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Abstract—Respiratory-induced motion (RIM) presents a chal-
lenge in targeting liver tumors during medical procedures, as it
causes the tumor to shift position within the body. Motion models
can track the position of a liver tumor based on a surrogate
signal, compensating for RIM to enable more accurate ablation
and biopsy procedures. However, interpreting tumor position as
an XYZ-coordinate would be challenging for clinicians. This
study presents a conditional progressively growing generative
adversarial network (cProGAN) that can generate scannerless
MR-images using one or multiple surrogate signals for guidance
during liver interventions. We compared three signals: a heat
camera measuring the airflow, and an ultrasound transducer and
external markers, to capture the internal and external abdominal
motion, respectively. This study is validated in seven human
subject experiments, where MR-images and the three surrogate
signals are simultaneously collected while each subject is follow-
ing a specific breathing protocol. The quality of the scannerless
images is assessed by the structural similarity index measure
(SSIM) and by extracting the superior-inferior movement of the
liver border in the real and scannerless images and comparing
the resulting waveform using the mean absolute error (MAE, in
millimeters and as a percentage of the average liver movement)
and the coefficient of determination metrics. The model trained
on external markers generated images with the most accurate
liver positions during breathing (MAE of 5.02 ± 3.74 mm) and
breath holds (MAE of 9.14 ± 1.31 mm). The highest SSIM was
for the combined model during breathing (51.42%) and for the
external marker model during breath holds (36.47%). Models
using the other surrogate signals resulted in a significantly higher
MAE and lower SSIM. These results suggest that external marker
tracking provides the most accurate respiratory motion modeling
for scannerless MRI generation, though further research is
needed to improve image quality. The proposed solution can
potentially be expanded by adding more sources of motion and
generating entire 3D volumes and we believe that this could
greatly improve the precision of percutaneous procedures in the
liver and make them easier to perform.

Index Terms—Respiratory-induced motion, surrogate signals,
generative adversarial networks

I. INTRODUCTION

Liver cancer was the cause of death for 830,000 people
in 2020 and it was among the top three causes of cancer
deaths in 46 countries around the world [1]. Rumgay et al. [1]
expect that the number of deaths and people diagnosed will
increase by more than 55% between 2020 and 2040. Primary

liver cancer, or hepatocellular carcinoma (HCC) is one of the
most difficult type of cancers to treat and has a high recurrence
chance of 70% in five years [2].

Biopsies and ablation are percutaneous procedures that are
commonly performed in the liver. For tumors with atypi-
cal imaging characteristics, a biopsy should be done for a
definitive diagnosis [3]. Obtaining a reliable piece of tissue
is essential to find the correct diagnosis and prevent a false-
negative. Gonzales et al. [3] found that the false-negative
rate for tumors smaller than 2 cm was 30%. Ablation is
the most common treatment for early stage HCC (single
tumor ≤ 5 cm or up to three tumors ≤ 3 cm) [4]. During
ablation treatment, focal tumors are destroyed by applying
chemicals (such as ethanol and acetic acid) or thermal/non-
thermal energy, delivered via needle-like applicators [5].

A. Image-guided Interventions

During these interventions, medical imaging modalities like
computed tomography (CT), ultrasound (US), magnetic reso-
nance imaging (MRI), and others are commonly applied [6].
Unfortunately, neither have both a high contrast and a high
temporal resolution, which are both important for real-time
guidance. For example, MRI, which is the preferred imaging
modality for liver interventions [6], offers a high contrast but
with a low temporal resolution. The low temporal resolution
is problematic because respiratory induced motion (RIM) can
cause the tumor location to shift [7] by up to 35 millime-
ters [8]. This movement may result in missing the target,
potentially causing misdiagnosis and false-negatives during
a biopsy and exposing healthy liver tissue to ablative doses,
potentially causing radiation induced liver disease [7].

B. Respiratory Induced Motion Compensation

Keall et al. [9] reviewed different techniques to manage
RIM, that enable higher doses to be delivered to the tumor
while sparing healthy tissue or to obtain a more reliable
piece of tissue during biopsy. These methods mostly consist
of specific breathing techniques, like deep or shallow breath
holding to reduce RIM. Additionally, respiratory monitoring
can be used to detect whether the lung inflation is at the

2



same reproducible state. The review also discussed respiratory
gating, where the treatment is only applied in a specific part
of the patient’s breathing cycle. This part is called the ”gate”
and the target should have a similar position throughout these
gates. A problem with these methods is that the procedure
can take a considerable amount of extra time because the
patient needs to be coached or treatment has to be halted until
the same gate is reached. Deep breath holding can also be
uncomfortable and some patients might be unable to hold their
breath for a sufficient amount of time.

Keall et al. [9] also suggest to track the tumor in real-time
by inferring the tumor position from a surrogate signal. A
surrogate signal is an additional signal that is simultaneously
collected with imaging data to find a relationship between this
signal and the tumor location. According to McClelland et
al. [10], a surrogate signal should be relatively easy to acquire,
have a high temporal resolution and be highly correlated with
the internal motion. The relationship between this signal and
the tumor location is described as a correspondence model that
is fitted with a learning algorithm. Several surrogate signals
have been proposed in literature. Some examples are optical
markers [6], a depth camera [11], a reference needle [12], and
an ultrasound transducer [13]–[16].

Using a motion model to accurately estimate the tumor po-
sition could be especially advantageous for guiding a surgical
robot, enabling precise targeting during treatment. However,
interpreting the tumor position as an XYZ-coordinate can be
challenging, which limits its usability when a clinician is ac-
tively performing the procedure. Another solution is therefore
to instead use the surrogate signal to generate scannerless
images. In MRI guided procedures, the proposed solutions
could provide two main advantages [13]. First, temporal
resolution can be increased when the patient is inside the
scanner (”in-bore”) by image interpolation between acquired
MR-images. Secondly, when the patient is moved out of the
scanner (”out-of-bore”), scannerless MR-images can continue
to be generated, while only relying on the surrogate signals.
The application in the ”in-bore” and ”out-of-bore” situations
are visualized in Fig. 1.

C. Research Questions

This research aims to compare and combine different surro-
gate signals to generate scannerless MR-images using a Gen-
erative Adversarial Network (GAN). The following research
question was defined: ”How can a generative adversarial
network be utilized to generate real-time scannerless MR-
images, using a number of surrogate signals?” To answer
this research question, it is divided in the following two sub-
questions:

1) How can information about inter- and intra-variable res-
piratory patterns be extracted from the surrogate signals
and combined as input for the GAN?

2) How much do the scannerless images resemble the real
images in different respiratory patterns, and what is each
surrogate signal’s influence on this result?

Fig. 1: Visualization of the applications of a motion model
that can generate scannerless MR-images in the ”in-bore” and
”out-of-bore” situations. In the ”in-bore” situation, the motion
model can interpolate between real MR-images, greatly in-
creasing its temporal resolution. In the ”out-of-bore” situation,
scannerless MR-images can be generated while only relying
on the surrogate signals.

It is hypothesized that using a combination of multiple sur-
rogate signals should improve the overall accuracy of the
scannerless images.

