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Abstract

Veno-arterial extracorporeal membrane oxygenation (VA ECMO) provides temporary
cardiac support during cardiogenic shock but is resource-intensive and associated with sig-
nificant mortality. This study aims to develop a machine learning model to predict weaning
success using continuous hemodynamic parameters early in the VA ECMO treatment. The
parameters used to predict weaning success include heart rate, pulse pressure, mean ar-
terial pressure, central venous pressure, vasoactive inotropic score and ECMO flow from
the first three days of the ECMO run. Additionally, age, gender, and lactate levels were
considered. Weaning success was defined by ICU mortality, VAD implementation, heart
transplantation, and the need for a second weaning trial. A total of 108 ECMO runs were
included. Features were extracted by calculating the slope, standard deviation, and mean
for each day and for the full three-day period. Machine learning models, specifically ran-
dom forest, KNN, logistic regression, gradient boosting, and support vector machine, were
developed and compared based on RMSE, MAE, and R². KNN and random forest models
showed the best results, with RMSE of 0.48 and 0.48, MAE of 0.45 and 0.42, and R² of
0.07 and -0.04, respectively. These results are insufficient for implementation, likely due to
the non-predictive nature of the features used. The findings point to the need to reconsider
the input data and model design to improve the prediction accuracy of VA ECMO weaning
outcomes.
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1. Introduction

Cardiogenic shock is a severe medical condition where the heart cannot provide enough
cardiac output to meet metabolic demands of the body. This results in end-organ hypop-
erfusion, often due to myocardial infarction, severe heart failure, or cardiomyopathy [1].
Cardiogenic shock accounts for 6-10% of intensive care unit (ICU) admissions and has a
mortality of roughly 60% [1]. In cases where the condition cannot be managed with other
therapies such as medication or revascularisation, veno-arterial extracorporeal membrane
oxygenation (VA ECMO) can be considered. VA ECMO is a lifesaving technology that
provides temporary cardiac and circulatory support in patients with cardiogenic shock [2].
VA ECMO ensures continuous organ perfusion to allow the patient time to stabilise and
facilitate cardiac recovery, provide time for decision making or bridge time to heart trans-
plantation or ventricular assistive device (VAD) [3]. During treatment of cardiogenic shock
with VA ECMO, physicians have to find out if the heart can recover sufficiently for the
patient to survive without mechanical support, see Figure 1.1. This will determine if the
patient can be weaned, decannulated and potentially recover or if alternative treatments
such as heart transplantation or ventricular assist devices (VADs) need to be considered. If
these options are not viable, the focus will shift to removing the ECMO and transitioning
to palliative care.

Despite the increasing use and understanding of the procedure, VA ECMO therapy
remains linked to significant mortality rates and complications [2]. In the UMC Utrecht,
the mortality of ECMO patients was 56% over the past twelve years and in 57% of the cases
weaning was not possible [4]. The technique also requires considerable financial and human
resources [5]. Therefore, physicians aim to differentiate as early as possible between patient
groups who can recover without mechanical support and those who cannot. Early prognosis
of the feasibility of weaning can ensure efficient use of ECMO equipment and related human
resources, reduce the potential for severe complications, and identify patients unlikely to
have successful weaning trials [6, 7]. This is a significant percentage of the VA ECMO
patients. In the UMC Utrecht, 11% of the VA ECMO patients require either a VAD
or heart transplantation [4]. 21% of the patients who were weaned did not survive until
hospital discharge, even though they were deemed ready for weaning [4].

Figure 1.1: Flowchart of a simplified version of the clinical problem: After a patient with cardiogenic
shock is placed on VA ECMO, the heart’s potential for recovery is evaluated. If it can be concluded that
sufficient myocardial recovery occurs, the patient can be weaned and recover. When the patient does
not show potential for recovery of the native heart alternatives like heart transplantation (HTX) or a
ventricular assist device (VAD) are considered. If these are not possible, the patient will be supported
with palliative care.
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Currently, readiness for weaning is clinically assessed by evaluating the available in-
dividual clinical, hemodynamic and echocardiographic parameters on a day-to-day basis,
although accurate prediction of weaning success in the early stages of the VA ECMO
treatment is not yet possible [8, 9]. However, exploration of prognostic parameters from
the early stage of the ECMO treatment might be able to identify these patients requiring
consideration of alternative solutions, such as heart transplantation or VAD therapy.

For early prediction of the cardiac status of the patient and thus early prediction of
weaning success, machine learning can be a promising option. It has the potential to
use multiple parameters and also incorporate the trends of clinical and hemodynamic
parameters over time to predict weaning success. Therefore, it has the potential to help
physicians determine for which patients the VA ECMO treatment can lead to recovery and
for which patient the VA ECMO treatment cannot. Machine learning is the development
of algorithms and models that enable computers to learn from data and make predictions
or decisions without being explicitly programmed. It can generalise from examples and
discover hidden patterns within large datasets that are not visible using normal statistics

Machine learning models have shown promising results in predicting hospital mortality
in VA ECMO supported patients [10, 11, 12, 13]. However, none of these studies have
distilled predictors for weaning success in the initial phase of the VA ECMO treatment.
Additionally, these models are designed to be used for predicting survival prior to VA
ECMO implantation, therefore these results cannot be extrapolated to patients already
receiving VA ECMO support. Furthermore, these models do not consider the continu-
ous interaction of the VA ECMO circuit with the native heart and circulation. In the
ICU, continuous monitoring of hemodynamic status, respiratory status and organ perfu-
sion provide a multitude of data [14]. These data hold substantial information regarding
ongoing changes within the patients hemodynamics and are particularly suitable for ma-
chine learning models, as they may reveal intricate patterns underlying the hemodynamic
responses.

To address the need for a tool that facilitates early prognostication in VA ECMO
supported cardiogenic shock patients, this study aimed to develop a regression model to
predict the probability of successful weaning. This information could subsequently be
utilised in decision-making processes during the VA ECMO treatment. The objective of
this study is to develop a model that predicts whether cardiac recovery during VA ECMO
support will be sufficient to provide adequate circulation and oxygenation after VA ECMO
support is weaned using continuous hemodynamic parameters.
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2. Background

In the background section, more details will be provided about the clinical course of VA
ECMO treatment and the machine learning models used in similar studies. Furthermore,
the specific ML models to be employed will be discussed, along with the rationale for its
selection.

2.1 Clinical course of VA ECMO

Figure 2.1: Schematic overview of venoarterial Extracorporeal Machine Oxygenation. In this configura-
tion, blood is drained via a cannula in the v. femoralis, oxygenated and pumped back into the bloodstream
in the a. femoralis. From “Veno-arterial ECMO” by Scott et al. [15].

ECMO can provide patients time to stabilise and facilitate organ recovery without
relying on the heart to oxygenate the body. ECMO involves diverting blood from the
patient’s body to an external membrane oxygenator, which removes carbon dioxide and
adds oxygen before returning the blood to the body, effectively bypassing the heart and
lungs. Venoarterial-ECMO (VA ECMO) refers to a specific configuration in which one
cannula, typically inserted into the femoral vein (v. femoralis), withdraws blood from the
body and sends it through an artificial membrane oxygenator. The oxygenated blood is
then pumped back into the patient’s body through another cannula, typically inserted into
the femoral artery (a. femoralis), as illustrated in Figure 2.1 [15]. The blood is pumped
into the aorta under high pressure against the native flow of the heart. While life-saving,
VA ECMO patients can suffer from a large amount of complications such as thrombotic
and bleeding complications, infectious complications and left ventricular overloading [2].
These complications can result in death and permanent damage to the heart and other
organs. Left ventricular overloading can occur when the left ventricle struggles to pump
effectively against the elevated afterload resulting from the flow delivered by the ECMO
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cannula. The dilation of the ventricle caused by the overloading can exacerbate heart
failure [16].

Figure 2.2: Clinical course of ECMO treatment. From ‘Patient-centered weaning from venoarterial
extracorporeal membrane oxygenation: ”A practice-oriented narrative review of literature”’ by Hermens
et al. [9]

The clinical course of the VA ECMO treatment can be divided in a stabilisation and
organ recovery phase, which overlap, see Figure 2.2. During the stabilisation, the organ
perfusion is increased due to the ECMO support. Inadequate circulation caused by the car-
diogenic shock results in an increased lactate. During ECMO support, the organ perfusion
is increased and the lactate will decrease.

In the organ recovery phase, the goal is to provide organ perfusion to allow the patient
to survive to facilitate time to make cardiac recovery possible. When cardiac recovery
occurs, the myocardial contractility will increase over time during ECMO support. At the
bedside, this can be assessed by a visual improvement in echocardiographic parameters
and often an increase in pulse pressure, which is the difference between the systolic ar-
terial pressure and diastolic arterial pressure [17]. If stabilisation in the organ perfusion
phase is achieved and myocardial recovery is detected, reducing ECMO support is essen-
tial with ECMO extraction as an ultimate goal. Readiness for weaning is determined by
evaluating the hemodynamic parameters, cardiac ultrasound and clinical presentation of
the patient. In this study, weaning is defined as the process of reducing and eventually
discontinuing ECMO support once a patient’s heart or lungs have recovered enough to
function independently.

