.192585 1.959069 -766.382455 -1.441692 0.619523 88 106
1000 5 _10_15 1.292802 2.056458 -700.362755 -1.463092 0.592085 90 119
1250 5 _10_15 1.235015 1.964578 -724.662303 -1.462801 0.607774 99 116
1500 5 _10_15 1.232063 1.936576 -701.894711 -1.461483 0.599324 93 116
1750 5_10_15 1.285169 1.970006 -720.703007 -1.466258 0.581775 97 118
2000 5 10 15 1.111359 1.709093 -652.412090 -1.420617 0.613881 107 130
2250 5 10 15 1.265844 1.882927 -698.323581 -1.463451 0.576226 97 122
2450 5 10 15 1.479709 2.134130 -966.538847 -1.525103 0.518697 81 109
500 5 10 15 20 0.984637 1.757312 -547.075846 -1.427880 0.683726 103 141
750 5 10 15 20 1.182391 1.946526 -754.532893 -1.440093 0.622135 91 130
1000 5 10 15 20 1.289191 2.049668 -698.224529 -1.463259 0.592082 108 103
1250 5 10 15 20 1.223442 1.951273 -705.847793 -1.461067 0.610690 92 129
1500 5 10 15 20 1.231918 1.938997 -704.655091 -1.460180 0.599918 90 108
1750 5 _10_15_ 20 1.291292 1.975914 -720.719389 -1.466615 0.580167 81 135
2000 5 10 15 20 1.108393 1.704165 -644.716511 -1.419379 0.615302 98 141
2250 5 10 15 20 1.273917 1.893879 -702.359771 -1.466237 0.574283 106 121

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 1.479172 2.132153 -976.884949 -1.524841 0.518790 96 106
500 5 10 _15 20 25 0.989580 1.763096 -561.452533 -1.428236 0.681824 126 127
750 5 10 15 20 25 1.172240 1.936199 -717.642177 -1.438197 0.624665 92 118
1000 5 10 _15 20 25 1.285379 2.043299 -686.842676 -1.461629 0.593177 79 126
1250 5 _10_15 20 25 1.223030 1.952195 -696.539174 -1.461361 0.610211 92 127
1500 5 10 _15 20 25 1.239804 1.946476 -710.259273 -1.463134 0.597288 106 113
1750 5_10_15 20 25 1.289992 1.972361 -735.060232 -1.466071 0.579692 92 123
2000 5 10 15 20 25 1.110877 1.707990 -662.719796 -1.417533 0.615136 91 139
2250 5 10 15 20 25 1.288989 1.910676 -740.433522 -1.471087 0.570072 85 137
2450 5 10 15 20 25 1.485695 2.136624 -990.687846 -1.526752 0.517009 79 118
500 5 10 15 20 25 30 | 0.993496 1.771992 -552.090416 -1.429452 0.681491 111 121
750 5 10 15 20 25 30 | 1.176318 1.945340 -710.175649 -1.440397 0.624203 88 121
1000 5 10 15 20 25 30 | 1.281534 2.041287 -686.796769 -1.460045 0.595250 84 118
1250 5 10 15 20 25 30 | 1.227171 1.956183 -694.771497 -1.462201 0.608939 91 114
1500 5 10 15 20 25 30 | 1.255692 1.964697 -722.344584 -1.465758 0.593430 105 130
1750 5 _10_15 20 25 30 | 1.288255 1.969690 -738.386349 -1.466154 0.580903 89 121
2000 5 10 15 20 25 30 | 1.115251 1.711486 -679.049046 -1.418139 0.613697 102 136
2250 5 10 15 20 25 30 | 1.302911 1.926940 -738.101362 -1.476965 0.565949 83 120

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 30 | 1.501226 2.157590 -1000.030647 -1.527096 0.515121 7 117

400 500 15 _30_45 1.006267 1.789217 -589.207549 -1.429973 0.676872 99 159
750 15 _30_45 1.172552 1.940428 -718.313197 -1.437191 0.624368 103 140

