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Summary 

Large parts of the Netherlands are located below sea level and face the threat of fluvial flooding. On 

the other hand, the intensity of extreme precipitation is expected to increase leading to a larger 

probability of pluvial flooding. To successfully incorporate potential future threats in the current water 

management strategy, it is important to be able to generate accurate predictions of the effects of these 

events. Hydrodynamic simulation models provide a solution to see the effects of extreme events on 

the water system but have long computation times, making them unsuitable for real-time use and 

evaluation of a large set of events.  

The objective of this study is to get insight into methods that can accelerate these hydrodynamic 

simulation models to make them better suitable for application in water management practices. The 

research is executed with the help of a case study from HydroLogic. This case study includes a highly 

detailed D-HYDRO model of the study area of Hoogheemraadschap de Stichtse Rijnlanden (HDSR), 

which is a Dutch water board. HDSR will use the model in the future to identify bottlenecks in the 

water system. In this procedure, several thousands of different rainfall events must be simulated.  At 

the start of the research, the model computed 15 times slower than reality, making it unsuitable for 

simulating all these events. 

Two approaches are researched that can accelerate the model. First, the effect of numerical 

instabilities on the computation time is examined. Numerical instabilities arise if numerical errors grow 

and the output starts to diverge. This limits the time step that can be taken, resulting in long 

computation times. Indicators for numerical instabilities are high flow velocities, water depths of zero 

meters and waterways that fill or empty quickly. Several of these locations are present in the original 

model of the case study and are examined. This resulted in a list of seventeen causes of numerical 

instabilities. Most of these numerical instabilities are related to poor data quality and incorrect model 

construction. By obtaining missing data and improving the model construction, most numerical 

instabilities are solved. As a consequence, the computation time is reduced by 96%. Furthermore, by 

correcting the data and enhancing the model construction, the optimised model is also more accurate. 

Since resolving numerical instabilities can drastically advance the computation time while improving 

the accuracy, it is advised to always check for numerical instabilities in detailed 1D2D hydrodynamic 

models and solve potential issues. 

Secondly, numerical simplifications are implemented in the optimised model to obtain surrogate 

models. Surrogate models approximate the detailed hydrodynamic model and are therefore faster, but 

come with a loss in accuracy. The tested numerical simplifications constitute a reduced 2D grid 

resolution, a reduction in the number of 1D calculation points and an increased maximum Courant 

number. Reducing the 2D grid resolution and number of 1D calculation points reduces the computation 

time by 2% to 57% but also introduces significant errors in the simulated water level of more than 5 

cm. Increasing the maximum Courant number is the most efficient and can reduce the computation 

time of the optimised model by more than 90% while having an error in the water level that is less 

than 0.5 cm. A maximum Courant number of 5, the default is often 0.7 in detailed hydrodynamic 

models, seems to be the best in the trade-off between computation time and accuracy.  

Overall, it can be concluded that resolving numerical instabilities is an effective first step in reducing 

the computation time of complex 1D2D hydrodynamic models since the accuracy will often improve 

as well during this step. If a larger reduction in computation time is required, the maximum Courant 

number can be increased between 1 and 5 depending on the required accuracy and computation time 

savings for the specific project.   
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Introduction 

Large parts of the Netherlands are located below sea level and several large rivers cross the country 

on their way to the sea. In combination with the sea level rise caused by climate change, the 

Netherlands faces an increasing threat of flooding from these rivers (Rijkswaterstaat, 2019). On the 

other hand, the intensity of extreme precipitation is expected to increase (KNMI, 2021), which can 

cause more pluvial flooding (Hofmann & Schüttrumpf, 2020). To successfully incorporate potential 

future threats in the current water management strategy, it is important to be able to generate 

accurate predictions of the effects of these events. Hydrodynamic simulation models provide a 

solution to see the effects of extreme events on the water system. 

The basis of most of these models is a 2D raster grid, that allows the simulation of water flows in both 

horizontal directions (Zhao et al., 2021). The flow is averaged for the depth. For each time step, 

equations are solved for each raster cell. These detailed hydrodynamic models provide accurate results 

but have a significant computation time, especially for large areas (Wang et al., 2019). This makes the 

models unserviceable for real-time flood predictions and analysis of a large set of events (Zhao et al., 

2021). A new trend is currently seen in hydrodynamic modelling practices, which make use of surrogate 

models. These surrogate models approximate the original detailed hydrodynamic model such that the 

computational load is reduced (Razavi et al., 2012). Subsequently, these simplified models are used in 

real-time predictions and sensitivity analysis.  

Several methods exist to construct surrogate models. Most methods simplify the original model, which 

is also called the “high-fidelity” model. For instance, the time step can be enlarged to speed up the 

original model. Other options are to reduce the grid resolution, decrease the number of calculation 

points or scale down the dimensions that are modelled (Bomers et al., 2019a; Razavi et al., 2012). A 

major question evolves from these simplifications and that is to which extent these surrogates are 

accurate when compared to the original model.  

Various software packages exist that can simulate hydrodynamics, for example, SOBEK, HEC-RAS, and 

TYGRON (Teng et al., 2017). A relatively new addition to the field is the D-HYDRO software that is 

developed by Deltares. It can be seen as the successor of SOBEK (Deltares, n.d.). Because D-HYDRO is 

a relatively new modelling software, limited research is executed on accelerating models in this 

software by means of surrogates. The topic of this research explores therefore the practice of surrogate 

modelling with the D-HYDRO software, although the results might also apply to other modelling 

software.  

This thesis is structured as follows. Chapter 2 will provide a theoretical framework for this research. 

The basics of hydrodynamic modelling will shortly be touched upon. The main body of this chapter 

consists of a literature study on available methods to advance hydrodynamic models. Section 3 will 

clearly show the knowledge gap that follows from the literature study. Then a research objective is 

formulated that helps to bridge the knowledge gap. Based on this research aim, the research questions 

are drafted. Subsequently, the case study, including the involved parties, study area and D-HYDRO 

model, will be introduced in Chapter 4. Section 5 discusses the methods that will be applied to answer 

the research questions. The results will be presented in Chapter 6 and discussed in Section 7. Chapter 

8 will answer the research questions and recommendations will be made for further research. 
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Theoretical framework 

This section examines the existing literature on the topic of detailed 1D2D hydrodynamic models and 

covers background information on the software D-HYDRO. Moreover, it explores what type of model 

simplifications can be used to reduce the computation time of a detailed 1D2D hydrodynamic model. 

This will lead to the formulation of the research objective and questions in the next chapter.  

2.1 Dimensions in hydraulic modelling 
This section will briefly touch upon the basic classification of hydraulic models since this is used in 

almost all literature on the topic covered by this thesis. This categorization focuses on the degree of 

complexity of the model, see Figure 1  for an overview of hydraulic models. Zero-dimensional (0D) 

models represent a certain enclosed area as a container. The water level in the container is based on 

the total volume that flows into the compartment and is assumed to be equal in the whole area. This 

method is extremely fast and easy to implement but is only suitable for small, enclosed areas without 

a slope (De Bruijn, 2018).   

One-dimensional models (1D) calculate the hydraulic parameters along the river axis for certain cross-

sections. Water depths and flow velocities can be calculated with these models (Teng et al., 2017). The 

number of cross-sections is often restricted such that the computation time remains low (De Bruijn, 

2018). 1D models only calculate the data along the cross-sections, which introduces subjectivity about 

which cross-sections are used. Moreover, this method is less accurate in sharp bends (Hunter et al., 

2007; Teng et al., 2017). Lastly, flooding is difficult to model with 1D as flood water often spreads in 

multiple directions, which cannot be represented well with 1D (Zhao et al., 2021). A 1D model that has 

side branches is often called Quasi-2D (De Bruijn, 2018).  

Two-dimensional models (2D) work with a raster of cells that partially solve the problems of 1D 

models. The water is allowed to flow in both horizontal directions. One large constraint on the use of 

2D models is the required computation time, which can be high for models with a high resolution (De 

Bruijn, 2018; Razavi et al., 2012; Teng et al., 2017). This can especially be difficult for modelling 

channels as these require a high resolution to yield accurate flow patterns with a 2D simulation (Zhao 

et al., 2021).  

 
Figure 1 - Overview of model dimensions (from De Bruijn, 2018). 

Three-dimensional models (3D) add equations to the 2D model that take into account variable flow 

characteristics in the depth dimension. These models can be more accurate than 2D models but result 

in more computational load and can be difficult to set up (Teng et al., 2017; Dahm et al., 2014).  

Lastly, 1D2D models combine 1D flow in rivers and a 2D flow raster in the surrounding area. This limits 

the computation time related to the river characteristics while being able to accurately model flood 

propagation in the surrounding areas (De Bruijn, 2018). The same holds for a 1D3D model. 
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2.2 D-HYDRO 
The D-HYDRO software package is used in this research to construct and simulate a detailed 1D2D 

hydrodynamic model. It is developed by Deltares and can simulate a variety of different water-related 

processes such as tsunamis, waves, water levels, river morphology, sediment transport and storm 

surges. The package contains different modules that are each developed for modelling one specific 

water-related process although all modules can perfectly be integrated (Deltares, n.d.).  

This research will focus on D-FLOW Flexible Mesh (D-FLOW FM) which is the main module of D-HYDRO. 

This module allows the use of a coupled 1D2D or 1D3D grid for hydrodynamic simulations. 

Furthermore, the 2D grid cells can be flexible in size and shape (triangular or square), based on the 

characteristics of the area. Important areas, around structures for example, can be modelled in high 

resolution, while large areas with similar characteristics can be modelled in a low resolution. The D-

FLOW FM module solves the 2D Shallow Water equations for each grid cell at each time step. These 

equations are given by Eq. 1 - Eq. 3  (Deltares, 2023): 

Depth-average continuity eq. 
𝜕𝑧

𝜕𝑡
+
𝜕(ℎ + 𝑧)𝑢

𝜕𝑥
+
𝜕(ℎ + 𝑧)𝑣

𝜕𝑦
= 0 

Eq. 1 

Momentum eq. x direction 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −𝑔

𝜕𝑧

𝜕𝑥
−
𝑔𝑢√𝑢2 + 𝑣2

𝐶𝑧
2(ℎ + 𝑧)

 Eq. 2 

Momentum eq. y direction 𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −𝑔

𝜕𝑧

𝜕𝑦
−
𝑔𝑣√𝑢2 + 𝑣2

𝐶𝑧
2(ℎ + 𝑧)

 Eq. 3 

Where 𝑢 and 𝑣 represent the depth-averaged flow components in x- and y-directions respectively 

(m/s), ℎ is the water depth (m), 𝑧 is the water surface elevation (m), 𝑔 represents the constant 

gravitational acceleration (m/s2), and 𝐶𝑧 is the Chézy friction coefficient (m0.5/s).  

D-HYDRO uses a combination of an explicit and implicit calculation scheme. An explicit scheme 

calculates the solution of the time step solely with the solution of the previous time step. When using 

larger time steps, numerical errors can grow over time with these explicit schemes (Akbari & Firoozi, 

2010; Deltares, 2024). The duration of the time step in D-HYDRO is therefore dynamic and limited by 

the grid size. The duration of the time step is calculated with Eq. 4  and becomes smaller if the flow 

velocities are higher or if the grid size is smaller. Furthermore, the time step depends on the maximum 

Courant number 𝐶𝑚𝑎𝑥. The default value for this parameter in D-FLOW FM is 0.7, which means that a 

particle of water cannot flow further than 0.7 cells during 1 time step. A maximum Courant number 

larger than 1 means that a particle of water can flow further than 1 cell. Values larger than 1 should 

be used with care because it can result in instability of the explicit scheme (Deltares, 2023). For each 

time step, the ∆𝑡 parameter is calculated in all cells. The smallest value for ∆𝑡 is then used as the 

duration of the time step. This means that areas with higher flow velocities are often the limiting factor 

for the length of the time step (Sanders, 2008).  

 ∆𝑡 =
𝐶𝑚𝑎𝑥

(
𝑢𝑥
∆𝑥 +

𝑢𝑦
∆𝑦)

 Eq. 4 

Where 𝑢𝑥 represents the flow velocity in the x-direction (m/s),  𝑢𝑦 represents the flow velocity in the 

y-direction (m/s), 𝐶𝑚𝑎𝑥 the maximum allowed Courant number, ∆𝑡 the duration of the time step (s), 

∆𝑥 the length of the grid cell in the x-direction (m), and ∆𝑦 the length of the grid cell in the y-direction 

(m). 
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2.3 Overview methods for advancing hydrodynamic models 
Long computation times are a commonly encountered problem with 1D2D hydrodynamic models, 

especially when using high resolutions (see e.g. Fraehr et al., 2024; Jamali et al., 2021; Razavi et al., 

2012; Zhao et al., 2021). Several methods have been proposed to reduce the computation time of 

detailed 1D2D hydrodynamic models. This section will elaborate on these attempts in literature. 

Zhao et al. (2021) and Neal et al. (2010) suggest using parallelization of the high-fidelity model. With 

this method, the computational burden is spread over multiple calculation cores that work at the same 

time (often in multiple computers). However, the model considered in this study will be run on one 

single computer such that parallelization is not a viable option at this moment. It is therefore not 

considered in this research. 

