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Abstract

This thesis explores the development and implementation of a Credit Valuation Adjustment (CVA)
model specifically for interest rate swaps (IRS), in response to challenges faced in the financial risk
management (FRM) department of Deloitte Netherlands. The work addresses the limitations of
using Bloomberg for CVA valuation, such as its inability to handle certain derivative types and lack
of transparency in the valuation process. A literature review on the methodologies for CVA
calculation is conducted, comparing equilibrium and no-arbitrage interest rate models, including
the Vasicek, Hull-White, and Cox-Ingersoll-Ross models. Based on this comparison a CVA model
is developed using the Hull-White one-factor model for simulating interest rates. The CVA model
developed in this thesis provides a viable alternative to Bloomberg’s valuation methodology for
interest rate swaps, as the results were consistent with those produced by Bloomberg.
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1 Introduction

This chapter introduces the topic and the aim of this thesis. After reading this chapter the reader
should understand the relevance of introducing credit valuation adjustments (CVA) after the
financial crisis. Additionally, the problem context of Deloitte, the company for which this thesis is
executed, should be clear. The problem context will be translated into a problem statement with
corresponding research objectives. Finally, based on the research objectives, research questions are
formulated which will be answered throughout the thesis. The thesis is structured according to a
specific research design, which will also be explained in this section.

1.1 Background

From 2004 to 2006, the United States (U.S.) witnessed a significant increase in interest rates,
soaring from 1% to surpass 5%. This surge in interest rates played a pivotal role in causing a
deceleration within the U.S. housing market. A substantial humber of homeowners, who had
struggled to meet their mortgage payments during the period of low-interest rates, found themselves
unable to cope and began defaulting on their mortgages. This predicament was particularly
pronounced in the realm of subprime loans, which were extended to individuals with a subpar or
non-existent credit history, as default rates reached unprecedented highs (Gregoy, 2012).

Many subprime loans in the U.S. were held by domestic retail banks and mortgage providers such
as Fannie Mae and Freddie Mac. The problem escalated as these loans were packaged into complex
financial products through advanced financial engineering techniques. These structured products,
such as mortgage-backed securities (MBSs), received favourable credit ratings from rating
agencies. Consequently, institutions that did not originate the underlying mortgages, including
investment banks and international institutional investors, ended up holding these securities

(Gregory, 2012).

In the middle of 2007, the dawn of a credit crisis evolved, primarily stemming from the systematic
misvaluation of U.S. mortgages and MBSs. By the end of 2007, certain insurance companies,
commonly referred to as "monolines”, found themselves in a precarious situation. Monoline
insurers provided guarantees to debt issuers, often in the form of credit swaps that enhance the
credit of the issuer. These monoline insurers started with providing wraps for municipal bond
issues, but later on expanded its offering by providing credit enhancements for other types of bonds,
such as MBSs and collateral debt obligations (CDO). The banks, in their willingness to ignore the
risk that their counterparties might default (hereafter referred to as counterparty credit risk),
accumulated significant exposures to monoline insurers. These banks did not require the monolines
to post collateral, as long as they maintained their top-tier Triple-A credit ratings. However, as
monolines began reporting significant losses, it became evident that any downgrade in their credit
ratings could prompt collateral demands they were unable to fulfil. Such downgrades happened in
December 2007, compelling banks to incur substantial losses amounting to billions of dollars due
to the substantial counterparty risk they were now confronting. This type of counterparty risk was
particularly detrimental, known as wrong-way risk, as the exposure to the counterparty and their
default probability were correlated. Wrong-way risk is considered undesirable because it increases
credit risk, raises concerns about counterparty credit quality, complicates risk management efforts,
and contributes to systemic risk (Gregory, 2012).

In September 2008, an unprecedented event occurred as Lehman Brothers, a prominent global
investment bank and the fourth largest in the United States with a century-long legacy, filed for
bankruptcy protection—the largest in history. The reluctance of the U.S. government to intervene
and rescue Lehman stemmed from concerns about the moral hazard associated with such bailouts.
The bankruptcy of Lehman took the financial community by surprise, as all major rating agencies
(Moody’s, Standard & Poor’s, and Fitch) had assigned at least a Single-A rating until the moment



of Lehman's collapse. Furthermore, the credit derivative market had not priced in an actual default
(Gregory, 2012).

Many counterparties likely did not perceive their exposure to Lehman's counterparty risk as a
significant concern, nor did they comprehend that the failure of counterparty risk mitigation
methods, such as collateral and special purpose vehicles (SPVs), would result in legal
complications.

Severe liquidity issues resulted in bailouts of other high-profile banks in 2008. Bear Stearns was
acquired by JP Morgan Chase, AlG received a bailout from the U.S. government and Merrill Lynch
agreed to be acquired by Bank of America (Adinarayan, 2023).

Counterparty credit risk, commonly referred to as counterparty risk, involves the potential that the
party with whom an individual has engaged in a financial arrangement (referred to as the
counterparty) may not fulfil their obligations as outlined in the contractual agreement, for instance,
by defaulting. This risk is commonly associated with two primary categories of financial
instruments: over-the-counter (OTC) derivatives and securities financing transactions (Gregory
2012).

Derivatives are financial instruments whose values are derived from the performance of underlying
assets, indices, or other financial instruments. They play a crucial role in modern financial markets,
enabling participants to manage risk, speculate on price movements, and enhance portfolio
performance. Derivatives come in various forms, including options, futures, forwards, and swaps.
Each serving specific purposes and exhibiting unique characteristics (Quail & Overdahl, 2002).

Since the credit crisis of 2008, significant alterations have been implemented in the trading and
clearing processes of derivatives within the OTC market. Standard derivatives exchanged among
financial institutions now necessitate clearing through central clearing parties (CCPs). This brings
about a resemblance to the handling of exchange-traded contracts, resulting in diminished
counterparty credit risk. On the other hand, nonstandard derivatives traded between two financial
institutions may undergo bilateral clearing, adhering to an agreement between the involved parties.
However, there are stipulations mandating both sides to provide collateral, surpassing the
previously established norms, to ensure the fulfilment of their obligations. These nonstandard
derivatives are traded in the OTC market, where counterparty credit risk remains a factor (Hull,
2012).

As a consequence of the financial crisis, IFRS 13 (International Financial Reporting Standards)
came into effect for annual periods starting after January 1, 2013. According to IFRS 13, fair value
in derivatives valuations must be determined using the assumptions of market participants by
pricing in counterparty risk (EY, 2014). Credit valuation adjustment, abbreviated as CVA, results
in a decrease in the valuation of a basket of derivatives with a counterparty. This adjustment is made
to account for the potential scenario in which the counterparty might fail to meet its obligations
(Hull & White 2012). The calculation of the CVA "charge" should be conducted with
sophistication, considering all relevant aspects that contribute to the definition of CVA:

o the default probability of the counterparty;
the recovery rate;
the expected exposure of the derivative;
the transaction in question;
netting of existing transactions with the same counterparty;
collateralisation;
hedging aspects

O O O O O O

Given the absence of a specific method prescribed in accounting literature, derivatives dealers and
end users employ a range of approaches in practice to assess the impact of credit risk on the fair
value of OTC derivatives (EY, 2014). The purpose of this thesis is to conduct a literature review on
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common market practices to calculate CVA. This goal extends to the development of a CVA model
for interest rate swaps (IRS) to demonstrate the effectiveness of the CVA valuation methodology.

1.2 Problem context

This thesis is carried out for the financial risk management (FRM) team of Deloitte Netherlands.
Deloitte is a global provider of audit & assurance, consulting, financial advisory, risk advisory, tax,
and related services. At the time of writing this thesis, Deloitte has approximately 455,000 fulltime
employees in more than 150 countries (Deloitte, 2024). The FRM team of Deloitte Netherlands is
part of the risk advisory department. The main responsibility of FRM is helping banks and other
financial institutions to manage their risks by developing or validating risk models.

