
MSc Computer Science

Thesis

Private Legacy to Cloud: A
Tailored Migration Method
for Private Cloud Deployment
of Legacy Software Projects

Max de Blok

Supervisor: Dr. Lúıs Ferreira Pires
Second Superviser: L.R. de Vries
External supervisor: Dr. F.J. Castor de Lima Filho
Company supervisor: Harm Jan Spier

October, 2024

Department of Computer Science
Faculty EEMCS, University of Twente
Thales

Abstract

This research aimed to create a migration method for private cloud migrations, which are defined in this research
as migrations towards software and infrastructure that resemble public cloud infrastructure but are still hosted
privately. This includes migration towards microservice architecture, containerisation and container orchestration.
The migration solution is based on existing migration methods towards public cloud deployment and microservice
architecture. The existing methods are adapted to mitigate the decreased benefits in terms of scaling, outsourcing
and development speed and account for the inclusion of the infrastructure in the migration. The developed method
accounted for these differences by adding new analysis steps, namely shared goal creation, identification of different
sub-migrations and additional decision moments. The developed migration method was then validated using inter-
views with software development experts and a case study at a company preparing for this specific migration. The
expert interviews resulted in positive responses and helpful additions to the framework. The case study showed
that the migration analysis part of the method was successful. However, the rest of the method was not possible to
directly test, as the analysis in the case study did not result in a clear migration path. Overall, the solution created
is deemed an improvement over the public cloud migration methods when applied to private cloud migration.

2

Preface

My computer science journey started at the beginning of my master’s. After my bachelor’s in applied physics, I
switched to follow my passion for developing cool software. Some courses and events during the Software Technolo-
gies master track inspired me more than others. One of these courses was the Software Oriented Architecture. It
showed me a glimpse into the existing distributed software architectures and showed me Kubernetes. The course
given by Dr. Lúıs Ferreira Pires led me to email him to guide my research regarding this topic. Thank you, Lúıs,
for the inspiration and guidance during this research.

Another inspiring event during the masters was the guest lecture on software development practices at Thales,
given by Harm Jan Spier. He presented me with a problem he foresaw with adopting containerisation into their
project. The move towards containerisation was part of a larger migration towards what, in my mind, was cloud
infrastructure. The transition towards cloud infrastructure and Microservice architecture is a very hot topic. The
benefits these technologies bring are well understood and highly valued. However, as experienced during the creation
of this work, the drawbacks of these technologies are not as widely understood and often underestimated. This
makes analysing the transition towards these technologies difficult. This analysis becomes even more important in
a restricted domain, as some of the benefits do not apply. I came into this journey convinced that the CMS should
migrate towards microservices and that the problems identified could be solved. While developing and applying
the migration method, I got to speak with many talented software developers. It was wonderful to talk to many
engineers with the same passion. The analysis of these conversations and the insight and discussions with Harm
Jan slowly changed my entirely positive view of the technologies to a more critical view. Thank you very much,
Harm Jan, for the opportunity, the inspiring discussions, the valuable knowledge and the trust during this project.

I struggled during this research with the lack of objectivity. I learned during my bachelor’s in physics to look
for concrete data. During this research, however, I moved more and more towards human behaviour and processes.
I knew the research direction was valuable to at least Thales, but the lack of proof was a mental struggle. I’m
incredibly grateful for the help Ilia Awakimjan provided. With his help, I could interview experts from different
companies, presenting and verifying my work. I want to thank Wouter Kersteman, Wesley Dekker, Quenten Schoe-
maker, and Menno de Jong for their time during these interviews. I also want to thank L.R. de Vries and Dr. F.J.
Castor de Lima Filho for providing external validation to my work while being part of my research committee.

This work represents my journey during this research project. The report starts with understanding cloud-native
development’s incredible technologies and techniques. Afterwards, you are hopefully nearly as excited about these
technologies as I was (and still am). It then shows you the need to consider the positives and negatives of engineering
decisions and my complete analysis of the migration happening at Thales. Above all, the work shows you the biggest
lesson I learned, that migrations are a complex software engineering task and, therefore, need to be treated using
the same methods we use for everyday software engineering, like careful planning, analysis and iterative progression.

Have a fun journey through my thesis!