First, VA EMCO flow will be reduced gradually. If ECMO flow is reduced to 2 L/min
and the hemodynamic status of the patient remains stable, pulmonary function has im-
proved, and end-organ failure is largely resolved, a weaning trial can be attempted. In a
weaning trial the ECMO is reduced further to a minimal flow of 0.5 – 1 L/min. During a
weaning trial, cardiac function is monitored by multiple hemodynamic, echocardiographic
parameters. These are used to judge if the patient tolerates the weaning trial and thus if
the weaning trial was successful [9]. After a successful weaning trial, decannulation can
be scheduled. In case of a failed weaning trial, the ECMO flow will be increased to en-
sure adequate perfusion and weaning trial can be reattempted after at least another 48
hours. When weaning is not possible, heart transplantation, VAD or palliative care are
the remaining options [3].
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2.2 Literature review of machine learning models

Multiple studies have already attempted to use machine learning to predict outcome in
ECMO patients. [10, 11, 12, 13, 18, 19]. Aim of these studies is both to provide support
in deciding which patients are good ECMO candidates, and to provide support during the
ECMO treatment. These studies are relevant to this research as they focus on predicting
outcomes of VA ECMO. To identify promising machine learning models for this study and
review previous work, the following sections elaborate on and compare these studies.

In the study of Stephens et al. [10] multiple models (logistic regression, gradient boost-
ing, support vector machine, neural networks and adaboost ensemble) were trained to
predict hospital mortality in VA ECMO patients to support physicians in decision making
of the implementation of VA EMCO. The features that were used to predict mortality are
lactate, blood pressure and breathing rate as well as information about the type of surgery
done and intubation time six hours prior to implantation of the ECMO. They found lactate
and age to be important features for mortality. The Neural Networks model performed
best with a sensitivity of 82% and a precision of 78%.

Wang et al. [11] used multiple logistic regression to predict hospital mortality for
patients whom had undergone a CABG operation and needed VA-EMCO for cardiogenic
shock. They found age, presence of left main artery disease and lab values to be predictive
of hospital mortality and achieved a AUC of 0.85. Ayers et al. [12] also developed a neural
network model to predict survival to discharge based on lab values, but chose the lab
values of the first 48 hours of the EMCO treatment. They achieved an overall accuracy of
82% and an AUC of 0.92. Braun et al. [13] used a conditional interference tree to predict
survival to hospital discharge based on various lab values prior to VA ECMO implantation.
They achieved an error rate of 35%, with an AUC of 0.71. The same group used a random
forest approach to identify which features are predictive of in-hospital death and found
urine output to be statistically significant [19]. Xue et al. [18] used Gradient Boosting to
provide guidance in ECMO allocation 48 hours prior to implantation. Clinical values such
as comorbidities, patient characteristics and medication use were used as features. The
result was an AUC of 0.94.

These studies show the potential of predictive modelling to improve ECMO care by
providing prognostic tools for physicians. However, none of these studies have used con-
tinuous hemodynamic parameters throughout ECMO support to train a model. These
are the values weaning currently is based on and which gives the most direct available
representation of the hemodynamic status of the patient. Also, only hospital mortality or
ICU mortality was taken as outcome parameter. This includes patients who have received
a heart transplant or VAD in the successful category, even though their heart has not
recovered. Developing a model with continuous parameters and a newly defined criterion
for weaning success would be an innovative approach.

2.3 Machine learning models

This study selected five machine learning models for their strong performance in prior
studies [10, 20, 21] and suitability for this specific task; K-Nearest Neighbours (KNN)
regression, Support Vector Regressor (SVR), Logistic Regression (LR), Random Forest
Regressor (RF), and Gradient Boosting (GB). These models were chosen, because they
perform well on smaller datasets, can predict probabilities, handle high-dimensional data,
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and provide interpretable results regarding feature influence on the prediction, enabling
physiological explanations of their predictions.

KNN is effective for small datasets, KNN predicts outcomes based on the majority class
of the k nearest neighbours in the feature space [22]. SVR is ideal for high-dimensional
data, finding a hyperplane that best separates classes while minimizing errors [22]. LR is a
linear model for binary classification that estimates the probability given input belongs to a
certain class based on its features. It is useful for interpreting confidence levels but limited
to linear relationships [22]. RF is an ensemble method that builds multiple decision trees
and averages their predictions [23]. It handles high-dimensional data well and provides
feature importance, but may be less easy to interpret due to fact that it is an ensemble
method constructed of multiple trees, so the effect of each feature on the outcome is harder
to quantify [23]. GB is another ensemble method that sequentially improves decision trees,
excelling in accuracy but requiring careful hyperparameter tuning [24]. It performs well
even with small sample sizes, but has the same problem with interpretability as RF [21].
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3. Method

3.1 Data collection

This study uses the database from a previous study by Meuwese et al. [4] as the initial co-
hort for extracting data to train the machine learning models. They collected information
of patients who underwent ECMO treatment at the Intensive Care Unit of the University
Medical Centre Utrecht between 2007 and 2022. This information includes data on demo-
graphics, comorbidities, EMCO indications, ECMO set-up, reason for discontinuation of
the EMCO trial, complications and mortality over a 12-month follow-up period.

3.1.1 In- and exclusion criteria

From the database of Meuwese et al. [4], adult patients with a VA ECMO configuration
were included. Exclusion criteria for the current study were a non-cardiac indication for
ECMO, presence of mechanical circulatory support (MCS) prior to or during EMCO treat-
ment and EMCO support duration <72 hours (Table 3.1). Patients with a non-cardiac
indication for VA ECMO support have a different recovery pattern than patients who
receive VA EMCO support for cardiogenic shock, therefore these patients were excluded
from this study [14]. The presence of MCS prior to and during ECMO treatment would
artificially affect hemodynamic parameters, thus prohibiting assessment of native cardiac
function, so these patients were also excluded from analysis [25, 26]. The goal is to pre-
dict weaning success based on parameters measured during the first three days of ECMO
support. Therefore, a dataset with the full first 72 hours was necessary to train the model
and patients who were less than 72 hours on ECMO were excluded.

Inclusion Exclusion
Age ≥ 18 years Non-cardiac indication for VA ECMO

VA ECMO config. Ventricular assistive devices present during ECMO implantation
< 72 hours on ECMO

Table 3.1: In- and exclusion criteria.

3.1.2 Input parameters

The data collected for this study included patient demographics and parameters to deter-
mine outcome from the database of Meuwese et al. [4]. The demographic data that was
collected are age at the time of ECMO implantation and gender. Outcome parameters
included ICU mortality, reason for ECMO discontinuation, and occurrence of a second
ECMO trial, see appendix A.

The continuous hemodynamic parameters used to train the models are mean arterial
pressure (MAP), pulse pressure (PP), lactate levels, heart rate, central venous pressure
(CVD), VIS, and VA ECMO flow, as detailed in Table 3.2. The parameters were chosen
as they reflect the hemodynamic status of the patient, specifically the functioning of the
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heart during ECMO treatment. PP indicates the contribution of the native heart to
the blood pressure, given that ECMO flow provides only non-pulsatile pressure. PP is a
marker for cardiac dysfunction in VA ECMO, especially in cases of cardiogenic shock [14].
MAP and heart rate can reflect hemodynamic stability [8]. The amount of vasoactive and
inotropic medication, represented by the vasoactive inotropic score (VIS) and VA ECMO
flow indicate the level of support the patient requires [27]. The central venous pressure
(CVD) can be used to assess preload and volume status. Additionally, lactate levels have
been identified as important features in previous studies and were also be included in the
model [10, 11].

Parameter Unit Frequency of measurement
Pulse pressure (ABPs-ABPd) mmHg /min

Mean arterial pressure mmHg /min
Heart rate /min /min

Central venous pressure mmHg /min
Vasoactive inotropic score (VIS) - /min

Flow from ECMO L/min /hour
Lactate Mmol/L /day

Table 3.2: Hemodynamic parameters with unit and frequency of recorded measurements.

Hemodynamic parameters for the included patients were retrieved separately from the
electronic health record Metavision as these were not collected by Meuwese et al. PP
was not directly available from Metavision and was calculated by subtracting the diastolic
arterial blood pressure (ABPd) from the systolic arterial blood pressure (ABPs) [17]. The
VIS was calculated using Equation 3.1 and was determined for every minute of the ECMO
trial.

The parameters were collected during the first three days of ECMO support. The early
phase, just after ECMO initiation, provides valuable insights into the patient’s initial con-
dition during shock and the rate of circulatory stabilisation and organ recovery. Utilising
data from the first days of the VA ECMO treatment also enables the model to make pre-
dictions after the first days. The training period for the data is a trade-off between more
extensive information on a patient from a longer period and the ability to make early pre-
dictions from a shorter period. Additionally, a longer time period reduces the number of
patients available for inclusion. A three-day period was selected because it reveals signifi-
cant differences in pulse pressures between successfully and unsuccessfully weaned patients
and includes a sufficient number of patients [17, 25].