1000 15 _30_45 1.275164 2.036113 -693.114574 -1.459295 0.597688 110 143

1250 15_30_45 1.222991 1.956719 -711.993673 -1.459450 0.609251 90 146

1500 15 _30_45 1.247801 1.957247 -720.390848 -1.462282 0.596067 93 142

1750 15_30_45 1.230666 1.898336 -717.552402 -1.453035 0.592114 112 141

2000 15 30 45 1.172265 1.778159 -663.581205 -1.433875 0.600167 103 150

2250 15 30 45 1.359884 1.994936 -825.647037 -1.493677 0.550640 105 144

2450 15 30 45 1.529069 2.197587 -996.304256 -1.528850 0.512690 87 132

500 5 10 15 0.999686 1.776012 -562.539867 -1.429132 0.679385 135 132

750 5 10 15 1.172492 1.934394 -739.096562 -1.439717 0.624141 105 123

1000 5 10 15 1.286542 2.052724 -687.056843 -1.461520 0.595511 101 133

1250 5 10 15 1.236884 1.968486 -708.416929 -1.462599 0.606027 108 133

1500 5 10 _15 1.208131 1.915002 -707.948111 -1.455927 0.606880 107 139

1750 5 10 _15 1.279011 1.957997 -727.735575 -1.467372 0.581491 110 131

2000 5 _10_15 1.165458 1.773186 -660.757362 -1.432848 0.602294 124 137

2250 5 _10_15 1.284484 1.903528 -752.656123 -1.471130 0.569931 111 138

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5_10_15 1.494674 2.153099 -987.053079 -1.526349 0.515929 87 129
500 5 10 _15_20 0.992971 1.765057 -560.873826 -1.428324 0.680215 118 156
750 5 10 _15 20 1.163216 1.922944 -742.253211 -1.439075 0.626787 109 145
1000 5 10 _15_ 20 1.286553 2.050947 -684.600273 -1.462306 0.594950 121 122
1250 5 10 _15_ 20 1.233074 1.965211 -700.884475 -1.461115 0.607499 99 150
1500 5 10 15 20 1.208227 1.914205 -712.606336 -1.456419 0.606199 103 134
1750 5_10_15_ 20 1.281000 1.958750 -723.458004 -1.467182 0.580465 92 155
2000 5 10 15 20 1.164931 1.771006 -655.148058 -1.432720 0.602691 112 159
2250 5 10 15 20 1.295491 1.918005 -751.138897 -1.473197 0.567554 121 133
2450 5 10 _15 20 1.494326 2.152529 -1003.203474 -1.526329 0.516291 105 123
500 5 10 15 20 25 0.994490 1.767327 -562.295573 -1.428061 0.679446 135 151
750 5 10 15 20 25 1.157333 1.917457 -710.532570 -1.437254 0.628050 107 137
1000 5 10 15 20 25 1.285701 2.049133 -677.095188 -1.461137 0.595603 96 141
1250 5 10 15 20 25 1.235805 1.970611 -697.934033 -1.461096 0.606739 106 138
1500 5 10 15 20 25 1.219809 1.925701 -719.922833 -1.459091 0.603229 124 128
1750 5 10 15 20 25 1.273198 1.947129 -729.205173 -1.465161 0.581331 103 141
2000 5 10 15 20 25 1.166375 1.772378 -649.446603 -1.431342 0.602346 100 160
2250 5 10 15 20 25 1.305248 1.929662 -773.114566 -1.477233 0.564977 101 152

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 1.500059 2.157395 -998.501767 -1.528348 0.514957 92 130

500 5 10 _15 20 25 30 | 0.997460 1.775579 -559.137588 -1.429258 0.679327 123 141

750 5 10 15 20 25 30 | 1.162211 1.927841 -708.404870 -1.437920 0.627599 100 136

1000 5 10_15 20 _25 30 | 1.285159 2.049190 -682.992978 -1.461390 0.595865 100 133

1250 5 _10_15_20_25 30 | 1.237177 1.970885 -712.897715 -1.460755 0.605932 102 129

1500 5 10 _15_20_25 30 | 1.231517 1.939733 -726.526805 -1.460602 0.600496 112 154

1750 5_10_15 20 25 30 | 1.266074 1.939052 -727.524708 -1.463315 0.584158 106 137

2000 5 10 15 20 25 30 | 1.164951 1.771410 -654.316970 -1.431029 0.602398 114 149

2250 5 10 15 20 25 30 | 1.318130 1.944138 -779.884582 -1.481926 0.561155 92 138

2450 5 10 15 20 25 30 | 1.506106 2.166651 -1013.086260 -1.527307 0.514453 84 135

450 500 15 30 45 0.999527 1.778318 -603.698184 -1.429524 0.677770 114 181
750 15 30 45 1.172026 1.936793 -716.351771 -1.438642 0.624198 117 158

