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Abstract 
 

This thesis explores the development and implementation of a Credit Valuation Adjustment (CVA) 

model specifically for interest rate swaps (IRS), in response to challenges faced in the financial risk 

management (FRM) department of Deloitte Netherlands. The work addresses the limitations of 

using Bloomberg for CVA valuation, such as its inability to handle certain derivative types and lack 

of transparency in the valuation process. A literature review on the methodologies for CVA 

calculation is conducted, comparing equilibrium and no-arbitrage interest rate models, including 

the Vasicek, Hull-White, and Cox-Ingersoll-Ross models. Based on this comparison a CVA model 

is developed using the Hull-White one-factor model for simulating interest rates. The CVA model 

developed in this thesis provides a viable alternative to Bloomberg’s valuation methodology for 

interest rate swaps, as the results were consistent with those produced by Bloomberg. 
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1 Introduction 
 

This chapter introduces the topic and the aim of this thesis. After reading this chapter the reader 

should understand the relevance of introducing credit valuation adjustments (CVA) after the 

financial crisis. Additionally, the problem context of Deloitte, the company for which this thesis is 

executed,  should be clear. The problem context will be translated into a problem statement with 

corresponding research objectives. Finally, based on the research objectives, research questions are 

formulated which will be answered throughout the thesis. The thesis is structured according to a 

specific research design, which will also be explained in this section.  

 

1.1 Background 
 

From 2004 to 2006, the United States (U.S.) witnessed a significant increase in interest rates, 

soaring from 1% to surpass 5%. This surge in interest rates played a pivotal role in causing a 

deceleration within the U.S. housing market. A substantial number of homeowners, who had 

struggled to meet their mortgage payments during the period of low-interest rates, found themselves 

unable to cope and began defaulting on their mortgages. This predicament was particularly 

pronounced in the realm of subprime loans, which were extended to individuals with a subpar or 

non-existent credit history, as default rates reached unprecedented highs (Gregoy, 2012). 

 

Many subprime loans in the U.S. were held by domestic retail banks and mortgage providers such 

as Fannie Mae and Freddie Mac. The problem escalated as these loans were packaged into complex 

financial products through advanced financial engineering techniques. These structured products, 

such as mortgage-backed securities (MBSs), received favourable credit ratings from rating 

agencies. Consequently, institutions that did not originate the underlying mortgages, including 

investment banks and international institutional investors, ended up holding these securities 

(Gregory, 2012). 

 

In the middle of 2007, the dawn of a credit crisis evolved, primarily stemming from the systematic 

misvaluation of U.S. mortgages and MBSs. By the end of 2007, certain insurance companies, 

commonly referred to as "monolines", found themselves in a precarious situation. Monoline 

insurers provided guarantees to debt issuers, often in the form of credit swaps that enhance the 

credit of the issuer. These monoline insurers started with providing wraps for municipal bond 

issues, but later on expanded its offering by providing credit enhancements for other types of bonds, 

such as MBSs and collateral debt obligations (CDO). The banks, in their willingness to ignore the 

risk that their counterparties might default (hereafter referred to as counterparty credit risk), 

accumulated significant exposures to monoline insurers. These banks did not require the monolines 

to post collateral, as long as they maintained their top-tier Triple-A credit ratings. However, as 

monolines began reporting significant losses, it became evident that any downgrade in their credit 

ratings could prompt collateral demands they were unable to fulfil. Such downgrades happened in 

December 2007, compelling banks to incur substantial losses amounting to billions of dollars due 

to the substantial counterparty risk they were now confronting. This type of counterparty risk was 

particularly detrimental, known as wrong-way risk, as the exposure to the counterparty and their 

default probability were correlated. Wrong-way risk is considered undesirable because it increases 

credit risk, raises concerns about counterparty credit quality, complicates risk management efforts, 

and contributes to systemic risk (Gregory, 2012).  

 

In September 2008, an unprecedented event occurred as Lehman Brothers, a prominent global 

investment bank and the fourth largest in the United States with a century-long legacy, filed for 

bankruptcy protection—the largest in history. The reluctance of the U.S. government to intervene 

and rescue Lehman stemmed from concerns about the moral hazard associated with such bailouts. 

The bankruptcy of Lehman took the financial community by surprise, as all major rating agencies 

(Moody’s, Standard & Poor’s, and Fitch) had assigned at least a Single-A rating until the moment 
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of Lehman's collapse. Furthermore, the credit derivative market had not priced in an actual default 

(Gregory, 2012). 

 

Many counterparties likely did not perceive their exposure to Lehman's counterparty risk as a 

significant concern, nor did they comprehend that the failure of counterparty risk mitigation 

methods, such as collateral and special purpose vehicles (SPVs), would result in legal 

complications.  

 

Severe liquidity issues resulted in bailouts of other high-profile banks in 2008. Bear Stearns was 

acquired by JP Morgan Chase, AIG received a bailout from the U.S. government and Merrill Lynch 

agreed to be acquired by Bank of America (Adinarayan, 2023). 

 

Counterparty credit risk, commonly referred to as counterparty risk, involves the potential that the 

party with whom an individual has engaged in a financial arrangement (referred to as the 

counterparty) may not fulfil their obligations as outlined in the contractual agreement, for instance, 

by defaulting. This risk is commonly associated with two primary categories of financial 

instruments: over-the-counter (OTC) derivatives and securities financing transactions (Gregory, 

2012). 

 

Derivatives are financial instruments whose values are derived from the performance of underlying 

assets, indices, or other financial instruments. They play a crucial role in modern financial markets, 

enabling participants to manage risk, speculate on price movements, and enhance portfolio 

performance. Derivatives come in various forms, including options, futures, forwards, and swaps. 

Each serving specific purposes and exhibiting unique characteristics (Quail & Overdahl, 2002).  

 

Since the credit crisis of 2008, significant alterations have been implemented in the trading and 

clearing processes of derivatives within the OTC market. Standard derivatives exchanged among 

financial institutions now necessitate clearing through central clearing parties (CCPs). This brings 

about a resemblance to the handling of exchange-traded contracts, resulting in diminished 

counterparty credit risk. On the other hand, nonstandard derivatives traded between two financial 

institutions may undergo bilateral clearing, adhering to an agreement between the involved parties. 

However, there are stipulations mandating both sides to provide collateral, surpassing the 

previously established norms, to ensure the fulfilment of their obligations. These nonstandard 

derivatives are traded in the OTC market, where counterparty credit risk remains a factor (Hull, 

2012). 

 

As a consequence of the financial crisis, IFRS 13 (International Financial Reporting Standards) 

came into effect for annual periods starting after January 1, 2013. According to IFRS 13, fair value 

in derivatives valuations must be determined using the assumptions of market participants by 

pricing in counterparty risk (EY, 2014). Credit valuation adjustment, abbreviated as CVA, results 

in a decrease in the valuation of a basket of derivatives with a counterparty. This adjustment is made 

to account for the potential scenario in which the counterparty might fail to meet its obligations 

(Hull & White 2012). The calculation of the CVA "charge" should be conducted with 

sophistication, considering all relevant aspects that contribute to the definition of CVA: 

o the default probability of the counterparty; 

o the recovery rate; 

o the expected exposure of the derivative; 

o the transaction in question; 

o netting of existing transactions with the same counterparty; 

o collateralisation; 

o hedging aspects 

 

Given the absence of a specific method prescribed in accounting literature, derivatives dealers and 

end users employ a range of approaches in practice to assess the impact of credit risk on the fair 

value of OTC derivatives (EY, 2014). The purpose of this thesis is to conduct a literature review on 
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common market practices to calculate CVA. This goal extends to the development of a CVA model  

for interest rate swaps (IRS) to demonstrate the effectiveness of the CVA valuation methodology.  

 

1.2 Problem context 
 

This thesis is carried out for the financial risk management (FRM) team of Deloitte Netherlands. 

Deloitte is a global provider of audit & assurance, consulting, financial advisory, risk advisory, tax, 

and related services. At the time of writing this thesis, Deloitte has approximately 455,000 fulltime 

employees in more than 150 countries (Deloitte, 2024). The FRM team of Deloitte Netherlands is 

part of the risk advisory department. The main responsibility of FRM is helping banks and other 

financial institutions to manage their risks by developing or validating risk models.  

 

Financial institutions state the value of derivative positions on their financial statements. The 

primary duty of audit teams lies in examining the financial statements of clients, encompassing the 

assessment of derivative valuations. Audit procedures, such as substantive testing, analytical 

procedures, and other established auditing techniques, are undertaken by the audit team to 

accumulate evidence regarding the correctness of derivative valuations. Frequently, audit teams 

engage in collaboration with external financial experts or specialists to assess the value of 

derivatives, particularly when the valuation process is intricate or demands specialized expertise.  

 

The audit team of Deloitte consults the FRM team of Deloitte for this procedure, leveraging their 

proficiency in financial modelling, derivatives pricing, and specialized knowledge related to the 

industry and derivates under assessment. Deloitte’s FRM team employs Bloomberg for the 

valuation of these derivatives. However, the utilization of Bloomberg as a valuation model has three 

drawbacks: 

 

1. First, not all types of derivates can be valued with Bloomberg. Bloomberg can only be used 

to calculate CVA for interest rate swaps, cross currency swaps and foreign exchange (FX) 

forwards, but is not able to calculate CVA for other derivates like options, floors and caps. 

Derivatives that cannot be valued with Bloomberg are currently valued with Deloitte’s own 

methodology and models (in Excel). This process is time consuming and sensitive to errors. 

 

2. Second, Bloomberg does provide functionalities to value a portfolio of derivates, but 

contracts need to be put in one by one. Resulting in a time consuming and error prone 

procedure.  

 

3. Third, there is little transparency in the valuation methodology used by Bloomberg. 

Especially the way Bloomberg calibrates the model is unknown. If there is a significant 

discrepancy between the derivative value delivered by the client and Bloomberg, it is 

difficult to determine the root cause of this discrepancy. 

 

An overview of the problem context and the causal relationships between problems is visualized in 

Figure 1. The FRM team already developed an inhouse valuation model for interest rate swaps. 

However, the valuation of CVA for interest rate swaps is not yet incorporated.  
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Figure 1. Problem cluster. 

 

1.3 Problem statement 
 

The problem cluster in Figure 1 reveals that the utilization of Bloomberg as valuation tool leads to 

an error prone valuation procedure of CVA for derivatives that cannot be valued with Bloomberg. 

The second problem arising here is that Bloomberg as valuation tool leads to limited traceability of 

discrepancies between the CVA valuation of Bloomberg and client. These problems are both caused 

by the utilization of Bloomberg as valuation tool for derivatives, which is consequently the core 

problem in this thesis. The problem cluster also reveals that the solution should have a transparent 

CVA valuation methodology. 

 

1.4 Research objectives 
 

To solve the core problem a new valuation model should be used by the team. To develop this 

valuation model, the CVA should be modelled to account for counterparty credit risk. The initial 

scope for this thesis is narrowed down to only interest rate swaps (IRS). The reason why the model 

is initially developed for interest rate swaps is that they are one of the most traded derivatives 

globally. According to the Bank for International Settlements (2023), interest rate swaps alone 

account for approximately 35-40% of the total notional amounts outstanding in the global 

derivatives market. When the model can accurately value interest rate swaps, the model can easily 

be extended to value cross currency swaps as well. The knowledge problem arising here is that the 

best way to calculate CVA is unknown. Therefore the first research objective is to create a 

framework that summarizes all the used methodologies for CVA valuation in the existing literature. 

To gather this information a literature study will be conducted. There is a lot of literature on 

modelling methodologies of individual components of CVA, however one study that compares all 

modelling methodologies is missing. This thesis aims to fill this gap in the literature.  

 

In addition, based on this literature review the best methodology for Deloitte will be chosen. To 

demonstrate the effectiveness of the chosen methodology, a CVA valuation model will be 

developed. This extends the purpose of the thesis to also serve as a CVA valuation guide. The CVA 

valuation model will be used in an empirical application to value a specific interest rate swap. The 

quantitative data resulting from the empirical application will be compared to results from the 
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Bloomberg valuation methodology. The results should not be significant different, because that 

means that the results from the model are aligned with common market practice in CVA valuation. 

Additionally, a sensitivity analysis will be conducted to see how sensitive the outcomes are to 

changing input variables.  

 

1.5 Research questions 
 

Based on the research objectives mentioned in section 1.4 Research objectives, the following main 

research question is defined:  

 

What is the most suitable method to calculate CVA for interest rate swaps and how can this be 

developed into a valuation model for Deloitte? 

 

This research question is divided into multiple sub research questions.  

 

1. How is CVA calculated for interest rate swaps in the existing literature? 

a. What are the components of CVA? 

b. How does the literature calculate/model each component of CVA for interest rate 

swaps? 

 

To answer the main research question, a comprehensive understanding of CVA and its components 

need to be established. After understanding CVA and its components, a framework will be created 

stating all the methodologies used in the literature to calculate these individual components of CVA. 

The answer to this research question is given in chapter 2 Literature review.  

 

2. What is the most suitable methodology for Deloitte to use in their CVA valuation model for 

interest rate swaps? 

 

Based on the framework created in the literature review that answers the first research question, the 

best methodology for Deloitte to model CVA for interest rate swaps is chosen. The answer to this 

question is given by internal discussions with experts from the FRM team, based on the results from 

the theoretical framework created in the first research question. The answer to this research question 

is given in chapter 3 Methodology.  

 

3. How can the CVA methodology be implemented to develop a CVA valuation model for interest 

rate swaps? 

 

Based on the chosen CVA valuation methodology for interest rate swaps, the model needs to be 

developed. Additionally, the parameters of the model should be calibrated. The answer to this 

research question is given in chapter 4 Implementation.  

 

4. How accurate is the valuation of interest rate swaps with the CVA model compared to common 

market practice valuations? 

 

The model will be used in an empirical application to value an interest rate swap to demonstrate the 

model’s effectiveness. The results from the empirical application should be interpretated and 

validated. This is done with a sensitivity analysis and a comparison of the results with the commonly 

used valuation tool Bloomberg. The answer to this research question is given in chapter 5 Results.  

 

1.6 Research design 
 

Selecting an appropriate research methodology is a critical decision for any research, as it lays the 

foundation for the entire research process and significantly influences the reliability and validity of 

the study. The importance of choosing a suitable research methodology encompasses several key 
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aspects, including alignment with the specific research objective and data collection techniques. 

Additionally, the research methodology should be flexible and adaptable to changes, because 

research is an iterative process and unexpected challenges may arise.  

 

Peffers et al. (2007) conducted a thorough literature study on determining the appropriate elements 

of a design science (DS) research. Based on the framework that the authors created, a new research 

methodology has been created called Design Science Research Methodology (DSRM). The DSRM 

is a process model consisting of six activities in a nominal sequence. As the research of this thesis 

is strongly focused on designing a solution based on a problem-centered initiation, the DSRM is 

chosen as research methodology.  

 

 
Figure 2. The steps of the Design Science Research Methodology (DSRM) translated to this thesis and chapters. 

 

How the DSRM translates to our specific research is visualized in Figure 2, and further elaborated 

below.  

 

Phase 1: Problem identification and motivation. This phase is focused on defining the specific 

research problem and justifying the value of a solution. That includes creating a problem cluster 

showing the relationship of problems and choosing the corresponding core problem. This core 

problem is translated into a knowledge problem with corresponding research questions.  

 

Phase 2: Define the objectives for a solution. This phase is focused on inferring the objectives of a 

solution for the problem definition and knowledge of what is possible and feasible. For this thesis 

that translates to solving the knowledge problem by conducting a literature study.  

 

Phase 3: Design and development. In this phase the design of the solution is chosen that will later 

be developed. Here phase 2 serves as the foundation of the design. Concretized for this thesis that 

means that based on the literature study conducted in phase 2, the methodology of the model that 

salves the core problem will be chosen. 

 

Phase 4: Demonstration. In this phase the use of the artifact to solve the problem is demonstrated. 

This could involve its use in experimentation, simulation, case study, proof or other appropriate 

activity. The demonstration phase in this thesis includes an empirical application that values CVA 

for a specific interest rate swap. This valuation includes model calibration and determination of the 

parameters in order to use the model effectively.  
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Phase 5: Evaluation. The evaluation phase is used to observe and measure how well the artifact 

supports a solution to the problem. That means that for this thesis the results of the CVA model will 

be compared to Bloomberg CVA valuations. Additionally, a sensitivity analysis will be executed 

to evaluate how sensitive the model is to changes in the values of parameters.  

 

Phase 6: Communication. This phase is used to communicate the effectiveness of the solution to 

researchers and practicing professionals that will use the CVA valuation model. This phase will 

translate to the discussion and conclusion chapter of this thesis.   
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2 Literature review 
 

This chapter corresponds with the second step of the DSRM: define objectives of a solution. This 

means that in this chapter the literature review will be conducted to answer the research question: 

‘how is CVA calculated for interest rate swaps in the existing literature?’. This research question 

is divided into two sub research questions. The first sub research question is focused on the 

definition of CVA and is defined as: ‘what are the components of CVA?’. The second sub research 

question will be a literature review that creates a theoretical framework showing all modelling 

methodologies used in the literature to calculate CVA for interest rate swaps. The second sub 

research question is defined as: ‘how does the literature model/calculate each component of CVA 

for interest rate swaps?’. 

