
MSc Applied Mathematics
Final Project

On the sample complexity of
finding rewards above the
arithmetic mean

Tim Huitema

Supervisor: Wouter Koolen

September, 2024

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Contents

1 Introduction 1

2 Theoretical background 3
2.1 Problem description . 3
2.2 Sample complexity . 3
2.3 Kullback–Leibler divergence . 5
2.4 Track-and-Stop strategy . 5

2.4.1 Optimal weights w⋆ . 5
2.4.2 Observations µ̂ . 6
2.4.3 Tracking rules . 6
2.4.4 Generalized Likelihood Ratio statistic 6
2.4.5 Threshold stopping rule . 7

2.5 Gradient Ascent . 7

3 KKT-conditions 9
3.0.1 KKT-conditions . 10

3.1 Finding the set of means above average . 11
3.1.1 Infinum . 11
3.1.2 Argmax . 16
3.1.3 case: |J | = m . 21
3.1.4 Implementation . 22
3.1.5 Overview . 24

4 Results for existing problems 25
4.0.1 Sample complexity of thresholding bandit 25
4.0.2 Sample proportions for best arm identification 27

5 Numerical experiments 29
5.0.1 Influence of δ . 29
5.0.2 Influence of σ . 30
5.0.3 Evolution of weights . 30
5.0.4 Comparisons . 31

6 For further research 33
6.0.1 Extension of the objective . 33

7 Discussion 34

8 Conclusion 36

2

9 Acknowledgement 36

10 Appendix 37
10.1 Lower bound . 37
10.2 Case: |J | = m . 38
10.3 Reasoning heuristic . 39
10.4 Gradient Ascent . 40
10.5 Alt . 41
10.6 Kullback-Leibler divergence . 41
10.7 Sample complexity: how many arms are above a threshold 43
10.8 For further research . 44

3

Abstract

This thesis covers the sample complexity of a dynamic-threshold problem: the problem
to find the set of arms that have a reward that is higher than the arithmetic mean of all
rewards. This problem configuration differs from existing literature because of the dynamic
behaviour of the threshold which is dependent on all arms. The assumption is made that
rewards are sampled from an underlying Gaussian distribution. The results are acquired by
using the Karush–Kuhn–Tucker conditions for a generic problem description. The sample
complexity is compared to similar algorithms made using the Track-and-Stop strategy. We
see that the sample complexity of our algorithm for comparable objectives is higher. For
our algorithm the δ-PAC property is empirically confirmed. Unfortunately, a component
of the algorithm remains dependent on iterative testing for optimality, this however only
increases the computational run time and does not disprove the validity of the algorithm.
In this thesis a method for accelerating this iterative testing is presented.

Keywords: Sample Complexity, Best Arm Identification, Pure exploration, Dynamic thresh-

old

Chapter 1

Introduction

The key to clinical trials for cures is efficiently identifying the most effective treatments,
dosages, or remedies. Minimizing the number of trials required to meet specific criteria is
crucial, since prescribing less effective medicine could be detrimental. To model the prob-
lem of finding the optimal dosage in the early stage of a clinical trial, the paper [2] uses a
multi-armed bandit approach. More applications of the bandit setting are readily available:
[8] uses this application for smoothing the process of fine tuning hyper-parameters. The
paper [13] proposes to use a bandit algorithm for dynamic pricing of products. It should
be emphasised that there are infinite possibilities for using this bandit setting to mimic
real-life situations, which makes the field important.

The multi-armed bandit problem is a setting in which a decision-maker is able to per-
form a certain action (or, in the terminology of the field, to pull an arm), and receive a
certain reward. The rewards are assumed to be independent, and sampled from an underly-
ing (unknown) distribution. By repeatedly pulling the arms, the decision-maker iteratively
has a better understanding of the underlying distribution from which the rewards are sam-
pled. To know which arm to sample at which time is referred to as the sampling rule.
Most literature is about regret minimization. For regret minimization, the accumulated
reward during the process is of importance. KL-UCB [6], UCB [1], Thompson sampling
[16] are examples of algorithms for the sampling rule. However these are outside the scope
of this project. This thesis will only cover pure exploration. We focus solely on minimizing
the number of times we have to "pull" arms until we can answer a predetermined query.
There are two branches in this field. The first is fixed budget, here the number of times we
can pull arms is limited. This setting could be more inline with real-life situations where
there could be an underlying cost for each time we choose a certain action. In this thesis,
however, we concentrate on the fixed confidence approach, wherein a specific confidence
level, denoted by δ, is used to bound the probability of failing to identify the correct answer
within finite time. The goal is to minimize the number of pulls, also known as the sample
complexity. For the analysis of the sample complexity we rely heavily on the groundbreak-
ing work of Garivier and Kaufmann [7]. That paper dives into the characteristic time
of pure exploration problems, which is an optimization problem. They use solutions to
this minimization problem for their strategy, Track-and-Stop. Many different specialized
strategies for the best arm identification problem have been proposed. However for these
strategies there is a gap between the lower bound of the sample complexity and the actual
sample complexity of the strategy.

Modifications have been made to the work of [7] in order to analyse a variety of queries.

1

One of the subjects that is closely related to the topic of this thesis is the identification
of the set of arms for which the reward exceeds a predetermined stationary threshold. To
illustrate, the objective is to identify arms that have a yearly return of more than 5%.
However, in order to determine an appropriate threshold for identifying the optimal re-
sponse to the query, it is necessary to have a certain degree of understanding regarding
the rewards. Another approach, as proposed by [11], is to identify the arms that exhibit a
range of ϵ around the maximum mean. In this context, it is also essential to have a clear
understanding of the rewards. We believe that a dynamic threshold is a more suitable
option for aligning with the goal of real-world scenarios.
This gives reason to try to work out the sample complexity for a similar problem. The
problem in question is to find the set of arms that have a reward that is higher than the
average of all rewards. We can express this as follows:

i⋆(µ) =

{
i ∈ [m] : µi ≥

1

m

m∑
a=1

µa

}
(1.1)

Where µ = {µ1, µ2, . . . , µm} are the means of the rewards for arms i ∈ {1, . . . ,m}. i⋆(µ)
is the correct answer on rewards µ. We will use KKT conditions to obtain the necessary
equations to model this and use the track-and-stop strategy to implement it.

This thesis is organized in the following manner. In Chapter 2 we give the necessary
theoretical background to understand the bandit setting and the algorithm that is used.
In Chapter 3 we give the main result of the thesis, the sample complexity of problem 1.1.
In Chapter 4 we workout the sample complexity for comparable problems such that we
can compare the results in Chapter 5. Afterwards we provide possible ideas for further
research in Chapter 6.

2

Chapter 2

Theoretical background

This Chapter presents the theoretical background necessary for interpreting the main result
of the thesis. It begins with a description of a bandit problem, then moves on to present
the optimisation problem that is central to the result. It then describes the strategy used
to implement the model and provides all the necessary information for its implementation.
Finally, it offers an alternative to the strategy and explains how this could be implemented.

2.1 Problem description

The multi-armed bandit model is defined by m probability distributions ν1, . . . , νm all with
respective means µ = {µ1, µ2, . . . , µm}. The scope of this thesis will only include probabil-
ity distributions that are dependent on one parameter. Additionally, we assume that the
rewards are sampled according to a normal distribution.

Following [7], a strategy is defined by

1. Sampling rule (At)t

2. Stopping rule τ

3. Decision rule îτ (µ)

The sampling rule At is defined as the arm (or action) a ∈ {1, . . . ,m} at time t we choose
to pull. The stopping rule τ is the number of draws we need before we stop the decision
process. For fixed confidence strategies we use τδ. The goal is to minimize the expected
number of draws Eν [τδ], also known as the sample complexity, while we minimize the
probability that the decision rule is not the correct answer to the query. When we can
guarantee P (̂iτ (µ̂) ̸= i⋆(µ)) ≤ δ and P (τδ <∞) = 1, the strategy is called δ-PAC. i⋆(µ) is
the correct answer, îτ (µ̂) is the best answer after time τδ. The δ-PAC property is desirable
because of the fact that the user has the control to fix the likelihood of getting incorrect
answers while minimizing the samples needed.

2.2 Sample complexity

There are many problem-dependent lower bounds for the sample complexity. Most of them
are based on the quest to find the best arm. The work [9] establishes a lower bound for
general bandit problems that depends on the chosen distribution rather than on the specific
problem itself. Before we can state the lower bound, we first need to define some definitions.

3

First we define the Kullback-Leibler divergence between two probability distributions P,Q

kl(P,Q) =

∫ ∞

−∞
P (X) log

(
P (X)

Q(X)

)
dx (2.1)

We assume: kl(P,Q) <∞.

For the first lemma we closely follow the reasoning as provided in the paper [7]. They
make, as much bandit literature does, use of a change of distribution argument as has been
provided by the groundbreaking work in paper [17].

Lemma 1 Let τ be any almost surely finite stopping time with respect to the field of ob-
servations F′, for every event ϵ ∈ Fτ∑

a∈[m]

Eµ[Na(τδ)]d(µa, λa) ≥ kl(Pν(ϵ), Pν′(ϵ))

kl(Pν(ϵ), Pν′(ϵ)) is the Kullback-Leibler divergence between Pν(ϵ) and Pν′(ϵ). Eµ[Na(τδ)]
is the expected number of samples for arm a when we stop at time τδ. d(µa, λa) is the
Kullback-Leibler divergence between µa and λa. This lemma captures the relationship
between the sample complexity and the Kullback-Leibler divergence.

Using this lemma, we can state the lower bound. For the proof we refer to Appendix:
10.1. For any bandit model µ and any δ-PAC strategy, the following inequality holds:

T ⋆(µ)kl(δ, 1− δ) ≤ E[τδ] (2.2)

where T ⋆(µ) is defined as

T ⋆(µ)−1 := sup
w∈Σm

inf
λ∈Alt(µ)

m∑
a=1

wad(µa, λa), (2.3)

where d(µa, λa) represents the Kullback-Leibler divergence between µa and λa. wa which
is the weight of arm a. Then

∑
m = {w ∈ R+ : w1 + · · ·+ wm = 1}. Ultimately, w⋆a is

the optimal proportion of samples allocated to arm a. The other unknown component is
Alt(µ) which is:

Alt(µ) := {λ : i⋆(λ) ̸= i⋆(µ)} (2.4)

So our set Alt(µ) is a set of bandits, in our case named λ, for which the correct answer,
i⋆(λ), is not the same as for µ, i⋆(µ). d(µa, λa) is the Kullback-Leibler divergence between
µa and λa.