1000 15 30 45 1.283345 2.047470 -725.794792 -1.459411 0.596111 121 165

1250 15 30 45 1.234714 1.966340 -733.059327 -1.462852 0.604326 100 167

1500 15 30 45 1.246196 1.956764 -736.654849 -1.461712 0.595898 107 156

1750 15 _30_45 1.215417 1.874497 -682.382284 -1.450150 0.595800 121 164

2000 15 30_45 1.171219 1.778846 -690.985386 -1.439049 0.598412 111 175

2250 15 _30_45 1.366266 2.004410 -832.393351 -1.495770 0.548511 116 162

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 15_30_45 1.540135 2.211402 -964.815437 -1.530186 0.510491 94 144
500 5 10_15 1.000276 1.775212 -570.792393 -1.428702 0.678693 148 148
750 5 10 15 1.164776 1.923228 -747.700465 -1.439142 0.625282 115 148
1000 5 _10_15 1.288381 2.055187 -708.270572 -1.461760 0.594811 113 148
1250 5 _10_15 1.242029 1.974952 -727.730924 -1.462835 0.604052 117 152
1500 5 _10_15 1.224620 1.930165 -712.222459 -1.458504 0.601925 118 156
1750 5 _10_15 1.240310 1.910772 -707.425835 -1.459268 0.590776 127 150
2000 5 10 15 1.183051 1.795884 -674.430519 -1.437645 0.598374 137 153
2250 5 10 15 1.302592 1.927455 -794.307427 -1.473775 0.566158 125 157
2450 5 10 15 1.502995 2.166834 -969.061986 -1.526539 0.516165 98 147
500 5 10 15 20 0.993875 1.765834 -566.691670 -1.427666 0.679688 136 174
750 5 10 15 20 1.159224 1.916193 -743.253837 -1.438100 0.626830 124 162
1000 5 10 15 20 1.290135 2.055921 -708.760112 -1.462369 0.594158 132 144
1250 5 10 15 20 1.236572 1.968415 -714.123710 -1.462003 0.605252 108 173
1500 5 10 15 20 1.225128 1.930896 -719.591724 -1.458852 0.601704 121 149
1750 5 _10_15_ 20 1.244908 1.913417 -698.212898 -1.458436 0.589915 105 177
2000 5 10 15 20 1.180632 1.792107 -672.600966 -1.437250 0.599230 125 173
2250 5 10 15 20 1.309444 1.936014 -802.675492 -1.475487 0.564036 131 153

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 1.505142 2.168492 -965.906169 -1.526563 0.515763 114 137
500 5 10 _15 20 25 0.997261 1.770626 -575.473710 -1.428116 0.678632 150 171
750 5 10 15 20 25 1.159203 1.916999 -725.799162 -1.437523 0.626529 125 152
1000 5 10 _15 20 25 1.293439 2.056898 -708.839448 -1.462673 0.593146 109 158
1250 5 _10_15 20 25 1.236799 1.969478 -718.035739 -1.462559 0.604694 119 154
1500 5 10 _15 20 25 1.227962 1.934934 -723.008738 -1.459561 0.601014 134 144
1750 5_10_15 20 25 1.240889 1.906214 -700.412901 -1.458048 0.589592 116 165
2000 5 10 15 20 25 1.176382 1.789302 -675.114568 -1.434585 0.600300 114 175
2250 5 10 15 20 25 1.322275 1.952683 -801.851925 -1.479715 0.561140 113 166
2450 5 10 15 20 25 1.512729 2.174911 -956.550686 -1.529396 0.513871 102 145
500 5 10 15 20 25 30 | 0.997400 1.775702 -569.663562 -1.428412 0.679220 138 159
750 5 10 15 20 25 30 | 1.166384 1.928292 -722.471048 -1.439372 0.625288 107 158
1000 5 10 15 20 25 30 | 1.292165 2.056050 -707.032329 -1.462545 0.593638 111 147
1250 5 10 15 20 25 30 | 1.241588 1.974557 -723.895973 -1.462554 0.603399 114 149
1500 5 10 15 20 25 30 | 1.236609 1.944922 -728.473528 -1.460917 0.598748 125 174
1750 5 _10_15 20 25 30 | 1.232308 1.895614 -695.488547 -1.456256 0.592212 126 157
2000 5 10 15 20 25 30 | 1.170692 1.781511 -676.475113 -1.434680 0.600746 123 168
2250 5 10 15 20 25 30 | 1.329825 1.961176 -802.563285 -1.483739 0.558215 113 152

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 30 | 1.525693 2.190673 -968.034974 -1.530219 0.511468 91 154

500 500 15 _30_45 1.003860 1.783121 -598.455081 -1.430377 0.676417 127 202
750 15 30_45 1.182149 1.949456 -721.149239 -1.441832 0.622169 129 175