Financial institutions state the value of derivative positions on their financial statements. The
primary duty of audit teams lies in examining the financial statements of clients, encompassing the
assessment of derivative valuations. Audit procedures, such as substantive testing, analytical
procedures, and other established auditing techniques, are undertaken by the audit team to
accumulate evidence regarding the correctness of derivative valuations. Frequently, audit teams
engage in collaboration with external financial experts or specialists to assess the value of
derivatives, particularly when the valuation process is intricate or demands specialized expertise.

The audit team of Deloitte consults the FRM team of Deloitte for this procedure, leveraging their
proficiency in financial modelling, derivatives pricing, and specialized knowledge related to the
industry and derivates under assessment. Deloitte’s FRM team employs Bloomberg for the
valuation of these derivatives. However, the utilization of Bloomberg as a valuation model has three
drawbacks:

1. First, not all types of derivates can be valued with Bloomberg. Bloomberg can only be used
to calculate CVA for interest rate swaps, cross currency swaps and foreign exchange (FX)
forwards, but is not able to calculate CVA for other derivates like options, floors and caps.
Derivatives that cannot be valued with Bloomberg are currently valued with Deloitte’s own
methodology and models (in Excel). This process is time consuming and sensitive to errors.

2. Second, Bloomberg does provide functionalities to value a portfolio of derivates, but
contracts need to be put in one by one. Resulting in a time consuming and error prone
procedure.

3. Third, there is little transparency in the valuation methodology used by Bloomberg.
Especially the way Bloomberg calibrates the model is unknown. If there is a significant
discrepancy between the derivative value delivered by the client and Bloomberg, it is
difficult to determine the root cause of this discrepancy.

An overview of the problem context and the causal relationships between problems is visualized in
Figure 1. The FRM team already developed an inhouse valuation model for interest rate swaps.
However, the valuation of CVA for interest rate swaps is not yet incorporated.
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Figure 1. Problem cluster.

1.3 Problem statement

The problem cluster in Figure 1 reveals that the utilization of Bloomberg as valuation tool leads to
an error prone valuation procedure of CVA for derivatives that cannot be valued with Bloomberg.
The second problem arising here is that Bloomberg as valuation tool leads to limited traceability of
discrepancies between the CVA valuation of Bloomberg and client. These problems are both caused
by the utilization of Bloomberg as valuation tool for derivatives, which is consequently the core
problem in this thesis. The problem cluster also reveals that the solution should have a transparent
CVA valuation methodology.

1.4 Research objectives

To solve the core problem a new valuation model should be used by the team. To develop this
valuation model, the CVA should be modelled to account for counterparty credit risk. The initial
scope for this thesis is narrowed down to only interest rate swaps (IRS). The reason why the model
is initially developed for interest rate swaps is that they are one of the most traded derivatives
globally. According to the Bank for International Settlements (2023), interest rate swaps alone
account for approximately 35-40% of the total notional amounts outstanding in the global
derivatives market. When the model can accurately value interest rate swaps, the model can easily
be extended to value cross currency swaps as well. The knowledge problem arising here is that the
best way to calculate CVA is unknown. Therefore the first research objective is to create a
framework that summarizes all the used methodologies for CVA valuation in the existing literature.
To gather this information a literature study will be conducted. There is a lot of literature on
modelling methodologies of individual components of CVA, however one study that compares all
modelling methodologies is missing. This thesis aims to fill this gap in the literature.

In addition, based on this literature review the best methodology for Deloitte will be chosen. To
demonstrate the effectiveness of the chosen methodology, a CVA valuation model will be
developed. This extends the purpose of the thesis to also serve as a CVA valuation guide. The CVA
valuation model will be used in an empirical application to value a specific interest rate swap. The
guantitative data resulting from the empirical application will be compared to results from the
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Bloomberg valuation methodology. The results should not be significant different, because that
means that the results from the model are aligned with common market practice in CVA valuation.
Additionally, a sensitivity analysis will be conducted to see how sensitive the outcomes are to
changing input variables.

1.5 Research questions

Based on the research objectives mentioned in section 1.4 Research objectives, the following main
research question is defined:

What is the most suitable method to calculate CVA for interest rate swaps and how can this be
developed into a valuation model for Deloitte?

This research question is divided into multiple sub research questions.

1. How is CVA calculated for interest rate swaps in the existing literature?
a. What are the components of CVA?
b. How does the literature calculate/model each component of CVA for interest rate
swaps?

To answer the main research question, a comprehensive understanding of CVA and its components
need to be established. After understanding CVA and its components, a framework will be created
stating all the methodologies used in the literature to calculate these individual components of CVA.
The answer to this research question is given in chapter 2 Literature review.

2. What is the most suitable methodology for Deloitte to use in their CVA valuation model for
interest rate swaps?

Based on the framework created in the literature review that answers the first research question, the
best methodology for Deloitte to model CVA for interest rate swaps is chosen. The answer to this
guestion is given by internal discussions with experts from the FRM team, based on the results from
the theoretical framework created in the first research question. The answer to this research question
is given in chapter 3 Methodology.

3. How can the CVA methodology be implemented to develop a CVA valuation model for interest
rate swaps?

Based on the chosen CVA valuation methodology for interest rate swaps, the model needs to be
developed. Additionally, the parameters of the model should be calibrated. The answer to this
research question is given in chapter 4 Implementation.

4. How accurate is the valuation of interest rate swaps with the CVA model compared to common
market practice valuations?

The model will be used in an empirical application to value an interest rate swap to demonstrate the
model’s effectiveness. The results from the empirical application should be interpretated and
validated. This is done with a sensitivity analysis and a comparison of the results with the commonly
used valuation tool Bloomberg. The answer to this research question is given in chapter 5 Results.

1.6 Research design
Selecting an appropriate research methodology is a critical decision for any research, as it lays the
foundation for the entire research process and significantly influences the reliability and validity of
the study. The importance of choosing a suitable research methodology encompasses several key
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aspects, including alignment with the specific research objective and data collection techniques.
Additionally, the research methodology should be flexible and adaptable to changes, because
research is an iterative process and unexpected challenges may arise.

Peffers et al. (2007) conducted a thorough literature study on determining the appropriate elements
of a design science (DS) research. Based on the framework that the authors created, a new research
methodology has been created called Design Science Research Methodology (DSRM). The DSRM
is a process model consisting of six activities in a nominal sequence. As the research of this thesis
is strongly focused on designing a solution based on a problem-centered initiation, the DSRM is
chosen as research methodology.

Process iteration

! !
Identif Define
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) . ] . implement
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) Comparison of
2 Problem CVA valuation fjizzt;]:);f results with Conclusion &
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E -
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Figure 2. The steps of the Design Science Research Methodology (DSRM) translated to this thesis and chapters.

How the DSRM translates to our specific research is visualized in Figure 2, and further elaborated
below.

Phase 1: Problem identification and motivation. This phase is focused on defining the specific
research problem and justifying the value of a solution. That includes creating a problem cluster
showing the relationship of problems and choosing the corresponding core problem. This core
problem is translated into a knowledge problem with corresponding research questions.

Phase 2: Define the objectives for a solution. This phase is focused on inferring the objectives of a
solution for the problem definition and knowledge of what is possible and feasible. For this thesis
that translates to solving the knowledge problem by conducting a literature study.

Phase 3: Design and development. In this phase the design of the solution is chosen that will later
be developed. Here phase 2 serves as the foundation of the design. Concretized for this thesis that
means that based on the literature study conducted in phase 2, the methodology of the model that
salves the core problem will be chosen.