D. Contributions

The contribution of this research is firstly to employ the con-
ditional Progressive GAN architecture for real-time scanner-
less MR-image generation of the liver. A GAN was similarly
employed in [17] to generate MR-images of the lungs, but they
used the Pix2pix architecture from [18] that requires an image
as input. The conditional Progressive GAN was introduced by
Karras et al. [19] and later conditioned in [20]. When training
this network, it starts generating images in a low resolution
that is gradually increased. This improves training stability and
allows shorter training times. Additionally, the conditioning
does not necessarily have to be in image format, providing a
more flexible way to add conditioning and making it simpler
to combine multiple surrogate signals.

The second contribution is the combination of multiple
surrogate signals for scannerless MR-image generation of the
liver and comparing the influence of each surrogate signal on
the quality of the results. The following three signals were
compared: a thermal camera measuring airflow, an ultrasound
transducer capturing internal abdominal motion, and external
markers tracking external abdominal motion. This comparison
is conducted through an ablation study, evaluating the quality
of scannerless images generated by models trained with dif-
ferent combinations of surrogate signals. To our knowledge,
this has not been done before. We additionally believe that
the construction of a synchronized data set of the mentioned
surrogate signals and MR-images of the liver is also a great
contribution for future research.

E. Structure

This report is structured as follows: Section II describes the
required background knowledge. Section III introduces related
research papers. Section IV describes our proposed approach
in detail. Section V describes the experiments that were
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conducted to acquire the results. Section VI introduces the
results, that are discussed in Section VII. Section VIII provides
the limitations of the proposed solution. Section IX proposes
directions for future research and Section X concludes this
research.

II. BACKGROUND

This section introduces the background knowledge where
this work is based upon. Firstly, the general information
surrounding motion models and its components are described
and lastly, the GAN architecture is explained.

A. Motion Model

The review made by McClelland et al. [10] describes a
motion model as a model that estimates respiratory motion
by finding the relationship between this motion M and some
surrogate data s. This relationship is captured in the corre-
spondence model φ and can be described as

M = φ(s). (1)

The surrogate signals should be able to easily acquire data
that is highly correlated with the true respiratory motion with
a high temporal resolution. Additionally, it should capture
both intra-cycle and inter-cycle respiratory variability, which
refer to the variability within a single breathing cycle and
the variability between different breathing cycles, respectively.
Some examples of surrogate signals that have previously been
used are depth cameras [11], [21], ultrasound transducer [13],
[14], [16], [17], [22], optical markers [6], and a reference
needle [12].

The true respiratory motion, which is the ground truth
of the motion model can be extracted from some imaging
modality [10]. For example, Fahmi et al. [6] segmented the
liver border using thresholding and morphological operations
of each MR-image, and used its location as the true motion.
Cordon and Abayazid [11] similarly tracked the liver wall but
from ultrasound as imaging modality.

According to Keall et al. [9], the primary organ motion is in
the superior-inferior (SI) direction, while the displacement in
the anterior-posterior (AP) and lateral direction is typically less
than 2 millimeters. This needs to be considered when choosing
the plane for the imaging modality, since the transverse plane
does not capture the main breathing motion in the SI direction.
The SI and AP breathing directions and the imaging planes
are visualized in Fig. 2.

The correspondence model φ can be any regression model,
like a linear regressor, polynomial regressor, or a more com-
plex deep learning model like a neural network.

B. Generative Models

The Generative Adversarial Network, introduced by Good-
fellow et al. [23], is a generative model, where a generator
G tries to generate data that fools the discriminator D, which
attempts to classify given samples as real or fake. To train
this model, a minimax game is played, where D maximizes
the probability that it correctly classifies a given sample, and

(a) (b)

Fig. 2: (a) The Anterior-Posterior (AP) and Superior Inferior
(SI) respiratory motion directions with respect to the side view
of the human body and (b) a visualization of the coronal,
sagittal, and transverse plane with respect to the human body.

G minimizes the probability that its output is classified as fake.
This can be formulated in an objective function as

min
G

max
D

Ex∼Pr [logD(x)]+Ex̃∼Pg [log(1−D(x̃))], (2)

where Pr is the distribution of the real data, Pg is the
distribution of the data generated by the generator and x̃=G(z)
with z being random noise.

After the introduction of GAN, many improvements were
introduced to broaden its use cases. One that was introduced
shortly after the GAN by Mirza and Osindero [24], is the
conditional GAN (cGAN). The cGAN can be conditioned by
an extra piece of information y by simply adding y as an
additional input in G and D.

Arjovsky et al. [25] recognized the instability when training
a GAN. This instability can cause mode collapse, where the
generator would only generate samples that represent a small
subset of the training data. They attempted to improve this by
introducing the Wasserstein GAN (WGAN) [25], that uses the
Earth Movers distance to measure the difference between the
distributions Pr and Pg. The objective function can then be
formulated using the Kantorovich-Rubinstein duality [26] as

min
G

max
D∈D

Ex∼Pr [D(x)]−Ex̃∼Pg [D(x̃)], (3)

where D are all the Lipschitz functions and x̃ = G(z). To sat-
isfy the 1-Lipschitz constraint, the authors clip the weights to
[−c,c]. According to Gulrjani et al. [27], this weight clipping
can lead to exploding or vanishing gradients and limited model
capacity. The authors therefore introduce a gradient penalty to
enforce the Lipschitz constraint. The equation for the gradient
penalty is written as

GP = λEx̂∼Px̂ [(||∇x̂D(x̂)||2 −1)2], (4)

where x̂ is uniformly sampled from a straight line between
pairs sampled from Pg and Pr, and λ is the gradient penalty
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coefficient. The objective for the WGAN with gradient penalty
(WGAN-GP) then becomes

min
G

max
D∈D

Ex∼Pr [D(x)]−Ex̃∼Pg [D(x̃)]+GP. (5)

Karras et al. [19] attempted to further improve training
stability by proposing the Progressively Growing GAN (Pro-
GAN) that attempts to learn features of the training data in a
coarse to fine manner. This is done by gradually increasing the
resolution of the generated samples by adding new layers to
G and D. A new layer is smoothed in by first considering it as
a residual block, weighted by α , that linearly increases from
0 to 1. It uses the Wasserstein Loss function with gradient
penalty [27] for optimization.

III. RELATED WORK

Preiswerk et al. [13] proposed a system that uses an
ultrasound transducer as surrogate signal to greatly enhance
the temporal resolution when the subject is ”in-bore”, or to
create scannerless MR-images when the subject is ”out-of-
bore”. The first step is to create a subject specific history
of paired MRI and ultrasound data. After the history is
constructed, a similarity measure is computed between the
current ultrasound signal, and all the ultrasound signals in the
history. A scannerless image is finally constructed by taking
the average of all the scans in the history, weighted by the
similarity measures. This work was attempted to be improved
by Shokry [15] by separately applying the methodology from
Preiswerk et al. [13] to all the entries of the k-space. Both
solutions faced the problem that the correlation between ultra-
sound and MRI data was lost when the ultrasound transducer
was displaced. It also faced efficiency problems when a large
history was formed, since the computational complexity is
dependent on the size of the history. Veenstra [16] compared
the methodology from Preiswerk et al. [13] and Shokry [15]
after applying several pre- and postprocessing techniques,
aimed at enhancing performance and efficiency.