 

2.1 The components of credit valuation adjustments (CVA) 
 

This section formulates an answer to the sub research question: ‘what are the components of CVA?’.  

The main literature used in this section is the research of Gregory (2012), Canabarro & Duffie 

(2003) and Zhu & Pykhtin (2007). A general introduction to counterparty credit risk is given by 

Gregory. A more in depth discussion on the quantitative measures for counterparty credit risk is 

given by Canabarro & Duffie. Furthermore, the paper of Zhu & Pykhtin provides an excellent 

discussion on modelling and pricing of counterparty credit risk. 

 

Counterparty credit risk, commonly referred to as counterparty risk, involves the potential that the 

party with whom an individual has engaged in a financial arrangement (referred to as the 

counterparty) may not fulfil their obligations as outlined in the contractual agreement, i.e., by 

defaulting. Credit valuation adjustment (CVA) is the quantification, or the market value, of this 

counterparty risk. This can also be interpreted as the expected loss from a default by the 

counterparty. As a response to the 2007-2008 financial crisis, IFRS 13 was introduced in 2011 and 

became effective on the 1st of January 2013. IFRS 13 obliged dealers to calculate CVA for each 

counterparty with whom they have bilaterally cleared OTC derivatives and adjust the derivative 

value for this CVA. The adjusted derivative value 𝑓0
∗ is the value of the derivative contract today 

assuming no defaults 𝑓0  minus the CVA.  

 

𝑓0
∗ = 𝑓0 − 𝐶𝑉𝐴 (1) 

 

The formula to calculate CVA on the interval of [0, 𝑇] is given by Gregory (2012) 

 

𝐶𝑉𝐴 = (1 − 𝑅) ∫ 𝐸𝐸∗(𝑡)𝑑𝑃𝐷(0, 𝑡)
𝑇

0

(2) 

 

We can see that CVA consists of three different components: the loss (of the derivative) given 

default (by the counterparty) (1 − 𝑅), the risk neutral expected exposure of the derivative 𝐸𝐸∗(𝑡) 

and the probability of default by the counterparty 𝑑𝑃𝐷(0, 𝑡) (Zhu & Pykhtin, 2007). Each 

component will be explained in more detail in the remainder of this section.  

 

2.1.1 Loss given default (LGD) 

 

When a company declares bankruptcy, creditors who are owed money by the company submit 

claims. Occasionally, there is a reorganization where these creditors agree to receive partial 

payment of their claims. Alternatively, the liquidator sells off assets, and the proceeds are 

utilized to settle the claims to the extent possible. Certain claims typically hold priority over 

others and are satisfied to a greater extent (Hull, 2012). 
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The recovery rate, denoted as 𝑅, for a derivative is conventionally defined as the price at which 

it trades approximately 30 days following default, expressed as a percentage of its face value. 

This value is just a constant and the recovery rate used in price calculations for credit default 

swaps is by default 40% (Bloomberg, 2024). Consequently, the loss given default by  the 

counterparty equals 60% can be calculated as 

 

𝐿𝐺𝐷 = (1 − 𝑅) (3) 

 

For credit default swaps concerning the Japanese Yen, the recovery rate is often set to 35% 

(Bloomberg, 2024). For each credit default swap the recovery rate used for price calculations 

is specified beforehand and can be find on Bloomberg. Therefore it is important to consult 

Bloomberg for the recovery rate before calculating CVA.  

 

2.1.2 Risk neutral expected exposure (EE) 

 

Counterparty exposure is the amount that a company could potentially lose in the event of a 

default by the counterparty in the absence of recovery. In other words, counterparty exposure 

equals the maximum of the market value of a derivative and zero. Let 𝑉𝑖(𝑡) be the value of 

contract 𝑖 at time 𝑡 , then the contract-level exposure of contract 𝑖 at time 𝑡 is denoted as 𝐸𝑖(𝑡) 

and is quantified as 

 

𝐸𝑖(𝑡) = max{𝑉𝑖(𝑡), 0} (4) 

 

The value of the contract is only known at the current time, future exposure is uncertain because 

the value of the contract unpredictably changes over time. In practice, it is common to have 

more than one trade with a specific counterparty. Here the counterparty exposure 𝐸(𝑡) can be 

calculated as the sum of all exposures at contract-level 

 

𝐸(𝑡) = ∑ 𝐸𝑖(𝑡)

𝑖

= ∑ max{𝑉𝑖(𝑡), 0}

𝑖

(5) 

 

The exposure can be significantly minimized through the implementation of netting 

agreements. These legally binding agreements enable the consolidation of transactions in the 

event of a default. Essentially, transactions with negative values can be set off against those 

with positive values, resulting in only the net positive value representing the credit exposure 

during a default. Consequently, the overall credit exposure arising from all transactions within 

a netting agreement is limited to the maximum of the net portfolio value and zero 

 

𝐸(𝑡) = max {∑ 𝑉𝑖(𝑡), 0

𝑖

} (6) 

 

In addition to netting agreements, also collateral agreements must be incorporated into the 

calculation of 𝐸(𝑡). Mark-to-market (MTM) is an accounting method used to record the value 

of assets or liabilities based on their current market prices or fair values. Collateral agreements 

require counterparties to periodically mark-to-market their positions and to provide collateral 

(i.e., to transfer the ownership of assets) to each other as exposures exceed pre-established 

thresholds. Collateral agreements do not eliminate all counterparty risk, market movements can 

increase the exposure between the time of the last collateral exchange and the time when default 

is determined and the trades are closed out. Usually the threshold amount, which determines 

when collateral obligations are triggered, is typically determined based on the credit ratings of 

the parties involved in the derivatives transaction. Suppose that 𝐶(𝑡) is defined as the collateral 

posted by the counterparty at the time 𝑡 and 𝐻 is the threshold value, then the 𝐶(𝑡) can be 

denoted as 
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𝐶(𝑡) = max{𝐸(𝑡 − 𝑠) − 𝐻, 0} (7) 

 

Here 𝑠 is the margin period of risk, which is the time interval from the last exchange of collateral 

until the defaulting counterparty is closed out and the resulting market risk is re-hedged. Finally, 

the exposure 𝐸(𝑡), including netting and collateral agreements, will be calculated as 

 

𝐸(𝑡) = max {∑ 𝑉𝑖(𝑡) − 𝐶𝑖(𝑡), 0

𝑖

} (8) 

 

In the context of derivatives and financial modelling, being “risk-neutral” refers to the 

assumption that investors do not have any preference for or aversion to risk. They are solely 

concerned with maximizing expected returns from their investments and are indifferent to the 

level of risk associated with those investments. The risk-neutral probability refers to a situation 

where the expected return on an investment is equal to the risk-free rate of return, regardless of 

the level of risk associated with the investment.  

 

Expected Exposure 𝐸𝐸∗ refers to the risk-neutral expected financial loss that a company might 

face if the counterparty defaults, discounted at the risk-free rate. That is the average exposure 

weighted by their risk-neutral probabilities (the distinction between risk-neutral and actual 

expectations is emphasized with an asterisk), see Figure 3. The curve of  𝐸𝐸∗(𝑡), as 𝑡 varies 

over future dates, provides the expected exposure profile and is denoted by  

 

𝐸𝐸∗(𝑡) =  𝔼[𝐸(𝑡)] (9) 

 

 

 

 
Figure 3. Illustration of future exposure with the grey area representing the PFE and white represents the NFE 

(Gregory, 2012). 

There are multiple ways to calculate this expected exposure of an interest rates swap. The most 

simplistic approach is called the “mark-to-market + add-on” approach. This approach 

determines the expected exposure of an interest rate swap by adding a component that 

represents that uncertainty to the current exposure. This add-on component should incorporate 

the maturity of the interest rate swap; the volatility of the underlying; and characteristics of the 

underlying. The major drawback of the “mark-to-market + add-on” approach is that it is too 

simplistic to take other effects into account, like netting agreements, collateral agreements, 

payment frequencies, payer versus receiver swaps and floating reference rates (Gregory, 2012).  

 

The semi-analytical approach overcomes the drawbacks of the “mark-to-market + add-on” 

approach. This approach involves formulating basic assumptions about the risk factors 

influencing the exposure. Based on these risk factors the probability distribution of the exposure 

is determined and semi-analytical approximation is derived. Despite being more accurate (and 
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complex) than the “mark-to-market + add-on” approach, there are still several drawbacks. First 

of all, this approach relies on simplifying assumptions about the underlying risk factors, which 

neglects complex dynamics like mean reversion. Consequently, these methods calculate 

exposures independently over time, potentially overlooking path-dependent features. Typically, 

they yield a single risk measure, such as Potential Future Exposure (PFE), rather than the 

complete distribution. Furthermore, netting and collateral agreements are not incorporated in 

this approach (Gregory, 2012).  

 

The most accurate (but also time-consuming and complex) approach is Monte Carlo simulation. 

This method is highly versatile and addresses numerous complexities that “mark-to-market + 

add-on” and the semi-analytical approach often overlook, such as transaction specifics, path 

dependency and netting and collateral agreements. The accuracy of the Monte Carlo simulation 

is dependent on the number of simulation runs. More simulation runs will also increase the 

computation time, therefore the ideal number of simulation runs should be investigated during 

the Monte Carlo study. The Monte Carlo method involves the following steps:  

 

1. Factor choice. It is essential to identify the risk factors that will impact the exposure of the 

transaction. This identification includes the selection of an appropriate model for these risk 

factors, which subsequently determines the PFE. Examples of risk factors include variables 

like spot interest rates and spot FX rates, or more complex factors such as implied 

volatilities. The chosen model for the risk factor can range from a simple one-factor model 

to a more intricate multi-factor model.  

 

2. Scenario generation. Future market scenarios are simulated by employing evolutionary 

models of risk factors for a predetermined set of simulation dates. This predetermined set 

of simulations dates must be reasonably large to accurately capture the PFE, however too 

many simulation dates will increase the computation time. According to Gregory (2012), a 

typical value for the number of simulation dates ranges between 50 and 200. The risk factor 

that influences the price of interest rate swaps is the interest rate. Therefore, the future 

market scenarios that will be generated in this study will heavily rely on interest rate 

simulation models. 

 

3. Instrument valuation. Instrument valuation is conducted for each trade in the counterparty 

portfolio on every simulation date and for each realization of the underlying market risk 

factors. 

 

4. Portfolio aggregation. On each simulation date and for every realization of the underlying 

market risk factors, the exposure at the counterparty level is determined using Equation (8), 

applying the required netting rules and incorporating collateral agreements. 

2.1.3 Probability of default (PD) 

 

The market value of the counterparty risk also depends on the risk-neutral probability of a loss 

from a default by the counterparty. The risk neutral probability of counterparty default between 

times 𝑠 and 𝑡 is denoted as 𝑃𝐷(𝑠, 𝑡). Mathematically, default is represented by means of the 

default time, which is defined as the first jump time of a Poisson process that models the 

occurrence of default as a random event. The default time, typically denoted by τ , is a random 

variable that can be modelled in several ways. There are essentially two paradigms that emerged 

over the years: reduced and structural form models. Reduced form models rely on credit default 

swaps (CDS) market quotations. This approach is in line with risk-neutral valuation, therefore 

the probability of default does not represent the real-world probability of default. Structural 

form models determine the probability of default based on the internal structure of the firm 

using historical data, representing a real-world default probability instead of a risk-neutral 

default probability (Brigo & Mercurio, 2006). 
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2.1.4 Other aspects of CVA worth noting 

 

In addition to the different components of CVA, there are also other important aspects to keep 

in mind. These aspects are wrong-way risk and bilateral CVA and are explained in this section.  

 

 Wrong-way risk 

 

In the CVA formula given in Equation (2) the assumption is made that there is an independence 

between expected exposure and the counterparty’s probability of default. A scenario 

characterized by a positive dependence between the two, so a high (low) probability of default 

by the counterparty when the dealer's exposure to the counterparty is high (low), is referred to 

as “wrong-way risk”. Conversely, when there is a negative dependence, so a high (low) 

probability of default by the counterparty when the dealer's exposure is low (high), is referred 

to as “right-way risk” (Hull & White, 2012).  

 

Wrong-way risk often arises when a counterparty engages in selling credit protection to the 

dealer. This is due to the correlated nature of credit spreads. When credit spreads are high, the 

value of the protection to the dealer increases, leading to a substantial exposure to its 

counterparty. Simultaneously, the counterparty's credit spreads are likely to be high, indicating 

a comparatively higher probability of default for the counterparty (Hull & White, 2012).  

 

Wrong-way risk, as suggested by the name, is considered as a negative risk. The reason for this 

is that a positive correlation between expected exposure and probability of default will lead to 

a higher CVA than obtained by Equation (2). However, because of time constraints the 

incorporation of wrong-way risk is neglected in this thesis and the assumption is made that there 

is an independence between expected exposure and the counterparty’s probability of default.   

 

 Bilateral CVA 

 

Up to now, CVA is calculated as unilateral CVA. For unilateral CVA the assumption is made 

that only the counterparty can default, while the dealer is considered non-defaultable. In reality 

this assumption does not hold true because there is also an expected cost to the counterparty, 

this cost is referred to as debit valuation adjustment or DVA. DVA is the mirror image of CVA 

and is a cost to the counterparty and must be a benefit for to the dealer. DVA is defined as 

follows 

 

𝐷𝑉𝐴 = (1 − 𝑅) ∫ 𝐸𝑁𝐸∗(𝑡)
𝑇

0

𝑑𝑃𝐷(0, 𝑡) (10) 

 

Where 𝐸𝑁𝐸∗(𝑡) is defined as the expected negative exposure at time 𝑡 (in other words, the 

𝐸𝐸∗(𝑡) from the point of view of the counterparty). Accounting standards recognize both CVA 

and DVA and including both CVA and DVA is referred to as bilateral CVA (BCVA). The 

formula for BCVA is given by 

 

𝐵𝐶𝑉𝐴 = 𝐶𝑉𝐴 − 𝐷𝑉𝐴 (11) 
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2.2 Methodologies used in the literature to model CVA 
 

In this section a literature review is conducted to answer the sub research question: ‘how does the 

literature model each component of CVA for interest rate swaps?’. The purpose of this section is 

the create a theoretical framework displaying an comparison of all methodologies used in the 

literature. This theoretical framework can be used later in the thesis to choose the final methodology 

that will be implemented in the CVA valuation model. The previous section showed that the LGD 

component of CVA is just a constant that can be retrieved from Bloomberg. Therefore only the 

determination of the risk-neutral expected exposure and the probability of default require modelling 

methodologies.  

 

2.2.1 Interest rate models (expected exposure)  

 

As explained in section 2.1.2 Risk neutral expected exposure (EE), the expected exposure of 

interest rate swaps depends on different interest rate scenarios. Therefore this section dives into 

the different interest rate simulation models that are used in the literature (for expected exposure 

modelling).  

 

There are two type of one-factor models in the literature: equilibrium and no-arbitrage models. 

Equilibrium models are time-homogeneous and produce an endogenous term structure, where 

the interest rate curve is derived from the model’s assumptions. In contrast, no-arbitrage models 

assume time-varying parameters resulting in an exogeneous term structure, allowing the model 

to exactly match the yield curve observed in the market. In less technical terms the difference 

between equilibrium and no-arbitrage models can be explained by the perspective from which 

they predict interest rates. Equilibrium models are focused on understanding the broader market 

dynamics and the behaviour of market participants. With interest rates the equilibrium is the 

interest rate such that at that rate the total amount of banks and other groups are willing to lend 

is equal to the total amount of money that people want to borrow. The problem with equilibrium 

models is that it requires some knowledge about the preferences of the market participants. To 

retrieve the supply and demand curves the risk preferences of both side of the market need to 

be known. No-arbitrage models are focussed on eliminating opportunities for risk-free profits 

in predicting interest rates. Resulting in the possibility to calibrate the model with observed 

market prices, and overcoming the disadvantage of equilibrium models (Lawson, 2015).  

 

In this section both of these models are elaborated. In addition to one-factor models, there also 

exist two-factor interest rate models. However, two-factor models are out of the scope for this 

thesis because of their increased complexity to calibrate. Additionally, one-factor models are 

more often used in the literature to calculate CVA for interest rate swaps because of this 

increased complexity in two-factor models and they are sufficiently accurate to use in CVA 

valuations (Fabozzi, 2014).  

 

2.2.1.1 Equilibrium models 

 

The first short rate models proposed in the literature were time-homogeneous models whose 

diffusion coefficients are constant. The advantage of these models is that closed-from formulas 

of bonds and bond options prices can be derived by using the dynamics of the models. These 

formulas make it easy to calibrate the model. In addition, they can be used to evaluate all interest 

rate contingent claims in a consistent way. However, the classic problem with these models is 

they cannot reproduce the yield curve. This is caused by their endogenous nature.  
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Vasicek Model 

 

In 1977, Vasicek is the first in the literature that assumed that the instantaneous spot rate under 

the real world measure evolves as an Ornstein-Uhlenbeck process with constant coefficients. 