As δ → 0 the lower bound goes to:

E[τδ] ≥ T ⋆(µ) log

(
1

δ

)
(2.5)

4

2.3 Kullback–Leibler divergence

The Kullback-Leibler divergence, as defined in Equation 2.1, is used throughout this
project. This divergence has a different form for the assumed probability distribution. In
this thesis we make the assumption that the rewards are sampled according to an underly-
ing normal distribution.We assume that the samples are taken from a normal distribution
with mean µ and variance 1, i.e.,

Ya ∼ N (µa, 1)

where Ya represents the random sample for mean a.This assumption leads to the following
form of the divergence:

kl(µi, λi) =
(µi − λi)

2

2
(2.6)

The derivation of this result can be found in the appendix: 10.6. It must be stressed that
this is not the proper notation, this would be kl(νµ, νλ). However for (seemingly) aesthetic
reasons this notation is abused in most literature. Most literature, for example papers [7]
and [14] use a generalized divergence. This is because when their work is implemented the
user of the algorithm can determine the assumed distribution. For the generic divergence,
Bregman divergence is used.

2.4 Track-and-Stop strategy

Based on our knowledge the Track-and-Stop strategy, designed by [7] has been the only
strategy that has been proven to have the sample complexity match the theoretical lower
bound of the sample complexity. The Track-and-Stop strategy makes use of solutions
acquired by solving the optimization problem listed in Equation 2.3. However this can
lead to high computational costs for calculating the solutions needed for the strategy. As
will be discussed in Section 2.5, there are ways to greatly reduce this. Prior to outlining
the strategy, it is necessary to reiterate the fundamental objective of the Track-and-Stop
strategy. This process yields the sampling rule, as detailed in the strategy description.
Before we can list the Track-and-Stop strategy we first need to cover some necessary
components of the strategy. Other components will be covered in separate Subsections.

2.4.1 Optimal weights w⋆

The Track-and-Stop strategy makes use of the solutions of Equation 2.3.

w⋆(µ) ∈ argmax
w∈

∑
m

inf
λ∈Alt(µ)

m∑
i=1

wid(µi, λi) (2.7)

To use this we have to prove continuity for the optimal weights. In other words, we need to
have the assurance that as: µ̂→ µ we also need w⋆(µ̂) → w⋆(µ). Continuity for best arm
identification is proven in the paper [7]. An extension to all other single answer problems
are made in [5]. In there it is proven that for single-answer problems the optimal weights
are (upper hemi-) continuous. They also prove that optimal weights are convex. These
two factors combined are enough for our purposes.

5

2.4.2 Observations µ̂

We do not immediately posses, the true value of the corresponding mean of the values for
µ, we use preliminary estimates for this by using a rolling estimate on the true value of
the mean.

µ̂a(t) =
1

Na(t)

t∑
s=1

Ys1{As = a}

Na(t) is the number of draws of arm a at time t. Ys is the observation of the reward that
was pulled at time s. 1{As = a} is equal to 1 if at time s arm a was pulled, 0 otherwise.
By the law of large number we have that P (µ̂(t) → µ) = 1 as N(t) → ∞.

2.4.3 Tracking rules

The Track-and-Stop strategy has two tracking rules[7].

C-Tracking

The cumulative tracking makes use of past solutions of the weights. The sampling rule is
defined as

At+1 ∈ argmax
1≤a≤m

∑
s≤t

w⋆a(µ̂a(s))−Na(t)

D-Tracking

D-tracking, or direct tracking. This sampling rule makes use of one more definition

ut =
{
a : Na(t) <

√
t− m

2

}
We can then define the sampling rule as follows:

At+1 ∈

{
argminaNa(t) if ut ̸= ∅ forced exploration
argmaxa tw

⋆
a(µ̂a(t))−Na(t) if ut = ∅ direct tracking

The first part is necessary since it forces the exploration of under sampled arms. This is
also needed to make sure early inaccuracies of µ̂ do not lead to significant inaccuracies of
the weights which subsequently could cause mistakes that do not improve over time. In
Subsection stopping rules and thresholds we explore the question of when we have gathered
enough information to stop the strategy.

2.4.4 Generalized Likelihood Ratio statistic

For the strategy to identify the correct answer, it must have enough information to exclude
all other possible answers. To give a measure of this information we use the generalized
log-likehood statistic. The generalized log-likelihood ratio statistic, as defined in [10] is
defined as:

Z(t) = inf
λ∈Alt(µ)

m∑
a=1

Na(t)d(µ̂a(t), λa)

Na(t) is the number of times arm a is pulled up until the time t. m is the number of
arms, ¯̂µ is the preliminary estimate of the average of all rewards. As we will prove below

6

in Equation 3.27 we show that the GLRT (generalized log-likelihood ratio) for our purpose
is:

Z(t) = min
i

Ni(t)m
2(¯̂µ(t)− µ̂i(t))

2

2(m(m− 2) +Ni(t)
∑m

i=1
1

Ni(t)
)

(2.8)

2.4.5 Threshold stopping rule

Now that we know how to calculate the generalized log likelihood ratio statistic, we need
something to compare it to. Exceeding this threshold would indicate that we have gathered
enough information to exclude all other possible answers. In the paper [3] the following
threshold function is listed:

β(t, δ) = log

(
1 + log(t)

δ

)
(2.9)

This threshold is widely used as a threshold for δ-PAC problems. Formally, there does not
exist a proof that this threshold is sufficient for all δ-PAC problems [4]. The justification
for using this threshold comes from Proposition 12 from [7]. Here is stated that when the
Global-Likelihood-Ratio stopping rule is used there exists an α > 1, R = R(α,m) such
that:

β(t, δ) = log(
Rtα

δ
)

when used as an threshold, together with the "Empirical-Best decision rule" ensures that
the problem is δ-PAC.The global-Likelihood-Ratio stopping rule is the rule ensuring that
we stop the strategy when the statistic 2.8 exceeds the threshold 2.9. The Empirical-best
decision rule entails that we choose îτ (µ̂) =

{
i ∈ [m] : µ̂i(τδ) ≥ 1

m

∑m
i=1 µ̂i(τδ)

}
2.5 Gradient Ascent

Finding the optimal weights that solve the Equation 2.3 could be computational expensive.
The best-arm-identification and our algorithm are examples of this. They require numerical
solvers for each iteration to solve for the optimal weights. As a result, it may take so long
for the optimal weights to be calculated that the algorithm becomes unusable for some
applications. This raises the question of whether it would be feasible to approximate the
weights or to refrain from calculating them at each iteration. The paper [12] dives into
this question and tackles the optimization problem from a different angle. The adaptation
works using analogies from the zero-sum game perspective. One player tries to play the
best proportion for w, while the second player proposes the "hardest" alternative λ for the
query in question. The following definitions is used

F (w, µ) := inf
λ∈Alt(µ)

m∑
i

wid(µi(t), λi)

Then gradient ascent is performed on this formula for the approximations of the new
weights. The new weights are calculated as follows

w̃(t+ 1) = argmax
w∈

∑
m

ηt+1

t∑
s=m

w · clips(∇F (w̃(s), µ̂(s)))− kl(w, π)

7

Clipping the gradient is used to overcome some difficulties when the gradient is unbounded.
ηt is the step size, π is a uniform distribution. γt is the exploration rate.

The last part to update the weights is

w′(t+ 1) = (1− γt)w̃(t+ 1) + γtπ

w̃ is skewed towards a uniform distribution to force exploration.
For the purpose of our project this could be implemented as follows:

∇F (w, µ) = −min
i

(µ̄− µi)
2m3(m− 2)

2w2
i (m(m− 2) + wiA)2

Where A =
∑m

i=1
1
wi

. The proof for this is given in appendix: 10.4.

8

Chapter 3

KKT-conditions

In this Chapter we will outline the main result of this thesis. This will be done by using
KKT-conditions for a general description of our problem, we will use the definitions made
in the book [15]. We will first give a basic outline of what KKT-conditions entail. In the
Subsection 3.1.1 we will workout the inner part of the Equation 2.3. The result for this is:

Theorem 1 For every w ∈ Σm and µ = {µ1, µ2, . . . , µm}, we have

inf
λ∈Alt(µ)

m∑
i=1

1

2
wi(µi − λi)

2 = min
i

wim
2(µ̄− µ)2

2(m(m− 2) + wiA)
. (3.1)

In Subsection 3.1.2 we will use this result to workout the outer part of Equation 2.3 and
acquire the equations necessary to generate optimal weights. These Equations are given
as follows:

Theorem 2 The optimal w⋆(µ) is given by

w⋆(µ) ∈ argmax
w∈Σm

min
i

wim
2(µ̄− µ)2

2(m(m− 2) + wiA)
, (3.2)

where wi and wj are the solutions, computed as follows:

wi =

√ ∑
j∈J w

2
j

|J |+m(m− 2)
∀i ∈ I

wj =
2ψ⋆m(m− 2)

m2(µ̄− µj)2 − 2ψ⋆A
∀j ∈ J.

We define I ⊆ [m] and J = [m] \ I, where I ∩ J = ∅. A has the following definition:
A =

∑m
i=1

1
wi

.We calculate ψ⋆ using the following transformation ξ⋆ = ψ⋆A, We than
calculate ξ⋆ by solving following equation:

F (ξ) = 0 =

√√√√√∑j∈J

(
2ξm(m−2)

m2(µ̄−µj)2−2ξ

)2
|J |+m(m−2)

|I|2
− |I|2m(m− 2)

|J |+m(m− 2)
· 1

1− m2

2ξ(|J |+m(m−2))

∑
j∈J(µ̄− µj)2

We can see that the equations for wi, wj , ξ are dependent on sets I and J and so are the
KKT-conditions that we will derive. There exists one configuration of subsets I and J
that solve all necessary KKT-conditions. We show in 3.1.4 how to find these.

9

3.0.1 KKT-conditions

Karush–Kuhn–Tucker conditions or KKT-conditions are necessary conditions for a solution
to be optimal. The KKT-conditions can be extracted from a optimization problem. If we
have a generic minimization problem:

Minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

where f(x) is the objective function, gi(x) are the inequality constraint functions, and
hj(x) are the equality constraint functions. We define λi, µj ∈ R

From this we can derive the Lagrangian function:

L(x, λ, µ) = f(x) +
m∑
i=1

λigi(x) +

p∑
j=1

µjhj(x)

where:

• λi are the Lagrange multipliers for the inequality constraints gi(x) ≤ 0,

• µj are the Lagrange multipliers for the equality constraints hj(x) = 0.

If x∗ is an optimal solution, the following conditions must be satisfied:

1. Stationarity:

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +
p∑
j=1

µj∇hj(x∗) = 0

2. Primal feasibility:

gi(x
∗) ≤ 0, ∀i = 1, . . . ,m

hj(x
∗) = 0, ∀j = 1, . . . , p

3. Dual feasibility:

λi ≥ 0, ∀i = 1, . . . ,m

4. Complementary slackness:

λigi(x
∗) = 0, ∀i = 1, . . . ,m

For the KKT conditions to be necessary for optimality, we need to have that Slater’s
condition holds. For this condition to hold we must have that ∃x : hj(x) = 0 and gi(x) < 0.
For the problem in 3.1.1 we can see that this condition is met for many different λi or λj ,
as long as λk ̸= λ̄, ∀k ∈ [m]. For example, λi = 1, λj = 0, λ̄ = 0.5 ∀i ∈ I, j ∈ J .For the
problem in 3.1.2, Slater’s condition is met for wk = 1

m∀k ∈ [m] and ψ = 0.