VIS = Dobutamine dose(µg/kg/min) + 100 · Epinephrine dose(µg/kg/min)

+ 10 ·Milrinone dose(µg/kg/min) + 10000 · Vasopressin dose(units/kg/min)

+ 100 · Norepinephrine dose(µg/kg/min) [27]
(3.1)

3.2 Weaning success

The model aimed to predict whether a the native heart function improves sufficiently
during ECMO treatment to enable successful weaning. To develop and train a machine
learning model, it is essential to define weaning success in order to categorise the input
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data on an outcome. Within literature, various definitions for weaning success have been
described including “alive without mechanical cardiac support for 48 hours, 30 days after
ECMO extraction or at ICU discharge” [9]. Also, different survival metrics are used in
similar studies to determine weaning success; 30-day mortality, in hospital mortality and
ICU mortality are all used [9, 10, 11, 28].

In this study, weaning was considered successful when; the patient survived the ICU
admission, without the need for renewed mechanical support (temporary or permanent) of
a heart transplant within 30 days. ICU mortality was chosen with the intention to exclude
all causes not directly related to ECMO weaning and extraction [7]. The first ECMO run
was classified as a weaning failure if a second ECMO run was performed within 30 days
[9]. The second run was classified based on the remaining conditions. The occurrence
of a heart transplantation or VAD implantation was determined by looking at the reason
for discontinuation of ECMO. These outcome parameters were recorded up until the last
follow up of the study, which was at 12 months after initiation of ECMO support. The
exact parameters and the corresponding options can be found in Appendix A.

3.3 Data preparation

Figure 3.1: Flowchart of data preparation and feature selection. Parameters are divided in four groups
based on the different data preparation methods. 1) High frequency input includes heart rate, PP, MAP,
VIS, EMCO flow and central venous pressure. 2) Outcome parameters are the parameters used to deter-
mine weaning success. These include reason for discontinuation, cause of death and occurrence of a second
weaning trial. 3) Rest: includes heart rate, PP, MAP, VIS and central venous pressure.

An overview of the data preparation and feature selection steps can be found in Figure 3.1.
It shows the different methods that have been applied to each of the different parameter
categories. The parameters are categorised in high frequency input (heart rate, PP, MAP,
VIS, EMCO flow and central venous pressure), lactate, age and gender, and the outcome
parameters on which the weaning success is based. These categories were created as the
parameters in these categories are processed differently from each other, as the frequency
and nature of the data requires a different method of data preparation.
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3.3.1 Missing values

Missing values were replaced using linear interpolation. Linear interpolation estimates
values between two data points by constructing a linear equation that connects these
points [29]. Interpolation was performed on periods with missing data up to one hour.
ECMO trials with more than four hours of missing data on one of the high frequency
(/min) parameters were excluded, because this would cause serious error on the features
as more than 15% of data on which the features are based would be missing. Age, gender,
lactate and the outcome parameters did not have missing values.

3.3.2 Outliers

All hemodynamic parameters, except for lactate, were tested on having a normal distri-
bution. A Shapiro Wilk test was performed on these six values and found a non-normal
distribution [30]. This was also found based on visual inspection of Q-Q plots, see ap-
pendix B. Based on the Q-Q plots there seems to be a skewed distribution. For this type
of distribution a non-parametric outlier removal based on an interquartile rang is a robust
method and can also be used on future data without needing to adhere to strict assump-
tions [31]. Outliers of MAP, PP, CVD, HR and VIS were removed based on a quantile
range. Datapoints above the 97.5 percentile and below the 2.5 percentile were removed,
based on the entire included population per parameter.

3.3.3 Flow from ECMO

The parameter flow from the VA ECMO was not subjected to removing outliers. The
flow is manually registered by nurses directly read from the machine and is therefore less
likely to be subjected to noise caused by faulty equipment. Upon inspection of the data
some values were non-physiological (> 7L/min [15]) and seemed to be entries of the flow in
rounds per minute instead of litre per minute. These datapoints were removed by replacing
all values above 7 l/min with a NaN value. The flow from the ECMO was forward filled
to /min instead of /hour, by assuming the flow stayed the same until a new value was
entered.

3.3.4 Normalising data

The values of the parameters where normalised to a value between 0 and 1, based on the
values of the entire population. This is called min-max scaling [32]. The goal is to equalise
the features and facilitate the identification of the best performance of the algorithm. The
upper and lower boundary will also stay in place after implementing the model, when
inputting the data on which to predict. Therefore, it must be assumed that the population
used to train the model is representative of the general population of individuals on VA
ECMO for future predictions.

3.4 Feature extraction

A feature extraction method was chosen to convert continuous data into interpretable
features while preserving as much of the information on variability and trends of the original
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data as possible. For this, a bag of features method was used to gather features from the
high frequency hemodynamic parameters, see Figure 3.2 [33]. This method calculates the
mean, standard deviation and slope of the data in a specified interval. Additionally, the
bag of features method also provides the mean, standard deviation and slope of the entire
original interval. The slope is calculated by first fitting a least squares regression line on
the data of the specified time interval and then finding the coefficient of this line, this is
then the slope. The method implemented based on a 24 hour interval and thus splitting
the entire interval in three sub-intervals.

Figure 3.2: Visual representation of the bag of features method on example data of the MAP of one
ECMO run. The 72 hour run is split in three intervals. For each of the pictured interval the mean, slope
and standard deviation was calculated. This is also done for the complete 72 hours. The resulting features
are shown in the table below the graph.

The bag of features method can show the change of a parameter between the intervals,
by looking at difference in mean, as well as within the intervals by looking at the slope. The
standard deviation for each time interval shows the amount of change occurring within each
interval. Therefore, it is an effective method to capture the time series comprehensively
while converting it into features that can be used to train the model.

Lactate was treated separately, because this value is recorded only once a day. The
mean and slope from the available values were calculated as features. This gives a good
representation of the trend as well as the absolute values of lactate. Age and gender were
also included as features. This resulted in 12 features for every high frequency hemody-
namic parameter, two for lactate and one for age and gender. Thus, 76 features were
extracted in total.

3.5 Feature exploration

In order to test whether the features have a significant impact on the outcome, weaning
success, a one way ANOVA test was performed on each of the features. A Bonferroni
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correction was implemented on the one way ANOVA [34]. This correction is done, because
of the increased risk of false positive results when doing multiple statistical tests.

To better understand the relationship between the features and the outcome, a corre-
lation matrix was calculated based on the Pearson correlation coefficient. This calculates
the linear correlation between the features and the weaning success on a scale from -1
to 1 with 1 signifying a high positive correlation [35]. This shows a measure of the rela-
tionship between features and outcome, positive or negative, and which features have a
high co-linearity. The specific relationship of between some features was visualised using
scatterplots.

3.6 Dealing with Multi-collinearity

Multi-collinearity occurs when two or more predictor variables in a multiple regression
model are highly correlated. This can be problematic for several reasons [36]. Highly cor-
related variables provide redundant information about the outcome variable. It can become
difficult to assess the individual effect of each feature on the outcome as multicollinearity
means two variables hold the same information and therefore have a similar effect on the
prediction. The primary issue arises from the chosen method of feature selection, which
relies on assessing whether removing or altering features affects the model’s performance.
However, if two features essentially contain the same information, the performance will not
differ significantly if one is removed. This can result in falsely low importance values for
highly correlated features [37].

Several methods can be used to deal with multicollinearity, such as removing the high-
est correlated features, combining variables or using techniques that can account for mul-
ticollinearity [36, 34]. To keep the interpretability of the features, the first method was
chosen.

The variance inflation factor (VIF) is a measure that most directly can quantify mul-
ticollinearity of features [36]. It measures how much of the variance is inflated due to
multicollinearity. The multi-collinear features were removed by selecting the feature with
the highest VIF. After the removal of that feature, the VIF was recalculated for the re-
maining features. This process was iterated until all VIF values were below 10, which is a
threshold indicating high multi-collinearity [36]. A total of 37 features were removed using
this technique. A list of the removed features can be found in Appendix G.

3.7 Model selection

The goal of the model is to predict the probability of a successful weaning. Therefore,
regression was chosen. Regression models can be used to predict weaning success in a
percentage , i.e. patient X is Y percent likely to wean successfully, in contrast to a classifi-
cation model that can be used to predict the weaning success in a binary matter. Models
such as logistic regression, random forest, gradient boosting, support vector regression and
deep learning have been shown to have good results in comparable studies [10, 19, 28].
Another criterion for model selection is the need to interpret the used features, as this
gives an opportunity to physiologically explain the model. While deep learning is widely
adopted and has shown high accuracy, it is challenging to interpret the features as it pri-
oritises for decision-making [38]. This lack of transparency makes it less preferable, as
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the exploration of the importance of the included features is intended to be part of the
results. Accounting for the points mentioned and which model had good results in similar
studies [10, 11, 12, 13, 18, 21, 28], the following supervised models were chosen: k-nearest
neighbours (KNN), logistic regression, support vector regression, gradient boosting and
random forest regression [33]. All models were implemented using the scikit-learn library
in Python (version 3.8.10) [39].