3

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Problem statement . 9
1.3 Research questions . 9
1.4 Approach . 10
1.5 Structure . 10

2 Background 11
2.1 Service Oriented Architecture . 11

2.1.1 Advantages of MSA . 11
2.1.2 Disadvantages of MSA . 12
2.1.3 SOA compared to MSA . 13
2.1.4 MSA in practice . 13

2.2 Virtualization and Containerization . 13
2.2.1 Containers . 14
2.2.2 Benefits and drawback of containers . 15
2.2.3 Options . 15

2.3 Container Orchestration . 15
2.3.1 Functionality . 15
2.3.2 Organizational changes . 16
2.3.3 Kubernetes overview . 17

2.4 DevOps . 17
2.5 Cloud Native . 17
2.6 Migration . 18

2.6.1 Cloud and MSA Migration characteristics . 18
2.6.2 Migration methods . 18
2.6.3 Pre-Migration . 18
2.6.4 In-Migration . 19
2.6.5 Post-Migration . 19

3 Private Cloud Migration Method 21
3.1 Research activities . 21

3.1.1 Case study . 21
3.1.2 Interviews . 21
3.1.3 Method development . 21

3.2 Private Migration Factors . 21
3.2.1 Limited outsourcing . 21
3.2.2 Product delivery . 22
3.2.3 Different focus . 22
3.2.4 Implications . 22
3.2.5 Other private cloud driver . 23

3.3 Migration method . 23
3.3.1 Migration analysis . 23
3.3.2 Observations . 24

3.4 Migration strategies . 24
3.4.1 BigBang greenfield . 26
3.4.2 Bigbang refactor . 26
3.4.3 Iterative refactor . 26
3.4.4 Iterative greenfield . 27

3.5 Applying the migration method . 27

4

4 Case Study 29
4.1 Project introduction . 29

4.1.1 Foreseen problems . 29
4.1.2 Strategy . 31

4.2 Migration analysis . 32
4.2.1 Context and Scope . 32
4.2.2 Infrastructure . 32
4.2.3 CMS analysis . 33

4.3 Reasoning . 33
4.3.1 Goal evaluation . 34
4.3.2 Problem evaluation . 34
4.3.3 CMS reasoning . 35

4.4 Resulting advice . 35
4.4.1 What to do next . 35

5 Discussion 36
5.1 Findings . 36
5.2 Interpretation and Implication . 36
5.3 Limitations . 37
5.4 Recommendations . 38

6 Conclusion 39

A Interviews 44
A.1 Questions asked . 44
A.2 Interview Wesley Dekker . 45
A.3 Interview Quenten Schoemaker . 45
A.4 Interview Ilia Awakimjan . 46
A.5 Interview Menno de Jong . 47
A.6 Evaluation . 48

B Constraint solutions 49
B.1 DDS . 49
B.2 IP protection . 49
B.3 OSGi . 50
B.4 Orchestrating the monolith . 50
B.5 Patching . 50
B.6 Security tooling . 51

5

Glossary

Application An entire software system excluding the infrastructure it runs on, can contain many services.

Cloud On-demand available computational and storage resources.

Cloud Native Software Software optimised to run on cloud infrastructure.

DevOps Software development method that aims to combine the silos of development and operations.

High Assurance System A system that tries to guarantee consistent functionality

Infrastructure The software and hardware responsible for hosting the software of CMS.

Migration Method A method to structure the analysis and plan creation concerning a migration.

Migration Plan A concrete plan to tackle a specific migration.

NoOps An IT environment automated and abstracted for the infrastructure to such a degree
that no operations team is needed.

N+1 Architecture An architecture where Components (N) have at least one independent backup component (+1)
that serves as redundancy.

Private Cloud The definition used in this work for a private distributed computational cluster.

Product In this case, the entire system delivered to the customer.

Product Migration The migration of the entire software product, this includes the infrastructure,
organisation and applications.

Service A single business case or functionality running as a separate process.

Silo A department responsible for a specific part of the product, for example, the infrastructure.