10

3.1 Finding the set of means above average

We define the bandit model µ = (µ1, ..., µm). We assume that µi ̸= µ̄ for all i ∈
{1, 2, . . . ,m}, where µ̄ = 1

m

∑m
i=1 µi is the average of the means. Because this leads to

theoretical problems. Since we do not seek unique arms that exceed the threshold, we do
not have to worry about the possibility of multiple correct answers. In the paper [5], it
is described that there are instances where multiple (distinct) sets of weights are optimal,
which would imply that our solution would not be unique.

The query of interest, and the main query of this thesis is given as follows:

i⋆(µ) =

{
i ∈ [m] : µi ≥

1

m

m∑
a=1

µa

}
(3.3)

3.1.1 Infinum

To tackle the optimization problem 2.3 we first focus on the inner part of the equation.
We therefore fix w ∈

∑
m. We begin by addressing it from an optimization standpoint.

We formulate KKT-conditions to get a better grip on the characteristics of the solution.
By employing a generic formulation of our query, we can examine the behavior of λ and
use this to derive Alt(µ). We use the following definitions

λ̄ =
1

m

m∑
i

λi (3.4)

Furthermore, we define I ⊆ [m] and J = [m] \ I, where I ∩ J = ∅. Let X = {Xi : i ∈ I}
, Y = {Yj : j ∈ J}, where Xi, Yj ∈ R and ν ∈ R be the Lagrangian multipliers. We make
the assumption that rewards are sampled according to an underlying normal distribution.
Hence the Kullback-Leibler divergence has the form 2.6. With that, our problem is:

inf
λ

m∑
i=1

1

2
wi(µi − λi)

2

s.t. λ̄− λi ≤ 0 ∀i ∈ I,

λj − λ̄ ≤ 0 ∀j ∈ J,

λ̄− 1

m

m∑
i=1

λi = 0.

The Lagrangian can then be expressed as follows:

L(λ, λ̄,X, Y, ν) =
m∑
i=1

1

2
wi(µi − λi)

2 +
∑
i∈I

Xi(λ̄− λi)

+
∑
j∈J

Yj(λj − λ̄)

+ ν

(
λ̄− 1

m

m∑
i=1

λi

)
(3.5)

11

The KKT-conditions are:

Stationarity

−wi(µi − λi)−Xi −
1

m
ν = 0 ∀i ∈ I (3.6)

−wj(µj − λj) + Yj −
1

m
ν = 0 ∀j ∈ J (3.7)

∑
i∈I

Xi −
∑
j∈J

Yj + ν = 0 (3.8)

Complementary slackness

Xi(λ̄− λi) = 0 ∀i ∈ I (3.9)

Yj(λj − λ̄) = 0 ∀j ∈ J (3.10)

Dual feasibility

Xi ≥ 0 ∀i ∈ I (3.11)

Yj ≥ 0 ∀j ∈ J (3.12)

Primal feasibility

λ̄− λi ≥ 0 ∀i ∈ I (3.13)

λj − λ̄ ≥ 0 ∀j ∈ J (3.14)

λ̄− 1

m

m∑
i=1

λi = 0 (3.15)

We begin by solving for stationarity. We take the sum of 3.6 and 3.7 to link all vectors
that are dependent on I and J .∑

i∈I
−wi(µi − λi)−Xi −

1

m
ν = 0 =

∑
j∈J

−wj(µj − λj)− Yj −
1

m
ν = 0

∑
i∈I

−wi(µi − λi)−
∑
j∈J

wj(µj − λj) = 0

∑
i∈I

wi(λi − µi) =
∑
j∈J

wj(µj − λj) (3.16)

We now need to get an expression for λ since this is the only variable in this relation, we
consider the following cases for solving complementary slackness Equations 3.9 and 3.10

12

Case 1 (a) We begin by considering the case where λi = λ̄ and Xi ̸= 0 ∀i ∈ I. We
use this assumption in Equation 3.6.

−wi(µi − λ̄)−Xi −
1

m
ν = 0

Xi = − 1

m
ν − wi(µi − λ̄) (3.17)

Case 1 (b). If we make the assumption λj = λ̄ and Yj ̸= 0 ∀j ∈ J , we get the follow-
ing:

−wj(µj − λ̄) + Yj −
1

m
ν = 0

Yj = wj(µj − λ̄) +
1

m
ν (3.18)

Case 2 (a) We now consider the other case: λi ̸= λ̄, Xi = 0 ∀i ∈ I

−wi(µi − λi)−
1

m
ν = 0

−wi(µi − λi) =
1

m
ν

λi = µi −
1
mν

wi
(3.19)

Case 2 (b) We now consider the other case: λj ̸= λ̄, Yj = 0 ∀j ∈ J

−wj(µj − λj)−
1

m
ν = 0

−wj(µj − λj) =
1

m
ν

λj = µj −
1
mν

wj
(3.20)

We now have an understanding of the structure of an optimal λ. We can use this for
Alt(µ). When we constructed the KKT-conditions we fixed the set I, however when we
want to find the Alt(µ) we need to search over many possible subsets I. If we would iterate

over all arms and set one, i, equal to λ̄ and set all other arms λj equal to µj −
1
m
ν

wj
, sets

I and J would only exchange one arm. This would generate the subset of Alt(µ) that is
different from the correct answer by one arm. We assume that λ that satisfies the infinum
is in this subset. A visualization can be found in Appendix: 10.5. In this Figure we can
see that one arm i that is originally in set J and now in set I.

We use the equations 3.16 and 3.20 in combination with the assumption that |I| = 1
and |J | = m− 1.

wi(λ̄− µi) =
∑

j∈[m]\i

wj(µj − λj) (3.21)

13

λj = −
1
mν

wj
+ µj (3.22)

wj(µj − λj) =
1

m
ν

wi(λ̄− µi) =
∑

j∈[m]\i

1

m
ν

=
m− 1

m
ν

From this we get the expression ν = m
m−1wi(λ̄− µi). We now want to make an expression

for λ̄. We do this by using the Equations 3.15, 3.20 and λi = λ̄.

λ̄ =
1

m

m∑
i=1

λi

λ̄ =
1

m
(λ̄−

∑
j∈[m]\i

[
1

m

1

wj
ν + µj])

λ̄ = − ν

m(m− 1)

∑
j∈[m]\i

1

wj
+

1

m− 1

∑
j∈[m]\i

µj

λ̄ = − ν

m(m− 1)

∑
j∈[m]\i

1

wj
+

1

m− 1
(mµ̄− µi) (3.23)

To now express λ̄ and ν as only functions of w and µ. For the sake of clarity, we express
ν and λ̄ as:

ν = aλ̄− b

λ̄ = cν + d

with

a =
m

m− 1
wi

b =
m

m− 1
wiµi

c = − 1

m(m− 1)

∑
j∈[m]\i

1

wj

d =
1

m− 1
(mµ̄− µi)

ν = aλ̄− b

ν = a(cν + d)− b

ν = acν + ad− b

ν − acν = ad− b

ν =
ad− b

1− ac

14

ν =
m2wi(µ̄− µi)

wi
∑

j∈[m]\i
1
wj

+ (m− 1)2
(3.24)

We now have an expression for ν, which is always defined since the denominator is non-zero.
We now express λ̄

λ̄ = cν + d

λ̄ = c
ad− b

1− ac
+ d

λ̄ =
d− bc

1− ac

λ̄ =
µi(wi

∑
j∈[m]\i

1
wj

+ 1) +m2µ̄−m(µ̄+ µi)

wi
∑

j∈[m]\i
1
wj

+ (m− 1)2
(3.25)

We now have every expression necessary to compute the inner part of the optimization
problem 2.3

inf
λ∈Alt(µ)

(
m∑
i=1

wad(µa, λa)

)
=

min
i

inf
λi=λ̄

λj=
1
mν

wj
+µ

wi(µi − λ̄)2

2
+

∑
j∈[m]\i

wj(
1
mν)

2

w2
j

=

min
i
wi

(µi − λ̄)2

2
+

(1
mν)

2

2

∑
j∈[m]\i

1

wj

we will address both parts separately.

wi
(µi − λ̄)2

2
=

1

2
wi(µi −

µi(wi
∑

j∈[m]\i
1
wj

+ 1) +m2µ̄−m(µ̄+ µi)

wi
∑

j∈[m]\i
1
wj

+ (m− 1)2)
)2 =

m2(m− 1)2(µi − µ̄)2

2(wi
∑

j∈[m]\i
1
wj

+ (m− 1)2)2

The last part is

(1
mν)

2

2

∑
j∈[m]\i

1

wj
=

m2w2
i

∑
j∈[m]\i

1
wj

(µ̄− µ)2

2(wi
∑

j∈[m]\i
1
wj

+ (m− 1)2)2

If we now add the parts together we arrive at the wanted expression, we name this expres-
sion ci

m2((m− 1)2wi + w2
i

∑
j∈[m]\i

1
wj

)(µ̄− µi)
2

2((m− 1)2 + wi
∑

j∈[m]\i
1
wj

)2

15

Finally, we can reduce this to:

ci =
wim

2(µ̄− µi)
2

2((m− 1)2 + wi
∑

j∈[m]\i
1
wj

)
(3.26)

so to conclude

inf
λ∈Alt(µ)

m∑
i=1

1

2
wi(µi − λi)

2 = min
i
ci

3.1.2 Argmax

We now focus on the outer part of equation 2.3. We simplify 3.26 by rewriting
∑

j∈[m]\i
1
wj

such that this term depends on all weights. We also do this to simplify the derivative.

ci =
wim

2(µ̄− µi)
2

2((m− 1)2 + wi
∑

j∈[m]\i
1
wj

)
= (3.27)

wim
2(µ̄− µi)

2

2(m(m− 2) + wiA)
(3.28)

A =
m∑
i=1

1

wi
(3.29)

For the KKT-conditions we need to workout gradients of ci, these are than given as follows:

∂ci
∂wi

=
(m− 2)m3(µ̄− µi)

2

2(m(m− 2) + wiA)2

∂ci
∂A

= − m2w2
i (µ̄− µi)

2

2(m(m− 2) + wiA)2

We need to make one more transformation. Using equation 3.27, equation 2.3 is now equal
to:

T ⋆(µ)−1 = max
w∈

∑
m

min
i
ci

We cannot simply use KKT conditions if this optimization problem has both a maximiza-
tion and a minimization part. We transform this by adding the constraint: ψ ≤ ci and
maximizing this ψ. Since we maximize we the Lagrangian will have −ψ instead of ψ.
We define ν,X ∈ R and γ ∈ Rm To to find the necessary weights, we use the following
optimization problem:

max
ψ,w,A

ψ

subject to: wi ≥ 0, ∀i,

1−
m∑
i=1

wi = 0,

ψ ≤ ci, ∀i,

A =

m∑
i=1

1

wi
.