Besides parallelization, surrogate models can be used. Surrogate models approximate the original high-

fidelity model to decrease the computational load (Razavi et al., 2012). Two main classes of surrogate 

models exist: Response Surface Surrogates (RSS) and Low-Fidelity Physically based Surrogates (LFPS).  

Response Surface Surrogates (RSS) are models that use statistical and empirical regression and 

machine learning techniques to approximate the relations of the relevant parameters in the model. 

This type of surrogate model no longer uses the physical equations that underlie the original model 

(Razavi et al., 2012). Burrichter et al. (2023) show that the results of an RSS that estimates pluvial 

flooding in small-scale areas can show a high agreement with the original 2D model while significantly 

reducing computation times. On the other hand, the RSS developed by Jamali et al. (2021) did not 

perform well in a real case study that covered a larger area. Compared to LFPS models, RSS models 

can become complex with an increasing number of parameters and are also less suited for 

extrapolation of cases that were not included in the training data (Razavi et al., 2012). This research 

focuses on detailed hydrodynamic models that have a large range of parameters. As a result, RSS 

models are less suited for this purpose. Furthermore, the training data for the RSS model must be 

generated with the original model. For a large model considered in this research, this would take too 

much time and resources. It is therefore chosen to neglect RSS models in this research. 

LFPS models keep the physical bases of the original model but are simplified to reduce the computation 

time. A large benefit is that LFPS models can extrapolate for data that is not used in the model 

construction (Razavi et al., 2012). Several methods to create a LFPS model exist.  

The first method of creating an LFPS model simplifies the hydrodynamic equations by omitting the 

momentum conservation (Zhao et al., 2021). The resulting simplified equations can be solved 

significantly quicker (Hunter et al., 2007). This method is for example used by Yu & Lane (2006a) to be 

able to calculate a fine spatial grid that would take too long if the full hydrodynamic equations were 

used. Another example is the study of Bomers et al. (2019a) which uses simplified equations to be able 

to reconstruct a historic flood event. Nevertheless, Hunter et al. (2007) also show that these types of 

models are often only suitable for a specific purpose. This research aims to assess methods for 

advancing a high-fidelity model in general. Furthermore, according to Janssen (2023), it is difficult to 

implement this type of simplification into D-HYDRO as the full momentum equations are embedded 

in the software. This type of LFPS model is therefore not further explored in this research. 

Secondly, LFPS models can be created by numerical simplifications while keeping the full hydrodynamic 

equations (Razavi et al., 2012). Using a longer time step or coarser grid size are examples of this type 

of LFPS model. These simplifications are easier to implement in D-HYDRO (Janssen, 2023) and are 

therefore considered in this research as viable options. The potential measures for accelerating high-

fidelity models that fall under this category will be discussed in the next section. 
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2.4 Numerical simplifications in low-fidelity physically based surrogate models 
This section will specifically elaborate on the construction of LFPS models that apply numerical 

simplifications. The three methods that are most mentioned in literature are coarsening the 2D grid, 

reducing the number of 1D calculation points and increasing the maximum Courant number. These 

solutions are often easy to implement while generating large computational benefits (Razavi et al., 

2012). 

2.4.1 2D grid resolution 
Probably the most studied measure in this type of low-fidelity model is the reduction of the mesh 

resolution. It means that the size of the grid cells is enlarged, decreasing the number of grid cells and 

reducing the computational load. The studies of Bomers et al. (2019b), Judi et al. (2014), Yu & Lane 

(2006a) and Janssen (2023) show that a significant reduction in computational time of up to 90% is 

possible to yield with this method. However, a larger grid size can significantly impact the model 

results.  

The studies of Hardy et al. (1999), Yu & Lane (2006a), Horritt & Bates (2001) and Mooijaart (2023) 

indicate that the flood extent is overestimated for a coarse 2D grid compared to a fine 2D grid. On the 

other hand, Judi et al. (2014) also experience underestimations of the flood extent for coarser meshes. 

Yu & Lane (2006b), McMillan & Brasington (2007) and Zhao et al. (2021) show that a smaller sub-grid, 

a locally refined mesh for important areas, can significantly improve the model accuracy while the 

computation time remains low. 

Janssen (2023), Bomers et al. (2019b), Judi et al. (2014), Horritt et al. (2006) and Caviedes-Voullième 

et al. (2012) all indicate that besides flood extent, the modelled peak discharge in the rivers is often 

overestimated with a coarser grid. The timing of the peak discharge is also changing. Judi et al. (2014) 

found that the peak comes earlier, while Caviedes-Voullième et al. (2012) saw a delayed peak water 

flow.  

In conclusion, coarser 2D grids are often effective in reducing the run time of a hydrodynamic model. 

However, all studies show that accuracy is almost always compromised although the extent and 

direction of the effect seem to depend on the model and characteristics of the modelled area.  

2.4.2 Maximum allowed Courant number 
As discussed in section 2.2, the maximum Courant number determines the distance a particle of water 

can travel during the time step. In general, the maximum Courant number is chosen to be smaller than 

1 which means that a particle can flow only one grid cell during each time step. The model is more 

stable in this case (Deltares, 2023). However, the research of Janssen (2023) shows that increasing the 

maximum Courant number to 10 can reduce the computation times of a 1D2D D-HYDRO model by 

80%, while the Mean Absolute Error in the water depth remains almost zero. The study of Mooijaart 

(2023) indicates that increasing the Courant number from 0.7 to 2.0 can reduce the computation time 

of a 2D D-HYDRO model by 47%, but no quantification is given of the impact on the accuracy. Hop 

(2021) increased the maximum Courant number of a D-HYDRO model from 0.7 to 50 which resulted in 

a four times smaller computation time. The accuracy remained high in this study, probably because 

one small area of the model limited the Courant number, while the majority of the model still had a 

low Courant number. Increasing the time step is equivalent to increasing the maximum allowed 

Courant number. Bomers et al. (2019a) use this former method and found that the surrogate model is 

significantly faster while having an acceptable accuracy. However, the low-fidelity model that is 

constructed by Bomers et al. (2019a) also simplifies the Shallow Water equations. Therefore, the found 

decrease in computation time might not be caused solely by an increase in time step. Nevertheless, 
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increasing the maximum Courant number is considered a viable option for advancing detailed 

hydrodynamic models based on the results of Janssen (2023), Mooijaart (2023) and Hop (2021). 

2.4.3 1D calculation points 
Similar to a lower 2D grid resolution, the number of 1D calculation points in the representation of the 

channels can be reduced. Janssen (2023) could yield a reduction in computation time of 22% by 

increasing the distance between the 1D calculation points from 20 to 50 meters. The study by Davidsen 

et al. (2017) showed that reducing the number of 1D calculation points by 66% can result in a 35% 

decrease in computation time. However, similar to 2D grids, simplification of the 1D elements can lead 

to less accurate results (Davidsen et al., 2017).  

The number of 1D calculation points can be reduced in D-HYDRO by either one or a combination of 

the following: 

1. Increase the distance between the 1D calculation points (Davidsen et al., 2017) 

2. Remove the bridges from the model because two additional calculation points are added for 

each bridge.  

3. Merge culverts that are consecutively located in a channel to one culvert because two 

additional calculation points are added for each culvert.  

For all of the three methods, the impact on the accuracy is not known and should be studied when 

applying these methods.  

2.5 Numerical instability 
Besides numerical simplifications, resolving numerical instabilities can potentially reduce the 

computation time of a hydrodynamic model. A model can become unstable if numerical errors grow 

to the extent at which the solution begins to oscillate or diverge. A result can be that the flow velocities 

are increased to unrealistic values. This reduces the allowed time step via the Courant condition (Eq. 

4) which enlarges the computation time (De Almeida et al., 2012). The following factors affect 

numerical instability: computation time step, cross-section spacing, calculation tolerances, lateral 

structures, steep streams, downstream boundary conditions, cross-section geometry, bridges, 

culverts, (wrong) initial conditions, drops in bed profile, Manning’s n and missing parameter values 

(Brunner, 2023). Because of the large number of potential causes of numerical instability, this topic is 

not treated in a literature study.  

This chapter explored the current knowledge on the topic of hydrodynamic modelling and LFPS 

models. Based on this overview, a research gap and objective will be formulated in the next chapter. 
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Research dimensions 

This section will present the research objective, questions and the terminology that is used.  

3.1 Research gap and objective 
The previous chapter introduced the concepts of surrogate modelling. These models are required 

because conventional 1D2D hydrodynamic models have a long computation time which makes them 

unsuitable for real-time flood predictions and analysis of a large set of runs for a sensitivity or 

uncertainty analysis (Zhao et al., 2021). Although the papers discussed in the literature study were all 

related to this topic of surrogate modelling, no study has been executed on the effect of numerical 

simplifications in a detailed 1D2D hydrodynamic model for pluvial flooding. The results of the other 

studies might therefore not apply to this case study. The study of Bomers et al. (2019b) and Mooijaart 

(2023) both implement numerical simplifications in a detailed hydrodynamic model but focus on fluvial 

flooding. This research and case study will only assess pluvial flooding. Janssen (2023) also applies the 

principles of surrogate modelling to a D-HYDRO model but to a single polder. This research and case 

study, in contrast, involves a significantly larger area that is more diverse. The effect of numerical 

simplifications in a detailed 1D2D hydrodynamic model for pluvial flooding on the run-time and 

accuracy has thus not been studied yet. Furthermore, other studies do not fully agree on the effects 

of 2D grid resolution on the accuracy of similar 1D2D hydrodynamic models. Lastly, the presence and 

effects of numerical instabilities in detailed hydrodynamic models are largely unknown. The research 

objective is therefore formulated as follows: 

R
e

se
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ch
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cti

ve
 The research objective is to optimise the calculation time of a detailed 1D2D hydrodynamic 

model by  
(1) resolving potential numerical instabilities in the model, 
(2) implementing numerical simplifications  
and quantifying the effect of these measures on the accuracy of the model output.   

A case study on the management area of HDSR provided by HydroLogic will be used to test the 

proposed principles and will be introduced in the next chapter.  

3.2 Research questions 
To fulfil the research objective, the next research question is drawn up: 
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Which methods are effective in reducing the computation time of a detailed 1D2D 
hydrodynamic model while keeping sufficient accuracy of the output? 

Where “sufficient accuracy” will be defined in the methodology later (section 5.6). To answer this main 

research question, the next sub-questions are defined: 

Su
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Q
) 

1. How do numerical instabilities affect the computation time of a detailed 1D2D 

hydrodynamic model? 

2. How does a larger maximum Courant number affect the computation time and 

model accuracy of a detailed 1D2D hydrodynamic model? 

3. How does a coarser 2D grid affect the computation time and model accuracy of a 

detailed 1D2D hydrodynamic model? 

4. How does a reduced number of 1D calculation points affect the computation time 

and model accuracy of a detailed 1D2D hydrodynamic? 
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3.3 Terminology 
Within this research, certain concepts and abbreviations will be used frequently. In Table 1, the 

definitions as used in this report, are stated. Furthermore, some words that are frequently used in 

Dutch water management are difficult to translate into English. An overview of the translations used 

in this report is given in Table 2. 

Table 1 – Terminology and abbreviations used in the research. 
Term Definition 
HDSR Hoogheemraadschap De Stichtse Rijnlanden (the water board issuing the 

model construction of the case study). 

LFPS Low-fidelity physically based surrogate. In this research: numerical 
simplifications of the model and not the simplification of the governing 
Shallow Water equations. 

GUI Graphical User Interface. 

Numerical 
simplification 

Measure that removes detail from the model without simplifying the 
Shallow Water equations to reduce the computation time. 

Numerical instability A state of the model at a certain location where the grid cells are Courant 
limiting or have exceptionally high flow velocities.   

1D calculation point 
 

A cross-section of the channel which is used in the calculation of the flow 
properties. 

Benchmark model or 
high-fidelity model 

The initial model that has long computation times. 

Optimised benchmark 
model 

Model from which most numerical instabilities are removed. 

NumLimdt parameter “number of times a flow element was Courant limiting” parameter. This 
parameter stores how often a calculation point (1D or 2D) has been the 
limiting factor according to the Courant condition (Eq. 4).  

 

Table 2 - Translations of typical Dutch words related to water management that are used in this 
thesis. 

Dutch English Definition 
Duiker Culvert A tube carrying a water stream underground. 

Stuw Weir A structure across a stream with adjustable crest height 
to regulate the water level in an area. 

Gemaal Pumping station Pump unit with the function of supplying water to higher 
areas or draining water from lower areas. 

Stuurpeil Control water level The water level that is aimed for at a certain location. 

Peilgebied Control water level 
area 

An area for which the same control water level is aimed. 

Peilscheidend 
kunstwerk 

Water level separating 
structure 

A structure (weir, culvert, sluice) that is on the boundary 
of two control water level areas and ensures that the 
control water levels are maintained. 
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Case study 

This chapter will introduce the case study. This includes a description of the involved parties, the study 

area and the underlying assumptions and working of the D-HYDRO model. The case study is used to 

see the impact of numerical instabilities on the computation time and to test the numerical model 

simplifications that were defined in the theoretical framework.  