6

Abbreviations

ACL Anti Corruption Layer
API Application Programmable Interface
CD Continuous Delivery
CI Continuous Integration
CN Cloud Native
CMS Combat Management System
DDD Domain Driven Design
DDS Data Distribution Service
FCS Fire Control System
IP Intellectual Property
JVM Java Virtual Machine
MSA MicroService Architecture
PaaS Platform as a Service
SaaS Software as a Service
SOA Service Oriented Architecture

7

1 Introduction

Software migration is changing legacy software from an ”as-is” system towards an envisioned ”to-be” system that
fulfils all current requirements with new characteristics. Migrations can be complex undertakings for large software
projects, as characteristics of both the ”as-is” and ”to-be” systems need to be analysed and used to create a path
from one to the other. Therefore, a method for performing this analysis is useful. This research aimed to create a
migration method for private distributed computational clusters. For the rest of the work, this will be called private
cloud 1.

The structure of this chapter is as follows: first, the motivation for why this research was conducted is presented.
Then, the problem statement, objectives and approach are laid out in their respective sections. Lastly, the structure
of the rest of the report is explained.

1.1 Motivation

From practical experience, it can be observed that all mission-critical software projects slowly turn into legacy soft-
ware. The definition of legacy software varies; however, most definitions include that the software currently cannot
easily be changed to meet new business requirements [32]. These legacy applications range from old applications
written in COBOL and FORTRAN to more modern types of applications that have fallen behind in agility and
flexibility. Companies highly value their software’s agility and flexibility [33]. These characteristics of the software
can change with migrations to new architectures, technologies or infrastructure. Migrations are often complex
and time-consuming endeavours, implying that they are also potentially costly. The potentially complex nature of
these migrations frequently requires significant investments. These investments only bring improvement to future
development and do not always bring direct benefits to the customer. These complex migrations are also known to
fail, making the potential cost even larger [54]. To minimize risk and persuade decision-makers about a migration,
engineers need to plan and analyse it beforehand. As the analysis spans the ”as-is” system, ”to-be” system and
the path between them, a migration method is needed to aid this extensive analysis. Every project has different
requirements and specifications, meaning that methods need to be tailorable to the specifics of each project. This
makes the generalization of migration methods a necessary task.

An example of a migration that many software teams are tackling is a transition to cloud infrastructures. The
transition to public cloud brings many benefits, among outsourcing the platform, possible cost reduction and dy-
namic scaling [23]. Companies use specific software development methods to utilize the properties of the cloud to
their maximum capacity. These properties together form the cloud-native approach, defined by the Cloud Native
Computing Foundation as:” Cloud-native technologies empower organizations to build and run scalable applica-
tions in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes,
microservices, immutable infrastructure, and declarative Application Programmable Interfaces (API) exemplify
this approach.” [2].

Another prevalent migration often included in cloud-native migration, is towards Service Oriented Architectures
(SOA) and, in recent days, mostly to MicroService Architectures (MSA). These software architectures directly
oppose the architecture used in most legacy software systems, the so-called monolithic architecture. A monolithic
software project structures its software as one extensive process, often separated into modules [33] which commu-
nicate using function calls. SOA focuses on separating individual services the software provides into their own
(small) programs that are operated and developed independently. MSA takes this concept even further by splitting
the dependencies and data ownership for each service, completely decoupling the life cycles of all services. These
architectures can profit much more from the flexible scaling, and the efficiency of the cloud [39]. They give devel-
opment teams complete ownership of services, including deployment and operation. Because SOA can utilize the
cloud more efficiently, the SOA or MSA migration and Cloud migration are often performed together. Migrating
to an SOA/MSA involves splitting the application into well-bounded services that usually need new supporting
technologies to automate the now-decoupled building, deployment and monitoring processes.

Migrations are potentially complex and therefore prone to failure [54]. This means it is vital for the decision-
makers of these projects to have resources available to assist in creating migration paths. Migration methods and
plan creation for cloud and SOA migration are well documented in the literature. [35] [33]. These migrations are
not possible for all software projects, primarily due to safety, security or domain restrictions [32]. These software
projects are often deployed on privately hosted infrastructure and are not allowed or able to host their infrastruc-
ture somewhere else. The benefits of implementing cloud technologies and SOA are still attractive for software

1The term cloud does not directly fit here, as cloud refers to on-demand computation and private cloud often refers to a private
cloud at a public cloud provider. However, the term is chosen as the private infrastructure is modelled after the public cloud.

