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Management Summary

This research is conducted in cooperation with flaschenpost SE in Miinster, Germany. Flaschen-
post is an online supermarket. Having started its business with only beverages, the company
has quickly extended its offering to include fresh and frozen food, products for personal care
and hygiene, cleaning products, and even office and pet supplies.

Problem Description

Scheduling workers in a warehouse or factory is one of the key decisions in operations since it
greatly contributes to a company’s overall costs and efficiency. Therefore, there is great inter-
est in scheduling workers optimally. One of the most common methods to generate schedules
is mixed integer linear programming (MIP). While MIP have multiple benefits, their formu-
lations often become increasingly large and hard if we want to model a problem as close to
reality as possible. We are given a large-scale MIP by flaschenpost and want to figure out how
well we can solve it while not violating the given time constraints to generate shift schedules.

Method

We decided to customize the logic of a Branch-and-Cut algorithm using a callback function
in the code. The callback function is executed at different points in the Branch-and-Cut tree.
It checks whether the current integer feasible solution violates at least one of the demand in-
jection and propagation constraints. We do not add these constraints from the outset but add
them iteratively only when needed. This way, we potentially significantly reduce the model’s
calculation time since we ideally end up with a smaller problem formulation.

Results

We show that using our customized Branch-and-Cut logic can significantly reduce the cal-
culation time for models using double time-indexed variables. Nonetheless, these improve-
ments were not significant enough to reduce the calculation time of the fully specified work-
force requirement planning MIP. The shift and area assignment have proven to contribute
more to the model’s complexity than expected and, therefore, need to be tackled in further
research. We successfully simplified the model to a degree where the calculation time is fast
enough to satisfy the company’s requirements. These schedules only represent heuristic so-
lutions and thus do not guarantee optimality. Nonetheless, the results are usable and indi-
cate a first starting point for the shift scheduling problem. Additionally, this heuristic solution
might become more relevant in further efforts to solve the original MIP as they serve as upper
bounds for the objective value of the fully specified model.
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Using the heuristic solution we managed to solve the problem within five minutes for all
tested scenarios of demand and even with small a interval length A = 5. This is a meaning-
ful decrease in the required solution time. In comparison, the fully specified model with and
without our BaC logic does not find an optimal solution for problem instances where A =5
and. Here, the optimality gap (i.e., the relative distance between the upper and lower bound)
is approximately 50% on average after 8 hours of run time. Besides the performance increase
in calculation time, the quality of the heuristic solution is much worse compared to the afore-
mentioned upper and lower bounds. Using the bounds as benchmarks, the objective value of
the heuristic solution is 25% to 135% worse. As already indicated, we conclude that further
research is required to solve the problem satisfactorily. Given the apparent complexity of the
model, we suggest pursuing a heuristic solution.
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1. Introduction

Flaschenpost SE, headquartered in Miinster, Germany, is one of the country’s leading deliv-
ery companies specializing in groceries and beverages. With over 30 warehouse locations in
Germany, the company delivers to over 190 German cities (flaschenpost SE, 2024). Each year
20,000 employees work on fulfilling over 10,000,000 orders.

While the growth of revenue of online stores in Germany has slowed down compared to the
years of the COVID-19 pandemic, the grocery sector has grown over-proportionally by 8%
in 2022 (IFH Koln, 2023). Groceries and other quickly selling products such as hygiene and
body-care products form the so-called Fast Moving Consumer Goods (FMCG). According to
IFH Koln| (2023), the FMCG sector is growing fast and already made up 12.1% of the total on-
line revenue generated in Germany in 2022. Since the market in which flaschenpost operates
is still relatively small but growing quickly, there exists a lot of competition, and companies
have to work hard to gain a competitive advantage.

Most grocery delivery companies offer same-day delivery to their customers. In comparison
to its competitors, however, flaschenpost promises to deliver orders within 120 minutes. The
commitment to delivering within a few hours results in a delivery service called rush, instant,
or real-time delivery (Wolck & Meisel, [2022). This type of delivery entails several challenges
for its providers. Customers desire fast deliveries more frequently which means that schedules
of processes and delivery routes need to be adjusted multiple times on the same day to fulfill
demand. Processes and routes are determined by algorithms taking into account the ever-
changing input such as incoming orders and available workforce or resources. The dynamism
of the whole system creates the need for these algorithms that run in little time and still create
sufficiently accurate and realistic results (e.g., shift schedules) ensuring that operations and
delivery run efficiently.

The goal of this thesis is to contribute to the optimization of the operations in the company’s
warehouses. We aim to achieve this by solving the given MIP, which will output a workforce
requirement plan for the warehouse. This plan will eventually be used to schedule the work-
ers. By exploring solution different solution methods we aim to contribute to the company’s
efficiency and competitive advantage. The motivation for this thesis additionally stems from
the increasing demand for instant delivery services and the subsequent need for companies
to optimize all of their processes.



2. Problem Description

In this chapter, we outline the business problem lying at the core of this thesis and provide
a comprehensive overview of its context. Section 2.1 introduces the business challenge, fol-
lowed by a detailed identification of the core problem. Here we highlight the gap between
the current situation and the desired state. The scope of research is defined afterward to es-
tablish boundaries for our research. In section 2.2 we present the specific assignment we
received from the company, formulate the main research question, and line out our problem-
solving approach. Finally, the chapter addresses the knowledge problems and we explain how
we design our research to resolve them.

2.1 Business Problem

As explained in Chapter [1} Germany’s online grocery delivery market is highly competitive.
Flaschenpost is, therefore, continuously improving its operations to maximize profits and in-
crease its market share. The overarching operational goals the company pursues are:

* accepting as many orders as possible
* fulfilling orders punctually (i.e., within 120 minutes)

» generating as few work hours as possible (e.g.., by not having too many employees
working at once)

First, accepting as many orders as possible is crucial for increasing the revenue. By handling
a high volume of orders, flaschenpost can increase its sales and expand its customer base,
which is essential for growth. Second, fulfilling orders on time is essential to customer satis-
faction and retention. The self-imposed time limit of 120 minutes manifests the value propo-
sition of flaschenpost: it delivers orders much faster than its competitors. Lastly, generating
as little work time as possible to achieve the previous goals is important for cost reduction.
Operational efficiency and reducing work time do not only reduce labor costs but also op-
timize resource utilization. This can lead to higher profitability and allow the company to
reinvest savings (monetary and workforce) into other business areas.

In the remainder of this section, we will identify and evaluate different areas of improvement
in the operations of flaschenpost. From these, we will select a core problem that our research
aims to solve and thus contribute to reaching the above-mentioned goals.

2.1.1 Core Problem Identification

We identify the problems of the operations department of flaschenpost in Figure[2.1] This fig-
ure illustrates the problems the company is facing concerning the scheduling of warehouse



workers as well as the causal relations between them. Finally, we show which of these prob-
lems is the core problem (i.e., root cause) and which are action problems (i.e., symptoms of
the core problem). This allows us to describe the current situation of the warehouse workforce
scheduling in a problem cluster. The aforementioned operational goals are now expressed as
action problems as defined by Heerkens et al| (2017). We can do this since the company
believes there is room for improvement for all of them. For this thesis, we only look at the
operations of the warehouse and neglect other parts of the business.

Demand variability is not chosen as a core problem because it is not possible or hard to influ-
ence directly, especially when using common Industrial Engineering and Management meth-
ods. The demand forecast is also not considered further since another company department
handles it. Evaluating the forecast quality and changing the procedure is, therefore, outside
of the scope of our project. Nonetheless, we must rely on the forecast as input for the math-
ematical model. Thus, company employees and we need to pay close attention to its quality
when working with the mathematical model.

Our research will focus on the remaining problem: the warehouse worker requirement plan-
ning (WRP) is done manually. This is a crucial problem to solve since it directly influences the
extent to which the overarching company goals are achieved. A sub-optimal scheduling of the
warehouse workforce leads to a capacity-demand mismatch. This mismatch manifests itself
either through over- or understaffing in the warehouse. The first leads to higher than neces-
sary labor costs and decreased productivity per worker, while the latter can result in too high
employee utilization and backlogging of orders. If the workers work at a high utilization level
or, in the worst case, even exceed their limit, high stress levels and dissatisfaction with their
work will follow. Backlogging orders poses a problem because the company cannot deliver all
orders on time or accept new orders since the system is already operating at full capacity.

Furthermore, we will be able to test the validity of our solution more easily if we choose work-
force scheduling as a core problem than with the other options. Comparing the schedules
made by the current planning method to our solution should prove to be a straightforward
task. We expect that improving the requirement planning will lead to less capacity-demand
mismatch and, therefore, improve the performance of flaschenpost in all three main action
problems/operational goals. An overview of the potential core problems can also be found in

Table[A.1] of Appendix[Al

2.1.2 Norm and Reality

According to Heerkens (2017), an "action problem is the discrepancy between norm and real-
ity as perceived by the problem owner". The core problem we have selected for the bachelor
thesis research can be formulated using this terminology as well.

Currently, the reality at flaschenpost is that the WRP for the warehouses is done manually
using heuristics. In addition to this, the main problem is that there is no clear problem for-
mulation. Consequently, it is also unclear what goals should be achieved on a tactical level
and how these are defined and measured. Lastly, the company cannot optimally schedule the
warehouse workforce since heuristics are used.