Phase 4: Demonstration. In this phase the use of the artifact to solve the problem is demonstrated.
This could involve its use in experimentation, simulation, case study, proof or other appropriate
activity. The demonstration phase in this thesis includes an empirical application that values CVA
for a specific interest rate swap. This valuation includes model calibration and determination of the
parameters in order to use the model effectively.

12



Phase 5: Evaluation. The evaluation phase is used to observe and measure how well the artifact
supports a solution to the problem. That means that for this thesis the results of the CVA model will
be compared to Bloomberg CVA valuations. Additionally, a sensitivity analysis will be executed
to evaluate how sensitive the model is to changes in the values of parameters.

Phase 6: Communication. This phase is used to communicate the effectiveness of the solution to

researchers and practicing professionals that will use the CVA valuation model. This phase will
translate to the discussion and conclusion chapter of this thesis.
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2 Literature review

This chapter corresponds with the second step of the DSRM: define objectives of a solution. This
means that in this chapter the literature review will be conducted to answer the research question:
‘how is CVA calculated for interest rate swaps in the existing literature?’. This research question
is divided into two sub research questions. The first sub research question is focused on the
definition of CVA and is defined as: ‘what are the components of CVA?’. The second sub research
question will be a literature review that creates a theoretical framework showing all modelling
methodologies used in the literature to calculate CVA for interest rate swaps. The second sub
research question is defined as: ‘how does the literature model/calculate each component of CVA
for interest rate swaps?’.

2.1 The components of credit valuation adjustments (CVA)

This section formulates an answer to the sub research question: ‘what are the components of CVA?”.
The main literature used in this section is the research of Gregory (2012), Canabarro & Duffie
(2003) and Zhu & Pykhtin (2007). A general introduction to counterparty credit risk is given by
Gregory. A more in depth discussion on the quantitative measures for counterparty credit risk is
given by Canabarro & Duffie. Furthermore, the paper of Zhu & Pykhtin provides an excellent
discussion on modelling and pricing of counterparty credit risk.

Counterparty credit risk, commonly referred to as counterparty risk, involves the potential that the
party with whom an individual has engaged in a financial arrangement (referred to as the
counterparty) may not fulfil their obligations as outlined in the contractual agreement, i.e., by
defaulting. Credit valuation adjustment (CVA) is the quantification, or the market value, of this
counterparty risk. This can also be interpreted as the expected loss from a default by the
counterparty. As a response to the 2007-2008 financial crisis, IFRS 13 was introduced in 2011 and
became effective on the 1% of January 2013. IFRS 13 obliged dealers to calculate CVA for each
counterparty with whom they have bilaterally cleared OTC derivatives and adjust the derivative
value for this CVA. The adjusted derivative value f is the value of the derivative contract today
assuming no defaults f, minus the CVA.

fo = fo—CVA €y

The formula to calculate CVA on the interval of [0, T] is given by Gregory (2012)
T
CVA=(1-R) f EE*(t)dPD(0,t) 2
0

We can see that CVA consists of three different components: the loss (of the derivative) given
default (by the counterparty) (1 — R), the risk neutral expected exposure of the derivative EE*(t)
and the probability of default by the counterparty dPD(0,t) (Zhu & Pykhtin, 2007). Each
component will be explained in more detail in the remainder of this section.

2.1.1 Loss given default (LGD)

When a company declares bankruptcy, creditors who are owed money by the company submit
claims. Occasionally, there is a reorganization where these creditors agree to receive partial
payment of their claims. Alternatively, the liquidator sells off assets, and the proceeds are
utilized to settle the claims to the extent possible. Certain claims typically hold priority over
others and are satisfied to a greater extent (Hull, 2012).
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The recovery rate, denoted as R, for a derivative is conventionally defined as the price at which
it trades approximately 30 days following default, expressed as a percentage of its face value.
This value is just a constant and the recovery rate used in price calculations for credit default
swaps is by default 40% (Bloomberg, 2024). Consequently, the loss given default by the
counterparty equals 60% can be calculated as

LGD = (1-R) (3)

For credit default swaps concerning the Japanese Yen, the recovery rate is often set to 35%
(Bloomberg, 2024). For each credit default swap the recovery rate used for price calculations
is specified beforehand and can be find on Bloomberg. Therefore it is important to consult
Bloomberg for the recovery rate before calculating CVA.

2.1.2 Risk neutral expected exposure (EE)

Counterparty exposure is the amount that a company could potentially lose in the event of a
default by the counterparty in the absence of recovery. In other words, counterparty exposure
equals the maximum of the market value of a derivative and zero. Let V;(t) be the value of
contract i at time t , then the contract-level exposure of contract i at time t is denoted as E;(t)
and is quantified as

E;(¢) = max{V;(¢), 0} 4

The value of the contract is only known at the current time, future exposure is uncertain because
the value of the contract unpredictably changes over time. In practice, it is common to have
more than one trade with a specific counterparty. Here the counterparty exposure E (t) can be
calculated as the sum of all exposures at contract-level

E(H) = ) E(®) = ) max{Vi(6),0) (5)

The exposure can be significantly minimized through the implementation of netting
agreements. These legally binding agreements enable the consolidation of transactions in the
event of a default. Essentially, transactions with negative values can be set off against those
with positive values, resulting in only the net positive value representing the credit exposure
during a default. Consequently, the overall credit exposure arising from all transactions within
a netting agreement is limited to the maximum of the net portfolio value and zero

E(t) = max {Z V;(t), 0} (6)

In addition to netting agreements, also collateral agreements must be incorporated into the
calculation of E(t). Mark-to-market (MTM) is an accounting method used to record the value
of assets or liabilities based on their current market prices or fair values. Collateral agreements
require counterparties to periodically mark-to-market their positions and to provide collateral
(i.e., to transfer the ownership of assets) to each other as exposures exceed pre-established
thresholds. Collateral agreements do not eliminate all counterparty risk, market movements can
increase the exposure between the time of the last collateral exchange and the time when default
is determined and the trades are closed out. Usually the threshold amount, which determines
when collateral obligations are triggered, is typically determined based on the credit ratings of
the parties involved in the derivatives transaction. Suppose that C (t) is defined as the collateral
posted by the counterparty at the time t and H is the threshold value, then the C(t) can be
denoted as
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C(t) = max{E(t —s) — H, 0} (7

Here s is the margin period of risk, which is the time interval from the last exchange of collateral
until the defaulting counterparty is closed out and the resulting market risk is re-hedged. Finally,
the exposure E (t), including netting and collateral agreements, will be calculated as

E(t) = max {z Vi(t) = Ci(b), 0} (8)

In the context of derivatives and financial modelling, being “risk-neutral” refers to the
assumption that investors do not have any preference for or aversion to risk. They are solely
concerned with maximizing expected returns from their investments and are indifferent to the
level of risk associated with those investments. The risk-neutral probability refers to a situation
where the expected return on an investment is equal to the risk-free rate of return, regardless of
the level of risk associated with the investment.

Expected Exposure EE* refers to the risk-neutral expected financial loss that a company might
face if the counterparty defaults, discounted at the risk-free rate. That is the average exposure
weighted by their risk-neutral probabilities (the distinction between risk-neutral and actual
expectations is emphasized with an asterisk), see Figure 3. The curve of EE*(t), as t varies
over future dates, provides the expected exposure profile and is denoted by

EE*(t) = E[E(D)] C))

Future Exposure

Current Exposure

History

Today Future
Figure 3. Illustration of future exposure with the grey area representing the PFE and white represents the NFE
(Gregory, 2012).

There are multiple ways to calculate this expected exposure of an interest rates swap. The most
simplistic approach is called the “mark-to-market + add-on” approach. This approach
determines the expected exposure of an interest rate swap by adding a component that
represents that uncertainty to the current exposure. This add-on component should incorporate
the maturity of the interest rate swap; the volatility of the underlying; and characteristics of the
underlying. The major drawback of the “mark-to-market + add-on” approach is that it is too
simplistic to take other effects into account, like netting agreements, collateral agreements,
payment frequencies, payer versus receiver swaps and floating reference rates (Gregory, 2012).

