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Summary 
Lots of reservoir dams in the world are operated by operation rules. These operation rules are not 

always publicly available due to several reasons. When they are unknow, data based methods can be 

used to derive them although in-rsitu data is also not always available in regions lacking direct 

measurement capabilities. Deriving accurate operational rules for reservoirs remains a challenge for 

ungauged locations. Traditional methods relying on in-situ data are often inadequate and do have a 

low temporal resolution, prompting the need for alternative approaches. This study addresses this gap 

by proposing a methodology that combines remote sensing data, specifically from Sentinel-1 and 

Sentinel-2 satellites, with fuzzy logic techniques. The objective is to derive the operation rules of a 

reservoir dam based on readily available satellite data, thereby overcoming the limitations of data 

scarcity in ungauged basins. 

The research method begins with the acquisition of satellite data, utilizing the high temporal 

resolution of Sentinel-1 and the high spatial resolution of Sentinel-2 to derive the Water Surface Area 

(WSA) of the reservoir behind the dam. This two satellite datasets are then processed by water volume 

curves to calculate the water volume. The integration of a water balance approach ensures accurate 

capturing of inflow and outflow dynamics, which forms the foundation for second model of this thesis, 

the fuzzy logic model. This model is used to obtain a certain set of operation rules of the dam and is 

calibrated using historical data obtained from satellites and validated against observed measurements, 

incorporating fuzzy rules to simulate reservoir outflows under various operational conditions. 

Additionally, the study examines how the model's accuracy can be determined in the absence of in-

situ data. 

The application of the proposed methodology to the Ban Chat reservoir shows an increase in 

the accuracy of reservoir modelling. The remote sensing-derived water volume time series achieves a 

Nash-Sutcliffe Efficiency (NSE) of 0.83, indicating a strong correlation with observed data and minor 

overestimation tendencies (1.93%). This underscores the robustness of using Sentinel satellites for 

generating reliable water volume estimates in data-scarce environments. Moreover, the fuzzy logic 

model shows small improvement over traditional demand curve methods, with an NSE of 0.59 and 

Mean Absolute Error (MAE) of 34.51 x 106 m3, which are an increase of 7.27% an 1.48% respectively 

compared to the use of the long term average for modelling the outflow, suggesting its effectiveness 

in simulating reservoir outflows. 

The findings highlight several strengths and limitations of the proposed methodology. While 

remote sensing proves effective in providing continuous data streams for reservoir management, 

challenges such as data accuracy and resolution persist. The study acknowledges the sensitivity of the 

fuzzy logic model to input variables and the need for further refinement in defining membership 

functions to enhance model accuracy. Moreover, the reliance on derived measurements for validation 

underscores the importance of improving validation methods through complementary approaches like 

altimetry satellites. 

In conclusion, this research demonstrates the potential of integrating remote sensing data with fuzzy 

logic modelling to derive operational rules for reservoirs in ungauged locations. By leveraging the 

strengths of Sentinel-1 and Sentinel-2 satellites, the study establishes a framework for managing 

reservoirs where traditional data sources are limited. The calibrated fuzzy logic model shows promising 

results in simulating reservoir outflows, providing insights into effective water management strategies. 

However, the study also identifies several limitations, including data availability and model sensitivity, 

which require attention in future research efforts. 

To enhance the applicability of the methodology, future research should focus on refining 

input variables and membership functions in the fuzzy logic model. Additionally, exploring alternative 

validation methods, such as integrating altimetry data with remote sensing outputs, could improve the 
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accuracy of reservoir management models. Moreover, expanding the study to different geographical 

regions and reservoir types would validate the generalizability of the proposed approach. Finally, 

incorporating hydrological models to predict inflows more accurately could further refine operational 

rules for reservoirs. 
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1. Introduction
This chapter gives information on why this research is performed. Done by giving information on the 

background of Vietnam with its water security issues. Followed up by the current available knowledge 

on the solutions for these water security issues resulting in the research gap which is encountered in 

this research. 

1.1 Background 
Water as resource is one of the most important resources of everyday life. It´s used for different kind of 

purposes such as industrial and agricultural use, recreation and navigation. Although water could also be a 

threat to humanity explained as water security. The United Nations Water Commission defines water 

security as “the ability of a community to maintain sustainable access to sufficient quantities of water of 

acceptable quality to sustain livelihoods, human health, and social-economic development, ensuring 

against waterborne pollution and water-related disasters, conserving ecosystems in an environment of 

peace and political stability.” The report “Vietnam’s Water Resources: Current Status, Challenges, and 

Security Perspective” states that the score of Vietnams water security needs to improved much. To do so, 

“The management of water resources in Vietnam needs to focus on addressing issues such as controlling 

the exploitation and use of water, protecting water quantity and quality, and ensuring national water 

security.”. 

Vietnam is one of the countries experiencing heightened impacts of climate change due to its 

location in multiple river deltas combined with a tropical climate. According to Pham et al. (2023), the 

average annual discharge of most river basins in Vietnam tends to increase by 2-18% per year. However, 

this increase in discharge is primarily concentrated in the wet season, while during the dry season, the 

discharge in the driest month tends to decrease, exacerbating water shortages and scarcity even further. 

Additionally, it is important to note that 60% of all water in the rivers of Vietnam originates from upstream 

countries (Lai et al. (2009)). For the Red River, located in the north of Vietnam, this percentage is 40% (Vu 

Hong Chau, n.d.) making Vietnam very dependent on China for their water supply.   

Improving the water security can be done in several ways and so, several study topics are proposed 

by the UN. One of them, “improving monitoring data from outside the country using advanced technology” 

is used as motivation for this thesis.  

Modelling the streamflow in the upper part of the Red River can contribute to improving the water security. 

Although a large amount of data is needed to build those models. In the past, a lot of data was collected 

and shared between China and Vietnam. However, this is no longer the case since the 80s. In addition, 

collecting in-situ data is becoming more difficult and expensive, making the data scarce according to Kebede 

et al (2020). 

Nevertheless, data collection is essential to develop a streamflow model of the river. The Red River 

is influenced by many reservoir dams, build in the past decades. These dams changes the natural flow 

patterns of the river based on their operation rules. The operation rules of these dams are often unknown, 

making it hard to model the streamflow in the river. Obtaining them can be done in various ways. The 

easiest way is improving agreements between countries, which is still in its infancy (Tone, 2023). However, 

this approach is not desirable since there are still implications on costs and difficulties. An independent 

form of data collection, independent of location, is necessary to build a model capable of predicting the 

behaviour of a reservoir dam in the Red River autonomously. Besides this, China could also benefit from 

defining the discharge of their rives in other methods. A potential solution is the utilization of remote 

sensing data openly available. Spatial data can be used to obtain information needed to build a model of 

the Red River.  
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1.2 State of the art 
Improvements can be done by modelling the catchment area together with the upstream part of the 

rivers. Modelling this is already widely done over the world and is currently under progress at the 

Hanoi University of Science (HUS). Modelling the overall river gives a need in the modelling behaviour 

of reservoir dams located in the river. Modelling dams is also widely done already although, there are 

lots of different possibilities in doing so based on the exact location and available data(Wang et al., 

2010) (Nikoo et al., 2013) (Mateo et al., n.d.). Mapping nearly all water systems is needed although 

this thesis only focuses on the Red River delta. So when river or basin is said, the Red River basin/delta 

is meant. This chapter gives more insight in the current state of the art and the goal of this thesis. 

1.2.1 Flow forecasting model 
Increasing the knowledge of the water flow requires mapping of whole flow regimes in Vietnam and 

upstream countries. Modelling the flow in the river catchments can be done by several methods, such 

as Soil and Water Assessment Tool, Hydrologic Engineering Centre’s Hydrologic Modelling System as 

well as a Variable Infiltration Capacity Model (VIC) and much more. Barely all model requires lot of 

data as input. Currently the HUS is working on a VIC-model, simulating the flow of the Red River. This 

model can be split up in three separate sub models defined as the VIC-Runoff, VIC-Reservoir and VIC-

routing model. The model requires data sets about precipitation, evaporation, land-use, Temperature, 

soil types etc.  

Moreover, in the last few decades, several changes have been observed in the flow regime of 

the Red River.  The construction of dams in the upper part of the Red River basin have a major impact 

on the flow regime of the Red River in Vietnam (Winkel, 2022). Red River dams are causing repeated 

floods as well as droughts in Vietnam, according to L. Pham(2021). The Hanoi University of Science 

(HUS) is already in possession of a working VIC-model for different sections of the Red River basin. 

Although running the VIC-model over the whole Red River gives poor results which are caused by the 

lack of information on the behaviour of the reservoir dams, on which remote sensing can play a key 

role in defining the behaviour of the dams. 

1.2.2 Remote sensing data for hydrological purposes 
Remote sensing, as defined by NASA (2022), involves obtaining information about an object from a 

distance. In March 2024, there are around 9494 active satellites around the world of which 1052 are 

used for Earth Observations. This number is still even increasing which provides more and more 

information and possibilities in earth observations (Ieva, 2023).  

According to Victor (2023), remote sensing enables the monitoring of water bodies, 

precipitation, and snow cover, providing valuable insights into hydrological processes. Its capability to 

detect changes in water levels and identify potential flood risks enhances water resource management 

and flood forecasting. NASA (2022) highlights some advantages of remote sensing relevant to this 

thesis, including providing information where ground-based measurements are unavailable and 

enabling continuous monitoring of our planet.  