3.8 Feature selection

Figure 3.3: Visual representation of different feature selection methods. The filter method can include
both univariate filtering and multivariate filtering. The main feature of this method is the selection prior
to implementing the learning algorithm. The wrapper method selects features based on which subset of
feature performs best. The embedded method uses an integrated feature importance to select the optimal
subset. From “Computational Diagnostic Techniques for Electrocardiogram Signal Analysis” by Xie et
al.[40].

Selecting the most relevant features is crucial when dealing with a large number of variables,
as it can enhance model performance and reduce the risk of overfitting [15]. Feature
selection reduces data dimensionality by identifying features relevant to predicting the
outcome. Several methods exist for feature selection, categorised into filtering methods,
wrapper methods, and embedded methods (see Figure 3.3). Filtering methods select a
subset based on each feature’s significance in relation to the outcome, but does not capture
model-specific high-performing features. Wrapper methods evaluate various feature subsets
based on model performance, iteratively refining the feature set to optimise performance.
Embedded methods integrate feature selection within the model algorithm, using feature
importance metrics to identify relevant features [41, 42].

Taking this into account, an embedded method (see Figure 3.4) was applied for the
Random forest and Gradient Boost algorithms. This approach was selected for its ability
to account for both algorithm performance and feature interactions. Random forest and
Gradient Boosting have an integrated feature importance calculation based on the Gini
importance [17]. This calculates how well a potential split is separating the samples of
the two classes and is computed as the normalised total reduction of criterion due to that
feature. This importance was calculated for each feature and visualised in a bar graph.
After the feature importance was calculated, the RMSE was calculated for each number
of included features, starting with one feature (the most important) and progressively
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including additional features based on their importance. This way the highest performing
amount of features and thus subset was calculated.

Figure 3.4: Flow chart of model training. With SFS feature selection for KNN, SVR and logistic
regression and embedded feature selection in GB and RF. Outer k-fold with k=5 is used to determine the
performance of each model.

To select the features for KNN, SVM and logistic regression, a wrapper method was
implemented, specifically sequential forward selection (SFS) [43]. This wrapper was chosen,
because it evaluates feature subsets based on model performance and considers feature
interactions. Starting with an empty set, SFS iteratively adds features until the optimal
subset is identified based on RMSE. Given the initial high feature-to-data point ratio (36
features to 109 data points), SFS was preferred over sequential backward selection, which
begins with all features [44].

3.9 Model optimisation

3.9.1 Nested K-fold

To optimally train the model, a nested k-fold cross-validation method was implemented.
This technique facilitates performance estimation of the final model and aids in hyperpa-
rameter optimisation. Cross-validation estimates a model’s performance on unseen data by
partitioning the dataset into k equal segments [41]. In this study, a 5-fold cross-validation
was employed to ensure a 80/20 train test split and enough datapoints in the test group
[22]. The dataset is divided into five equal parts, with the model trained on four parts
and tested on the remaining one. This procedure is repeated five times, and the average
performance across all test sets is computed as the final outcome.

Nested k-fold cross-validation involves both an inner and outer loop of cross-validation.
Each of the k training segments is further subdivided into k parts, as depicted in Figure
3.5 [45]. The inner folds are utilised for hyperparameter tuning, producing outcomes more
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robust to new data and mitigating the risk of overfitting during feature selection. This
method ensures that the model performance and tuned parameters are not reliant on any
specific data split, as all data points are ultimately used for evaluation.

Figure 3.5: Illustration of nested K-fold, when k=3 on the outer fold and k=4 in the inner fold. From
“Nested and Repeated Cross Validation for Classification Model with High-Dimensional Data” by Zhong
et al. [45].

3.9.2 Hyperparameter tuning

The last step of model optimisation is finding the best hyperparameters for each model. Hy-
perparameters are ’settings’ of the machine learning models. The optimal hyperparameters
were found with a grid search. It works by making a grid of all the possible combinations
of hyperparameters and testing each of the places in the grid until the optimal combination
is found [46]. In order to reduce computation time a random search algorithm with 100
iterations was used for the RF and GB, which randomly tests combinations from the grid
search. This was done using the RandomSearchCV function from the sklearn library [39].

For each model a different set of hyperparameters has to be tuned. Below a list of
hyperparameters with a short description for each parameter and the chosen value [46].
The used grids and the choice of hyperparameter can be found in appendix C.

Random Forest Regressor

• N-estimators: Number of trees in the forest. N = 1000

• Max depth: Maximum depth of each tree. Deeper trees can capture more complex
patterns but may overfit. Max depth= None

• Min samples split: Minimum number of samples required to split an internal node.
This controls the complexity of the model. Min split = 10
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• Min samples leaf : Minimum number of samples required to be at a leaf node. Min
leaf = 1

• Max features: Number of features to consider when looking for the best split.
Can be set to a fixed number, a fraction of the total number of features, or left
unrestricted. Max = None

Support Vector Regressor

• Kernel: The function used to map data into a higher-dimensional space. Common
kernels include linear, radial basis function (rbf), and polynomial (poly). Chosen
kernel = rbf

• C: Regularization parameter that controls the trade-off between achieving a low error
on training data and minimizing the norm of the coefficients. C = 1000

• Gamma: Kernel coefficient for ’rbf’, ’poly’, and ’sigmoid’ kernels. Determines the
influence of a single training example. ”auto” uses 1/n features. Gamma = auto

• Epsilon: Specifies the epsilon-tube within which no penalty is associated in the
training loss function. Epsilon = 0.4

Gradient Boosting Regressor

• N-estimators: Number of boosting stages to be run. N = 1000

• Learning rate: Shrinks the contribution of each tree by this value. Rate = 0.01

• Max depth: Maximum depth of the individual regression estimators. Limits the
number of nodes in the tree. Max depth = 6

• Min samples split: Minimum number of samples required to split an internal node.
Min split = 15

• Min samples leaf : Minimum number of samples required to be at a leaf node. Min
leaf = 4

• Max features: Number of features to consider when looking for the best split. Max
features = None

K-Nearest Neighbours

• N-neighbours: Number of neighbours to use for n-neighbours queries. N = 5

• Weights: Weight function used in prediction. ”Uniform” weights all points equally,
while ”distance” weights points by the inverse of their distance. Weights = Distance

Logistic Regression

• C: Inverse of regularization strength; must be a positive float. Smaller values specify
stronger regularization. C = 0.1

• Penalty: Used to specify the norm used in the penalization. ’L1’ leads to sparse
models and can be useful for feature selection. ’L2’ is the standard form of regular-
ization. Penalty = L1
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3.10 Model evaluation

The models were compared based on the root means squared error (RMSE), the mean
absolute error (MAE) and the R2. The RMSE and MAE both show an average error.
However, due to the way they are calculated, see Equation 3.2 and 3.3, the outliers have a
bigger impact on the RMSE than on the MAE [47]. The R2 is a quantification of how well
the datapoints are explained by the model and can be very valuable in assessing regression
models [48]. A R2 of 0 means the points are not explained by the model and a value of 1
means all the points are explained by the model. The formula for the R2 can be found in
equation 3.4.

RMSE =

√∑
(yactualvalue − ˆyprediction)2

N
(3.2)

MAE =

∑
|(yactualvalue − ˆyprediction|)2

N
(3.3)

R2 = 1−
∑

(yactualvalue − ˆyprediction)
2∑

(yactualvalue − ymeanvalue)2
(3.4)

Based on these three metrics, the two best performing models were chosen and further
compared. For these models, the ROC curve was calculated. Also, classification metrics
were calculated based on different thresholds to determine what the result would be if
decisions were based on different thresholds. The thresholds ranged from 0.3 to 0.7, as
values outside this range did not show differences. The specific metrics that were calculated
are sensitivity, specificity, accuracy and precision. For the best performing two models,
SHAP (Shapley additive explainer) summary graphs were also created. SHAP works by
decomposing the prediction of a model into the sum of each feature’s impact and calculating
values that represent the contribution to the outcome per feature, which can then be used to
understand feature importance and explain the result [49]. This creates insight in whether
high or low values of the features predict for weaning success or weaning failure.
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4. Results

4.1 Patient Inclusion

Figure 4.1: Flowchart of the amount included
and excluded patients and the subsequent amount of
EMCO runs in the final database.

Of the patients in the dataset of Meuwese et
al. [4], 317 patients had ECMO treatment
with the VA ECMO configuration. All pa-
tients were over the age of 18. 151 patients
were excluded for having a pulmonary in-
dication for ECMO or had a MCS in place
prior to or during ECMO treatment. 60
patients were excluded based on an EMCO
run duration of less than 72 hours. This re-
sulted in 106 patients and 119 ECMO runs,
see Figure 4.1. An ECMO trial was consid-
ered as a separate trial if there was more
than 12 hours between weaning from the
first trial and start of the second EMCO
trial. In 66 EMO runs, there were parame-
ters that had continuous missing values over
a period one hour. seven ECMO runs had a
continuous period of missing values of over
four hours and were therefore excluded.

The characteristics of the 106 included
patients are shown in Table 4.1. The dis-
tribution of gender as well as the age of the
patients is in line with result from the full
cohort of VA ECMO patients in the UMC
Utrecht and seems to be representative on
the VA ECMO population on this area [4].