The semi-analytical approach overcomes the drawbacks of the “mark-to-market + add-on”
approach. This approach involves formulating basic assumptions about the risk factors
influencing the exposure. Based on these risk factors the probability distribution of the exposure
is determined and semi-analytical approximation is derived. Despite being more accurate (and
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complex) than the “mark-to-market + add-on” approach, there are still several drawbacks. First
of all, this approach relies on simplifying assumptions about the underlying risk factors, which
neglects complex dynamics like mean reversion. Consequently, these methods calculate
exposures independently over time, potentially overlooking path-dependent features. Typically,
they yield a single risk measure, such as Potential Future Exposure (PFE), rather than the
complete distribution. Furthermore, netting and collateral agreements are not incorporated in

this approach (Gregory, 2012).

The most accurate (but also time-consuming and complex) approach is Monte Carlo simulation.
This method is highly versatile and addresses numerous complexities that “mark-to-market +
add-on” and the semi-analytical approach often overlook, such as transaction specifics, path
dependency and netting and collateral agreements. The accuracy of the Monte Carlo simulation
is dependent on the number of simulation runs. More simulation runs will also increase the
computation time, therefore the ideal number of simulation runs should be investigated during
the Monte Carlo study. The Monte Carlo method involves the following steps:

1. Factor choice. It is essential to identify the risk factors that will impact the exposure of the
transaction. This identification includes the selection of an appropriate model for these risk
factors, which subsequently determines the PFE. Examples of risk factors include variables
like spot interest rates and spot FX rates, or more complex factors such as implied
volatilities. The chosen model for the risk factor can range from a simple one-factor model
to a more intricate multi-factor model.

2. Scenario generation. Future market scenarios are simulated by employing evolutionary
models of risk factors for a predetermined set of simulation dates. This predetermined set
of simulations dates must be reasonably large to accurately capture the PFE, however too
many simulation dates will increase the computation time. According to Gregory (2012), a
typical value for the number of simulation dates ranges between 50 and 200. The risk factor
that influences the price of interest rate swaps is the interest rate. Therefore, the future
market scenarios that will be generated in this study will heavily rely on interest rate
simulation models.

3. Instrument valuation. Instrument valuation is conducted for each trade in the counterparty
portfolio on every simulation date and for each realization of the underlying market risk
factors.

4. Portfolio aggregation. On each simulation date and for every realization of the underlying
market risk factors, the exposure at the counterparty level is determined using Equation (8),
applying the required netting rules and incorporating collateral agreements.

2.1.3 Probability of default (PD)

The market value of the counterparty risk also depends on the risk-neutral probability of a loss
from a default by the counterparty. The risk neutral probability of counterparty default between
times s and t is denoted as PD(s, t). Mathematically, default is represented by means of the
default time, which is defined as the first jump time of a Poisson process that models the
occurrence of default as a random event. The default time, typically denoted by 1, is a random
variable that can be modelled in several ways. There are essentially two paradigms that emerged
over the years: reduced and structural form models. Reduced form models rely on credit default
swaps (CDS) market quotations. This approach is in line with risk-neutral valuation, therefore
the probability of default does not represent the real-world probability of default. Structural
form models determine the probability of default based on the internal structure of the firm
using historical data, representing a real-world default probability instead of a risk-neutral
default probability (Brigo & Mercurio, 2006).
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2.1.4 Other aspects of CVA worth noting

In addition to the different components of CVA, there are also other important aspects to keep
in mind. These aspects are wrong-way risk and bilateral CVA and are explained in this section.

Wrong-way risk

In the CVA formula given in Equation (2) the assumption is made that there is an independence
between expected exposure and the counterparty’s probability of default. A scenario
characterized by a positive dependence between the two, so a high (low) probability of default
by the counterparty when the dealer's exposure to the counterparty is high (low), is referred to
as “wrong-way risk”. Conversely, when there is a negative dependence, so a high (low)
probability of default by the counterparty when the dealer's exposure is low (high), is referred
to as “right-way risk” (Hull & White, 2012).

Wrong-way risk often arises when a counterparty engages in selling credit protection to the
dealer. This is due to the correlated nature of credit spreads. When credit spreads are high, the
value of the protection to the dealer increases, leading to a substantial exposure to its
counterparty. Simultaneously, the counterparty's credit spreads are likely to be high, indicating
a comparatively higher probability of default for the counterparty (Hull & White, 2012).

Wrong-way risk, as suggested by the name, is considered as a negative risk. The reason for this
is that a positive correlation between expected exposure and probability of default will lead to
a higher CVA than obtained by Equation (2). However, because of time constraints the
incorporation of wrong-way risk is neglected in this thesis and the assumption is made that there
is an independence between expected exposure and the counterparty’s probability of default.

Bilateral CVA

Up to now, CVA is calculated as unilateral CVA. For unilateral CVA the assumption is made
that only the counterparty can default, while the dealer is considered non-defaultable. In reality
this assumption does not hold true because there is also an expected cost to the counterparty,
this cost is referred to as debit valuation adjustment or DVA. DVA is the mirror image of CVA
and is a cost to the counterparty and must be a benefit for to the dealer. DVA is defined as
follows

T
DVA=(1-R) f ENE*(t) dPD(0, t) (10)
0

Where ENE™(t) is defined as the expected negative exposure at time t (in other words, the
EE*(t) from the point of view of the counterparty). Accounting standards recognize both CVA
and DVA and including both CVA and DVA is referred to as bilateral CVA (BCVA). The
formula for BCVA is given by

BCVA = CVA—DVA (11)
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2.2 Methodologies used in the literature to model CVA

In this section a literature review is conducted to answer the sub research question: ‘how does the
literature model each component of CVA for interest rate swaps?’. The purpose of this section is
the create a theoretical framework displaying an comparison of all methodologies used in the
literature. This theoretical framework can be used later in the thesis to choose the final methodology
that will be implemented in the CVA valuation model. The previous section showed that the LGD
component of CVA is just a constant that can be retrieved from Bloomberg. Therefore only the
determination of the risk-neutral expected exposure and the probability of default require modelling
methodologies.

2.2.1 Interest rate models (expected exposure)

As explained in section 2.1.2 Risk neutral expected exposure (EE), the expected exposure of
interest rate swaps depends on different interest rate scenarios. Therefore this section dives into
the different interest rate simulation models that are used in the literature (for expected exposure
modelling).

There are two type of one-factor models in the literature: equilibrium and no-arbitrage models.
Equilibrium models are time-homogeneous and produce an endogenous term structure, where
the interest rate curve is derived from the model’s assumptions. In contrast, no-arbitrage models
assume time-varying parameters resulting in an exogeneous term structure, allowing the model
to exactly match the yield curve observed in the market. In less technical terms the difference
between equilibrium and no-arbitrage models can be explained by the perspective from which
they predict interest rates. Equilibrium models are focused on understanding the broader market
dynamics and the behaviour of market participants. With interest rates the equilibrium is the
interest rate such that at that rate the total amount of banks and other groups are willing to lend
is equal to the total amount of money that people want to borrow. The problem with equilibrium
models is that it requires some knowledge about the preferences of the market participants. To
retrieve the supply and demand curves the risk preferences of both side of the market need to
be known. No-arbitrage models are focussed on eliminating opportunities for risk-free profits
in predicting interest rates. Resulting in the possibility to calibrate the model with observed
market prices, and overcoming the disadvantage of equilibrium models (Lawson, 2015).