Lots of studies have been done before on this topic but they directly show the relevance of 

location specific properties. Remote sensing, particularly satellite observations, can be a valuable tool 

in defining the operation rules of a reservoir dam when in-situ data is unavailable. Eldardiry and 

Hossain (2019) and Ali and Sridhar (2019) both demonstrate the use of satellite data to estimate 

reservoir storage change and outflow discharge, with Eldardiry and Hossain (2019) achieving a 1.4% 

accuracy in estimating High Aswan Dam’s storage and outflow discharge. 
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For obtaining the water volume of a dam, the level/volume and area/volume curves of the reservoirs 

needs to be defined which is currently done at the HUS. As mentioned earlier, several studies have 

been done on the derivation of operation rules of reservoir dams based on modelled inflow combined 

with satellite data. Although nearly all those papers have a time resolution of 1 month , do have a low 

resolution and do have lots of data over the dams, making a knowledge gap at the moment when there 

is nearly no data at all available. Next to this, less papers are published on these topics which contains 

10 days average values as desired by the Vietnam Government. (2019) 

1.2.3 Knowledge gap: 
To my knowledge, little research has been conducted on how operation rules of a reservoir dam in 

ungauged locations can be derived without the use of in-situ data on a 10-days average scale. This 

creates a research gap in defining operational rules based on satellite data combined with an 

assessment of its accuracy without relying on in-situ information for its definition. So, this thesis will 

be focussing on defining the operation rules of a reservoir dam – located in the Red River system – 

based on satellite and open source data. 
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2. Research objective, questions and scope
This chapter gives insight in the research objective and the belonging research questions of this 

thesis. Starting with the objective, followed up by the questions which supports the objective and 

the scope and boundaries of this study. 

2.1 Research objective 
Regarding the previous discussed background together with the knowledge gap, the following research 

objective is defined: “The research objective is to set-up and validate a method to derive the 

operation rules of a reservoir dam by making use of a reservoir dam model combined with remote 

sensing data for the Ban Chat dam in Vietnam and in which in-situ data is used as validation of this 

rules and method.” 

2.2 Research questions 
To enhance the understanding of the behaviour of small reservoirs while in-situ data is not available, 

this study aims to address the following research questions. First datasets about water volumes (WV) 

over time needs to be formed.  Remote sensing data contain some errors and gaps. This makes it 

important to expand and fill the datasets with different techniques and different sources, resulting in 

the next question: 

- What is the accuracy of a timeseries containing the volume of the reservoir over the time

period from construction till now with a resolution of 10 days average, derived from open

source satellite data?

The in-situ observed inflow combined with the WV dataset should result in a model in which the 

operation rules can be derived. The second research question will then be: 

- What operations rules simulate the downstream flow of the reservoir dam the most accurate

compared with the actual outflow?

At last there remains a question on the accuracy of the model which can give insight in the applicability 

of the model to different locations.  

- What is the accuracy of simulated outflow based on remote sensing data compared with the

validation based on in-situ data?

Answering these (sub)questions needs a comprehensive framework. Firstly, the Google Earth Engine 

(GEE) is used as open source tool to process open source satellite data from the Sentinel-1 and 

sentinel-2 satellites. Those data sources are combined and gaps are filled to obtain a 10-days average 

dataset of the water volume of the reservoir. This dataset can then be used together with the in-situ 

observed inflow data to obtain the historical outflow dataset. This dataset is needed for calibration 

and validation of the reservoir model in which the operation rules are calibrated and derived.  
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2.3 Scope and boundaries 
This research aims to determine the operation rules of a reservoir dam without relying on in-situ data, 

enabling potential application to ungauged reservoir dams, by the use of a case study. The 

methodology integrates inflow observations with reservoir volumes derived from satellite imagery 

analysis using the Google Earth Engine (GEE) as explained in “Cloud-Based Remote Sensing With 

Google Earth Engine” (Cardille et al., 2024). Subsequent steps involve testing and refining various 

operation rules to simulate outflow. The primary objective is to predict reservoir volume fluctuations 

over a 10-day period, resulting in the calculation of a 10-day average outflow from the reservoir. This 

time period is chosen based on the National regulations for the Red River in Vietnam decided by the 

Prime Minister of Vietnam (2019). 

However, this study is bounded by established algorithms for widely used Sentinel satellites, processed 

with GEE, for simplicity. Limitations include the intermittent presence of clouds and unsuitable data, 

requiring a 10-day average model resolution. Furthermore, factors such as evaporation and leakage 

losses in the reservoir dam are simplified resulting in some small system errors in the output. While 

this study focuses on evaluating the model's effectiveness for reservoir dams due to the lack of in-situ 

data, it lays the foundation for future research exploring the model framework's applicability beyond 

the immediate study area, including potential application to dams outside Vietnam. 
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3. Data & Materials
This section contains information about the materials used to answer the research questions stated 

above. Starting with the study area followed by more details about the specific case study locations. 

Afterwards the needed information about the satellite data is given and this section is ended up by 

the model information. 

3.1 Study area 
The study location for this thesis focuses on deriving the operation rules of a reservoir dam situated 

within a tributary of the Red River, the second largest river in Vietnam, which comprises two major 

tributaries. These tributaries include the Black River (Da River) in the south and the Lo River in the 

north, merging to form the Red River near Hanoi. Since 2000, new dams have been built in the Chinese 

and Vietnamese section of the Red River with different purposes, being hydropower, irrigation, flood 

control or multiple purpose dams (Le et al., 2020). All having their impact on the flow regime of the 

river. Specifically, the study area encompasses the Da River basin, where the Nam Mu River serves as 

a national tributary providing accessible in-situ data. Within this basin, the Ban Chat dam is selected 

for investigation. “The dam supply as peaking plant operating without influences of the complicated 

water resource management of the international river.” (JICA study team, n.d., pp. 5–2). In other 

words, the dam is not influenced by upstream water management policies and electricity is only 

generated when demands are high and therefore ideal as case study to develop a model testing the 

operation rules based on satellite data. 

3.1.1 Reservoir dam: Ban Chat 
In this thesis, one dam within this system namely the “Ban chat” is chosen as study area. Reason to do 

this is the availability of the data around this dam. For this location, in-situ data is available in the form 

of inflow discharge, outflow discharge as well as the water level of the reservoir. This data can be used 

to validate the model and to check its accuracy.  

The Ban Chat reservoir dam, is a prominent hydroelectric dam located in a tributary called 

Nam mu of the Da River basin able to generate 220MW of power "Ban Chat Hydropower Plant" (2021). 

Situated approximately 80 kilometres northwest of Hanoi, the Ban Chat dam is nestled within the 

province of Hoa Binh. Besides being an hydro power dam of 132 meter high, the reservoir containing 

2.137 km3 (Prime Minister, 2019) of water serves as a critical water resource for the region supporting 

agricultural activities, industrial development and urban settlements.   

The dam is constructed from 2006 till 2013 (Associates & Associates (MD&A), n.d.) which also 

have had a big impact on the environment of fish migration, sediment transport and so on, although 

this will not be mentioned in this report. From 2016, the dam was fully operational. 
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Figure 3-1: Location of the Ban Chat Dam. 

Obtained from Rousseau et al. (2017). 

3.2 Data sets 
The datasets utilized in this research are detailed below. While this study prioritized the use of 

open-source data, the in-situ datasets were not publicly available. See table 3.1 for an overview. 

Table 3.1: Data sources 

Dataset Source 
Retrieval 

Date 
Notes 

Sentinel 1 

and 2 images 

Google Earth Engine. (n.d.). Google. 

https://earthengine.google.com/ 

July 04, 

2024 

Provided by European 

Union/ESA/Copernicus 

Digital 

Elevation 

Model (DEM) 

Google Earth Engine. (n.d.). Google. 

https://earthengine.google.com/ 

July 04, 

2024 
Provided by NASA JPL 

In-situ 

datasets 
Not applicable 

Not 

applicable 

Available only to authorized 

personnel; share on request 

https://earthengine.google.com/
https://earthengine.google.com/
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4. Methods
First, the key performance indicators (KPI´s) which are used to analyze the timeseries are showed and 

explained. It then discusses how the Sentinel-1 and Sentinel-2 datasets are used to obtain the water 

volumes time series with an 10-days average time scale. The validation of this developed fusion 

method is also explained here. Next, the method for modelling the dam by use of inflow and storage 

datasets is explained. In this section two models are discussed the water balance model is used to 

analyse the historical data and to obtain the outflow of the dam while these datasets coming from the 

water balance are used for the set up of a fuzzy logic model to make prediction for the future based 

on the operation rules. The last section describes how the final research question can be answered 

using the observed data from the case study site in Vietnam to validate the generated outflow and 

with that the operation rules of the dam.  

4.1 Key Performance Indicators 
This research uses five key performance indicators (KPI´s) while analyzing data, the Nash-sufficient 

Efficiency (NSE) and the Squared error (R2) to give insight in the accuracy of mapping the pattern of 

the time series while the Root Mean Square Error (RMSE), model bias (PBIAS) and Mean Average Error 

(MAE) gives insight in the correctness of the variability of the model. Table 4-1 gives an overview of 

the goal, properties and the formula of all indicators. In this table the 𝑄𝑜𝑏𝑠/𝑠𝑖𝑚 are used as example. 

In this research this variable will be changed in the timeseries on which the formula is applied. 

Table 4-1: : Key Performance indicators with their objectives and formulas 

Goal Properties Formula by Fernandes et al. 

(2019) 

𝑵𝑺𝑬 As close as possible to 

one 

Indicates the quality of the 

model based on the 

average of all measured 

values 

𝑹𝑴𝑺𝑬 As close as possible to 

zero 

Indicates the correctness of 

the model (standard error) 

𝑷𝑩𝑰𝑨𝑺 As close as possible to 

zero 

Indicates if the model is 

likely to over or under 

estimate the actual values. 

𝑹𝟐 As close as possible to 

one 

The R^2 records as a ratio the 

proportion of the total 

statistical variance in the 

observed dataset that can be 

explained by the model. 