8

projects subject to these restrictions. These applications could benefit from reworking their private infrastructure
to resemble public clouds. Most technologies used in these public cloud clusters are open-source and can therefore
be implemented in private clusters. Their applications can then be migrated as any application towards a public
cloud deployment. Combining these two migrations, companies can migrate their product, often resulting in more
future-proof and stable software deployments. This product migration spans the changes in the infrastructure and
the software, which now have to be analysed together. The creation of the product migration method is the subject
of this research.

1.2 Problem statement

From the above motivation, we concluded that legacy software’s demand for agility and flexibility draws engineers of
specific software applications towards cloud and SOA migrations. However, specific projects are limited by security,
privacy or other reasons and cannot migrate to the public cloud. These projects currently lack methods for analysing
and possibly performing a migration towards a private cloud. Migrating towards a private cloud means that the
infrastructure is still in control of the company, meaning the cost, scaling and software development implications of
the migration are possibly different.

This research addresses the problem of constructing an adaptable migration method for application and infras-
tructure migration towards private cloud deployment. The complexity of the private deployment, coupled with
the characteristics of transitioning from monolithic structures to private clouds, requires a well-defined method.
This method aims to allow these legacy software projects to effectively gain cloud benefits of scalability, agility
and flexibility, as these benefits extend beyond migration towards public cloud. It also aims to guide engineers
in the analysis of possible lost or reduced benefits, like dynamic scaling and cost reduction. The challenge lies in
generalizing this method so it can be applied to a range of projects while still considering the security, privacy
and other domain restrictions that may limit the migration of each specific project. Thus, the research focuses on
formulating a migration method that strategically combines the advantages of cloud-native approaches with the
constraints of private deployment, ensuring a future-proof and stable software environment with little overhead and
smooth integration in the development process.

1.3 Research questions

The objective of the research is to improve the migration to private cloud deployments by designing a migration
method that is based on cloud and SOA migration methods while complying with requirements and constraints set
by the engineers of the analysed project so that engineers can increase the agility and flexibility of the system. A set
of research questions supports this primary objective, which can be divided into three different stages of research:
(1) Analysis of the context, (2) Creation of a method, and (3) Verification of the created method.

To create a solution to a problem, the context of that problem needs to be understood first. The context consists
of understanding how to create a private cloud and what benefits a private cloud brings. To make an engineering
decision, the possible downsides of cloud implementation must also be understood. Knowing this context allows
the problem to be analysed in the next step. The research questions for analysis of the context are:

• Q1: What technologies and architectures contribute to a private cloud?

• Q2: Who are the stakeholders of these migrations, and what benefits do they expect?

• Q3: What migration methods currently exist for the transition towards cloud infrastructure?

After the context of the problem is established, the problem itself is analysed and solved. A solution is created
using the context and the characteristics of the problem. To come to a possible solution, a few questions were
answered:

• Q4: What are the characteristics of a migration method towards private cloud deployment?

• Q5: What are the differences between public and private cloud migrations?

• Q6: Based on the problem analysis, what would a possible migration method look like, and what steps should
be included?

The last part of the research concerned verifying the created method and solution. The context and problem
analysis resulted in factors separating public and private cloud migrations. The altercations made to existing
methods to account for these factors are verified in the last part. The questions related to verification are:

9

• Q7: How do experts in the field of software architecture perceive the created method?

• Q8: Can the method be applied successfully in a project attempting a private cloud migration?

1.4 Approach

To create and validate a migration method for private cloud deployments, the Design Science Methodology for
Information Systems and Software Engineering was used [59]. The approach to accomplish the main objective of
the research followed the structure of the questions. These questions were also structured according to the Design
Science Methodology. This research originated at a company attempting a private cloud migration. This company
mainly served as a case study during verification, however, context and problem analysis also took place there.

The approach for this research consisted of several steps. These are listed below:

1. At the beginning of the research, the most crucial step was to understand the problem the company was
experiencing, the software they used and the domain restrictions that apply to their project. To achieve this,
engineers were interviewed, and accessible documentation was analysed.

2. To create a private cloud migration method, a thorough understanding of the underlying technologies and
existing migration methods was imperative. To achieve this, a literature study was conducted on SOA, MSA,
containerization, container orchestration, and cloud deployment.