4.1 Involved parties 
HydroLogic is the commissioning party for this project and case study. HydroLogic is a consultancy and 

research agency that specialises in future-proof water management. The company focuses on 

operational and regional water management, water safety, water nuisance and salinization. 

HydroLogic has years of experience with hydrological and hydraulic models and often builds the 

models themselves in existing software packages such as D-HYDRO.  

HydroLogic is tasked with the development of a simulation model for the study area of the Dutch water 

board Hoogheemraadschap De Stichtse Rijnlanden (HDSR) in D-HYDRO. After completion, the purpose 

of the model is to perform a “watersysteem analyse” (water test). This is a legally required test that 

the water board must carry out every six years to find potentially dangerous bottlenecks in their water 

system (Informatiepunt Leefomgeving, n.d.). For this test, more than 10,000 different rainfall events 

will be evaluated with the model to see whether this will result in flooding. To be able to evaluate all 

these events, the run-time of the model must be limited. HydroLogic can potentially use the results of 

this research to optimise the run-time of the model without losing accuracy. The results might also 

apply to other models from HydroLogic.  

The water board Hoogheemraadschap De Stichtse Rijnlanden (HDSR) is not directly involved in the 

research but is charged with the responsibility of performing a water test. HDSR benefits from a faster 

model that keeps its accuracy. The output of the water test can point to areas that are prone to pluvial 

flooding. HDSR can use this information to make policy decisions and take measures to solve the 

problem since the water boards are legally required to do so.  

Lastly, unrelated organizations and practitioners that work with detailed 1D2D hydrodynamic models 

could potentially use the results of this research to accelerate their hydrodynamic models.  

4.2 Study Area 
The study area concurs with the management area of HDSR, which is in the centre of the Netherlands 

(Figure 2). The total surface area is approximately 860 km2. The city of Utrecht is located in the heart 

of the study area.  

The eastern boundary of the project area is formed by the Utrechtse Heuvelrug. This is a forested area 

with a slightly higher elevation. The soil consists mainly of sand which causes the water to infiltrate 

quickly. As a result, almost no waterways exist in this area.  

The areas east and south of Utrecht consist of polders. These are located under sea level. The water in 

the polders is discharged by drainage ditches (see Figure 2). The water from these ditches is pumped 

into the “boezem” canals that have a higher elevation and transport the water to the main rivers. The 

main rivers in the study area are the Lek, the Amsterdam-Rijnkanaal, the canalized Hollandse IJssel and 

the Oude Rijn. These main waterways transport the water from the study area to the sea. 
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Figure 2 - The study area. 

4.3 HDSR model 
HydroLogic has constructed a detailed model of the management area of HDSR in D-HYDRO. The model 

consists of four different components (see Figure 3). First, the separate model ModFlow/MetaSwap 

(MFMS) uses the precipitation data, soil characteristics and groundwater flows to simulate the 

infiltration, runoff, and groundwater fluxes in rural areas. The relevant output is the runoff to the 

waterways which is used as input for the hydrodynamic model that simulates the water flow in the 1D 

channels and 2D grid. This second component is built in the D-FLOW FM module of D-HYDRO and will 

be the focus of this research. Besides the D-FLOW FM module, the D-HYDRO model consists of two 

other modules as well: D-Rainfall Runoff (RR), which simulates the runoff in urban areas, and D-Real 

Time Control (RTC) which simulates the control of the structures, such as the pumping stations. The 

model structure can be seen in Figure 3. The numerical simplifications that were discussed in the 

literature study apply to the D-FLOW FM module and this study will look only into this module. From 

here, this will be referred to as “the model”. The D-HYDRO model is constructed with the help of D-

HyDAMO. This is a Python package which allows the automatic creation of a D-HYDRO model by 

running a Python script (Deltares, 2022). Models with numerical simplifications can be constructed by 

running the script after adjusting some of the input parameters.  

The runoff from the MFMS and RR components are added in the D-FLOW FM model as laterals, which 

are nodes in the 1D network where input water is added over time. RR models the storage of water 

on the streets and the sewer in the urban area. The water that falls in the urban area is either stored 

on the surface, accumulated in the sewer, transported to the wastewater treatment plant, or 

discharged onto the surface water, depending on the characteristics of the sewer. The discharge onto 

the surface water is transferred to the D-FLOW FM model with the laterals. 
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Figure 3 – Structure of the complete HDSR model. 

The D-FLOW FM module contains the waterways which are constructed as 1D elements that connect 

with a 2D grid which covers the surrounding land. The model includes almost all drainage ditches and 

boezem canals that are present in the study area. The Lek and Amsterdam-Rijnkanaal that are 

managed by Rijkswaterstaat are not modelled but are only included as boundary conditions. The 

model will only evaluate pluvial flooding (due to rain) and not fluvial flooding of these large rivers. 

Water retaining elements such as dikes and elevated roads are also implemented in the model to be 

able to accurately model potential flooding (see Figure 2). Culverts, bridges and other structures are 

incorporated into the model as well. The behaviour of the structures such as the pumping stations is 

controlled by the RTC module. 

The original version of the model uses a square mesh with grid cells of 100x100 meters. The maximum 

Courant number in the original model is set to the default of 0.7 to prevent any instabilities caused by 

a large time step. 

The model has not been calibrated yet by HydroLogic at the time of writing. It is planned to be executed 

in July 2024. As a consequence, the results of this study can only be used to relatively compare the 

surrogate models with the original model. Nevertheless, the effect of different numerical 

simplifications on the computation time and their relative effect on the accuracy can be determined 

with this uncalibrated benchmark model.  
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Research methodology 

This section will elaborate on the methods that are applied to answer the research questions. The 

methods will build on the theoretical framework and the research dimensions as discussed in the 

previous chapters. First, the general methodology will be introduced, after which the specific 

components will be discussed in more detail.  

5.1 Overview of research methodology 
The general methodology can be seen in Figure 4. The steps mentioned in the figure correspond with 

the numbering of the steps discussed in the upcoming sections. The first and second steps are related 

to sub-question 1 (SQ1). Steps 3 and 4 are relevant for answering SQ2, SQ3 and SQ4 which focus on 

numerical simplifications. Lastly, step 5 will answer the main research question.  

The first step will address the numerical instabilities in the model (see section 5.3 for more details). 

Then, the optimised model will be analysed on the computation time in step 2 (see section 5.5). After 

this step, SQ1 can be answered. The output of these first two steps is an optimised benchmark model 

that can be used to assess the numerical model simplifications.   

Step 3 implements the different numerical model simplifications into the optimised benchmark model 

which yields different surrogate models (see section 5.4). These are tested on their computation time 

and accuracy for two precipitation events during step 4 (see section 5.5). After finishing step 4, SQ2, 

SQ3 and SQ4 can be answered. Lastly, all information on the sub-questions is used in step 5 to make a 

recommendation about effective model acceleration methods.  

 
Figure 4 - Overview of the research methodology. 
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5.2 Input data and boundary conditions 
The D-HYDRO model of the HDSR study area (as described in section 4.3) is provided. All required input 

data to run the model, such as bed roughness and level, are already included in this model. The water 

levels on the boundary nodes are constant.   

The analysis of the numerical instabilities is performed by running the model for January 1, 2014, which 

is a day without precipitation. The model is initialized on the equilibrium conditions. In other words, 

all waterways start at their control water level. By using a day without precipitation, the model is 

expected to show stable water levels. With this approach, any changes in the water level over time can 

indicate numerical instability or at least point to locations with unexpected behaviour (see section 5.3). 

The historical precipitation event of 27 and 28 July 2014 is chosen for simulating the surrogate models. 

During this event, locally up to 131.6 mm of rain fell in the study area in one day (KNMI, 2014). Figure 

5  shows the average intensity and cumulative rainfall over the study area for July 27 18:00 until July 

28 18:00. A large peak in the intensity of three hours is present for this event. Parts of the study area 

experienced flooding which is an important boundary condition to be able to assess the numerical 

simplifications of the 2D grid (Lenderink & Van Oldenborgh, 2014; Kennisportaal Klimaatadaptatie, 

n.d.). 

Considering the computation time of the original model, only one precipitation event is selected for 

the evaluation of all surrogate models. However, to see whether the same results can be obtained for 

a different rainfall event, four surrogate models are run for a second event as well. This event runs 

from September 4 at noon until September 7 at midnight, in 2018 (Figure 6). 

 
Figure 5 – Primary event for evaluating all the surrogate 

models: July 27 & 28, 2014. 

 
Figure 6 – Secondary event for evaluating the surrogate 
models to check if similar results are found: September 

5 & 6, 2018. 

The simulations are started seven days before the event to allow the model to find an equilibrium state 

and minimize the errors due to incorrect initialization. Seven days were chosen because the water 

levels were seen to be fairly stable after this period.  

5.3 Step 1: resolving numerical instabilities 
This section will focus on the first step in the general research methodology (see Figure 4), which 

addresses the numerical instabilities. As shown in section 2.5, a large range of possible causes for 

numerical instabilities exist. As a result, setting up a fixed methodology is difficult. However, the next 

steps are executed: 
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1. Run the model for one day (January 1, 2014). 

2. To pinpoint locations with potential numerical instabilities, the following four indications are 

used: 

a. A “number of times a flow element was Courant limiting” (NumLimdt) parameter 

larger than 1000. In the original model, most calculation points are 0 to 1000 times 

Courant limiting for simulating 1 hour of rainfall. Locations where the NumLimdt 

parameter is larger than 1000 potentially experience numerical instabilities and are 

examined in more detail. 

b. A flow velocity larger than 2 m/s. A velocity that is larger than 2 m/s is considered high 

for the type of waterways in the area and might result in numerical instability. 

c. A water depth of 0 meters. A water depth of 0 meters can result in numerical instability 

and at least indicates an unexpected situation in the model as it is expected that all 

waterways contain water. 

d. A difference in water depth of more than 0.1 m between the end and start of the 

simulation. The model is initialized with the control water levels. The water level 

should therefore be stable since there is no rainfall. Large differences in water depth 

during the run indicate that water is flowing towards or leaking from the location, 

which can indicate a flaw or numerical instability. 

3. Identify a possible cause for the numerical instability at this location by 

a. Checking whether the initial conditions are logical for the situation. 

b. Checking which control water level is aimed for at the location and how it relates to 

the surrounding control water levels. Sometimes, the control water level is defined for 

half of the 1D flow element, resulting in a large jump within the flow element. During 

the run, the model tries to maintain the jump in the water level for the flow element 

which results in unrealistic flow velocities. 

c. Checking the operation of the control structures (e.g. pumping stations, weirs, sluices) 

that are close to the location of numerical instability. Sometimes pumps are pumping 

in the wrong direction, or the pumps are switched on and off at the incorrect water 

level. Weirs and sluices can also show incorrect behaviour. 

d. Checking the characteristics of culverts and bridges that are close to the location. 

e. Checking the input parameters at the location (bed level, roughness) 

Any anomalous patterns, behaviour or values can point to the cause of the numerical 

instability. 

4. Implement a solution to the cause. Depending on the cause, this can be adjusting the 1D flow 

net, the channel characteristics, the input parameters (bed level, roughness, time series of 

moveable weirs), the initial (boundary) conditions or the control water level. Furthermore, the 

operation of the control structures can be changed.  

5. Run the model again and observe the NumLimdt parameter and flow velocity parameters. If 

the parameters are not improved, i.e. the parameter values are not decreased, implement a 

different solution (go back to [4]). 

6. If more areas with numerical instability exist, repeat from [1]  

7. Evaluate the new model on computation time (as described in section 5.5) 

With this stepwise approach, most numerical instabilities are detected and solved, resulting in an 

optimised benchmark model. Numerical simplifications are implemented in this new model to 

construct surrogate models. Subsequently, these surrogates have been tested on their computation 

time and accuracy against this optimised benchmark model.  
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5.4 Step 3: construction surrogates with numerical simplifications 
Section 2.4 discussed possible numerical simplifications to accelerate a 1D2D hydrodynamic model. 

An overview of the simplifications is given in Table 3, which also includes the range of variations for 

each simplification that will be tested. Horritt & Bates (2001) show that their 2D surrogate model has 

acceptable results with a grid size of 500 meters or smaller for a relatively flat catchment. Although 

the model of the case study does not encompass a whole catchment, it is also largely a flat area. It is 

therefore chosen to set the upper boundary for the resolution of the 2D grid and the distance between 

the 1D nodes to 500 m. The largest Courant number is selected to be 50 because Hop (2021) could still 

yield acceptable results in terms of accuracy with this maximum Courant number for a similar D-

HYDRO model. Surrogate models will be constructed that implement one or a combination of the 

simplifications in the optimised benchmark model.  