MAE As close as possible to 

zero 

Gives indication on the 

average error of the 

simulation regardless of the 

direction 
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4.2 Satellite data collection 
Determining the timeseries of the reservoir volume over the operation time of the dam is done by the 

use of remote sensing data. The primary advantage of this approach is its accessibility, providing 

information on reservoirs without the need for additional local data, which makes it an political 

independent data source. Various types of satellites can be used to calculated the water surface area. 

Examples are the satellites from the Landsat and Sentinel program. . The use of satellite is based on 

the timespan of the research. (baselinegis, 2021) gives an overview of the availability of satellite over 

time. From this can be concluded that the only usable satellites are the Landsat-7 (L7), Landsat-8 (L8), 

Sentinel-1 and Sentinel-2. The satellites have several similarities and some differences. (Gerardo & de 

Lima, 2023) states that Landsat-9 and Sentinel-2 are comparable in the results of water surface 

mapping. Landsat-9 is not included in this research since the launched in 2021 which gives a too short 

timeseries for this research. Table 4-2 gives an overview of the most important specifications and (dis)-

advantages of the satellites.  

Figure 4-1: Timeline of the Sentinel and Landsat program obtained from Admin1135 (2021). 

Table 4-2: Technical information of different satellites. 
Satellite name Spatial 

resolution 

Revisit time Advantage Disadvantages 

- Landsat 7 Optical: 30m 16 days Multispectral imagery for 

land and water classification. 

Susceptible to cloud cover. 

- Landsat 8 Optical: 30m 16 days Improved resolution and 

sensitivity compared to 

Landsat 7 

Susceptible to cloud cover. 

- Sentinel 1B SAR: 5x20m 6-12 days Penetrating through clouds, 

rain and darkness. 

Low spatial resolution. 

- Sentinel 2B Optical: 10-

60m 

5 days High resolution Susceptible to cloud cover. 

(Landsat 7 (L7) Data Users Handbook n.d., 8;  Landsat 8 (L8) Data Users Handbook n.d., 8; Sentinel-2 products Specification 

Document 2012; Mondejar and Tongco 2019; Sathianarayanan et al. 2023)) 

This study utilizes a diverse array of satellite sensors and platforms, each providing unique capabilities 

for mapping and analysing water bodies. Landsat-8 OLI (Operational Land Imager) imager, provides 

high-resolution spatial data at 30m resolution. According to Sathianarayanan et al. (2023), imagery 

acquired from Landsat-8, which was launched in 2013, offers a long-term time series of earth 

observation data, facilitating regional research applications. 

Landsat-7, equipped with its Enhanced Thematic Mapper Plus (ETM+) sensor, offers 

multispectral imaging at a 30-meter spatial resolution. Despite technical issues affecting data quality, 



Page 10 of 43 

Landsat-7 data remains valuable for water surface mapping due to its extensive archive and global 

coverage. 

In addition to Landsat-8 data, this study employs Sentinel-2 MSI (Multispectral Instrument) 

imagery, which offers a comprehensive suite of 13 spectral bands with varying spatial resolutions. 

These granules cover a ground area of 100 km by 100 km and can be acquired from the GEE. 

Preprocessing of Sentinel-2 data is required and involved atmospheric correction, image registration, 

and fusion techniques stated by Sathianarayanan et al. (2023).  

Furthermore, Sentinel-1 SAR (Synthetic Aperture Radar) data, obtained from the Alaska 

Satellite Facility, offering all-weather sensing capabilities for water body extraction as stated by Shen 

& Fu, (2020). 

Based on their respective advantages and disadvantages, Sentinel-1 and Sentinel-2 were chosen as 

data sources for this research. Sentinel-2 got the highest spatial resolution and Sentinel-1 has the 

highest temporal resolution. As stated by Du et al. (2016), the Sentinel-2 images would surely be of 

great significance for regional water bodies’ mapping, due to its appealing properties (i.e., the 10-m 

spatial resolution for four bands and the 10-day revisit frequency) and the free access. Although the 

issue of cloud cover is still there, especially in a tropical region when cloud cover is high in rain season. 

This issue is tackled by the selection of the Sentinel-1 data which is unsusceptible to cloud cover.

This research combines the complementary strengths (see table 3.1) of Sentinel-1 and 

Sentinel-2 to create a highly accurate dataset using a simple method. Sentinel-1 is used as the 

foundation for the time series due to its short revisit time, which ensures the availability of a large 

amount of data. In addition, the high spatial resolution of Sentinel-2 is employed to correct the dataset 

obtained from Sentinel-1. Both satellites requires some preprocessing steps before they can be used 

and requires several steps. An overview of these steps is shown in Figure 4-2.  

Figure 4-2: Modelling framework WSA extraction

Initially, the region of interest (ROI) is defined with a wide margin around the reservoir to 

ensure comprehensive inclusion (Step 1) in which the satellite images are being analysed. 

Subsequently, all available Sentinel satellite images for the ROI between 2016 and 2024 are 

acquired(Step 2) as well as the Digital Elevation Model (DEM) generated by the Shuttle Radar 

Topography Mission (Farr et al., 2007) and provided by NASA. This DEM is used to reduce the ROI by 

filtering out all pixels above the absolute maximum water level of the dam, making the code running 

faster(step 3). From step 4 Sentienl-1 and Sentinel-2 have different processing steps which are 

described below, starting with Sentinel-1. 
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4.2.1 Sentinel-1 Synthetic Aperture Radar (SAR) 
Sentinel-1 SAR images are essential for measuring water surfaces due to their all-weather and day-

and-night capabilities. These images are captured at different angles during ascending (northward) 

and descending (southward) satellite passes, affecting the backscatter signal and influencing data 

interpretation. The angle of incidence impacts how radar signals reflect off water surfaces, crucial for 

accurate water surface measurements. Therefore, it is important to treat the different paths separately 

which is done by separating them for the whole process. 

SAR images utilize different polarizations, primarily Vertical-Vertical (VV) and Vertical-

Horizontal (VH). VV polarization, which transmits and receives signals vertically, is sensitive to surface 

structures and can introduce noise from vegetation and man-made features. Conversely, VH 

polarization, transmitting vertically and receiving horizontally, is less affected by structural noise and 

provides better contrast between water and non-water surfaces. VH polarization effectively 

distinguishes water surfaces as it minimizes interference from vegetation and other land features. So 

images are filtered by polarization as well as they path.  

Before the Sentinel-1 SAR radar images can be used, they need to be converted to decibels(dB) 

to get a better differentiation between surfaces. Afterwards they are subjected to filtering processes 

to eliminate noise. This can be done by different methods. In this research, the best results are 

obtained by using the refined Lee filter algorithm applied in the GEE, as specified and explained by Qiu 

et al., (2004). After applying the refined Lee filter, a focal median filter is used to eliminate any 

remaining noise pixels. This filter considers a neighbourhood around each pixel (30 m) and replacing 

the pixel value with the median of the values in this neighbourhood (Qiu et al., 2004). These steps 

result in a clean image collection of which the water surface area can be extracted based on a 

threshold. This research utilizes dynamic Otsu thresholding, since it does not requires prior knowledge 

about the image and it can determine the optimal threshold value automatically (Helmy, 2023). 

4.2.1.1 Otsu thresholding 

In Step 7, the Otsu thresholding algorithm (Otsu, 1979) is applied to determine the optimal 

threshold for distinguishing water from land. The Otsu thresholding method is widely used in 

surface water mapping with Sentinel-1 SAR images (Tan 2023). It has been particularly effective in 

reservoir areas, with a dynamic Otsu thresholding algorithm showing high accuracy in surface 

water mapping and flood monitoring (Tran 2022). This method is particularly advantageous in 

remote sensing and SAR data processing because it does not require prior knowledge about the 

image's histogram (Figure 4-3). By effectively distinguishing between water and land pixels, Otsu 

thresholding enhances the accuracy of Water Surface Mapping (WSM), making it a robust choice 

for diverse and complex datasets. An optimal threshold value for every image is defined which is 

used to classify pixels into water or non-water pixels.  

Figure 4-3: Example of the image histogram with an Otsu adaptive threshold in it 
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Finally, all pixel values below the threshold are classified as water and are aggregated and multiplied 

by the pixel area to compute the total WSA. This procedure is applied to all images from 2016 to the 

present, and separately for ascending and descending paths. Both paths are sufficient for determining 

the WSA, although there may be some discrepancies between them, as noted by  Mateus et al. (2017). 

Resulting in two distinct datasets, each containing the date of the image along with the corresponding 

WSA. 

4.2.2 Sentinel-2 imagery 
Sentinel-2 imagery requires some other steps to define the WSA. These images exists out of visual 

bands, so clouds can have a significant influence on processing steps making Images with more than 

10% cloud coverage being excluded from the data collection (step 4). 

The resulting dataset is analysed using the normalized difference water index (NDWI) as proposed by 

(McFeeters, 1996). This index is designed to maximize the reflectance of the water body in the green 

band as well as to minimize the reflectance of water body in the Near Infra-Red (NIR) band and is 

calculated as: 

𝑁𝐷𝑊𝐼 =
𝑋𝑔𝑟𝑒𝑒𝑛 − 𝑋𝑛𝑖𝑟

𝑋𝑔𝑟𝑒𝑒𝑛 + 𝑋𝑛𝑖𝑟

The 𝑋𝑔𝑟𝑒𝑒𝑛 and 𝑋𝑛𝑖𝑟 are the reflectance values in the green and near infrared wavelengths, 

respectively. And are corresponding to Band 3 and Band 8 from the Sentinel-2, both having a spatial 

resolution of 10 m and so the calculated NDWI in equation 1 has a spatial resolution of 10 m. After the 

NWDI imagery for al images is produced, water maps are made. A threshold of 0, proposed by 

McFeeters, is used to distinguish between water and non-water pixels. Pixel containing values above 

0 are classified as water and less than 0 are classified as non-water. The number of water classified 

pixels multiplied by the surface area of a pixel (100 𝑚2) is then the estimation of the WSA. 