3. To enable the comparison between private and public cloud, the context of the company needed to be un-
derstood. To build this understanding, engineers were interviewed to explain the context of the problem, the
current architecture of the project, the current migration considerations and the expected migration problems.

4. The final part of the context analysis was to utilize the information on the context of the project and the
information obtained in the literature study to analyse the factors separating public and private cloud.

5. The requirements for the new migration method were then deduced using the context and input from the
project’s experts.

6. Using information gathered in previous steps, a new migration method was created, fitting the requirements
and adapting to the characteristics of migration to private cloud.

7. This migration method was then presented to external experts in software development, serving as a veri-
fication of the created solution. The external experts were deemed necessary as the experts of the subject
company were directly involved in the creation of the method, therefore influencing their opinion.

8. As a second form of verification, the migration method was applied to the migration of the subject company.
The analysis resulting from the application was then presented to the project’s engineers. This served as a
last verification of the results.

9. Lastly, the interviews and case study results were evaluated, and the effectiveness of the designed method was
assessed.

The steps listed above show that this research project did not complete a full design and engineering cycle. This
was caused by the domain restrictions imposed on the case study company, which is of a military nature, meaning
that large parts of their products are classified. As access to the source code was restricted and this research aimed
to keep its content undisclosed, it was impossible to see or edit the project’s source code. This means that direct
implementation of the method was not possible. Therefore, the research had to end with the verification of the
design, while the actual implementation of the migration was left to the project engineers.

1.5 Structure

The structure of the report follows the three categories of the research questions. Chapter 2 lays out the theoretical
foundation to understand the problem analysis, which includes the technologies and architectural patterns used.
The last part of this chapter summarizes the current migration strategies identified in the literature concerning MSA
and Cloud migrations, including migration path construction, migration plan construction and best practices from
scientific literature and the industry. Chapter 3 presents the factors separating public and private cloud migration
and the new solution addressing these factors. This solution is then applied to a case study in Chapter 4. After
this case study, the method is evaluated using expert opinions and the results from the case study; these results are
then discussed in Chapter 5. Chapter 6 concludes the thesis and summarizes our findings.

10

2 Background

To create a migration method for private cloud migrations, understanding the underlying technologies and develop-
ment strategies of cloud deployments is critical. These consist of virtualization and orchestration. In modern cloud
deployments, the virtualization of choice is containerization. These containers are then orchestrated using container
orchestrators. Most cloud deployments also utilize some form of SOA; in most cases, the form of SOA is MSA. The
software development in these projects is often structured after the DevOps development practice. After a sufficient
understanding of the technologies, architectures and development processes is reached, the benefits of combining
them for cloud optimization are explained. Lastly, the theory on how to migrate towards these technologies and
concepts is discussed.

2.1 Service Oriented Architecture

Both Service Oriented Architecture (SOA) and MicroService Architecture (MSA) are styles of software architecture.
Software architecture can encapsulate many things, everything from technologies and designs incorporated into the
project, to how the organisation of the project is tackled. There is no exact definition for software architecture, but
it contains all the decisions and information needed for the architects to create a successful software project [15].
Many different architectural styles exist, all with their associated benefits and drawbacks. This section will explain
the advantages and disadvantages of SOA. MSA is an evolution of SOA that is primarily used in cloud deployments;
its differences with traditional SOA are highlighted and explained.

The benefits and drawbacks must be clear to understand when to use SOA. As the introduction mentions, SOA
tries to split an application into services that serve a specific goal. These services are deployed on hardware as their
own isolated, virtualised processes. SOA is entirely different from a monolithic style of architecture. In a monolithic
application, the isolation of parts of the application happens on a code level. With SOA, the different services are
isolated on a process level. These processes communicate via network calls. The fundamental principle of SOA is
that services serve customers. These customers can be other services or application users [42]. These customers can
be oblivious to the implementation of these services, as well as their location and other specifics. This is achieved
through services being explicit, implementation-independent interfaces, which in turn allows teams to independently
change the implementation of the services without affecting other services. These definitions hold both for SOA and
MSA. However, MSA takes this isolation one step further and isolates the entire services, including data ownership
[51] [38] [44].