16

The Lagrangian is as follows:

L(ψ,A,wi, X, ν, γi) = −ψ − ν

(
1−

∑
i

wi

)
+X

(
A−

∑
i

1

wi

)
+
∑
i

γi(ψ − ci)

Stationarity:

−1 +
m∑
i=1

γi = 0 (3.30)

ν +X
1

w2
i

− γic
′
i(wi) = 0 ∀i ∈ [m] (3.31)

X −
m∑
i=1

γic
′(A)
i = 0 (3.32)

Complementary Slackness:

γi(ψ − ci) = 0 ∀i ∈ [m] (3.33)

Primal Feasibility:

A =

m∑
i=1

1

wi
(3.34)

m∑
i=1

wi = 1 (3.35)

Dual Feasibility:

wi ≥ 0 ∀i ∈ [m] (3.36)

γi ≥ 0 ∀i ∈ [m] (3.37)

By working out the case where equation 3.33 is solved by setting all ci equal to ψ, which is
covered in Section 10.2. We found that the equation for the optimal weights 3.49 , cannot
hold for every µ. Therefore, we concluded that there must exist a set of indices for which
ci ̸= ψ. We therefore define γi = 0 for i ∈ I and set γj ≥ 0 for j ∈ J . We define I ⊆ [m]
and J = [m] \ I, where I ∩ J = ∅. We begin by finding an expression for wi with the help
of equation 3.31.

ν +X
1

w2
i

= 0

X
1

w2
i

= −ν

−X
ν

= w2
i

wi =

√
−X
ν

∀i ∈ I

17

We now find an expression for wj using equation 3.33.

ψ − cj = 0

ψ =
wjm

2(µ̄− µj)
2

2(m(m− 2) + wjA− 1)

wjm
2(µ̄− µj)

2 = 2ψ(m(m− 2)) + 2ψwjA− 2ψ

wjm
2(µ̄− µj)

2 − 2ψwjA = 2ψ(m(m− 2))

wj =
2ψm(m− 2)

m2(µ̄− µj)2 − 2ψA
∀j ∈ J (3.38)

Using the expressions for wi, wj and the definition of A 3.34, we do the following:

m∑
i=1

1

wi
=
∑
i∈I

1

wi
+
∑
j∈J

1

wj

= |I|
√

− ν

X
+
∑
j∈J

m2(µ̄− µj)
2 − 2ψA

2ψm(m− 2)

= |I|
√

− ν

X
+

1

2ψm(m− 2)

m2
∑
j∈J

(µ̄− µj)
2 − 2ψA|J |

= |I|

√
− ν

X
+

m2

2ψm(m− 2)

∑
j∈J

(µ̄− µj)
2 − A|J |

m(m− 2)

m∑
i=1

1

wi
+

|J |
m(m− 2)

m∑
i=1

1

wi
= |I|

√
− ν

X
+

m2

2ψm(m− 2)

∑
j∈J

(µ̄− µj)
2

m∑
i=1

1

wi
=

|I|m(m− 2)

|J |+m(m− 2)

√
− ν

X
+

m2

2ψ(|J |+m(m− 2))

∑
j∈J

(µ̄− µj)
2 (3.39)

Using equation 3.31, we can workout γj and use this definition to solve for X in equation
3.32.

ν +X
1

w2
j

− γjc
′
j(w) = 0

γj =
ν +X 1

w2
j

c′j(w)

γj =

(
ν +X

1

w2
j

)
2(m(m− 2) + wjA)

2

(m− 2)m3(µ̄− µj)2
(3.40)

18

Now we insert this expression for γj into Equation 3.32

X −
m∑
i=1

γic
′(A)
i = 0

X −
∑
j∈J

γjc
′(A)
j = 0

X −
∑
j∈J

ν +X 1
w2

j

c′j(w)

 c
′(A)
j = 0

X −
∑
j∈J

((
ν +X

1

w2
j

)
2(m(m− 2) + wjA)

2

(m− 2)m3(µ̄− µj)2

)(
−m2w2

j

(µ̄− µj)
2

2(m(m− 2) + wjA)2

)
= 0

X +
∑
j∈J

(
ν +X

1

w2
j

)
w2
j

m(m− 2)
= 0

X +
1

m(m− 2)

ν∑
j∈J

w2
j +X|J |

 = 0

X

(
1 +

|J |
m(m− 2)

)
= −

ν
∑

j∈J w
2
j

m(m− 2)

X = −
ν
∑

j∈J w
2
j

m(m− 2) + |J |
(3.41)

We have now derived an expression for X that involves
∑

j∈J w
2
j instead of wj . This is

advantageous, as the expression for X now depends solely on constants and ν.

We now solve for ν. We do this by manipulating the expression we have for ψ via the
expression for wj . Our starting point is the equation 3.30

∑
j∈J

γj =
∑
j∈J

(
ν +X

1

w2
j

)
2(m(m− 2) + wjA)

2

(m− 2)m3(µ̄− µj)2
= 1

Using the definition of ψ

ψ =
wjm

2(µ̄− µj)
2

2(m(m− 2) + wjA− 1)

m(m− 2) + wjA− 1 =
wjm

2(µ̄− µj)
2

2ψ

(m(m− 2) + wjA− 1)2 =
w2
jm

4(µ̄− µj)
4

4ψ2

2(m(m− 2) + wjA− 1)2 =
w2
jm

4(µ̄− µj)
4

2ψ2

2(m(m− 2) + wjA− 1)2

m3(µ̄− µj)2
=
w2
jm(µ̄− µj)

2

2ψ2

19

Filling in this definition and using the relation for X and ν

∑
j∈J

(
ν −

ν
∑

j∈J w
2
j

m(m− 2) + |J |
1

w2
j

)
w2
jm(µ̄− µj)

2

2(m− 2)ψ2
= 1

νm

2(m− 2)ψ2

∑
j∈J

w2
j −

∑
j w

2
j

m(m− 2) + |J |

 (µ̄− µj)
2 = 1

ν =
2(m− 2)ψ2

m

(∑
j∈J w

2
j (µ̄− µj)2 −

∑
j∈J w

2
j

|J |+m(m−2)

∑
j∈J(µ̄− µj)2

) (3.42)

If we fill this into the equations for X, 3.41 and use those results for equations 3.40, 3.39
and 3.1.2 we get the following expressions:

X = −
2(m− 2)ψ2

∑
j∈J w

2
j

m(|J |+m(m− 2))

2(m− 2)ψ2

m

(∑
j∈J w

2
j (µ̄− µj)2 −

∑
j∈J w

2
j

|J |+m(m−2)

∑
j∈J(µ̄− µj)2

) (3.43)

γj =

(µ̄− µj)
2

(
w2
j −

∑
j∈J w

2
j

|J |+m(m−2)

)
∑

j∈J w
2
j (µ̄− µj)2 −

∑
j∈J w

2
j

∑
j∈J (µ̄−µj)2

m(m−2)+|J |

∀j ∈ J (3.44)

A =
|I|2m(m− 2)

|J |+m(m− 2)

1

1−
∑

j∈J wj
+

m2

2ψ(|J |+m(m− 2))

∑
j∈J

(µ̄− µj)
2 (3.45)

wi =

√ ∑
j∈J w

2
j

|J |+m(m− 2)
∀i ∈ I (3.46)

The final expression that we need to use is equation 3.35. We use the definition of wi.

|I|

√ ∑
j∈J w

2
j

|J |+m(m− 2)
= 1−

∑
j∈J

wj√ ∑
j∈J w

2
j

|J |+m(m− 2)
=

1−
∑

j∈J wj

|I|∑
j∈J

w2
j =

|J |+m(m− 2)

|I|2
(1−

∑
j∈J

wj)
2

We cannot directly use this relation since wj∈J depends on ψ and on
∑

j w
2
j through its

dependence on A. To tackle this problem we make use of a variable change. We define:

20

ξ = ψA. We will alter all necessary relations with this variable change.

∑
j∈J

w2
j =

|J |+m(m− 2)

|I|2

1−
∑
j∈J

wj

2

∑
j∈J

(
2ψm(m− 2)

m2(µ̄− µj)2 − 2ψA

)2

=
|J |+m(m− 2)

|I|2

1−
∑
j∈J

(
2ψm(m− 2)

m2(µ̄− µj)2 − 2ψA

)2

1

A2

∑
j∈J

(
2ψAm(m− 2)

m2(µ̄− µj)2 − 2ψA

)2

=
|J |+m(m− 2)

|I|2

1− 1

A

∑
j∈J

(
2ψAm(m− 2)

m2(µ̄− µj)2 − 2ψA

)2

1
A2

∑
j∈J

(
2ψAm(m−2)

m2(µ̄−µj)2−2ψA

)2
|J |+m(m−2)

|I|2
=

1− 1

A

∑
j∈J

(
2ψAm(m− 2)

m2(µ̄− µj)2 − 2ψA

)2

∑
j∈J

(
2ψAm(m−2)

m2(µ̄−µj)2−2ψA

)2
|J |+m(m−2)

|I|2
=

A−
∑
j∈J

(
2ψAm(m− 2)

m2(µ̄− µj)2 − 2ψA

)2

A =

√√√√√∑j∈J

(
2ξm(m−2)

m2(µ̄−µj)2−2ξ

)2
|J |+m(m−2)

|I|2
+
∑
j∈J

2ξm(m− 2)

m2(µ̄− µj)2 − 2ξ
(3.47)

We also need to convert the other relations that we have left that uses ψ or A.

A =
|I|2m(m− 2)

|J |+m(m− 2)

1

1−
∑

j∈J
2ψm(m−2)

m2(µ̄−µj)2−2ψA

+
m2

2ψ(|J |+m(m− 2))

∑
j∈J

(µ̄− µj)
2

A =
|I|2m(m− 2)

|J |+m(m− 2)

1

1− 1
A

∑
j∈J

2ψAm(m−2)
m2(µ̄−µj)2−2ψA

+A
m2

2ψA(|J |+m(m− 2))

∑
j∈J

(µ̄−µj)2

A =
∑
j∈J

2ψAm(m− 2)

m2(µ̄− µj)2 − 2ψA
+

|I|2m(m− 2)

|J |+m(m− 2)

1

1− m2

2ψA(|J |+m(m−2))

∑
j∈J(µ̄− µj)2

A =
∑
j∈J

2ξm(m− 2)

m2(µ̄− µj)2 − 2ξ
+

|I|2m(m− 2)

|J |+m(m− 2)

1

1− m2

2ξ(|J |+m(m−2))

∑
j∈J(µ̄− µj)2

(3.48)

3.1.3 case: |J | = m

As can be seen from the equations 3.46 and 3.38, we explicitly choose to have two types
of weights, one for weights in set I, the other in set J . If we deal with a certain set µ for
which the set J = {1 . . .m} is needed to fulfill the KKT-conditions, the equations we need,
have another form. Namely we do not need to have 3.46. If we do this, equations 3.38 and
3.48 simplify and we can calculate ψ analytically. We then have a closed form equation for
the weights, namely:

wi =

1
m2(µ̄−µi)2− m

m−1

∑m
i=1(µ̄−µi)2

1∑m
i=1m

2(µ̄−µi)2− m
m−1

∑m
i=1(µ̄−µi)2

(3.49)

The proof for this can be found in Appendix 10.2. We can see from this equation that this
could lead to a violation of equation 3.36.