4.2.3 Exporting and building 10-days average timeseries 
When both data sources are analysed, datasets containing water surface areas on different days are 

obtained. This study aims to create a comprehensive WSA dataset with a 10-day temporal resolution, 

necessitating the transformation of the dataset to this timescale. We established a list of start dates 

for 10-day periods, beginning each January 1th each year. This uniform temporal framework facilitates 

straightforward comparisons across different datasets and time periods. For each satellite source, we 

verify if a WSA is available within the predefined 10-day periods. When multiple WSA values were 

available for the same 10-day period from a single satellite, we calculated the average, to ensure 

temporal alignment. This step ensures that all data points are aligned temporally. The final output 

consists of three datasets, each containing 10-day average WSA measurements from different satellite 

sources. These datasets are harmonized for consistent temporal resolution, enabling direct 

comparison and comprehensive analysis. The three datasets are utilized: 

• Ascending Sentinel-1 SAR data:

This dataset is chosen as the base due to its extensive coverage, containing data for 69.8% of

the time periods from January 1, 2016, to March 19, 2024.

• Descending Sentinel-1 SAR data:

This dataset has a coverage of 50.2% over the same period.

• Sentinel-2 optical imagery:

Complementary data source, not primarily used for filling gaps but for calibration and

additional analysis.

Equation 1 
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Both the ascending and descending datasets have gaps every six rows due to the 12-day revisit time 

of the Sentinel-1 satellite. The gaps need to be filled to ensure a continuous 10-day interval dataset. 

The ascending dataset is selected as the base because it has the highest coverage (69.8%). The 

descending dataset often has data available when the ascending dataset does not, due to the offset 

between their paths.   

Filling up the gaps in the ascending dataset is done by using the descending value for that time 

period corrected by the average difference between ascending and Descending values. This process 

increases the coverage of the ascending dataset to 87.7%. The last gaps are filled by linear 

interpolation. 

4.2.4 Data fusion. 
The results of Water Surface Mapping (WSM) in km2 from Sentinel-2 are generally more accurate than 

those from Sentinel-1. Souza et al., (2022) and Peña-Luque et al. (2021) also indicates that Sentinel-1 

likely underestimates the surface area ) This research uses the Sentinel-2 data as correction of the 

Sentinel-1 data. Figure 4-4 shows a correlation of 0.89 between the Sentinel-1 and 2 observations 

making it possible to correct the Sentinel-1 values based on the Sentinel-2 observations.  

Figure 4-4: Fusion method of the data from 2 satellites, based on the correlation. 

To do so, the linear relation between the two sources is used as correction formula, shown below. This 

results in a dataset of water surface areas obtained by Sentinel-1 and corrected to Sentinel-2. 

𝑊𝑆𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = (1.568 × 𝑊𝑆𝐴𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙1 − 24.73)     𝑖𝑛 𝑘𝑚2 Equation 2 



Page 14 of 43 

4.2.5 Water Volume extraction 
The ultimate objective of delineating the surface area of reservoirs lies in deriving their corresponding 

volumes. This process is facilitated through the utilization of water-area-level-volume curves, which 

have been established by Mr. Minh (2024, in preparation) based on digital elevation models (DEMs). 

In order to obtain the volumes, the surface area must first be converted in to water level, which can 

subsequently be transformed in to a volume. Mr.  Minh (2024, in preparation), provided formulas 

which can do it automatically, shown in equation 3 and 4. This will give one dataset, containing the 

water volume with a temporal scale of 10 days. 

Bản Chát reservoir 

Figure 4-5: Water Area-Level-Volume curves, made by  Mr. Minh (2024) and data obtained from the decision statement of the 
Prime Minister of Vietnam (2019). 

𝑌 =  −1 + 2 × (𝑊𝑆𝐴 −
0.003

67.846 − 0.003
) 

𝑊𝑉 = 129.63 × 𝑌4 − 20.44 × 𝑌3 + 241.16 × 𝑌2 + 1259 × 𝑌1 + 868.77 

The WSA and the WV dataset are validated by the use of the KPI’s explained in section 4.1. The in-situ 

observed data uses the same algorithm (section 4.2.3) to make a 10-day temporal scale timeseries of 

it is used as observed dataset. 

Equation 3 

Equation 4 
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4.3 Reservoir model 
This section shows how the reservoir model is buil1, which variables there are and how they are 

calibrated. First the timeseries obtained by previous explained methods are used to construct a water 

balance which is used to analyse flow and to obtain an outflow timeseries which can be used in the 

Fuzzy model. This fuzzy model is used to derive operation rules. Then the Fuzzy model is explained 

including several input variables. The final calibrated fuzzy model is able to simulate the discharge 

downstream of the reservoir dam. The validation of this model is explained in the next section.  

Figure 4-6: Modelling framework reservoir model 

4.3.1 Water balance 

The water balance is a fundamental element in hydrology used to assess the availability and movement 

of water within a specific system. This approach involves quantifying the inflow, outflow, and storage 

changes of water to understand the overall dynamics and sustainability of water resources. The inflow 

and outflow of this system consists of several flows such as leakage, seepage, rainfall inflow and release 

discharge in this study only inflow and release discharge are considered, resulting in the water balance 

equation 5. This balance can be rewritten to equation 6 in which the release is a function of the known 

inflow and water storage. 

𝐼(𝑡) × 𝑡 + 𝑆(𝑡) − 𝑅(𝑡) × 𝑡 = 𝑆(𝑡 + 1) 

𝐼 = 𝐼𝑛𝑓𝑙𝑜𝑤 (
𝑚3

𝑝𝑒𝑟𝑖𝑜𝑑
) 

𝑆 = 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 (𝑚3) 

𝑅 = 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 (
𝑚3

𝑝𝑒𝑟𝑖𝑜𝑑
) 

𝑡 = 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 (10 𝑑𝑎𝑦𝑠) 

Equation 5 
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𝑅(𝑡) = 𝐼(𝑡 − 1) + 𝑆(𝑡 − 1) − 𝑆(𝑡) = 𝐼(𝑡 − 1) + ∆𝑆 

The average water volume is defined over 10-day periods starting on the 1st of January every year, and 

the inflow in the mass balance should represent the average of inflow between these two time 

periods. And so 10-day periods for inflow and outflow starts at the 6th of Januari. Equation 9 shows 

how the 10 days average inflow is converted to a total inflow volume per 10 days. After conducting 

these steps, timeseries of the inflow, water volume and outflow are obtained to build the Fuzzy model 

on. 

4.3.2 Fuzzy logic model 
After the historical data is collected using the water balance, fuzzy logic is applied to build a model 

that can be used to make predictions for the future. Fuzzy logic has been identified as a valuable tool 

in addressing uncertainty and complexity in environmental and water resource systems modelling 

(Mujumdar & Ghosh, 2008). This is particularly relevant in the context of water inflow, volume, and 

outflow data, where the lack of a clear relationship can be addressed through the use of fuzzy logic to 

incorporate uncertainty and imprecision (McKone, 2005). Fuzzy logic-based models have been 

successfully applied to simulate water dynamics in soil, demonstrating their potential in addressing 

similar challenges in water systems (Freire, 2014). Furthermore, the transparency and ability to 

incorporate qualitative knowledge and uncertainty make fuzzy logic a promising approach for deriving 

operation rules in river management (Janssen, 2006). And so for this research it is a promising 

approach for deriving operation rules in reservoir dams. 

The key ideas are that fuzzy logic allows for something to be partly this and partly that, rather 

than having to be either all this or all that; and that the degree of "belongingness" to a set or category 

can be described numerically by a membership number between 0 and 1. As an example, Fig. 1 shows 

typical membership functions for low, medium, and high outflow volumes. In this example, demand 

less than 50 is defined as “low”, between 75 and 125 as “medium” and above 150 as “high”. In fuzzy 

logic terms, a demand of 60 has a membership of 0.28 in “low” and 0.20 in “medium”. The membership 

function (MF) is made linear to make subsequent calculation easier. 

Figure 4-7: Example explanation of the membership functions 

To derive the operation rules, fuzzy rules can be established using input and output variables. The 

objective is to obtain rules that can accurately simulate the outflow, with the outflow set as the output 

variable. To identify the key influential variables, an extensive data analysis was conducted. This 

Equation 6 
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involved plotting pairs and triplets of variables against the corresponding outflow to observe any 

emerging patterns. If a discernible pattern was found, it indicated that those variables were important 

for the study. Through this analysis, water inflow, volume, and demand were identified as the primary 

input variables. Important to note is that the demand is not the actual demand but is assumed to be 

the long term average for the specific time in the year. This is done as the data analysis shows a quite 

consistent pattern over the years which can be encountered by a demand curve which is yet unknown. 

The three input variables, are divided into three categories, and simple triangular MF are used as 

shown in Figure 4-7: Example explanation of the . 

Fuzzy rules are set up in the form: “if the value of variable Inflow1 is “low” and variable Volume1 

is “low” and Demand1 is “medium” then the consequence is “medium”. As first step, 3 variables are 

chosen as check for the method. The categories are giving the names “low”, “medium” and “high”. The 

number of rules in the control system is 33 = 27 The rule base have the form of: 

𝑖𝑛𝑓𝑙𝑜𝑤𝑡 ["low"]   &   𝑣𝑜𝑙𝑢𝑚𝑒𝑡 ["low"]   &   𝑑𝑒𝑚𝑎𝑛𝑑𝑡 ["medium"]  =>   𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑡 ["low"] 

The category of the result also needs to be defined which can be done in several ways. This paper 

utilizes the data driven approach which means that the result of the rule is defined based on the 

dataset of derived outflows. First a calibration dataset is made. This is done by taking 70% random 

samples from the overall available data. The reason to choose for random samples is the yearly trend 

in the data together with the influence of unknown events in the data which can affect the quality of 

the calibration as well as validations by taking a continuous timeseries. But before splitting up, the 

moving average of 1 forward and 1 backwards of the inflow and outflow is taken to reduce the noise 

in the dataset. Only 1 step for and backwards is chosen to contain the small fluctuations and keep the 

accuracy as high as possible without flattening out to much. The calibration dataset is filtered based 

on the conditions given in the rule. The average value of the outflow is calculated, the membership to 

the three categories are defined and the category with the highest membership is used as result of the 

rule. 