Most companies migrating towards cloud deployments utilise MSA, in part because of the extra isolation provided
by the separation of the application in services [2] [39]. For this reason, the advantages and challenges of MSA are
laid out in the following subsection. After the advantages are explained, the differences between SOA and MSA are
listed, as not all companies can transform their software into MSA during migration or use SOA as an in-between
step towards MSA. Therefore, it is helpful to have an understanding of both.

2.1.1 Advantages of MSA

Potential main advantages of MSA are:

1. Scaling: As services are deployed as separate processes, scaling the application is much more flexible than
a monolithic application. Scaling for software can be modelled using the ScaleCube seen in Figure 1 [51].
Where monolithic applications mostly scale by X-axis scaling, duplicating the whole application, or Z-axis
scaling, by copying the entire application and splitting, for example, the user base, MSA applications can also
utilise Y-scaling. They decompose the hole application into separate parts and, if needed, scale those over the
X-axis. This enables them to scale much more efficiently.

2. Continuous development and deployment: Fully separating an application in services that run as sep-
arate processes and have their own data stores makes them fully isolated. This means teams working on a
service are not dependent on the developers of other parts of the application. This holds as long as the API
of the services remain stable. Teams can then change software, code and dependencies without interfering
with other teams. They can also test their changes simply by deploying the service to a test environment and
running tests against the API [51] [44].

3. Component isolation: By separating the functionality as services instead of classes or modules, as done in
monoliths, it becomes impossible for developers to bypass the service boundary. As now, the data between

11

components has to go through network components. This means the separations are automatically enforced
and will not fade over time in development [51].

4. Fault isolation: In software, faults are unavoidable. If a monolith fails, the application fails in its entirety.
For MSA, this is not the case. If a service fails, the failure is often isolated to a single service. This means
only a part of the application might not work, or maybe only one of the instances of that service is down,
meaning it still functions only with a little less capacity. Most of the time, it is also much easier to start a
new instance for one service than to restart an entire monolith [51].

5. Easier experimentation and technological freedom: As mentioned in item 2 above, as the services can
be developed in isolation, it is much easier to experiment with and test new technologies. As dependencies
are used in many locations inside the monoliths, it is often difficult to swap them for newer technologies.
As services are not directly dependent on each other, they are also free to select different technologies like
programming languages, allowing developers to choose the best options that suit their respective engineering
problems [51] [44].

Figure 1: The Scale Cube

2.1.2 Disadvantages of MSA

Potential main disadvantages of MSA are:

1. Additional complexity: Microservices add complexity to software systems due to increased interprocess
communication, handling system-wide failures, and data being spread across services [44]. The architec-
ture’s possibly numerous independent services demand careful management of moving parts in production to
maintain system stability and debugging efficiency. Automation becomes essential for tasks like deployment,
scaling, and monitoring, alleviating manual burdens. However, these complexities can lead to more demand-
ing and complex system maintenance, requiring specialised expertise for efficient management. Overcoming
communication overheads, load balancing, and service discovery hurdles is essential to ensure seamless service
interactions.

2. Additional latency: MSA can lead to increased latency due to inter-service communication overhead [44].
The services must make network calls to exchange data, which requires extra processing time.

3. Hard to find appropriate splits of services: Splitting services effectively in a microservices architecture is
challenging; if done incorrectly, it can lead to the emergence of a ”distributed monolith” [51]. In this scenario,
the system’s services become tightly coupled, losing the benefits of independence and scalability offered by
microservices. This coupling can result in harder maintainability and development and an increased risk of

12

cascading failures across the system. Correctly identifying service boundaries, ensuring loose coupling, and
considering domain-driven design principles are crucial to preventing the pitfalls of a distributed monolith.
This is quite difficult as it is more seen as an ”art” than a science because there are no practical algorithms
to solve this problem.

4. New features across service boundaries increase in complexity: Deploying features that cross service
boundaries in a microservices architecture is inherently more challenging than deploying features confined
within a single service or monolith [51]. When a feature spans multiple services, changes made to one service
may impact others, needing careful coordination between the teams responsible for those services and lim-
iting individual service teams’ autonomy. Proper testing and integration become crucial to ensure that the
distributed changes work harmoniously together, making continuous integration and automated testing vital
components of successful cross-service feature deployments.

5. Hard to determine when to adopt the pattern: MSA solves problems that come with large or scaling
software applications [51]. It enhances scaling, isolation and enables multiple teams to develop more efficiently.
However, the negatives of added complexity are present even in small-scale projects. Therefore there usually
is not a clear moment when to adopt MSA into a project.