Successful weaning Unsuccessful weaning
N 60 56

Gender 39 male, 21 female 32 male, 24 female
Age Mean=54.0, std=14.0 Mean=55.8, std=11.4

Table 4.1: Patient characteristics of the successful and unsuccessful weaning group.

4.2 Missing data

For each high frequency parameter, the percentage of missing values before linear interpo-
lation was calculated. These values can be found in Table 4.2. Heart rate, pulse pressure
and mean arterial pressure all had around 1% of missing data in the total population. The
CVD had a slightly higher percentage of missing data. The ECMO flow parameter had
almost no missing data. It is important to consider that the percentage of missing values
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of the ECMO flow were calculated before forward filling the data from a frequency of per
hour to per minute. The VIS had the highest number of missing values.

Parameter % of missing values in all included ECMO runs
Pulse pressure 1.0

Mean arterial pressure 0.9
Central venous pressure 1.9

Heart rate 0.8
ECMO flow 0.2

Vasoctive inotropic score 5.3

Table 4.2: Percentage of missing values per high frequency parameter in all included ECMO runs of the
full 72 hours.

4.3 Feature exploration

The t-test between the two outcome groups, successful weaning and unsuccessful weaning,
found five features to have a significant difference between the groups based on a p < 0.05.
These were the standard deviation of the complete PP (p=0.00), standard deviation of the
MAP on day three (p=0.05) the mean PP on day two (p=0.05) and day three (p=0.01)
and the complete time (p=0.01). However, in this case a high change at a type 1 error, or
false positive, is present due to the multiple statistical tests and therefore these results were
unreliable. To resolve this, a Bonferroni correction was done. The t-test with Bonferroni
correction found that none of the features had a significant impact on the outcome.

The linear correlation between all the features was calculated using the Pearson cor-
relation coefficient. A correlation of 1.0 signifies a very strong positive correlation, -1.0
a very strong negative correlation. A correlation value of 0.0 means there is no linear
relationship. The full correlation matrix can be found in Appendix D.1. The features with
a coefficient greater than 0.7, usually referred to as having a strong correlation [35], are
inspected further and are shown separately in Appendix D.2. Notably, the mean PP, MAP,
CVD, flow from ECMO and VIS between the three days in the same feature show a strong
correlation. The scatter plots of the mean PP on day two and three and the scatterplot of
HR on day two and three, see Figure 4.2 and 4.3, concur.
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Figure 4.2: Scatter plot with regression line for the mean pulse pressure on day two and day three.

Figure 4.3: Scatter plot with regression line for the mean heart rate on day two and day three.

4.4 Feature selection

The features were selected separately for every model. This created five subsets of features
with a different amount of selected features. An overview of the selected features for each
model can be found in Appendix D.2. Each model had a different amount of features
(RF:26, GB:11, LR:9, SVR:22, KNN:19). The amount of features were chosen based on
the best RMSE for each amount of features in the subset. The graphs showing each RMSE
for each number of features can also be found in Appendix F. The graphs for the features
importance can also be found in Appendix F.

Noticeably, the feature subsets for the SVR and KNN models are similar, with 14
features selected by both in nearly the same order. Additionally, the four most important
features are the same across SVR, KNN, and LR. These are the mean of the lactate of the
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full three days, the patient gender and the standard deviation of the VIS on day two and
three. In contrast, the RF, GB and LR models do not show the same amount of overlap,
having no overlap in the top 10 features with any of the four other models.

4.5 Performance of the models

Metric/ Support vector K-Nearest Random Gradient Logistic
Model regressor Neighbours forest boosting regression
RMSE 0.49 0.48 0.48 0.55 0.51
R2 0.01 0.07 -0.04 -0.19 -0.08

MAE 0.48 0.45 0.42 0.51 0.49

Table 4.3: Performance of the five models based on root mean squared error (RMSE), R2 and mean
absolute error (MAE).

Table 4.3 shows the performance of the five models based on RMSE, R2 and MAE. The
K-nearest neighbours regressor and the random forest regressor have the best performance
based on RMSE and MAE. SVR, KNN and RF all have a value below 0.5. The difference
between MAE and RMSE also differs between the models with the RF model yielding the
largest difference, 0.06, and the SVR yielding the smallest difference, 0.01.

Looking at the R2, the support vector regressor and the K-nearest neighbours regressor
are the only models to have a positive value. A negative R2 means that the model fits
the validation data worse than predicting the mean of the data for all data points. This
indicates the model does not explain the relationship between the features and the outcome.

4.5.1 Random forest regressor

Figure 4.4: ROC- curve of the Random Forest Regressor model. The bold blue line represents the mean
ROC of the 5 folds of the cross validation. The light blue lines each represent the ROC of one fold. The
blue coloured area represents the confidence interval.
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Figure 4.5: Classification metrics (specificity, sensitivity, accuracy and precision) for different thresholds
between 0.3 and 0.7 of the predicted value from the RF regression model across the five outer folds.

Among the five models, the two best performers based on RMSE and MAE, are RF and
KNN. The performance of these models are analysed further. To assess the implications
of using probabilities as a decision-making tool, classification metrics are also evaluated.
Figure 4.4 shows the ROC-curve of the Random forest model. The area under the curve
of the average of the five outer folds is 0.63. The ROC-curve for each fold (pictured as the
light blue lines) shows there is a high variation between each fold.

The classification metrics for thresholds between 0.3 and 0.7 can be found in Figure
4.5. Based on these lines, a cut-off around 0.35 gives a more balanced outcome between
the four classification metrics. The specificity is higher than the sensitivity on nearly all
thresholds.

Figure 4.6 shows the SHAP values for each feature. Each dot shows how the datapoint
had an effect on the model. A positive SHAP value means the point was predictive for
weaning success and a negative value meaning the point was predictive for an unsuccessful
weaning. The colour of the point reveals whether the value was high or low. In this case
it shows that a high value of the slope of the MAP on day three was used to predict for a
successful weaning. The slope of the ECMO flow of the complete run, the slope of the VIS
of the complete run and the slope of the VIS on day one predicted successful weaning in
the RF model if they had a higher value. A higher positive slope of the pulse pressure of
the complete run, on day one and day three was also used to predict a successful weaning.
Lastly, a low standard deviation of VISis used to predict weaning success. The other values
have a less distinct impact on the model output.
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Figure 4.6: Shapley Additive Explainer (SHAP) value for each of the prediction per feature for the
Random Forest model. It shows the impact on the model output with a positive value relating to weaning
success and a negative SHAP value to weaning failure. The colour of the dots refers to the actual value of
the feature being high (red) or low (blue). The features are named based on the calculation (slope, mean
or std (standard deviation)) and the abbreviation of the parameter. The number behind the feature name
corresponds with the day of ECMO treatment, ‘complete’ refers to the full 72 hours as interval.
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Figure 4.7: ROC- curve of the K-Nearest Neighbours model. The bold blue line represents the mean
ROC of the 5 folds of the cross validation. The light blue lines each represent the ROC of one fold. The
blue coloured area represents the confidence interval.

Figure 4.8: Classification metrics (specificity, sensitivity, accuracy and precision) for different thresholds
between 0.3 and 0.7 of the predicted value from the KNN regression model across the five outer folds.

4.5.2 K-Nearest Neighbours regressor

In Figure 4.7, the ROC-curve of the KNN model can be found. The area under the curve
of the average of the five folds is 0.69. The ROC-curve for each outer fold, the light blue
lines, show less variation between the folds than the RF model. The main attribution of
the area under the curve value is due to the bottom left quadrant of the ROC curve. This
area indicates that for low false positive rates, the true positive rate remains high, which
means the model can achieve both high specificity and a sensitivity greater than 0.5.
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Figure 4.9: Shapley Additive Explainer (SHAP) value for each of the prediction per feature for the
K-nearest neighbours model, showing the impact on the model output with a positive value relating to
weaning success and a negative SHAP value to weaning failure. The colour of the dots refers to the actual
value of the feature being high (red) or low (blue). The features are named based on the calculation (slope,
mean or std (standard deviation)) and the abbreviation of the parameter. The number behind the feature
name corresponds with the day of ECMO treatment, ‘complete’ refers to the full 72 hours as interval.

The classification metrics, graphed in Figure 4.8, show that at a threshold of 0.5 all the
metrics come to nearly the same value. In this figure, we can also see that the sensitivity
tends to achieve higher values then the specificity, albeit less clear than in the Random
Forest model. The precision and accuracy do not show as much change as the accuracy
and precision between the thresholds. They show an increase from 0.5 to 0.7 between a
threshold of 0.4 and 0.5 and remain steady outside those thresholds.

The SHAP value for each prediction are graphed in Figure 4.9. The mean of the VIS on
day three shows the highest impact on the model output with a low VIS being predictive
of weaning success. A distinction can been seen between low values (blue dots) having
a positive impact and high values (red dots) having a negative impact. A low flow from
the ECMO on day three also has a positive impact on the output. The mean of the pulse
pressure also has a high impact on the model output, but has a more mixed distribution
of the low and high values. Although, higher values have a positive impact on the model
output. The bottom nine selected features show very little impact on the model output
and do not show grouping of low or high value having a distinct impact on the prediction.
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5. Discussion

This study attempted to develop a model that predicts whether cardiac recovery will
be sufficient to provide adequate circulation and oxygenation after VA ECMO support
is discontinued. The five models developed for this purpose did not perform sufficient to
provide meaningful predictions based on the model performance. Based on these findings, it
cannot be concluded that using hemodynamic parameters in the initial stage of VA ECMO
treatment can predict whether a patient can be weaned from the VA EMCO successfully.
The poor results suggest the used features did not possess enough predictive power.