The Vasicek model can be written down as 

 

𝑑𝑟𝑡 = 𝛽(𝛼 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (12) 

  

Where 𝛽, 𝛼 and 𝜎 are non-negative constants. With 𝛽 representing the long-term mean interest 

rate, 𝛼 representing the mean reversion speed, 𝑟𝑡 being the instantaneous interest rate or current 

level of interest rates, 𝜎 being the volatility of interest rate changes and 𝑊𝑡 is Wiener process 

representing the random component of interest rate changes.  

 

The main advantage of this model is that it incorporates mean reversion because the drift will 

become negative (positive) if the interest rate 𝑟𝑡 is bigger (smaller) than the mean reversion 

speed 𝛼. This is caused by the fact that long-term mean interest rate 𝛽 is a nonnegative constant. 

Furthermore, the model assumes 𝑟𝑡 to be normally distributed resulting in the possibility of 

negative interest rates. This used to thought of as a drawback of the Vasicek model (Vasicek, 

1977) (Bernal, 2016) (Yolcu, 2005), however in the current economic state with a long period 

of negative interest rates, this is rather an advantage than a drawback. In addition to that, the 

analytical tractability that is implied by a Gaussian density is hardly achieved when assuming 

other distributions for the process of the instantaneous spot rate (Joheski & Apostolov, 2021).  

 

Moreover, there exist an analytical zero-coupon bond pricing formula based on the Vasicek 

model. Therefore, model parameters are easily calibrated by minimizing the error of market 

prices and model prices of zero-coupon bonds (Brigo & Mercurio, 2006).  

 

 Dothan Model 

 

In 1978, Dothan introduced a model with lognormal interest rate to overcome the “drawback” 

of negative interest rates in the Vasicek model. The formula of this model equals 

 

𝑑𝑟𝑡 = 𝛽𝑟𝑡𝑑𝑡 +  𝜎𝑟𝑡𝑑𝑊𝑡 (13) 

 

Where 𝛽 and 𝜎 are non-negative constants. The disadvantage of this model, unlike Vasicek, is 

that it does not incorporate mean reversion (Yolcu, 2005). The Dothan model is the only 

lognormal short rate model in the literature with analytical formulas for pure discount bonds. 

Albeit, the formula is rather complex since it depends on two integrals of functions involving 

hyperbolic sines and cosines (Brigo & Mercurio, 2006).   

 

 Rendleman-Barttner Model 

 

In 1980, Rendleman and Bartter assumed that the short-term interest rate behaves like a stock 

price. The following expression is suggested by the Rendleman-Barttner Model 

 

𝑑𝑟𝑡 = 𝜇𝑟𝑡𝑑𝑡 +  𝜎𝑟𝑡𝑑𝑊𝑡 (14) 

 

Where 𝜇 and 𝜎 are non-negative constants. With 𝜇 representing the expected rate of return of 

the underlying asset. The disadvantage of this model is that interest rates behave different than 

stock prices and do not have an expected rate of return. Interest rates, unlike stock prices, tend 

to converge back to specific mean (Yolcu, 2005).   
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Marsh-Rosenfeld Model 

 

In 1983, Marsh and Rosenfeld incorporated constant elasticity of the variance diffusion process, 

which is nested within the typical diffusion-Poisson jump model. The constant elasticity of 

variance process includes the “square root” and normal processes, and as a limiting case, the 

lognormal model. 

 

𝑑𝑟𝑡 = (𝛽𝑟𝑡
−(1−𝛾)

+ 𝛼𝑟𝑡) 𝑑𝑡 + 𝜎𝑟𝑡

𝛾
2𝑑𝑊𝑡 (15) 

 

Where 𝛼, 𝛽, 𝜎 and 𝛾 are non-negative constants. If 𝛾 = 1, the model becomes a square root 

process with mean reverting drift (the model turns into a Cox-Ingersoll-Ross Model). 

 

If 𝛾 = 0, it becomes,  

 

𝑑𝑟𝑡 = (
𝛽

𝑟𝑡
+ 𝛼𝑟𝑡) 𝑑𝑡 + 𝜎𝑑𝑊𝑡  (16) 

When 𝑟𝑡 becomes small in Equation (15), and 𝛽 > 0, the first term dominates, and large positive 

changes are expected. If 𝑟𝑡 is very large, the diffusion term dominates, and the process behaves 

like an Ornstein-Uhlenbeck process (with proportional drift). Equation ( 15), has the 

undesirable feature that mean reversion is not built into the drift (Yolcu, 2005).  

 

 Cox-Ingersoll-Ross Model 

 

In 1985, Cox-Ingersoll and Ross presented the following interest rate model 

 

𝑑𝑟𝑡 = 𝛽(𝛼 − 𝑟𝑡)𝑑𝑡 + 𝜎𝑟𝑡

1
2𝑑𝑊𝑡 (17) 

 

Where 𝛽, 𝛼 and 𝜎 are non-negative constants. The instantaneous short rate dynamics 

corresponds to a continuous time first-order autoregressive process with the randomly moving 

interest rate being elastically pulled towards a long term value 𝛼, meaning that the model 

incorporates mean reversion. Additionally, this model does not face negative interest rates. The 

diffusion term ensures that negative interest rates will not occur if the initial interest rate is 

nonnegative. This results from the fact that 𝑟𝑡 can reach zero if 𝜎2 > 2𝛼𝛽 and conversely the 

upward drift is sufficiently large to make the initial interest rate unreachable if 𝜎2 ≤ 2𝛼𝛽 

(Joheski & Apostolov, 2021).  

 

Furthermore, Cox-Ingersoll and Ross suggested a non-central chi-square distribution to 

represent interest rate changes over time. This assumption results in more realistic interest rate 

with skewness and a fatter tail with respect to normal distribution (Di Francesco & Kamm, 

2022).  

 

There does exist an analytical pricing formula for zero-coupon bonds under the CIR model. 

However, the instantaneous spot rate in the CIR formula and in the pricing formula of zero-

coupon bonds do not follow the same distribution, and therefore classical optimization 

algorithms such as maximum likelihood estimation (MLE) and least squares methods (LSM) 

will fail (Amin, 2012). In 2001, Brigo and Mercurio concluded that there will exist failures in 

the calibration of the CIR model because the zero-coupon bond curve is quite likely to be badly 

reproduced (Brigo & Mercurio 2001). 
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2.2.1.2 No-arbitrage models 

 

The shortcoming of one-factor equilibrium models is that due to their endogenous nature,  they 

cannot reproduce the yield curve. To overcome this problem one-factor no-arbitrage are 

introduced. These models have an exogeneous nature caused by time-varying parameters, 

which can therefore reproduce the yield curve. Also financial instruments with different time 

to maturities can be fitted to these no-arbitrage models, which results in more accurate 

calibration. Another disadvantage of equilibrium models is that option pricing leads to arbitrage 

because today’s term structure is an output rather than an input (Yolcu, 2005). This section 

elaborates on the one-factor no-arbitrage models described in the literature.  

 

 Ho-Lee Model 

 

In 1986, Ho and Lee introduced the first no-arbitrage interest rate model 

 

𝑑𝑟𝑡 = 𝜃(𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (18) 

 

with 𝜃(𝑡) being a random function of 𝑡 and 𝜎 being a non-negative constant. In the Ho-Lee 

model, 𝜃(𝑡) is better understood as the drift term or the trend component that guides the 

direction of the interest rates over time. Here 𝜃(𝑡) is actually not a stochastic process. It is 

typically a deterministic function of time, which means it is a known, predictable function that 

can vary over time but does not have randomness associated with it. The stochastic component 

in the Ho-Lee model comes from the 𝜎𝑑𝑊𝑡 term, where 𝑑𝑊𝑡 represents the random shocks 

from a Wiener process (or Brownian motion). 

 

The advantage of this model is that the whole term structure can be used to price contingent 

claims. Because the short rates follow a normal distribution, it is possible that the model could 

produce negative interest rates. A disadvantage of this model is that it does not incorporate 

mean reversion (Lawson, 2015).  

 

 Hull-White (Extended Vasicek) Model 

 

In 1990, Hull and White introduced the following model assuming a normal distribution for the 

short-rate 

 

𝑑𝑟𝑡 = [𝜃(𝑡) − 𝛼(𝑡)𝑟𝑡]𝑑𝑡 + 𝜎(𝑡)𝑑𝑊𝑡 (19) 

 

Where 𝜃(𝑡), 𝛼(𝑡) and 𝜎(𝑡) are non-random functions of 𝑡. This model is an extension of the 

Vasicek Model. However, Hull (1996) showed that this time-dependency in the parameter 𝜃(𝑡) 

and 𝜎(𝑡) can yield a nonstationary volatility term structure, which is undesirable when pricing 

instruments  whose value depends on the term structure of future volatility (Kozpinar, 2022) 

(Svoboda, 2004). To overcome this problem, the extension of Hull and White (1994) can be 

used as well 

 

𝑑𝑟𝑡 = [𝜃(𝑡) − 𝛼𝑟𝑡]𝑑𝑡 + 𝜎𝑑𝑊𝑡 (20) 

  

The volatility of the instantaneous short rate can be a function of time as well. This model does 

incorporate mean reversion, in contrast to the Ho-Lee model.  

 

This model is analytically tractable in the sense that analytical formulas for zero-coupon bonds 

and options on them can be derived because of the Gaussian distribution of continuously-

compounded rates. The Gaussian distribution also makes it possible to generate negative 

interest rates (Brigo & Mercurio, 2006).  
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A drawback of the model is its lack of state-dependent volatility. In reality, one would anticipate 

that a high short rate would exhibit greater volatility compared to a short rate approaching zero. 

However, the model assumes a fixed (or deterministic) level of volatility.  

 

 Extensions of the CIR Model 

 

In 1990, Hull and White also introduced an no-arbitrage extension to the Cox-Ingersoll-Ross 

(CIR++) model.  

 

𝑑𝑟𝑡 = [𝜃(𝑡) − 𝛼𝑟𝑡]𝑑𝑡 + 𝜎√𝑟𝑡𝑑𝑊𝑡 (21) 

 

Where 𝜃(𝑡) is a non-random function of 𝑡 and 𝛼 and 𝜎 are non-negative constants. This process 

follows a non-central chi-square distribution. Accordingly, analytical formulas for prices of 

zero-coupon bond options, caps and floors, and, through Jamshidian’s decomposition, coupon-

bearing bond options and swaptions, can be derived. 

 

Positive interest rates can be guaranteed in this model, by imposing restrictions on parameters. 

This might worsen the quality of the calibration to caps/floors or swaption prices. A drawback 

is that this model does not include jumps (e.g. caused by government fiscal and monetary 

policies and by release of corporate instruments) (Brigo & Mercurio, 2001). These are the 

reasons why this extension has been less successful than the Hull-White extended Vasicek 

model  (Brigo & Mercurio, 2006). 

 

In 2006, Brigo and El-Bachir added a jump component to the CIR++ model, referred to as the 

JCIR++ model. This ensures that the model may attain high implied volatilities (for swaptions 

or caps, in the present context) when the basic CIR++ model fails to do so. The model can be 

written down as 

 

𝑑𝑟𝑡 = [𝜃(𝑡) − 𝛼𝑟𝑡]𝑑𝑡 + 𝜎√𝑟𝑡𝑑𝑊𝑡 + 𝑑𝐽𝑡  (22) 

 

Here 𝐽 is a pure jump process, which is a type of stochastic process where changes occur only 

at discrete points in time, with no changes occurring continuously between these points. In other 

words, the process remains constant most of the time and jumps to new values at random times. 

In this model the pure jump process 𝐽 has a jump arrival rate 𝛼 > 0 and jump sizes distribution 

𝜋 on ℝ+. Here, 𝜋 is an exponential distribution with mean 𝛾 > 0, and  

 

𝐽𝑡 = ∑ 𝑌𝑖

𝑀𝑡

𝑖=1

(23) 

 

Where 𝑀 is a time-homogeneous Poisson process with intensity 𝛼. The 𝑌 is exponentially 

distributed with parameter 𝛾. 

 

In 2019, Orlando et al. introduced the CIR# model. This model has a different approach of 

capturing jumps than the JCIR++ model, here the available market data sample is divided into 

sub-samples to capture all statistically significant changes of variance in real spot rates. An 

“optimal” autoregressive integrated moving average (ARIMA) model will be fitted to each sub-

sample of market data. The parameters are calibrated to the shifted market interest rates 

allowing to overcome the disadvantage of the instantaneous volatility 𝜎 being constant in the 

CIR models mentioned so far (Orlando et al., 2019).  
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Black-Derman-Toy Model 

 

In 1990, Black, Derman and Toy introduced their interest rate model (BDT). The stochastic 

differential equation, assuming that the short rate follows a lognormal process, can be written 

down as  

 

𝑑 ln 𝑟𝑡 = 𝜃(𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (24) 

 

The model is algorithmically created by constructing a short-rate binomial tree to match the 

existing term structure of interest rates and volatilities. The lognormal process ensures that 

negative interest rates are not possible (Radhakrishnan, 1998). The main drawback is that the 

BDT model does not allow for a time-varying volatility parameter, which may distort interest 

rate forecasts over long time horizons (or over shorter time horizons if rates and spreads are 

sufficiently volatile) (Joshi & Swertloff, 1999) 

 

 Black-Karasinski Model 

 

In 1991, Black and Karasinski introduced a generalization of the BDT model.  

 

𝑑 ln 𝑟𝑡 = [𝛼(𝑡) − 𝛽(𝑡) ln 𝑟𝑡]𝑑𝑡 + 𝜎𝑑𝑊𝑡 (25) 

 

Where 𝛼(𝑡) and 𝛽(𝑡) are non-random functions of 𝑡 and 𝜎 is a non-negative constant. Brigo 

and Mercurio (2006) observed that “the rather good fitting quality of the model to market data, 

and especially to the swaption volatility surface, has made the model quite popular among 

practitioners and financial engineers”. However, Tourrucôo et al. (2007) addressed the 

shortcoming that this model turns out to be less tractable which renders the model calibration 

to market data than in the HW1 model because no analytical formulas for bonds are available. 

For this reason the Black-Karasinski model has been used less in the literature than the HW1 

and CIR++ model.  

 

2.2.1.4 Conclusion 

 

The literature review showed that there are a lot of different interest rate models. Each model 

with its benefits and drawbacks. The single factor equilibrium models Vasicek (1977), Dothan 

(1978), Rendleman-Barttner (1980), Marsh-Rosenfeld (1983) and Cox-Ingersoll-Ross (1985) 

all have the advantage that they are analytically tractable because close-from pricing formulas 

can be derived. The drawback is that they do not reproduce the yield curve, making them a less 

accurate reflection of reality. Single factor no-arbitrage models do overcome this drawback by 

introducing time-varying parameters. The single factor no-arbitrage models Ho-Lee (1986), 

Hull White Extended Vasicek, CIR++, JCIR++, CIR#, Black-Derman-Toy (1990) and Black-

Karasinski (1991) are analysed. Still these models have the drawback that they do not 

accommodate for twists in the term structure of interest rates and are limited to generating only 

increasing, decreasing, or slightly humped curves (Russo & Torri, 2019). This problem is 

tackled by multi-factor models, however these models are out of scope for this thesis. The main 

conclusion of the literature review is that there is a trade-off between economic realism and 

complexity. The more economically realistic the model is, the higher the computational 

complexity and calibration. An overview of single factor equilibrium models, together with 

their benefits and drawbacks are shown in Table 1. Contrarily, an overview of single factor no-

arbitrage models and their benefits and drawbacks are given in Table 2. The scale of calibration 

accuracy ranges between poor, good, and excellent. Where ‘calibration accuracy’ can be 

divided into fit to historical data, stability of parameters, predictive power and sensitivity to 

market conditions. For an overview of the definition of calibration accuracy and the definition 

of the scale, see Table 16 in Appendix A – Definitions of the scale for ranking interest rate 

models. The scale of computation complexity ranges from efficient, moderate, and complex. 
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Where ‘computation complexity’ can be divided into calibration time, resource usage and 

convergence reliability. For an overview of the definition of computation efficiency and the 

definition of the scale, see Table 17 in Appendix A – Definitions of the scale for ranking interest 

rate models.  

. 

 
Table 1. Overview of single factor equilibrium models. 

 
 

 

 
Table 2. Overview of single factor no-arbitrage models. 
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2.2.2 Hazard rate (probability of default) 

 

As described in section 2.1.3 Probability of default (PD), the market value of the counterparty 

risk also depends on the risk-neutral probability of a loss from a default by the counterparty. 

There are essentially two paradigms that emerged over the years: reduced and structural form 

models. Reduced form models rely on credit default swaps (CDS) market quotations. This 

approach is in line with risk-neutral valuation, therefore the probability of default does not 

represent the real-world probability of default. Structural form models determine the probability 

of default based on the internal structure of the firm using historical data, representing a real-

world default probability instead of a risk-neutral default probability. This section dives deeper 

into the methodologies used in the literature to estimate the risk-neutral probability of default 

for counterparties (reduced form models).  

 

Reduced form models, sometimes also referred to as intensity models, describe default 

occurrences through an exogeneous jump process. Specifically, the default time (τ) is the first 

jump time of the Poisson process. This Poisson process can exhibit either deterministic or 

stochastic intensities. In reduced form models, default is not activated by basic market metrics; 

instead, it stems from an exogeneous component independent of all default-free market 

information. Therefore, monitoring market variables like interest rates and exchange rates do 

not provide comprehensive insight into the default mechanism, as default lacks an inherent 

economic rationale.  