6. Integration testing harder: Integration testing in a MSA becomes more challenging compared to tradi-
tional monolithic systems [38]. As services operate independently, testing interactions between services is
essential to ensure seamless communication and data consistency, especially with new features that cross ser-
vice boundaries. However, the increased number of services and their distributed nature require complex test
scenarios encompassing various service combinations.

2.1.3 SOA compared to MSA

MSA focuses heavily on isolation of services. This means services can be deployed, developed and scaled indepen-
dently [42]. These benefits are deemed important in cloud environments. Conversely, SOA has centralized data
management, smart communication, and more extensive services. This means the communication often occurs via
busses, and the amount of services is generally lower [51]. The impact of these differences is that SOA usually
still relies on singular points of failure. The database and message bus are required for the entire collection of
services. Also, there are fewer but larger services, so the dynamic scaling possibility is lower. On the other hand,
the complexity and latency are often lower as the network consists of fewer services.

2.1.4 MSA in practice

As can be concluded from the previous sections, MSA increases the productivity of small teams while increasing
the complexity of the overall project. Its strengths lie in teams’ ability to develop rapidly and produce continuous
software upgrades. To facilitate this, organisational changes and tooling are needed [25]. Switching to a DevOps
style will ensure continuous delivery is possible. To effectively achieve this, automation of deployment is critical,
mostly done using a combination of two tools. First, containerisation is used to make sure the deployment process
is generalised for all hardware. Second, an orchestrator tool manages the deployment and monitors the real-time
state, ensuring it matches the described state documented in the project repository.

2.2 Virtualization and Containerization

Virtualisations can be used to effectively divide computers’ computational resources, allowing the hardware to be
divided over different programs or operating systems [21]. Virtualisation is running a software system in a layer
abstracted from the layers below. This can be the hardware layer, the operating system, or any other layer [53]. A
suitable implementation of virtualisation needs the following key features [21]:

1. Isolation: As computational power is divided between different processes, some being possibly malicious,
isolation is key. It is never acceptable for one process to negatively affect other running processes.

2. Variety: A virtualisation has to work properly on different hardware setups and operating systems, as
virtualisation is mainly used to generalise the deployment of applications to different sets of hardware.

3. Overhead: Overhead is the duplication created when running multiple virtualisations on one machine.
Because of the generalisation, some overhead is inevitable. However, it is vital to minimise this overhead as
much as possible, as they increase storage and impact startup times.

13

In the past, virtualisation was achieved using virtual machines. This means creating an abstraction layer on
top of the operating system to run virtual operating systems. However, this requires an entire operating system for
each process, resulting in a significant overhead [53]. Many optimisations have been made for virtual machines, for
example, Xen [21]. Still, the overhead remained larger than desired.

2.2.1 Containers

The most prevalent virtualisation option in cloud architecture is containerisation. Containers are an abstraction on
the application level [53]. The container architecture can be seen in Figure 2.

Figure 2: Architecture model for containers, including orchestration

The idea behind containers dates back to the early nineties [12]. The concept of a container is to run isolated
processes using the kernel of the underlying operating system. It relies on Linux namespaces and Cgroups [22]. The
container operates within its namespace, making it impossible for the process to see processes outside its namespace
[34]. Cgroups are then used to restrict the processor and memory access to certain limits. This has the advantage
of not allowing a malicious process to hog all hardware and allowing orchestrators to keep track of what nodes have
space available for new processes. Most container solutions use a container engine to manage their containers. This
architecture can be seen in Figure 2, and is the architecture used by Docker [16], the most used container solution
[53]. Docker uses union mounts to stack read-only file systems, which allows container images to be extended upon
and to share underlying file systems [49]. This feature is powered by overlay file systems built into the Linux kernel
[34]. In these file systems, only the top layer is mutable. Mutations are done using a copy-on-write, leaving the

14

shared layers untouched. This allows containers to share file systems without affecting each other, saving download
time and memory usage.

Containers must fulfil the virtualisation requirements and a few extra requirements [34]. In addition to isolation,
variety, and reduced overhead, they need a versioning system and fast startup to meet orchestrating needs. The
versioning system is so the orchestrator can keep track of what version is running, and the speed needs to be fast
enough so in case of failure the new container is up in a matter of seconds.