In this section both of these models are elaborated. In addition to one-factor models, there also
exist two-factor interest rate models. However, two-factor models are out of the scope for this
thesis because of their increased complexity to calibrate. Additionally, one-factor models are
more often used in the literature to calculate CVA for interest rate swaps because of this
increased complexity in two-factor models and they are sufficiently accurate to use in CVA
valuations (Fabozzi, 2014).

2.2.1.1 Equilibrium models

The first short rate models proposed in the literature were time-homogeneous models whose
diffusion coefficients are constant. The advantage of these models is that closed-from formulas
of bonds and bond options prices can be derived by using the dynamics of the models. These
formulas make it easy to calibrate the model. In addition, they can be used to evaluate all interest
rate contingent claims in a consistent way. However, the classic problem with these models is
they cannot reproduce the yield curve. This is caused by their endogenous nature.
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Vasicek Model

In 1977, Vasicek is the first in the literature that assumed that the instantaneous spot rate under
the real world measure evolves as an Ornstein-Uhlenbeck process with constant coefficients.
The Vasicek model can be written down as

dry = f(a — rp)dt + adW; (12)

Where 8, a and o are non-negative constants. With S representing the long-term mean interest
rate, a representing the mean reversion speed, r; being the instantaneous interest rate or current
level of interest rates, o being the volatility of interest rate changes and W, is Wiener process
representing the random component of interest rate changes.

The main advantage of this model is that it incorporates mean reversion because the drift will
become negative (positive) if the interest rate r; is bigger (smaller) than the mean reversion
speed a. This is caused by the fact that long-term mean interest rate 8 is a nonnegative constant.
Furthermore, the model assumes 7 to be normally distributed resulting in the possibility of
negative interest rates. This used to thought of as a drawback of the Vasicek model (Vasicek
1977) (Bernal, 2016) (Yolcu, 2005), however in the current economic state with a long period
of negative interest rates, this is rather an advantage than a drawback. In addition to that, the
analytical tractability that is implied by a Gaussian density is hardly achieved when assuming
other distributions for the process of the instantaneous spot rate (Joheski & Apostolov, 2021).

Moreover, there exist an analytical zero-coupon bond pricing formula based on the Vasicek
model. Therefore, model parameters are easily calibrated by minimizing the error of market
prices and model prices of zero-coupon bonds (Brigo & Mercurio, 2006).

Dothan Model

In 1978, Dothan introduced a model with lognormal interest rate to overcome the “drawback”
of negative interest rates in the Vasicek model. The formula of this model equals

dry = Bridt + ordW; (13)

Where 8 and o are non-negative constants. The disadvantage of this model, unlike Vasicek, is
that it does not incorporate mean reversion (Yolcu, 2005). The Dothan model is the only
lognormal short rate model in the literature with analytical formulas for pure discount bonds.
Albeit, the formula is rather complex since it depends on two integrals of functions involving
hyperbolic sines and cosines (Brigo & Mercurio, 2006).

Rendleman-Barttner Model

In 1980, Rendleman and Bartter assumed that the short-term interest rate behaves like a stock
price. The following expression is suggested by the Rendleman-Barttner Model

dry = uridt + orydW, (14)

Where u and o are non-negative constants. With u representing the expected rate of return of
the underlying asset. The disadvantage of this model is that interest rates behave different than
stock prices and do not have an expected rate of return. Interest rates, unlike stock prices, tend
to converge back to specific mean (Yolcu, 2005).
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Marsh-Rosenfeld Model

In 1983, Marsh and Rosenfeld incorporated constant elasticity of the variance diffusion process,
which is nested within the typical diffusion-Poisson jump model. The constant elasticity of
variance process includes the “square root” and normal processes, and as a limiting case, the
lognormal model.

Y
dr, = (ﬁrt_(l_y) + art) dt + or2dW,; (15)

Where a, 8, o and y are non-negative constants. If y = 1, the model becomes a square root
process with mean reverting drift (the model turns into a Cox-Ingersoll-Ross Model).

If y = 0, it becomes,
(B
dry = - + ar | dt + odW; (16)
t

When r, becomes small in Equation (15), and § > 0, the first term dominates, and large positive
changes are expected. If ; is very large, the diffusion term dominates, and the process behaves
like an Ornstein-Uhlenbeck process (with proportional drift). Equation (15), has the
undesirable feature that mean reversion is not built into the drift (Yolcu, 2005).

Cox-Ingersoll-Ross Model

In 1985, Cox-Ingersoll and Ross presented the following interest rate model

1
2

dr, = B(a — rp)dt + or,

ZdW, (17)

Where B, a and o are non-negative constants. The instantaneous short rate dynamics
corresponds to a continuous time first-order autoregressive process with the randomly moving
interest rate being elastically pulled towards a long term value a, meaning that the model
incorporates mean reversion. Additionally, this model does not face negative interest rates. The
diffusion term ensures that negative interest rates will not occur if the initial interest rate is
nonnegative. This results from the fact that r, can reach zero if 62 > 2af and conversely the
upward drift is sufficiently large to make the initial interest rate unreachable if 62 < 2af
(Joheski & Apostolov, 2021).

Furthermore, Cox-Ingersoll and Ross suggested a non-central chi-square distribution to
represent interest rate changes over time. This assumption results in more realistic interest rate
with skewness and a fatter tail with respect to normal distribution (Di Francesco & Kamm,
2022).

There does exist an analytical pricing formula for zero-coupon bonds under the CIR model.
However, the instantaneous spot rate in the CIR formula and in the pricing formula of zero-
coupon bonds do not follow the same distribution, and therefore classical optimization
algorithms such as maximum likelihood estimation (MLE) and least squares methods (LSM)
will fail (Amin, 2012). In 2001, Brigo and Mercurio concluded that there will exist failures in
the calibration of the CIR model because the zero-coupon bond curve is quite likely to be badly
reproduced (Brigo & Mercurio 2001).
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2.2.1.2 No-arbitrage models

The shortcoming of one-factor equilibrium models is that due to their endogenous nature, they
cannot reproduce the yield curve. To overcome this problem one-factor no-arbitrage are
introduced. These models have an exogeneous nature caused by time-varying parameters,
which can therefore reproduce the yield curve. Also financial instruments with different time
to maturities can be fitted to these no-arbitrage models, which results in more accurate
calibration. Another disadvantage of equilibrium models is that option pricing leads to arbitrage
because today’s term structure is an output rather than an input (Yolcu, 2005). This section
elaborates on the one-factor no-arbitrage models described in the literature.

Ho-Lee Model
In 1986, Ho and Lee introduced the first no-arbitrage interest rate model

with 8(t) being a random function of t and o being a non-negative constant. In the Ho-Lee
model, 6(t) is better understood as the drift term or the trend component that guides the
direction of the interest rates over time. Here 6(t) is actually not a stochastic process. It is
typically a deterministic function of time, which means it is a known, predictable function that
can vary over time but does not have randomness associated with it. The stochastic component
in the Ho-Lee model comes from the odW, term, where dW, represents the random shocks
from a Wiener process (or Brownian motion).

The advantage of this model is that the whole term structure can be used to price contingent
claims. Because the short rates follow a normal distribution, it is possible that the model could
produce negative interest rates. A disadvantage of this model is that it does not incorporate
mean reversion (Lawson, 2015).

Hull-White (Extended Vasicek) Model

In 1990, Hull and White introduced the following model assuming a normal distribution for the
short-rate

dr; = [0(t) — a(t)ri]dt + a(t)dW; (19)

Where 8(t), a(t) and o(t) are non-random functions of t. This model is an extension of the
Vasicek Model. However, Hull (1996) showed that this time-dependency in the parameter 6(t)
and o (t) can yield a nonstationary volatility term structure, which is undesirable when pricing
instruments whose value depends on the term structure of future volatility (Kozpinar, 2022)
(Svoboda, 2004). To overcome this problem, the extension of Hull and White (1994) can be
used as well

dr, = [6(t) — ar]dt + odW, (20)

The volatility of the instantaneous short rate can be a function of time as well. This model does
incorporate mean reversion, in contrast to the Ho-Lee model.