21

3.1.4 Implementation

As can be seen from equations 3.47 and 3.48 we do not have an analytical expression we
can solve to get the necessary values for ψ to yield our optimal weights. To overcome
this problem we find the root numerically by using a dichotomic search on the following
function:

F (ξ) =

√√√√√∑j∈J

(
2ξm(m−2)

m2(µ̄−µj)2−2ξ

)2
|J |+m(m−2)

|I|2

− |I|2m(m− 2)

|J |+m(m− 2)
· 1

1− m2

2ξ(|J |+m(m−2))

∑
j∈J(µ̄− µj)2

When we acquire ξ we use this in term to get the values for ψ and A from equation 3.47 and
the original variable change ξ = Aψ. We need these values to compute the optimal weights
using equations 3.46 and 3.38. The last part needed to compute the optimal weights is J .

Finding correct set J

Finding the correct sets I and J is of upmost importance. There exists only one pair of
sets for which all KKT-conditions are met. We can go through all possible subsets and
check for each set if all KKT conditions are met, however the number of subsets scales
exponentially (2m − 1) for an m-armed bandit problem. (-1 because we exclude J to be
empty). We did not find a method to analytically determine sets I and J . We rely on the
following heuristic:

Heuristic: Finding J

1. Compute the mean:

µ̄ =
1

m

m∑
i=1

µi

2. Define the distance:

∆i = (µi − µ̄)2

3. Sort by distance: Sort the indices of µi’s based on their ∆i values in as-
cending order:

∆1 ≤ ∆2 ≤ · · · ≤ ∆m

4. Initialization: Initialize the set J with the arm with the smallest distance
∆:

J = {µ1}

5. Verification: Check whether the KKT conditions are satisfied. If not, itera-
tively add the next smallest µi (based on ∆i) to J , and repeat the verification
until the conditions are met.

22

From Figure 3.1 we can see the performance of using this heuristic. As can be seen,
the number of subsets that needed to be checked until we find the correct KKT grows less
than linearly with the number of arms m for the heuristic. The heuristic is built onto two
pillars. First the following conjecture:

Conjecture 1 Consider the set of weights µ = {µ1, µ2, . . . , µm}, and let the overall mean
be defined as

µ̄ =
1

m

m∑
i=1

µi.

If we order the arms according to their distance to the mean µ̄, the arm with the smallest
distance corresponding to µ1 is always in J

Secondly, we use the fact that the set J is an interval.

Theorem 3 Let µ1, . . . , µm be a set of means of rewards, and let µ be ordered according
to their distance from the mean µ, such that µ1 corresponds to mean with the smallest
distance and µk corresponds to the mean with the k-th smallest distance. Then there exists
a set J ⊆ {1, . . . ,m}, which is an interval, meaning:

• If µi ∈ J and µk ∈ J , then for every j ∈ {1, . . . ,m} such that |µ̄ − µj | ≤ |µ̄ − µk|,
we have µj ∈ J .

In other words, if both µi and µk are in J , then all µj that have a distance closer to the
mean than µk are also in set J .

The proof for this theorem can be found in the appendix: 10.3.

Figure 3.1: The plot shows the average of 10 experiments, where each experiment
involves generating a random subset µ with increasing length m

Bounds

To use the dichotomic search, we need have bounds for the possible values of ξ. We know
that both A and ψ are strictly positive. We can now focus on the equation for A to find
the bounds:

A =
∑
j∈J

2ξm(m− 2)

m2(µ̄− µj)2 − 2ξ
+

|I|2m(m− 2)

|J |+m(m− 2)

1

1− m2

2ξ(|J |+m(m−2))

∑
j∈J(µ̄− µj)2

23

we see that ξ < m2(µ̄−µj)2
2 ∀j ∈ J . Otherwise the denominator of the first term is negative.

From the second term we see that

1 >
m2
∑

j(µ̄− µj)
2

2ξ(|J |+m(m− 2))

ξ >
m2
∑

j(µ̄− µj)
2

2(|J |+m(m− 2))

m2
∑

j(µ̄− µj)
2

2(|J |+m(m− 2))
< ξ <

m2(µ̄− µj)
2

2
∀j ∈ J

3.1.5 Overview

To conclude, we developed an algorithm that determines the weights with respect to a
certain configuration I and J . To acquire the optimal weights, we need to find the correct
set I and J . We provided a heuristic to accelerate this process.

Strategy overview

1. Sampling rule:

At+1 ∈

{
argminaNa(t) if ut ̸= ∅ forced exploration
argmaxa tw

⋆
a(µ̂a(t))−Na(t) if ut = ∅ direct tracking

2. Stopping rule:

τδ = inf

{
t ∈ N : min

i

Ni(t)m
2(¯̂µ(t)− µ̂i(t))

2

2(m(m− 2) +Ni(t)
∑m

i=1
1

Ni(t)
)
> log

(
1 + log(t)

δ

)}

3. Recommendation:

îτδ(µ̂) =

{
i ∈ [m] : µ̂i(τδ) ≥

1

m

m∑
i=1

µ̂i(τδ)

}

24

Chapter 4

Results for existing problems

We can compare the performance of our model with other implementations of the Track-
and-Stop strategy. However we need to carefully construct a sequence of µ for which the
objective of identifying the set of means above the average is the same as for the other
queries for which we want to compare. We first work these related problems out using
KKT-conditions.

4.0.1 Sample complexity of thresholding bandit

The paper [14] mentions multiple possible queries for pure exploration. One of them
closely resembles the problem of this thesis. However with the significant difference of a
stationary threshold which is not, necessarily, dependent on means. The correct answer
for the problem of finding the arms above a threshold α ∈ R is:

i⋆(µ) = {i ∈ [m] : µi ≥ α}

the alternative set of µ is defined as

Alt(µ) =
⋃
j

{λ : (µj − α)(λj − α) < 0}

This notation ensures that when some arm in µ exceeds the threshold, this particular arm
in λ does not and thus does not belong to this set, and vice versa. When we evaluate the
inner part of the optimization problem we get the following result

inf
λ∈Alt(µ)

(
m∑
i=1

wid(µi, λi)

)
=

inf
λ:(µi−α)(λi−α)<0

min
i

(
m∑
a=i

wi
(µi − λi)

2

2

)
=

min
i

(
wi

(µi − α)2

2

)
we can calculate the entire optimization problem as follows

argmax
w∈

∑
k

min
i

1

2
wi(µi − α)2

25

To solve this we rewrite the problem such that we are able to solve this with KKT-
conditions.

max
ψ,w

ψ

m∑
i=1

wi = 1

wi ≥ 0 ∀i ∈ [m]

ψ − 1

2
wi(µi − α)2 ≤ 0

We define ν ∈ R and x ∈ Rm. The Lagrangian for this problem is:

L(ψ,wi, ν, xi) = −ψ + v

(
m∑
i=1

wi − 1

)
+

m∑
i=1

xi

(
ψ − 1

2
wi(µi − α)2

)
The KKT conditions are:

1. Stationarity:

∂L
∂ψ

= −1 +
m∑
i=1

xi = 0

∂L
∂wi

= v − 1

2
xi(µi − α)2 = 0 ∀i ∈ [m]

2. Primal feasibility:

m∑
i=1

wi = 1

wi ≥ 0 ∀i ∈ [m]

3. Dual feasibility:

xi ≥ 0 ∀i ∈ [m]

4. Complementary slackness:

xi

(
ψ − 1

2
wi(µi − α)2

)
= 0 ∀i ∈ [m]

From the complementary slackness condition:

xi

(
ψ − 1

2
wi(µi − α)2

)
= 0

We assume that xi ̸= 0 because the corresponding constraint is active. This constraint
ensures that 1

2wi(µi − α)2 is minimized, which directly influences the optimal solution.

26

Since this minimization is crucial to determining the optimal point, the constraint must
remain active. We also see that: ψ − 1

2wi(µi − α)2 ≤ 0. Therefore we have:

ψ =
1

2
wi(µi − α)2

Solving for wi:

wi =
2ψ

(µi − α)2

Summing over all i and using the constraint
∑m

i=1wi = 1:

m∑
i=1

wi =
m∑
i=1

2ψ

(µi − α)2
= 1

Solving for ψ:

2ψ
m∑
i=1

1

(µi − α)2
= 1 ⇒ ψ =

1

2
∑m

i=1
1

(µi−α)2

Substituting ψ back into the expression for wi:

wi =

2

(
1

2
∑m

i=1
1

(µi−α)2

)
(µi − α)2

=

1
((µi−α)2)

1∑m
i=1

1
(µi−α)2

This is a closed form equation for the computation of the optimal weights. This is ad-
vantageous because, in contrast to for example Best Arm Identification, we do not have
to use numerical solvers to compute equations and is thus computationally cheaper. In
theory, this problem could have the same answer as our algorithm. When the thresh-
old is set close to the initial average, and the means don’t vary significantly, the average
remains stable, ensuring that the set of means above and below the average doesn’t change.

Interestingly enough there is another (possibly more) query with the exact same formula
for the optimal weights, namely: How many arms are above a threshold? A part of the
derivation can be found in the appendix: 10.7.

4.0.2 Sample proportions for best arm identification

Garivier and Kaufmann’s work, [7], has had a significant impact on the field of pure
exploration. Their work is on the complexity of finding the best arm, within a single
parameter bandit problems. The query in question is defined as:

i⋆(µ) = {i : µi > µj ∀j ∈ [m] \ i}

The alternative of µ is written by the authors to be equal to

Alt(µ) =
⋃
a̸=1

{λ ∈ S : λa > λ1}

27

Where λ1 > max
b̸=1

λb. µ is defined such that µ1 > µ2 ≥ · · · ≥ µm. This definition implies

that we focus on bandits where there is a unique best arm.

The inner part of the optimization problem is then worked at in the following manner:

inf
λ∈Alt(µ)

(
m∑
a=1

wjd(µa, λa)

)

= min
a̸=1

inf
λ∈S:λa>λ1

(
m∑
a=1

wad(µa, λa)

)
= min

a̸=1
inf

λ∈S:λa>λ1
wad(µa, λa) + w1d(µ1, λ1)

The minimization of wad(µa, λa) +w1d(µ1, λ1) is done analytically and the corresponding
value for λ is then:

λa = λ1 =
w1

w1 + wa
µ1 +

wa
w1 + wa

µa

The whole optimization problem is then rewritten as

argmax
w∈

∑
m

w1min
a̸=1

ga

(
wa
w1

)
ga(x) = d(µ1,ma(x)) + xd(µa,ma(x))

ma(x) =
µ1 + xµa
1 + x

After further manipulation we end up with the following relation to find the optimal
weights:

w⋆a(µ) =
xa(y

⋆)∑
a xa(y

⋆)

Where xa(y) = g−1
a (y) and y⋆ is the unique solution to the equation:

m∑
a=2

d (µ1,ma(xa(y)))

d (µa,ma(xa(y)))
= 1

This problem potentially closely resembles the problem of finding the set of means above
the mean of the rewards, only in the case when one mean has a dramatically high reward
such that it is the only mean above the average. Then we are essentially searching for the
arm with the biggest reward.