Each bridge and culvert add two additional 1D calculation points to the model. For the case study, 

around 1900 bridges are present in the model. Removing all these bridges reduces the number of 1D 

calculation points by 3800. By merging subsequent culverts that are on the same branch, the number 

of 1D calculation points can be reduced. The D-HyDAMO script is extended to be able to merge culverts 

because this was not yet possible in the script. The next assumptions are made in this process:  

1. Culverts that are in series on the same branch are merged into one culvert with the length of 

all original culverts combined. 

2. Culverts that function as water-level separating structures are not merged. 

3. The new culvert is located in the middle of the branch. 

4. The largest roughness of the original culverts is used for the new culvert. 

5. The smallest dimensions of the original culverts are used for the new culvert. 

6. The highest inflow height and lowest outflow height of the original culverts are used for the 

new culvert. 

Three additional simplifications are tested that were not discussed in the theory section. First, the 2D 

grid cells that are directly located below the 1D channels can be removed. This clipping of the 2D cells 

can reduce the computation time because less water flows from the 1D network to the 2D grid during 

the initialization. Secondly, the user time step can be adjusted. This time step indicates how often the 

RR and MFMS components of the model are forced to the laterals. Lastly, a coarser 2D grid resolution 

can be used in combination with a local refinement of the grid around the waterways. The underlying 

idea is to have more detail and accuracy of the 2D grid in areas that are more prone to flooding.  

Table 3 - Overview of simplifications to create surrogate models and the range of the variations. 
Numerical simplification Range Values 

Resolution squared 2D grid [m] 100-500 100, 250, 500 

Distance between 1D calculation points [m] 50-500 50, 100, 250, 500 

Removing bridges? (reducing 1D calculation points) Yes/No Yes, No 

Merging culverts? (reducing 1D calculation points) Yes/No Yes, No 

Maximum Courant number [-] 0.7 - 50 0.7, 1, 5, 10, 50 

2D grid clipping Yes/No Yes, No 

User time step [s] 3600-7200 3600, 7200 

2D grid refinement resolution [m] 0-100 0, 100 

In total 18 surrogates were constructed by implementing the numerical simplifications as discussed 

above. An overview of all surrogates is given in Appendix A.1 (Table 11). 
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5.5 Steps 2 & 4: evaluation of the surrogate model performance 
The computation time of the optimised benchmark model in relation to the original model is evaluated 

in step 2. Step 4 assessed the accuracy and computation time of the surrogate models with numerical 

simplifications with respect to the optimised benchmark model.  

The computation time is recorded for each simulation. The same laptop is used for each run. The 

specifications are given in Table 4. 

Table 4 - Specifications of the computer used to run the model. 
CPU Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz   2.59 GHz 

RAM 16 GB 

To assess the accuracy of the surrogate models in relation to the optimised benchmark model, several 

metrics are chosen for comparing the maximum and average water level in the 1D calculation points 

and the maximum and average water depth in the 2D calculation points. It is chosen to use water 

depth for the 2D grid because cells that are not flooded get a value of 0 which makes them easier to 

filter out later. For the 2D water level, D-HYDRO exports the bed elevation if the cell is not flooded, 

which makes it difficult to determine if water is present. Lee & Choi (2022) and Waseem et al. (2017) 

state that a good accuracy analysis should at least have one absolute error metric and one 

dimensionless metric.  

Absolute error metrics are for example the Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE) and the Sum of Squared Errors (SSE). The MAE (Eq. 5) is chosen because this metric is 

independent of grid size and only weakly related to dimensionless metrics, which is preferable to get 

a less biased output (Wöhling et al., 2013). The MAE is best if 0. It can be calculated for the average 

water level over time in a calculation point or the maximum water level in the calculation point. 

 𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑠,𝑖 − 𝑦𝑏,𝑖|

𝑛

𝑖=1

 Eq. 5 

Where 𝑛 is the total number of grid cells/nodes, 𝑦𝑏,𝑖 is the output value in grid cell/node i according 

to the benchmark model, and 𝑦𝑠,𝑖 is the output value in grid cell/node i according to the surrogate 

model. 

Dimensionless error metrics compare the variability of the water level in the benchmark and surrogate 

over time. Examples are the Nash-Sutcliffe Efficiency (NSE), Index of Agreement (d) and Kling-Gupta 

Efficiency (KGE). The KGE is used in this study since it is less biased towards peak values than the NSE 

and d metrics (Waseem et al., 2017; Krause et al., 2005). Furthermore, the KGE assesses the accuracy 

based on correlation, bias and variability which is more comprehensive than the NSE and d which only 

evaluate variability and bias respectively (Gupta et al., 2009; Kling et al., 2012; Towner et al., 2019). 

The KGE can be calculated with Eq. 6. The score is best if 1 and can vary from minus infinity to 1. 

 𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 Eq. 6 

Where 𝑟 is the Pearson's correlation coefficient, α is the variability ratio, and 𝛽 is the bias ratio. See 

Appendix A.2 for more details on these.  

The KGE and MAE metrics for the 2D grid will be calculated excluding the true negative calculation 

points. These true negatives are the calculation points that are not flooded in both the benchmark 

and the surrogate model. A relatively large part of the calculation points is true negative, and all these 

cells have no error in the water depth which will let the metrics appear to be extremely good when 
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included in the calculation (Yu and Lane, 2006a). To determine if a cell is flooded, a threshold for the 

water depth must be set. Below this threshold, the grid cell is considered dry. For this study, a threshold 

of 0.05 m will be used, similar to Yu & Lane (2006a). A cell is true negative if the water depth in the cell 

is below 0.05 m in both the benchmark and surrogate model. 

Besides the error in the water level, the accuracy of the flood pattern, which cells are flooded and 

which are not, is determined. Available metrics are the Accuracy (A), Critical Success Index (CSI) or F1-

score, with the corresponding precision and recall statistics. The F1-score (Eq. 7 - Eq. 9) is chosen 

because the precision and recall statistics say something about the over- and underprediction of the 

flood extent respectively which is relevant to policymakers (Bermúdez et al., 2018). The F1-score is 

best if 1.  

F1-Score 

Precision 𝑝 =
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑃
 Eq. 7 

Recall 𝑟 =
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑁
 Eq. 8 

F1-score 𝐹1 = 2
𝑝 ∙ 𝑟

𝑝 + 𝑟
=

2 ∙ #𝑇𝑃

2 ∙ #𝑇𝑃 + #𝐹𝑁 + #𝐹𝑃
 Eq. 9 

Where #TP is the number of True Positives: 2D cells that are flooded in both surrogate and benchmark, 

#TN is the number of True Negatives: 2D cells that are not flooded in both models, #FP is the number 

of False Positives: 2D cells that are predicted as flooded by the surrogate but are not flooded in the 

benchmark model and #FN is the number of False Negatives: 2D cells that are predicted as dry by the 

surrogate but are flooded in the benchmark model (underprediction flood extent). 

Changing the distance between the 1D and/or resolution of the 2D grid leads to a different number 

and location of calculation points. To compare the calculation points of the surrogate model with the 

calculation points in the benchmark model, the nearest calculation point in the same control water 

level area is taken. Other additional calculation points that are present in the benchmark model are 

ignored. 

5.6 Step 5: recommendation on effective model acceleration methods 
In this last step, the main research question will be answered, and a recommendation will be given 

about which methods are effective for reducing the computation time without significantly decreasing 

the accuracy. To make this recommendation, a threshold value for the accuracy must be set to exclude 

methods that compromise the accuracy significantly.  

According to Gupta et al. (2009) and Kling et al. (2012), the KGE is sufficient if larger than 0.5 and good 

if larger than 0.75. A threshold of 0.75 will be used here. The acceptable MAE depends on the quality 

of the benchmark model in relation to the observations used in the validation of this benchmark. 

However, the benchmark model is not validated yet by HydroLogic and the error in the benchmark 

model is therefore not known. An initial estimation of the MAE in the benchmark model with respect 

to the observations is maximal 5 centimetres at the time of writing. The acceptable MAE in the 

surrogates with respect to the optimised benchmark model is chosen to equal this estimate. Lastly, an 

F1-score larger than 0.7 is generally seen as a sufficient performance (Logunova, 2023) and will be 

used in this study as a threshold. A surrogate must score sufficiently on all metrics to be recommended 

as a suitable method for accelerating a detailed hydrodynamic 1D2D model. Based on the performance 

of the different surrogates on the given metrics, the main research question is answered. Table 5 

summarizes the characteristics of all metrics. 
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Table 5 - Overview metrics for assessment model accuracy. 
Metric Acceptable range Parameters to apply 

Mean Absolute error 
(MAE) 

0 – 0.05 m Average and maximum water level 1D 
Average and maximum water depth 2D 
__(excluding true negatives) 

Kling Gupta Efficiency 
(KGE) 

0.75 – 1 Water level over time in 1D calculation points 
Water depth over time in 2D calculation points 
__(excluding true negatives) 

F1-score (precision and 
recall included) 

0.7 – 1 Flood extent (flood presence) 
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Results 

This section will discuss the results of this thesis. First, the results of the investigation of numerical 

instabilities are discussed, which is related to the first sub-question. Secondly, the effect of numerical 

simplifications on the computation time and accuracy of the model is elaborated on. This relates to 

sub-questions 2 to 4.  

6.1 Numerical instabilities 
The first sub-question of this research focuses on numerical instabilities in the model and their impact 

on the computation time. Seventeen causes of numerical instabilities were found in the model of the 

case study and are largely solved. The instabilities were sometimes rooted in incorrect data, while 

others were related to the automatic model construction with the D-HyDAMO package. For example, 

some channels had no control water level defined in the data which is crucial for the operation of 

control structures. Besides problems with the control water levels, incomplete data for culverts, 

incorrect bed levels and missing elevation data caused numerical instabilities. For the model set-up, 

the control parameters of the weirs and sluices were incorrectly set, resulting in excessive drainage of 

water or unintentional water retention in some areas for instance. The data problems were largely 

solved by obtaining the missing data or making assumptions. Most model construction flaws were 

solved by adjusting the D-HyDAMO script or the input data. 

Incorrect data and model construction flaws led to locations in the model with a large “number of 

times the flow element was Courant limiting” value, high flow velocity, a sharp decrease or increase in 

water depth, or a water depth of almost zero meters. Table 6 shows the root causes of the numerical 

instabilities that were found. A more detailed overview and explanation of all numerical instabilities, 

their root cause and the implemented solutions are shown in Appendix B.  

Table 6 – Root causes of numerical instability. 
# Root causes of numerical instabilities Type 

1 Bed level of some waterways was equal to the control water level  Data 

2 Either the summer or winter control water level was missing for seasonally controlled 
waterways 

Data 

3 Control water levels were missing for some waterways with a fixed control water level Data 

4 2D input elevation map contained -10 mNAP values for cells without data in the original 
map 

Data 

5 Inflow height of some culverts was not present or incorrect in the data Data 

6 Control water level for some weirs was not present in the data Data 

7 No initial water depth defined on the 2D grid between the retaining elements  Model set-up 

8 Control parameters of the weirs set incorrectly Model set-up 

9 Control water level of sluices incorrectly derived from control water level map Model set-up 

10 Incorrect snapping of pumps to branches Model set-up 

11 Incorrect snapping of fish passages to branches Model set-up 

12 Incorrectly merging branches that flow above each other (with the help of culverts) Model set-up 

13 Incorrect location of observation points used in the determination of the control water 
level of pumps 

Model set-up 

14 Unintended merging of branches that flow parallel to each other Model set-up 

15 Incorrect snapping of weirs to branches Model set-up 

16 No possibility of defining additional sluice/orifice parameters D-HYDRO GUI 
limitation 

17 Unexpected behaviour of D-HYDRO D-HYDRO 
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By improving the data and model set-up, it is expected that the model has become more accurate in 

representing reality. The optimised benchmark model is therefore not quantitatively assessed on the 

accuracy in relation to the original model but only on the computation time. Both models are run with 

and without the 2D grid. The results are shown in Table 7.  

Table 7 - Computational benefit of resolving numerical instabilities.  
Dimensions Simulation 

period [h] 
Computation time [h] Reduction 

computation time [%] Original model Optimised benchmark 

1D only 24 28.8 1.08 96% 

1D and 2D 3 45 0.99 98% 

Without the 2D grid, the computation time is reduced by 96% when implementing all the solutions to 

the numerical instabilities. This is probably largely caused by the 96% decrease in the maximum 

“number of times a flow element was Courant limiting” parameter during 1 simulation hour from 

82,187 to 3,115, see Table 8.  Furthermore, the number of locations that have a flow velocity higher 

than 2 m/s is reduced from 21 in the original model to 2 in the optimised benchmark model (see Table 

9). Lastly, the water levels are significantly more stable in the optimised benchmark model which can 

be concluded from Figure 7. This figure shows the difference in the water level on the 1D grid between 

the start and end of the simulation period. Because all branches start with their control water level, 

and no precipitation occurs, water levels are expected to be fairly stable during the simulation. The 

optimised benchmark performs significantly better. 