This model is analytically tractable in the sense that analytical formulas for zero-coupon bonds
and options on them can be derived because of the Gaussian distribution of continuously-
compounded rates. The Gaussian distribution also makes it possible to generate negative
interest rates (Brigo & Mercurio, 2006).
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A drawback of the model is its lack of state-dependent volatility. In reality, one would anticipate
that a high short rate would exhibit greater volatility compared to a short rate approaching zero.
However, the model assumes a fixed (or deterministic) level of volatility.

Extensions of the CIR Model

In 1990, Hull and White also introduced an no-arbitrage extension to the Cox-Ingersoll-Ross
(CIR++) model.

dr; = [0(t) — ar]dt + J\/Ttth (21)

Where 6(t) is a non-random function of t and a and o are non-negative constants. This process
follows a non-central chi-square distribution. Accordingly, analytical formulas for prices of
zero-coupon bond options, caps and floors, and, through Jamshidian’s decomposition, coupon-
bearing bond options and swaptions, can be derived.

Positive interest rates can be guaranteed in this model, by imposing restrictions on parameters.
This might worsen the quality of the calibration to caps/floors or swaption prices. A drawback
is that this model does not include jumps (e.g. caused by government fiscal and monetary
policies and by release of corporate instruments) (Brigo & Mercurio, 2001). These are the
reasons why this extension has been less successful than the Hull-White extended Vasicek
model (Brigo & Mercurio, 2006).

In 2006, Brigo and El-Bachir added a jump component to the CIR++ model, referred to as the
JCIR++ model. This ensures that the model may attain high implied volatilities (for swaptions
or caps, in the present context) when the basic CIR++ model fails to do so. The model can be
written down as

dry = [0(t) — ar]dt + o, [redW, + dJ, (22)

Here J is a pure jump process, which is a type of stochastic process where changes occur only
at discrete points in time, with no changes occurring continuously between these points. In other
words, the process remains constant most of the time and jumps to new values at random times.
In this model the pure jump process J has a jump arrival rate ¢ > 0 and jump sizes distribution
m on R*. Here, 7 is an exponential distribution with meany > 0, and

My
J=)% (23)
i=1

Where M is a time-homogeneous Poisson process with intensity a. The Y is exponentially
distributed with parameter y.

In 2019, Orlando et al. introduced the CIR# model. This model has a different approach of
capturing jumps than the JCIR++ model, here the available market data sample is divided into
sub-samples to capture all statistically significant changes of variance in real spot rates. An
“optimal” autoregressive integrated moving average (ARIMA) model will be fitted to each sub-
sample of market data. The parameters are calibrated to the shifted market interest rates
allowing to overcome the disadvantage of the instantaneous volatility ¢ being constant in the
CIR models mentioned so far (Orlando et al., 2019).
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Black-Derman-Toy Model

In 1990, Black, Derman and Toy introduced their interest rate model (BDT). The stochastic
differential equation, assuming that the short rate follows a lognormal process, can be written
down as

dlnr, = 6(t)dt + adW,; (24)

The model is algorithmically created by constructing a short-rate binomial tree to match the
existing term structure of interest rates and volatilities. The lognormal process ensures that
negative interest rates are not possible (Radhakrishnan, 1998). The main drawback is that the
BDT model does not allow for a time-varying volatility parameter, which may distort interest
rate forecasts over long time horizons (or over shorter time horizons if rates and spreads are
sufficiently volatile) (Joshi & Swertloff, 1999)

Black-Karasinski Model

In 1991, Black and Karasinski introduced a generalization of the BDT model.

dinr, = [a(t) — B(t) Inr]dt + adW; (25)

Where a(t) and B(t) are non-random functions of ¢ and ¢ is a non-negative constant. Brigo
and Mercurio (2006) observed that “the rather good fitting quality of the model to market data,
and especially to the swaption volatility surface, has made the model quite popular among
practitioners and financial engineers”. However, Tourrucoo et al. (2007) addressed the
shortcoming that this model turns out to be less tractable which renders the model calibration
to market data than in the HW1 model because no analytical formulas for bonds are available.
For this reason the Black-Karasinski model has been used less in the literature than the HW1
and CIR++ model.

2.2.1.4 Conclusion

The literature review showed that there are a lot of different interest rate models. Each model
with its benefits and drawbacks. The single factor equilibrium models Vasicek (1977), Dothan
(1978), Rendleman-Barttner (1980), Marsh-Rosenfeld (1983) and Cox-Ingersoll-Ross (1985)
all have the advantage that they are analytically tractable because close-from pricing formulas
can be derived. The drawback is that they do not reproduce the yield curve, making them a less
accurate reflection of reality. Single factor no-arbitrage models do overcome this drawback by
introducing time-varying parameters. The single factor no-arbitrage models Ho-Lee (1986),
Hull White Extended Vasicek, CIR++, JCIR++, CIR#, Black-Derman-Toy (1990) and Black-
Karasinski (1991) are analysed. Still these models have the drawback that they do not
accommodate for twists in the term structure of interest rates and are limited to generating only
increasing, decreasing, or slightly humped curves (Russo & Torri, 2019). This problem is
tackled by multi-factor models, however these models are out of scope for this thesis. The main
conclusion of the literature review is that there is a trade-off between economic realism and
complexity. The more economically realistic the model is, the higher the computational
complexity and calibration. An overview of single factor equilibrium models, together with
their benefits and drawbacks are shown in Table 1. Contrarily, an overview of single factor no-
arbitrage models and their benefits and drawbacks are given in Table 2. The scale of calibration
accuracy ranges between poor, good, and excellent. Where ‘calibration accuracy’ can be
divided into fit to historical data, stability of parameters, predictive power and sensitivity to
market conditions. For an overview of the definition of calibration accuracy and the definition
of the scale, see Table 16 in Appendix A — Definitions of the scale for ranking interest rate
models. The scale of computation complexity ranges from efficient, moderate, and complex.
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Where ‘computation complexity’ can be divided into calibration time, resource usage and
convergence reliability. For an overview of the definition of computation efficiency and the
definition of the scale, see Table 17 in Appendix A — Definitions of the scale for ranking interest
rate models.

Table 1. Overview of single factor equilibrium models.

Vasicek Dothan Rendleman-Barttner Marsh-Rosenfeld Cox-Ingersoll-Ross
Model type Equilibrium Equilibrium Equilibrium Equilibrivm Equilibrium
Drift term Bla-r) Bry Hry (60" +an) Bla—1,)
Diffusion term a ar ore art’? s
Distribution Normal Lognormal Lognormal Lognormal Non-central chi-square
Mean reversion Yes No No No Yes
Positive interest rate [No Yes Yes Yes Yes. but can be zero
Volatility Constant Constant Constant Constant Constant
Calibration accuracy [Poor Poor Poor Good Good
Computation Efficient Moderate Mod Moderate Complex

Major benefits

Mean reversion

Lognormal distribution
(economic realism)

Lognormal distribution Constant elasticity of

the variance

Mean reversion

Major drawbacks

Lack of flexibility

No mean reversion

Interest rates behave  No mean reversion
as stock prices. no

mean reversion

Table 2. Overview of single factor no-arbitrage models.