Now that we have the equations for the optimal weights for both algorithms (Best Arm
Identification and arms above threshold). We will compare the performance in the next
section.

28

Chapter 5

Numerical experiments

In this Chapter we implement the results for existing problems from Chapter 4 and compare
the performance to our algorithm. We also test influence of the confidence δ on the
expected stopping time. Also the influence of the variance s2 = 1

m

∑m
i=1(µi − µ̄)2 of

the numbers inside set µ. In the numerical experiments, our algorithm is referred to as
FindingMeano. The algorithm for identifying arms above a given threshold is denoted as
AboveThreshold, while the algorithm for identifying the best arm is simply referred to as
Best Arm Identification.

5.0.1 Influence of δ

In Figure 5.1 we investigate the relationship between δ and the expected stopping time of
our algorithm 3.1.5. From this Figure we can see that the average values for the sample

Figure 5.1: The Figure depicts the relationship between the sample complexity
and δ. µ = [0.29, 0.12, 0.07], T ⋆(µ) = 2205, N = 100 repetitions for each δ

29

complexity are lower for higher values of δ. We additionally plotted a 95% confidence
interval around the average sample complexity.

5.0.2 Influence of σ

To investigate the relationship between the sample complexity and the variance of the mean
of the rewards the following Figure is made: 5.2 In this Figure, all µi for i ∈ {1, 2, 3, 4}

Figure 5.2: The Figure depicts the relationship between the sample complexity
and the variance of µ. The set of values µ is generated from the distribution N (0, 1).

are drawn from a normal distribution with a mean of zero and a variance of one, denoted
as N (0, 1). From this, we measure the variance of the generated set of means of rewards
using the following formula: s2 = 1

m−1

∑m
i=1(µi − µ̄)2 with µ̄ = 1

m

∑m
i=1 µi. We keep track

of the relation between the sample complexity and this variance. We can see that for
lower values of this measured variance we see more instances of (relative) high values of
the sample complexity. However these observations do not immediately lead to significant
conclusions.

5.0.3 Evolution of weights

We plot the evolution of the weights over time in Figure 5.3. In the Figure we can see the
evolution of the change of weights. The grey lines indicate that at that time there is a shift
of the set J where that specific arm is involved. So or the set J now includes or excludes
that specific arm. We can see that at these times there is a significant change in value of
that specific weight. After a certain time, where there is no change in the set J anymore,
we see that all the weights are relatively stable.

30

Figure 5.3: The plot depicts the evolution of the weights over time. µ = [0.1,
0.25, 0.3, 0.4], δ = 0.01, grey lines indicate switch of set J , T ⋆(µ) = 28800

5.0.4 Comparisons

A comparison can be made between our algorithm, which we call FindingMeano and other
algorithms that have been developed for Track-and-Stop. This can be achieved by selecting
an appropriate µ and ensuring that the resulting answer is identical for both. Firstly, we
compare our algorithm with one designed for threshold bandits. The threshold is then set
to an average of the mean rewards. Secondly, a set µ is selected, whereby the highest value
is so extreme such that it is the sole value above the mean. This renders the identification
of all arms with an above-average reward identical to the selection of the arm with the
highest reward.

From Figure 5.4 we can clearly see that the algorithm for threshold bandit outperforms
our algorithm for the configurations mentioned above

From Figure 5.5 we can see that best arm identification outperforms our algorithm when
µ is chosen such that the answer for both our algorithm and Best Arm Identification are
equivalent.

31

Figure 5.4: Plot shows the relationship between δ and the sample complexity for
both models: AboveThreshold and FindingMeano. The values of µ are generated as
follows: µ = [0.29, 0.25, 0.07], T ⋆F indingMeano(µ) = 2067, T ⋆AboveThreshold(µ) = 1297

Figure 5.5: Plot shows the relationship between δ and the sample complexity for
both models: Best Arm Identification and FindingMeano (T ⋆(µ) = 2205). The
values of µ are generated as follows: µ = [0.29, 0.12, 0.07].

32

Chapter 6

For further research

6.0.1 Extension of the objective

For further research it would be interesting to work out a similar problem as our query:

i⋆(µ) = {i ∈ [m] : µi ≥ µ̄+ kσ}

Where k ∈ R, σ =
√

1
n

∑n
i=1(µi − µ̄)2 The derivation for this problem is challenging. We

refer to our efforts in Appendix: 10.8. As mentioned in Appendix, we end up with a term
we do not yet know how to analytically work out. We believe that this extension of the
objective is more in line with real applications. It is very similar to the objective of finding
the K-best arms that is worked out in paper: [18] but with the adjustment that we do not
have to have a reasonable value for K when we use it.

33

Chapter 7

Discussion

From Figure 3.1 we can see that the number of subsets we have to check, until we find
the correct subset J , scales less than linear with the number of arms. However iteratively
having to verify if all the KKT-conditions are met is still costly. The computational cost
of the algorithm is inordinate because of this. Especially for larger values of m. So to find
a proof such that we can immediately find the correct subset J is of importance.

In Figure 5.3 we see the relationship between the relative change in weights over time.
We can immediately see that the significant changes in weights occur during the moments
when the change in set J occurs (the one involving the arms in question). This begs the
question whether it is necessary to recalculate the weights at every iteration, instead of
only performing this procedure when there is a change in the set J .

The extent to which we can use our expression is limited. As can be seen from the equation
3.38, that is used to find the weights for the means in set J . We can see that when we
would have an arm with a reward that is precisely equal to the average of all rewards,
the weight is negative, which is infeasible. This limitation is purely theoretical since the
probability for a continuous function to be precisely equal to this is zero.

The numerical experiments were acquired using D-tracking. C-tracking was used to assess
the whether the implementation was correct and if results where considerably different. It
is acknowledged that D-tracking may not converge, as previously observed in the literature
[5]. However, no evidence was found to suggest that this phenomenon occurs in the context
of our algorithm.

The results that we find in Figure 5.1 are as expected. We can visually see a general
downward trend for the sample complexity when we increase δ. This relationship seems
obvious since we can stop earlier when we relax the probability that we do not give the
correct answer. Additionally, we indicate with the red line: T (µ) log(1δ). As δ → 0 we
know that this must be lower than the sample complexity if the algorithm is δ-PAC. From
the Figure we can see that this holds. If we look closely, we can see that for lower values
of δ the sample complexity is gradually converging.

From the Figure 5.2 we can see the relationship between the variance of the set of random
numbers µ and the sample complexity. The result is as expected. We could say that it is
generally more difficult to distinguish between numbers that are close together. But this is
not the whole picture. A smaller variance does not immediately mean that the differences

34

from the mean are also closer, which would make it harder to identify whether it is above
or below the average..

In Figure 5.4 we have compared the performance for our model with the threshold bandit
model. It should be stressed that the comparison is not an entirely accurate representation
of reality, as it is based on the assumption that the final mean of all rewards has already
been determined. Furthermore, the threshold is not dependent on the preliminary esti-
mates of µ. This means that the weights for the thresholding bandit problem do not have
the problem that the preliminary estimate of the mean could be significantly different from
the actual mean. This could also explain the difference in the performance. Not only of the
average stopping time but also on the variance. We see that for the thresholding bandit
model, the variance is significantly lower. The equation for the optimal weights used to
model the threshold bandit does not incorporate the fact that the threshold is dynamic.
Therefore simply making the threshold equal to the current estimation of the mean of all
the rewards would not be accurate.

In Figure 5.5 we have compared the performance of our model with the Best arm iden-
tification for chosen µ such that the objectives align. We can see from the Figure that
the Best Arm Identification algorithm outperforms our model throughout the simulation.
For lower values of δ the 95% interval overlaps more heavily, indicating that it might be
harder to differentiate between the performances for both the algorithms. We believe that
the performance difference could be entirely explained by the simple fact that Best Arm
Identification is more equipped to perform the chosen objective.

We believe that the benefits by calculating the weights using the approach covered in
[12] do not outweigh the loss of precision. The benefit of using this method is that we
reduce the complexity of the inner part of the optimization problem. However the inner
part of the optimization is the minimization over all arms, which is linear in the number
of arms. We also do not solve the problem relating to finding the correct set of J .

Considerable effort has been invested in attempting to prove a method to analytically
find the set J . However, all such attempts have ultimately failed. The comparison be-
tween the values of sets J and I has not yielded any conclusive results. Furthermore, a
more detailed examination of the KKT conditions did not lead to the discovery of any new
KKT conditions. We did find properties of the set J that have been empirically tested to
be true, however the converse is not true. An example of this is:∑

j∈J
(µ̄− µj)

2 ≥
∑
i∈I

(µ̄− µi)
2

However there could be multiple sets for which this is the case.

As has been covered in Section 3.1.4, the conjecture is that the arm with the smallest
distance. During all the necessary numerical experiments, as well as all other computa-
tions we did not find a singular case for which the arm with the smallest distance to the
mean was not in set J . However, without a formal proof we cannot rule the possibility
out.

35

Chapter 8

Conclusion

In this thesis we covered the sample complexity of the dynamic-threshold problem of finding
all arms with a reward that is higher than the arithmetic mean of all rewards. For this
analyse we made the assumption that the rewards are sampled according to a normal
distribution that is governed by one parameter (the mean). We found that the sample
complexity (and the KKT-conditions) are dependent on certain subsets I and J . We did
not find an analytical method to find these. However we found an accelerated method to
find the appropriate configurations of set I and J . We compared the sample complexity
with other algorithms that have the same answer. We found that our algorithm has a
higher stopping time than the Best Arm Identification algorithm and Thresholding bandit
algorithm for instances of µ for which the correct answer was identical. All algorithms are
implemented using the Track-and-Stop strategy. We also verified the δ-PAC property for
our algorithm, FindingMeano.

Chapter 9

Acknowledgement

I would like to express my sincere gratitude to my supervisor Wouter Koolen for his support
and essential feedback for this thesis. Additionally, I would like to thank Dr. Rianne de

36

Heide and Dr. Antonios Antoniadis for being part of the assessment committee.