If a set of input variables has a membership in multiple categories, multiple rules are triggered. For 

example the demand1 has a membership of 0.28 in “low” as well as 0.2 in “medium” so 2 rules are 

triggered based on demand. For every triggered rule, membership values are computed and multiplied 

with the result of the consequences assigned by the rules. The output of the rules are combined by a 

defuzzification method to give a final single output. There are multiple defuzzification methods 

available, the best results are obtained by the centroid method which is shown by equation 8. 𝑤𝑡𝑖,𝑣,𝑑

is the weight of the rule while 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑡𝑖,𝑣,𝑑
 is the output value of that certain rule. So the output of

the model on timestep t will be a combination of several weighted outputs. 

𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑡 =  
∑(𝑤𝑡𝑖,𝑣,𝑑

 × 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑡𝑖,𝑣,𝑑
)

∑(𝑤𝑡𝑖,𝑣,𝑑
)

4.3.3 Global Sensitivity analysis of fuzzy model 
Before calibrating the model, the calibration parameters should be defined. The rules are defined in 

an automated, data-based manner using the membership functions (MF), making the MF the sole 

calibration parameters of the model. Due to time constraints, only MF comprising of three triangulars 

are analysed. For all parameters, the peak of the three categories together with the width of the 

triangulars are used for the sensitivity analysis. The parameters for the MF of inflow(i), volume(v), 

demand(d) or outflow(o) combined with the category low(l), medium(m) and high(h) and a number in 

Equation 8 
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which 1 stands for left corner, 2 for the top and 3 for the right corner. So the left corner of outflow high 

will be oh1 (Outflow High 1). “ow” stands for outflow width. 

Figure 4-8: Coordinate definition for the membership functions 

Since the relationship between the variables is unknown but likely significant, a global sensitivity 

algorithm that considers parameter interaction is required. The Morris method is chosen to apply. It is 

a fast and reliable sensitivity algorithm which takes the interaction as well as the nonlinearity into 

account according to Song et al.(2015). This analysis requires the parameters to have a certain range 

in which they can move. The ranges of the parameters are shown in table 4-3.  The outflow variable is 

taken as example, other variables ranges are defined exactly the same. The method requires a result 

value on which the sensitivity needs to be measured. This research is focused on obtaining the 

operation rules of the reservoir. Since the NSE PKI is the best indicator for the correctness of the 

pattern, this is used for the sensitivity analysis as well as for the optimisation in the next section. 

Table 4-3: Boundaries of the membership functions 

PARA-

METERS BOUNDARIES TRIANGULAR MEMBERSHIP FUNCTION VALUES 

OL1 0 

OL2 [Minimum observed outflow, 

Minimum observed outflow + 1/3 outflow_range] 𝑜𝑙2 

OL3 𝑜𝑙2 +  1/2 ∗  𝑜𝑤 

OM1 𝑚𝑖𝑛(𝑜𝑙3, 𝑚𝑎𝑥(0, 𝑜𝑚2 −  1/2 ∗  𝑜𝑤)) 

OM2 [Minimum observed outflow + 1/3 outflow_range, 

Minimum observed outflow + 2/3 outflow_range] 𝑜𝑚2 

OM3 𝑜𝑚2 +  1/2 ∗  𝑜𝑤 

OH1 𝑚𝑖𝑛(𝑜𝑚3, 𝑜ℎ2 −  1/2 ∗  𝑜𝑤) 

OH2 [Minimum observed outflow + 2/3 outflow_range, 

Maximum observed outflow] 𝑜ℎ2 

OH3 max (𝑜ℎ2 +  1/2 ∗  𝑜𝑤, 
 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠_𝑚𝑎𝑡𝑟𝑖𝑥. 𝑙𝑜𝑐["𝑀𝑎𝑥𝑖𝑚𝑢𝑚", "𝑜𝑢𝑡𝑓𝑙𝑜𝑤"]) 

OW [outflow_range/2, 

outflow_range] 

Running the Morris analysis for a sample set of 1000 with numerical range of 12 gives insight 

into the sensitivity of every parameter in terms of σ and μ. Parameters with a low μ are less sensitive 

then values with a high μ. Parameters with a low σ behave linear while high σ indicates an non-linear 

behaviour of the parameter. And μ/σ shows the robustness of the Parameters. Parameters with high 

μ and high μ/σ are taken to be the calibration parameters.  
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4.3.4 Global optimisation fuzzy model 
The calibration of the parameters is done by the Shuffled Complex Evolution optimization algorithm 

by Duan et al. (1993) and applied in the Spotpy library Wu & Zhu, (2006) shows the relevance of this 

algorithm. It is an global optimization method that does not rely on explicit expressions for the 

objective function or its derivatives, making it suitable for handling nonlinear problems with high-

parameter dimensionality. This algorithm requires a range for the parameters in which they can be 

optimized. The range is set to be 50% lower or higher than the initial values, coming from the best 

performing parameters in the sensitivity analysis. Calibration of the model takes still a lot of time, 

making the number of runs set to 1000 after which the new parameters are obtained and used to run 

the calibration algorithm again but with a lower range of 10% on the optimized values.   

Table 4-4: Calibration range MF parameters 

PARAMETER LOWER BOUNDARY UPPER BOUNDARY 

DM2 0.50 * dm2 1.5 * dm2 

DW 0.50 * dw 1.5 * dw 

OL2 0.50 * ol2 1.5 * ol2 

OM2 0.50 * om2 1.5 * om2 

OH2 0.50 * oh2 1.5 * oh2 

OW 0.50 * ow 1.5 * ow 

IL2 0.50 * il2 1.5 * il2 

VW 0.50 * vw 1.5 * vw 

DH2 0.50 * dh2 1.5 * dh2 
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4.4 Reservoir model validation 
The model validation process utilizes two distinct time series: outflow and water volume. These 

datasets are randomly sampled from the available data, following the calibration section's approach 

where 70% of the data is used for calibration and the remaining 30% for validation. Both validation 

procedures employ Key Performance Indicators (KPIs) previously described. By comparing the KPIs 

derived from these two validation methods, insights into the model's behaviour are gained, evaluating 

whether volume-based KPIs reliably reflect the model's performance. Outflow data KPIs serve as 

reference benchmarks for this comparative analysis. Figure 4-9 shows an diagram of the applied 

method.  

Figure 4-9: Modelling framework for the validation 

First, the validation of the fuzzy model is established by using the by fuzzy modelled outflow to 

compare it with the observed outflow of the whole period. This is visually as well as statistically 

validated by the use of a graph and the KPI’s. 

Secondly, the observed inflow data and the simulated outflow data from the Fuzzy model are 

incorporated into the water balance calculations to generate a simulated time series of water volume. 

This simulated water volume time series is then normalized and compared with the normalized 

observed water volume time series to define the KPIs. Normalizing both volume series enhances the 

comparability of the different validation methods. Similarly, the outflow time series for the validation 

dataset are compared with the outflow of the water balance simulation, resulting in two sets of five 

KPIs each. The KPIs based on the water balance outflow and the KPIs from the volume time series are 

used for comparison with the validation to enhance understanding and insight into the model when 

in-situ data is not available for validation.  
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5. Results
The results are discussed in the order of the research questions. So first the results of obtaining a 

water volume set is shown in section 5.1. The model which is made of the reservoir dam is discussed 

in section 5.2 and the analysis on the reliability of the model and insight in the behaviour of the 

model when there is no in-situ data available is presented in section 5.3. 

5.1 Reservoir volume datasets 
The observed and by satellite calculated WSAs for the entire operational period of the dam are shown 

in Figure 5-1. It can be concluded that all three methods effectively map the dynamics of the WSA. 

Peaks are generally timed correctly, although the derived values do not always reach the correct levels. 

This is supported by the KPI results listed in Table 4-1: : Key Performance indicators with their 

objectives and formulas. As in the hypothesis in the methods section, Sentinel-2 performs the best in 

mapping the WSA, which can be concluded visually as well as by the KPI scores. According to the KPI’s, 

the Sentinel-2 is the best in mapping the pattern due to its high NSE-value as well as very accurate in 

obtaining the variability of the data indicated by R2. 

However, the combination of different sources outperforms each individual source in almost 

all areas. Only the PBIAS of Sentinel-2 shows a better performance than the Fusion series. However, 

this indicator is less important due to the interest in the pattern of the time series. Therefore, the most 

important indicators are the NSE and R2 values. The overall high availability of the Sentinel-1 data is 

combined and corrected to the performance of the Sentinel-2 measurements. Resulting in an even 

better performing dataset based on the original dataset, which is in line with the hypothesis from the 

methods section. It can even be concluded that the combination of both satellites outperforms the 

single use of them, making this method very suitable for measuring the WSA with a 10-day temporal 

resolution in ungauged locations. 

Figure 5-1: WSA for all sources (left), WSA for the fusion set (right) 
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Table 5-1: table shows the results of the KPI’s for all data sources in calculating the WSA over time compared with the 
observed dataset. 