1000 15 _30_45 1.240127 2.000143 -711.614552 -1.456160 0.607780 134 190

1250 15_30_45 1.251528 1.984559 -741.262985 -1.466726 0.599737 111 185

1500 15 _30_45 1.252617 1.964543 -713.068213 -1.461650 0.595009 122 167

1750 15_30_45 1.163691 1.810748 -656.640681 -1.433268 0.608998 141 185

2000 15 30 45 1.192097 1.802263 -688.222492 -1.445674 0.593797 120 194

2250 15 30 45 1.401071 2.045905 -845.025705 -1.501595 0.540820 131 172

2450 15 _30 45 1.546524 2.222936 -954.528388 -1.529078 0.509827 101 157

500 5 10 15 1.000672 1.775279 -585.874903 -1.428318 0.678012 167 162

750 5 10 15 1.174124 1.933820 -729.842386 -1.440118 0.623280 130 162

1000 5 10 15 1.275999 2.042256 -727.811903 -1.461322 0.598189 126 171

1250 5 10 15 1.259280 1.990962 -766.485579 -1.466463 0.598268 126 172

1500 5 10 _15 1.232461 1.941322 -702.429296 -1.458755 0.600158 130 176

1750 5 10 _15 1.218870 1.881911 -673.846362 -1.454753 0.595416 147 165

2000 5 _10_15 1.192608 1.805656 -692.302117 -1.444125 0.594656 150 168

2250 5 _10_15 1.332997 1.964654 -798.319349 -1.481043 0.558525 139 171

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5_10_15 1.521165 2.189246 -956.945824 -1.527951 0.513039 108 157
500 5 10 _15_20 0.996833 1.767818 -583.328464 -1.427680 0.678315 149 193
750 5 10 _15 20 1.169432 1.926131 -732.951444 -1.440701 0.624027 136 178
1000 5 10 _15_ 20 1.272719 2.037206 -725.524251 -1.461708 0.598682 147 159
1250 5 10 _15_ 20 1.251278 1.981806 -756.954103 -1.465633 0.600219 121 189
1500 5 10 15 20 1.234078 1.941893 -706.067276 -1.460016 0.599064 135 168
1750 5_10_15_ 20 1.215934 1.874975 -671.019822 -1.453090 0.595637 118 196
2000 5 10 15 20 1.193193 1.805532 -685.291083 -1.443624 0.595485 138 189
2250 5 10 15 20 1.338484 1.971922 -809.143372 -1.481993 0.557199 141 168
2450 5 10 _15 20 1.516373 2.183911 -951.537216 -1.526412 0.514161 122 154
500 5 10 15 20 25 0.995290 1.765190 -584.418517 -1.427930 0.678173 170 186
750 5 10 15 20 25 1.166645 1.925571 -718.414778 -1.439983 0.624910 139 170
1000 5 10 15 20 25 1.268464 2.030482 -719.746151 -1.460244 0.599831 121 176
1250 5 10 15 20 25 1.251035 1.984003 -745.812097 -1.465449 0.600409 130 170
1500 5 10 15 20 25 1.239391 1.946627 -708.998569 -1.462271 0.597481 146 161
1750 5 10 15 20 25 1.206401 1.861678 -670.816302 -1.449747 0.597365 138 182
2000 5 10 15 20 25 1.188123 1.799993 -685.904966 -1.441226 0.596418 133 195
2250 5 10 15 20 25 1.347470 1.983980 -814.493280 -1.485908 0.554917 122 187

Continued on next page

TABLE B.1: Execution Results and Metrics

MAE RMSE R Squared Log-Likelihood Weighted Accuracy Exact Prediction Near Miss
Predictions Days Cutset

2450 5 10 15 20 25 1.516362 2.183854 -946.249634 -1.527007 0.514380 111 160
500 5 10 _15 20 25 30 | 1.000525 1.776164 -582.484077 -1.429221 0.677437 154 176
750 5 10 15 20 25 30 | 1.172594 1.936522 -717.232988 -1.441371 0.624415 121 172
1000 5 _10_15_20_25 30 | 1.261875 2.023666 -718.998029 -1.459552 0.601708 124 170
1250 5 _10_15_20_25 30 | 1.253450 1.986978 -748.302426 -1.465262 0.599589 124 165
1500 5 10 15 20 25 30 | 1.251744 1.961588 -716.253209 -1.463692 0.594897 138 190
1750 5_10_15 20 25 30 | 1.193727 1.847542 -665.922985 -1.445291 0.601954 141 178
2000 5 10 15 20 25 30 | 1.183880 1.794923 -687.621372 -1.440808 0.597027 134 187
2250 5 10 15 20 25 30 | 1.359063 1.997024 -821.231622 -1.490161 0.551301 126 170
2450 5 10 15 20 25 30 | 1.530083 2.202827 -949.085000 -1.527199 0.512623 102 171

End of the table

Bibliography

1]

2]

3]

4]

[5]

(6]

7]

8]

19]

[10]

[11]

[12]

iShares Core S&P 500 ETF | IVV. URL: https://www.ishares.com/us/products/
239726/ishares-core-sp-500-etf.

MarketWatch: Stock Market News - Financial News - MarketWatch. URL: https:
//www .marketwatch.com/.

Nasdaq: Stock Market, Data Updates, Reports & News. URL: https://www.nasdaq.
com/.

Selenium with Python — Selenium Python Bindings 2 documentation. URL: https:
//selenium-python.readthedocs.io/.

Yahoo Finance - Stock Market Live, Quotes, Business & Finance News. URL: https:
//finance.yahoo.com/.

CNBC Investing, January 2012. URL: https://www.cnbc.com/investing/.

Ankur Ankan and Johannes Textor. pgmpy: A Python Toolkit for Bayesian Networks,
April 2023. arXiv:2304.08639 |[cs, stat|. URL: http://arxiv.org/abs/2304.08639,
d0i:10.48550/arXiv.2304.08639.

Adebiyi A. Ayodele, Adewumi O. Adewumi, and Charles K. Ayo. Stock Price
Prediction Using the ARIMA Model. In 2014 UKSim-AMSS 16th International
Conference on Computer Modelling and Simulation, pages 106-112, March 2014.
URL: https://ieeexplore.ieee.org/abstract/document/7046047, doi:10.1109/
UKSim.2014.67.

Louis Bachelier. Théorie de la Spéculation. PhD thesis, University of Paris, 1900.
URL: http://www.numdam. org/item/10.24033/asens.476.pdf.

Ray Ball. Anomalies in relationships between securities’ yields and yield-surrogates.
Journal of Financial Economics, 6(2):103-126, June 1978. URL: https://
www.sclencedirect.com/science/article/pii/0304405X78900260, doi:10.1016/
0304-405X(78)90026-0.