5.1 Interpretation of results

5.1.1 Regression metrics of the five models

The performance metrics reveal that none of the five models can predict weaning success
in VA ECMO with usable accuracy. All models have an average RMSE exceeding 0.45.
This indicates poor predictive power since the average error is nearly 0.5, the midpoint
of a binary outcome scale. The R² values are also weak, with the best performing model
scoring just 0.09 [47]. This suggests the models explain very little of the variance, leaving
most of the outcome variance unexplained. Moreover, three out of the five models have
negative R² scores. This suggests that the model explains the variance between the feature
and outcome groups even less effectively than if the mean value were used as the prediction
for all data points [46].

The poor regression metrics across all models suggest that the input data may have
been insufficient. While a poorly designed model could account for these outcomes, the
fact that all models performed similarly poor suggests the features do not have enough
predictive power. This can be explained by different factors. The continuous hemodynamic
parameters have a lot of potential to tell a lot about the cardiac status of the patient,
however the method of feature extraction could explain the low predictive power. Using
only the first three days of data might reduce predictive value. Particularly in patients
who are on ECMO for extended periods and are eventually successfully weaned [50]. In
such cases, initial parameters may indicate slower or less cardiac recovery, which could
be misleading, as these patients might show good myocardial recovery after the three-day
interval. Secondly, the chosen interval of 24 hours for the bag of features method means
changes in the hemodynamic parameters on a smaller time scale will be missed. Also,
during the day, the parameters will most likely change due to daily activities. That will
ensure similar patterns of change in both outcome groups and reduce distinction between
groups.

5.1.2 Classification metrics of KNN and RF

The KNN and Random Forest models were the best performing models. For these models,
classification metrics were calculated to provide further insight in the results. The classifi-
cation metrics reflect the consequences of using the probability to categorise the patients
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and give better insight in the usability of the model as a prognostic tool for physicians.
The best area under the ROC-curve was 0.69. This is comparable to the SAVE prediction
by Schmidt et al. [51], which predicts survival in VA ECMO patients based on medical his-
tory, pulse pressure, and lower serum bicarbonate prior to implementation. However, the
AUC of the external validation of SAVE was better (0.90) and was therefore determined
to be accurate enough for implementation. The AUC in our models is also comparable to
the survival prediction of VA ECMO with the conditional inference trees by Braun et al.
[13]. They found an AUC of 0.71. However, the AUC is significantly lower compared to
Ayers’ AUC of 0.92 [12] and Wang’s AUC of 0.85 [11].

The discrepancy between AUC and R² is noteworthy. For the KNN model, the AUC
was 0.69 and the R² 0.04. This suggests that while the model can distinguish between cat-
egories, it has poor calibration [52]. This poor calibration could be explained by the binary
nature of the outcome parameter, which does not reflect the actual situation. For instance,
both a patient showing just enough cardiac recovery and another who achieves excellent
recovery are recorded as 1 if both are weaned successfully. Additionally, it is important
to note that some predicted values exceed 1, further increasing the error and subsequently
the R². The classification metrics of KNN show a higher sensitivity across the thresholds
and a higher specificity in the RF model. In a model that predicts the likelihood of suc-
cessful weaning from VA ECMO, high specificity should be prioritised. This is because the
consequences of incorrectly predicting that a patient will fail to wean, a false positive, can
significantly impact subsequent treatment decisions, such considering the implementation
of ventricular assist devices (VAD), heart transplantation (HTx), or even transitioning to
palliative care. On the other hand, if a patient is predicted to have a high chance of wean-
ing successfully, VA ECMO support should be maintained until echocardiographic, clinical
and hemodynamic parameters meet the criteria to start a weaning trial. However, in this
model the classification metrics are not good enough to base decisions on, as a specificity
and sensitivity of over 80% are necessary to consider a model as a prognostic tool [53].

5.1.3 Influence of features on prediction in KNN and RF

SHAP explainers were used to understand the effects of the features on the predicted
outcome. The SHAP graphs of the random forest model show that a positive slope of the
MAP and PP were used in the Random Forest model to predict weaning success. This
indicates that an increase in MAP and PP at the start of the ECMO run result in a higher
weaning success prediction. This aligns with existing literate relating higher PP and MAP
with better cardiac recovery [9, 14]. A bigger slope of the PP was suspected to be indicative
of better cardiac function, because it shows an improvement in pressure provided from the
heart [25]. The fact that the slope of the PP had a high features importance in RF, LR
and GB concurs with this fact.

In the SHAP graphs, it was also found that a low (or negative) slope of the VIS and
ECMO flow were used to predict weaning success in the RF model. VIS and ECMO flow
both are a type of hemodynamic support [16, 27]. So, a lower setting of flow on the ECMO
and less vasoactive and inotropic medication means that the heart needs less support [14].
However, these are factors controlled by physicians. Thus, the reduction in VIS and ECMO
indicates that the physicians observed an improvement in the hemodynamic status, leading
to a decrease of hemodynamic support. This would mean these values are more likely a
representation of the opinion of the physicians on the clinical status of the patient, then
predictive values of their own.
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The SHAP graphs of the KNN model show different features having a higher impact on
the model output. The mean of the VIS on day 3 shows the highest impact on the model
output with a low VIS being predictive of weaning success. This could be explained by the
same reasoning that these are type hemodynamic support by physicians. A low VIS would
mean the physicians found that the patient was stable at a lower dose of vasoactive and
inotropic medication. Similar to the fact that a low mean flow from the ECMO on day
3 also had a positive impact on the output. It is interesting that in the KNN model, the
mean had a higher impact on the weaning success prediction, but in the RF model it was
the slope. The mean of the pulse pressure also has a high impact on the model output,
but has a more mixed distribution of the low and high values. Although, higher values
have a positive impact on the model output. This can be explained by the fact that a high
pulse pressure correlates with a higher cardiac output from the heart and thus less cardiac
dysfunction [17].

However, the physiological significance of the features is closely tied to the model per-
formance. Given the models’ poor performance, it is not possible to definitively determine
which features might hold physiological importance in the prediction of weaning success.

5.1.4 Feature exploration

Statistical tests and a correlation matrix were calculated to better understand the features.
The statistical tests show that none of the features can significantly explain the outcome
result by themselves. This was expected as none of the features have been found to
accurately predict weaning success on their own [54]. The choice for machine learning was
made to use the interactions between features to predict outcomes by analysing patterns
across multiple variables.

The correlation matrix shows high correlations (a correlation coefficient larger than 0.7
[35]) between the mean of the same feature over the days. This was the case for VIS, MAP,
ECMO flow, PP, HF and CVD. The high correlation between the heart rate on day 1 and
the heart rate of the patient on day 2 is most likely caused by the resting heart rate of the
patient having the biggest influence on the mean value. Especially if the patient remains
stable or has a pacemaker. This analogy can also explain the high correlation of MAP and
CVD between the different days. Also, these values are highly influenced by the settings
of the ECMO flow. A high correlation between the mean VIS and ECMO flow on different
days indicates that the settings have not been changed much during the 72 hours.

5.2 Limitations

5.2.1 Data inclusion

A major limitation in machine learning is often the size of the dataset. A larger dataset
improves machine learning models by enabling better generalisation, reducing bias, and
allowing more complex patterns to be captured [22]. Only 109 ECMO trials were included
in this study. A future possibility for increasing the dataset is to include data from other
hospitals. Expanding the initial cohort could open up the possibility of including a longer
ECMO treatment interval as training data, as the current cohort was limited by the number
of patients on ECMO for more than 72 hours.
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The dataset was retrospectively collected which leads to potential bias. Over the 16
year period of observation, there have been technological and procedural changes in ECMO
treatment that may affect the chances of successful weaning.

5.2.2 Data preprocessing

Some limitations in the method also arise from the preprocessing of the data. Missing data
was interpolated up to one hour and ECMO trials with more than four continuous hours of
data were excluded. However, this has left 55 ECMO runs with missing data between one
and four continuous hours. In these runs, the extracted features are influenced as missing
data causes single values to have more effect on the mean and standard deviation. However,
it was decided to not interpolate for these larger gaps as that might add more uncertainty.
In those four hours a lot of changes could have happened and linear interpolation would
not have reflected that accurately [55].

The flow from the VA ECMO was forward filled from a frequency of once per hour to
once per minute with the assumption that the flow stayed the same up until a change was
marked in the system. This might have resulted in faulty values for two reasons. One is that
the input of VA ECMO is done manually and human errors could have been made. Due to
the forward filling of the data, one wrong input might create an error for a longer period of
time and will therefore cause a faulty feature. Unfortunately, it is impossible to detect the
occurrence of the manual input of faulty data as long as it is within a physiological range.
Another is that the flow from the EMCO device is the result of the amount of rounds per
minute the device provides. The resulting flow is not a one-on-one result from this, but
is also influenced by the pressure present in the aorta. This makes the feature not fully
independent from other parameters such as the MAP.