 

There are two main types of Poisson processes: homogeneous and inhomogeneous processes. 

The intensity function 𝜆(𝑡) in a Poisson process determines the rate of event occurrence. In a 

Poisson homogeneous process, the intensity function 𝜆(𝑡) is constant over time (deterministic), 

i.e., it remains constant for all 𝑡: 𝜆(𝑡) = 𝜆. In a Poisson in-homogeneous process, the intensity 

function 𝜆(𝑡) fluctuates over time.  

 

Both Poisson homogeneous as Poisson in-homogeneous processes are used in the literature for 

the purpose of estimating the probability of default for CVA valuation. Van Vuuren and 

Esterhuysen (2014), Reghai and Kettani (2015), Wu (2015) and Xiao (2017) all used a 

deterministic hazard rate for the probability of default estimation in CVA valuation. The main 

reason for choosing a deterministic hazard rate for defaults is the simplicity and analytically 

tractability. On the other side, Hoffman (2011) and Brigo & Mercurio (2006) used a time-

dependent hazard rate for defaults because of the increased accuracy. Especially in papers 

focused on CVA valuation including wrong-way risk, a time-dependent hazard rate is often 

used. In the remainder of this section, both approaches are elaborated in more detail.  

 

2.2.2.1 Deterministic hazard rate 

 

Let us consider a time homogeneous Poisson process to model the first jump, where the 

intensity function equals the moment the counterparty defaults. Recall that τ denotes the first 

jump in the Poisson process, i.e. the time until default. The number of jumps 𝑋𝑡 in the interval 

[0, 𝑡] is denoted as 𝑋𝑡~𝑃(𝜆𝑡). Now the probability that there is no jump on the interval [0, 𝑡] 
can be denoted as: 

 

𝑄(τ > t) = P(𝑋𝑡 = 0) = 𝑒−𝜆𝑡 (26) 

 

Consequently, the probability that a default occurs can be written down mathematically as  
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𝑄(τ ≤ t) = 1 − P(𝑋𝑡 = 0) = 1 − 𝑒−𝜆𝑡 (27) 

 

The conclusion can be made that the time until the first jump (i.e. the default time) follows an 

exponential distribution, because 𝑄(τ ≤ t) equals the exponential cumulative distribution 

function (CDF) (Brigo & Mercurio, 2006).  

 

For a CDS with a deterministic hazard rate and maturity time 𝑇, the CDS pays (1 − 𝑅) at the 

time of a credit event if default occurs before maturity. To secure protection, the purchaser 

makes a series of payments based on a spread denoted as 𝑆 until either default or maturity, 

whichever comes first. This information can be used for the valuation of the premium and 

protection legs. For the premium leg, the protection buyer makes a payment of 𝑆𝑑𝑡 between 

time 𝑡 and 𝑡 + 𝑑𝑡 if the credit remains has not defaulted. This payment is then discounted using 

the Libor factor and aggregated over the duration of the contract to yield (Brigo & Mercurio, 

2006) 

 

𝑉𝑎𝑙𝑢𝑒 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 𝑙𝑒𝑔 = 𝑆 ∗ ∫ 𝑍(0, 𝑡)𝑄(0, 𝑡)𝑑𝑡
𝑇

0

 (28) 

 

Here, 𝑍(𝑡, 𝑇) is the (Libor) discount curve and 𝑄(𝑡, 𝑇) is the survival probability up to 𝑇. For 

the protection leg, a payment of (1 − 𝑅) is made if default occurs 

 

𝑉𝑎𝑙𝑢𝑒 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑔 = (1 − 𝑅) ∗ ∫ 𝑍(0, 𝑡) ∗ 𝜆(𝑡)𝑄(
𝑇

0

0, t)dt (29) 

 

Because the assumption is made that the hazard rate is deterministic, we can rewrite the value 

of the protection leg as 

 

𝑉𝑎𝑙𝑢𝑒 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑔 = 𝜆(1 − 𝑅) ∫ 𝑍(0, 𝑡)𝑄(
𝑇

0

0, t)dt  (30) 

 

Finally, the breakeven spread is determined as the CDS spread paid upon a new contract. 

Meaning that the CDS spread can be calculated by setting the premium leg equal to the 

protection leg 

 

 

𝑆 ∗ ∫ 𝑍(0, 𝑡)𝑄(0, 𝑡)𝑑𝑡 = 𝜆(1 − 𝑅) ∫ 𝑍(0, 𝑡)𝑄(0, 𝑡)𝑑𝑡
𝑇

0

𝑇

0

(31) 

 

Looking at the equation, the ∫ 𝑍(0, 𝑡)𝑄(
𝑇

0
0, t)dt cancels out and we are left with the following 

formula for the CSD spread 

 

𝑆 = 𝜆(1 − 𝑅) (32) 
 

Or 

 

𝜆 =
𝑆

1 − 𝑅
 (33) 

 

Recall that we derived the formula for the survival probabilities in Equation 26, now filling in 

the formula for the deterministic hazard rate we obtain 
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𝑄(τ > t) = 𝑒−𝜆𝑡 = 𝑒−
𝑆

1−𝑅
𝑡 (34) 

 

And consequently, the formula for the probability of default, is given by 

 

𝑄(τ ≤ t) = 1 − 𝑒−𝜆𝑡 = 1 − 𝑒−
𝑆

1−𝑅
𝑡 (35) 

 

2.2.2.2 Time-dependent hazard rate  

 

The same approach as in section 2.2.2.1 Deterministic hazard rate can be used to derive the 

time-dependent function 𝜆(𝑡) (i.e. the hazard rate of default). Here, we can say that:  

 

𝑋𝑡~𝑃(Λ(𝑡)) (36) 

 

Where 

 

Λ(𝑡) = ∫ 𝜆(𝑢)𝑑𝑢
𝑡

0

 (37) 

 

The term Λ(𝑡) is called the cumulated intensity, cumulated hazard rate, or hazard function. 

Then, the CDF of the time to the first jump (i.e. the CDF of the default time) becomes:  

 

𝑄(τ ≤ t) = F(t) = 1 − exp(−Λ(𝑡)) = 1 − exp (− ∫ 𝜆(𝑢)𝑑𝑢
𝑡

0

) (38) 

 

Consequently, the formula for the survival probability from time 0 to time 𝑇 is obtained as  

 

Q(τ > t) = Q(0, t) = exp(−Λ(𝑡)) = exp (− ∫ 𝜆(𝑢)𝑑𝑢
𝑡

0

)  (39) 

 

This formula shows that the hazard rate 𝜆(𝑡) needs to be obtained in order to calculate the 

probability of default. This is done by deriving an expression for the par CDS spread, denoted 

by 𝑆0. Which is achieved by evaluating the present value of the payment received when 

defaulting (protection leg) and the cost of paying for this protection (premium leg) (Brigo & 

Mercurio, 2006).  

 

Because the 𝑆0 will be retrieved by using an iterative algorithm, from now on we will look at 

the discretized formulas instead of continuous formulas. The discretized formulas below will 

evaluate the valuation of the protection and premium leg over 𝑁 number of discrete time steps 

or payment periods. Assuming that the hazard rate process, interest rates, and recovery rates 

are independent, the discretized present value of the protection leg is given by  

 

𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑃𝑉 =
1 − 𝑅

2
 ∑[𝑍(𝑡, 𝑡𝑛) + 𝑍(𝑡, 𝑡𝑛−1)][𝑄(𝑡, 𝑡𝑛−1) − 𝑄(𝑡, 𝑡𝑛)]

𝑁

𝑛=1

 (40) 

 

The discretized present value of the premium leg is given by  

 

𝑃𝑟𝑒𝑚𝑖𝑢𝑚 𝑃𝑉 = 𝑆0 ∑ ∆(𝑡𝑛−1, 𝑡𝑛)𝑄(𝑡, 𝑡𝑛)𝑍(𝑡, 𝑡𝑛)

𝑁

𝑛=1
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                  +
1

2
∆(𝑡𝑛−1, 𝑡𝑛) ∑ 𝑍(𝑡, 𝑡𝑛)[𝑄(𝑡, 𝑡𝑛−1) − 𝑄(𝑡, 𝑡𝑛)]

𝑁

𝑛=1

(41) 

 

Here, 𝑆0 represents 𝑆(0, 𝑇), i.e., the fixed contractual spread of a contract traded at time 0 which 

matures at time 𝑇, and ∆(𝑡𝑛−1, 𝑡𝑛) is the day count fraction between dates 𝑡𝑛−1 and 𝑡𝑛 in the 

appropriate day count convention, typically Actual/360. 

 

The present value of the premium leg can also be denoted as 𝑆0 ∗ 𝑅𝑃𝑉01(0, 𝑇), where RPV01 

is the risky PV01, i.e., the expected present value of 1bp paid on the premium leg until default 

or maturity. The variable 𝑇 represents the maturity or termination time of the credit derivative, 

which is the point at which the contract ends. While 𝑇 is not explicitly present in the formula 

below, it is implicitly embedded within the summation limits. Specifically, 𝑇 defines the final 

time period 𝑡𝑁, which serves as the upper bound in the calculation of the RPV01. This risky 

PV01 can be denoted mathematically as 

 

𝑅𝑃𝑉01(𝑡, 𝑇) =  ∑ ∆(𝑡𝑛−1, 𝑡𝑛)𝑄(𝑡, 𝑡𝑛)𝑍(𝑡, 𝑡𝑛)

𝑁

𝑛=1

                                   

                                      +
1

2
∆(𝑡𝑛−1, 𝑡𝑛) ∑ 𝑍(𝑡, 𝑡𝑛)[𝑄(𝑡, 𝑡𝑛−1) − 𝑄(𝑡, 𝑡𝑛)]

𝑁

𝑛=1

(42) 

 

Now, the mark-to-market value of a CDS is given by the difference between the protection leg 

and the premium leg. With a face value of $1, the mark-to-market value of a CDS 𝑉(𝑡) at time 

𝑡 is given below. Here 𝑁 is the number of discrete time intervals between current time 𝑡 and 

maturity 𝑇. 

 

𝑉(𝑡, 𝑇) = 𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑃𝑉 − 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 𝑃𝑉                                                                  

=  
1 − 𝑅

2
 ∑[𝑍(𝑡, 𝑡𝑛) + 𝑍(𝑡, 𝑡𝑛−1)][𝑄(𝑡, 𝑡𝑛−1) − 𝑄(𝑡, 𝑡𝑛)]

𝑁

𝑛=1

− 

𝑆0 ∗ 𝑅𝑃𝑉01(0, 𝑇) (43) 

 

Finally, the breakeven spread is determined as the CDS spread paid upon a new contract. 

Meaning that the CDS spread can be calculated by solving 𝑉(0) = 0, doing so result in the 

following formula (Pereira, 2014) 

 

𝑆0 =
1 − 𝑅

2
  

∑ [𝑍(0, 𝑡𝑛) + 𝑍(0, 𝑡𝑛−1)][𝑄(0, 𝑡𝑛−1) − 𝑄(0, 𝑡𝑛)]𝑁
𝑛=1

𝑅𝑃𝑉01(0, 𝑇)
 (44) 

 

In section 2.2.2.1 Deterministic hazard rate it was possible to cancel out the 𝑍(0, 𝑡) and 𝑄(0, 𝑡) 

terms. However, by assuming an time-dependent hazard rate, this is not the case anymore and 

there is no analytical formula for the hazard rate. To retrieve the default probabilities we should 

perform an iterative algorithm. This algorithm builds the survival curve step-by-step by 

considering the shortest-dated instrument first and moving to the longest-dated one. At each 

stage, the price of the subsequent instrument is used to infer a parameter, extending the survival 

curve to the next maturity point. Through this process, a survival curve is derived that accurately 

reflects the market dynamics. The algorithm to build the survival curve is created by O’Kane 

(2008) and includes the following steps:  

 

1. Initialize the survival curve with 𝑄(𝑇0 = 0) = 1.In other words, the survival probability at 

time equals 0 is 1 because there is no default at time equals 0.  
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2. Set 𝑚 = 1. 

 

3. Determine the survival probability at time 𝑇𝑚 (denoted as 𝑄(𝑇𝑚)) such that the mark-to-

market valuation of the CDS maturing at 𝑇𝑚, with a market spread 𝑆𝑚, equals zero. 

Utilizing the following formula 

 

𝑆0 =
1 − 𝑅

2
  

∑ [𝑍(0, 𝑡𝑛) + 𝑍(0, 𝑡𝑛−1)][𝑄(0, 𝑡𝑛−1) − 𝑄(0, 𝑡𝑛)]𝑁
𝑛=1

𝑅𝑃𝑉01(0, 𝑇)
 (45) 

 

Where all required discount factors for the CDS mark-to-market calculation are 

interpolated from the known values 𝑄(𝑇1), … , 𝑄(𝑇𝑚−1), with the exception of 𝑄(𝑇𝑚), 

which is the value being determined. 

 

4. Upon identifying the value of 𝑄(𝑇𝑚) required to reprice the CDS maturing at 𝑇𝑚, we 

incorporate this time and corresponding value into our survival curve.  

 

5. Set 𝑚 = 𝑚 + 1. If 𝑚 ≤ 𝑀 return to step (3).  

 

6. We possess a survival curve consisting of 𝑀 + 1 data points, with time intervals ranging 

from 0, 𝑇1, 𝑇2, … , 𝑇𝑀 and values 1, 𝑄(𝑇1), 𝑄(𝑇2), … , 𝑄(𝑇𝑀).  

 

The number of points 𝑀 used in the survival curve impacts the accuracy of the default 

probability estimation. A higher 𝑀 provides a more detailed survival curve, potentially 

increasing accuracy, but also requires more computational effort. The choice of 𝑀 depends on 

the desired balance between accuracy and computational feasibility. Typically, 𝑀 is chosen 

based on the granularity of available market data and the computational resources at hand. 

 

2.2.2.3 Conclusion 

 

To conclude, there are two ways to extract default probabilities from CDS. One way is by 

calibrating CDS assuming 𝜆(𝑡) to be time-dependent. This approach is more advanced and 

accurate to find the risk-neutral survival probabilities, however this approach is also 

computationally cumbersome and relies on numerical (iterative) methods. The other way 

assumes 𝜆(𝑡) to be deterministic and leads to a closed-form formula for 𝜆. The advantage of 

this methodology for extracting default probabilities from CDS is that the interest rate curve is 

not needed. However, the results are less accurate than assuming 𝜆(𝑡) to be time-dependent. 

An overview of both methodologies is given in Figure 4.  

 

 
Figure 4. Overview of PD estimation methodologies. 

  

Deterministic hazard rate Time-dependent hazard rate

Assumption

Major benefit Interest rate curve is not needed More accuracte

Major drawback Less accurate Computationally cumbersome and 

relies on numerical (iterative) 

methods

Implied hazard rate

Probability of default
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3 Methodology 
 

This chapter corresponds with the third step of the DSRM: design and development. Therefore, this 

chapter formulates an answer to the sub research question: ‘what is the best methodology for 

Deloitte to use in their CVA valuation model for interest rate swaps?’. This methodology will be 

chosen by internal discussions with experts from the FRM team, based on the literature study 

conducted in chapter 2 Literature review. Additionally, further research is conducted on the 

calibration of the chosen methodology, which serves as the foundation of the final model.  

 

3.1 The most suitable methodology for the CVA valuation model 
 

In this section, we determine the methodology to be employed in Deloitte’s CVA valuation model. 

In this section we decide on the interest rate model that is going to be used in the determination of 

the expected exposure. This decision will be made based on a comparison of the interest rate models 

from section 2.2.1 Interest rate models (expected exposure) and on a predefined set of criteria. In 

this section, we also decide whether to assume a deterministic hazard rate or a time-dependent 

hazard rate for estimating the probability of default.  

 

3.1.1 The most suitable interest rate model 

  

Together with the specialists from the FRM team of Deloitte, a predefined set of criteria is 

created. The following criteria are of importance in determining the most suitable interest rate 

model to implement in the CVA valuation model.  

 

Computational efficiency: It should be computationally efficient to handle large 

portfolios of interest rate swaps and perform calculations in a reasonable time frame. 

 

Economic realism (accuracy): The model should accurately capture the behaviour of 

interest rates and their impact on the valuation of interest rate swaps. The model should 

be robust enough to handle various market scenarios, including stressed market 

conditions and extreme movements in interest rates. 

 

Calibration: The model should be easily calibrated to market data, ensuring that it 

reflects current market conditions accurately. This ease of calibration is crucial because 

the CVA tool is designed to function automatically, without requiring manual 

intervention. An automated calibration process ensures that the model can continuously 

adapt to new market data, allowing for efficient and accurate CVA calculations with 

minimal user input. 

 

Flexibility: The model’s flexibility should allow for future expansion to accommodate 

different derivatives while enhancing accuracy. This may include incorporating 

features such as time-varying volatility parameters or extending from a single-factor to 

a multi-factor model.  

  

The criteria are not equally important. Therefore weights are assigned to each criterium. The 

weights are determined based on the Analytical Hierarchy Process (AHP). In line with the AHP, 

the specialists of the FRM team of Deloitte conducted a pairwise comparison of each criterium. 