Preiswerk et al. [14] attempted to improve their previous
work from [13] by combining a Convolutional Neural Network
(CNN) and a long-short term memory (LSTM) with ultrasound
data as input to generate scannerless MR-images. The use of
a deep learning solution was motivated by having a constant
complexity at inference stage that is thus independent of
the data set size. The authors achieved a ten times faster
reconstruction time with only a slight increase in error between
real and scannerless images (Pixel-wise sum of squared error
of 39.0 ± 12 pixels for [14] vs. 33.9 ± 7 pixels for [13]).

Giger et al. [17] proposed a solution where a 2D ultrasound
transducer is used as a surrogate signal to generate scannerless
MR-images. They used the Pix2pix model, introduced by [18],
which is a GAN architecture specifically made for image-to-
image translation. Navigator-based 4D MRI and 2D ultrasound
was simultaneously collected and the GAN was trained to
predict the navigator deformation field that can be used to
reconstruct a scannerless 3D MR-volume.

IV. METHODOLOGY

This work proposes a deep learning approach that combines
multiple surrogate signals to generate out-of-bore scannerless
MR-images for real-time guidance during liver biopsy and
ablation. Fig. 3 shows that the system is divided into a training
phase and a testing phase. In the training phase, a dataset is
created by simultaneously collecting surrogate data and MR-
images. From each surrogate signal, the breathing waveform
is extracted and synchronized with the MR-images. The final
step of the training phase is to train the generative model by
using the breathing waveforms as input, and the MR-images
as ground truth data. In the testing phase, the subject can
be placed out-of-bore and the trained generator can be used
to create scannerless MR-images by inputting the real-time
breathing waveforms, extracted from the surrogate signals.

A. Data Collection

The data is collected in human subject experiments, where
seven subjects perform specific breathing protocols, while
MR-images and surrogate data is simultaneously collected.
The surrogate signals capture data on the internal breathing
motion, external breathing motion, and the breathing airflow
from the subject’s mouth. Each signal captures a different ele-
ment of the breathing information, which potentially improves
the capture of intra-cycle variability. All the surrogate data is
gathered on the same machine and the timestamp is recorded
for each signal. For each subject, three sessions are performed
to test repeatability. The schematic view of the data collection
setup is introduced in Fig. 4.

Fig. 4: Schematic side view of the data collection setup, where
the subject is laying inside the MR scanner. The ultrasound
transducer is attached to the subject’s abdomen and an RGB-
camera is pointed at the scanner’s receiver coil to track its
movement. A mirror is placed above the subject’s face, to
make the heat that results from breathing, visible from the
heat camera.

1) MRI: MRI has been chosen as ground truth data be-
cause, according to Panych and Tokuda [28], it is considered to
be ideal for image guided interventions. Unlike CT, X-ray, and
PET, it is free of ionizing radiations, making it noninvasive.
Additionally, it provides better detail on soft tissue than CT
and US [16]. It was chosen to acquire images in the sagittal
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Fig. 3: Flow diagram of the proposed approach: In the training phase, the MR-images and surrogate signals (airflow, external
motion, and internal motion) are simultaneously collected. The MR-images are pre-processed and the breathing waveforms are
extrected from the surrogate signals in the feature extraction step. Next, the MR-images and surrogate signals are synchronized
and used to train the deep learning model. The trained model is used in the testing phase, where it uses the breathing waveforms
from the surrogate signals to generate scannerless MR-images. The scannerless and real MR-images are finally compared in
the evaluation step.

TABLE I: The most relevant settings that were used in the
MRI-scanner.

Setting Value
Field strength 1.5 T
Orientation Sagittal
Slice thickness 10 mm
Spatial resolution 1.9 mm by 1.9 mm
Base resolution 192×192 pixels2

Repetition time 355.60 ms
Echo Time 1.17 ms
Trajectory Cartesian

plane, so both the SI and AP motion of the liver border are
visible.

The MRI machine that was used is the SIEMENS MAG-
NETOM AERA 1.5 T (Siemens Healthineers, Erlangen, Ger-
many), located in the TechMed centre at the University of
Twente. The most relevant settings that are used can be found
in Table I.

2) Internal Breathing Motion: An ultrasound transducer
was used to capture internal breathing motion. It has previ-
ously been employed in [13], [14], [16] as a surrogate signal
to create scannerless MR-images. Madore et al. [22] also
extracted a single dimensional breathing waveform from the
ultrasound data. An additional benefit is that the transducer is

TABLE II: The settings that were applied in the ultrasound
transducer.

Setting Value
Pulse voltage 240 V (level 10)
Pulse width 2.8 µs
Sampling frequency 33.3 MHz
Analog filter 2-6 MHz
Gain 24 (pre-amplifier) + 15 (constant) dB
Delay 10 µs
(Measurement) window 80 µs
Trigger timer (PRF)
PRF 50 Hz

attached to the body and can thus follow the patient through
different locations [22].

This work uses the MR-compatible Optel Opbox 2.1 ul-
trasound transducer. This same device was successfully used
before by Veenstra [16] and therefore, the same settings were
applied. These settings can be found in Table II.

The ultrasound probe is placed inside a 3D printed housing
and attached with double sided tape to a plaster on the right
side of the subject’s abdomen, just below the ribs. A picture of
the transducer, the location where it is placed on the abdomen
and what a single firing of this sensor looks like can be found
in Fig. 5.

3) External Breathing Motion: The external breathing mo-
tion is captured by visually tracking interest points on the
subject that move during breathing, using the Intel RealSense
L515 LiDAR depth camera (Santa Clara, California, United
States). Fig. 6 shows the receiver coil of the MR scanner that
was chosen as interest point. The coil was easy to track and
clearly moved during breathing, making it highly correlated
to the subject’s RIM. A depth camera was used because the
original plan was to use the subject’s volume as a surrogate
signal, but this could not be reliably extracted due to the range
and positioning of the camera. The camera was capturing
RGB-images at 30 frames per second and a resolution of
640×480 pixels2.

4) Breathing Airflow: The FLIR A615 heat camera was
used to capture information on airflow that results from
exhalation and inhalation. The subject had to wear a face mask
that absorbs the heat from the breathing airflow and a mirror
was placed above the subject’s face to make the heat signature
visible from outside the magnetic field. The face mask in the
mirror and the view from the heat camera can be found in
Fig. 7. The camera captures heat images at 50 frames per
second (fps) and a resolution of 640×480 pixels2.

5) Breathing Protocol: The subjects were asked to perform
the following breathing protocol when placed inside the scan-
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(a) (b)

(c)

Fig. 5: The Optel Opbox ultrasound transducer (a) is placed on
the right side of the subject’s abdomen, just below the ribs, as
shown as the red circle in (b). The graph in (c) shows a single
firing of the ultrasound transducer with the signal return time
on the horizontal axis, and the voltage of the received signal
on the vertical axis.

ner:

• Fully inhaled breath hold: 15 seconds
• Shallow breathing: 3 minutes
• Half exhaled breath hold: 15 seconds
• Regular breathing: 3 minutes
• Fully exhaled breath hold: 15 seconds
• Deep breathing: 3 minutes

The protocol was created to evaluate whether the method
is generalizable across different subjects. During shallow

Fig. 6: The MRI receiver coil of which the movement is being
tracked to capture the subject’s external motion that is caused
by breathing.

breathing, the subject is asked to breath faster but with a
lower amplitude, regular breathing is how the subject would
normally breath, and deep breathing means slower breathing
with a higher amplitude. The breath holds are performed in
different positions, so it is possible to evaluate whether the
inconsistency between breath holds is accurately modeled.
Additionally, the subject was asked to breath through the
stomach, to enhance the movement of the coil, and to breath
through the mouth, to improve the heat signature on the face
mask.