Ban Chat reservoir 

 (unit) 
NS 
(-) 

PBIAS  
(-) 

RMSE 
(km2) 

R2 
(-) 

MAE  
(km2) 

Mean    
(km2) 

Median      
(km2) 

Area-Sentinel_2 0.89 0.21 3.47 0.94 2.43 47.11 52.22 

Area-

Descending_server 

0.77 6.48 4.05  0.98  3.52  45.51  47.83 

Area-Ascending_server 0.83  3.82  3.80  0.99  3.30  46.39  49.06 

Fusion 0.96 -0.61  1.92  0.98  1.47  48.23  52.12 

Observed - - - - 51.47 47.89 

5.1.1 Water Volume 
The water volume time series is presented in Figure 5-2. It closely mirrors the data fusion time series 

of the WSA, which is expected since a single formula is used to convert the WSA into water volume. 

The method tends to overestimate the water volume in the reservoir, both at high and low water levels. 

There are two general explanations for this behaviour:  

The overestimation at low water levels might stem from the computation of the observed data. 

The observed water volume is derived by measuring the water level in the reservoir and converting it 

into water volume using Figure 4-5. The error margins as well as the exact location of these 

measurements are unknown, making it challenging to draw final conclusions about the differences.

Another explanation for the discrepancy lies in the origins of the measurements. The observed 

data measures the water level, while the satellites measure the WSA. Satellites may detect more water 

in the study area due to the presence of separate pools, especially during periods of low water levels. 

Resulting in a higher WSA as well as higher water volume. Obtaining more insight in this can be 

obtained by the use of different satellites and is further discussed in the recommendations section. 

Figure 5-2: This graph shows the calculated and observed timeseries of the water volume in the Ban Chat reservoir. 

Despite the tendency to overestimate the water volume compared to the in-situ measurements, it can 

be concluded that the used approach of calculating the water volume of the Ban Chat reservoir 
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performs very good in mapping the pattern of the storage while it has some small limitations in 

mapping the height of the peaks, with an overall mean average relative error of only 4.50%. 

Table 5-2: Water volume validation results in KPI's 

Ban Chat reservoir 
(unit)

NS 
(-)

PBIAS 
(-)

RMSE 
(10 6   m2)

R2 
(-)

MAE 
(10 6   m2)

Mean 
(10 6   m2)

Median 
(10 6   m2)

Water Volume 0.96 0.27 84.05 0.98 66.15 1,468.10 1,623.53 

5.2 Reservoir model operation rules 
This section discusses the model of the reservoir dam. This is done in the same order as in the 

methodology section. First the results of the water balance are shown. The made water balance by 

the use of observed inflow and by remote sensing obtained WSA is a sufficient way to obtain the 

outflow for a historical dataset. Proven by a NSE score of 0.83 with a likelihood to overestimate the 

flow with 1.93%. The calibrated fuzzy logic model has lower scores in simulating the outflow of the 

reservoir dam, namely 0.59 and a likelihood to underestimate the flow with 4.13. Main findings coming 

from this research are the applicability and promising fact of the implementation of fuzzy logic in 

modelling reservoir dams in ungauged locations. Several statistical datasets can give insight in the 

behaviour of the model when in-situ data is not available to validate the model. 

5.2.1 Water balance results 
The water balance without considering the precipitation and evaporation shows a average relative 

error of 1.55% is a sufficient method to obtain water discharges for the downstream of the dam. Figure 

5-3 shows the moving average of the observed outflow together with the mean average of the by

water balance simulated outflow. There are a few points to discuss. In general the modelled time series

is fitting the pattern of the observed data. When outflow is low, the model seems to overestimate the

outflow which can be the result the assumption to not encounter the evaporation in this model. Most

of the time, when the outflow is low, the water level is high making a big surface area so also more

evaporation. Although in the dry periods, when water level is low, but the potential evaporation rate

is higher, the model does not seem to have a consistent over or under estimation. Making the

evaporation not an important factor to take into account in this model.

In 2020 the model over estimates the flow with more than 100%. A cause of this can be 

apparently big evaporation although we assumed evaporation to have small influence in this reservoir 

water balance model. Besides the model, the measurements do also have errors in it. By looking at 

the pattern of the yearly graph, the difference might be caused by errors in the measurement station, 

however more research needs to be conducted on this. 
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Figure 5-3: Downstream discharge modelled by the water balance 

The statistics of the model gives some more insight in the general performance of the model. Showing 

a high NSE and R2 value indicating the model to be a good representation of the observed values and 

sufficiency in mapping the pattern of the outflow. With a likelihood to overestimate the outflow by 

1.93% with a mean absolute error of 1.52 (106 m3) makes the model reliable enough to use for 

calibration of the fuzzy model in predicting the outflow of the reservoir dam. 

Table 5-3: Results of the simulated discharge validation in KPI's 

obs_BC1 NS 
(-)

PBIAS 
(-)

RMSE 
(106   m3)

R2 
(-)

MAE 
(106   m3)

Mean 
(106   m3)

Median 
(106   m3)

MA_WaterBalance_sim_ 
outflow 

0.83 -1.93 29.10 0.91 1.52  98.08  76.00 
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5.2.2 Fuzzy Logic Model Results 
The results of the calibration of the MF’s are depicted in Figure 4-9, illustrating a scatter plot of the 

calibration. Besides the NSE-value, the MAE is taken into account by choosing the best fitting set of 

parameters. The MAE should be as low as possible while the NSE should be as close as possible to 1. 

There are 2 options making a pareto front in this case. Indicated with green. Since the difference 

between both is negligibly small, the highest NSE-value is chosen to be the best parameter set.  

Figure 5-4: Results scatter plot of the calibration 

With these results, the fuzzy logic model is a promising method in modelling the reservoir dam outflow 

in ungauged locations. A simple membership functions set up shows a small increase of the outflow 

results compared to the average outflow of the period based on the simulated outflow. This is 

supported by the slight improvement in PKI’s shown in Table 5-34. The estimation of the pattern is 

slightly increased, supported by a better NSE and R2 value while the model has a higher likelihood to 

underestimate the outflow downstream. Together with the slightly lowered MAE, it can be concluded 

that the Fuzzy model has potential in modelling the downstream flow of the dam. It is evident that the 

fuzzy model primarily follows the pattern of the demand curve, which is explainable by the fact that 

the demand curve is chosen to be the average of outflow per timestep. Notably, the simulations 

produced by the model exhibit a stepwise appearance. This phenomenon can be attributed to the 

definition of the membership functions (MF) and their associated boundaries. These outcomes suggest 

that employing three triangular membership functions per variable fails to sufficiently differentiate 

between the various situations that arise. To achieve better results, alternative membership functions 

such as trapezoidal shapes, as well as an increased number of membership functions, should be 

considered. This is further elaborated in the recommendations section. 
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Figure 5-5: Fuzzy model simulated outflow 

Table 5-4: Accuracy of the simulation of the fuzzy logic model 

obs_BC1 NS PBIAS RMSE R2 MAE 

Fuzzy model predictions to water balance 0.59 6.26 46.48 0.78 34.47 

Demand to water balance 0.55 3.40 48.90 0.74 34.99 

The operation rules supporting this fuzzy model are shown in Table 5-4. From the sensitivity analysis 

can be seen that the outflow and the demand are the most important variables for the model. Which 

can also be concluded from the rules. When the demand is high, the outflow is probably also high, 

while the inflow and the volume does not seems to have a big influence on the outcome of the rules. 

The result of the general rules is in line with the hypothesis. The outflow tends to follow the demand 

curve while the outflow does not rely on the demand anymore when the volume as well as inflow are 

high since then as much water as possible should be released to keep the water level below the 

emergency level.  

Tabel 5-5: Derived operation rules in fuzzy logic format. Colours are for clarification. 

This membership functions used to define the rules are shown in figure 5-6. The horizontal axis shows 

the input value of the variable while the vertical axis defines the membership in a certain function. 

The combination results in the addressed rules which is also a membership function for defuzzification 

shown in figure 5-6 (right bottom). The exact coordinates of the MF, obtained after the sensitivity 

analysis, table 5-5. 
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Figure 5-6: Membership Functions displayed, left top: Inflow, right top: Volume, left bottom: demand, right bottom: 
outflow. 

Figure 5-7 shows results of the sensitivity analysis conducted before the calibration of the model. The 

left graph shows the behaviour of the parameters in the model in which the μ_star shows the influence 

of the parameters on the model and the σ shows the variability of the influence. The right graph shows 

the μ_star divided by σ as indication of how good the parameter can be calibrated. It can be concluded 

that the outflow membership functions are the most sensitive which is in line with logic common sense 

since the outflow MF’s defines the result of the Fuzzy model. it’s remarkable that the parameter high 

outflow is less sensitive than the others but can be declared by the low availability of high outflow data 

compared to the other categories. The second important parameter are the demand parameters. As 

raw data analysis gives insight into the behaviour of the outflow which seems to follow some kind of 

an yearly pattern. The last two important parameters are the high inflow and volume parameters. 

Those are in line with the assumption of the model being less dependent on the demand when both 

inflow and volume are high.  

Figure 5-7: The influence and sensitivity of the different parameters. Left shows the influence and variability of the 
parameter and the right shows the sensitivity of the parameters. 
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The combination of parameters, giving the highest NSE value as outcome in the sensitivity analysis 

are used as starting point for the optimization of the model. The parameters with their initial and 

final value with their relative change are shown in Table 5-6.  

Table 5-6: Parameter changes in calibration 

PARAMETER INITIAL VALUE FINAL VALUE RELATIVE CHANGE 

IL2 165.0 163.4 -1%

VW 818.2 516.4 -37%

DM2 113.1 141.4 25%

DH2 198.4 308.7 51.4% 

DW 73.1 59.4 -19%

OL2 8.2 6.1 -25%

OM2 131.6 113.1 -14%

OH2 214.4 183.2 -15%

OW 141.4 124.3 -12%
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5.3 Validation 
The validation of the applied method has been conducted, revealing that the overall accuracy of the 

model is lower than anticipated. Nonetheless, the model demonstrates an improvement over the 

demand and represents progress in the research. Figure 5-8 depicts the moving average of the outflow 

from the fuzzy model compared to the moving average of the in-situ observations. The key 

performance indicators (KPIs) provide more statistical insights into the model's performance, as shown 

in Table 5-6.  