The scale of this pairwise comparison ranges from one to nine, where one implies that the two 

criteria are the same or are equally important. On the other hand, nine implies that one criterium 

is extremely more important than the other one. For the complete steps in this process see 

Appendix B – AHP weights for interest rate model selection. For now, the final weights for each 

criterium given Deloitte’s perspective is shown in Table 3. 
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Table 3. Requirements of the interest rate model. 

Requirement Weight 

Computational efficiency 0.166 

Economic realism 0.510 

Calibration 0.287 

Flexibility 0.037 

     

 

Finally, a score ranging from 1 to 5 is given to all criteria by the experts of Deloitte for each 

interest rate model. The interpretation of the scale is shown in Table 20, see Appendix C – 

Definition of the scores for all criteria on the implemented interest rate model. 

 

The results of the comparison between interest rate models based on our predefined set of 

criteria is shown in Table 4. The interest rate models are ranked from best suited to worst suited 

for our CVA valuation model according to Deloitte’s experts perspective. Table 4 shows that 

the Hull-White Extended Vasicek (HW1) model emerges as standout choice for our CVA 

valuation model according to the specialists of Deloitte. This model demonstrates a clear 

advantage over its counterparts due to its balance between analytical tractability and economic 

realism.   

 
Table 4. Best suited interest rate model for the CVA model according to Deloitte’s FRM experts, ranked from best 

to worst. 

 Computational 

efficiency 

Economic 

realism 

Calibration Flexibility Overall 

Hull-White 3 4 4 5 3.87 

Ho-Lee 3 3 5 1 3.50 

CIR++ 2 4 3 5 3.42 

CIR 3 3 4 4 3.32 

Black-

Karasinski 

2 4 3 1 3.27 

Black-

Derman-Toy 

3 3 4 1 3.21 

Marsh-

Rosenfeld 

4 2 5 1 3.16 

JCIR++ 1 5 1 3 3.11 

CIR# 1 5 1 2 3.08 

Vasicek 5 1 5 3 2.89 

Dothan 4 1 5 1 2.65 

Rendleman-

Barttner 

4 1 5 1 2.65 

 

While acknowledged that single-factor models, including HW1, possess limitations in 

replicating the entirety of yield curve shapes, they exhibit notable strengths in capturing the 

term structure of interest rates effectively. The HW1 model, despite its simplicity, offers a 

robust framework capable of accommodating various market conditions, including the 

increasingly relevant scenario of negative interest rates. Moreover, its compatibility with 

closed-form pricing formulas for bonds and options enhances its appeal for our purpose.  

 

Although multi-factor models promise greater flexibility and more nuanced representation of 

interest rate dynamics, the HW1 model’s computational efficiency, ease of interpretation, and 

reduced parameter uncertainty make it an optimal choice for our objectives. Importantly, its 

adaptability allows for future enhancements, potentially leveraging extensions to the multi-

factor Hull-White framework for further refinement of our CVA valuation model.  
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3.1.2 The most suitable PD estimation methodology  

 

The literature study showed that there are two ways to extract default probabilities from CDS. 

One way is by calibrating CDS assuming 𝜆(𝑡) to be time-dependent. This approach is more 

advanced and accurate to find the risk-neutral survival probabilities, however this approach is 

also computationally cumbersome and relies on numerical (iterative) methods. The other way 

assumes 𝜆(𝑡) to be deterministic and leads to a closed-form formula for 𝜆. The advantage of 

this methodology for extracting default probabilities from CDS is that the interest rate curve is 

not needed. However, the results are less accurate than assuming 𝜆(𝑡) to be time-dependent.  

 

The research of van Schuppen (2014) compared the outcomes of the two approaches in terms 

of default probabilities using CDS spreads as input and assuming a recovery rate of 40%. Table 

5 shows that the results of assuming a deterministic hazard rate are relatively close to the results 

of assuming a time-dependent hazard rate.  

 
Table 5. Comparison of default probabilities with a deterministic hazard rate and a time-dependent hazard rate, 

assuming a recovery rate of 40% (van Schuppen, 2014). 

Maturity 

(years) 

CDS spread Deterministic 

hazard rate 

Time-

dependent 

hazard rate 

Difference (%) 

1 192.5 3.16% 3.29% 0.13% 

3 215 10.19% 10.45% 0.26% 

5 225 17.1% 17.49% 0.39% 

7 235 23.98% 24.64% 0.66% 

10 235 32.41% 32.92% 0.51% 

 

While a deterministic hazard rate may offer slightly less accuracy, it remains sufficiently 

reliable for estimating the probability of default. Additionally, opting for a deterministic hazard 

rate enhances the computational efficiency of the model, because there is no need for an interest 

rate curve. Hence, we have chosen to employ a deterministic hazard rate for estimating the 

probability of default. 

 

3.2 Hull-White one-factor model 
 

The HW1 is an extension of the Vasicek (1977) model, that assumes that short-term interest 

rate follows a stochastic process driven by a single source of uncertainty. The HW1 process can 

be described by the following stochastic differential equation 

 

𝑑𝑟(𝑡) = [𝜃(𝑡) − 𝛼𝑟(𝑡)]𝑑𝑡 + 𝜎𝑑𝑊(𝑡) (46) 

 

Where 𝑟(𝑡) represents the short-term interest rate at time 𝑡, the speed of the mean reversion is 

given by 𝛼, the long-run mean interest rate at time 𝑡 is given by 𝜃(𝑡), the volatility of interest 

rates is denoted by 𝜎 and 𝑊(𝑡) is a Wiener process. 

 

This model is analytically tractable in the sense that analytical formulas for zero-coupon bonds 

and options on them can be derived because of the Gaussian distribution of continuously-

compounded rates. In this section, we derive analytical formulas for zero-coupon bonds and 

options, followed by an explanation of how these formulas can be utilized for model calibration.  
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3.2.1 Pricing of zero-coupon bonds and options 

 

The analytical formulas from the HW1 model are derived according to Brigo and Mercurio 

(2006) and Russo and Fabozzi (2016). The assumption of one-dimensional dynamics for the 

instantaneous spot rate process 𝑟 is very convenient for the derivation of analytical formulas 

for rates and bonds. These analytical formulas are defined, by using no-arbitrage arguments, as 

the expectation of the process 𝑟.  The arbitrage-free price of a contingent claim at time 𝑡 with 

payoff 𝐻𝑇 at time 𝑇 is, because of the existence of a risk-neutral measure, given by 

 

𝐻𝑡 = 𝐸𝑡{𝐷(𝑡, 𝑇) 𝐻𝑇} = 𝐸𝑡 {𝑒−𝐻𝑇 ∫ 𝑟(𝑠)𝑑
𝑇

𝑡
𝑠} (47) 

 

Here 𝐸𝑡 denotes the expectation conditional on 𝑡 under that measure, and 𝐷(𝑡, 𝑇) denotes the 

stochastic discount factor at time 𝑡 for maturity 𝑇. A zero-coupon bond is characterized by a 

unit amount of currency available at time 𝑇, or mathematically 𝐻𝑇 = 1. Therefore, the price of 

a zero-coupon bond 𝑃(𝑡, 𝑇) at time 𝑡 with maturity 𝑇 is given by 

 

𝑃(𝑡, 𝑇) = 𝐸𝑡 {𝑒− ∫ 𝑟(𝑠)𝑑
𝑇

𝑡
𝑠} (48) 

 

This expression shows that bond prices can by computed if the distribution of 𝑒− ∫ 𝑟(𝑠)𝑑
𝑇

𝑡
𝑠 can 

be categorized in terms of the dynamics of 𝑟 conditional on the information available at time 𝑡 

(Brigo & Mercurio, 2006).  

 

Now, we will show that the short rate 𝑟(𝑡) in the HW1 process is normally distributed. Let us 

denote 𝑓𝑀(0, 𝑇) as the market instantaneous forward rate at time 0 for maturity 𝑇. The market 

instantaneous forward rate is the partial derivative of 𝑃𝑀(0, 𝑇) with respect to 𝑇, the market 

discount factor for maturity 𝑇.  

 

𝑓𝑀(0, 𝑇) = −
𝜕 ln 𝑃𝑀(0, 𝑇)

𝜕𝑇
 (49) 

 

Furthermore, the long-run mean interest rate at time 𝑡, is denoted as 

 

𝜃(𝑡) =
𝜕𝑓𝑀(0, 𝑡)

𝜕𝑇
+ 𝑎𝑓𝑀(0, 𝑡) =

𝜎2

2𝑎
(1 − 𝑒−2𝑎𝑡) (50) 

 

By integrating the stochastic differential equation of the HW1 process (Equation 46), we get 

the formula below. Here 𝑠 is the point in time that includes all the observable market data (in 

this case interest rates) and historical information available up to that point.  

 

𝑟(𝑡) = 𝑟(𝑠)𝑒−𝑎(𝑡−𝑠) + ∫ 𝑒−𝑎(𝑡−𝑢)𝜃(𝑢)𝑑𝑢
𝑡

𝑠

+ 𝜎 ∫ 𝑒−𝑎(𝑡−𝑢)𝑑𝑊(𝑢)
𝑡

𝑠

                      

 

                             = 𝑟(𝑠)𝑒−𝑎(𝑡−𝑠) + 𝑎(𝑡) − 𝑎(𝑠)𝑒−𝑎(𝑡−𝑠) + 𝜎 ∫ 𝑒−𝑎(𝑡−𝑢)𝑑𝑊(𝑢)
𝑡

𝑠

(51) 

 

With 

 

𝑎(𝑡) = 𝑓𝑀(0, 𝑡) +
𝜎2

2𝑎2
(1 − 𝑒−𝑎𝑡)2 (52) 
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Therefore, 𝑟(𝑡) conditional on the ℱ𝑠 𝜎-field, A 𝜎-field is a mathematical structure that 

represents a collection of events (subsets of a probability space) that are measurable with respect 

to a given filtration up to time 𝑠. When 𝑟(𝑡) is said to be conditional on ℱ𝑠, it means that the 

value of the interest rate 𝑟(𝑡) is dependent on the information that is available up to time 𝑠. This 

reflects the notion that future values of rates are uncertain and can only be predicted based on 

past information. Brigo & Mercurio (2006) showed that 𝑟(𝑡) conditional on the ℱ𝑠 𝜎-field is 

normally distributed with mean and variance given respectively by  

 

𝐸{𝑟(𝑡)|ℱ𝑠} = 𝑟(𝑠)𝑒−𝑎(𝑡−𝑠) + 𝑎(𝑡) − 𝑎(𝑠)𝑒−𝑎(𝑡−𝑠) (53) 

 

𝑉𝑎𝑟{𝑟(𝑡)|ℱ𝑠} =
𝜎2

2𝑎
[1 − 𝑒−2𝑎(𝑡−𝑠)] (54) 

 

  

 Zero-coupon bonds 

  

The valuation of a zero-coupon bond at time 𝑡 is determined by the expected value, as indicated 

in Equation 48. This expected value computation is relatively straightforward within the 

framework of the HW1 process, as depicted in Equation 46. Notice that, because we concluded 

that 𝑟(𝑇) conditional on ℱ𝑡 , 𝑡 ≤ 𝑇 follows a Gaussian distribution, we can conclude that 

∫ 𝑟(𝑢)𝑑𝑢
𝑇

𝑡
 is itself normally distributed (Brigo & Mercurio, 2006). Therefore, we can show 

that 

 

∫ 𝑟(𝑢)𝑑𝑢|ℱ𝑡

𝑇

𝑡

~𝒩 (𝐵(𝑡, 𝑇)[𝑟(𝑡) − 𝑎(𝑡)] + ln
𝑃𝑀(0, 𝑡)

𝑃𝑀(0, 𝑇)
+

1

2
[𝑉(0, 𝑇) − 𝑉(0, 𝑡)], 𝑉(𝑡, 𝑇)) (55) 

 

Where 

 

𝐵(𝑡, 𝑇) =
1

𝑎
[1 − 𝑒−𝑎(𝑇−𝑡)] (56) 

 

𝑉(𝑡, 𝑇) =
𝜎2

𝑎2 [𝑇 − 𝑡 +
2

𝑎
𝑒−𝑎(𝑇−𝑡) −

1

2𝑎
𝑒−2𝑎(𝑇−𝑡) −

3

2𝑎
] (57) 

 

So that we obtain 

 

𝑃(𝑡, 𝑇) = 𝐴(𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)𝑟(𝑡) (58) 

 

Where  

 

𝐴(𝑡, 𝑇) =
𝑃𝑀(0, 𝑇)

𝑃𝑀(0, 𝑡)
exp {𝐵(𝑡, 𝑇)𝑓𝑀(0, 𝑡) −

𝜎2

4𝑎
(1 − 𝑒−2𝑎𝑡)𝐵(𝑡, 𝑇)2} (59) 

 

 European options on zero-coupon bonds 

 

Brigo and Mercurio (2006) showed that the price of an European call option 𝑍𝐵𝐶(𝑡, 𝑇, 𝑆, 𝑋) at 

time 𝑡, with strike 𝑋, maturity 𝑇 and written on a zero-coupon bond maturing at time 𝑆 is given 

by the expectation 

 

𝑍𝐵𝐶(𝑡, 𝑇, 𝑆, 𝑋) = 𝐸 (𝑒− ∫ 𝑟(𝑠)𝑑𝑠
𝑇

𝑡 (𝑃(𝑇, 𝑆) − 𝑋)+|ℱ𝑡) (60) 

 

Or, equivalent, by  
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𝑍𝐵𝐶(𝑡, 𝑇, 𝑆, 𝑋) = 𝑃(𝑡, 𝑇)𝐸𝑇((𝑃(𝑇, 𝑆) − 𝑋)+|ℱ𝑡) (61) 

  

The latter expectation can be computed if the distribution of the process 𝑟 under the 𝑇-forward 

measure 𝑄𝑇 is known. Brigo & Mercurio (2006) showed that the short rate 𝑟(𝑡) conditional on 

ℱ𝑠 under the measure 𝑄𝑇, is Gaussian with mean and variance given by the formulas below. 

The 𝑇-forward measure 𝑄𝑇 is a probability measure that is used to evaluate future cash flows 

as if they were known at a future time 𝑇. It effectively allows market participants to price cash 

flows that occur after time 𝑇 by adjusting for the time value of money. In the formula, 𝑀𝑇(𝑠, 𝑡) 

adjusts the mean of the conditional expectation 𝐸𝑇{𝑟(𝑡)|ℱ𝑠} based on how the short rate is 

expected to evolve from time 𝑠 to 𝑡 under the forward measure 𝑄𝑇. This term encapsulates the 

dynamics of the short rate process, including factors such as the mean reversion or the impact 

of any shocks to the interest rate. 

 

𝐸𝑇{𝑟(𝑡)|ℱ𝑠} = 𝑥(𝑠)𝑒−𝑎(𝑡−𝑠) − 𝑀𝑇(𝑠, 𝑡) + 𝑎(𝑡) (62) 

 

𝑉𝑎𝑟𝑇{𝑟(𝑡)|ℱ𝑠} =
𝜎2

2𝑎
[1 − 𝑒−2𝑎(𝑇−𝑡)] (63) 

 

As a consequence the European call-option price is 

 

𝑍𝐵𝐶(𝑡, 𝑇, 𝑆, 𝑋) = 𝑃(𝑡, 𝑆)Φ(ℎ) − 𝑋𝑃(𝑡, 𝑇)Φ(ℎ − 𝜎𝑝) (64) 

 

Where 

 

𝜎𝑝 = 𝜎√
1 − 𝑒−2𝑎(𝑇−𝑡)

2𝑎
𝐵(𝑇, 𝑆) (65) 

 

ℎ =
1

𝜎𝑝
ln

𝑃(𝑡, 𝑆)

𝑃(𝑡, 𝑇)𝑋
+

𝜎𝑝

2
 (66) 

 

Similarly, the prize 𝑍𝐵𝑃(𝑡, 𝑇, 𝑆, 𝑋) at time 𝑡 of a European put option with strike 𝑋, maturity 𝑇 

and written on a zero-coupon bond maturing at time 𝑆 is given by  

 

𝑍𝐵𝑃(𝑡, 𝑇, 𝑆, 𝑋) = 𝑋𝑃(𝑡, 𝑇)Φ(−ℎ + 𝜎𝑝) − 𝑃(𝑡, 𝑆)Φ(−ℎ) (67) 

 

 

 European options on coupon-bearing bonds 

  

The price of European options on coupon-bearing bonds can be determined with the 

Jamshidian’s (1989) decomposition. The Jamshidian decomposition does not offer a closed-

form solution for pricing coupon-bearing bonds. Consider a European option with a strike price 

𝑋 and maturity 𝑇 written on a bond that pays out 𝑛 coupons after the option expires. For each 

cash flow after 𝑇, denoted by 𝑇𝑖 (where 𝑇𝑖 > 𝑇), the value of this cash flow is denoted by 𝑐𝑖. 

Let 𝒯 ≔ {𝑇1, … , 𝑇𝑛} and 𝑐 ∶= {𝑐1, … , 𝑐𝑛}. Let 𝑋𝑖 be the value of a pure-discount bond at time 

𝑇 maturing at 𝑇𝑖 when the spot rate for which the coupon-bearing bond price equals the strike. 