Marcos L. P. Bueno, Arjen Hommersom, Peter J. F. Lucas, Martijn Lappenschaar,
and Joost G. E. Janzing. Understanding disease processes by partitioned dynamic
Bayesian networks. Journal of Biomedical Informatics, 61:283-297, June 2016. doi:
10.1016/j.jbi.2016.05.003.

David Maxwell Chickering. Learning Bayesian Networks is NP-Complete. In
Doug Fisher and Hans-J. Lenz, editors, Learning from Data: Artificial Intelligence
and Statistics V, pages 121-130. Springer, New York, NY, 1996. doi:10.1007/
978-1-4612-2404-4_12.

https://www.ishares.com/us/products/239726/ishares-core-sp-500-etf
https://www.ishares.com/us/products/239726/ishares-core-sp-500-etf
https://www.marketwatch.com/
https://www.marketwatch.com/
https://www.nasdaq.com/
https://www.nasdaq.com/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://finance.yahoo.com/
https://finance.yahoo.com/
https://www.cnbc.com/investing/
http://arxiv.org/abs/2304.08639
https://doi.org/10.48550/arXiv.2304.08639
https://ieeexplore.ieee.org/abstract/document/7046047
https://doi.org/10.1109/UKSim.2014.67
https://doi.org/10.1109/UKSim.2014.67
http://www.numdam.org/item/10.24033/asens.476.pdf
https://www.sciencedirect.com/science/article/pii/0304405X78900260
https://www.sciencedirect.com/science/article/pii/0304405X78900260
https://doi.org/10.1016/0304-405X(78)90026-0
https://doi.org/10.1016/0304-405X(78)90026-0
https://doi.org/10.1016/j.jbi.2016.05.003
https://doi.org/10.1016/j.jbi.2016.05.003
https://doi.org/10.1007/978-1-4612-2404-4_12
https://doi.org/10.1007/978-1-4612-2404-4_12

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Peter K. Clark. A Subordinated Stochastic Process Model with Finite Variance for
Speculative Prices. Econometrica, 41(1):135-155, 1973. Publisher: [Wiley, Econo-
metric Society]. URL: https://www.jstor.org/stable/1913889, doi:10.2307/
1913889.

J. Contreras, R. Espinola, F.J. Nogales, and A.J. Conejo. ARIMA models to predict
next-day electricity prices. IEEE Transactions on Power Systems, 18(3):1014-1020,
August 2003. Conference Name: IEEE Transactions on Power Systems. URL: https:
//ieeexplore.ieee.org/document/1216141, doi:10.1109/TPWRS.2002.804943.

Verdecchia Cristian. Application of Partitioned Dynamic Bayesian Networks
for Stock Price Prediction, July 2024. URL: https://github.com/crisgrin/
PDBN-Stock-Prediction.

Paul Dagum and Michael Luby. Approximating probabilistic inference in Bayesian
belief networks is NP-hard. Artificial Intelligence, 60(1):141-153, March 1993. URL:
https://www.sciencedirect.com/science/article/pii/000437029390036B, doi:
10.1016/0004-3702(93)90036-B.

Tiehang Duan. Auto Regressive Dynamic Bayesian Network and Its Application in
Stock Market Inference. In Lazaros Iliadis and Ilias Maglogiannis, editors, Artifi-
cial Intelligence Applications and Innovations, pages 419-428, Cham, 2016. Springer
International Publishing. doi:10.1007/978-3-319-44944-9_36.

Jeremy Eberhardt. Bayesian Spam Detection. Scholarly Horizons: Uni-
versity of Minnesota, Morris Undergraduate Journal, 2(1), March 2015.
URL: https://digitalcommons.morris.umn.edu/horizons/vol2/iss1/2, doi:10.
61366/2576-2176.1024.

Eugene F. Fama. Random Walks in Stock Market Prices. Financial Analysts Journal,
21(5):55-59, 1965. Publisher: CFA Institute. URL: https://www. jstor.org/stable/
4469865.

Fugene F. Fama. Market efficiency, long-term returns, and behavioral fi-
nancel. Journal of Financial Economics, 49(3):283-306, September 1998. URL:
https://www.sciencedirect.com/science/article/pii/S0304405X98000269,
doi:10.1016/50304-405X(98)00026-9.

Nathalia Costa Fonseca and Jodo Vinicius de Franca Carvalho. Analysis of financial
contagion among economic sectors through dynamic bayesian networks. Anais Do XLV
Encontro Da ANPAD, pages 1-16, 2021. URL: https://anpad.com.br/uploads/
articles/114/approved/ca8155£f4d27£205953£9d3d7974bdd70 . pdf.

Helmut Herwartz. Stock return prediction under GARCH — An empirical assessment.
International Journal of Forecasting, 33(3):569-580, July 2017. URL: https://www.
sciencedirect.com/science/article/pii/S0169207017300079, doi:10.1016/j.
ijforecast.2017.01.002.