Chapter 10

Appendix

10.1 Lower bound

Proof. For this proof we closely follow the reasoning as provided in the paper [9]. Using
the log-likelihood ratio Lt and using (Ya,s) which is the sequence of outcomes from arm a
at time s. The log-likelihood ratio is defined as

Lt =

m∑
a=1

t∑
s=1

1 {As = a} log
(
ft(Ya,s)

f ′t(Ya,s)

)

=
m∑
a=1

Na(t)∑
s=1

log

(
ft(Ya,s)

f ′t(Ya,s)

)
If we than use the the fact that:

Eν

[
log

(
ft(Ya,s)

f ′t(Ya,s)

)]
= kl(µa, λa)

we than have

Eν [Lσ] =

m∑
a=1

Eν [Na(τ)]kl(µa, λa) ≥ kl(Pµ(ϵ), Pλ(ϵ))

By 1, ϵ could be any event. If we choose the appropriate events

Pµ(ϵ) = Pµ(Îτδ ̸= a⋆) = δ Pλ(ϵ) = Pλ(Îτδ ̸= a⋆) = 1− δ

Eµ[τδ]
m∑
a=1

Eµ[Na(τδ)]

Eµ[τδ]
kl(µa, λa) ≥ kl(δ, 1− δ)

we know the following:

Eµ[τδ] =

m∑
a=1

Eµ[Na[τδ]]

So by dividing them, as done in the previous equation, we essentially have a parameter
that is the allocation of all arms. This is the parameter wa, better known as the weight
of the arm a. We use the notation

∑
m = {w ∈ R+ : w1 + · · ·+ wm = 1} to express these

weights. At last, [9] makes two observations:

37

1. For each arm there exists a lower bound on the expected number of draws

2. this must hold for all δ-PAC problems

The first distinction gives rises to the idea to seek a set of alternatives λ ∈ Alt(µ) to
minimize over, this such that we do not have to find separately the alternatives for each
arm. Secondly the problem must hold for all δ-PAC strategies and therefore the weight
of all arms is replaced by taking the supremum. If we combine these two observations we
have the lower bound on the number of draws needed.

kl(δ, 1− δ) ≤ E[τδ] sup
w∈

∑
m

inf
λ∈Alt(µ)

m∑
a=1

wad(µa, λa)

10.2 Case: |J | = m

We start by reiterating the KKT-condition, for which we follow a different trajectory. This
is complementary slackness:

γi(ψ − ci) = 0

If |J| = m:

ψ = ci ∀i ∈ [m]

ψ =
wim

2(µ̄− µ)2

2(m(m− 2) + wiA)

wi =
2ψm(m− 2)

m2(µ̄− µj)2 − 2ψA

We first express A

A =
m∑
i=1

1

wi

=

m∑
i=1

m2(µ̄− µj)
2 − 2ψA

2ψm(m− 2)

=

m∑
i=1

m2(µ̄− µj)
2

2ψm(m− 2)
− 2ψA

2ψm(m− 2)

We can reconfigure all the terms, and we end up with

A =
m

m− 1

1

2ψ

m∑
i=1

(µ̄− µi)
2

If we fill this into our original expression we get:

wi =
2ψm(m− 2)

m2(µ̄− µi)2 − m
m−1

∑m
i=1(µ̄− µi)2

(10.1)

If we then use the expression
∑

iwi = 1, we find the appropriate ψ to be

38

ψ =

1
2m(m−2)

1
m2(µ̄−µi)2− m

m−1

∑m
i=1(µ̄−µi)2

We can use this expression for ψ in our original expression for the weights to get the result
as has been established.

10.3 Reasoning heuristic

We explain the proof for the fact that the set J is an interval by a proof by contradic-
tion. We assume that at least the arm that has lowest distance to the mean is in J . We
try to prove that adding from lowest to highest will eventually result in the correct set J ,
so without every there being gaps between consecutive arms (in terms of distance to mean).

Proof by Contradiction: We sort all arms according to their respective squared dis-
tance to the mean. Without loss of generality we label them µ1 < µ2 < · · · < µm. We are
given a set J where arm i,j and k are included in set J . We have µi < µj < µk. First we
assume the contrary: µi, µk ∈ J, µj /∈ J .

We know that ∀µi ∈ J, ci = ψ

ci = ck , cj ̸= ci

Given the definition of ci:

ci =
wim

2(µ̄− µi)
2

2(m(m− 2) + wiA)
,

cj =
wjm

2(µ̄− µj)
2

2(m(m− 2) + wjA)
,

ck =
wkm

2(µ̄− µk)
2

2(m(m− 2) + wkA)
,

Expressing ci in terms of another arm
Given that ci = ck and cj ̸= ci, let’s explore these relationships.
We introduce ϵ < 1 such that:

(µ̄− µi)
2 = ϵ(µ̄− µj)

2

Then we have

wim
2(µ̄− µi)

2

2m(m− 2) + wiA

=
wim

2(µ̄− µj)
2ϵ

2m(m− 2) + wiA

so we have

wim
2(µ̄− µ2)

2ϵ

2m(m− 2) + wiA
̸= wjm

2(µ̄− µj)
2

2(m(m− 2) + wjA)

39

We can rearrange this accordingly:

wi
wj

m(m− 2) + wjA

m(m− 2) + wiA
̸= (µ̄− µj)

2

(µ̄− µj)2ϵ

We know that ϵ < 1, combining the two makes:

wi(m(m− 2) + wjA)

wj(m(m− 2) + wiA)
< 1

We assume m > 2 so from this we know that wi < wj .

We can repeat this process again, but then transform:

(µ̄− µk)
2 = ϵ(µ̄− µj)

2

for ϵ > 1. If we repeat the steps we get the conclusion wj < wk. If we analyze the
dependency of ci (same dependency for j and k) on w:

ci =
wim

2(µ̄− µi)
2

2(m(m− 2) + wiA)

=
m2(µ̄− µi)

2

2(m(m−2)
wi

+A

We can see that an increase of wi, as for an increase in (µ̄− µi)
2 both lead to a higher ci.

And wk > wi (µ̄ − µk)
2 > (µ̄ − µi)

2, which in term leads to ck > ci. This contradicts
the assumption that ci = ck. Conclusion: This contradiction implies that our initial
assumption must be false. Therefore, if arm i is in J and arm j is not, then arm k cannot
be in J . □

10.4 Gradient Ascent

F (w, µ) = inf
λ∈Alt(µ)

m∑
i=1

wid(µi, λi)

= min
i

wim
2(µ̄− µi)

2

2(m(m− 2) + wiA)

This function is directly dependent on wi but also indirectly because of A =
∑m

i=1
1
wi

. To
compute the gradient with respect to wi we use the product rule.

δF

δwi
=
δF

δw

δA

δW

= − 1

w2
i

(µ̄− µi)
2m3(m− 2)

2(m(m− 2) + wiA)2

so

∇F (w, µ) = min
i

1

w2
i

(µ̄− µi)
2m3(m− 2)

2(m(m− 2) + wiA)2

40

10.5 Alt

Figure depicting the effect of λi = λ̄ and λj = µj −
1
m
ν

wj
.

10.6 Kullback-Leibler divergence

Let P = N (µ, σ21) and Q = N (λ, σ22) be two normal distributions with probability density
functions:

p(x) =
1√
2πσ21

exp

(
−(x− µ)2

2σ21

)

q(x) =
1√
2πσ22

exp

(
−(x− λ)2

2σ22

)
The Kullback-Leibler (KL) divergence from P to Q is defined as:

DKL(P ||Q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx

We first simplify the logarithmic part of the integral.

log
p(x)

q(x)
= log

 1√
2πσ2

1

exp
(
− (x−µ)2

2σ2
1

)
1√
2πσ2

2

exp
(
− (x−λ)2

2σ2
2

)

Simplifying the logarithm:

41

log
p(x)

q(x)
= log

σ2
σ1

+
(x− µ)2

2σ21
− (x− λ)2

2σ22

Thus, the KL divergence becomes:

DKL(P ||Q) =

∫ ∞

−∞

1√
2πσ21

exp

(
−(x− µ)2

2σ21

)[
log

σ2
σ1

+
(x− µ)2

2σ21
− (x− λ)2

2σ22

]
dx

This can be split into three separate integrals:
First part∫ ∞

−∞

1√
2πσ21

exp

(
−(x− µ)2

2σ21

)
︸ ︷︷ ︸

Integral from −∞ to ∞ of p(x)=1

[
log

σ2
σ1

]
︸ ︷︷ ︸
Constant

= log
σ2
σ1

Second part∫ ∞

−∞

1√
2πσ21

exp

(
−(x− µ)2

2σ21

)
(x− µ)2

2σ21
dx︸ ︷︷ ︸

Expectation of (x−µ)2

2σ2
1

This integral represents the expectation of (x−µ)2
2σ2

1
):

E
[
(x− µ)2

2σ21

]
=

1

2σ21︸︷︷︸
Constant

EP
[
(x− µ)2

]︸ ︷︷ ︸
σ2
1 (variance of P (x))

Since EP
[
(x− µ)2

]
= σ21 (the variance of the distribution P (x)):

EP
[
(x− µ)2

2σ21

]
=

1

2σ21
· σ21︸ ︷︷ ︸

1
2

=
1

2

Thus, the second integral simplifies to 1
2 .

Third part∫ ∞

−∞

1√
2πσ21

exp

(
−(x− µ)2

2σ21

)
(x− λ)2

2σ22
dx

Expanding (x− λ)2 as:

(x− λ)2 = (x− µ+ µ− λ)2 = (x− µ)2 + 2(x− µ)(µ− λ) + (µ− λ)2

42

The integral becomes:

1

2σ22

∫ ∞

−∞

1√
2πσ21

exp

(
−(x− µ)2

2σ21

)[
(x− µ)2 + 2(x− µ)(µ− λ) + (µ− λ)2

]
dx

First part

1

2σ22

∫ ∞

−∞

1√
2πσ21

exp

(
−(x− µ)2

2σ21

)
(x− µ)2 dx =

σ21
2σ22

As again EP
[
(x− µ)2

]
= σ21

Second part

1

2σ22
· 2(µ− λ)

∫ ∞

−∞

1√
2πσ21

exp

(
−(x− µ)2

2σ21

)
(x− µ) dx = E[X − µ] = E[X]− µ = 0

Third part

1

2σ22
(µ− λ)2

∫ ∞

−∞

1√
2πσ21

exp

(
−(x− µ)2

2σ21

)
dx︸ ︷︷ ︸

Integral of p(x)=1

=
(µ− λ)2

2σ22

Combining these, the third integral evaluates to:

σ21
2σ22

+
(µ− λ)2

2σ22

Final expression Substituting back into the KL divergence expression:

DKL(P ||Q) = log
σ2
σ1

+
σ21 + (µ− λ)2

2σ22
− 1

2

If we use σ1 = σ2 = 1 we have the result as we use it:

DKL(P ||Q) =
(µ− λ)2

2

10.7 Sample complexity: how many arms are above a thresh-
old

To answer the query: How many arms are above a threshold? We use the following
definition for the correct answer:

i⋆(µ) =
m∑
i=1

1{µi ≥ α}

We assume a normal distribution for the Kullback-Leibler divergence.

inf
λ∈Alt(µ)

(
m∑
a=1

wa
(µa − λa)

2

2

)

43

To elaborate on the alternative of µ we explore both the case for which the correct answer
for λ lies above and below the correct answer of µ. If we set the correct number of arms in
µ, above the threshold α to be equal to π, we seek: i⋆(λ) = π + 1 To increase the correct
answer, we pick arm k such that µk < α and we set λk = α.

inf
λ∈Alt(µ)

(
m∑
a=1

wa
(µa − λa)

2

2

)
=

min
k:µk<α,λk=α

(
K∑
a=1

wa
(µa − λa)

2

2

)
For all λi ̸= λk choose λi = µi. With this relaxation we have:

min
k:µk<α

wk
(µk − α)2

2

To calculate i⋆(λ) = π − 1 we pick vector k such that µk ≥ α and we set λk < α

inf
λ∈Alt(µ)

(
m∑
a=1

wa
(µa − λa)

2

2

)
=

min
k:µk≥α,λk<α

(
m∑
a=1

wa
(µa − λa)

2

2

)
we set ∀i ̸= k : λi = µi

min
k:µk≥α

wk
(µk − α)2

2

We now now the correct form for when µ ≥ α and µ ≤ α. We want to include those
possibilities both therefore we therefore have:

inf
λ∈Alt(µ)

(
m∑
a=1

wa
(µa − λa)

2

2

)

= min
k
wk

(µk − α)2

2

From here we use the exact same reasoning as for problem 4.0.1 to acquire the equation
for the optimal weights.