Failures in calibration

Ho-Lee Hull White CIR++ JCIR++ CIR# Black-Derman-Toy  Black-Karasinski
Model type No-arbitrage No-arbitrage No-arbitrage No-arbitrage No-arbitrage No-arbitrage No-arbitrage
Drift term a8 a(t) —ar a(t) —ar, 6(t) —an, 6(t) —an, () a(t) — p(t) Inr,
Diffusion term a a a\/te U\/:[dwz +dJ; ar [ a
Distribution Normal ‘Normal Non-central chi-square Non-cenfral chi-square Non-central chi-square Lognormal Lognormal
Mean reversion No Yes Yes Yes Yes No Yes
Positive interest rate | No No Yes. but canbe zero  Yes, but can be zero  Yes. but can be zero  Yes Yes
Volatility Constant Constant, but can be tir Constant Constant, but adds juny Time-varying Constant Constant
Calibration accuracy |Poor Good Poor Good Excellent Poor Good
Computation Efficient Efficient Moderate Complex Complex Efficient Moderate
Major benefits Computationally Mean reversiorn, Mean reversion Includes jumps Time-varying Easily constructed and Good fit to market

efficient analytically tractable volatility by fitting computationally data
Major drawbacks N o mean reversion Volatility is not state- Positive interest rates Constant volatility. Computationally No mean reversion.  Less analytical

dependent need be forced by computationally cumbersome constant volatility tractable
imposing restrictions  cumbersome
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2.2.2 Hazard rate (probability of default)

As described in section 2.1.3 Probability of default (PD), the market value of the counterparty
risk also depends on the risk-neutral probability of a loss from a default by the counterparty.
There are essentially two paradigms that emerged over the years: reduced and structural form
models. Reduced form models rely on credit default swaps (CDS) market quotations. This
approach is in line with risk-neutral valuation, therefore the probability of default does not
represent the real-world probability of default. Structural form models determine the probability
of default based on the internal structure of the firm using historical data, representing a real-
world default probability instead of a risk-neutral default probability. This section dives deeper
into the methodologies used in the literature to estimate the risk-neutral probability of default
for counterparties (reduced form models).

Reduced form models, sometimes also referred to as intensity models, describe default
occurrences through an exogeneous jump process. Specifically, the default time (7) is the first
jump time of the Poisson process. This Poisson process can exhibit either deterministic or
stochastic intensities. In reduced form models, default is not activated by basic market metrics;
instead, it stems from an exogeneous component independent of all default-free market
information. Therefore, monitoring market variables like interest rates and exchange rates do
not provide comprehensive insight into the default mechanism, as default lacks an inherent
economic rationale.

There are two main types of Poisson processes: homogeneous and inhomogeneous processes.
The intensity function A(t) in a Poisson process determines the rate of event occurrence. In a
Poisson homogeneous process, the intensity function A(t) is constant over time (deterministic),
i.e., it remains constant for all t: A(t) = A. In a Poisson in-homogeneous process, the intensity
function A(t) fluctuates over time.

Both Poisson homogeneous as Poisson in-homogeneous processes are used in the literature for
the purpose of estimating the probability of default for CVA valuation. Van Vuuren and
Esterhuysen (2014), Reghai and Kettani (2015), Wu (2015) and Xiao (2017) all used a
deterministic hazard rate for the probability of default estimation in CVA valuation. The main
reason for choosing a deterministic hazard rate for defaults is the simplicity and analytically
tractability. On the other side, Hoffman (2011) and Brigo & Mercurio (2006) used a time-
dependent hazard rate for defaults because of the increased accuracy. Especially in papers
focused on CVA valuation including wrong-way risk, a time-dependent hazard rate is often
used. In the remainder of this section, both approaches are elaborated in more detail.

2.2.2.1 Deterministic hazard rate
Let us consider a time homogeneous Poisson process to model the first jump, where the
intensity function equals the moment the counterparty defaults. Recall that t denotes the first
jump in the Poisson process, i.e. the time until default. The number of jumps X, in the interval

[0, t] is denoted as X;~P(At). Now the probability that there is no jump on the interval [0, t]
can be denoted as:

Q(t>t) =P(X, =0)=e M (26)

Consequently, the probability that a default occurs can be written down mathematically as
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Qt<t)=1-PX,=0)=1—-eH (27)

The conclusion can be made that the time until the first jump (i.e. the default time) follows an
exponential distribution, because Q(t <t) equals the exponential cumulative distribution
function (CDF) (Brigo & Mercurio, 2006).

For a CDS with a deterministic hazard rate and maturity time T, the CDS pays (1 — R) at the
time of a credit event if default occurs before maturity. To secure protection, the purchaser
makes a series of payments based on a spread denoted as S until either default or maturity,
whichever comes first. This information can be used for the valuation of the premium and
protection legs. For the premium leg, the protection buyer makes a payment of Sdt between
time t and t + dt if the credit remains has not defaulted. This payment is then discounted using
the Libor factor and aggregated over the duration of the contract to yield (Brigo & Mercurio,
2006)

T
Value premium leg = S * j Z(0,t)Q(0, t)dt (28)
0

Here, Z(t, T) is the (Libor) discount curve and Q(t, T) is the survival probability up to T. For
the protection leg, a payment of (1 — R) is made if default occurs
T
Value protection leg = (1 — R) * f Z(0,t) * A(t)Q(0,t)dt (29)
0

Because the assumption is made that the hazard rate is deterministic, we can rewrite the value
of the protection leg as

T
Value protection leg = A(1 — R)f Z(0,t)Q(0,t)dt (30)
0

Finally, the breakeven spread is determined as the CDS spread paid upon a new contract.
Meaning that the CDS spread can be calculated by setting the premium leg equal to the
protection leg

T T
S f 2(0,6)0(0, )dt = A(1 — R) f 2(0,0(0, t)dt (31)
0 0

Looking at the equation, the fOT Z(0,t)Q(0,t)dt cancels out and we are left with the following
formula for the CSD spread

S=A11-R) (32)
Or

/1——5 33

=1_R (33)

Recall that we derived the formula for the survival probabilities in Equation 26, now filling in
the formula for the deterministic hazard rate we obtain
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Q(t>t)=e M =¢ 1-R (34)
And consequently, the formula for the probability of default, is given by

S
Qr<t)=1—e M =1—¢ 1R (35)

2.2.2.2 Time-dependent hazard rate

The same approach as in section 2.2.2.1 Deterministic hazard rate can be used to derive the
time-dependent function A(t) (i.e. the hazard rate of default). Here, we can say that:

X~P(A1)) (36)

Where

t
AE) = f Aw)du (37)
0

The term A(t) is called the cumulated intensity, cumulated hazard rate, or hazard function.
Then, the CDF of the time to the first jump (i.e. the CDF of the default time) becomes:

Q(t<st)=Ft)=1- exp(—A(t)) =1—exp (— ftl(u)du> (38)
0

Consequently, the formula for the survival probability from time 0 to time T is obtained as

Q(t> 1) =Q(0,t) = exp(—A(t)) = exp <— ftﬂ(u)du> (39)
0

This formula shows that the hazard rate A(t) needs to be obtained in order to calculate the
probability of default. This is done by deriving an expression for the par CDS spread, denoted
by S,. Which is achieved by evaluating the present value of the payment received when
defaulting (protection leg) and the cost of paying for this protection (premium leg) (Brigo &
Mercurio, 2006).

Because the S, will be retrieved by using an iterative algorithm, from now on we will look at
the discretized formulas instead of continuous formulas. The discretized formulas below will
evaluate the valuation of the protection and premium leg over N number of discrete time steps
or payment periods. Assuming that the hazard rate process, interest rates, and recovery rates
are independent, the discretized present value of the protection leg is given by

1—-R
Protection PV = T

M=

[Z(t, tn) + Z(t, tn—l)] [Q (t, tn—l) - Q(t, tn)] (40)

n=1

The discretized present value of the premium leg is given by

N
Premium PV = S, Z A(t,_1,t)Q(t, t)Z(t, ty)

n=1
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N
+ %A(tn—lt tn) nZl Z(t: tn) [Q (t, tn—l) - Q(t; tn)] (4’1)

Here, S, represents S(0, T), i.e., the fixed contractual spread of a contract traded at time 0 which
matures at time T, and A(t,,_4, t,,) is the day count fraction between dates t,,_; and t,, in the
appropriate day count convention, typically Actual/360.