As a norm, the company wants to ensure that the requirement planning is done systemat-
ically for all warehouses in Germany. This includes a clearly defined problem formulation
and a goal-driven method for the requirement planning that guarantees an optimal solution.
Optimality, in this specific case, is defined as incurring as few tardiness penalties and shift
assignment costs as possible while still fulfilling demand on time.
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2.1.3 Main Research Question

We formulate the following main research question to solve the core problem of the problem
cluster in Figure

"How can the MIP model for the warehouse worker requirement planning of flaschenpost SE
be solved as well as possible while reducing computational time as much as possible?"

We aim to solve the specific requirement planning problem for the company while reducing
costs as much as possible. Additionally, the goal is to contribute to scientific knowledge. In
particular, we give an example of how a MIP can be solved faster by using appropriate algo-
rithms and formulations. The specific application to requirement planning and shift schedul-
ing plays a secondary role since there exists a variety of problems of different domains using
similar formulations. We will provide the answer to this research question in the form of a tool
that satisfactorily solves the given MIP and a report explaining the reasoning, functionalities,
and implications for the company.

2.1.4 Scope of Research

We already mentioned that we will only deal with the warehouses of the company. Next to
that, we need to further define and specify the scope of our research. Due to the limited
time available to finish the bachelor’s thesis, we will focus on solving the already existing for-
mulation of a MIP. Additionally, we will solve the WRP for the warehouse workers separately
from the driver requirement planning. In the future (i.e., after the thesis), we can continue
this project by implementing the driver requirement planning into the results of this thesis.
The resulting optimization problem (for both warehouse workers and drivers) will provide a
robust shift assignment over all scenarios.

For the evaluation, we will compare the requirement plan generated by the proposed MIP
solution to the plans generated by HR. We limit this comparison to the warehouse in Miinster
but can assume that the results will be similar for other locations. We confidently make this
assumption because most flaschenpost warehouses are configured similarly.

2.1.5 Problem-Solving Approach

We will use the Managerial Problem Solving Method (MPSM) as the framework to design our
research and achieve the research aim described earlier. The MPSM was developed at the
University of Twente and is commonly used to solve problems in Industrial Engineering and
Management (Heerkens et al., [2017). In general, the MPSM can be seen as a guide to solving
action problems. Since we intend to solve an action problem, the MPSM is our research’s
most relevant problem-solving approach.

The MPSM consists of the following seven phases:
1. Problem identification
2. Solution planning
3. Problem analysis
4

. Solution generation

o

Solution choice

6. Solution implementation



7. Solution evaluation

This chapter of the report covers the first two phases of the MPSM. The first phase involves
defining the problem to be solved. In the previous sections, we carried out the required ac-
tivities (e.g., making a problem cluster and selecting a core problem). The rest of this chapter
deals with formulating the problem-solving approach. The following section explains how we
intend to address the remaining five phases by relating them to knowledge questions.

2.1.6 Knowledge Problems and Research Design

In the following section, we will explain the structure of the research design by connecting
knowledge problems to the seven phases of the MPSM. This is necessary to have a well-
structured approach to answering the main research question.

We define 9 sub-research questions and discuss whether further research is required as well
as any arising concerns regarding validity and reliability. A summary of the research design
can be found in Table[A2l

1. How is the workforce requirement planning for the warehouse currently done at
flaschenpost?

This first question concerns the third phase of the MPSM. We will conduct informal inter-
views with our company supervisor and possibly other employees to answer this question.
We can provide a detailed description of the current situation using the data from these con-
versations. We have already explored answers to this question in this chapter.

2. How can the performance of the planning procedure be made measurable?

This question also relates to phase three of the MPSM. From talking to the company super-
visor, we already know that one of the main problems of the current situation is that there
is no proper definition of goals. This, in turn, makes it impossible to measure how well the
scheduling is done. Because of this, we first need to formulate specific goals and how to mea-
sure them since the quality of our solution cannot be evaluated otherwise. We will receive
information about the desired KPIs and their operationalization from the company supervi-
sor. This question is answered in chapter 5| by explaining the objective function of the MILP,
which ultimately contains the KPIs we focus on.

3. What algorithms and techniques for solving (mixed) integer linear programming
problems exist?

This question also relates to the fourth phase of the MPSM. The goal here is to determine
which algorithms and techniques have been used to solve similar problems. We conduct a
systematic literature review to determine appropriate ideas. We explore the realm of algo-
rithms and solution techniques in chapters [3|and

4. Which solver has the best performance for the given model?

This question concerns the fourth phase of the MPSM since it evaluates possible alternative
solutions to the problem. We will evaluate which solver yields the lowest computational time
by implementing the model in code and then using different solvers to solve it. After ap-
plying the different techniques to solve the MIP faster, we will repeat this step. During the
experimental phase of our thesis we test different solvers. We therefore provide the respective



results in chapter|[6]

5. What adaptions can we make to the model to make it more realistic or - if needed -
easier to solve?

This question also concerns phase four of the MPSM. One change we need to make to the
model is decreasing the time intervals. This will increase the accuracy of the model but yield
higher computational times. Through experimentation, we will try to reduce the granularity
as much as possible while staying within the time constraints. We discuss possible answers
to this question in chapter|g

6. How does the new planning method influence the chosen KPIs?

This question also relates to phase 5 of the MPSM. In this question, the different solutions
created by the algorithm will be evaluated based on the KPIs defined in question 2. We will
be able to determine how much we improved the situation by comparing the new values of
the KPIs to the old ones.

7. How can the new planning be implemented successfully?

This question is also mostly related to the sixth phase of the MPSM. If our solution to the
problem improves the current situation, the company is interested in implementing it. In
cooperation with the responsible employees from flaschenpost, we will determine how this
can best be done. While it might not be feasible to carry out this step fully due to the time
constraints of the thesis, we will nonetheless give recommendations to the company to ensure
that our work is used correctly. We conclude the paper by answering this question in chapter

Bl

2.2 The Assignment

2.2.1 Warehouse layout and processes

To better understand the environment our assignment is located in, we introduce the layout
of the warehouse as well as its basic processes. Figure[2.2|provides an overview of the layout of
the warehouse. A typical flaschenpost warehouse has a picking area for groceries and FMCG,
highly demanded beverages ("Schnelldreher"), and less-demanded beverages ("A"). In addi-
tion, there are also areas for handling incoming goods and deposits and a high-bay storage
area in which crates of beverages are stored. The picking areas and the parking spaces ("P"),
where the vans are loaded, are divided by a shelving unit. This "boxrange" is portrayed by the
gray vertical rectangle in Figure

In general, we distinguish between two types of workers in the warehouse. The pickers work
on the left side of the boxrange (and the FMCG area). They pick products of incoming orders
from the respective areas, load them into boxes, and eventually finish their picking route by
depositing the completed order in the box range. The picking process, therefore, starts once
demand enters the system and finishes once the picked order enters the boxrange.

The drivers - working on the right side of the boxrange - pick the orders placed on their de-
livery route from the boxrange and load them into their van. Once a driver has picked all
required orders, they start their delivery route. The white arrows in Figure show how the
delivery vans enter and leave the warehouse.
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FIGURE 2.2: Exemplary warehouse layout at flaschenpost

The demand from the different working areas is split into instant and pre-order selling units,
allowing for different tardiness thresholds. Customers place pre-orders in advance and have
them delivered later (e.g., a customer places an order on Monday but wants the products
delivered at 9:00 on Wednesday). Instant orders, in contrast, are placed by customers for im-
mediate processing and delivery. This means an order is placed, and the customer expects
delivery as soon as possible. To fulfill the goal of delivering to the customer within 120 min-
utes after placing their order, the picking process is not allowed to take more than a prede-
fined duration. In our case, we have these hard deadlines and also soft deadlines after which
a penalty is incurred because the delivery will arrive late at the customer.

2.2.2 The Workforce Requirement Planning Model

As mentioned in Section our assignment focuses on the company’s warehouses and
deals with scheduling its workers. This means that we only schedule the pickers, so we ne-
glect the drivers for now. In the remainder of this document, whenever we write warehouse
workers, we therefore only refer to the pickers.

The company has already formulated a mixed integer linear program (MIP) for the WRP. Still,
it has not been fully implemented in code and tried to solve it for realistic instances.

The mathematical model minimizes the overall cost of the generated schedules. The costs
consist of the salary costs incurred for scheduling workers for shifts and the penalty costs
which are generated whenever units are picked late. The optimal solution will presumably
find a trade-off between these since they are inversely proportional: on one hand if enough
workers are hired, units will never be picked late and therefore no penalty costs are incurred,
on the other hand, it might be worth it to pick some units late if this means hiring one worker
less. Based on a demand forecast the model dictates how many workers are hired for each
shift and which orders they pick from each area (i.e., a virtual picking route is generated for



each order).

These decisions need to satisfy several constraints. For example, orders need to be picked
after some amount of time to not violate the promise of delivering within 120 minutes too
much. Additional constraints ensure that workers go to all required areas of the warehouse
and accordingly spend the right amount of time on each of their picking routes. A worker
also can only be hired for one shift each day and can only work actively during his shift which
lasts a predefined amount of hours and includes breaks. Additionally, we add constraints
that allow us to model different productivity curves to portray reality more realistically. For
example, we would expect productivity to first increase at the beginning of a shift and then
gradually decrease towards the end of the shift as a worker becomes more tired. We lastly
enforce that all demand needs to be satisfied by the end of the day.