O. Jangmin, Jae Won Lee, Sung-Bae Park, and Byoung-Tak Zhang. Stock Trading by
Modelling Price Trend with Dynamic Bayesian Networks. In Zheng Rong Yang, Hujun
Yin, and Richard M. Everson, editors, Intelligent Data Engineering and Automated
Learning — IDEAL 2004, Lecture Notes in Computer Science, pages 794-799, Berlin,
Heidelberg, 2004. Springer. doi:10.1007/978-3-540-28651-6_118.

https://www.jstor.org/stable/1913889
https://doi.org/10.2307/1913889
https://doi.org/10.2307/1913889
https://ieeexplore.ieee.org/document/1216141
https://ieeexplore.ieee.org/document/1216141
https://doi.org/10.1109/TPWRS.2002.804943
https://github.com/crisgrin/PDBN-Stock-Prediction
https://github.com/crisgrin/PDBN-Stock-Prediction
https://www.sciencedirect.com/science/article/pii/000437029390036B
https://doi.org/10.1016/0004-3702(93)90036-B
https://doi.org/10.1016/0004-3702(93)90036-B
https://doi.org/10.1007/978-3-319-44944-9_36
https://digitalcommons.morris.umn.edu/horizons/vol2/iss1/2
https://doi.org/10.61366/2576-2176.1024
https://doi.org/10.61366/2576-2176.1024
https://www.jstor.org/stable/4469865
https://www.jstor.org/stable/4469865
https://www.sciencedirect.com/science/article/pii/S0304405X98000269
https://doi.org/10.1016/S0304-405X(98)00026-9
https://anpad.com.br/uploads/articles/114/approved/ca8155f4d27f205953f9d3d7974bdd70.pdf
https://anpad.com.br/uploads/articles/114/approved/ca8155f4d27f205953f9d3d7974bdd70.pdf
https://www.sciencedirect.com/science/article/pii/S0169207017300079
https://www.sciencedirect.com/science/article/pii/S0169207017300079
https://doi.org/10.1016/j.ijforecast.2017.01.002
https://doi.org/10.1016/j.ijforecast.2017.01.002
https://doi.org/10.1007/978-3-540-28651-6_118

Bibliography

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
Techniques - Adaptive Computation and Machine Learning. The MIT Press, July
2009.

Kevin B. Korb and Ann E. Nicholson. Bayesian Artificial Intelligence. CRC Press,
Boca Raton, 2 edition, December 2010. doi:10.1201/510391.

Xisuo Liu. Stochastic Process and its Role in The Development of the Financial
Market: Celebrating Professor Chow’s Long and Successful Career. Communications
on Stochastic Analysis, 13(3), September 2019. URL: https://repository.1lsu.edu/
cosa/vol13/iss3/7, doi:10.31390/cosa.13.3.07.

Yue Liu, Haoyuan Feng, and Kun Guo. The Dynamic Relation-
ship between Macroeconomy and Stock Market in China: Evidence
from Bayesian Network. Complexity, 2021(1):2574267, 2021. __eprint;:
https://onlinelibrary.wiley.com/doi/pdf/10.1155/2021 /2574267 . URL:
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/2574267, doi:

10.1155/2021/2574267.

Marcos Lopez de Prado. Advances in Financial Machine Learning. John Wiley & Sons,
New York, NY, 1st edition, 2018. URL: https://www.wiley.com/en-ie/Advances+
in+Financial+Machine+Learning-p-9781119482109.

Nasdaq. S&P 500 (SPX) Historical Data | Nasdaq, February 2024. URL: https:
//www.nasdaq.com/market-activity/index/spx/historical.

Rangsan Nochai and Titida Nochai. ARIMA Model Forecasting Oil Palm Price.
January 2006.

Shraddha Parab and Supriya Bhalerao. Choosing statistical test. International Jour-
nal of Ayurveda Research, 1(3):187-191, 2010. URL: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC2996580/, doi:10.4103/0974-7788.72494.

Stuart J. Russell and Peter Norvig. Artificial intelligence : a modern approach. Pear-
son, 2016. URL: https://thuvienso.hoasen.edu.vn/handle/123456789/8967.

Luciana S. Malagrino, Norton T. Roman, and Ana M. Monteiro. Forecasting stock
market index daily direction: A Bayesian Network approach. Fxpert Systems with
Applications, 105:11-22, September 2018. Publisher: Pergamon. URL: https://www.
sciencedirect.com/science/article/pii/S0957417418301854, doi:10.1016/j.
eswa.2018.03.039.

Santosh Kumar Sahu, Anil Mokhade, and Neeraj Dhanraj Bokde. An Overview of
Machine Learning, Deep Learning, and Reinforcement Learning-Based Techniques in
Quantitative Finance: Recent Progress and Challenges. Applied Sciences, 13(3):1956,
January 2023. Number: 3 Publisher: Multidisciplinary Digital Publishing Institute.
URL: https://www.mdpi.com/2076-3417/13/3/1956, doi:10.3390/app13031956

Jacob Schreiber. Pomegranate: fast and flexible probabilistic modeling in python.
The Journal of Machine Learning Research, 18(1):5992-5997, January 2017.