6) Subjects: Seven healthy subjects (A-G) participated in
this study, including five males and two females. All subjects
signed a consent form and the experiments are approved by the
Natural Sciences and Engineering Sciences ethics committee
from the University of Twente. All subjects were asked to
perform the previously described breathing protocol three
times. In some instances, a subject was briefly removed from
the scanner between sessions, or sessions were performed on
different days. The first session from subjects C and D are
excluded from the final evaluation, because the subject did
not follow protocol and there was not enough time to do a
rerun.

B. Feature Extraction

From each surrogate signal, the breathing waveform is
extracted. A surrogate signal captures the secondary motion
caused by respiration, where the breathing waveform resem-
bles a sinusoidal wave due to the periodic nature of breathing.
This subsection describes how the waveforms are extracted
from each surrogate signal.

1) Internal Breathing Motion: The breathing waveform is
extracted from the internal breathing motion following the
method outlined by Madore et al. [22]. A single firing of
the ultrasound transducer generates a one-dimensional signal,
capturing the amplitude of the transducer voltage as a function
of the travel time of the ultrasound pulse. All the signals in
the collected dataset can be seen as a two dimensional image

(a) (b)

Fig. 7: The face mask visible in the mirror placed above
the subject’s face (a) and a single heat image captured by
the camera with the region of interest where the average
temperature is extracted from (b).
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with axes travel time t and timestamps T . These signals were
converted into velocity measurements using

V = (λ/2π)∗ (∆θ/∆T ), (6)

where θ is the phase and λ is the wavelength. The velocity
measurements were transformed back into a single dimen-
sional signal v(T ), by applying the median operator along the
t axis. Finally, the breathing waveform is extracted through
the integral

z(T ) =
∫ T

0
v(T ′)dT ′. (7)

Furthermore, Madore et al. [22] removed a linear trend from
z(T ) but it was found that the trend in the waveforms from
this work’s data were different for each breathing pattern. The
trends were therefore separately removed for each pattern. The
trend was determined by finding pairs of the most similar
signals in the magnitude and computing the slope between
these pairs. Finally, these slopes are averaged and a linear line
with this average as slope is removed from the signal.

2) External Breathing Motion: The breathing waveform
is extracted by tracking the vertical movement of the MR-
scanner’s receiver coil in the RGB-images. The receiver coil
is placed over the subject’s abdomen and moves up and down
as a result of breathing. This movement can be tracked by
tracking the outline of one of the clear white areas on the
surface of the coil that can be seen in Fig. 6. The RGB-images
are converted to grayscale images and simple thresholding is
sufficient to reliably filter out the white areas. A vertical line
is manually placed over one of the white areas, and the top
intersection between the line and the masked area is recorded
for each image. This intersection over all the images results
in the breathing waveform.

3) Breathing Airflow: The breathing waveform can easily
be extracted from the heat images by taking the average
temperature from the subject’s face mark.

C. MRI Preprocessing

The preprocessing steps that are applied to the MR-images
are visualized in Fig. 8. The first step is to enhance the image’s
contrast and to crop it to the liver and lungs region. The region
under the liver is removed, because it includes a lot of artifacts
that are caused by the ultrasound transducer. The resulting
image is finally scaled to a range of [−1,1], to match the pixel
value range of the generator’s output, and used as ground truth
images during training.

The next step is to extract the breathing waveform from the
MR-images, that is used for synchronization and evaluation.
The respiratory-induced motion can be extracted by thresh-
olding the preprocessed image and applying morphological
operators. Finally, a vertical line is manually placed at the
highest point of the liver, and the top intersection between the
mask and the line is tracked. Taking the y-position of the point
in each frame results in the breathing waveform.

Fig. 8: Preprocessing steps of an MR-image from subject A.
The image’s contrast is enhanced before it is cropped to cut
of the artifacts. Next, the breathing motion is extracted by
thresholding and morphological operations to find the liver
border.

D. Synchronization

As stated before, the data of all surrogate signals is gathered
on the same machine. This means that the surrogate signals
can be synchronized based on their timestamps. Additionally,
the breathing waveform of external breathing motion is in-
terpolated to match the temporal resolution of the ultrasound
transducer and the heat camera, which is 50 Hz for both.

To synchronize the surrogate signals with the ground truth
MR-images, an interest point in the ultrasound waveform is
matched to the same interest point in the breathing waveform
that is extracted from the MR-images. The interest points
that were easily located in most instances, was the first fully
inhaled position during deep breathing. The MR breathing

Fig. 9: A timeline with the MR-images It and the synchronized
surrogate signals St . Since the temporal resolution of the
surrogate signals is higher than that of the MR-images, all
the surrogates collected between It and It−1 were coupled to
It .
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Fig. 10: Flow diagram of the Conditioned ProGAN architecture, inspired from [20]. The network consists of a Generator, that
takes a random vector and the surrogate signals to generate a scannerless MR-Image. The Discriminator takes scannerless and
real MR-images, and computes the Wasserstein Distance between their distributions, used for optimization.

waveform is extracted by tracking the SI displacement of the
liver border. It was chosen to perform the synchronization
based on the ultrasound data because Madore et al. [22]
showed great correlation between this and the movement of
the liver border.

Fig. 9 illustrates how input data is paired to the ground truth
data. Each MR-image It is paired to surrogate data St , which
is a combination of the ultrasound data Ut , tracked coil data
Ct , and heat data Ht , collected between It and It−1.

E. Model Architecture

The deep learning architecture used in this work is strongly
inspired by Arshad and Beksi [20], who made a conditional
version of the Progressive Growing Generative Adversarial
Network (ProGAN), that was first introduced by Karras et
al. [19].

The main components of the conditional ProGAN (cPro-
GAN) architecture are the Discriminator D and Generator
G. The networks are optimized using the Wasserstein loss
function, first introduced by Arjovsky et al. [25], with gradient
clipping, which was later introduced by Gulrajani et al. [27].
Fig. 10 introduces an overview of the entire architecture.
The structure and details of the subnetworks can be found
in Appendix A.

1) Generator: The generator G uses a random vector
zin ∼ N (0,1), where zin ∈ R32, and surrogate signals St =
{Ut ,Ct ,Ht} to generate a scannerless MR-Image Ît . The gener-
ator consists of two subnetworks: the surrogate processor GSP
and the image generator GIG.

GSP is a multi-layer perceptron (MLP) with a single hidden
layer and its purpose is to process St and extract its important
features. The surrogate signals are first concatenated into an
input vector xt = (Ut ,Ct ,Ht) and fed through GSP to construct
the feature vector x̂t ∈ R32. This feature vector x̂t and zin are

concatenated to latent vector z = (x̂t,zin), which is the input
for GIG.