We aim to implement the model in code and solve it to optimality in a reasonable amount of
calculation time if possible or find a way to generate a heuristic solution. This would mean
sacrificing optimality for a fast calculation time.

To do this, we will tackle the problem on three different levels. First, we try to determine
which solver works best for the given model. There exist different programs to solve MIP and
there might be performance differences between them. Second, we will employ techniques
and algorithms to solve an MIP faster, and lastly, we will consider reformulations to make the
model more realistic if possible or reduce its complexity if necessary. Note that reformulations
might also become necessary to apply the algorithms.

Since the model is relatively large, naively letting a solver solve it, is expected to yield long
computational times with the initial formulation. Additionally, we want to make adaptations
to the model to increase how well it reflects reality. For this, we are especially interested in re-
ducing the time granularity of the model. Therefore, we will research and implement different
algorithms to reduce the runtime while improving how realistically the model portrays the sit-
uation in an exemplary warehouse. In particular, we will use MIP solvers and customize their
algorithms to solve the problem. While the performance of these solvers is generally good,
we can use knowledge about the model to fit our needs better and achieve a faster calcula-
tion time.

2.2.3 Motivation of this thesis
Our goal for this thesis is to advance both scientific and technical knowledge.

From the scientific perspective, we try to contribute to existing knowledge about solving large-
scale (M)IP problems. We apply this insight to a personnel scheduling problem. However, the
algorithms and techniques we propose in this thesis can be used to solve various problems
with different applications but similar formulations.

From a technical perspective, the outcome of this thesis could lead to practical implications
for flaschenpost. Based on the proposed planning, costs can be minimized while keeping
warehouse efficiency high. Our thesis can, therefore, significantly improve the operations at
flaschenpost. These improvements eventually lead to increasing profit and customer satisfac-
tion, thus contributing to the company’s prosperity.

As mentioned earlier, flaschenpost wants to achieve certain overarching operational goals.
To do so, the company examines a specific area due for improvement and then sufficiently
accurately models the problem. Important questions must be answered to achieve this: What
are the (decision) variables? What are the constraints that limit the variables? What is the



objective function? After analyzing the problem, it became evident that linear functions could
describe these factors. The company, therefore, decided to solve the problem using a mixed
integer linear programming (MIP) formulation.

10



3. Related Work

This chapter relates our assignment to existing literature. We give an overview of approaches
to model and solve WRP. Additionally, since these models - like ours - tend to be large, we also
discuss existing methods to solve large-scale MIP.

3.1 Worker Scheduling Problems

Worker scheduling problems — commonly referred to as Personnel Scheduling Problems (PSP)
— are relevant to almost all industrial sectors. Examples include manufacturing processes,
transportation, and emergency services.

The high cost of human resources and the need to make frequent scheduling decisions create
the need for optimal or at least high-quality solutions (Guol 2021). PSP have been studied
extensively in the last decades due to economic motivation: "for many companies, labor is
the major direct cost component" (Van Den Bergh et al., 2013).

PSP can be classified by characteristics like personnel type, shift definitions, and objectives
(Van Den Bergh et al.} [2013). Most PSP deal with scheduling full-time employees or a mix of
full- and part-time employees. A heterogeneous workforce is modeled whenever tasks require
a specific skill, and not all workers possess the skills to carry out all available tasks. Another
differentiation between workers can be made based on their productivity. This criteria is very
similar to grouping workers by their skills. Assigning less skilled or less productive workers to
tasks leads to lower profits or a postponed due date.

In our case, we are dealing with a homogeneous workforce since the company does not have
information about worker productivity that would allow for a distinction between workers
regarding their productivity or skill level. However, these considerations should not be ne-
glected because, in the future, the company might want to expand the model by introducing
a heterogeneous workforce. In particular, the effect on postponed due dates and, thus, in-
creased tardiness is of interest here since it is one of the main KPIs of the warehouse.

Since Dantzig’s initial set-covering formulation (Dantzig,|1954), many studies have focused on
enhancing workforce optimization by considering various factors. Due to the complexity of
generalized set-covering formulations for PSP, MIP-based techniques are frequently used for
modelling (Brusco, |1998). The literature suggests that MIP is indeed one of the most popular
methods to formulate PSP (Van Den Bergh et al., 2013). MIP falls in the category of mathe-
matical programming; other methods of this class include linear programming, dynamic pro-
gramming, and integer (linear) programming. Problem formulations of this class allow the
researcher to add constraints and objective functions that fit their particular requirements.
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3.2 Large-Scale MIP

These problem formulations quickly result in MIP formulations that include numerous vari-
ables. These large-scale models are hard to solve — often to an extent where standard solvers
cannot find optimal solutions in a reasonable amount of time.

Heuristics and exact algorithms exist to calculate a feasible/optimal solution to the MIP (Hong
et al., 2019). While heuristics find good feasible solutions within a limited calculation time,
they do not guarantee finding a globally optimal solution. The solution method chosen de-
pends highly on the requirements of the problem owner.

In practice, researchers are accustomed to solving large-scale MIP by employing decomposi-
tion techniques (Ernst et al., [2004). The general idea is to "divide and conquer": the problem
is split into sub-problems that are easier to solve (Van Den Bergh et al., [2013). While we do
not discuss the details of these techniques further, we briefly mention Bender’s decomposi-
tion (Benders,|1962), Dantzig-Wolfe decomposition (Dantzig & Wolfe, 1960), and Branch-and-
Price algorithms.

Next to the above-mentioned decomposition techniques, we can think about adding strong
valid inequalities (Felici & Gentile} [2004) and designing customized branching rules or tighter
LP bounds (Heimerl & Kolisch, [2009).

In our MIP formulation, all decision variables except for one are time-indexed. Some vari-
ables even have two time indices: one for the time interval when demand enters the system
and one for the interval during which demand is fulfilled. Decreasing the length of the time
intervals (i.e., increasing the number of time intervals) leads to more decision variables and,
thus, a harder-to-solve problem.

Multiple papers tackle this problem of fine time granularity time by combining individual
intervals into time buckets. |[Dash et al.| (2012) presents a time bucket formulation for the trav-
eling salesman problem with time windows (TSPTW). TSPTW aims to find the least expensive
route that visits a set of cities exactly once while ensuring each city is visited within a given
time window. Dash et al.| (2012) presents a reformulation of the classical time-indexed TSPTW
that partitions the time windows into subwindows or "buckets".

Even though we do not deal with a TSPTW or a classical routing problem, the idea of this
time discretization might still be useful to our case. Since demand in our model enters in a
specific interval and needs to be handled before a given time, we can transfer the idea of time
windows to it. The interval in which demand enters the system and the one where it needs
to be handled at the latest can be seen as the release time R and the deadline D, respectively.
We can then start with this initial time window and, using cuts (as explained above), separate
it into smaller subwindows.
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4. Theoretical Background

This chapter serves as a brief introduction to linear and integer programming. We explain the
basic ideas, what makes integer programming special, and methods to solve these types of
models.

4.1 Linear Programming

As explained earlier, the company has decided to model the WRP as a MIP. In general, a pro-
gramming problem is a problem that involves achieving an object while respecting certain
constraints (Metei, [2019). When this objective and restrictions are translated into mathemat-
ical expressions such as equations or inequalities, it becomes a mathematical programming
problem. If these expressions and equations are linear, then they are termed linear program-
ming problems (LP). A linear programming problem essentially focuses on optimizing a linear
objective function while satisfying a set of linear equality and/or inequality constraints. The
general formulation of a linear programming problem is as follows:

maximize c¢lx

subjectto Ax<b
x=0

TABLE 4.1: Standard LP formulation

The Simplex Algorithm is one of the standard algorithms used to solve LP. It usually solves
even large problems efficiently but, in worst-case scenarios, does not always run in polyno-
mial time. Other algorithms, however, have been proven to run in polynomial time, even
in the worst case. Two examples of these are the Ellipsoid Algorithm (Khachiyan, |1979) and
Karmarkar’s algorithm (Karmarkar, 1984).

4.2 Integer Programming

Linear programming problems in which all of the variables are required to be non-negative
integers are called integer linear programming problems - ILP for short (Winston, 1996). In
our case, we are dealing with a mixed integer linear programming problem (MIP). This means
that only some of the variables need to take integer values. In general, we define the standard
integer (linear) programming problem as follows:

13



maximize c¢lx

subjectto Ax<b
x=0
xeZ

TABLE 4.2: Standard ILP formulation

Many important real-world problems of almost all management disciplines and many fields
of engineering can be expressed using (mixed) integer linear programming formulations (Van-
derbei, 2007) and usually deal with the efficient allocation of some resources (Gass & Fu, 2013}
pp 771-783). A few typical examples of applications are:

* Scheduling Problems

¢ Network and Graph Problems

* Knapsack Problems

* Location, Routing and Scheduling Problems (e.g., Travelling Salesman Problem)
¢ Problems with Non-Linear Objective Functions

Multiple methods to solve MIP efficiently exist. The key concept these algorithms use to solve
MIP is the concept of LP relaxation (Winston, 1996} ch. 9). The LP relaxation of a MIP is ob-
tained by omitting all integrality constraints (i.e., the variables no longer need to take only
integer or binary values). Therefore, the LP relaxation is a less constrained - or relaxed -
version of the MIP formulation. Its feasible region contains the feasible region of the cor-
responding MIP (i.e., the feasible region of the MIP is a subset of the feasible region of its
LP relaxation. Figure depicts the feasible region of an IP and of its LP relaxation; these
regions are also called the IP and LP hull, respectively. In the following, we explain how the
Branch-and-Bound and Branch-and-Cut algorithms work.