The same patterns are seen when running the complete model including the 2D grid. The original 

model with the 2D grid computes 15 times slower than in real-time. This would mean that a simulation 

of 1 day results in a computation time of 15 days. Because the execution period is limited, it was chosen 

to cease the run after 3 simulation hours and compare this with the computation time of the optimised 

model on a simulation period of 3 hours. The difference in the maximum “number of times a flow 

element was Courant limiting” parameter is not as large as for the runs without the 2D grid. The 

number of locations with a flow velocity of 2 m/s or larger is reduced from 15 to 4. Furthermore, the 

optimised benchmark has no location that has a flow velocity higher than 2 m/s on the first time step. 

This indicates that the initial conditions are close to the equilibrium situation.    

Table 8 - Number of times a flow element was Courant limiting (NumLimdt). 
Dimensions max. NumLimdt in 1 h #locations NumLimdt > 1000 in 1 h 

Original model Optimised benchmark Original model Optimised benchmark 

1D only 82,187 3,115 4 1 

1D and 2D 64,414 31,110 3 3 
 

Table 9 – Number of locations with a flow velocity larger than 2 m/s.  
Dimensions #locations flow velocity > 2 m/s  #locations flow velocity > 2 m/s on 

first time step 

Original model Optimised benchmark Original model Optimised benchmark 

1D only 21 2 14 0 

1D and 2D 15 4 15 0 
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Figure 7 - Difference in water level on the 1D network between the start and end of the simulation period. 

Although most numerical instabilities are found and solved, some problems with the 2D grid are still 

present in the optimised benchmark model. Figure 8  shows the maximum water depth on the 2D grid 

for the event of July 2014. The inundated areas in the west and southwest (highlighted in red) are not 

flooded by precipitation but by leakage of water from the 1D nodes to the 2D grid since this area starts 

to inundate on the first time step when no rain has fallen yet. The water can sometimes leak outside 

of the retaining elements as dikes and banks, which then unintentionally floods large areas. This 

problem is probably caused by incorrect profiles and bed levels of the 2D grid which are derived from 

the Actueel Hoogtebestand Nederland (AHN). Solving this problem is difficult. Furthermore, the 

benchmark model and surrogate models all leak, because the same AHN data is used for both. This 

means that the models can still be compared and it was therefore chosen to leave this problem in the 

optimised benchmark. Nevertheless, Chapter 7 will discuss the potential implications of this leak on 

the results.  

 
Figure 8 - Maximum water depth on the 2D grid for the optimised benchmark model. The areas that 

start to inundate at the start of the simulation are highlighted in red. 

6.2 Numerical simplifications 
This section will elaborate on the results of the surrogate modelling, for which numerical 

simplifications are applied to the optimised benchmark model to see their effect on the computation 

time and accuracy. The effect of the maximum Courant number, 2D grid resolution, number of 1D 

calculation points, combinations of simplifications and the results for the second event will be 

discussed in order. The results for all surrogates are shown in Table 10  and visualized in Figure 9  to 

Figure 12. Enlargements of these figures and more visualizations can be found in Appendix D. The 

numbering of the surrogates follows the next pattern: SUGs #dX adjust the 1D calculation points, SUGs 

#DX adjust the 2D resolution, SUGs #CX adapt the Courant number, SUGs #OX implement other 

numerical simplifications and SUGs #MX are mixes of simplifications.  

 

Optimised benchmark model Original model 
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Table 10a - Results of the surrogate modelling by implementing numerical simplifications. Yellow cells indicate changes with respect to the optimised 
benchmark. Green cells indicate if the indicator is within the acceptable limits, see Table 5. The table is continued on the next page. 

Event July 2014 Optimised benchmark SUG #d1 SUG #d2 SUG #d3 SUG #d4 SUG #d5 SUG #D1 SUG #D2 SUG #C1 SUG #C2 

Distance 1D nodes [m] 50 100 250 500 50 50 50 50 50 50 

Bridges removed No No No No Yes No No No No No 

Culverts merged No No No No No Yes No No No No 

Spatial resolution 2D grid [m] 100 100 100 100 100 100 250 500 100 100 

Maximum Courant number 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 1 5 

2D grid clipped No No No No No No No No No No 

User timestep [s] 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 

Resolution refinement 2D grid [m] - - - - - - - - - - 

Results computation time           

Computation time [min] 1501 1358 1198 1158 1367 1291 1793 642 1086 126 

Reduction computation time w.r.t. 
optimised benchmark [%] 

- 9.5 20.2 22.9 8.9 14.0 -19.5 57.2 27.6 91.6 

Average time step [s] 1.4 1.4 1.4 1.5 1.4 1.4 0.9 2.6 2.0 26.7 

Results accuracy Accepted if          

MAE avg. water depth 1D [m] < 0.05 0.050 0.082 0.084 0.003 0.014 0.084 0.131 0.001 0.004 

KGE water depth 1D > 0.75 0.66 0.55 0.55 0.96 0.80 0.50 0.34 0.98 0.93 

MAE max. water depth 1D [m] < 0.05 0.053 0.083 0.086 0.003 0.023 0.092 0.144 0.001 0.004 

MAE avg. water depth 2D [m] < 0.05 0.147 0.225 0.223 0.006 0.008 0.144 0.300 0.00 0.001 

KGE water depth 2D > 0.75 -0.08 -0.22 -0.22 0.96 0.92 0.46 -0.81 1.00 0.99 

MAE max. water depth 2D [m] < 0.05 0.177 0.271 0.267 0.006 0.009 0.163 0.351 0.00 0.002 

Precision flood extent > 0.7 0.75 0.89 0.78 1.00 0.99 0.73 0.46 1.00 1.00 

Recall flood extent > 0.7 0.91 0.32 0.31 0.98 0.97 0.69 0.05 1.00 1.00 

F1-score flood extent > 0.7 0.82 0.47 0.44 0.99 0.98 0.71 0.09 1.00 1.00 
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Table 10b - Results of the surrogate modelling by implementing numerical simplifications. Yellow cells indicate changes with respect to the optimised 

benchmark. Green cells indicate if the indicator is within the acceptable limits, see Table 5. 
Event July 2014 Optimised benchmark SUG #C3 SUG #C4 SUG #O1 SUG #O2 SUG #O3 SUG #M1 SUG #M2 SUG #M3 SUG #M4 

Distance 1D nodes [m] 50 50 50 50 50 50 50 75 75 75 

Bridges removed No No No No No No Yes No Yes Yes 

Culverts merged No No No No No No Yes No Yes Yes 

Spatial resolution 2D grid [m] 100 100 100 100 100 200 100 150 100 100 

Maximum Courant number 0.7 10 50 0.7 0.7 0.7 5 0.7 5 0.7 

2D grid clipped No No No Yes No No No No No No 

User timestep [s] 3600 3600 3600 3600 7200 3600 3600 3600 7200 3600 

Resolution refinement 2D grid [m] - - - - - 100 - - - - 

Results computation time           

Computation time [min] 1501 91 76 1095 1487 1481 99 1471 76 640 

Reduction computation time w.r.t. 
optimised benchmark [%] 

- 93.9 94.9 27.0 0.9 1.3 93.4 2.0 94.9 57.4 

Average timestep [s] 1.4 46.0 59.6 1.9 1.4 1.2 29.7 1.1 40.6 1.6 

Results accuracy Accepted if          

MAE avg. water level 1D [m] < 0.05 0.014 0.016 0.075 0.00 0.125 0.020 0.067 0.072 0.069 

KGE water level 1D > 0.75 0.86 0.82 0.40 1.00 0.30 0.72 0.63 0.40 0.48 

MAE max. water level 1D [m] < 0.05 0.015 0.017 0.076 0.00 0.141 0.028 0.072 0.088 0.084 

MAE avg. water depth 2D [m] < 0.05 0.043 0.041 0.150 0.00 0.243 0.016 0.131 0.198 0.198 

KGE water depth 2D > 0.75 0.72 0.72 0.73 1.00 -0.39 0.87 0.36 -0.62 -0.62 

MAE max. water depth 2D [m] < 0.05 0.053 0.050 0.169 0.00 0.288 0.016 0.149 0.240 0.240 

Precision flood extent > 0.7 1.00 0.99 0.80 1.00 0.53 0.99 0.58 0.68 0.68 

Recall flood extent > 0.7 0.90 0.92 0.72 1.00 0.16 0.94 0.78 0.91 0.91 

F1-score flood extent > 0.7 0.95 0.95 0.76 1.00 0.24 0.97 0.67 0.78 0.78 
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Figure 9 - MAE of the max water level in 1D 

calculation points. 

 
Figure 10 - F1-score of the 2D flood extent. 

 
Figure 11 - MAE of the max water depth in 2D 

calculation points excluding TN cells. 

 
Figure 12 - KGE of water level over time in 2D calculation points 

excluding TN cells 

6.2.1 Maximum Courant number 
Increasing the maximum Courant number seems to effectively decrease the computation time by more 

than 90% while keeping a high accuracy, as shown by SUG #C1 to SUG #C4 (see red triangles in Figure 

9  to Figure 12). A maximum Courant number between 1 and 5 performs sufficiently on all indicators.  

SUG #C1, which has a maximum Courant number of 1, has almost an equal output to the benchmark, 

with an MAE of only 1 mm for the 1D network and 0 mm for the 2D grid. Furthermore, the variability 

of the water level over time and the flood extent are modelled almost perfectly. This is as expected 

because for both the benchmark and the surrogate, particles of water can flow at most one cell in one 

time step since the maximum Courant number is constrained to 1 or smaller.  
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While SUG #C1 yields a computation time reduction of only 27.6%, SUG #C2 reduces the computation 

time by 91.6%. With the increase to a maximum Courant number of 5, only 2 mm of additional error 

in the water level is introduced. Nevertheless, some spatial differences occur in the MAE (Figure 13). 

However, 98.3% of the 1D calculation points still have an error smaller than the threshold of 0.05 m.  

 
Figure 13 - MAE of the maximum water level in the 1D network for SUG #C2. 

Increasing the maximum Courant number above 5 with SUG #C3 and #C4 barely yields an additional 

reduction in computation time compared with SUG #C2, while the KGE indicators start to fall below 

the threshold of 0.75. This means that the variability in the water level over time in the surrogate is 

not equal to the variability in the benchmark. By taking a larger maximum Courant number, the time 

step increases, which translates to a less accurate timing of the peak flow. Secondly, the KGE also 

includes bias. Because the error in the water level increases for these surrogates, the bias becomes 

larger. Both processes deteriorate the KGE score of these surrogates. 

6.2.2 2D grid resolution 
The 2D grid resolution has a large impact on the model performance, which is illustrated in Figure 9  

to Figure 12  by the grey crosses that are located outside the green-shaded areas. For SUG #D1, the 2D 

grid resolution was decreased from 100 m to 250 m but the computation time increased by 19.5%. 

The maximum number of times a flow element was Courant limiting increased from 31,870 in the 

benchmark model to 84,745 in this surrogate model. As a result, the average time step is 0.9 seconds 

for this surrogate instead of 1.4 seconds for the benchmark model. This leads to a larger computation 

time for SUG #D1. In addition, the performance on accuracy is outside the acceptable ranges. 

Increasing the grid size further to 500 meters also enlarges the error in the water level of the 1D 

network and 2D grid (SUG #D2).  

SUG #O3 uses a grid of 200 m resolution with a refinement of 100 m around the main waterways. This 

approach reduced the computation time by only 1.3%. At the edge of the refinements, small triangular 

cells are added by D-HyDAMO as a transition between the two grid resolutions. The small size of these 

cells limits the time step according to the Courant condition (Eq. 4). Besides that, none of the metrics 

is within the acceptable accuracy range for this surrogate. 

SUG #O1 removes the 2D grid cells that are located directly under the 1D boezem branches. These 

cells contain the profile of the waterway in the elevation of the cells. Incorrect elevation of these cells 

may lead to leaking. Although the flood extent is still the same, the water depth in the west of the area 

is significantly smaller (Figure 14), which means that less water is leaking on the 2D grid with this 

method. On the other hand, part of the 1D-2D flow links is removed for the cells that are clipped. As a 
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result, water that flows to the 2D grid is concentrated around the sparse number of 1D-2D flow links 

that are left in the model, leading to larger maximum water depths in some small areas (Figure 14). 

This problem can be solved by adding laterals, which are a special type of 1D-2D links. However, this 

function is not yet supported in D-HyDAMO and is therefore not applied in this thesis. The computation 

time of SUG #O1 is significantly faster than the benchmark model with a reduction of 27.0%. This is 

probably caused by a combination of a smaller amount of water that needs to flow over the 1D-2D 

links and 9.4% fewer 2D grid cells compared to the optimised benchmark model. This surrogate is in 

theory more accurate than the benchmark model since the leaking problem is partly solved.  

  
Figure 14 - Difference in water depth on the 2D grid between the benchmark model and SUG #O1. 

Blue indicates that the water depth in the surrogate is smaller than in the benchmark and red 
indicates that the water depth in the surrogate is larger than in the benchmark model. 