Marco Scutari. bnlearn - Predicting new observations from a Bayesian network. URL:
https://www.bnlearn.com/examples/predict/.

https://doi.org/10.1201/b10391
https://repository.lsu.edu/cosa/vol13/iss3/7
https://repository.lsu.edu/cosa/vol13/iss3/7
https://doi.org/10.31390/cosa.13.3.07
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/2574267
https://doi.org/10.1155/2021/2574267
https://doi.org/10.1155/2021/2574267
https://www.wiley.com/en-ie/Advances+in+Financial+Machine+Learning-p-9781119482109
https://www.wiley.com/en-ie/Advances+in+Financial+Machine+Learning-p-9781119482109
https://www.nasdaq.com/market-activity/index/spx/historical
https://www.nasdaq.com/market-activity/index/spx/historical
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996580/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996580/
https://doi.org/10.4103/0974-7788.72494
https://thuvienso.hoasen.edu.vn/handle/123456789/8967
https://www.sciencedirect.com/science/article/pii/S0957417418301854
https://www.sciencedirect.com/science/article/pii/S0957417418301854
https://doi.org/10.1016/j.eswa.2018.03.039
https://doi.org/10.1016/j.eswa.2018.03.039
https://www.mdpi.com/2076-3417/13/3/1956
https://doi.org/10.3390/app13031956
https://www.bnlearn.com/examples/predict/

Bibliography

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

Marco Scutari and Jean-Baptiste Denis. Bayesian Networks with Examples in {R}.
Chapman and Hall, Boca Raton, 2nd edition, 2021.

Ethan Z. Shen and Cole R. Winstanley. Modeling prediction markets with dynamic
Bayesian networks. Technical report, Stanford University, 2019.

S&P Global. S&P U.S. Indices Methodology | S&P Dow Jones Indices, Febru-
ary 2024. URL: https://www.spglobal.com/spdji/en/methodology/article/
sp-us-indices-methodology/.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Pre-
diction, and Search. The MIT Press, January 2001. URL: https://
direct.mit.edu/books/book/2057/Causation-Prediction-and-Search, doi:10.
7551/mitpress/1754.001.0001.

Standard \& Poor’s and MSCI. Global Industry Classification Standard, 2023. URL:
https://www.msci.com/gics.

Stephen J. Taylor. Tests of the Random Walk Hypothesis Against a Price-Trend Hy-
pothesis. Journal of Financial and Quantitative Analysis, 17(1):37-61, March 1982.
Publisher: Cambridge University Press. URL: https://www.cambridge.org/core/
journals/journal-of-financial-and-quantitative-analysis/article/abs/
tests-of-the-random-walk-hypothesis-against-a-pricetrend-hypothesis/
CO07C80CBEOBOF14665316C3E33AFDBAD, doi:10.2307/2330928.

Richard H. Thaler. Advances in Behavioral Finance, volume 1. Russell Sage Founda-
tion, 1993.

Chi-Chen Wang. A comparison study between fuzzy time series model and ARIMA
model for forecasting Taiwan export. Expert Systems with Applications, 38(8):9296—
9304, August 2011. URL: https://www.sciencedirect.com/science/article/pii/
S0957417411000352, doi:10.1016/j.eswa.2011.01.015.

Xiaohua Wang, P.K.H. Phua, and Weidong Lin. Stock market prediction using neural
networks: Does trading volume help in short-term prediction? In Proceedings of the
International Joint Conference on Neural Networks, 2003., volume 4, pages 24382442
vol.4, July 2003. ISSN: 1098-7576. doi:10.1109/IJCNN.2003.1223946.

Yahoo Finance. APIs - Yahoo Developer Network, February 2024. URL: https:
//developer.yahoo.com/api/.

Gili Yen and Cheng-few Lee. Efficient Market Hypothesis (EMH): Past, Present and
Future. Review of Pacific Basin Financial Markets and Policies (RPBFMP), 11:305—
329, June 2008. doi:10.1142/50219091508001362.

Yi Zuo and Eisuke Kita. Stock price forecast using Bayesian network. FEz-
pert Systems with Applications, 39(8):6729-6737, June 2012. URL: https://wuw.
sciencedirect.com/science/article/pii/S0957417411017064, doi:10.1016/j.
eswa.2011.12.035.

https://www.spglobal.com/spdji/en/methodology/article/sp-us-indices-methodology/
https://www.spglobal.com/spdji/en/methodology/article/sp-us-indices-methodology/
https://direct.mit.edu/books/book/2057/Causation-Prediction-and-Search
https://direct.mit.edu/books/book/2057/Causation-Prediction-and-Search
https://doi.org/10.7551/mitpress/1754.001.0001
https://doi.org/10.7551/mitpress/1754.001.0001
https://www.msci.com/gics
https://www.cambridge.org/core/journals/journal-of-financial-and-quantitative-analysis/article/abs/tests-of-the-random-walk-hypothesis-against-a-pricetrend-hypothesis/C07C80CBE0B0F14665316C3E33AFDBAD
https://www.cambridge.org/core/journals/journal-of-financial-and-quantitative-analysis/article/abs/tests-of-the-random-walk-hypothesis-against-a-pricetrend-hypothesis/C07C80CBE0B0F14665316C3E33AFDBAD
https://www.cambridge.org/core/journals/journal-of-financial-and-quantitative-analysis/article/abs/tests-of-the-random-walk-hypothesis-against-a-pricetrend-hypothesis/C07C80CBE0B0F14665316C3E33AFDBAD
https://www.cambridge.org/core/journals/journal-of-financial-and-quantitative-analysis/article/abs/tests-of-the-random-walk-hypothesis-against-a-pricetrend-hypothesis/C07C80CBE0B0F14665316C3E33AFDBAD
https://doi.org/10.2307/2330928
https://www.sciencedirect.com/science/article/pii/S0957417411000352
https://www.sciencedirect.com/science/article/pii/S0957417411000352
https://doi.org/10.1016/j.eswa.2011.01.015
https://doi.org/10.1109/IJCNN.2003.1223946
https://developer.yahoo.com/api/
https://developer.yahoo.com/api/
https://doi.org/10.1142/S0219091508001362
https://www.sciencedirect.com/science/article/pii/S0957417411017064
https://www.sciencedirect.com/science/article/pii/S0957417411017064
https://doi.org/10.1016/j.eswa.2011.12.035
https://doi.org/10.1016/j.eswa.2011.12.035