MIP prove to be much harder to solve than LP problems and they are NP-hard problems in
general (Conforti et al., |2014). This means no generic efficient (polynomial-time) algorithm
exists for solving MIP. However, this does not mean that every MIP is NP-hard, and it is, there-
fore, possible to solve certain instances in polynomial time.

4.2.1 Cutting Planes
We consider the ILP problem (1):

maximize c¢'Xx

subjectto Ax<b
x=0
xeZ

and its linear programming relaxation (2):

maximize c¢'x
subjectto Ax<b
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FIGURE 4.1: IP and LP Hull

Cutting plane methods solve the ILP by solving a sequence of linear programming problems
(Bertsimas & Tsitsiklis, (1997). The method is described in the following:

Algorithm 1 A generic cutting plane algorithm

1. Solve the linear programming relaxation (2). Let x* be an optimal solution.

2. If x* is integer stop; x* is an optimal solution to (1).

3. If x* is not integer, add a linear inequality constraint to (2) that all integer solutions to
(1) satisty, but x* does not; go to Step 1.

The performance of cutting plane methods depends on the choice of the inequality used to
cut x. An example of a cutting plane algorithm are the so-called Gomory cuts.

4.2.2 Branch-and-Bound

Branch-and-bound explores feasible integer solutions. Instead of iterating over the entire fea-
sible set, it uses bounds on the optimal solution to avoid exploring parts of the search tree
that will not yield an optimal solution.
Let F be the set of feasible solutions to the problem:

minimize c’x

subjectto xe€F

Now, we partition F into subsets F}, F», .., Fy. and solve separately each subproblem:
minimize c¢Tx
subjectto x¢€ F;, Vi
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Afterward, we compare the objective values of the subproblems and choose the best one. If
a subproblem proves to be (almost) as hard to solve as the original problem, we split it into
further subproblems. This is called branching and results in a tree of subproblems (see Figure

4.2).

FIGURE 4.2: Branch and Bound Tree

We assume that there exists an efficient algorithm to compute the lower bound b(F;) to the
optimal objective value for each subproblem:

b(F;) <minc’x
xeF;

While the optimal cost to a subproblem might be difficult to obtain exactly, a lower bound
might be much easier to calculate. One of the most popular methods to obtain this lower
bound is the linear programming relaxation.

While carrying out the algorithm, we occasionally solve a subproblem to optimality (or eval-
uate the objective value of a feasible solution). This allows us to establish an upper bound U
on the optimal objective value associated with the best feasible solution encountered so far,
which is called the incumbent.

A Generic Branch-and-Bound Algorithm

At any point, the algorithm keeps a set of active (yet to be solved) subproblems and the ob-
jective value U of the best feasible solution so far in memory. We can initialize U by setting it
equal to oo or some feasible solution if available. A typical stage of the algorithm then looks
as follows:

Algorithm 2 A generic Branch-and-Bound algorithm

1. Select an active subproblem F;.

2. If the subproblem is infeasible, delete it; otherwise compute b(F;) for the corresponding
subproblem.

3. If b(F;) = U, delete the subproblem.

4. If b(F;) > U, either obtain an optimal solution to the subproblem or break it into further
subproblems, which are added to the list of active subproblems.

Three parameters can be changed depending on the specific problem to improve the perfor-
mance of the algorithm:

* There are different ways of choosing an active subproblem
* There are several ways to obtain a lower bound (e.g . LP relaxation)

e There are several branching rules (i.e., ways of breaking a problem into subproblems)
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Solver License Supports
Artelys Knitro | Commercial | (MI)LP, (MI)SOCP, (MI)NLP
Cbc EPL (MI)LP
CPLEX Commercial (MDLP, MDSOCP
GLPK GPL (MI)LP
Gurobi Commercial (MILP, (MI)SOCP
HiGHS MIT (MI)LP, QP
SCIP Apache (MI)LP, (MD)NLP

TABLE 4.3: MIP solvers supported by JuMP

4.2.3 Branch-and-Cut

This method combines the cutting planes algorithm and Branch and Bound. It utilizes cuts
when solving the subproblems created by branching. In particular, the formulation of the
subproblems is improved with additional cuts to improve the bounds obtained by the linear
programming relaxations. This tightens the feasible region of the MIP and reduces the size
of the search tree. The Branch and Cut framework is one of the most commonly used exact
techniques for solving MIP problems (Zhang et al., 2023).

4.3 Software and Solvers

In practical applications, both LP and MIP include many variables and constraints that make
them infeasible to solve by hand. Due to this, professionals in the field use specialized solvers
in their work. The performance of these solvers has increased significantly in the last two
decades (Koch et al.,[2022). These improvements are not only caused by more powerful com-
puters but especially by new calculation techniques and algorithms. Many problems that
could not be solved 20 years ago can now be solved within seconds.

We will implement and solve the mathematical using the programming language Julia. In par-
ticular, we use JuMP to solve our optimization problem. JuMP is a domain-specific modeling
language for mathematical optimization embedded in Julia (Lubin et al.,2023) and supports
mixed integer linear programming. JuMP provides access to more than 40 commercial and
open-source solvers. A few examples of solvers that support MIP are listed in Table

The solvers use different algorithms to solve MIPs. While information about the specific al-
gorithms used for the open-source solvers is easy to find, the commercial solvers keep their
algorithms secret. We want to test the performance of different solvers for two main rea-
sons. First, the solvers might have performance differences for our specific problem due to
the differences in the solving procedure. The second reason is economic: Acquiring the li-
censes for open-source solvers is free, while one has to pay to use the commercial ones. Note
that we obtained free academic licenses for our research for the commercial solver Gurobi,
which the company cannot use since it is for non-commercial use only. We aim to determine
the difference between the solvers’ performances and evaluate whether or not upgrading to a
commercial solver is worth the costs.
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5. Problem Formulation and Solution
Algorithm

5.1 Mathematical Model

This section introduces the mathematical model initially developed by our company supervi-
sor, M. Wolck. All changes we made to the model have been agreed upon with the company
supervisor. We outline the assumptions, variable notation, and decision model for the WRP.
By doing so, we translate the real-world problem described earlier into a formal mathemat-
ical problem description. This model is the starting point for the subsequent analysis and
solution generation.

In the remainder of the section, we describe an MIP for the WRP problem of flaschenpost. The
model aims to minimize the total costs of the shift assignment and the tardiness penalties.

5.1.1 Assumptions

To model the complex business problem we need to make assumptions. These allow us to
simplify reality and translate it into a MIP. The following outlines key assumptions we make,
what they are based on, and how they might be relaxed later on.

1. Time over the day can be discretized into time intervals of predefined length with-
out incurring intractable modeling errors.

The warehouse is operating from 6:00 until 24:00 if required. We start with an interval
length of ten minutes to keep the model as small as possible. The granularity could fur-
ther be reduced, leading to higher computational times. Decreasing the interval length
should be done carefully as the model becomes more realistic but harder to solve. In
practice, users of our solution should closely monitor how far the abstraction yielded
by this assumption strays from the real-life situation as demand patterns might differ
too much from real scenarios if the intervals are too big.

2. All random variables can be approximated by a single scenario without incurring
intractable modeling errors.

We want to use a deterministic point forecast for the demand and for now we also
model the other input parameters as deterministic. To create a stochastic model, we
would need to create a stochastic demand forecast and implement a stochastic opti-
mization model. We can relax this assumption in the future by using, for instance, a
scenario decomposition approach or stochastic branch-and-bound. This assumption
will not influence the quality of our output much. So far the company has used the
given type of forecast and fared well with it.
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3. Customer demand can be split into selling units coming from different working
areas.

Incoming demand consists of individual selling units (i.e., products) that need to be
picked from different working areas. Recall that a typical flaschenpost warehouse has
an area for groceries and FMCG, highly-demanded beverages, and less-demanded bev-
erages. This assumption is reasonable for most retail applications. However, remember
that we assume that this splitting is deterministic. This assumption is realistic since the
company already differentiates between these types of incoming demand. In the fu-
ture, analysis of the share of each might reveal a distribution. The values can then be
adjusted.

4. We can approximate worker productivity for the different working areas.

As mentioned above, we assume that productivity is deterministic. We can correct pro-
ductivity by multiplying it by the worker’s dropout probability (i.e., the probability that
the worker does not appear to his shift). The company does not collect data on the
productivity of individual workers and thus we need to make this assumption.

5. Worker productivity can either be implemented by modeling rates or by modeling
routes of a fixed length.

When we approximate working via rates, then selling units are handled (e.g., picked)
continuously. When we approximate picking via routes, selling units are handled in
batches. In the latter approach, they are only fulfilled (e.g., put into the boxrange)
when the route is finished. While routes are more realistic, they are more challenging
to model and require more computational timel8. Each working area may use either
approach.