Now, the Jamshidian decomposition solves the value of 𝑋𝑖 numerically by changing the spot 

rate until the coupon-bearing bond prices equals the strike (Russo & Fabozzi, 2016). Then the 

option price at time 𝑡 < 𝑇 is  
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𝐶𝐵𝑂(𝑡, 𝑇, 𝒯, 𝑐, 𝑋) = ∑ 𝑐𝑖𝑍𝐵𝑂(𝑡, 𝑇, 𝑇𝑖, 𝑋𝑖)

𝑛

𝑖=1

(68) 

 

 European swaptions 

 

Now that we have the analytical formula for pricing options on coupon-bearing bonds 

(Equation 68), we can use this for the analytical formula to price European swaptions. Because 

a European swaption can be seen as an option on a coupon-bearing bond. To illustrate this, 

consider a payer swaption with strike 𝑋, maturity 𝑇 and nominal value 𝑁. The holder of this 

swaption has the right to enter into an interest rate swap at time 𝑡0 = 𝑇 with payment 

frequencies 𝒯 = {𝑡1, … , 𝑡𝑛}, for which 𝑡1 > 𝑇. For this interest rate swap the holder will pay 

the fixed rate 𝑋 and receives the floating LIBOR rate in arears. The year fraction is denoted by 

𝜏𝑖 from 𝑡𝑖−1 to 𝑡𝑖 for which 𝑖 = 1, … , 𝑛. Then we can denote the cashflow associated with the 

interest rate swap by 𝑐𝑖 ≔ 𝑋𝜏𝑖 for 𝑖 = 1, … , 𝑛 − 1 and 𝑐𝑛 ≔ 1 + 𝑋𝜏𝑖. Next, the spot rate at time 

𝑇 that equals the present value of the cash flows from the interest rate swap to the value of the 

swaption is denoted by 𝑟∗. Mathematically, this is the value of 𝑟∗ for which the following 

equation holds 

 

∑ 𝑐𝑖𝐴(𝑇, 𝑡𝑖)𝑒−𝐵(𝑇,𝑡𝑖)𝑟∗

𝑛

𝑖=1

= 1 (69) 

 

Finally, we can set  𝑋𝑖 ≔ 𝐴(𝑇, 𝑡𝑖)𝑒−𝐵(𝑇,𝑡𝑖)𝑟∗
, then the swaption price at time 𝑡 < 𝑇 is given by 

 

𝑃𝑆𝑤𝑝𝑡(𝑡, 𝑇, 𝒯, 𝑁, 𝑋) = 𝑁 ∑ 𝑐𝑖𝑍𝐵𝑃(𝑡, 𝑇, 𝑡𝑖, 𝑋𝑖)

𝑛

𝑖=1

 (70) 

 

Similarly, the price of the corresponding receiver swaption is given by 

 

𝑅𝑆𝑤𝑝𝑡(𝑡, 𝑇, 𝒯, 𝑁, 𝑋) = 𝑁 ∑ 𝑐𝑖𝑍𝐵𝐶(𝑡, 𝑇, 𝑡𝑖 , 𝑋𝑖)

𝑛

𝑖=1

(71) 

 

3.2.2 Calibration 

 

With the closed formulas derived in the previous section, the calibration of the HW1 model can 

be established using market swaption prices. The primary goal of the calibration process is to 

determine the model parameters in a manner that ensures the consistency of model prices with 

swaptions quoted in the market. This can be achieved through a numerical optimization 

technique, aiming to minimize the square root of the sum of the squares of the relative 

differences between market and model swaption prices,  

 

arg
𝑚𝑖𝑛

𝛽
√∑ (

𝑆𝑤𝑝𝑡𝑖 − 𝑆𝑤𝑝𝑡𝑖
𝑀

𝑆𝑤𝑝𝑡𝑖
𝑀 )

2𝑁

𝑖=1

(72) 

 

Here, 𝑆𝑤𝑝𝑡𝑖
𝑀 denotes the market-quoted value of the swaption, and 𝑆𝑤𝑝𝑡𝑖 represents the 

theoretical price of the swaption under the HW1 model. The calibration process involves 𝑁 

calibrated instruments, with 𝛽 representing the parameter vector. In the case of the HW1 model, 

calibration is necessary for 2 parameters, 𝛼 and 𝜎. 
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It is worth noting that this approach is just one among various options available. Some authors 

suggest estimating the mean reversion parameter through historical data rather than integrating 

it into the optimization procedure mentioned above. Others opt for a two-step estimation 

process. For example, Schlenkrich (2012) suggests calibrating the mean reversion parameter 

using Bermudian swaptions and determining the volatility parameter using European 

swaptions. 

 

In this thesis we will use the Levenberg-Marquardt algorithm to find the local minimum of the 

objective function (Equation 72). The Levenberg-Marquardt algorithm is the most widely used 

optimization algorithm because it outperforms simple gradient descent and other conjugate 

gradient methods. One disadvantage of the Levenberg-Marquardt is that it has the tendency to 

get stuck in local minima and fail to find the global minimum (Vollrath & Wendland, 2009). 

However, because of the non-convex nature of the objective function, finding a local minimum 

sufficiently calibrates the HW1 process. Additionally, convergence typically occurs fast and 

stable under the Levenberg-Marquardt algorithm (Hull & White, 2001).   
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4 Implementation 
 

This chapter corresponds with the fourth step of the DSRM: demonstration. Therefore this chapter 

formulates an answer to the sub research question: how can the chosen methodology be 

implemented to develop a CVA valuation model for interest rate swaps?’. The CVA valuation 

model will be programmed in Python and its effectiveness will be demonstrated by valuing CVA 

of the interest rate swap shown in Table 6. This chapter starts with calibrating the Hull-White one-

factor model (HW1). After calibration, the model can be used to simulate interest rate paths which 

will be used to calculate the expected exposure of the interest rate swap. Furthermore, the 

probability of default will be extracted from CDS in the market. All these steps are executed 

according to the methodology chosen in chapter 3 Methodology. Finally, the value of CVA for this 

interest rate swap is calculated.  

 

The details of the interest rate swap used in this chapter are shown in Table 6. Koninklijke Philips 

NV is the counterparty of this 5 year maturity fix-floating interest rate swap issued by ABN AMRO 

Bank NV. The interest rate swap has a notional of €10 million, an effective date of 31/12/2023,  

- a fixed leg with a 3% rate, annual payment frequencies and a 30U/360 day count convention, 

- and a floating leg with a 6M EUR EURIBOR rate, semi-annual payment frequencies and an 

ACT/360 day count convention.  

 
Table 6. Interest rate swap under valuation. 

Interest rate swap 

 Fixed leg Floating leg 

Notional 10MM 10MM 

Currency EUR EUR 

Effective date 31/12/2023 31/12/2023 

Maturity 31/12/2028 31/12/2028 

Rate 3% 6M EUR EURIBOR 

Payment frequency Annual Semi Annual 

Day count 30U/360 ACT/360 

   

Counterparty Koninklijke Philips NV  

Dealer ABN AMRO Bank NV  

 

 

4.1 Calibration of the Hull-White one-factor model 
 

The HW1 model can be calibrated using co-maturity swaptions. However, this approach may 

potentially lead to overfitting and parameter instability. To address this concern, the calibration 

process is executed using a volatility grid of European swaptions, characterized by various 

combinations of tenor and maturity. The volatility grid of swaptions consists of at the money (ATM) 

swaptions. A swaption is considered ATM when the strike of the underlying option equals the 

forward swap rate for the same swap maturity. The swaptions volatility grid displays normal 

volatilities rather than lognormal volatilities. Normal volatilities are computed using the Bachelier 

formula, whereas the Black formula relies on lognormal volatility. Nowadays, market preference 

leans towards normal volatilities due to the challenge posed by negative rates, where Black 

(lognormal) quotes become undefined. The European swaption volatilities are obtained from 

Bloomberg, see Figure 12 in Appendix D – Bloomberg data.  

 

The ESTR curve is used to discount the cash flows of the fixed and floating legs to price the 

swaption. The curve date is 12/31/2023, which is the date for which we want to calculate the value 

of CVA. The ESTR curve is obtained from Bloomberg, see Figure 13 in Appendix D – Bloomberg 

data. 
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In order to calculate the theoretical price of swaptions under the HW1 model, the Jamshidian 

decomposition is used. The Jamshidian decomposition consists of dividing the swap into a set of 

zero-coupon bonds with strikes, so all are exercised under the same conditions, see chapter 3 

Methodology section 3.2.2 Calibration. 

 

Finally, the parameters of set 𝛽 = {𝛼, 𝜎} are simultaneously changed to minimize the objective 

function (Equation 72) with the Levenberg-Marquardt optimization algorithm. The model showed 

that for 𝛼 = 0.00001 and 𝜎 = 0.00801 the square root of the sum of squares of the relative 

difference between market and model swaption prices is at a minimum. The RMSE of for these 

parameters is 0.305 and the full calibration report is depicted in Table 7.  

 
Table 7. Calibration report based on the Levenberg-Marquardt optimization algorithm. 

Maturity Tenor Market 

Volatility 

Model 

Volatility 

Relative 

Error 

1 30 39.52 36.10 -0.0866 

2 25 37.46 34.93 -0.0675 

3 20 35.51 34.24 -0.0357 

4 15 33.60 33.21 -0.0116 

5 12 33.16 32.63 -0.0160 

7 10 31.60 32.97 0.0432 

10 7 30.62 32.20 0.0515 

12 5 31.35 32.99 0.0524 

15 4 33.71 37.32 0.1069 

20 3 45.78 44.72 -0.0231 

25 2 47.81 51.97 0.0871 

30 1 79.70 61.40 -0.2297 

 

Another commonly used method in the literature is calibrating the HW1 model with a predefined 

fixed value for 𝛼, usually derived from historical data, while allowing 𝜎 to vary Russo & Fabozzi 

(2019). The benefit of calibrating the HW1 model with a fixed 𝛼 is the reduction of complexity and 

reducing the risk of overfitting. On the other hand, it may sacrifice some accuracy in fitting the 

short-term dynamics. This approach is often used in the literature when computational efficiency 

or stability is important, or when the mean reversion parameter 𝛼 is assumed to be relatively stable 

over time.  

 

Because the accuracy of fitting the short-term dynamics is considered important for Deloitte’s CVA 

valuation model, this thesis will calibrate the HW1 model with a varying mean reversion 𝛼 and 

volatility 𝜎. 

 

4.2 Interest rate simulation 
 

In essence, the complexity of accurately modelling future exposures, the need to incorporate 

counterparty credit risk dynamically, and the flexibility required to handle various market 

conditions make simulation the only suitable methodology for calculating CVA in the case of an 

interest rate swap. Simulations capture the random nature of interest rates and default events more 

effectively than closed-form models, ensuring the CVA reflects the true risk of the position. 

 

The HW1 model, once calibrated, is used to simulate the future evolution of the 6M Euribor, the 

underlying of the floating leg of the interest rate swap. This is crucial for calculating the expected 

exposure of the interest rate swap over time. The short-rate 𝑟(𝑡) is simulated using the calibrated 

parameters 𝛼 and 𝜎 retrieved in section 4.1 Calibration of the Hull-White one-factor model. The 

simulation is carried out over 500 paths using the Monte Carlo method, each path represents a 
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possible future trajectory of the short-term interest rates based on the HW1 model. A Gaussian 

random number generator is used to simulate paths for the short-rate.  

 

Based on these short-term interest rates, the yield curve can be derived from zero-coupon bonds. 

For each simulated short-term interest rate path, the zero-coupon bond prices 𝑃(𝑡, 𝑇) for various 

maturities 𝑇 are calculated. The formula for the price of a zero-coupon bond under the HW1 model 

is 

 

𝑃(𝑡, 𝑇) = 𝐴(𝑡, 𝑇)𝑒−𝐵(𝑡,𝑇)𝑟(𝑡) (73) 

 

Where 𝐴(𝑡, 𝑇) and 𝐵(𝑡, 𝑇) are functions dependent on the model parameters 𝛼 and 𝜎, and 𝑟(𝑡) is 

the simulated short rate at time 𝑡, see chapter 3 Methodology. 

 

Now, we compute the average zero-coupon bond price �̅�(𝑡, 𝑇) across all 500 paths for each maturity 

𝑇. This step corresponds to the risk-neutral expectation of the bond price, as the HW1 model 

assumes the simulated paths follow a risk-neutral probability measure. The yield for each maturity 

𝑇 can be calculated using the following formula 

 

𝑦(𝑡, 𝑇) = −
1

𝑇 − 𝑡
𝑙𝑜𝑔�̅�(𝑡, 𝑇) (74)  

 

Finally, the yield curve is obtained by repeating the above process for a range of maturities 𝑇. The 

yield curve represents the term structure of interest rates based on the average behaviour of the 500 

simulated short-rate paths.  

 

4.3 Expected exposure of the interest rate swap 
 

For each simulated short-rate path, the net present value (NPV) of the interest rate swap is computed 

at each time step (simulation dates). The code uses weeks for the predetermined set of simulation 

dates, meaning that there are 260 simulation dates for the 5 year maturity interest rate swap, which 

is in line with the typical value of simulation dates according to Gregory (2012), as explained in 

chapter 2 Literature review. The NPV depends on the floating and fixed legs of the interest rate 

swap, which are discounted using the simulated interest rates. For each simulated path, the exposure 

is calculated and visualized in Figure 5.  

 
Figure 5. 500 simulation exposure paths of the interest rate swap. 
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Now, we will make a distinction between the expected positive exposure (EPE) and expected 

negative exposure (ENE). The reason why we split the exposure into EPE and ENE is that the EPE 

is needed for calculating the CVA, while the ENE is used for calculation DVA. The logic behind 

this is simple, the EPE represents the potential loss if the counterparty (Koninlijke Philips NV) 

defaults and the ENE reflects the exposure that the dealer (ABN AMRO Bank NV) owes to the 

counterparty (Koninklijke Philips NV), and is considered to be the dealer’s own potential default.  

 

The EPE equals, as the name suggests, all exposures with a positive NPV. The EPE is calculated 

as the average of the NPV of the exposures across all simulated paths. The EPE for the interest rate 

swap under valuation is visualized in Figure 6.  

 

 
Figure 6. EPE profile of the interst rate swap based on 500 simulation runs. 

In the case of this interest rate swap, several features make the EPE profile intuitive. The swap has 

a notional of 10MM EUR, with fixed annual payments on one leg and semi-annual floating 

payments on the other. As time progresses, exposure increases periodically in alignment with 

payment dates. After each payment, the risk associated with future interest rate movements builds 

up again until the next settlement date. This results in step-like increases in the EPE profile.  

 

The floating leg, tied to the 6M EURIBOR, resets semi-annually. These rate resets introduce 

variability in the exposure. When interest rates rise, the floating leg payments increase, which could 

lead to higher exposure for the fixed payer, as they may owe more after each reset. This variability 

is reflected in the upward movements of the EPE profile after each reset, corresponding to the 

increased exposure from changes in floating rates.  

 

As the swap approached maturity, the outstanding time decreases, reducing overall exposure. This 

explains the gradual downward steps after each major payment, as fewer rate resets remain, 

lowering future interest rate risk. Spikes in the EPE profile just before settlements reflect the 

accumulation of risk since the last payment, as interest rate risk builds up over time. 

 

Consequently, the ENE equals all exposures with a negative NPV and is also calculated as the 

average across all simulated paths. The ENE for the interest rate swap under valuation is visualized 

in Figure 7. The elaboration of the intuition behind the ENE profile is neglected, because the same 

reasoning of the EPE profile holds true but in reverse.  
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Figure 7. ENE profile of the interest rate swap based on 500 simulation runs. 

4.4 Probability of default estimation 
 

Another unknown that we need for the calculation of CVA is the probability of default. As 

explained in chapter 3 Methodology, we assume an Poisson homogeneous process, where the 

intensity function 𝜆(𝑡) (i.e., hazard rate) is constant over time (deterministic). The advantage of this 

methodology is that the default probabilities can be extracted from a CDS without the need for the 

interest rate curve. By assuming a deterministic hazard rate, the default probabilities can be 

calculated with the following formula 

 

𝑄(τ ≤ t) = 1 − 𝑒−𝜆𝑡 = 1 − 𝑒−
𝑆

1−𝑅
𝑡 (75) 

 

With 𝑆 being the spread of the CDS, which is an market-implied indicator of default risk and 𝑅 

being the recovery rate, which is 40%.  

 

Counterparty (Koninklijke Philips NV) 

 

The probability of default for the counterparty is derived from the CDS curve for Koninklijke 

Philips NV. In the code, CDS spreads for various maturities are used to construct a piecewise-flat 

hazard rate curve, which provides the cumulative probability of default at each point in the future. 

The difference in cumulative probabilities between two time steps gives the incremental probability 

of default, which is used for the CVA calculation. In the code a piecewise-flat hazard curve is used 

to calculate the probability of default for each week, however for clarity and visual simplicity, we 

present the default probabilities in tabular form rather than displaying the full curve, see Table 8.  