List of Acronyms

AIC Akaike Information Criterion. 21

AR Auto Regressive. 8, 9

AR-DBN Auto-Regressive Dynamic Bayesian Network. 10
ARCH Autoregressive Conditional Heteroskedasticity. 9
ARIMA AutoRegressive Integrated Moving Average. 8, 9
ARMA AutoRegressive Moving Average. 9

ATS Automated Trading System. 6, 7

BIC Bayesian Information Criterion. 21, 38

BN Bayesian Network. 1, 3, 4, 8-11, 14, 15, 17, 20, 21, 27, 28, 37, 50, 74

CPD Conditional Probability Distribution. 19, 24, 30

CPT Conditional Probability Table. 15-19, 24, 35, 50, 62

DAG Directed Acyclic Graph. 14, 15, 17, 19, 22
DBN Dynamic Bayesian Network. 1, 3, 4, 8-11, 14, 17-19, 28, 29, 34-36, 38, 57, 60, 73

DJI Dow Jones Industrial Average. 9, 11

EM Expectation Maximisation. 10, 26
EMH efficient market hypothesis. 2, 5, 6, 8

ETF Exchange-Traded Funds. 32

GARCH Generalized Autoregressive Conditional Heteroskedasticity. 8, 9
GBN Gaussian Bayesian Network. 9
GDP Gross Domestic Product. 9

GICS Global Industry Classification Standard. 34, 61

HC Hill Climbing. 37

HFT High-Frequency Trading. 6, 7

List of Acronyms

HHMM Hierarchical Hidden Markov Model. 10

HMM Hidden Markov Model. 10, 14
IAV Industrial Added Value. 9

MA Moving Average. 8, 9
MAE Mean Absolute Error. 46, 48, 55, 63, 6567, 71
MAP Maximum A Posteriori. 27

MLE Maximum Likelihood Estimation. 25, 26

NASDAQ National Association of Securities Dealers Automated Quotations. 32, 33
NSE Nigeria Stock Exchange. 8

NYSE New York Stock Exchange. 8, 33

OHLCYV Open, High, Low, Close, Volume. 8, 33

OLS Ordinary Least Squares. 50

P/E Price/Earnings. 11, 74
PC Peter Clark. 22

PDBN Partitioned Dynamic Bayesian Networks. 14, 8, 14, 28, 30, 34-36, 38, 40, 56, 60,
61, 70-72

PMF probability mass function. 24

RMSE Root Mean Squared Error. 46, 48

RWH Random Walk Hypothesis. 2, 5

S&P Standard and Poor’s. 1, 2, 10, 11, 17, 30-32, 34-36, 61, 64, 65, 67, 71-73
TRIX Triple Exponential Average. 10, 11

VWAP Volume Weigthed Average Price. 13

YOY Year Over Year. 13

	Acknowledgments
	Introduction
	Introduction to Stock Market Analysis

	Related Research
	Random Walk and Efficient Market Hypothesis
	Behavioural Finance in the Efficient Market Hypothesis
	Consequences of the Efficient Market Hypothesis
	Different Trading Paradigms

	Background
	Time series Approaches
	Bayesian Networks Approach
	Data Usage

	Preliminaries
	Data
	Types of Market Data

	Partitioned Dynamic Bayesian Networks
	Directed acyclic graph
	Bayesian Networks
	Dynamic Bayesian Networks
	Learning a Bayesian Network
	Partitioned Dynamic Bayesian Networks

	Methodology
	Data Extraction and preparation
	Retrieval of the S&P 500 constituents
	Retrieval of historical data
	Retrieval of sectors data

	Application of Partitioned Dynamic Bayesian Networks

	Results
	Discussion
	Tool Selection and Transition to R
	Data Handling and Factor Representation
	Tested Modeling Approaches
	Final Approach and Computational Improvements
	Prediction Methods and Execution Time
	Influence of Historical Trends on Predictions

	Conclusions and Future Developments
	Final Model and Prediction Approach
	Results Analysis
	Limitations
	Future Work

	Appendices
	Results of Executions with Structure Learning
	Results of Executions Without Structure Learning