The non-parametric outlier detection is based on a quantile. This is based on the as-
sumption that values away from the dense centre are outliers, because faulty sensors mostly
give extremely high or low values [31]. However, in biological data extreme physiological
values can occur, especially in severely ill patients in the ICU. Visual inspection of the raw
data does conclude that there are faulty measurements in the data and that outlier removal
was necessary. However, the filtering of extreme data, might have removed hemodynamic
data of critical situations and therefore reduced the possibility to predict based of these
values.

5.2.3 Weaning success outcome

A limitation of this study is the fact that the outcome is not definitively measurable.
Determining when a patient has been successfully weaned from ECMO is not governed by
a clear rule [9]. Mortality outcomes, including 30-day, hospital, and ICU mortality rates,
are commonly used as key measures [7, 11, 19]. However, mortality also includes deaths
without a cardiac reason and is therefore not a perfect outcome. The used criteria for
weaning success includes patients who have passed away shortly after weaning from the
ECMO due to non-cardiac reasons. For these patients it is not known whether the heart
showed myocardial recovery or not which might cloud the training data.

To explore the implications of the chosen criteria for weaning success, an analysis of
patient characteristics was conducted. We aimed to identify the amount of patients that
cannot be placed in successful or unsuccessful weaning with reasonable certainty. Patients
who were alive at the 12-month follow-up without having undergone heart transplantation
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or received a ventricular assist device (VAD) were categorised as weaning successes. This
criterion applied to 38 patients. Conversely, patients who died in the ICU due to circu-
latory issues (n=35), underwent heart transplantation (n=2), or received a VAD (n=23)
were categorised as being in the unsuccessful weaning group, indicating insufficient cardiac
recovery.

However, five patients who died in the ICU from non-circulatory causes were included
in the unsuccessful weaning group. In these cases, it is unclear whether the heart did not
recover sufficiently or if a different issue was the cause of death. In reality, the cause of
death is often more complex and interrelated with heart function [56]. A patient with
marginal heart function might survive under stable conditions but could succumb if an
infection or other complication arises.

Nine patients who died within the 12-month follow-up but survived the ICU were
grouped with the successful weaning cases. However, it is arguable that some did not
achieve full recovery, as hospital or 30-day mortality could be considered alternative criteria
[9]. These criteria pose challenges similar to those discussed above, where the precise cause
of death might not solely be due to cardiac function. In practice, the cause of death is
often multifactorial and correlated with cardiac function.

In summary, while the criteria for defining weaning success aim to provide clear dis-
tinction, the complexity and multifactorial nature of patient outcomes present challenges
in definitively categorizing weaning success. From this exploration, it can be concluded
that for 14 patients the categorisation for weaning success is unclear. This is enough to
have an impact on the performance of the models.

5.3 Future possibilities

5.3.1 Improvement of feature extraction

A wide range of approaches to extract features from multivariate time series data are
available. In this study, a bag of features method was used. This method was chosen,
because its capability to show trends of the parameters over time, both within the chosen
time intervals and between them. With the current method, changes in the hemodynamic
parameters on a smaller time scale can be missed, because the features are extracted based
on an interval of 24 hours. Capturing smaller changes could be achieved by making the
intervals smaller. However, this would result in an increased amount of features which
would exceed the amount of datapoints in the current dataset. In that case prediction
becomes unreliable with our current dataset size [44]. Thus, this method is only possible
on a larger dataset or by using feature selection prior to the model implementation. Other
feature extraction methods might give other insights in the state of the patient. An inter-
esting possibility might be to interpret the lines of the continuous parameters as images
and predict based on image recognition. This would eliminate the need to convert the data
to features, but makes the explanation of predictions unclear.

Adding other parameters to the input could provide more information on the cardiac
status of the patient and thus increase predictive power of the models. Echocardiographic
parameters give a good insight in the cardiac status of the patient [14]. However, availabil-
ity of echocardiographic data poses a problem. These measurements are not done routinely
and were not recorded in the used database [4]. So, to include these parameters a new
database would have to be build. Lastly, urine output was found to be predictive for in
hospital death in ECMO patients and might also be predictive of weaning success [19].
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5.3.2 Weaning parameter outcome

Instead of grouping the patient in successful and unsuccessful weaning, it might be inter-
esting to predict the outcome based on a value that quantifies heart function. This could,
for example, be an echocardiographic parameter such as ejection fraction. No other stud-
ies have attempted to predict cardiac recovery based on a numerical value. This would
however require a cardiac ultrasound shortly after stopping the EMCO treatment.

5.3.3 Heterogeneity of population

The dataset used for this study only included patients with a cardiac indication for VA
ECMO. However, this cardiac indication can encompass many diseases, which means the
population is quite heterogeneous in terms of pathology [57]. Different diseases have differ-
ent patterns of recovery and might therefore make it harder for a model to predict outcome
based on these differing recovery patterns. A more homogeneous population, for example
using only patients with myocardial infarcts, might result in better performance of the
models. A downside to this is that the model will only be applicable to the chosen patient
population.

5.3.4 Deep learning

Using deep learning instead of the used supervised methods might also be a possibility to
achieve better performance. Stephens et al. found that a deep learning model outperformed
models like Random Forest and Gradient Boosting significantly in predicting VA ECMO
mortality [10]. Possibly due to the fact that deep learning can capture more complex
patterns and does not need the amount of feature engineering as done in this study [38].
The ability to predict based on raw temporal hemodynamic data ensures that important
data is not filtered out, which did happen in the method of this study. However, deep
learning does not provide a clear influence of the features on the prediction. Machine
learning models cannot be used as the only decision making tool in the clinical treatment
of a patient and will only be used as an additional predictor. Therefore, it seems important
to provide a justification for the prediction of a machine learning model to increase usability
of the model for physicians. It would be beneficial to provide an explanation, such as: ”For
instance, this patient is unlikely to wean successfully because values X and Y are high.” In
deep learning, these justifications will be harder to provide as features are less interpretable
and will therefore be harder to link to the physiological state of the patient.

32



6. Conclusion

In conclusion, the high RMSE and MAE, and low R2 values show all five models strug-
gled to provide meaningful predictions for weaning success in VA ECMO. The KNN and
Random Forest models showed better classification metrics suggesting they can differen-
tiate between success and failure but with limited accuracy. The models developed in
this study perform inadequately to support decision-making during VA ECMO treatment.
Overall, the findings underscore the need to rethink the input data and model design to
enhance prediction accuracy in weaning success for VA ECMO patients. The use of con-
tinuous hemodynamic parameters did not provide good enough predictive power. Using a
different feature extraction method to the one used in this study or rethinking the time
intervals could improve predictive power. Also, adding alternative parameters that reflect
cardiac status, such as echocardiographic parameters, could improve performance of ma-
chine learning models in future studies. Lastly, the definition of weaning success makes
perfect categorisation of patients not possible. This definition also needs to be evaluated.
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[39] Pedregosa, Fabian ; Varoquaux, Gaël ; Gramfort, Alexandre ; Michel, Vin-
cent ; Thirion, Bertrand ; Grisel, Olivier ; Blondel, Mathieu ; Prettenhofer,
Peter ; Weiss, Ron ; Dubourg, Vincent ; VanderPlas, Jake ; Passos, Alexandre
; Cournapeau, David ; Brucher, Matthieu ; Perrot, Matthieu ; Duchesnay,
Edouard: Scikit-learn: Machine Learning in Python. In: CoRR abs/1201.0490 (2012).
http://arxiv.org/abs/1201.0490

[40] Xie, Liping ; Li, Zilong ; Zhou, Yihan ; He, Yiliu ; Zhu, Jiaxin: Computational
Diagnostic Techniques for Electrocardiogram Signal Analysis. In: Sensors (2020), 11

[41] Pudjihartono, Nicholas ; Fadason, Tayaza ; Kempa-Liehr, Andreas W. ;
O’Sullivan, Justin M.: A Review of Feature Selection Methods for Machine
Learning-Based Disease Risk Prediction. https://www.frontiersin.org/articles/
10.3389/fbinf.2022.927312. Version: 2022
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A. Outcome parameters

Outcome Option Option Definition
parameters meaning
ICU Mortality 0 No The patient did not die during this ICU stay

1 Yes The patient did die during this ICU stay
Second ECMO 0 No There was no second run during this ICU stay

run 1 Yes There was a second run during this ICU stay
Reason for 0 Recovery The reason for ECLS discontinuation is expected

discontinutation cardiac and/or pulmonary recovery
1 Palliation The reason for ECLS discontinuation is to abstain

(discontinuation of ECLS in case of medical futility/
poor prognosis or explicitly requested by patient
and/or representatives).

2 Complication The reason for ECLS discontinuation is a
complication (A complication of ECLS care required
withdrawal of ECLS.