The present value of the premium leg can also be denoted as S, * RPV01(0, T), where RPV01
is the risky PV0L1, i.e., the expected present value of 1bp paid on the premium leg until default
or maturity. The variable T represents the maturity or termination time of the credit derivative,
which is the point at which the contract ends. While T is not explicitly present in the formula
below, it is implicitly embedded within the summation limits. Specifically, T defines the final
time period t,, which serves as the upper bound in the calculation of the RPVOL. This risky
PVO01 can be denoted mathematically as

N
RPVO1(t,T) = Z Atyr, )0t £)Z(E, )

n=1

1 N
+ 58t 1, t) ;za, I tr) = Q¢ )] (42)

Now, the mark-to-market value of a CDS is given by the difference between the protection leg
and the premium leg. With a face value of $1, the mark-to-market value of a CDS V (t) at time
t is given below. Here N is the number of discrete time intervals between current time t and
maturity T.

V(t,T) = Protection PV — Premium PV
N

_1-R

5 D126 6) + 2(t b DIQ( 1) = QL )] -

n=1

Se * RPV01(0,T) (43)

Finally, the breakeven spread is determined as the CDS spread paid upon a new contract.
Meaning that the CDS spread can be calculated by solving V(0) = 0, doing so result in the
following formula (Pereira, 2014)

o _1-R Yn=11Z(0,t,) + Z(0,t,_1)1[Q(0, tn_1) — Q(0, )]
0= 9 RPV01(0,T)

(44)

In section 2.2.2.1 Deterministic hazard rate it was possible to cancel out the Z(0, t) and Q(0, t)
terms. However, by assuming an time-dependent hazard rate, this is not the case anymore and
there is no analytical formula for the hazard rate. To retrieve the default probabilities we should
perform an iterative algorithm. This algorithm builds the survival curve step-by-step by
considering the shortest-dated instrument first and moving to the longest-dated one. At each
stage, the price of the subsequent instrument is used to infer a parameter, extending the survival
curve to the next maturity point. Through this process, a survival curve is derived that accurately
reflects the market dynamics. The algorithm to build the survival curve is created by O’Kane
(2008) and includes the following steps:

1. Initialize the survival curve with Q(T, = 0) = 1.In other words, the survival probability at
time equals 0 is 1 because there is no default at time equals 0.
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2. Setm=1.

3. Determine the survival probability at time T,,, (denoted as Q(T,,)) such that the mark-to-
market valuation of the CDS maturing at T,,, with a market spread S,,, equals zero.
Utilizing the following formula

S. = 1-R ZTIY:l[Z(O, tn) + Z(O: tn—l)] [Q(O; tn—l) - Q(O' tn)]
L) RPV01(0,T)

(45)

Where all required discount factors for the CDS mark-to-market calculation are
interpolated from the known values Q(Ty), ..., Q(T,—1), With the exception of Q(Ty,),
which is the value being determined.

4. Upon identifying the value of Q(T,,) required to reprice the CDS maturing at T,, we
incorporate this time and corresponding value into our survival curve.

5 Setm=m+ 1. If m < M return to step (3).

6. We possess a survival curve consisting of M + 1 data points, with time intervals ranging
from 0,7y, Ty, ..., Ty and values 1, Q(Ty), Q(T2), ..., Q(Ty).

The number of points M used in the survival curve impacts the accuracy of the default
probability estimation. A higher M provides a more detailed survival curve, potentially
increasing accuracy, but also requires more computational effort. The choice of M depends on
the desired balance between accuracy and computational feasibility. Typically, M is chosen
based on the granularity of available market data and the computational resources at hand.

2.2.2.3 Conclusion

To conclude, there are two ways to extract default probabilities from CDS. One way is by
calibrating CDS assuming A(t) to be time-dependent. This approach is more advanced and
accurate to find the risk-neutral survival probabilities, however this approach is also
computationally cumbersome and relies on numerical (iterative) methods. The other way
assumes A(t) to be deterministic and leads to a closed-form formula for A. The advantage of
this methodology for extracting default probabilities from CDS is that the interest rate curve is
not needed. However, the results are less accurate than assuming A(t) to be time-dependent.
An overview of both methodologies is given in Figure 4.

Deterministic hazard rate Time-dependent hazard rate
Assumption l(t) =1 /1(?:)
Major benefit Interest rate curve is not needed More accuracte
Major drawback Less accurate Computationally cumbersome and
relies on numerical (iterative)
methods
Implied hazard rate .S - 1=R BE_11200,6) + 2(0, 6, D][Q(0, tr—y) — Q(0,2,)]
fEIn "= RPVOL(0,T)
.y t
Probability of default Qrsf=1-eh Q< =1-exp (7[ Mu]du)
0

Figure 4. Overview of PD estimation methodologies.
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3 Methodology

This chapter corresponds with the third step of the DSRM: design and development. Therefore, this
chapter formulates an answer to the sub research question: ‘what is the best methodology for
Deloitte to use in their CVA valuation model for interest rate swaps?’. This methodology will be
chosen by internal discussions with experts from the FRM team, based on the literature study
conducted in chapter 2 Literature review. Additionally, further research is conducted on the
calibration of the chosen methodology, which serves as the foundation of the final model.

3.1 The most suitable methodology for the CVA valuation model

In this section, we determine the methodology to be employed in Deloitte’s CVA valuation model.
In this section we decide on the interest rate model that is going to be used in the determination of
the expected exposure. This decision will be made based on a comparison of the interest rate models
from section 2.2.1 Interest rate models (expected exposure) and on a predefined set of criteria. In
this section, we also decide whether to assume a deterministic hazard rate or a time-dependent
hazard rate for estimating the probability of default.

3.1.1 The most suitable interest rate model

Together with the specialists from the FRM team of Deloitte, a predefined set of criteria is
created. The following criteria are of importance in determining the most suitable interest rate
model to implement in the CVA valuation model.

Computational efficiency: It should be computationally efficient to handle large
portfolios of interest rate swaps and perform calculations in a reasonable time frame.

Economic realism (accuracy): The model should accurately capture the behaviour of
interest rates and their impact on the valuation of interest rate swaps. The model should
be robust enough to handle various market scenarios, including stressed market
conditions and extreme movements in interest rates.

Calibration: The model should be easily calibrated to market data, ensuring that it
reflects current market conditions accurately. This ease of calibration is crucial because
the CVA tool is designed to function automatically, without requiring manual
intervention. An automated calibration process ensures that the model can continuously
adapt to new market data, allowing for efficient and accurate CVA calculations with
minimal user input.

Flexibility: The model’s flexibility should allow for future expansion to accommodate
different derivatives while enhancing accuracy. This may include incorporating
features such as time-varying volatility parameters or extending from a single-factor to
a multi-factor model.

The criteria are not equally important. Therefore weights are assigned to each criterium. The
weights are determined based on the Analytical Hierarchy Process (AHP). In line with the AHP,
the specialists of the FRM team of Deloitte conducted a pairwise comparison of each criterium.
The scale of this pairwise comparison ranges from one to nine, where one implies that the two
criteria are the same or are equally important. On the other hand, nine implies that one criterium
is extremely more important than the other one. For the complete steps in this process see
Appendix B — AHP weights for interest rate model selection. For now, the final weights for each
criterium given Deloitte’s perspective is shown in Table 3.
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Table 3. Requirements of the interest rate model.

Requirement Weight
Computational efficiency | 0.166
Economic realism 0.510
Calibration 0.287
Flexibility 0.037

Finally, a score ranging from 1 to 5 is given to all criteria by the experts of Deloit