6.2.3 Number of 1D calculation points 
Reducing the number of 1D calculation points yields a relatively small reduction in computation time 

when compared to the other measures discussed above. Furthermore, increasing the distance 

between the 1D nodes (SUG #d1 to SUG #d3) scores outside the acceptable performance range for 

most metrics. This might be related to the number of 1D-2D links, which decreases with the number 

of 1D calculation points. With fewer 1D-2D links, the flow of water to the 2D grid is impeded which 

can lead to backwater and thus higher water levels in the 1D network. This probably also means that 

a larger amount of water is flowing over each of the 1D-2D links. As a consequence, the maximum 

water levels of the 2D grid cells in which the flow links end are higher.  The precision is the only metric 

that scores in the acceptable range for all these three surrogates which indicates that these surrogates 

are not overpredicting the flood extent. 

The number of 1D calculation points was reduced by 8.3% by removing all bridges from the model 

(SUG #d4) as each bridge normally adds two additional calculation points. This surrogate is 8.9% faster 

than the benchmark model. The accuracy is well within the limits, indicating that the maximum water 

levels, variability and flood extent can all be modelled sufficiently without the 1D points that come 

with the bridges in the model.  

Lastly, culverts on the same branch were merged in SUG #d5 which reduced the number of 1D 

calculation points by 13.3%, resulting in a computation time reduction of 14%. All metrics are within 

the thresholds. However, local errors arise just before the entrance of long culverts with small 

dimensions since the water accumulates at these locations. This can be seen in Figure 15  as dark red 

spots on the map. When merging the culverts, the most limiting values of the original culverts are 

taken and used in the merged culvert. This leads to higher backwater.  
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Figure 15 - MAE of the max water level in the 1D calculation points for SUG#d5. 

6.2.4 Other simplifications 
Adjusting the user timestep (SUG #O2) changes how often the external forcings are read and processed 

by the model and does not influence the maximal Courant number. It has, therefore, no influence on 

the average calculation timestep during the run. With an increased user time step, the model spends 

less time reading and processing the forcing files, but the effect on the computation time is minor with 

a reduction of 0.9%. The output is extremely similar to the benchmark. 

6.2.5 Combinations of simplifications 
Several combinations of the above simplifications were tested as well. SUG #M1 combines the removal 

of bridges, merging of culverts, and a maximum Courant number of 5 because the accuracy of these 

measures individually stayed within the thresholds while generating significant reductions (>5%) in the 

computation time each with 8.9%, 14.0% and 91.6% respectively. These measures combined give a 

reduction of 93.4%. The maximum water levels were simulated highly accurately (MAE in Table 10), as 

well as the inundation extents. However, the water level time series in the 1D network performs just 

below the threshold.  

The surrogates changing the 2D resolution and distance between the 1D network separately did not 

perform well on accuracy. If the difference in the 1D and 2D resolution is large, the 1D-2D links can be 

unbalanced. SUG #M2 solves this by adjusting the 1D and 2D resolution with the same factor of 1.5, 

such that the ratio between 1D nodes and 2D cells that are connected with 1D-2D links remains the 

same. This surrogate is only 2% faster than the optimised benchmark and all metrics except the recall 

perform outside the thresholds. This combination seems therefore not suitable for accelerating 

detailed 1D2D hydrodynamic models. 

SUG #M3 increases the 1D node distance to 75 m, merges culverts, removes bridges, increases the 

Courant number to 5 and sets the user timestep to 2 hours since these measures seem to have 

sufficient accuracy when applied individually. However, when combined, all error metrics except the 

F1-score are outside of the acceptable ranges. The computation time saving is 94.9% which is equal to 

the reduction yielded with a Courant number of 50 (SUG #C4). SUG #C4 scores significantly better on 

accuracy and it is therefore preferred to use a Courant number of 50 instead of this combination of 

measures. 

SUG #M4 adopts all methods to reduce the number of 1D calculation points to see how this impacts 

the computation time and accuracy: increasing the 1D node distance to 75 m, merging culverts and 
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removing bridges. This surrogate only accurately predicts the flood extent but not the water level and 

water level time series. Because a combination of removing bridges and merging culverts (SUG #M1) 

scores within the limits, it is plausible that increasing the 1D node distance in a combination of 

measures results in a significant error.  

6.2.6 Second precipitation event 
SUG #C2, SUG #O1, SUG #M1 and SUG #M2, representing almost all of the tested numerical 

simplifications, are run for the event of September 2018 to see if similar results can be obtained for a 

different event. A detailed overview of the performance of these surrogates for this event is included 

in Appendix C.  

The same metrics fall within the acceptable ranges on both events for all of the four evaluated 

surrogates. The MAE values in both the 1D and 2D calculation points are of the same order of 

magnitude, see Figure 16  for an illustration. The KGE metric for the event of July 2014 performs better 

(Figure 17). The event of July 2014 has only one peak of rainfall while the event of September 2018 

contains three rainfall peaks (Figure 5 and Figure 6). More rainfall peaks make the simulation more 

prone to errors in the water level time series, resulting in a lower KGE value. 

All the surrogates show that the reduction in computation time is relatively similar for both events.  

 
Figure 16 - MAE of the max water level in 2D 

calculation points for both precipitation events. 

 
Figure 17 - KGE of the water level time series on the 2D grid for 

both precipitation events. 
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Discussion 

This section will discuss the methods and results of this study. First by expatiating some limitations caused 

by the model and the choices in the methodology, then by comparing the results found in this study to 

other studies and seeing the differences and agreements, and lastly by elaborating on the applicability 

and generalisation of the results.  

7.1 Limitations 
Several limitations are introduced by the model characteristics and the methodological choices. These 

and their effects on the results will be discussed in this chapter.  

7.1.1 Model restrictions 
The model of the HDSR study area used in this study has some limitations. First of all, the model was not 

calibrated when starting with this thesis because HydroLogic further improved the model in the 

subsequent period. This means that the benchmark model used in this study is not calibrated which might 

impact the results as the water levels can be constantly too low or high. A persistent over- or 

underestimation of the water level can interfere with the automatic operation of the control structures 

that are dependent on the water level for their operation. Furthermore, if the water level in a channel is 

overpredicted at the start of a rainfall event, the available storage in the waterway is smaller, leading to 

flooding of the 2D grid faster. This is also true for an underprediction of the water level, but the flooding 

of the 2D grid will come later than in reality. Since this study compared the performance of the surrogates 

against the benchmark model, this is not a major problem as the problem occurs in both. However, when 

applying the HDSR model to decision-making in the water management strategy, the model must first be 

calibrated and validated to achieve more reliable results.  

Secondly, the rainfall data is only available as an average over the whole area. However, the extreme 

events which are relevant for pluvial flooding are often local and it can be that some parts of the study 

area faced significantly more precipitation than the average for the event of July 2014. As spatial rainfall 

variability is not included in both the benchmark and surrogate models, still a fair comparison of model 

performance between the two could be made. 

Thirdly, the optimised benchmark model still leaked water onto the 2D grid cells, leading to flooding 

without rainfall. This has likely influenced the F1-score, which depends on the number of true positive 

cells. The leak increases the number of true positive cells significantly, while the number of false positive 

and false negative cells remains almost equal because the leaking occurs at the same location for the 

benchmark model and surrogates. According to Eq. 9, this increase in TP cells improves the F1-score. As a 

consequence, the F1-score might seem to perform sufficiently while it might not be acceptable if no 

leaking had occurred. However, it is difficult to determine whether a cell is flooded by leaking, pluvial 

flooding or a combination of both. For SUG #D1 and SUG #O1, the F1-score is just above the threshold. If 

no leaking occurred, it might be that these surrogates would have scored insufficient on this metric. 

Lastly, the surrogates with clipped and refined 2D grids contain some errors. No 1D-2D links are added 

between 1D waterways for which the 2D grid is clipped. This can be solved by adding the special ‘lateral’ 

type of 1D-2D links for these branches, although this is not yet possible with D-HyDAMO. As a result of 

the missing 1D-2D links, water from the clipped branches cannot flow to the 2D grid or only in a limited 

number of locations via secondary branches. This results in higher water levels on the 1D branches and in 

the 2D cells that are at the end of the remaining links. Furthermore, because the water from these 

branches flows at another location on the grid, the accuracy can be negatively impacted. In addition, the 

leaking is not fully solved with this measure. Also combining a local grid refinement with a clip of the 2D 

grid still generates errors when running the model. 
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7.1.2 Methodological limitations 
The choices made in the methodology can influence the results too. First of all, only one rainfall event is 

chosen to simulate all surrogates. Similar results are found for a second rainfall event for only a selection 

of surrogate models. Furthermore, this second event has no completely different characteristics than the 

first. For other types of events, for example, events that have a longer duration but a lower average 

intensity, the results might not apply. Although some surrogates are run for two events, a long wet period 

of around a month is not covered in the analysis.  

Secondly, it was chosen to terminate the run of the original model after simulating 3 hours since the 

simulation was 15 times slower than reality. Although the comparison between the original model and 

the optimised benchmark model is based only on the first three hours of the simulation, potential 

behaviour later in the model is not included in this comparison. All the models started to accelerate after 

8 to 12 hours. By terminating the model before this moment, the behaviour of the original model is not 

known for this period. It can be that the original does not start to accelerate in this period which would 

mean that the computation time reduction of the optimised benchmark is even larger than reported.  

The assumptions for merging the culverts influence the results (see Figure 15) since the water accumulates 

at the entrance of the new culverts. The worst-case parameter values were chosen to use in the merged 

culverts. These are, for example, the largest roughness and smallest dimensions. However, not all these 

parameters are necessarily originating from the one culvert which is the most limiting. These assumptions 

might therefore be too strict and results with lower error values could potentially be found when 

assuming less strict parameter values for the merged culvert.  

Lastly, the choice of certain metrics and their thresholds can largely influence the conclusions. Initially, 

the Nash-Sutcliffe Efficiency (NSE) was calculated instead of the Kling-Gupta Efficiency (KGE) to evaluate 

the variability in water level over time of the surrogates. However, the NSE often approached minus 

infinity for some calculation nodes that had no or extremely small variability in the water level. As a result, 

the NSE appeared almost always unacceptable. The KGE is less sensitive to nodes with a small variability 

in the water level, resulting in a more balanced scoring. This shows that the choice for a certain metric 

can influence the results. Moreover, the recommendations on which methods are suitable for accelerating 

a detailed 1D2D hydrodynamic model are largely dependent on the thresholds set for each metric. For 

example, the KGE is good if larger than 0.75, which was here taken as a reference, and sufficient between 

0.5 and 0.75 (Gupta et al., 2009; Kling et al., 2012). If the threshold was set to 0.7, still close to a “good” 

performance, SUG #C4 and SUG #M1 would have scored acceptable on all metrics and would be 

recommended as a suitable method, while these two surrogates are not recommended if a threshold of 

0.75 is used. 

7.2 Results in relation to existing literature 
This section will shortly compare the results found in this study with the literature to see differences and 

agreements. 

The results related to increasing the maximum allowed Courant number are largely in line with other 

studies although the reduction in computation time is in general slightly larger for this study. Janssen 

(2023) found that increasing the maximum Courant number from 0.7 to 10 could reduce the computation 

time by 80% while only introducing a 0.2 mm error in the water level. The results of this thesis indicate 

that a maximum Courant number of 10 can lead to a reduction in computation time of 93.9% while 

introducing around 5 cm error in the water level on the 2D grid. Compared to Janssen (2023), the 

reduction in computation time and the error are higher. Similar to Janssen (2023), increasing the 

maximum Courant number above 10 does not result in significant differences in both computation time 

and accuracy. Hop (2021) yielded a computation time reduction of 75% with a maximum Courant number 

of 50, while this study shows a reduction of 94.9%. However, both Janssen (2023) and Hop (2021) indicate 
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that an increased maximum Courant number is the most effective numerical simplification for reducing 

the computation time, which is also found in this study.  

Nevertheless, a maximum Courant number above 1 is seldom seen in literature (e.g. Bomers et al., 2019a;  

Bomers et al., 2019b; Hardy et al., 1999 all use a maximum Courant number below 1). This is because 

values greater than 1 can lead to numerical errors growing over time in explicit calculation schemes 

(Akbari & Firoozi, 2010; Deltares, 2024). Some areas in the simulation of SUG #C2, #C3 and #C4 experience 

significantly larger errors than the average error (see Figure 13). This is probably caused by this 

phenomenon of an unstable solution when using an explicit calculation scheme in combination with a 

maximum Courant number that is larger than 1. The affected areas have presumably a relatively large 

error at the first time steps which then grows to significantly larger errors later in the simulation. For 

longer simulations, the error can grow larger which can be a problem for applying a maximum Courant 

number larger than 1 in a simulation that is longer than the simulations discussed in this thesis.  

McMillan & Brasington (2007), could yield a reduction in computation time of over 90% by increasing the 

grid size by a factor of 5. In this study, a grid size of 500 m instead of 100 m resulted in a 57.2% shorter 

computation time. With the coarsened grid, the error in the water level becomes 20 cm in the study of 

McMillan & Brasington (2007), which is in line with the results of SUG #D2 which has an error of around 

15 cm in the 1D nodes and 30 cm in the 2D nodes. The maximum water depth on the 2D grid in this thesis 

is generally lower for coarser resolutions (blue areas in Figure 18). This is contrary to what Bomers et al. 