Figure 5-8: Validation of the Fuzzy logic simulated outflow 

The moving average of the fuzzy simulation is compared with the moving average of the observations. 

It can be observed that, on statistical grounds, the model offers a slight improvement over the demand 

curve. The results, displayed by the KPI’s are shown in table 5-6. The first two rows shows the results 

of the KPI’s for box 1 of this method. Giving some insights in the behaviour of the model when no in-

situ data is available.  

Comparing the accuracy of the simulated volume, on timestep t+1 for 30% of the datapoints, with the 

overall calculated volume obtained by RS seems to be distributed randomly. Making this method not 

suitable for being able to say something about the performance of the model. The 2nd method, in 

which the by fuzzy simulated outflow for the 30% validation dataset is compared with the by water 

balance obtained outflow for the same 30% of the dataset, gives that the performance is somewhat 

worse compared to the demand curve compared with the by water balance obtained outflow for the 

30% dataset. Although by comparing this with the actual performance of the model, the model is a 

better representation of the actual outflow than the demand curve. This can be concluded from 

method 3 in which the 100% of the fuzzy modelled outflow is compared with the observed outflow, 

and where the demand curve is compared with the observed outflow. This is supported by a higher 

NS and R2 indicating the pattern is mapped better together with a lower RMSE and MAE which 

indicates the model has less difference in the variability than the demand curve. 

It can be concluded that the remote sensing based model performed better in modelling the 

outflow of the reservoir compared to the demand curve. Although when no in-situ data is available, 

the idea can be given that the demand curve performs better. 
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Table 5-7: Results of the different validation methods demonstrated by the KPI's 

NS PBIAS RMSE R2 MAE 

(1) Modelled_Volume_Accuracy 0.11 1.77 0.26 0.54 0.18 

(2) Model_accuracy_no_in-situ data 0.41 4.08 49.32 0.68 38.04 

(2) Demand_accuracy_no_in-situ data 0.41 -0.15 47.72 0.68 35.86 

(3) Model_validation 0.59 4.13 45.14 0.77 34.51 

(3) Demand_validation 0.55 0.5 47.29 0.74 35.03 
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6. Discussion 
6.1 Potential 

There are several potentials for the application of the methods applied in this research. The potentials 

are discussed in order of the research questions. 

“What is the accuracy of a timeseries containing the volume of the reservoir over the time period from 

construction till now with a resolution of 10 days average?”  

Result section 5.1 shows a high potential in the applied method in obtaining the water volume 

timeseries of a ungauged dam by showing a NS value of 0.83 and high R² value combined with an 

tendency to overestimate the outflow by 1.93%. The method have a lot of potential in it since only the 

maximum water level of the reservoir should be know. Making it applicable for locations when there 

is no in-situ data available by obtaining the maximum water level by optical methods. In addition, 

combining the two different satellite sources and using both forces is a very valuable method that can 

be used and further developed in subsequent studies. 

“What are the best performing operation rules to simulate the flow in the reservoirs?” 

The calibrated fuzzy logic model shows promise for application in ungauged reservoirs where direct 

measurement data may be scarce or unavailable. In the Fuzzy logic model, lots of parameters can be 

calibrated. This report has many constrains in the calibration processes of the predefined set of MF’s. 

The sensitivity analysis in section 0 shows that the model is very sensitive to different parameters, 

especially for the outflow MF. Making it also dependent to what variables are chosen for definition of 

the MF. The application of the triangular MF’s shows reasonable and promising results for further 

development of the fuzzy logic model in which several other MF’s are made.  

“What is the accuracy of simulated outflow based on remote sensing data compared with the in-situ 

data validation?”  

The insights gained from assessing the model's accuracy by splitting the remote sensing dataset into 

calibration and validation sets are not yet reliable for evaluating the model's precision. Section 5.3 

demonstrates an accuracy with an NSE of 0.41 and an MAE of 38.04 in the absence of comparison 

material in the form of in-situ data. However, the actual accuracy of the model is significantly better, 

with values of 0.59 and 34.51, respectively. This highlights the promise of this method in providing 

reliable insights when in-situ data is not available. The increase in accuracy can be explained by the 

application of the moving average on the whole timeseries. However, the validation of this research is 

not completely independent from the calibration of the model. For both steps, the same datasets are 

used. The demand curve used as decision variable in the fuzzy logic model is taken as the long term 

average of the outflow which is the same dataset as is used for validation. 

Overall, this research provides a clear understanding of the potential for applying and improving 

current methodologies to derive operation rules for dams in ungauged areas. The input data for the 

fuzzy model can be obtained with high accuracy using publicly available remote sensing data. It is 

demonstrated that fuzzy logic is a promising approach to process this data to derive the operation 

rules. The operation rules constitute a well-defined set of time-independent rules, allowing for the 

testing and prediction of specific situations. 
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6.2 Limitations 
Besides the potentials indicated, there are also some limitations to be noted for this research. The first 

important limitation is the availability of data. Making a reservoir model based on open source data is 

a challenging task which requires lots of data. Although the amount of data points in this research is 

limited to 300 values in total. Borregales et al., (2020) emphasized the need for a significant amount 

of data to calibrate a purely data-driven mode. The method of this research is purely data-driven 

without a significant amount of data, making the model not suitable for simulating non frequency 

occurring events, for example the drought in 2023. 

Another limitation of this research is the reliance on satellite-based data for calibration and validation 

phases. Ideally, a model should be calibrated and validated based on reliable, observed data. However, 

in this study, both the reservoir water volumes and the validation of the fuzzy logic model were based 

on satellite-based measurements in which error margins are not included. Furthermore, there is no 

available information regarding the exact measurement methods used. The assumption is that water 

level and outflow discharge were measured directly, while other values, such as surface area and 

inflow, were derived from these measurements. The lack of detailed information about these 

derivations introduces multiple opportunities for errors in the validation system. 

 Additionally, the location of water level measurements in relation to the outflow can impact 

the actual measured water levels, potentially leading to discrepancies in the derived water surface 

area (WSA). As observed in Figure 5-2 and Figure 5-1, the backwater effects from the discharge appear 

to influence the measured water levels compared to the WSA obtained from satellite data. This 

discrepancy underscores the potential for measurement errors and highlights the need for more 

precise and transparent data collection methods to improve the reliability of the model validation 

process. 

Another limitation of this research is about the availability of the WL to WV and WSA curves. For 

applications inside Vietnam, those curves are available and can be used directly. For further 

applications in ungauged areas, those curves might be made based on less accurate DEMs or other 

methods, resulting in more inaccuracies. This research indicates a method to derive the operation rules 

of a reservoir dam, but uses the known water curves. The influence of the water curves is not tested 

and so no knowledge of their impact is known. 

The last limitation of this research is on the definition and calibration of the membership functions. 

This research uses a fixed set of MF’s for every variable in the Fuzzy model, although the number of 

MF’s can be very sensitive to the outcome of the model. Changing the amount of MF’s it is not tested, 

making the this research limit. The same goes for the calibration of the MF´s. To save computer power 

and make the calibration easier, constraints are added to the membership functions as well as the 

range of calibration for them. Consequences of this are less optimal calibrated MF’s resulting in a lower 

accuracy of the fuzzy model it selves. 
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6.3 Generalisation 

Several generalisations on this research van be made. In obtaining the water volumes of the reservoir 

dam, there are two important steps taken. The first, gathering the WSA based on Sentinel-1 and 

Sentinel-S2 satellite data and the second, transferring the Sentinel-1 result to model the Sentinel-2 

results. The methodology taken can be applied on different reservoirs around the world. Main reason 

for this is the widely available papers on monthly water surface mapping for nearly all locations in the 

world. Next to this, there are several ways to estimate the maximum water level for ungauged 

reservoirs e.g. by analysing DEM maps or google earth. Although it is not analysed in depth but some 

simple tests showed that the influence of the maximum water level guess is not very sensitive. So it 

will probably be filtered out by the fusion technics. Making the method applicable for several locations 

especially in the Red River basin.  Application of the obtained operations rules, 

presented as a set of 27 fuzzy rules can not directly be generalized over other reservoir dams mainly 

due to the different purposes of the dams. In this research, a dam with main purpose “hydropower” 

is used and so other decision variables for water subtraction from the reservoir, irrigation demands, 

flood support factors are not included in the decision making process of the Fuzzy model. However, 

parts of the methodology can be applied on other dams, such as the water balance to obtain input 

variables for the fuzzy model, as well as the application of the fuzzy logic with changed input variables.

      As shown in results section 5.3. Obtaining insight in 

the accuracy of the model based on the comparison between the observed water volume together 

with the simulated water volume for t+1 is not feasible. Making it also not generalisable to other 

locations.   
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7. Conclusion and recommendations 
7.1 Conclusions 

This study explored a novel approach to deriving operational rules for reservoir dams in ungauged 

locations by combining remote sensing data with fuzzy logic modelling. The method proved effective, 

showing significant promise in developing accurate and reliable operational rules, especially where 

traditional in-situ data is limited. The calibrated fuzzy logic model successfully enhanced downstream 

discharge simulations, outperforming traditional methods and highlighting the potential of this 

integrated approach for improving reservoir management in data-scarce regions.  

“What is the accuracy of a timeseries containing the volume of the reservoir over the time period from 

construction till now with a resolution of 10 days average?”  