The subnetwork GIG is the progressively growing generator,
similar as in the original ProGAN architecture [19]. The main
difference is that GIG is not trained directly from the lowest
resolution possible (4×4), but starts training at a resolution of
32×32. In a total of three steps, it is doubled twice using
nearest neighbor interpolation and reaches a resolution of
128×128. It was found that starting from the lowest possible
resolution resulted in images with a lower sharpness that
include artifacts. The Tanh activation function is applied on
the output layer, making the pixel value range [−1,1].

2) Discriminator: The Discriminator D consists of a single
network, the critic DCR. Unlike in [20], the critic is not
conditioned by the surrogate signals because it was found
that conditioning reduced the smoothness of the motion in
the scannerless images. The critic progressively grows during
training as outlined in the original ProGAN [19] and its
architecture is an exact mirror of GIG. It takes either a real
or scannerless MR-image as input, and outputs a single scalar
value with a linear activation function, used to calculate the
Wasserstein loss function. The resolution of the real MR-
images is reduced using average pooling and its pixel values
are scaled to a range of [−1,1], to ensure that the real and
scannerless images match pixel value range and resolution at
each step.

F. Performance Metrics

The performance of the trained generator is evaluated using
two metrics. The first metric is the Structural Similarity
Index Measure (SSIM), which assesses the similarity of two
given images. The other metric that we use is comparing the
extracted motion from the real and scannerless images, to
assess how well the RIM is captured by the model.
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Structural Similarity Index Measure: The SSIM was intro-
duced by Wang et al. [29], and compares two nonnegative
images, x and y, based on their luminance l(·), contrast c(·)
and structure s(·), using the following equation:

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ (8)

When the parameters α , β , and γ are set to 1, the equation
can be written as the following:

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(9)

The equations use the means µ and standard deviations σ

of the images, and small constants C1 and C2 that avoid zero
divisions. In practice, SSIM is applied locally, by sliding a
window over the image and averaging the result.

Liver Deformation: The liver deformation in the real and
scannerless images are compared to evaluate how well the
model captures the respiratory motion. The liver deformation
waveform can be extracted from the real and scannerless
images as explained in Section IV-C and compared using the
Mean Absolute Error (MAE) that is computed by the following
equation:

MAE(y, ŷ) =
1
N

N

∑
i=0

|yi − ŷi|, (10)

where N is the number of data points, y is the ground truth
liver motion, and ŷ is the estimated liver motion. The MAE
can be computed in millimeters, making it easily interpretable.
It can also be computed as a percentage of the average peak-
to-trough (PTT) distance of the ground truth data to make
the results comparable in different breathing amplitudes. The
PTT distance is computed as the average distance between
the peaks and the troughs in the breathing waveform that is
extracted from the ground truth MR-images. We refer to this
as the MAE percentage (MAE %).

Another metric to evaluate the motion in the scannerless
images is the coefficient of determination, often denoted as
R2. It is computed with the following equation [30]:

R2 =
TSS−RSS

TSS
= 1− RSS

TSS
, (11)

where T SS =∑(yi−y)2 is the total sum of squares, and RSS =

∑
n
i=1(yi − ŷi)

2 is the residual sum of squares. In this equation,
y is the mean value of y.

V. EXPERIMENTS

All experiments are run offline after the data sets for the
different subjects are collected. This section describes how
the performance of the trained generator and quality of the
scannerless MR-images are evaluated.

A. Data Preparation

Each breathing pattern in a single session’s data is split into
training data (80%), validation data (10%), and testing data
(10%) and a single model is trained using a combination of the
training subsets. Validation and testing is performed separately

TABLE III: Peak to trough distance of the liver motion in
millimeters (µ ±σ ), extracted from the ground truth images.

Subject Shallow Regular Deep

A
19.13 ± 5.12 35.18 ± 10.41 78.22 ± 21.81
21.57 ± 6.30 36.86 ± 8.71 97.26 ± 16.54

34.76 ± 16.92 51.37 ± 14.59 99.73 ± 14.09

B
22.97 ± 3.18 21.59 ± 6.75 53.12 ± 17.55
28.77 ± 5.45 26.52 ± 8.98 81.40 ± 12.60
20.89 ± 3.16 17.44 ± 5.28 74.73 ± 10.09

C
81.43 ± 13.08 86.43 ± 14.20 112.09 ± 23.82
42.28 ± 5.36 67.25 ± 11.29 115.38 ± 4.84
44.52 ± 4.78 101.34± 18.68 119.85 ± 4.68

D
33.13 ± 6.11 27.80 ± 5.24 21.15 ± 6.70
16.74 ± 4.12 27.48 ± 5.45 53.28 ± 9.09
21.84 ± 5.65 25.48 ± 6.76 65.94 ± 7.16

E
45.00 ± 6.26 52.86 ± 7.10 114.98 ± 16.71
33.23 ± 6.32 31.66 ± 5.66 66.29 ± 18.39
20.40 ± 4.27 23.15 ± 3.83 39.59 ± 11.63

F
34.08 ± 5.49 57.93 ± 11.50 112.85 ± 10.70
35.40 ± 6.46 56.72 ± 5.78 108.44 ± 7.74

31.73 ± 36.56 46.86 ± 9.01 112.18 ± 19.05

G
65.52 ± 35.91 67.20 ± 8.32 137.95 ± 6.13
92.26 ± 37.27 77.20 ± 9.98 127.74 ± 32.89
52.95 ± 14.67 65.08 ± 13.33 124.34 ± 5.67

Mean 38.03 ± 11.07 47.78 ± 9.09 91.26 ± 13.23

for each breathing pattern. Excluded from the training data are
the breath holds, since these had very few samples. For each
breath hold, 50% of the data was used in evaluation, and 50%
in testing.

The data from different sessions was kept separated and
training and evaluation is performed on a single session. The
reason for this is that some sessions were performed right after
each other without moving the subject and other times, there
was a break between sessions, or they were even performed on
different days. Therefore, MR-images from different sessions
may look slightly different, which deteriorates the comparative
metrics.

B. Training Procedure and Model Selection

For each session, the combined training data was used to
train the conditional ProGAN model for sixty epochs, taking
765 seconds on average when trained on a GPU (NVIDIA
RTX 4070). The generator and the discriminator are both
trained using the Adam optimizer [31], with parameters β1 = 0,
β2 = 0.99, and ε = 10−8. A linear schedular was used for
the learning rate α , that started as 0.001 and was linearly
reduced to 0.00001 after sixty epochs. During training, the
SSIM is computed on the validation data for each epoch and
model checkpoints are saved. The model checkpoint from the
epoch that resulted in the highest average SSIM score over all
breathing patterns is selected for final evaluation.

C. Evaluation Criteria

To evaluate the importance and quality of each surrogate
signal, an ablation study is performed by comparing the
accuracy of the model when it is trained using different
combinations of surrogate signals. Evaluating all possible
combinations would be infeasible, so it was decided to only
train on all surrogate signals combined, and all of them
separately (a total of four models).
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TABLE IV: Table with the results during different breathing patterns. MAE is in millimeters and MAE % indicates the MAE
as a percentage of the average PTT distance during corresponding breathing pattern. The SSIM and R2 are percentages.