 
Table 8. Probability of default for counterparty (Koninklijke Philips NV) based on a recovery rate of 40% and curve 

date of 31/12/2023. (Source: Bloomberg) 

Term Spread Probability 

of default 

6 MO 19.72 0.16% 

1 YR 21.33 0.35% 

2 YR 31.27 1.04% 

3 YR 43.93 2.20% 

4 YR 52.68 3.52% 

5 YR 61.95 5.17% 

7 YR 82.55 9.57% 

10 YR 93.20 15.06% 
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Dealer (ABN AMRO Bank NV) 

 

Similarly, the default probability for the dealer is constructed using CDS spreads for ABN AMRO. 

The dealers’ default risk impact the calculation of DVA, as it represents the potential loss to the 

counterparty if the dealer defaults. A default term structure is created to estimate the probability of 

default over time and the default probabilities are shown in Table 9.  

 
Table 9. Probability of default for dealer (ABN AMRO Bank NV) based on a recovery rate of 40% and curve date of 

31/12/2023. (Source: Bloomberg) 

Term Spread Probability 

of default 

6 MO 36.54 0.29% 

1 YR 39.05 0.64% 

2 YR 43.73 1.45% 

3 YR 49.40 2.46% 

4 YR 55.34 3.67% 

5 YR 61.37 5.08% 

7 YR 76.13 8.78% 

10 YR 85.51 13.81% 

 

If we compare both tables, we can see that the probability of default for the counterparty and dealer 

are close to each other. For ABN AMRO the probability of default is higher in the first 4 years, but 

after a maturity of 4 years the probability of default for Koninklijke Philips is higher.  

 

4.5 Bilateral CVA valuation 
 

Finally the bilateral CVA can be calculated. Recall from chapter 2 Literature review that CVA can 

be calculated according to the following formula 

 

𝐶𝑉𝐴 = (1 − 𝑅) ∫ 𝐸𝑃𝐸∗(𝑡)𝑑𝑃𝐷(0, 𝑡)𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑝𝑎𝑟𝑡𝑦

𝑇

0

 (76) 

 

And recall that DVA can be calculated according to the following formula 

 

𝐷𝑉𝐴 = (1 − 𝑅) ∫ 𝐸𝑁𝐸∗(𝑡)
𝑇

0

𝑑𝑃𝐷(0, 𝑡)𝑑𝑒𝑎𝑙𝑒𝑟 (77) 

 

The bilateral CVA considers both the credit risk of the counterparty (CVA) and the credit risk of 

the dealer (DVA) and can be calculated by subtracting DVA from CVA 

 

𝐵𝐶𝑉𝐴 = 𝐶𝑉𝐴 − 𝐷𝑉𝐴 (78) 

 

The CVA for Koninklijke Philips according to the HW1 model for interest rates and a 5 year 

maturity interest rate swap with a notional of €10 million, an effective date of 31/12/2023, a fixed 

leg with a 3% rate, annual payment frequencies and a 30U/360 day count convention, and a floating 

leg with a 6M EUR EURIBOR rate, semi-annual payment frequencies and an ACT/360 day count 

convention equals €7,771. This holds for a recovery rate of 40%. Conversely, the DVA for ABN 

AMRO equals €272. Resulting in a bilateral CVA of €7,499.  
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5 Results 
 

This chapter corresponds with the fifth step of the DSRM: evaluation. Therefore, this chapter 

formulates an answer to the sub research question: ‘how accurate is the valuation of interest rate 

swaps with the CVA model compared to common market practice valuations?’. The most widely 

used valuation tool is Bloomberg, and therefore the results of the developed CVA model will be 

compared to the results from Bloomberg. Additionally, this chapter also serves the purpose of 

testing how reliable the CVA model is to changes in input parameters like the calibration parameters 

and the number of simulation runs.  

 

5.1 Comparison to Bloomberg 
 

In this section, we compare the outcomes of the CVA model with those generated by Bloomberg. 

While Bloomberg does not disclose the specifics of its CVA calculation methodology, it is 

reasonable to assume that it employs a sophisticated multi-factor interest rate model, given its 

widespread use. In contract, our model relies on the single-factor Hull-White framework. Despite 

these differences, the comparison remains valuable as it highlights how closely our model aligns 

with Bloomberg’s valuation. This comparison does not aim to prove one model as correct, but rather 

to assess the similarity in results. For this comparison, different results will be compared, namely: 

the present value of the interest rate swap under valuation; the expected exposure profiles; the 

probability of default for the counterparty and dealer; and finally the bilateral CVA value.  

 

5.1.1 The present value of the interest rate swap 

 

First of all, let us evaluate the accuracy of pricing the interest rate swap of the model. Pricing an 

interest rate swap involves calculating the present value of its future cash flows. This should be 

done for both the fixed leg and the floating leg. The present value of the fixed leg is calculated by 

discounting each fixed payment using the appropriate discount factors derived from the interest rate 

curve. The present value of the floating leg is calculated by discounting based on the future floating 

interest rate (for the interest rate swap under valuation the 6M EUR EURIBOR) and are projected 

based on the current forward rate curve. The difference between the present value (PV) of the 

interest rate swap retrieved from Bloomberg and the developed CVA model are displayed in Table 

10.  

 
Table 10. Present value of the interest rate swap according to Bloomberg and the CVA model. 

Valuation method PV 

Bloomberg €278,894 

CVA model €280,052 

 

The slight difference between the PV calculated by Bloomberg (€278,894) and the CVA model 

(€280,052) could be attributed to several factors. First, differences in the interest rate curves used 

for discounting might arise, as both models may be calibrated on slightly different market data or 

assumptions. Additionally, small variations in the interpolation methods for the yield curve or 

forward curve could affect the projected floating leg cash flows. Lastly, differences in numerical 

methods for pricing interest rate swaps, such as Monte Carlo simulation settings or the treatment of 

convexity adjustments, might result in minor discrepancies.  

 

However, a difference of €1,158 is relatively minor, representing a variation of less than 0.5%. In 

financial modelling, small discrepancies like this are expected due to the possible reasons 

mentioned above. Given that these differences are within the margin of typical market tolerances, 

they are not considered significant and do not materially impact the overall valuation of CVA.  
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5.1.2 The expected exposure profiles 

 

In comparing the expected positive exposure (EPE) profiles between the CVA model and 

Bloomberg, there are notable similarities but also key differences.  

 

Both EPE profiles exhibit a stepwise pattern, which reflects the nature of discrete reset dates or 

payment periods in the interest rate swap being valued, see Figure 8 and Figure 9. This stepwise 

reduction over time is typical, as the exposure diminishes as the swap approaches maturity. The 

overall trend in both models indicate that exposure peaks early in the interest rate swap and then 

gradually decreases, which is expected as fewer future payments remain to be exchanged as time 

progresses.  

 

However, some differences between the two profiles can be observed. In the CVA model, there are 

more pronounced fluctuations in the earlier stages of the swap, whereas the Bloomberg model 

shows smoother step transitions. This discrepancy could be due to Bloomberg employing a more 

sophisticated multi-factor interest rate model compared to the single-factor Hull-White model used 

in the CVA calculations. Bloomberg’s model may account for more complex dynamics or market 

conditions that smooth out the exposure curve.  

 

Additionally, Bloomberg’s EPE profile shows larger step-downs at specific points, which could be 

attributed to different assumptions about interest rate volatility, market liquidity, or the forward rate 

curve used to project future cash flows. The CVA model may have higher early-stage exposure due 

to how it calibrates to historical interest rate movements or how it discounts future floating 

payments.  

 

These differences, while minor, could also stem from variations in how the discount factors or yield 

curves are derived. Bloomberg may use a more refined or real-time market data-driven curve, while 

the CVA model may rely on a slightly simplified or less granular curve.  

 
Figure 8. EPE profile of the interest rate swap based on 500 simulation runs. 
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Figure 9. EPE profile of the interest rate swap from Bloomberg. 

 

Furthermore, we will also compare the ENE outcomes of the CVA model with the outcomes from 

Bloomberg, see Figure 10 and Figure 11. Both the CVA model and Bloomberg’s ENE profiles 

show consistent patterns in exposure over time. In terms of magnitude, both ENE profiles generally 

show similar ranges of exposure. For instance, in the Bloomberg profile, ENE peaks at around 

€80,000, while in the CVA model the ENE peaks at around €50,000. The scale of the difference in 

the maximum ENE values is notable, with Bloomberg’s ENE being around 60% larger than the 

CVA model’s maximum. However, this difference is not extreme and can still be considered 

reasonably close, given the potential variations in model assumptions and numerical methods used 

in calculating ENE.  

 

There are several factors that might explain these differences in the ENE values. First of all, the 

HW1 model used in the CVA model is sensitive to interest rate volatility, which can lead to sharper 

movements in exposure. Bloomberg may be using a different interest rate model or applying a more 

conservative approach that produces higher ENE values, particularly under extreme scenarios.  

 

Second, Bloomberg’s ENE profile shows a more structured, stepped pattern, while the CVA model 

displays sharper, more frequent changes. This difference suggests that Bloomberg might aggregate 

scenarios differently or smooth exposure transitions, leading to higher and more stable ENE values 

compared to the more dynamic exposure captured by the CVA model. Another reason can be that 

the CVA model calculates the ENE for every week, whereas Bloomberg seems to calculate it every 

half year or averages the ENE for every half year.  

 

 
Figure 10. ENE profile of the interest rate swap based on 500 simulation runs. 
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Figure 11. ENE profile of the interest rate swap from Bloomberg. 

Additionally, it is notable that the difference of the EPE profiles are closer to each other than the 

difference of the ENE profiles. The close alignment of the EPE suggests that both models agree on 

the general risk exposure of the interest rate swap, and the difference in ENE can be attributed to 

Bloomberg potentially using a more conservative or smoothed approach for negative exposures. 

Given these factors, the differences in ENE are not excessively large and remain within a reasonable 

range, providing a meaningful basis of the CVA model for the final calculation of CVA compared 

to Bloomberg.  

 

5.1.3 The probability of default 

 

In the comparison of the default probabilities between the CVA model and Bloomberg, the 

outcomes are exactly the same as Table 8 and Table 9. This suggests that Bloomberg, just like the 

CVA model, assumes a Poisson homogeneous process with a constant hazard rate over time. 

However, the comparison that can be made is the probability of default for different terms of the 

CDS (i.e., 6 MO, 1 YR, 2 YR etc.). Bloomberg does not disclose the exact methodology behind the 

construction of its hazard or probability of default curve, making it impossible to directly compare 

the interpolation techniques they employed. Common interpolation methods include linear and log-

linear interpolation, both of which can influence the shape of the hazard curve. Nevertheless, 

regardless of the specific interpolation method used, the difference is likely negligible, as both 

models yield consistent values for the probability of default over the same time horizons.  

 

5.1.4 Bilateral CVA 

 
The final comparison between the bilateral CVA (BCVA) values of the CVA model and Bloomberg 

highlights some key differences. The CVA model estimates a bilateral CVA of €7,499, while 

Bloomberg  reports a slightly lower value of €6,970, see Table 11. This €529 difference can be 

attributed to various factors, similar to those discussed earlier in this chapter in the comparison of 

the present value of the interest rate swap; the exposure profiles; and the probability of defaults.  

 
Table 11. CVA, DVA and BCVA comparison of the CVA model and Bloomberg. 

Outcomes CVA model Bloomberg 

CVA €7,771 €8,285 

DVA €272 €1,315 

BCVA €7,499 €6,970 

 

Firstly, the differences in the interest rate models is likely to play a significant role. This a 

conclusion already made in the comparison of the EPE and ENE, and the same difference can be 

seen in the final CVA and DVA. Bloomberg likely uses a multi-factor interest rate model, which 

account for more complex interest rate movements and may provide a more conservative view of 

future market conditions. In contract, the CVA model relies on the single-factor Hull-White model, 
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which could result in slightly different exposure and discounting dynamics over time, as seen in the 

difference of the EPE and ENE.  

 

Furthermore, the significant difference between the calculated DVA values (€272 in the CVA 

model versus €1,315 in Bloomberg) can provide some insight. A higher DVA from Bloomberg 

suggests that Bloomberg places more weight on the counterparty’s credit risk, potentially reflecting 

a more risk-averse approach or more comprehensive market data. This approach would, in turn, 

result in a lower bilateral CVA value due to the greater credit risk deduction on the dealer side.  

 

Finally, in putting the difference between the calculated BCVA results into perspective, it is 

important to reflect on the overall present value (PV) of the swap, which is approximately €280,000 

according to the CVA model. As explained in chapter 2 Literature review the adjusted derivative 

value 𝑓0
∗ is the value of the derivative contract today assuming no defaults 𝑓0  minus the BCVA.  

 
𝑓0

∗ = 𝑓0 − 𝐵𝐶𝑉𝐴 (79) 

 

Therefore, a €529 difference in BCVA represents less than 0.2% of the total PV of the swap. This 

small discrepancy is within acceptable tolerances in financial modelling and does not materially 

impact the swap’s overall risk profile or valuation. In summary, while differences exist between the 

CVA model and Bloomberg, they are relatively minor, especially when viewed in the context of 

the overall swap value.  
 

5.2 Sensitivity analysis 
 

In this section, sensitivity analyses are conducted to assess the robustness of the CVA model with 

respect to key parameters. The first analysis focuses on the number of simulation runs used in the 

Monte Carlo process, aiming to determine the point at which the model produces stable returns. 

This ensures that computational efficiency is balanced with accuracy. The second analysis evaluates 

the sensitivity of the CVA to changes in the 𝛼 and 𝜎 parameters of the Hull-White calibration. 

These parameters directly influence the interest rate volatility and can significantly impact CVA 

valuations, highlighting the importance of model calibration. Through these sensitivity tests, we 

aim to better understand the conditions under which the model delivers reliable and consistent 

valuations.  

 

5.2.1 Number of simulation runs 

 

To conduct the sensitivity analysis for the number of simulation runs in the CVA model, we 

performed five simulations at four different levels of simulation runs: 500, 250, 100 and 50 runs. 

After each set of simulations, we compared the CVA and DVA outcomes to observe how varying 

the number of runs affected the stability of the results.  

 

For CVA, we see that the average values across simulations vary between €7,936 (500 runs) and 

€8,497 (50 runs), with the standard deviation decreasing as the number of simulation runs increases, 

see Table 12. The smallest standard deviation is €368 for 500 runs, while the highest, €944, occurs 

with only 50 runs. This indicates that the CVA becomes more stable if the number of runs increases, 

with lower variation among individual simulation outcomes. At 100 and 50 runs, the fluctuations 

are more pronounced, showing more volatile CVA estimates.  
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Table 12. Sensitivity analysis of the number of simulation runs on the value of CVA. 

 500 runs 250 runs 100 runs 50 runs 

Simulation 1 €8,085 €8,515 €7,417 €7,071 

Simulation 2 €8,112 €8,275 €8,317 €7,888 

Simulation 3 €8,326 €7,013 €7,523 €9,610 

Simulation 4 €7,250 €8,201 €7,669 €9,397 

Simulation 5 €7,907 €8,095 €8,675 €8,523 

Average €7,936 €8,020 €7,920 €8,497 

Standard 

deviation 

€368 €522 €490 €944 

 

Similarly, the DVA results show a similar pattern of stability with more simulation runs, see Table 

13. At 50 runs, the average DVA is -€224 with a standard deviation of €84. When the number of 

simulation runs increases to 500, the average DVA is -€214, but with a much lower standard 

deviation of €44. This again demonstrates that a higher number of simulation runs introduces less 

uncertainty and variability in the results.  

 
Table 13. Sensitivity analysis of the number of simulation runs on the value of DVA. 

 500 runs 250 runs 100 runs 50 runs 

Simulation 1 -€220 -€154 -€315 -€300 

Simulation 2 -€182 -€260 -€180 -€320 

Simulation 3 -€153 -€370 -€264 -€108 

Simulation 4 -€235 -€258 -€201 -€147 

Simulation 5 -€280 -€232 -€259 -€246 

Average -€214 -€255 -€244 -€224 

Standard 

deviation 

€44 €69 €48 €84 

 

In summary, the analysis shows that as the number of simulation runs increases, both CVA and 

DVA values become more consistent, with less variability across simulations. While 250 runs 

provide a reasonable trade-off between consistency and computational cost, the results suggest that 

fewer than 100 runs lead to significant volatility, making it difficult to draw accurate conclusions. 

To be conservative with the CVA and DVA calculations in this thesis, 500 simulation runs is used 

for the final results.  

 

5.2.2 HW1 model calibration parameters 

 

Next, the sensitivity analysis of the 𝛼 and 𝜎 parameters of the Hull-White one-factor model is 

essential to understand the impact of the interest rate volatility and mean reversion on the CVA and 

DVA. The parameter 𝛼 controls the mean reversion speed of interest rates, while 𝜎 represents the 

volatility of interest rates. Both parameters directly influence the exposure profile and hence the 

valuation of CVA and DVA.  

 

The purpose of this analysis is to assess how variations in 𝛼 and 𝜎 affect the final CVA and DVA 

outcomes. By testing different parameter values, we can determine the robustness of the model’s 

output to changes in the interest rate dynamics. This sensitivity is crucial because inaccurate 

calibration of these parameters may result in over- or under-estimation of credit risk, leading to 

mispricing of the interest rate swap under valuation.  
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From Table 14 and Table 15 below, we observe that increasing 𝜎 results in a notable rise in both 

CVA and DVA, especially for 𝜎 = 0.02, which pushes CVA up to €9,755 and DVA to -€2,274 for 

𝛼 = 0. The sensitivity to 𝛼 is more nuanced, for a smaller 𝜎, a higher 𝛼 appears to have a dampening 

effect on CVA. For instance, at 𝜎 = 0.08, increasing 𝛼 from 0 to 0.2 leads to minimum change in 

CVA. This is in line with the findings of Russo & Fabozzi (2019) and explains why it is common 

practice in the literature to calibrate the HW1 model with a fixed value for 𝛼 while allowing 𝜎 to 

vary. 