(2019b), Judi et al. (2014), Horritt et al. (2006) and Caviedes-Voullième et al. (2012) found. A coarser grid 

averages out the profiles of the waterways on the 2D grid. As a result, the elevation of the 2D cells beneath 

the 1D network will be higher, limiting the flow from the 1D network to the 2D cells. In other words, a 

coarser grid reduces the amount of leaking which results in lower maximum water depths on the 2D grid 

in this case.  

 
Figure 18 - Difference in water depth on the 2D grid between the benchmark and SUG #D2 (resolution of 

500 m). Blue indicates that the water depth in the surrogate is smaller than in the benchmark model. 

The study by Davidsen et al. (2017) showed that reducing the number of 1D calculation points by 66% 

can result in a 35% decrease in computation time. For SUG #d2, the number of 1D nodes is reduced by 

40% resulting in a reduction of the computation time by 20%, which is approximately the same ratio. 

However, Davidsen et al. (2017) could yield acceptable results when decreasing the calculation nodes by 

66%. The surrogates affecting the number of 1D calculation points in this study are only acceptable when 

removing the bridges or merging the culverts, decreasing the number of 1D nodes by only 8.3% and 13.3% 

respectively.  
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7.3 Applicability and generalisation 
The results are partly generalisable to other models and studies. The list of numerical instabilities 

presented in section 6.1 (Table 6) can be used as a guideline for checking potential problems in all other 

hydrodynamic models featuring a 1D-2D grid and/or control structures such as pumps and weirs. A large 

part of potential numerical instabilities can easily be found when checking all elements in this list. 

Furthermore, the methods of finding numerical instabilities can be applied to other models as well to 

detect additional numerical instabilities that were not encountered in this study. Nevertheless, the 

solutions to solve most numerical instabilities are often case-specific and might need to be tailored to 

each project individually. For example, assuming a bed level 0.8 m below the control water level for 

waterways without a specified bed level is for most branches in this case study a realistic assumption. 

However, this might not apply to other studies. Although improving the data is a good starting point for 

resolving numerical instabilities, assumptions to cover missing data are more case-specific.  

Concerning numerical instabilities related to the model set-up, some solutions are case-specific. For 

instance, pumps that snapped to the incorrect branch were manually relocated in the raw data to be as 

close to the correct branch as possible. For this case study, around 7 pumps were relocated in this manner. 

For other studies, it is neater to adjust the D-HyDAMO script to cope with this problem. On the other 

hand, the solution to ensure that culverts crossing above each other are not merged can be applied to 

other studies as well for example. In conclusion, the list of numerical instabilities and the methods for 

finding additional numerical instabilities can form a starting point for other studies. 

The results of the surrogate modelling with numerical simplifications will probably apply to most other 

detailed 1D2D hydrodynamic models that describe a similar type of area and water system. The 

simplifications can at least be implemented in other 1D2D hydrodynamic models. The results may vary 

slightly in other studies depending on the set-up of the model. For example, the model of the case study 

contains a relatively dense 1D network. Adjusting the number of 1D nodes has for this study probably a 

larger impact than for a model with a less dense 1D network. Another example is the merging of culverts 

and removal of bridges, for which the impact on the computation time is purely determined by the 

number of culverts or bridges in the model. Lastly, numerical errors keep growing as long as the simulation 

continues when using a maximum Courant number above 1 (Akbari & Firoozi, 2010). The results might 

therefore not apply to simulations with a maximum Courant number larger than one that have a 

completely different duration than seen in this thesis. Yet it is expected that similar trends in the 

computation time and accuracy apply to relatively equal models.  

   



 

 
35 

Conclusion & recommendations 

The main objective of this study is to optimise the calculation time of a detailed 1D2D hydrodynamic 

model by resolving numerical instabilities and implementing numerical simplifications. Four research 

questions were formulated to answer the main research question. This chapter will answer these research 

questions. Furthermore, some recommendations will be made for further research. 

8.1 Conclusions 

8.1.1 Numerical instabilities and computation time 
First of all, research was done into the influence of numerical instabilities on the computation time of a 

detailed 1D2D hydrodynamic model to answer the following question:  

How do numerical instabilities affect the computation time of a detailed 1D2D hydrodynamic model? 

For the case study, seventeen causes of numerical instabilities were found. After solving most numerical 

instabilities in the HDSR model, the model was run and compared to the original model. The optimised 

benchmark model appears to be 96% faster than the original model when running with the 1D network 

only and 98% faster when running with both the 1D and 2D grid, which shows that resolving numerical 

instabilities in the model is effective in reducing the computation time. Nevertheless, if no or small 

numerical instabilities are present in a model, the reduction in computation time will be lower. In addition 

to the large computation time reduction, the optimised benchmark model is more accurate by improving 

the data and model construction. 

8.1.2 Numerical simplifications 
Several numerical simplifications were implemented in the optimised benchmark model. Multiple 

surrogates were constructed that adjusted the maximum Courant number to answer the following 

research question:   

How does a larger maximum Courant number affect the computation time and model accuracy of a 
detailed 1D2D hydrodynamic model? 

Adjusting the maximum Courant number appears to be the most effective numerical simplification to 

reduce the computation time of a detailed 1D2D hydrodynamic model. A decrease in computation time 

of almost 95% can be achieved while introducing less than 5 centimetres error in the water level for a 

maximum Courant number of 50. Using a maximum Courant number of up to 5 can still reduce the 

computation time by 91% and introduce less than 0.5 cm error in the water level. A Courant number of 5 

seems therefore the best trade-off between accuracy and computation time.  

How does a coarser 2D grid affect the computation time and model accuracy of a detailed 1D2D 
hydrodynamic model? 

First of all, a coarser 2D grid introduces significant errors in the water level of more than 8 cm in the HDSR 

model. In this study, a grid size of 250 meters instead of 100 meters increased the computation time by 

19.5% due to new instabilities in the model. A grid size of 500 meters reduced the computation time by  

57%. If no new instabilities arise, reducing the resolution of the 2D grid seems to be effective in reducing 

the computation time, but due to a relatively large error, this method is not recommended to apply in 

detailed 1D2D hydrodynamic models. 
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How does a reduced number of 1D calculation points affect the computation time and model accuracy 
of a detailed 1D2D hydrodynamic? 

The distance between the 1D nodes was multiplied with a factor between 1.5 and 10, resulting in a 

reduction in computation time ranging from 9.5% to 22.9% and an error in the water level of 5 to 27 cm. 

Merging the culverts and especially removing the bridges show acceptable results in terms of accuracy. 

The computation time could be reduced by 14% and 8.9% respectively although this will depend on the 

number of bridges and culverts in the model.  

8.1.3 Main research question 
Which methods are effective in reducing the computation time of a detailed 1D2D hydrodynamic model 
while keeping sufficient accuracy in the output? 

Effective methods for reducing the computation time of a detailed 1D2D hydrodynamic model are mainly 

resolving numerical instabilities if these exist in the model. This can reduce the computation time by 96% 

but this depends on the presence of numerical instabilities in the model. By resolving numerical 

instabilities, the accuracy of a model can improve as well. If numerical instabilities are not present or more 

reduction in computation time is required, increasing the maximum Courant number is the most effective 

numerical simplification with a reduction in computation time of over 90%. This simplification also 

introduces the least error of all examined simplifications, ranging between 0 and 5 cm in the maximum 

water level.   

8.2 Recommendations on the application of the results 
Resolving numerical instabilities can advance the computation time of a detailed 1D2D model significantly 

and can improve the accuracy. It is therefore recommended to always analyse if numerical instabilities 

exist in a hydrodynamic model and solve them if possible. The methodology proposed in this thesis in 

combination with the checklist of numerical instabilities found in this study (Table 6) can be used to 

efficiently pinpoint and identify locations with numerical instabilities in future studies and model 

applications. 

If it is desired to reduce the computation time further after resolving numerical instabilities, increasing 

the maximum Courant number between 1 to 5 is highly effective and recommended as a subsequent step. 

Other numerical simplifications are not recommended as these introduce significantly more error in the 

output while resulting in a lower computation time reduction. For studies in which accuracy is extremely 

important, it is advised to use a maximum Courant number of 1. This will almost certainly guarantee that 

no new instabilities arise because water can still flow through 1 grid cell per time step while the 

computation time can be reduced by around 27%, depending on the model characteristics. If reduction in 

the computation time is favoured over accuracy, or a slight error is acceptable, a maximum Courant 

number of 5 can be used. For the case study in this thesis, a maximum Courant number of 5 resulted in 

an error of around 0.5 cm in the water level. However, the error introduced by a maximum Courant 

number of 5 will depend on the model characteristics and simulation time. In addition, the error in the 

water level can be significantly higher than the average error for some local areas (see for example Figure 

13). A maximum Courant number larger than 5 can yield acceptable results, but the reduction in the 

computation time compared to a simulation with a maximum Courant number of 5 is minimal. It is 

therefore not recommended to use a maximum Courant number that is larger than 5. In addition, it is 

always recommended to plot the accuracy spatially after applying a numerical simplification to see if 

specific areas have larger errors than others.  

The model of the case study from HydroLogic must be run for around 10,000 events, where high accuracy 

is required to correctly map bottlenecks in the water system. The suggested approach is to run the 
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optimised benchmark model with a Courant number of 5 for all these events and determine which of the 

events pose a problem to the water system. It is recommended to simulate these events again with the 

optimised benchmark model with a maximum Courant number of 1 to yield more accuracy for the 

relevant events. For studies and projects that need to evaluate large sets of events, this approach can be 

helpful.     

Furthermore, it is advised to HydroLogic to examine the leakage in the HDSR model in more detail. Solving 

this problem could potentially speed up the model significantly. Moreover, if the leaking is resolved, the 

evaluation metrics will better describe the actual error in the flooded areas. Starting points for 

investigation can be the files that contain the initial water level for the 2D grid between the retaining 

elements and the bed level of the 2D grid. If the leaking is solved, some or even all surrogates can be 

constructed again to see if the results on the computation time and accuracy are significantly different.  

Lastly, it is recommended to do more research on the areas that have significantly higher MAE values 

when using a maximum Courant number of 5 (Figure 13). Understanding what causes the higher error 

values at these locations can help to improve the model of HDSR even further and to interpret results for 

the evaluation of the 10,000 events.  

8.3 Recommendations for further research 
Multiple recommendations can be made regarding future research on the topic of accelerating detailed 

1D2D hydrodynamic models. This section will shortly touch upon the steps that can be taken in the future 

to deepen the knowledge on this topic.  

8.3.1 Other acceleration methods 
As discussed in section 2.3, other methods exist to accelerate models besides numerical simplifications. 

This thesis focussed on low-fidelity physically based surrogates, but data-driven methods such as machine 

learning, neural networks and response surface surrogates can potentially provide alternative methods 

for accelerating detailed 1D2D hydrodynamic models. Hop et al. (2024) were able to construct a neural 

network that generates probabilistic inundation forecasts within seconds for a polder system. Although 

the practicability of these methods is often limited for larger models (Razavi et al., 2012), a combination 

of LFPS and data-driven methods might potentially be successful for accelerating a detailed 1D2D 

hydrodynamic model.  

8.3.2 Expanding research LFPS  
More research can be done on LFPS models to cover more situations and obtain more detailed results. As 

mentioned in the discussion, the results might not apply to a rainfall event that has different 

characteristics than the events used in this thesis. It might therefore be useful to test if similar results can 

be found with completely different rainfall events, for example, an event describing an extremely wet 

month. The same holds for a different topography,  such as a mountainous area.  

Secondly, just a limited number of surrogates are calculated and it might be useful to run more surrogates 

to get a better understanding of where the ranges are located for parameters that will result in sufficient 

accuracy. For instance, having surrogates with a 2D grid resolution of 125 m, 150 m, 200 m, 250 m, 350 m 

and 500 m instead of having two surrogates with a 2D grid resolution of 250 m and 500 m.   

Furthermore, this thesis has treated the refinement and clipping of the 2D grid rather superficial, with 

only two surrogates. As discussed in Chapter 7, still several problems are encountered when clipping and 

refining the 2D grid with D-HyDAMO. It is advised to solve these problems by creating 1D-2D links between 

the clipped grid and branches and then reassessing the applicability of clipping and refining the 2D grid. 

Furthermore, a combination of clipping and refining might also be suitable to accelerate a detailed 1D2D 

hydrodynamic model without compromising accuracy. This can be tested in the future.   
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Elaboration on research methods 

This appendix contains more detailed information on the research methods. A.1 shows the characteristics 

of the surrogates that are run. A.2 shows the components of the Kling-Gupta Efficiency.  

A.1 Simulated surrogate models 
Table 11  shows the characteristics of all surrogate models that are run. All surrogate models are run for 

the event of July 2014. SUG #C2, #O1, #M1 and #M2 were also run for the event of September 2018 

(Figure 6) to see if similar results were found. 