Model Metric Deep Breathing Shallow Breathing Regular Breathing Mean

Combined

MAE ↓ 7.42 ± 4.95 4.75 ± 3.23 4.85 ± 3.55 5.67 ± 3.91
MAE % ↓ 8.36 14.05 11.73 11.38

R2 ↑ 55.09 -17.29 22.90 20.24
SSIM ↑ 46.49 ± 7.16 54.85 ± 6.13 52.93 ± 6.65 51.42 ± 6.65

External

MAE ↓ 7.11 ± 5.27 3.65 ± 2.72 4.30 ± 3.23 5.02 ± 3.74
MAE % ↓ 8.19 11.76 10.29 10.08

R2 ↑ 54.44 14.26 42.74 37.15
SSIM ↑ 44.52 ± 7.16 55.01 ± 5.02 52.71 ± 6.25 50.75 ± 6.14

Internal

MAE ↓ 14.61 ± 9.49 6.78 ± 4.10 9.26 ± 5.72 10.22 ± 6.44
MAE % ↓ 15.74 19.04 21.11 18.63

R2 ↑ -29.78 -105.81 -81.42 -72.34
SSIM ↑ 37.13 ± 6.84 46.93 ± 5.11 41.94 ± 6.05 42.00 ± 6.00

Airflow

MAE ↓ 17.67 ± 12.53 8.44 ± 5.40 8.42 ± 5.76 11.51 ± 7.90
MAE % ↓ 18.49 23.14 18.13 19.92

R2 ↑ -73.48 -203.04 -34.40 -103.64
SSIM ↑ 35.75 ± 8.84 44.12 ± 5.84 44.11 ± 6.00 41.32 ± 6.89

TABLE V: Table with the results during different breath holding positions. MAE is in millimeters and the SSIM is in
percentages.

Model Metric Half Exhaled Fully Exhaled Fully Inhaled Mean

Combined MAE ↓ 7.25 ± 2.38 11.08 ± 1.48 17.36 ± 1.97 11.90 ± 1.95
SSIM ↑ 39.09 ± 2.09 40.02 ± 1.52 25.08 ± 1.68 34.73 ± 1.76

External MAE ↓ 7.34 ± 1.57 8.05 ± 1.02 12.04 ± 1.32 9.14 ± 1.31
SSIM ↑ 38.88 ± 1.22 43.81 ± 1.15 26.71 ± 1.46 36.47 ± 1.28

Internal MAE ↓ 10.86 ± 1.89 16.54 ± 1.80 28.25 ± 1.80 18.55 ± 1.83
SSIM ↑ 33.81 ± 1.28 30.26 ± 1.11 18.80 ± 1.19 27.63 ± 1.20

Airflow MAE ↓ 12.15 ± 2.87 14.23 ± 3.08 28.37 ± 2.96 18.25 ± 2.97
SSIM ↑ 32.95 ± 2.21 35.27 ± 1.71 19.62 ± 1.88 29.28 ± 1.93

Each model was evaluated by assessing the quality of the
scannerless images that were generated using the testing data.
The first component of this evaluation is to assess how well
the model captures the respiratory motion by comparing the
extracted liver deformation in the real and scannerless images
using the MAE and R2 metrics. The other component is to
assess how well the scannerless images represent the real
images. This is done by computing the SSIM with a window
size of 11 × 11 pixels2 between the real and corresponding
scannerless images. A high SSIM indicates a high similarity
between two images. Section IV-F described how these metrics
are computed.

VI. RESULTS

This section presents the results that are obtained by evaluat-
ing the accuracy of the scannerless MR-images, created by the
generator. Table III shows the RIM, extracted from the ground
truth images, that is represented by the average peak-to-trough
(PTT) distance over the separate breathing patterns. It is shown
that the average RIM over all the subjects is 38.03 ±11.07 mm
during shallow breathing, 47.78 ± 9.09 mm during regular
breathing, and 91.26 ± 13.23 mm during deep breathing.

The results of the evaluation of the scannerless images
during breathing are presented in Table IV. The external model
achieved the lowest MAE over the extracted motion, with an
average value of 5.02 ± 3.74 mm. The external motion model
also performed the best in terms of the MAE as a percentage
of the average PTT distance and the R2 value, scoring 10.08%

Fig. 11: SSIM between real and scannerless images, as a
function of the window size. The left figure represents the
average SSIM over all the sessions from all the subjects during
breathing, and the right figure during breath holding.

and 37.15%, respectively. However, the SSIM is slightly higher
for the the combined model, being 51.42%, compared to
50.75% for the external motion model. The combined and
external motion model performed best during deep breathing
according to the MAE as percentage of the average PTT and
the R2 metrics. Clearly, the models trained exclusively on the
internal motion and airflow surrogates perform significantly
worse across all metrics with respect to the external and
combined models, with the R2 even being entirely negative.

The MAE and SSIM during the different breath holding
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Fig. 12: Breathing motion extracted from the real (orange line) and scannerless (blue line) images using only the external
breathing motion as a surrogate signal for a single session of all the subjects. The vertical axis represents the liver displacement
in millimeters, and the horizontal axis the frame number.

positions are presented in Table V. The performance of the
model trained on the external surrogate signal exclusively has
the best MAE and SSIM, being 9.14 ± 1.31 mm and 36.47%,
respectively. This model was the most accurate during the half
exhaled breath hold, with an MAE and SSIM of 7.34 ± 1.57
mm and 38.88%, respectively. Again, the internal motion and
airflow models perform significantly worse than the combined
and external models.

Examples of the comparison between the motion in the real
and scannerless images that are generated using the external
motion model are presented in Fig. 12. The motion extracted
from images that are generated using the combined model
are presented in Fig. 13. The figures include the motion in
the different breathing patterns for a single session of all the
subjects. Subjects F and G are missing an MR frame, resulting
in the zero value during the deep breath hold. This frame is
excluded from the final evaluation.

The average interference time per image, when generating
10,000 images, is 3.6 ms when using a GPU (NVIDIA RTX
4070) and 7.9 ms when using a CPU (AMD Ryzen 7 5800X).
The difference between the different models was negligible.

As previously stated, the SSIM values are all computed with

a window size of 11 × 11 pixels2. Fig. 11 presents the SSIM
values as a function of the window size. It can be seen that
the SSIM gradually increases as the window becomes larger.
During breathing, the combined model and the external model
result in similar SSIM values across all window sizes. During
breath holding, the external model results in a higher SSIM
value than the combined model. During both breathing and
breath holding, the airflow and internal motion models perform
significantly worse with respect to the combined and external
motion models.

Three comparisons of real and scannerless images are
presented in Fig. 14. The examples include the image with
the highest, lowest, and median SSIM over all three sessions
of subject A.

VII. DISCUSSION

This research proposed a deep learning solution to generate
scannerless MR-images for assistance during image guided
interventions. Different surrogate signals were compared that
capture the internal breathing motion, the external breathing
motion, and the breathing airflow. A combination of all
surrogate signals was also investigated. Data was collected
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Fig. 13: Breathing motion extracted from the real (orange line) and scannerless (blue line) images using all the surrogates for
for a single session of all the subjects. The vertical axis represents the liver displacement in millimeters, and the horizontal
axis the frame number.