6. All demand has to be fulfilled at the end of the workday.

This assumption ensures that we do not have leftover demand at the end of the day.
This includes leftover picking demand, incoming goods, and deposits. This assumption
does not influence the quality of the solution. Instant demand should always be fulfilled
the latest by the end of the day because of the promise to deliver within 120 minutes
and pre-order demand can be injected into our system at a time that allows for it to be
picked respecting the tardiness thresholds.

7. There is no unfulfilled demand at the beginning of the workday:.

This assumption ensures that there is no unfulfilled demand at the beginning of the
day. We can relax this assumption and start the day with outstanding demand.

8. We can fix a subset of the worker shifts so that the optimization cannot change
them.

This assumption ensures that we can fix shifts that are already booked by workers. This
is necessary since the company allows the workers to select shifts up to one month in
advance using a rolling horizon approach.
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5.1.2 Notation

Symbol Description

4 set of warehouse workers i € #

& set of shifts r €.

g set of time intervals t € 9 of length A, ie., 9 ={1,2,..,T—-1,T}

3—(;’ set of time intervals T(;j =7 \{1,2,..,(My —3),(Myp - 2)}

3/—(; set of time intervals T(; =T \{T-WMp+1),T-Mp+1)+1,.T-1,T}

P set of working areas ¢ € ®

0y working mode switching area

9 set of customer demand for every time interval

dén instant demand for area ¢ that enters the system at the beginning of time
interval t

d(’; ; pre-order demand for area ¢ that enters the system at the beginning of
time interval t

s shift s is active at s = (sp, 51,.., s7) € {0, 1} T*!

Psi¢ worker productivity for shift s at p = (po, p1,...,p1) € IRL{Jrl (measured in
selling units picked up during the time interval)

Py effective shift length, i.e., number of intervals the shift is active minus the
number of intervals a worker has to take a break

Q mode switching duration, measured in number of intervals the shift is ac-
tive minus the number of intervals a worker has to take a break

Cs cost ¢s € R, of shift s

0y maximum allowed tardiness 6y € N, for selling units of area ¢

H("p tardiness occurs if instant selling units are not picked after 1'[("/) e N; time
intervals

H(’Z tardiness occurs if pre-order selling units are not picked after pr €N time
intervals

L tardiness penalty m € R, per selling unit per time interval

My length of a picking route measured in time intervals My € N,

P(s, 1) probability P(s,7) € [0,1] that worker i does not appear to shift s

TABLE 5.1: Notation of parameters

Decision Description

x‘; ; decision on worker shift assignment xgl. e{o, 1}

x; decision on when the worker is actively working (which is only possible
while on shift) xl.“; €{0,1}

xlp o decision on worker picking area assignment xf ot €{0,1}

x;, bt decision on when picking route is finished x; ot € {0,1}

xlf’d)t decision on amount of selling units on a picking route xl?’(p LENL

xl”(p’ . decision on amount of instant order selling units on a picking route

x;)(’/)’; decision on amount of pre-order order selling units on a picking route

x:;t’ y decision on how many instant order selling units from ¢ that entered at #’
are fulfilled during ¢

x;’z, decision on how many pre-order order selling units from ¢ that entered at

t' are fulfilled during ¢
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u,i

Xt decision on how many instant selling units that entered the system at the
beginning of ¢’ are still in the system at the end of ¢
xZ't’[;, decision on how many pre-order selling units that entered the system at

the beginning of ¢’ are still in the system at the end of ¢

TABLE 5.2: Notation of decision variables

5.1.3 Decision Model

In the warehouse |#'| workers are assigned to shifts s € % to fulfill a demand forecast 2. The
currently available data allows us to model a homogeneous workforce with a performance
curve for each shift that reflects that a worker’s performance decreases over time (workers
may have different performance curves for different working areas). Workers’ performance is
measured as the expected number of selling units a worker can handle during the respective
time interval. The model decides how many workers are hired for a shift and thus during
which intervals they work actively. Throughout the day workers are assigned to routes to
fulfill demand in the different working areas. The model also decides how many selling units
of each type (pre-order and instant) are picked on a single route.

To simplify the notation, we denote all decision variables by x and highlight their meaning in
the superscript. We differentiate between instant and pre-order selling units by writing i or p
at the last position in the superscript. We index decision variables in the subscript. Time is
indexed by ¢. The time index ¢ is always put at the end of the subscript. All sets are in italics.
Penalties are denoted by . We denote the indicator function by 1.

Demand always enters the system at the beginning of a time interval. Demand is always
fulfilled during a time interval. Tardiness is measured at the end of a time interval.
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The objective function computes the sum of shift costs and tardiness penalties for pre- and

instant orders. The duration until tardiness arises may differ for pre- and instant orders.



Constraint (1) ensures that a worker is only assigned one shift at most. Variable x;; equals
one if worker i is assigned shift s and zero otherwise. Constraint (2) ensures that a worker
only works during his shift. Variable x;; equals one if worker i is working at time interval ¢
and zero otherwise. Constraint (3) ensures that a worker assigned to shift s can work at most
P, time intervals.

Constraint (4) ensures that we assign a worker only to one area at a time. Variable xl’.? o equals
one if worker i is working in area ¢ at time interval ¢ and zero otherwise.

Constraint (5) ensures that switching to a different working area takes Q time intervals during
which the worker may not handle any selling units.

Constraint (6) ensures that routes for each working area ¢ take at least My time intervals
until they are finished (and that we assign the worker to the working area for the complete
duration). Variable xlf o equals one if worker i finishes a route in area ¢ at the end of time
interval ¢t. Constraint (7) ensures that we assign a worker to one route at a time. Note that
worker i can finish a route in area ¢ only every M time intervals.

Constraint (8) ensures that selling units can only be fulfilled at the end of a picking route.
Variable xlf’ : is the amount of selling units on the respective route. Constraint (9) ensures
that the worker’s productivity limit is not violated (i.e., the amount of selling units he can
handle during each time interval).

Constraint (10) splits the selling units collected in a route into instant and pre-order selling
units. Constraints (11) and (12) map the selling units collected on the respective routes to
demand that entered the system at previous time intervals and ensure that the demand enters
the system before the worker starts the route.

Constraints (13) and (14) inject instant and pre-order demand into the model, respectively.

Constraints (15) and (16) consider instant and pre-order selling units that entered the sys-
tem at ¢/, respectively. Unhandled demand is either carried over to the next time interval or
handled.

Constraints (17) and (18) ensure that all demand is fulfilled before the maximum allowed tar-
diness or by the end of the day.

The remaining constraints limit the domain of the decision variables.

5.1.4 Model Progress Overview

So far flaschenpost has only formulated the model and coded a starting version. We adjusted
and expanded upon this initial code incorporating all constraints properly, fixing the index-
ing, and making the model work for values of A smaller than 10 minutes.

As can be seen above, the model uses a large number of constraints and decision variables.
Especially the constraints dealing with the shift, area, and route assignment of the workers
and deciding when selling units should be picked are prone to increase in number. These
constraints are formulated for sets of time intervals 977 and ¢e or combinations of them
(using double-time indexed variables). Reducing the interval length A therefore leads to an
even larger amount of constraints and thus decisions that need to be made. We expect most
of the model’s complexity to come from this.
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5.2 Algorithm

5.2.1 Reformulations

We must reformulate parts of the mathematical model to use the time bucket formulation
and solve the MIP faster. In the following, we describe in detail all of the changes made and
the implementation of a customized Branch-and-Cut algorithm.

Symmetry of the Solution

In our MIP model, all workers have the same performance curve, and the associated costs
of hiring workers are the same for each one. Therefore, the modeled workforce is homo-
geneous. This characteristic of the warehouse workforce creates significant symmetry in the
context of our problem. Symmetry can lead to multiple equivalent solutions, which might sig-
nificantly increase the computational complexity - especially when using Branch-and-Bound
or Branch-and-Cut algorithms (Margot, 2009). This issue is especially pressing for us since
we aim to solve the MIP using a Branch-and-Cut algorithm. The following example illustrates
the problem with symmetry:

Let x be a solution to the MIP in which we require three workers to fulfill demand and, for
simplicity, assume that there is only one shift. The productivity of all workers i € # is the
same. Since the salary costs per shift do not differ from each other either, the following solu-
tions are equivalent (i.e., they lead to the same objective function value):

1. xil =1, all other 0
2. xf,z =1, all other 0
3. xfs =1, all other 0

Recall that x] ; = 1, means that worker i is assigned to shift s. The gravity of this problem in-
creases with the number of required workers and shifts and is additionally amplified for time-
indexed variables. We introduce the following symmetry-breaking constraints to the model to
mitigate this negative effect:

DXz Xy LEW,JEW: (5.1)
seS e i<j

These constraints prioritize workers with smaller indices by ensuring that the sum of the shift
assignment variables for a worker with a smaller index is at least as large as that for any worker
with a larger index. We effectively reduce the number of equivalent solutions that only differ
by a permutation of the workers, improving the solving process’s calculation time.