The results are obtained by the use of the sentinel 1 and sentinel 2 images which achieved high 

accuracy in estimating the reservoir water volume. The NSE is defined as 0.83 while it has an minor 

overestimation of volume by 1.93%, indicating the model´s robustness in generating reliable water 

volume time series in ungauged basins. However there are methods available who achieved a higher 

accuracy for the sentinel-2 modelling, this research shows the importance and potential of the 

combination of two satellites in which the strengths of both of them are combined in a final timeseries. 

“What is the accuracy of simulated outflow based on remote sensing data compared with the in-situ 

data validation?”  

This study also highlights the possibility of calibration and validation of the model when there is no in-

situ data available. The validation of the model by the use of splitting up the remote sensing dataset 

into a calibration and validation series shows a significant difference with the actual validation with 

NSE 0.41 for the RS-validation compared with and NSE of 0.59 with the in-situ validation. Although, 

there is a significant difference. The difference is in a positive direction, the model is performing better 

than it says its doing.  

“What are the best performing operation rules to simulate the flow in the reservoirs?”  

The study concludes that the best performing operational rules for simulating reservoir flow are those 

developed using remote sensing data combined with fuzzy logic modelling. The Ban Chat reservoir's 

rules, based on inflow, water volume, demand, and outflow, effectively simulated downstream 

discharge with a Nash-Sutcliffe Efficiency (NSE) of 0.59 and a Mean Absolute Error (MAE) of 34.51—

improving accuracy by 7.27% over traditional methods. This research underscores the potential of 

integrating fuzzy logic with satellite data to create reliable operational rules, particularly in data-scarce 

regions. 

 

By drawing those conclusions, it should  me mentioned that there are a lot of limitations in this 

research which are bounding the capabilities of the modelling method. By eliminating the limitations 

as shown in the next – recommendations - section, the performance of the model and so the derivation 

of the operation rules can improve more.    

 To finalize, this methodology demonstrated in this research can be applied to derive the 

operation rules of ungauged reservoirs. The approach’s reliance on widely available satellite data and 

the proven effectiveness of fuzzy logic in modelling reservoir operation rules make it a valuable tool 

for hydrological studies in data-scarce regions.  
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7.2 Recommendations 
These suggestions are mainly directed towards the VNU-HUS together with other organisations and 

institutes, working on implementing RS in hydrological modelling of ungauged dams. By adopting these 

recommendations, the organisations can improve their knowledge about the application of RS with a 

relatively high temporal scale. 

- What can be learned and used from this study?  

Combining multiple open source data sources improves the quality as well as quantity of the data. 

The use of various publicly available data sources can significantly improve the quality of datasets, 

especially when in-situ data is unavailable. This study demonstrates that combining the strengths of 

Sentinel-1 and Sentinel-2 satellites can yield better results. By theoretically evaluating the qualities of 

each data source—such as the high temporal resolution of Sentinel-1 and the higher spatial resolution 

of Sentinel-2—a fusion method can be devised that leverages the strengths of both. 

Water balance is a sufficient method to obtain the outflow for the fuzzy logic.  

Especially in situations where there is no in-situ data available at all. Space observations of the water 

volume together with by literature proven methods to model the streamflow based on the catchment 

area such as a VIC-model can be combined by the use of a water balance to obtain a dataset containing 

the historical downstream discharge of the reservoir dam. 

Fuzzy logic is promising but needs further research to improve the quality of the results.  

This research shows an easy way to apply fuzzy logic on the water balance to obtain the operation 

rules of the dam. The model shows some small improvements in comparison to the demand curve.  

- What is open for further research? 

Model the flow as variation on the demand curve.  

Additionally, the setup of the fuzzy logic model warrants further investigation. Future studies should 

explore whether building a model based on a base flow, such as the demand flow, can yield better 

results. This involves evaluating different types of membership functions that can be created. To make 

an informed decision on the number of membership functions, the dataset can be filtered based on a 

relevant input variable and its associated outflow to assess the feasibility of clustering this outflow. 

This process might be enhanced through the application of machine learning techniques. 

Define a new decision variable to improve the sensitivity of the model.  

To enhance the accuracy and reliability of dam operation models, future research should focus on 

identifying and refining the most influential input parameters, such as including electricity patterns or 

weather predictions. Conducting on-site interviews with dam operators can provide valuable insights 

into the decision-making processes and operational behaviours when there is flexibility in dam 

management. This can help in developing models that better reflect real-world practices by 

incorporating these behavioural nuances. It is essential to create a comprehensive overview of the 

decision variables used in the system and understand the basis of operators' decisions, including the 

interrelationships between different dams and future predictions. 

Obtain another source or more insight in the measurements for validation purposes.  

Given the potential for significant measurement errors in the observed WSA and WL, it is advisable to 

explore alternative validation methods. One promising approach is the use of altimetry satellites to 

directly measure the reservoir's water level. These measurements can then be integrated with the 

methods proposed in this study to potentially create a more accurate dataset than those obtained 

from field measurements. 
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Implementing a hydrological model. 

The last recommendation is about the implementation of a hydrological model of the river to predict 

the inflow of the reservoir dam. This research uses the satellite obtained WSA together with the 

observed inflow to build the reservoir model. It is expected that the inflow timeseries is a derivation 

of other measurements without known error margins. By using a hydrological model, for example a 

VIC-model, which needs to be validated for the specific region before construction of the dam. A better 

quality of the inflow timeseries can be reached resulting in better, so more clear, paterns in the outflow 

data. Making better rules which results in a better simulation of the downstream discharge. 
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Appendices 
Appendix A 
As explained in section 4.3.3,in the sensitivity analysis is conducted in a certain range for the 

parameters. The ranges of the parameters are defined per parameter and are shown in table A-1. 

These boundaries are set, based on the observed datasets for the reservoir dam. So minimum 

observed inflow means the lowest inflow which can be found in the dataset. And the range is the 

distance between the lowest and the highest value. See figure A-1 for clarification in an image. 

Tabel A-0-1: Boundary conditions Morris sensitivity analysis 

il2 [Minimum observed inflow, 

 Minimum observed inflow + 1/3 inflow_range] 

im2 [Minimum observed inflow + 1/3 inflow_range, 

 Minimum observed inflow + 2/3 inflow_range] 

ih2 [Minimum observed inflow + 2/3 inflow_range, 

 Maximum observed inflow] 

iw [inflow_range/2, 

 inflow_range] 

vl2 [Minimum observed volume, 

 Minimum observed volume + 1/3 volume_range] 

vm2 [Minimum observed volume + 1/3 volume_range, 

 Minimum observed volume + 2/3 volume_range] 

vh2 [Minimum observed volume + 2/3 volume_range, 

 Maximum observed volume] 

vw [volume_range/2, 

 volume_range] 

dl2 [Minimum observed demand, 

 Minimum observed demand + 1/3 demand_range] 

dm2 [Minimum observed demand + 1/3 demand_range, 

 Minimum observed demand + 2/3 demand_range] 

dh2 [Minimum observed demand + 2/3 demand_range, 

 Maximum observed demand] 

dw [demand_range/2, 

 demand_range] 

ol2 [Minimum observed outflow, 

 Minimum observed outflow + 1/3 outflow_range] 

om2 [Minimum observed outflow + 1/3 outflow_range, 

 Minimum observed outflow + 2/3 outflow_range] 

oh2 [Minimum observed outflow + 2/3 outflow_range, 

 Maximum observed outflow] 

ow [outflow_range/2, 

 outflow_range] 
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Figure A-0-1: clarification for the lowest, highest and range for the sensitivity analysis 



Page 43 of 43 

Appendix B 
In Table B-1, an overview is provided of how the coordinates of the membership functions are 

determined in the Python code. For example the il2 is a set value after the optimisation and lower 

and upper boundaries are made out of them by the use of the width of the MF and some constrains 

to make the code work.  

Tabel B-1: Coordinates for the final MF's 

il1 0 

il2 il2 

il3 il2 + 1/2 * iw 

im1 min(il3, max(0,im2 - 1/2 * iw)) 
im2 im2 

im3 im2 + 1/2 * iw 

ih1 min(im3,ih2 - 1/2 * iw) 
ih2 ih2 

ih3 max(ih2 + 1/2 * iw, statistics_matrix.loc["Maximum","inflow"]) 

vl1 0 #max(0, vl2 - 1/2 * vw) 
vl2 vl2 

vl3 vl2 + 1/2 * vw 

vm1 min(vl3, max(0,vm2 - 1/2 * vw)) 
vm2 vm2 

vm3 vm2 + 1/2 * vw 

vh1 min(vm3,vh2 - 1/2 * vw) 
vh2 vh2 

vh3 max(vh2 + 1/2 * vw, statistics_matrix.loc["Maximum","volume"]) 
dl1 0 #max(0, dl2 - 1/2 * dw) 
dl2 dl2 

dl3 dl2 + 1/2 * dw 

dm1 min(dl3, max(0,dm2 - 1/2 * dw)) 
dm2 dm2 

dm3 dm2 + 1/2 * dw 

dh1 min(dm3,dh2 - 1/2 * dw) 
dh2 dh2 

dh3 max(dh2 + 1/2 * dw, statistics_matrix.loc["Maximum","demand"]) 
ol1 0 #max(0, ol2 - 1/2 * ow) 
ol2 ol2 

ol3 ol2 + 1/2 * ow 

om1 min(ol3, max(0,om2 - 1/2 * ow)) 
om2 om2 

om3 om2 + 1/2 * ow 

oh1 min(om3,oh2 - 1/2 * ow) 
oh2 oh2 

oh3 max(oh2 + 1/2 * ow, statistics_matrix.loc["Maximum","MA_sim_outflow"]) 

#in w membership functions 

il1 0 

il2 il2 

il3 il2 + 1/2 * iw 

im1 min(il3, max(0,im2 - 1/2 * iw)) 
im2 im2 

im3 im2 + 1/2 * iw 

ih1 min(im3,ih2 - 1/2 * iw) 
ih2 ih2 