Fig. 14: Example images, where each column represents the
image with the worst, median, and best SSIM from subject
A, generated using the combined model. The top row are the
scannerless images, and the bottom row are the corresponding
real images. The SSIM is computed with a window size of
11.

in human subject experiments, where different breathing pat-
terns were induced and separately evaluated. Evaluation was
performed using the SSIM and by comparing the extracted
motion from the real and scannerless images using the MAE
and R2 metrics.

It was hypothesized that the use of a combination of all sur-
rogates would improve the model’s capability to differentiate
between the different breathing patterns and that its overall
performance would increase. However, it was found that the
model, trained on a combination of all surrogates, performed
slightly worse than the model trained on just the external
breathing motion surrogate. This is due to the poor quality
of the internal and airflow surrogate signals. Especially, the
airflow was very noisy and in some instances would only result
in a reliable waveform during deep breathing. This is mainly
due to the heat camera being positioned outside the magnetic
field of the scanner, making the range from the subject’s face
mask fairly high. There was also trending present in the airflow
surrogate, because the mirror and surrounding scanner would
slowly heat up during image acquisition. The internal motion
surrogate did result in high quality breathing waveforms, but
the linear detrending was not sufficient in instances where
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the signal included a nonlinear trend. A better detrending
method must therefore be investigated to improve the internal
breathing motion waveform, or the feature extraction could be
performed by a deep learning method, similar to [14].

The internal breathing and airflow surrogates being of low
quality is confirmed by the bad performance of the models
that are exclusively trained on one of these surrogates. The
high amount of noise in the airflow surrogate caused multiple
temperature observations to correspond with the same liver
position, and thus roughly the same image. This caused the
model to collapse in most instances and always generate the
same low quality image. The trending in the internal breathing
surrogate signal caused the model to be entirely unfamiliar
with the observations in the testing data, causing inaccurate
movement in generated images, or mode collapse. The low
quality of these surrogate signals also slightly deteriorates the
results of the combined model. This is especially clear during
shallow breathing, as can be confirmed by comparing the liver
border position for subjects A and C in Fig. 12 and Fig. 13.
The model trained on all surrogate signals generates images
with minimal movement due to the noisy airflow surrogate,
while the model trained exclusively on the external motion
surrogate signal produces fairly accurate movement.

Another challenge was the manual synchronization between
the surrogate signals and the real MR-images. This was
mainly the case when the peaks of the MR and US breathing
waveforms were rounded instead of sharp, because this made
it challenging to find two perfectly matching positions. This
problem can be clearly seen in the extracted breathing motion
from subject C in Fig. 12. The breathing motion from the
scannerless images seems to be slightly delayed. This is
also the cause of the higher MAE as a percentage of the
PTT during shallow breathing, because the error caused by
the delay is proportionally larger when the PTT is low. We
believe that bad synchronization also caused mode collapse in
subjects D and E. The waveforms from the internal breathing
surrogate from these subjects were wide and flat. This made
it difficult to pinpoint the exact peak of the breathing cycle,
leading to synchronization errors of up to half a cycle. This
means that bad synchronization can be a result of low quality
waveforms and that improving the quality of the waveforms
should make synchronization more accurate. It is however still
recommended to investigate a system that can detect pulses
from the MR-scanner to achieve perfect synchronization that
is independent of the waveform’s quality and not prone to
human error. This has previously been done in [13], [14].

It is also clear that the performance during any of the
breath holds is significantly lower than during breathing. This
could have several reasons. Firstly, the fully inhaled and fully
exhaled breath holds are generally at extreme liver positions
that are not reached during any of the breathing patterns,
meaning that there is no training data for the liver position
during these breath holds. Another possible reason is that a
window of surrogate data is used as input for the generator,
meaning that the gradient is never entirely zero in the training
data, that only consists of breathing data. When a window of

surrogate data during a breath hold is used as input, its gradient
is zero everywhere, which the model has not seen before. A
possible improvement for these problems is to include breath
holds in the training data or to decrease the window size of
the input vectors, so that an entirely flat input window is more
likely reached in the extremes of the breathing data.

Finally, the SSIM is relatively low, being only 51.42% and
50.75% on average for the combined and external motion
model during breathing, respectively. This is substantially
lower than the results from Veenstra [16]. Fig. 11 showed that
the SSIM quickly increases as the window size is increased, in-
dicating that the overall structure of the images are accurately
modeled but are lacking in details. This is confirmed by visu-
ally inspecting the results. We generally saw that boundaries
like the liver border and abdominal wall are slightly blurred
and not well defined. We believe that adding complexity to the
model, by increasing its number of parameters could improve
the quality and sharpness of the scannerless images, improving
the SSIM. Also, the vessels in the lungs were mostly not well
defined. The heartbeat causes slight changes in the brightness
and shape of these vessels, whereas they remain constant in
the scannerless images. This is because the generator has no
information about the heartbeat. Adding a surrogate signal
that is highly correlated to the heartbeat could improve the
modelling of the blood vessels, which should increase the
SSIM.

The average interference time for a single image of 3.6 ms
when using a GPU and 7.9 ms when using a CPU suggests
that the model can be used for real-time image generation.
However, further testing is needed to confirm that the overhead
of the waveform extraction is minimal enough to sustain real-
time performance.

We believe that the short training times allow for a clinical
scenario where the data collection and training of the model is
done right before the actual procedure, where the scannerless
MR-images can be used to give clinicians extra information
on the current liver position while the patient is out-of-bore.

VIII. LIMITATIONS

The proposed solution is able to generate scannerless MR-
images while taking into account the RIM. However, a lim-
itation to the proposed solution is that RIM is not the only
source of motion and deformation in the liver. Other sources of
deformation might include the clinicians touching and moving
tissue, insertion of a needle during ablation or a biopsy, and the
heartbeat. These sources are not modeled and will therefore
not be reflected in the scannerless images.

Another limitation is the location of the RGB-camera in
regard to the position that is being tracked. When the subject
is moved out-of-bore, after training the model, the position of
the tracked point in the images changes, potentially causing
the correlation between the surrogate and the MR-images to
be entirely lost. Regularization techniques that make the input
data independent on the position of the camera with respect to
the point that it is tracking could be investigated to resolve this
issue. Another solution could be to mount the camera on the
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bed where the subject is laying on, ensuring a fixed position
of the camera, relative to the point that it is tracking.

IX. FUTURE WORK

The presented work serves as a strong foundation for further
developments aimed at enhancing its clinical usability. To
improve the practical utility of this approach, several key
extensions are suggested.

The first suggestion is to expand the single plane image
generation of the presented work, to the generation of the
entire 3D volume. This would give the clinician significantly
more information about the tumor’s surrounding tissue and
could help deciding the best needle insertion angle, potentially
increasing the accuracy and safety of procedures.