3 VAD The reason for ECLS discontinuation is transition
to ventricular assist device (VAD) support (either
HMIII, HW, total articial heart)

4 Lung The reason for ECLS discontinuation is lung
transplantation transplantation.

5 Heart The reason for ECLS discontinuation is heart
transplantation transplantation.

6 Heart/lung The reason for ECLS discontinuation is combined
heart/lung transplantation transplantation.

7 Death The reason for ECLS discontinuation is sudden death
of the patient whilst on ECLS.

999 Unknown The reason for ECLS discontinuation is not
documented.

Table A.1: Outcome parameters with the options, the option meaning and
the definition. These were used to determine the weaning success category of

each ECMO run.
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B. Q-Q plots

Figure B.1: Q-Q plots of the high frequency parameters (mean arterial pressure (ABPm), central venous
pressure (CVD), ECLS flow, heart rate (HF), pulse pressure (PP) and vasoactive Inotropic score (VIS))
after normalising the data between 0 and 1.
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C. Parameter grid used in Grid search

Hyperparameter Values Chosen value
N-estimators Between 100 and 1500 with steps of 100 1000
Max depth None, 10, 20, 30 None

Min samples split 2, 5, 10 10
Min samples leaf 1, 2, 4 1
Max features Sqrt, log2, None None

Table C.1: Hyperparameter grid for Random forest with chosen hyperparameters.

Hyperparameter Values Chosen value
Kernel Linear, rbf, poly rbf

C 1.e-03 1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02 1.e+03 100
Gamma Scale, auto auto
Epsilon 0.1, 0,2, 0.3, 0.4, 0.5 0.4

Table C.2: Hyperparameter grid for Support Vector Regressor with chosen hyperparameters.

Hyperparameter Values Chosen value
Solver Liblinear Liblinear
C 30 values between 10−4 and 104 evenly spaced on log scale 0.1

Penalty L1, l2 L1

Table C.3: Hyperparameter grid for Logistic regression with chosen
hyperparameters.

Hyperparameter Values Chosen value
N-neighbours 3,5,10,15,20 5

Weights Uniform, distance Distance

Table C.4: Hyperparameter grid for K- nearest neighbours with chosen hyperparameters.

Hyperparameter Values Chosen value
N-estimators Between 100 and 1500 with steps of 100 200
Learning rate 0.01, 0.05,0.1, 0.2, 0.3 0,01
Max depth 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 6

Min samples split 2,5,10,15 15
Min samples leaf 1,2,4 4
Max features Sqrt, log2, None None

Table C.5: Hyperparameter grid for Gradient boosting with chosen hyperparameters.
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D. Correlation matrix

D.1 Full correlation matrix

Figure D.1: Correlation matrix based on Pearson correlation. A correlation of 1.0 signifies a full positive
correlation, a correlation of -1.0 a negative correlation. A correlation value of 0.0 means there was no
correlation found between the parameters. Blue signifies a correlation below 0, and thus negative, red
signifies a correlation above 0 and thus positive. The features are named based on the calculation (slope,
mean or std (standard deviation)), the abbreviation of the parameter. The number behind the feature
name corresponds with the day of ECMO treatment, ‘complete’ refers to the full 72 hours as interval.

D.2 Filtered correlation matrix
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Figure D.2: Filtered correlation matrix based on a correlation higher than 0.7. No values for -0.7
were detected. A correlation of 1.0 signifies a full positive correlation, a correlation of -1.0 a negative
correlation. A correlation value of 0.0 means there was no correlation found between the parameters. Blue
signifies a correlation below 0, and thus negative, red signifies a correlation above 0 and thus positive. The
features are named based on the calculation (slope, mean or std (standard deviation)), the abbreviation
of the parameter. The number behind the feature name corresponds with the day of ECMO treatment,
‘complete’ refers to the full 72 hours as interval.
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E. List of selected features

E.1 Overview of the included features per machine

learning model
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Support vector K-Nearest Random Gradient Logistic
Regressor Neighbours Forest Boosting Regression
22 features 19 features 26 features 11 features 9 features
Mean lactate Mean lactate Slope MAP 3 Slope PP Slope PP
complete complete Complete Complete
Patient Patient Slope ECLS Std VIS 1 Slope HF 2
gender gender flow complete

Std VIS 3 Std VIS 2 Slope VIS Mean VIS 3 Slope CVD 3
complete

Std VIS 2 Std HF 3 Slope PP Slope VIS 2 Slope VIS 1
Complete

Std ECLS flow 3 Std HF 1 Slope VIS 1 Std CVD 2 Mean PP 1
Std ECLS flow 1 Std ECLS flow 3 Slope PP 1 Std HF 2 Slope HF 1

Std CVD 1 Std ECLS flow 1 Slope PP 3 Std VIS 3 Std CVD 1
Slope VIS 1 Slope VIS 2 Mean PP 3 Mean PP 1 Mean HF 1
Slope PP Slope PP Slope PP 2 Slope MAP 1 Slope VIS 2
Complete Complete
Slope PP 1 Slope PP 3 Std VIS 2 Slope HF 2
Slope HF 3 Slope HF 3 Slope MAP Std HF 3

Complete
Slope HF 2 Slope HF 2 Slope HF 1
Slope HF 1 Slope HF 1 Std HF 2

Slope ECLS flow Slope ECLS flow Slope CVD
2 3 Complete

Slope CVD Slope CVD 3 Slope HF 3
Complete

Slope CVD 3 Slope MAP 1 Mean ECLS
flow 3

Slope CVD 2 Mean VIS 3 Slope ECLS
flow 1

Slope MAP 1 Mean PP 1 Slope CVD 3
Mean VIS 3 Mean ECLS Slope VIS 2

flow 3
Mean PP 1 Std ECLS flow 3
Mean HF 1 Std HF 1

Mean ECLS flow 3 Mean VIS 3
Slope CVD 2

Std ECLS flow 2
Slope CVD 1
Std HF 3

Table E.1: Overview of the result of the feature selection with the amount of features selected per model
and the selected features in order of importance. Most important features are at the top. The number
behind the feature abbreviation refers to the day of the ECMO treatment. In case the feature name ends
in ‘complete’ instead of a number, it is the feature for the full 72 hours.
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F. Feature selection per algorithm

F.1 Support vector Regressor

Figure F.1: Average Root Mean Squared Error of the five outer folds per number of included features
in the SVR model.
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Figure F.2: Permutation importance of the included features of the SVR model. The features are named
based on the calculation (slope, mean or std (standard deviation)) and the abbreviation of the parameter.
The number behind the feature name corresponds with the day of ECMO treatment, ‘complete’ refers to
the full 72 hours as interval.

F.2 Gradient Boosting

Figure F.3: Average Root Mean Squared Error of the 5 folds per number of included features GB.
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Figure F.4: Gini importance of the included features of the gradient boosting model. The features
are named based on the calculation (slope, mean or std (standard deviation)) and the abbreviation of
the parameter. The number behind the feature name corresponds with the day of ECMO treatment,
‘complete’ refers to the full 72 hours as interval.

F.3 Random Forest

Figure F.5: Average Root Mean Squared Error of the 5 folds per number of included features RF.
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Figure F.6: Gini importance of the included features of the RF model. The features are named based
on the calculation (slope, mean or std (standard deviation)) and the abbreviation of the parameter. The
number behind the feature name corresponds with the day of ECMO treatment, ‘complete’ refers to the
full 72 hours as interval.

F.4 K-Nearest Neighbours

Figure F.7: Average Root Mean Squared Error of the 5 folds per number of included features KNN.
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Figure F.8: Permutation importance of the included features of the KNN model. The features are named
based on the calculation (slope, mean or std (standard deviation)) and the abbreviation of the parameter.
The number behind the feature name corresponds with the day of ECMO treatment, ‘complete’ refers to
the full 72 hours as interval.

F.5 Logistic regression

Figure F.9: Average Root Mean Squared Error of the 5 folds per number of included features of the
logistic regression model.
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Figure F.10: Feature importance of the included features of the logistic regression model. The features
are named based on the calculation (slope, mean or std (standard deviation)) and the abbreviation of
the parameter. The number behind the feature name corresponds with the day of ECMO treatment,
‘complete’ refers to the full 72 hours as interval.
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G. List of removed features using VIF

1. Mean ECLS - flow Complete

2. Mean PP Complete

3. Mean CVD Complete

4. Mean MAP Complete

5. Mean HF Complete

6. Std MAP Complete

7. Mean VIS Complete

8. Mean ECLS - flow 1

9. Mean PP 2

10. Mean CVD 3

11. Std PP Complete

12. Mean HF 2

13. Mean VIS 1

14. Mean ECLS - flow 2

15. Mean PP 1

16. Mean MAP 3

17. Std CVD Complete

18. Std MAP 3

19. Mean MAP 1

20. Std VIS Complete

21. Mean CVD 1

22. Std MAP 1

23. Std MAP 2

24. Mean HF 1

25. Std HF Complete

26. Std PP 2

27. Std ECLS - flow Complete

28. Mean VIS 2

29. Mean Lactaat Complete

30. Mean MAP 2

31. Std PP 1

32. Std PP 3

33. Mean CVD 2

34. Std CVD 3

35. Std CVD 1

36. Std CVD 2

37. Std VIS 1
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