New Demand Injection and Propagation Constraints

To be able to use the Time Bucket Formulation (TBF), we rewrite the demand injection and
propagation constraints for instant and pre-orders (13, 15 and 14, 16), respectively:

Z Xy  VPE® I ET €T (5.2)

) = T
¢tt ('b =t [’+M¢—1$l’
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(ptt ¢t Z prie (P U'+My—1<t

The new constraints ensure that the number of selling units left to pick at the end of period
t, which entered the system at the beginning of period ¢/, is equal to the demand dy (i.e.,
demand from period t’) minus all selling units that have been picked in the previous intervals.
These new constraints now manage how demand is handled and carried over to the next
period. By combining two constraints of the old formulation into one, we expect to be able
to apply our customized cutting planes more effectively.

Demand Matching Constraints for TBF

Using the new demand injection and propagation constraints [5.2] and [5.3} the number of
picked selling units only has a lower bound (with the old constraints, the amount of picked
selling units had to equal the amount that entered the system exactly). The practical im-
plication is that it becomes possible to pick more selling units than the total daily demand
requires. This happens when the already hired workforce has the capacity to pick additional
selling units without needing to hire additional workers, thereby incurring no extra costs. We
provide an example to clarify the issue:

Assume we divide the day into three time intervals, the picking route length My for area ¢
equals one, and instant order demand entering the system at the beginning of interval three
equals one. Using the new demand injection and propagation constraints leads to the follow-
ing constraint:

u i v,i
Xp33Z 1= Xp3s (5.4)

And since all demand must be satisfied by the end of the day, the terminal condition is:

¢> 3 3=0 (5.5)

Combining equations 5.4] and [5.5]yields the following expression:

Pt

Xphz21 (5.6)
From equation 5.6} it is now reasonably straightforward to see that cost-wise, it does not make
a difference what value x(p takes (i.e., how many selling units that entered the system at
the beginning of ¢ = 3 are plcked during interval three) as long as it is between one and the
productivity of the workforce already active during interval three.

To fix this issue, we introduce the following "demand matching" constraints, which ensure we
pick the exact amount of selling units required.

min{r+6yp, T}

Y xpp=dy, Ve, leT (5.7)
l’:tl+M¢ 1

min{s+0y, T}

Y. Xyh=dp, Vedled (5.8)
t:t/+M¢ 1
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5.2.2 Implementation Strategy

This section briefly explains our strategy of implementing customized cutting planes into the
solver’s solving process.

User cuts are added by the user, usually to tighten the LP relaxation or separate a search tree
node into subproblems. This type of cut must not exclude any otherwise integer-feasible so-
lutions from solution space because it is not part of the model’s initial formulation. Adding
a user cut reduces the LP solution space and thus the difference between the LP and IP hull
(recall these two ideas from chapter [4). Therefore, we only add these cuts to help potentially
solve the model faster, but they are never required for the model’s logical correctness.

In our case, we have to generate many constraints to model the problem correctly. At the
optimal solution, we expect many of them to be redundant or non-binding. We, therefore,
remove them from the initial formulation and iteratively add these constraints to the model
only when they are violated. It is necessary to do this until no violated constraint is left to
be added to the model since these constraints are part of the original problem and, therefore,
are required for the model to be correct. In contrast to user cuts, lazy constraints can cut off
integer-feasible solutions.

5.3 Customized Branch-and-Cut Algorithm

In the following section, we explain the logic of our customized branch-and-cut algorithm.
Note that we give examples only using the constraints and variables for instant order demand;
the same applies to pre-order demand.

Recall the demand injection and propagation constraints we introduced in section

t
u,i i v,i !
X, =d, ., — E X Vped,teT,t'eT : (5.9)
(Ptt (Pt =t ¢t ¢ t’+M¢—IS[

We initialize the model only with constraints for variables xg'tit, on the left-hand side for which

t = min{z + 60y, T}. All other x(’;’tit, do not have a lower bound (except being non-negative).
This, combined with the fact that assigning a positive value to these variables might result in
tardiness costs, leads the optimization to set all other of these variables equal to zero. This,
however, is not a feasible solution because even if selling units are picked at a time such that
tardiness occurs, this is not represented in the value of the variables x:b"tit, and thus distorts the
optimal value of the objective function ultimately leading to a non-optimal shift schedule.

To correct this and maintain the advantage of not generating all constraints from the start,
we add additional constraints in the form of equation whenever required. A constraint
becomes required when the current feasible solution becomes infeasible after adding that

constraint.

The procedure of our customized algorithm is shown in Figure
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FIGURE 5.1: Flowchart of our Customized BaC Algorithm
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6. Numerical Experiments

6.1 Problem Instances

For our experiments, we look at a typical flaschenpost warehouse. We need to introduce dif-
ferent problem instances to make our experiments realistic and at the same time test the
validity of our solution approaches.

6.1.1 Warehouse Setup

For simplicity, we model a warehouse with two picking areas and an unlimited workforce.
66% of the total daily demand come from area one while the rest comes from the second
area. These areas could for example be the areas for FMCG and highly demanded beverages
as shown in Figure

6.1.2 Demand

The website of flaschenpost accepts orders from Monday to Saturday from 8:00 until 20:00.
This means that new orders instant orders can enter the system at any point in this period.
Pre-orders are also placed through the website but are not meant for direct processing and
can be picked later (up to two days). We model the warehouse to be open from 7:00 until
24:00. This way we ensure that (i) there is always enough time at the end of the day to pick
all remaining demand, and (ii) that pre-orders placed on previous days can be picked before
new instant orders enter the system. This means that pre-order demand can be in the system
from 7:00 onwards while instant demand only enters after 8:00.

The company identified two demand patterns from previous research about incoming de-
mand. On weekdays, the number of incoming orders peaks around 11:00 and 18:00 while on
Saturdays the orders are mostly equally distributed over the day. The total daily demand for
our experiments is 2000 selling units which are split equally among instant- and pre-orders.

Figure shows these two patterns for A =5 and 66% (i.e., area 1) of total demand. The
instant order demand curve looks the same for all cases except that all demand before 8:00
(t =13 if A =5) is set to zero (see Figure[B.I). The shares of selling units per area have been
agreed upon and deemed realistic enough by our company supervisor. However, if this opin-
ion changes based on data collected in the future, these values can easily be adjusted to gen-
erate a new solution.

Figures for less overall demand (33%) can be found in Figure Similarly we generate the
demand curves for A = 10.
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FIGURE 6.1: Pre-order demand patterns for A =5 and 66% of total demand

6.2 Experimental Setup

We solve the model both using our branch-and-cut algorithm and without. The algorithms
are written in Julia 1.10.3 (Bezanson et al., 2017) while we construct our model with JuMP
(Lubin et al., 2023) and solve it using Gurobi 11.0.1, SCIP, and GLPK. All computational results
are obtained on a mobile workstation with an INTEL ® 2.60GHz processor running Windows
11 and 16.0 GB of RAM.

Carrying out the initial set of experiments, we quickly notice that the model’s calculation time
is too high. We therefore relax the model to solve it faster. We need to carefully balance the
benefits of decreasing the calculation time and the drawbacks of further abstracting reality.
In total, we conduct the following set of experiments:

* Initial performance testing: comparison of the fully specified model with and without
customized BaC algorithm

¢ Performance for double time-indexed variable model: in this specification of the model
we look at the part of the model that deals with the decision of when selling units are
picked. Here we are mainly left with constraints using double time indices, for which
we expect our customized BaC algorithm to perform best if we increase the time gran-
ularity (i.e., decrease A).

¢ Decomposition approach: we remove the shifts from the problem and solve the WRP for
each warehouse area individually. We additionally use a heuristic to generate schedules
from this simplified version of the original model.
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7. Empirical Results

7.1 Initial Performance Testing

We start our experiments by testing the fully specified model without cuts. The results are
supposed to serve as a benchmark for further experimentation. We use Gurobi as the solver
for now since we expect it to perform best. For the remainder of this chapter, we measure the
solutions’ performance by the calculation time (i.e., how many seconds the solver needs to
find the optimal solution) and the MIP gap (i.e., the relative gap between the upper and lower
bound of the objective value) in case the solver does not find the optimal solution after one
hour. The MIP gap is defined as MIPgap = (UB—LB)/UB.

Throughout the initial tests, it quickly becomes evident that the fully specified model is hard
for all the solver - even for bigger values of the interval length A. We also notice that the prob-
lem formulation using our customized Branch-and-Cut logic yields a much worse MIP gap
and calculation time. This is no surprise since - as mentioned above - we expect the cuts to
work better for models with finer time granularity. At the same time, this also indicates that
the shift and area assignment, even though not using double time-indexed time variables,
contributes significantly more to the model’s complexity than expected. The solver needs to
evaluate these constraints again after we add a cut, possibly changing the picking schedule.
Since we do this many times to save the generation of as many demand injection and propa-
gation constraints as possible, the solution’s performance using our customized cuts is much
WOTSE.

After letting the solver run for eight hours, the best bounds for the objective value of the
problem instance where A =5 are 393 and 208 for the upper and lower bounds respectively.
This means that we are still left with a MIP gap of approximately 47%. Clearly the problem
using an interval length this small, is much harder to solve than we anticipated.