Another suggestion is the addition of other sources of
motion in the model by using surrogate signals that are highly
correlated to the target motion and adding them as condition-
ing of the generator. An example could be to incorporate tissue
and needle properties so that the tool-tissue interaction can
be accounted for in the scannerless images. This could also
make it possible to show the current location of the needle
in the scannerless images. Another example is to incorporate
heartbeat monitoring data in the model, to account for slight
movements caused by the heartbeat. These enhancements
would not only improve the realism of the scannerless images
but also provide clinicians with critical information that could
aid in decision-making during surgery.

X. CONCLUSION

This research proposed the use of a progressively growing
GAN for scannerless MR-image generation using multiple
surrogate signals. The following main research question was
addressed: How can a generative adversarial network be uti-
lized to generate real-time scannerless MR-images using a
number of surrogate signals? Data was collected in human
subject experiments where surrogate data and MR-images
were simultaneously collected. The following surrogate signals
were used: an ultrasound transducer to capture the internal
breathing motion, optical tracking of visual markers to capture
the external breathing motion, and a heat camera to capture
the breathing airflow. This work compared the use of a
combination of these surrogate signals with using each of them
separately.

In response to the first sub-question—How can information
about inter- and intra-variable respiratory patterns be extracted
from the surrogate signals and combined as input for the
GAN?—it was found that extracting the external breathing
information was the most reliable. The internal breathing
information included a linear trend that was hard to remove
from the data and the airflow data was very noisy, making it
challenging to extract reliable breathing information.

The findings from the first sub-questions are confirmed in
the second sub-question: ”How much do the scannerless im-
ages resemble the real images in different respiratory patterns,
and what is each surrogate signal’s influence on this result?” It
was found that the model trained exclusively on the external

breathing surrogate resulted in scannerless images with the
most accurate breathing motion. However, the scannerless
images lack in detail but the overall structure is captured
fairly accurately. The results did show that it is challenging
to generate scannerless MR-images during breath holds when
there are not included in the training dataset. The combined
model showed slightly worse results and the internal breathing
model and airflow model were significantly worse across all
metrics and breathing patterns. This is due to the lower quality
breathing waveforms that resulted from these surrogate signals.

It was found that tracking the external breathing motion
was a reliable surrogate signal that was additionally cost
efficient and easy to setup. Its limitation is that the correlation
between MR-images and the tracked markers are lost when
the subject is moved, meaning that regularization techniques
have to be investigated to make it usable in a real world
scenario. We were unable to get accurate results using the
ultrasound transducer, but it could be greatly improved when
using a more adequate detrending method, or by using a deep
learning feature extractor. Its advantage is that it is attached
to the subject, meaning that the correlation is preserved when
moving the subject. The heat camera seems to be an unsuitable
surrogate signal when using MR as an imaging modality, since
it has to be positioned far away from the subject.

For further research, it is recommended to reconsider the
chosen GAN architecture, or add complexity to the model
used in the proposed approach to improve the quality and
details of the scannerless images. Another suggestion is to
generate the entire 3D volume of the abdominal area instead of
a single plane, to provide more information on the surrounding
tissue of a tumor. Additionally, it should be investigated how
other sources of motion could be incorporated in the model.
These sources could include the heartbeat, needle insertion,
and the clinician touching tissue. We believe that this research
demonstrated the potential of using a GAN for scannerless
MRI generation and that together with the proposed directions
of future work, percutaneous procedures in the liver can
become more precise and easier to perform.
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APPENDIX A
GENERATOR AND DISCRIMINATOR ARCHITECTURE

Table VI introduces the structure of the surrogate processor
network. This network takes either one of the surrogate signals,
or a concatenation of the surrogate signals. Therefore, the
shape of the input is denoted as N. The network consists of
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TABLE VI: Architecture of the surrogate processor

Surrogate Processor Act. Output shape Params
Input - 1×N -
Fully connected ReLU 1×64 N ·64+64
Fully connected ReLU 1×32 2080
Fully connected ReLU 1×32 1056
Total 64N + 3200

TABLE VII: Architecture of the generator

Generator Act. Output shape Params
Latent vector - 256×1×1 -
Conv 4×4 ReLU 256×4×4 1,048,832
Conv 3×3 ReLU 256×4×4 590,080
Upsample - 256×8×8 -
Conv 3×3 ReLU 256×8×8 590,080
Conv 3×3 ReLU 128×8×8 295,040
Upsample - 128×16×16 -
Conv 3×3 ReLU 128×16×16 147,584
Conv 3×3 ReLU 64×16×16 73,792
Upsample - 64×32×32 -
Conv 3×3 ReLU 64×32×32 36,928
Conv 3×3 ReLU 32×32×32 18,464
Upsample - 32×64×64 -
Conv 3×3 ReLU 32×64×64 9,248
Conv 3×3 ReLU 16×64×164 4,624
Upsample - 16×128×128 -
Conv 3×3 ReLU 16×128×128 2,320
Conv 3×3 ReLU 8×128×128 1,160
Conv 1×1 Tanh 1×128×128 9
Total 2,818,161

an input layer, one hidden layer, and an output layer with the
ReLU activation function after each layer.

Table VII introduces the structure of the generator. The
generator consists of six blocks that each returns a scannerless
image in a different resolution. Each block first upsamples the
output of the previous block, using nearest neighbor interpo-
lation, and then performs two convolutions with a kernel size
of 3×3. The ReLU activation function is applied after each
convolution. The final convolution with a kernel size of 1×1 is
to transfer the eight channel output of the previous convolution
to a single channel grayscale image. The final Tanh activation
function is performed so that the pixel range of the output
image is [−1,1].

Table VIII introduces the structure of the discriminator. It is
an exact mirror of the generator, again with six blocks where
two convolutions are performed with a kernel size of 3×3.
Each block takes an image with a different resolution and
it downsamples the image at the end using average pooling.
The LeakyReLU activation function with a slope of 0.2 is
applied after each convolution. In the final block, minibatch
standard deviation was applied to increase the variation, which
is specified in [19]. The first convolution with the 1×1 kernel
size is to transform the single channel input image to the
amount of channels that the is required by the block. The
final part is the fully connected layer with a linear activation
function that outputs a single value that is used to compute
the Wasserstein distance.

TABLE VIII: Architecture of the discriminator

Discriminator Act. Output shape Params
Input image - 1×128×128 -
Conv 1×1 LReLU 8×128×128 16
Conv 3×3 LReLU 8×128×128 584
Conv 3×3 LReLU 16×128×128 1,168
Downsample - 16×64×64 -
Conv 3×3 LReLU 16×64×64 2,320
Conv 3×3 LReLU 32×64×64 4,640
Downsample - 32×32×32 -
Conv 3×3 LReLU 32×32×32 9,248
Conv 3×3 LReLU 64×32×32 18,496
Downsample - 64×16×16 -
Conv 3×3 LReLU 64×16×16 36,928
Conv 3×3 LReLU 128×16×16 73,856
Downsample - 128×8×8 -
Conv 3×3 LReLU 128×8×8 147,584
Conv 3×3 LReLU 256×8×8 295,168
Downsample - 256×4×4 -
Minibatch std 257×4×4 -
Conv 3×3 LReLU 256×4×4 592,384
Conv 4×4 LReLU 256×1×1 1,048,832
Fully connected Linear 1×1×1 257
Total 2,231,481
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