Table 11 - Overview of all surrogates. In yellow are the changes with respect to the benchmark model. 
Name Distance 

1D nodes 
[m] 

Bridges 
removed 

Culverts 
merged 

2D 
resolution 

[m] 

Maximum 
Courant 
number 

User time 
step [s] 

2D grid 
clipped 

2D grid 
refinement 

[m] 

Optimised 
benchmark 

50 No No 100 0.7 3600 No - 

SUG #d1 100 No No 100 0.7 3600 No - 

SUG #d2 250 No No 100 0.7 3600 No - 

SUG #d3 500 No No 100 0.7 3600 No - 

SUG #d4 50 Yes No 100 0.7 3600 No - 

SUG #d5 50 No Yes 100 0.7 3600 No - 

SUG #D1 50 No No 250 0.7 3600 No - 

SUG #D2 50 No No 500 0.7 3600 No - 

SUG #C1 50 No No 100 1 3600 No - 

SUG #C2 50 No No 100 5 3600 No - 

SUG #C3 50 No No 100 10 3600 No - 

SUG #C4 50 No No 100 50 3600 No - 

SUG #O1 50 No No 100 0.7 3600 Yes - 

SUG #O2 50 No No 100 0.7 7200 No - 

SUG #O3 50 No No 200 0.7 3600 No 100 

SUG #M1 50 Yes Yes 100 5 3600 No - 

SUG #M2 75 No No 150 0.7 3600 No - 

SUG #M3 75 Yes Yes 100 5 7200 No - 

SUG #M4 75 Yes Yes 100 0.7 3600 No - 
 

A.2 Components Kling-Gupta Efficiency 
The Kling-Gupta Efficiency (KGE) indicates the model performance in relation to observations or a 

benchmark model. The KGE is composed of a term scoring the correlation, a term indicating the bias and 

a term that compares the variability in the surrogate and benchmark model. The score can vary from 

minus infinity to 1 and is best if 1 (Gupta et al., 2009; Kling et al., 2012). The KGE can be calculated in each 

calculation point with Eq. 10 - Eq. 13. The overall KGE can be calculated by taking the average of the KGE 

values in each calculation point. 

 

 

 

 

A 
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𝐾𝐺𝐸 Kling-Gupta Efficiency 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 Eq. 10 

𝑟 Pearson correlation coefficient 

∑ (𝑦𝑠,𝑖 − 𝑦�̅�)(𝑦𝑏,𝑖 − 𝑦𝑏̅̅ ̅)
𝑛
𝑖=1

√∑ (𝑦𝑠,𝑖 − 𝑦�̅�)
2𝑛

𝑖=1
√∑ (𝑦𝑏,𝑖 − 𝑦𝑏̅̅ ̅)

2𝑛
𝑖=1

 
Eq. 11 

𝛼 Variability ratio 
𝜎𝑠
𝜎𝑏

 Eq. 12 

𝛽 Bias ratio 
𝑦�̅�
𝑦𝑏̅̅ ̅

 Eq. 13 

Where 𝑛 is the total number of time steps with a water level measurement for the given calculation point, 

𝑦𝑠,𝑖 is the water level predicted by the surrogate at time step 𝑖,  𝑦𝑏,𝑖 is the water level predicted by the 

benchmark at time step 𝑖, 𝑦𝑏̅̅ ̅ is the average water level in the benchmark, 𝑦�̅� is the average water level in 

the surrogate, 𝜎𝑠 is the standard deviation in the water level of the surrogate, and 𝜎𝑏 is the standard 

deviation in the water level of the benchmark. 
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Detailed overview of numerical instabilities 

Table 12  shows the numerical instabilities that were encountered, their root cause, the dimensions of the model they are related to, and the implemented 

solutions. 

 

Table 12 - Detailed overview of numerical instabilities found in the original model of the case study. 
# Numerical instability Model 

dimensions 
Direct cause high 
computation time 

Root cause Implemented solution 

1 
The bed level of some waterways was equal to the control 
water level. This resulted in water depths of 0 meters at the 
first time step. 

1D Water depth of 0 
meter 

Incorrect 
data 

The bed level for waterways is estimated 0.8 meters 
below the control water level if the bed level and 
control water level are equal in the input data. 

2 
Some areas with a seasonal (summer and winter) control 
water level had only one of the two control water levels 
specified. As a result, some waterways started empty. 

1D/2D Water depth of 0 
meter 

Incomplete 
data 

If only a summer or winter control level was 
specified in the data, the missing control water level 
was set to equal the known control water level. 

3 
Some areas did not have a fixed control water level specified, 
resulting in empty waterways at the start of the simulation 

1D/2D Water depth of 0 
meter 

Incomplete 
data 

HDSR has provided the missing data after a request. 

4 

The elevation map of the 2D grid cells contained values of  
-10 mNAP for cells with invalid elevation measurements. This 
created deep pools that filled with water from the 1D 
network. 

2D Large NumLimdt Incorrect 
data 

The elevation on the 2D grid cells was set to -5 
mNAP for invalid values, and the grid resolution of 
the 2D grid was set to 100 m to average out these 
invalid values. All to reduce the water that will flow 
from the 1D network to these cells 

5 

For all culverts without data on the elevation, it is assumed 
in D-HyDAMO that the bottom elevation is 0.4 m under the 
control water level. However, some culverts act as water 
level-separating structures. In this case, the elevation of the 
culvert must be equal to the highest of the two control 
water levels between which it is the separating structure. 
With the default assumption, the areas with the highest 
control water level can drain via the culvert.  
 
 

1D High flow 
velocities, Large 
NumLimdt, 
Unrealistic water 
level drops 

Incomplete 
data and 
incorrect 
model set-up 

For culverts that act as a water level-separating 
structure, the elevation is set equal to the control 
water level if no data is available. For normal culverts 
without data, the assumption that the inflow 
elevation is 40 cm under the control water level is 
kept. 

B 
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# Numerical instability Model 
dimensions 

Direct cause high 
computation time 

Root cause Implemented solution 

6 

The control water level for some weirs was not present in 
the data. As a result, the weirs were always open. 

1D High flow 
velocities, Large 
NumLimdt, 
Unrealistic water 
level drops 

Incomplete 
data 

The control water level for weirs without data was 
derived from the map containing all control water 
levels.  

7 

The water depth on the 2D grid between the retaining 
structures was initially set to 0 m, while water is present 
here. As a result, the 1D network was filling the 2D grid 
between the retaining structures during the first time steps. 

2D Large NumLimdt, 
Water depths of 0 
m 

Incorrect 
model set-up 

A new input map for the water depth on the 2D grid 
was generated where the cells between the retaining 
elements have an initial water level equal to the 
control water level. 

8 
Automatic weirs steered in the wrong direction. When the 
water had to be retained, the automatic weirs lowered their 
crest level, increasing the discharge. 

1D Water depth of 0 
meter 

Incorrect 
model set-up 

Change of the automatic weir parameters (the 𝐾𝑝 

parameter was set from -0.03 to 1) 

9 

The control water level for the sluices was determined 
incorrectly if the sluice point objects in the raw data were 
not exactly on the border of the two control water level 
areas. 

1D High flow velocities Incorrect 
model set-up 

The raw data of the sluices was changed from point 
objects to line objects that all intersect the two 
relevant control water level areas, which is required 
to set the correct control water level for the sluices.  

10 

Pump stations snapped to the wrong branch when 
constructing the model, causing open channels between 
areas with different control water levels. This drained the 
areas with a higher control water level. 

1D High flow 
velocities, 
Unrealistic water 
level changes 

Incorrect 
model set-up 

Pump stations were relocated in the input data via 
QGIS to snap on the correct branch when running 
the D-HyDAMO script. 

11 

Some fish passages are several meters long but are 
represented in the model as a point object on a branch. It is 
assumed that the flow through the fish passages is zero. 
When the fish passage intersects with another branch, only 
one side of the passage is closed as the point object is placed 
on one side of the intersection only. The other side remains 
open and water can incorrectly flow through the fish 
passage.  
 
 

1D Water depth of 0 
meters 

Incorrect 
model set-up 

When fish passages intersect other branches, the 
fish passage is split in two in the raw data. When 
constructing the model, one point element on both 
sides of the intersection is added to close both sides. 
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# Numerical instability Model 
dimensions 

Direct cause high 
computation time 

Root cause Implemented solution 

12 

Waterways and culverts that crossed above each other 
(without an open connection) were sometimes constructed 
in the model as open connections, allowing the water to 
flow from one to the other.  

1D Large NumLimdt, 
Unrealistic water 
level changes 

Incorrect 
model set-up 

The D-HyDAMO script that constructs the branches 
from the raw data was adjusted such that it does not 
connect waterways if a culvert stretches along the 
intersection. 

13 

Some pumps were steering on the wrong control water level. 
The water level on which a pump should steer is determined 
with the help of a downstream and upstream observation 
point. However, some of the observation points were located 
in the wrong control water level area, which translates to an 
incorrect pump operation.  

1D Large NumLimdt, 
Water depths of 0 
m 

Incorrect 
model set-up 

A file with new locations of the observation points 
was created in which the observation points are 
located in the correct control water level areas. 

14 
Some parallel branches were incorrectly snapped to each 
other resulting in flow around pump stations, draining areas 
with a higher control water level. 

1D Unrealistic water 
level drops 

Incorrect 
model set-up 

The script that snaps branches to each other was 
adjusted by a colleague of HydroLogic. 

15 

Some weirs were snapped on the wrong branch when 
constructing the model or were steering on the wrong 
control water level. 

1D Large NumLimdt, 
Water depths of 0 
m, High flow 
velocities 

Incorrect 
model set-up 

A csv file is created for the incorrect weirs. The csv 
file describes either to which branch the weir should 
snap or on which control water level it should steer. 
The csv file is read by the D-HyDAMO script to 
ensure the correct model construction.  

16 

Sluices could not discharge water because the bed elevation 
at the start and end of the sluice was set to the default of 0 
m NAP in D-HYDRO since it is not possible in the GUI to 
define these values. However, the sluices are located below 
0 m NAP, such that a bed level of 0 m NAP blocks the 
opening of the sluices completely, resulting in high water 
levels. 

1D Large NumLimdt, 
Unrealistic water 
level increases 

D-HYDRO 
GUI 
limitation 

The correct bed level parameters are manually 
added to the structures.ini file which describes all 
parameters for the structures.  

17 

The water level of one branch was seen dropping while both 
sides of the branch were closed off by two switched-off 
pumps. After a couple of hours in the simulation, the water 
level dropped, while the discharge through the pumps 
remained 0. This is unexpected and the cause of this 
behaviour could not be found.  

1D Water depths of 0 
m 

Unexpected 
behaviour of 
D-HYDRO 

- 
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Results second precipitation event 

This appendix contains the results of the second precipitation event in Table 13. 

Table 13 - Results of the surrogate modelling for the event of September 2018. Yellow cells indicate 
changes with respect to the optimised benchmark. Green cells indicate if the indicator is within the 

acceptable limits, see Table 5.  

Event September 2018 Optimised 
benchmark 

SUG #C2 SUG #O1 SUG #M1 SUG #M2 

Distance 1D nodes [m] 50 50 50 50 75 

Bridges removed No No No Yes No 

Culverts merged No No No Yes No 

Spatial resolution 2D grid [m] 100 100 100 100 150 

Maximum Courant number 0.7 5 0.7 5 0.7 

2D grid clipped No No Yes No No 

User timestep [s] 3600 3600 3600 3600 3600 

Resolution refinement 2D grid [m] - - - - - 

Results computation time      

Computation time [min] 1559 133 1166 107 1569 

Reduction computation time w.r.t. 
optimised benchmark [%] 

- 91.5 25.2 93.1 -0.6 

Average timestep [s] 1.5 27.3 1.9 29.9 1.1 

Results accuracy Accepted if     

MAE avg. water depth 1D [m] < 0.05 0.005 0.075 0.017 0.065 

KGE water depth 1D > 0.75 0.94 0.54 0.74 0.64 

MAE max. water depth 1D [m] < 0.05 0.004 0.076 0.019 0.069 

MAE avg. water depth 2D [m] < 0.05 0.001 0.150 0.015 0.130 

KGE water depth 2D > 0.75 0.99 0.64 0.85 0.35 

MAE max. water depth 2D [m] < 0.05 0.002 0.174 0.014 0.153 

Precision flood extent > 0.7 1.00 0.80 0.99 0.58 

Recall flood extent > 0.7 1.00 0.72 0.94 0.79 

F1-score flood extent > 0.7 1.00 0.76 0.97 0.67 

  

C 
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Additional visualizations 

This appendix contains additional figures that compare the performance of the surrogates for the 

primary event of July 2024. These figures are partly enlargements of Figure 9  to Figure 12. 

 
Figure 19 - MAE of maximum water level in 1D calculation points. 

 
Figure 20 - MAE of average water level in 1D calculation points. 

D 
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Figure 21 - KGE of water level time series in the 1D calculation points. 

 
Figure 22 – F1-score of the flood extent. 
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Figure 23 - MAE of maximum water level in the 2D calculation points without the true negative cells. 

 
Figure 24 - MAE of average water level in the 2D calculation points without the true negative cells. 
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Figure 25 – KGE of water level time series in the 2D calculation points without the true negative 

cells. 
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