10.8 For further research

We begin by defining sets I ∈ [m] J ∈ [m] \ I, we now use KKT-conditions on a generic
problem description of the problem.

KKT Conditions:

inf
λ

m∑
i=1

wi
(µi − λi)

2

2

44

subject to

λi ≥ λ̄+ kσ for all i ∈ I,

λj < λ̄+ kσ for all j ∈ J,

λ̄ =
1

m

m∑
i=1

λi,

σ =

√√√√ 1

m

m∑
i=1

(λ̄− λi)2.

Lagrangian:

L(λi, σ, λ̄,Xi, Yj , z, ν) =
m∑
i=1

wi
(µi − λi)

2

2
+
∑
i∈I

Xi(λ̄+ kσ − λi) +
∑
j∈J

Yj(λj − λ̄− kσ)

+ ν

(
λ̄− 1

m

m∑
i=1

λi

)

+ z

σ −

√√√√ 1

m

m∑
i=1

(λ̄− λi)2

Stationarity

−wi(µi − λi)−Xi −
1

m
ν +

1

m

λi − λ̄

σ
z = 0 ∀i ∈ I (10.2)

−wj(µj − λj) + Yj −
1

m
ν +

1

m

λj − λ̄

σ
z = 0 ∀j ∈ J (10.3)

∑
i∈I

Xi −
∑
j∈J

Yj + ν − 1

m

λi − λ̄

σ
z = 0 (10.4)

k
∑
i∈I

Xi − k
∑
j∈J

Yj + z = 0 (10.5)

If we multiply equation 10.4 with k and insert it into equation 10.5 we can get an expression
for ν.

ν = z

(
λi − λ̄

mσ
+

1

k

)
Using this newly acquired equation into equations 10.2 and 10.3 gives the following rela-
tions:

Xi = −wi(µi − λi) +
z

m

λi − λ̄

mσ
(1− 1

m
)− z

km
(10.6)

Yj = wj(µj − λj)−
z

m

λj − λ̄

mσ
(1− 1

m
) +

z

km
(10.7)

45

We now simplify equation 10.5. From equations 10.7 and 10.6 we can see that all the terms
have the same sign. We can make use of the fact that:

m∑
i=1

(λi − λ̄) =

m∑
i=1

λi −
m∑
i=1

λ̄ =

m∑
i=1

λi −
m∑
i=1

1

m

m∑
i

λi =

m∑
i=1

λi −
m∑
i=1

λi = 0

We also see that, if we take the sum of Xi and Yj we simplify the constant terms:

−|I|z
m

− |J |z
m

+ z =

−z |I|+ |J |
m

+ z = 0

Then equation 10.5 becomes:

−k
∑
i=1

Xi − k
∑
j

Yj + z = 0

−k
m∑
i=1

wi(µi − λi) = 0

m∑
i=1

wi(µi − λi) = 0 (10.8)

This is a remarkable result, because it is the same result as we had for the problem 1.1,
namely in equation 3.16. We again use the reasoning that was used to generate Alt(µ) for
the problem of finding the arms with a reward that is higher than the arithmetic mean. We
assume that the minimizer λ (infλ∈Alt(µ)) is in the subspace for an answer that is different
from the correct answer by only arm. We again use complementary slackness:

Xi(λ̄+ kσ − λi) = 0 (10.9)

Yj(λj − λ̄− kσ) = 0 (10.10)

We set Yj = 0 and set λi − λ̄− kσ = 0. We than have the following equations:

λj =
kµjm

2σwj + k(m− 1)λ̄z +mσz

k(m2σwj + (m− 1)z)
(10.11)

λi = λ̄+ kσ (10.12)

Using these two equations directly is not enough. We still need to workout λ̄, σ and z.
However this cannot be simply worked out. If we look at the equations that are given from
the condition primal feasibility:

λ̄ =
1

m

m∑
i=1

λi (10.13)

46

σ =

√√√√ 1

m

m∑
i=1

(λ̄− λi)2 (10.14)

We see for both equations that we have to use the summation of λi and λj . Taking the
sum of λj complicates finding expressions we can analytically solve. We have not found a
way to do this. What we can do, is express z using the following relations:

m∑
i=1

wi(µi − λi) = 0

Yj = wj(µj − λj)−
z

m

λj − λ̄

mσ
(1− 1

m
) +

z

km

If we manipulate Yj such that we solve for wj(µj − λj), take into account we set Yj equal
to zero we get and use the definition λi = λ̄+ kσ:

m∑
i

wi(µi − λi) = 0

=
∑
j

wj(µj − λj) + wi(µi − λi)

= wi(µi − λi) +

m∑
j∈[m]\i

z

m

λj − λ̄

σ
(1− 1

m
)− z(m− 1)

km

We can manipulate the summation of λj and use our definition of λi such that∑
j∈[m]\i

(λj − λ̄)

=
m∑
i

λi − λi − (m− 1)λ̄

= mλ̄− λ̄− kσ − (m− 1)λ̄

= −kσ

Using this we can obtain an expression for z, in terms of λ̄ and σ.

z =
km2wi(µi − λ̄− kσ)

(m− 1)(k2 −m)
(10.15)

Although the expression z does not simplify 10.11 we can see some restrictions. k2 ̸= m is
not allowed for example.

Bibliography

[1] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Mach.
Learn. Res., 3(null):397–422, mar 2003.

47

[2] Maryam Aziz, Emilie Kaufmann, and Marie Karelle Riviere. On multi-armed bandit
designs for dose-finding clinical trials. Journal of Machine Learning Research, 22:1–38,
2021. arXiv:1903.07082.

[3] Antoine Barrier. Contributions to a theory of pure exploration in sequential statistics.
URL: https://theses.hal.science/tel-04192097.

[4] Antoine Barrier. Contributions to a Theory of Pure Exploration in Sequential Statis-
tics To cite this version : HAL Id : tel-04192097 Discipline : Mathématiques Contri-
butions à une théorie de l ’ exploration pure en statistique séquentielle. 2023.

[5] Rémy Degenne and Wouter M. Koolen. Pure exploration with multiple correct an-
swers. Advances in Neural Information Processing Systems, 32:1–31, 2019.

[6] Aurélien Garivier and Olivier Cappé. The KL-UCB algorithm for bounded stochastic
bandits and beyond. Journal of Machine Learning Research, 19:359–376, 2011. arXiv:
1102.2490.

[7] Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed
confidence. Journal of Machine Learning Research, 49:998–1027, 2016.

[8] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and
hyperparameter optimization. Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, AISTATS 2016, pages 240–248, 2016. arXiv:
1502.07943.

[9] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of
best-arm identification in multi-armed bandit models. Journal of Machine Learning
Research, 17:1–42, 2016.

[10] Emilie Kaufmann and Wouter Koolen. Mixture martingales revisited with applications
to sequential tests and confidence intervals. 11 2018. URL: http://arxiv.org/abs/
1811.11419.

[11] Blake Mason, Lalit Jain, Ardhendu Tripathy, and Robert Nowak. Finding all e-good
arms in stochastic bandits. Advances in Neural Information Processing Systems, 2020-
Decem, 2020.

[12] Pierre Ménard. Gradient Ascent for Active Exploration in Bandit Problems. pages
1–21, 2019. URL: http://arxiv.org/abs/1905.08165, arXiv:1905.08165.

[13] Kanishka Misra, Eric Schwartz, and Jacob Abernethy. Dynamic online pricing with
incomplete information using multiarmed bandit experiments. Marketing Science, 38,
03 2019. doi:10.1287/mksc.2018.1129.

[14] Chao Qin and Wei You. Dual-directed algorithm design for efficient pure exploration.
10 2023. URL: http://arxiv.org/abs/2310.19319.

[15] Stephen Boyd Lieven Vandenberghe. Convex Optimization. 2013.

[16] WILLIAM R THOMPSON. ON THE LIKELIHOOD THAT ONE UNKNOWN
PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE
OF TWO SAMPLES. Biometrika, 25(3-4):285–294, 12 1933. arXiv:https:
//academic.oup.com/biomet/article-pdf/25/3-4/285/513725/25-3-4-285.pdf,
doi:10.1093/biomet/25.3-4.285.

48

https://arxiv.org/abs/1903.07082
https://theses.hal.science/tel-04192097
https://arxiv.org/abs/1102.2490
https://arxiv.org/abs/1102.2490
https://arxiv.org/abs/1502.07943
https://arxiv.org/abs/1502.07943
http://arxiv.org/abs/1811.11419
http://arxiv.org/abs/1811.11419
http://arxiv.org/abs/1905.08165
https://arxiv.org/abs/1905.08165
https://doi.org/10.1287/mksc.2018.1129
http://arxiv.org/abs/2310.19319
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/25/3-4/285/513725/25-3-4-285.pdf
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/25/3-4/285/513725/25-3-4-285.pdf
https://doi.org/10.1093/biomet/25.3-4.285

	Introduction
	Theoretical background
	Problem description
	Sample complexity
	Kullback–Leibler divergence
	Track-and-Stop strategy
	Optimal weights w
	Observations
	Tracking rules
	Generalized Likelihood Ratio statistic
	Threshold stopping rule

	Gradient Ascent

	KKT-conditions
	KKT-conditions
	Finding the set of means above average
	Infinum
	Argmax
	case: |J| = m
	Implementation
	Overview

	Results for existing problems
	Sample complexity of thresholding bandit
	Sample proportions for best arm identification

	Numerical experiments
	Influence of
	Influence of
	Evolution of weights
	Comparisons

	For further research
	Extension of the objective

	Discussion
	Conclusion
	Acknowledgement
	Appendix
	Lower bound
	Case: |J| = m
	Reasoning heuristic
	Gradient Ascent
	Alt
	Kullback-Leibler divergence
	Sample complexity: how many arms are above a threshold
	For further research