Table [7.1]shows the MIP gap achieved after 60 minutes (if the MIP gap is zero, an optimal so-
lution has been found before the time limit was reached) for different problem instances, and
both the original formulation and the one using lazy constraints. Figure shows how the
MIP gap progresses over time. Since the problem seems too hard for now, we decide to relax
it by removing and adjusting some constraints. We do this step-wise until we find a problem
specification that can be solved in a reasonable amount of time while ideally still portraying
reality well enough. For the performance of this smaller model, the tradeoff between time
spent in the callback function and solving a more complex model will be essential to the cal-
culation time.
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Original Custom BaC
A Relative Gap | Relative Gap

60 0.0% 11.0%
45 12.5% 16.1%
30 15.8% 23.3%
15 28.6% 39.4%

TABLE 7.1: Computational Results of the Fully Specified Model after 60 Minutes
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FIGURE 7.1: MIP Gap Progression

7.2 Performance for Time-Indexed Variable Model

For the cases described above, the model already only uses picking rates (My = 1), which
we expected to be computationally less expensive than routes. Nonetheless, we already have
noticed that the model is still too hard, so we need to make use of further simplifications.

First, notice that if My = 1, then the variable x/ o is not needed anymore since it will always
p

have the same value as Xig: Thus, for these formulations, we can remove constraints (5) to (7)
and reformulate constraint (8): xlf’d) [ =SM xf ot Next, we also reduce the mode switch time Q to
zero, which means that constraint (5) also becomes irrelevant. Unfortunately, none of these
changes reduce the calculation time by much. This means that the route and shift assignment

are more complex than expected—even for small instances and using picking rates.

Finally, the problem is easily solved if it is reduced to only the decision model, which decides
when and where selling units are picked (i.e., removing constraints (2)—(8)). In the following
section, we use this problem specification to focus on analyzing the performance of the cuts
because the calculation time is reasonably short to conduct further experiments, and the cuts
only affect the remaining constraints in the model.

7.2.1 Finding the Right Amount of Cuts

As explained above, the trade-off between saving the generation of constraints at the outset
and the time spent in the callback function is crucial to the performance of our lazy con-
straints. We do not want to add too many constraints at once since this might drastically
increase the complexity and, thus, the calculation time of the model. Therefore, we must find
the right number of cuts to add to the problem simultaneously. Lazy constraints can be added
to the problem whenever the solver finds a feasible fractional or integer solution. Our callback
function is called and returns the n most violated constraints, which are subsequently added
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to the model.

As mentioned above, we use the completely

1600 relaxed model since we can focus on the ef-
1400 fect of the cuts on the constraints using dou-
1200 ble time-indexed variables and reduce the
§ 1000 interval time A to 5 minutes. We test the per-
% 800 formance for adding up to 1, 5, 10, 25, and
3 o 50 constraints at a time. The results are pre-
R sented in Figure We can see that, on av-
200 erage, adding up to 25 cuts to the model is
0 the most effective to solve the MIP fast.

0 10 2 20 a0 50
Humberotuts The calculation time is also significantly
different from the calculation time of the
model without our customized Branch-and-
Cut logic. While for A =5 and adding up to
25 cuts at once, the average calculation time
is 472 seconds, it takes Gurobi an average of 1048.35 seconds to find the optimal solution
without using our Branch-and-Cut logic. This means that for this instance the calculation

time can be decreased by approximately 55%.

FIGURE 7.2: Average calculation time
in for different numbers of cuts

7.3 Removing the Shifts

As mentioned above and shown by the preceding experiments, shift scheduling seems to con-
tribute significantly to the complexity of the model. We therefore remove all variables and
constraints associated with the shift scheduling from the original model and change the ob-
jective function to the following:

=11 =11
. w u,i u,p
min Yo xr+ Y | ) X+ > X, (7.1)
teg ieW teTA\ t'=0 t'=0

The objective function still minimizes the tardiness costs but now minimizes the sum of in-
tervals in which workers actively work instead of the costs incurred for assigning shifts to
workers.

7.3.1 Decomposition Approach

With this new formulation, workers will not switch between the areas since this would mean
spending intervals on changing the area in which no selling units can be picked. As a re-
sult of this, the optimal solution for this new version of the problem will never have a worker
switch areas. By omitting the shift scheduling and only hiring workers for the intervals they
are needed, we can afford to hire as many workers as required since the ratio of active inter-
vals and intervals they are hired for is always 1:1.
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With the original version, a worker needs to be hired and paid for a whole shift and might
switch areas during the shift. Switching areas takes time and thus reduces the ratio of active
intervals and intervals the worker is hired for. Thus it is cheaper to have one worker pick
selling units from different areas instead of hiring a new one (if their capacity allows for it) to
maximize the active intervals during a shift (i.e., value/picked units per shift).

Finally, this means we can now decompose the problem into subproblems for the individual
areas and solve them separately since there will no longer be any interactions between the
areas and their assigned workers.

We expect to get faster and better results even for harder problem instances. However, we
also expect to sacrifice optimality in dealing with this simplified model. The changed model
can be found in Appendix [B]

We use the output of this simplified version as input to an IP to map shifts to requirements
per time interval t.

7.3.2 Shift Scheduling

The solution of the decomposed subproblems, that is how many workers are required in each
interval, can be used to create a shift schedule. We model a problem in which shifts take
either 6 or 9 hours. A worker can start a shift between 7:00 and the last hour which allows
them to finish their shift before 24:00. This means that the latest a 6 (9) hour shift can start
is at 18:00 (15:00). The following shows the IP we use to generate the heuristic shift schedule.
We show the model for the formulation where A = 5.

Variables and Parameters

Variable Description

S set of shift lengths se€ . ={6,9}

g set of all time intervals t € T ={1,2,..,204, 205}

T set of time intervals in which a shift of length s can start; i.e., t € 9 =

{1,2,..,204 — 125,205 - 125}

dy required amount of active workers d in interval ¢

Xts decision on how many s € . hour shifts start at the beginning of interval
te{Z+|1 =t=<205}

TABLE 7.2: Notation of decision variables

Decision Model

min > Y sxg
x SES teT,
t t
S.t. Z Xret Z Xt,9 Edt Vteg 1)
t'=max(1,t-72) t'=max(1,t—-108)
Xis €74 Vted ,se & (2)
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The objective function computes the sum of shift costs and tardiness penalties for pre- and
instant orders. The duration until tardiness arises may differ for pre- and instant orders

Constraint (1) ensures that we fulfil the "demand" of workers in each interval by either hiring
for a six or nine hour shift.

Figure shows the solution strategy using the decomposition approach. Using Gurobi the
individual MIP for weekdays and each area can all be solved in under 120 seconds and the IP
described in is solved instantaneously for all instances. The overall time to generate a
schedule for a given day is thus much less than 5 minutes.

Start 4!

Start solving
decomposed
MIP

Keep solving
| ':VIIP . No

Is MIP gap
<1%

Is calculation time

Yes

Generate
total worker
requirement
per interval

l

Solve MIP to
schedule
shifts

. ] =

FIGURE 7.3: Solution strategy using decomposed model

-« Yes.

We modified our code so it can tell us at which interval and how many shifts of each length
need to start. Additionally, we generate a plot that shows the requirement per interval which
is generated by the approach explained in Section[7.3.1]and the shift schedule (i.e., how many
workers are working in the warehouse). This output is generated for weekdays and for Satur-
days based on the demand patterns explained previously. Figures and [7.4b| show this for
weekdays and Saturdays respectively. For our problem instances, we use seven six-hour shifts
on the weekdays as well as two six-hour shifts and two nine-hour shifts each on Saturdays.
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shift length (h) | nr of shifts | start interval

6 3 6
1 70
1 79
2 86

TABLE 7.4: Shifts on Weekdays

shift length (h) | nr of shifts | start interval
6 1 5

1 87
9 1 5

1 51

TABLE 7.5: Shifts on Saturdays

The scheduled shifts as well as their start times (in intervals) can be found in Tables and
respectively.

In the case of weekdays, we schedule seven six-hour shifts. After subtracting the time for
breaks from these, this yields an objective function value of 492. This means that in the worst
case (taking the bounds obtained in section 7.1) the heuristic solution yields an objective
value more than twice as high (approximately 135% worse) as with the original formulation.
In the best case, our solution is still 25% worse than the upper bound of the optimal solution.
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FIGURE 7.4: Worker requirement per interval and scheduled shifts. The bars show
how many workers (y-axis) are required for each interval t from 1 to 205 (x-axis). The
orange line shows how many workers are actually working according to the IP that
schedules the shifts.
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8. Conclusions and Recommendations

This chapter summarizes our research by giving recommendations and explaining opportu-
nities for further research. Additionally, we answer our main and sub-research questions and
discuss the results of the experiments. We examine the results in regards to their quality, reli-
ability, and scientific and practical relevance.

8.1 Conclusions

We started our research with the research question: "How can the MIP model for the ware-
house worker requirement planning of flaschenpost SE be solved optimally while reducing com-
putational time as much as possible?" The goal was to find out whether and, if yes, to what
extent we can solve the MIP model and how this could potentially influence the scheduling
in the warehouses. To determine the answer to this question we will answer the sub-research
question in this section.

1: How is the requirement planning for the warehouse currently done at flaschenpost?

In the introduction of this paper, we outline in detail how the operations in the warehouse
work and how the planning is done accordingly. We model a homogeneous workforce and
a working day from 7:00 until 24:00. The workforce is currently scheduled using a heuristic
approach. This means that there is no method implemented yet that guarantees an optimal
schedule.

2: How can the performance of the panning procedure be made measurable?