 
Table 14. Sensitivity analysis of the calibration parameters from the HW1 model on the value of CVA. 

 𝜎 

0.004 0.008 0.012 0.016 0.02 

 

 

𝛼 

0 €7,852 €7,771 €8,646 €8,952 €9,755 

0.05 €7,737 €7,999 €8,784 €8,690 €9,732 

0.1 €7,978 €8,228 €8,119 €8,691 €9,005 

0.15 €7,978 €8,257 €8,007 €8,749 €8,871 

0.2 €7,932 €7,819 €7,983 €8,129 €8,054 

 

The DVA results display a similar pattern, where higher values for 𝜎 increase the DVA, reflecting 

greater potential loss to the dealer. However, higher 𝛼 seems to mitigate these increases, as seen 

when 𝛼 = 0.2 yields more stable DVA results at smaller 𝜎. 

 
Table 15. Sensitivity analysis of the calibration parameters from the HW1 model on the value of DVA. 

 𝜎 

0.004 0.008 0.012 0.016 0.02 

 

 

𝛼 

0 -€8 -€272 -€680 -€1,675 -€2,274 

0.05 -€2 -€154 -€565 -€1,222 -€1,764 

0.1 -€1 -€80 -€382 -€861 -€1,292 

0.15 €0 -€58 -€297 -€621 -€1,239 

0.2 €0 -€31 -€190 -€449 -€912 

 

When comparing the sensitivity analysis results to the initial calibration parameters (𝛼 = 0 and 𝜎 =
0.008), the differences appear moderate but potentially impactful, particularly for the CVA. For 

example, the initial calibrated parameters result in a CVA of €7,771. In the sensitivity analysis, 

deviations in 𝜎 of ±0.004 lead to changes of up to approximately €500 (or ~6.25%) in CVA. While 

these shifts are significant, they remain within a range that is manageable and reasonable, given 

typical market fluctuations.  

 

In terms of DVA, the sensitivity results also show some variation, but these differences are 

somewhat smaller in magnitude compared to CVA. For instance, the initial calibrated parameters 

result in a DVA of -€272. Deviations in 𝜎 of ±0.004 lead to changes up to approximately €400 (or 

~200%) in DVA. Showing that the impact of 𝜎 on DVA is more significant than for CVA.  
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6 Conclusion 
 

This chapter corresponds with the sixth step of the DSRM: communication. Therefore, this chapter 

formulates an answer to the main research question: ‘what is the most suitable method to calculate 

CVA for interest rate swaps and how can this be developed into a valuation model for Deloitte?’. 

In other words, in this chapter we will evaluate to what extent the core problem of Deloitte as 

defined in chapter 1 Introduction, is solved. Furthermore, this chapter reflects on how this thesis 

contributes to the scientific literature and the practice. The future work and limitations of this thesis 

are also discussed in this chapter.  

 

6.1 Conclusion 
 

This thesis addresses the challenges in Credit Valuation Adjustment (CVA) valuations for interest 

rate swaps within the Deloitte’s Financial Risk Management (FRM) department. By reviewing the 

existing literature on CVA methodologies and models, a suitable framework was developed to 

guide the selection and implementation of a CVA model tailored for Deloitte. The Hull-White one-

factor model was identified as the most appropriate for interest rate modelling due to its balance 

between computational complexity and calibration accuracy.  

 

The CVA model developed in this thesis calibrates the Hull-White one-factor model with co-

maturity swaptions in the market and simulates interest rates according to this calibrated model. 

Based on the simulated interest rates, the expected exposure of an interest rate swap is determined. 

The probability of default for the counterparty and dealer are extracted from credit default swaps 

by assuming a homogenous Poisson process and deterministic hazard rate. Finally the CVA, DVA 

and bilateral CVA are calculated to evaluate the effectiveness of the developed CVA model.  

 

The implementation of the CVA model demonstrated that it could effectively replace Bloomberg 

as valuation tool for CVA of interest rate swaps, addressing key limitations such as transparency 

and flexibility. A comparison between the CVA model and Bloomberg showed that the results were 

consistent, validating the effectiveness of the CVA model. Furthermore, the sensitivity analysis 

proved insights into the robustness of the model under varying parameters, confirming its reliability 

in practical applications.   

 

6.2 Contribution 
 

This thesis makes several contributions to the existing body of literature on Credit Valuation 

Adjustment and financial risk management, particularly in the context of interest rate swaps.  

 

By applying the Hull-White one-factor model in the empirical valuation of an interest rate swap, 

the thesis bridges a gap between theoretical model selection and real-world application. The 

literature lacks extensive studies that combine rigorous model comparison with an actual CVA 

model implementation for financial institutions (or for this thesis, Deloitte). This thesis 

demonstrates how theoretical models can be adapted and calibrated for use in industry settings, 

offering valuable insights into the practical challenges of implementing CVA models at financial 

institutions.  

 

Furthermore, the sensitivity analysis conducted as part of this research extends the existing 

literature by providing empirical evidence of how CVA outcomes fluctuate with changes in key 

parameters, further enriching the discussion on model reliability and robustness.  

 

Finally, this thesis adds to the discussion on the limitations of widely-used valuation tools, such as 

Bloomberg, by critically evaluating their transparency and applicability to interest rate swaps. This 

critique introduces new considerations for the ongoing evolution of CVA valuation practices, 
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contributing to the academic conversation around improving risk management methodologies in 

the post-financial crisis era.  

 

6.3 Discussion and limitations 
 

In this section, the key aspects of the research methodology and findings are addressed, discussing 

their implications and acknowledging the limitations of the thesis.  

 

First, a notable limitation of this research is the selection of the interest rate model used on 

conjunction with the CVA model. Given that the CVA model is intended for regular use at Deloitte, 

more complex and accurate interest rate models, such as multi-factor models, were excluded from 

the study. The primary reason for this exclusion is the increased complexity and calibration 

challenges associated with these models, which would require significant additional resources.  

 

Furthermore, for empirical application of the Hull-White one-factor model, a time-varying 

parameter for volatility is not incorporated. This decision was driven by similar considerations fo 

complexity and practical limitations. While a time-varying volatility model might provide a more 

nuanced representation of interest rate dynamics, the additional complexity in calibration was 

deemed impractical for this study’s objectives.  

 

Moreover, the default probabilities in the empirical application were extracted assuming a 

deterministic hazard rate. Although this approach is less precise compared to methods involving 

time-dependent hazard rates, the difference in accuracy is negligible, as demonstrated in chapter 3 

Methodology. 

 

In addition to that, the research exclusively examines CVA for interest rate swaps. Consequently, 

the CVA model’s applicability and accuracy for other types of derivatives, such as FX swaps or 

equity derivatives, remain unaddressed. The choice of limiting the scope of this thesis is justified 

by the fact that 35-40% of the total notional amounts outstanding in the global derivatives market 

accounts for interest rate swaps alone.  

 

Finally, wrong-way risk, which can significantly impact CVA calculations, is not incorporated in 

this thesis due to its limited scope. Although often neglected in practice, wrong-way risk can lead 

to substantial deviations in CVA, particularly in adverse market conditions. This limitation should 

be considered when interpreting the results, and future research could benefit from including an 

analysis of wrong-way risk to enhance the model’s robustness.  

 

6.4 Future work 
 

To build upon the thesis and enhance the practical applicability of the CVA model, several areas 

for future development and exploration are identified, both for Deloitte and the broader academic 

body.  

 

First, future research could focus on implementing and comparing various interest rate models to 

assess their impact on CVA calculations. While this thesis assessed the advantages and 

disadvantages of different models based on a literature review, a practical comparison of results 

between these models was beyond the scope of this thesis. Researching how different models 

perform in real-world scenarios could yield valuable insights and guide the selection of the most 

appropriate model. 

 

Furthermore, Deloitte can further explore more sophisticated calibration techniques for the Hull-

White one-factor model, such as incorporating stochastic volatility or employing multi-factor 

models like the Hull-White two-factor model.  
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Moreover, Deloitte can further develop de CVA model where it employs netting and collateral 

agreements in the CVA and DVA calculations of a basket of interest rate swaps. Additionally, 

understanding how these factors influence the CVA model’s outcomes would contribute to a more 

nuanced and practical approach to credit risk management.  

 

In addition to that, an exploration of wrong-way risk and its implications for CVA models could be 

a valuable area of research and further development. Developing methodologies to accurately 

quantify and incorporate wrong-way risk could improve the performance of the CVA model for 

Deloitte.  

 

Expanding the CVA model to include various types of derivatives will make Deloitte’s FRM 

department less reliant on Bloomberg as valuation method. A logical next step is to incorporate FX 

swaps as well, as FX swaps account for approximately 50% of the global OTC derivatives market 

(Bank for International Settlements, 2023).  
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Appendix A – Definitions of the scale for ranking interest rate 

models 
 

This part of the appendix shows the definitions of the scale poor-good-excellent for the criteria 

“calibration efficiency” on which the different interest rate models are rated, see Table 16. Moreover, 

the criteria “computation complexity” is ranked on the scale efficient-moderate-complex, and the 

definitions are given in Table 17.  

 

 

Table 16. Definition of calibration efficiency and corresponding scale. 

 Poor Good Excellent 

Fit to historical data The model fails to 

capture key patterns 

and trends in the 

historical data. 

Significant 

discrepancies are 

observed 

The model captures 

most key patterns and 

trends in the data with 

minor discrepancies 

The model perfectly 

fits historical data, 

capturing all key 

patterns and trends 

Stability of parameters Parameters are highly 

unstable and vary 

significantly over 

different calibration 

periods 

Parameters are 

generally stable across 

different periods with 

some minor variations 

Parameters are highly 

stable and show 

minimal variability 

across different 

periods 

Predictive power The model performs 

poorly in predicting 

out-of-sample data, 

with large errors 

The model has good 

predictive accuracy for 

out-of-sample data 

The model provides 

highly accurate 

predictions for out-of-

sample data 

Sensitivity to market 

conditions 

The model cannot 

adapt to changing 

market conditions, 

leading to inaccurate 

results 

The model adapts 

reasonably well to 

changes in market 

conditions 

The model is highly 

adaptable to changing 

market conditions and 

maintains exceptional 

accuracy 
 

 

 

Table 17. Definition of computation complexity and corresponding scale. 

 Efficient Moderate Complex 

Calibration time The model calibrates 

rapidly, requiring 

minimal time 

Requires a moderate 

amount of time for 

calibration 

Takes a long time to 

calibrate, which can be 

impractical 

Resource usage Low computational 

resources are 

necessary, suitable for 

standard hardware 

Reasonable 

computational 

resources, sometimes 

straining standard 

hardware 

High computational 

resources needed, 

potentially requiring 

specialized hardware 

Convergence 

reliability 

Consistent and quick 

convergence of the 

calibration algorithm 

Generally reliable 

convergence with 

occasional need for 

adjustments 

Frequent difficulties in 

converging, 

necessitating extensive 

tuning 
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Appendix B – AHP weights for interest rate model selection 
 

This section will show how the weights for the interest rate model selection procedure are determined. 

The weights are determined based on the Analytical Hierarchy Process (AHP). 

 

The first step is creating a pairwise comparison matrix of the criteria. One of the FRM specialists of 

Deloitte will indicate how important one requirement is over the others. This is done on a scale ranging 

from one to nine, where one means that the criteria are the same or that they are of the same importance. 

Nine means that the one requirement is extremely more important over the other. The interpretation of 

the whole scale is shown in Table 18. 

 
Table 18. Definitions of the importance scale. 

Importance 

scale 

Definition of importance scale 

1 Equally important  

2 Equally to moderately important 

3 Moderately important 

4 Moderately to strongly important 

5 Strongly important 

6 Strongly to very strongly important 

7 Very strongly important 

8 Very strongly to extremely important 

9 Extremely important 

  

The pairwise comparison of the criteria is shown in matrix 𝐴. The sequence of criteria along the rows 

is the same for the columns. 

 

𝐴 =

𝐶𝑜𝑚
𝐸𝑐𝑜
𝐶𝑎𝑙
𝐹𝑙𝑒

[

1 7/9 6/9 2
7 1 3 9
6 6/9 1 7

2/9 1/9 1/7 1

] 

 

This matrix is transformed to a normalized matrix 𝐴𝑛𝑜𝑟𝑚.  

 

𝐴𝑛𝑜𝑟𝑚 = [

0.07 0.35 0.14 0.11
0.49 0.45 0.62 0.47
0.42 0.15 0.21 0.37
0.02 0.05 0.03 0.05

] 

 

Finally, the weights for the criteria is the column vector 𝒘 of the normalized matrix 𝐴𝑛𝑜𝑟𝑚. 

 

𝒘 = [

0.116
0.510
0.287
0.037

] 

 

  



61 

 

Validation of results 

 

The results of the AHP should be validated using the consistency ratio (CR), using the formula 𝐶𝑅 =
𝐶𝐼

𝑅𝐼
. Here 𝐶𝐼 is the consistency index, which can be calculated with 

 

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 (80) 

 

Where 𝜆𝑚𝑎𝑥 is the maximum eigen value of matrix 𝐴 and 𝑛 is the number of criteria (Taherdoost, 2017). 

Next, 𝑅𝐼 is the random consistency index is dependent on the number of criteria, the weights can be 

find in Table 19.  

 
Table 19. Random consistency index. 

Dimension RI 

1 0 

2 0 

3 0.5799 

4 0.8921 

5 1.1159 

6 1.2358 

7 1.3322 

8 1.3952 

9 1.4537 

10 1.4882 

 

Finally, a consistency ratio lower than 0.10 verifies the results and means that the comparison is 

acceptable.  

 

To validate the results retrieved above, the following steps are executed.  

 

1. 𝐴𝒘 = [

0.83
2.87
1.71
0.17

] 

 

2. 𝜆𝑚𝑎𝑥 =
1

𝑛
∑

𝑖 𝑒𝑛𝑡𝑟𝑦 𝑖𝑛 𝐴𝒘

𝑖 𝑒𝑛𝑡𝑟𝑦 𝑖𝑛 𝒘
= (

1

4
) (

0.83

0.116
+

2.87

0.510
+

1.71

0.287
+

0.17

0.037
) = 4.197𝑛

𝑖=1  

 

3. 𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
=

4.197−4

3
= 0.066 

 

4. 𝐶𝑅 =
𝐶𝐼

𝑅𝐼
=

0.066

0.8921
= 0.073 

 

Because the consistency ratio is lower than 0.10, we can conclude that the degree of consistency is 

satisfactory and therefore the results are validated. 
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Appendix C – Definition of the scores for all criteria on the 

implemented interest rate model 
 

The table in this section shows the definitions of the scores ranging from 1 to 5, on which all criteria 

are ranked to decide what interest rate model is used in the final CVA model. 

 
Table 20. Definitions of the scores for all criteria for determining the best interest rate model for the CVA model. 

Criteria Score 1 Score 2 Score 3 Score 4 Score 5 

Computational 

efficiency 

Extremely 

slow, 

impractical 

for large 

portfolios 

Slow and 

inefficient; 

significant 

delays in 

processing 

Moderate 

efficiency; 

manageable 

for moderate 

sized 

portfolios 

Efficient for 

large portfolios; 

reasonable 

processing time 

Highly 

efficient; 

performs 

well even 

with very 

large 

portfolios 

Economic 

realism 

(accuracy) 

Poorly 

captures 

interest rate 

behaviour; 

fails under 

various 

scenarios 

Limited 

accuracy; 

struggles 

with extreme 

market 

conditions 

Reasonable 

accuracy; 

handles 

typical 

scenarios but 

may struggle 

under stress 

High accuracy; 

robust under 

most market 

conditions 

Excellent 

accuracy; 

captures 

interest rate 

behaviour 

and extremes 

effectively 

Calibration Difficult to 

calibrate; 

requires 

extensive 

manual 

adjustments 

Calibration is 

challenging 

and time-

consuming 

Calibration 

is 

manageable 

but still 

requires 

some manual 

input 

Calibration is 

straightforward; 

minimal 

manual 

adjustments 

needed 

Easily 

calibrated; 

highly 

automated 

with minimal 

manual 

intervention 

Flexibility Very rigid; 

cannot 

accommodate 

future 

changes or 

expansions 

Limited 

flexibility; 

difficult to 

adapt new 

requirements 

Moderate 

flexibility; 

can handle 

some 

changes with 

effort 

High 

flexibility; can 

be adapted for 

various 

derivatives and 

features 

Highly 

flexible; 

easily 

expanded and 

adaptable for 

diverse 

requirements 
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Appendix D – Bloomberg data 
 

 

 
Figure 12. Swaption volatility surface on 31/12/2023 based on Black volatilities. (Source: Bloomberg) 

 

 

 

 
Figure 13. ESTR OIS curve on 31/12/2023. (Source: Bloomberg) 