According to the formulation of the MIP, we use tardiness penalties and salary costs as the
main KPIs. We are interested in how the new model, which, given the right assumptions and
input data, yields an optimal solution, compares to the workforce schedules generated thus
far. Next to these economic KPIs we also analyze the solution on a technical level. Here we
especially examine the calculation time of MIP. For our given problem instances we wanted
the calculation time to stay well under one hour. This is because we conducted our experi-
ments for relatively small instances (so a larger instance would take even more time) and the
MIP needs to be calculated daily in order to generate the tactical working schedules.

3: What algorithms and techniques for solving (mixed) integer linear programming prob-
lems exist?

We identified cutting planes and Branch-and-Bound algorithms as the most common and
basic methods to solve MIP problems and their LP relaxations. All of the solvers we exam-
ined for this research combine these methods into a Branch-and-Cut framework. After hav-
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ing identified this, we set out to customize the solver’s branching or cutting rules to leverage
information about the model that is not obvious to the solver.

4: Which solver has the best performance for the given model?

Unfortunately, none of the solvers could solve the fully specified model using the techniques
we suggested. For the relaxed models, however, we identify Gurobi as the by far superior
solver given the calculation time.

5: What adaptions can we make to the model to make it more realistic or - if needed - easier
to solve?

We decrease the interval length A to make the model more realistic. This allows for a more
accurate demand forecast as input. However, the experiments have shown that small values of
A greatly increase the model’s complexity. Additionally, even modeling the problem with rates
instead of routes does not sufficiently decrease computation time. For further research, we
need to either make additional adjustments to the model’s formulation or implement more
techniques to solve the current version faster.

For the time being, we suggest using the shift scheduling heuristic we describe in Section
Shift plans quickly be generated using this solution strategy and the company can com-
pare the output to the currently generated schedules to decide whether or not the solution we
propose provides sufficient advantages to pursue the ideas we explain in this thesis further.

6: How can the new planning be implemented successfully?

To implement the new planning method, further research on how the MIP can be solved
faster is required. We answer this question as well as question 5 in more detail in section
8.2]

8.2 Further Research and Recommendations

At this point in the research, we cannot yet give recommendations with implications for the
actual operations. We, therefore, focus on recommendations regarding the planning and
modeling side of the problem.

While we have proven that the picking part of the MIP for the requirement scheduling can be
solved faster by applying cuts to the demand constraints, our work opens up future research
possibilities. This section briefly explains what can be done in the future to build on the work
of this thesis.

8.2.1 Reflection of the Thesis

Before we give any recommendations, we briefly want to reflect on the work done. In con-
ducting our research, several challenges and limitations became evident. The given MIP
model proved to be harder to solve than expected and we made a mistake in implement-
ing a constraint which required us to revise the work done up to that point. Although time
seemed abundant in the beginning, it quickly became clear that in order to implement the full
algorithm we decided on during the literature research required in-depth knowledge of linear
(integer) programming and several other mathematical concepts. Due to this, we could not
implement the time bucket formulation fully and therefore only touched upon its potential.
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Nonetheless, we created a working code which generates a simplified solution for the given
model and should provide a good starting point for further research.

8.2.2 Changes to the Model and Code

Since we were focusing on improving the model’s performance by cuts, including the double
time-indexed variables, we have not yet had time to implement other ideas for improvement.
The following briefly outlines areas of interest.

More Cuts

We have shown that introducing our customized branch-and-cut logic can reduce the com-
plexity of the model caused by double time-indexed variables. However, in the given model,
this is not enough to reduce the calculation time to an acceptable amount.

Introducing similar cuts to other constraints of the model - especially the shift and area as-
signment - might lead to further improvements. However, these constraints must be designed
differently since they are not suitable for time discretization in the same way as the demand
injection and propagation constraints. If this proves unsuccessful at reducing the calculation
time, a reformulation of the model might be worth considering.

Implementing a Proper Time Bucket Formulation

Dash et al.| (2012) introduce a lot of techniques to solve time-indexed MIP. From all these
ideas we have only used the idea of implementing time-windows for our given MIP. Through-
out experimentation, it became evident that this idea already helps solve parts of our model
faster.

Due to our experimental results, the results presented by Dash et al.[(2012), and our company
supervisor’s experience with the techniques explained in that paper, the company should try
to implement all of the ideas presented. Doing so will likely yield even greater results in de-
creasing the computational time. We have decided to not pursue this solution strategy further
in this paper due to the time constraints.

Heuristics

One of the main issues stopping the model with cuts from being solved faster is that the solver
takes a long time to find a feasible solution. The reason for this is, that our algorithm keeps
adding cuts such that the solutions found so far become infeasible. The problem with this
is that a feasible solution (incumbent) would deal as an upper bound and thus cut off a lot
of nodes of the search tree with an objective value higher than that of the incumbent. If this
problem persists even after implementing all of the ideas presented by [Dash et al.| (2012),
introducing another customized heuristic might prove useful.

It might be worth including a heuristic at different points of the solving process—especially
when no feasible solution has been found so far. Sticking to our Branch-and-Cut logic, this
heuristic would need to retrieve the (fractional) values of the LP relaxation and use them to
construct a feasible solution. The basic idea and sequence of this heuristic could look like
this:
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Algorithm 3 Heuristic to Generate a Feasible Solution

u,i
o,
2. Construct a feasible route for selling units from interval ¢ that are picked in interval ¢/

and area ¢.
3. Make sure to assign active (x;",) workers to the required areas (x
4. Schedule shifts according to when workforce is required.

1. Set the unpicked values x’, , and xf;; » equal according to when they are picked.

P
i)

While this is a very simple idea to construct any feasible solution, it might already help the
solver a lot if called early in the solving process. Of course, a more sophisticated heuristic can
be implemented and provide tighter bounds and thus a shorter calculation time.

8.2.3 Data Analysis

This thesis’s main focus is applying a customized Branch-and-Cut algorithm to solve a MILP,
and we thus neglected to make the input data as realistic as possible. For our experiments, we
created dummy data roughly representing a flaschenpost warehouse. To gain a more sophis-
ticated and accurate result, we should analyze the relevant data to increase the realisticity of
the model.

The demand forecast is important to a good solution since it directly dictates how much work-
force is needed at a given time. Careful data analysis should be applied to guarantee an accu-
rate forecast.

Another important factor is the productivity functions, which determine how many selling
units can be picked in a certain time. This can be more accurately determined by analyzing
the performance data of warehouse workers. Special attention should be paid to changes over
time and differences per area and worker.
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A. Appendix A

A.1 Problem Identification

Problem

Influencable?

In the scope?

Comments

Manual shift planning
using heuristics

Yes

Yes

We could focus
the research on
finding an im-
proved scheduling
method for ware-
house workers
and drivers

Inaccurate demand fore-
cast

Yes

Yes

We could focus
on improving the
forecasting of de-
mand to be better
prepared to fulfil
it

Demand variability

No

No

This is an extrinsic
factor and there-
fore very hard if
not impossible to
control -> also the
company does not
want to artificially
limit demand but
rather try to ful-
fill all existing de-
mand

TABLE A.1: Potential Core Problems
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A.2 Research Design

Knowledge Ques- | MPSM Research Type Research Popula- | Data Gathering | Research Strategy | Presentation of
tion Phase tion Method Outcomes

How is the re- | 3 Descriptive flaschenpost em- | Qualitative Unstructured Summary of cur-
quirement plan- ployees  (mainly interviews rent planning and
ning for the supervisor) explanation why it
warehouses cur- is sub-optimal
rently done at

flaschenpost?

How can the per- | 4 Descriptive flaschenpost em- | Qualitative Unstructured List of KPIs
formance of the ployees  (mainly interviews

planning proce- supervisor)

dure be made

measurable?

What data can we | 4 Descriptive Company supervi- | Quantitative Data analysis Data formatted so
use as input for sor it can be used as
the model? input to the model
Which solver has | 5 Evaluative MILP solvers (soft- | Quantitative Experiments Comparison of
the best perfor- ware) solvers

mance for the

given model?

What algorithms | 4 Descriptive Literature Qualitative Systematic Litera- | List of algorithms
for solving MILP ture Review including descrip-
exist? tion and uses
Which algorithm | 5 Evaluative Mathematical Quantitative Experiments and | Decision  about
is most suitable model evaluation of | which algorithm
for the given results yields the lowest
problem? computation time




9%

What adaptions | 4 Descriptive / Ex- | Mathematical Quantitative Experiments Conclusion about

can we make to planatory model, literature how much the in-

the model to make terval length can

it more realistic? be reduced

How does the new | 5 Explanatory Output of the | Quantitative Comparison of | Evaluation

planning method model, historical experiment results | whether or not /

influence the cho- company data and current plan- | by how much the

sen KPIs? ning/schedule shift scheduling
can be improved
with the results of
the model

How can the | 6,7 Descriptive flaschenpost em- | Qualitative Unstructured in- | Plan of action for

new planning
be implemented
successfully?

ployees
supervisor)

(mainly

terviews, literature
review

the company

TABLE A.2: Research Design




B. Appendix B

B.1 Decomposed Model
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FIGURE B.1: Instant-order demand patterns for A =5 and 66% of total demand
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FIGURE B.2: Pre-order demand patterns for A =5 and 33% of total demand
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