2.2.2 Benefits and drawback of containers

The popularity of use and development using container technology instead of virtual machines is mainly caused
by the many benefits it brings to the MSA architecture and cloud industry [53] [49] [24]. Containers can run on
all most hardware with a small footprint, as the OS is not duplicated. These are the main reasons the industry
values them highly [49]. Containers do come with security downsides. As they share the OS kernel and interface
via network, they are vulnerable to data loss and malicious influence via the kernel.

2.2.3 Options

As of this current moment, Docker is by far the most dominant option used for containerising, as it is currently listed
as being used in more than 80% of cases [5]. Docker offers various features, including many extendable images and
a cloud container registry [6]. There are, however, alternatives like LXC [8] or Containerd [3]. Containerd is used
a lot in combination with Kubernetes, as it is also a project of the Cloud Native Computing Foundation. Another
option when an open source and rootless container option is needed is Podman [10]. It provides a deamonless
runtime that can run containers rootless, this can be very useful for secure environments. It comes with its own
container build tool called Buldah but can also interface with others.

To make sure containers can be used between different container runtimes, the Open Container Initiative (OCI)
was created. This initiative specifies the runtime, distribution, and image specifications for containers that comply
with it. This means containers build with Docker can be run using Podman and the other way around.

2.3 Container Orchestration

When using microservices running in containers, many small processes must be deployed and managed across
multiple machines. As large applications now often include thousands of containers, and the interactions between
these services scale exponentially, these tasks must be automated [37]. For this reason, container orchestrators have
been developed. In the past, many big companies developed their own container orchestration solutions, like Borg,
developed by Google [58]. Nowadays, many open-source solutions exist, some of which were built upon the lessons
learned from previous in-house orchestrators. One example is Kubernetes [7], an open-source solution developed by
Google.

2.3.1 Functionality

Container orchestrators can automate the deployment, maintenance, configuration and monitoring of microservice
applications. Therefore, fully understanding and setting up an orchestrator can be challenging. First, it is vital to
understand the reasons of using an orchestrator. It is then possible to explain the features of orchestrators. After
the features are described, a general overview of the architecture of an orchestrator is given.

Google learned what benefits an orchestrator brings by using and building Borg [58], which was built to run
their services and jobs on their private cloud. They identified three different benefits while operating Borg.

1. The cluster hides detail. It automatically handles failures and resource management, so engineers can spend
time on other issues.

2. The cluster operates with very high reliability.

3. The cluster spreads the load effectively across many machines.

The orchestrator becomes an abstraction layer over all different machines in the cluster [17]. It handles resource
management, scheduling and service management. This allows engineers to define a desired state with the require-
ments they need for the cluster, and the cluster tries to match this state in the real world continuously. This allows
the cluster’s desired state to be incorporated into version control systems.

To achieve the benefits mentioned, an orchestrator needs to be able to address four concerns [34]:

15

1. Dynamic scheduling: The cluster needs to span multiple machines, called ’nodes’, and support many
different services. The cluster must be able to determine where to schedule these services. The scheduler
needs to account for the hardware needs of the application. When a node fails, all services running on it must
be automatically rescheduled to another node.

2. Distributed state: The entire cluster needs to know what services are running where. Services must be able
to communicate at all times, so every node needs to be able to direct network requests to the correct node.
Also, the cluster control plane needs to monitor the current state to see if the state of the cluster matches the
state described. Lastly, in case of a network failure between parts of the cluster, the cluster can restore the
disconnected parts using state information.

3. Hardware Isolation: The cluster is tasked with isolating the containers with the differences in these envi-
ronments so that they run identically on all nodes, unless they have specific hardware requirements, like for
example a specific sensor.

4. Multitenancy: As the cluster can be used by many different users, the cluster needs to provide isolation,
security and reliability to all tenants. This includes, but is not limited to, securing network, data and secrets
and restricting resources of users.

To achieve this, orchestrators are generally structured in similar ways [52]. Developers add the instructions
for the orchestrator into version control. The management plane of the orchestrator reads these instructions and
schedules or alters the applications running on the compute cluster. As any of the nodes connected to the cluster
can fail at any time, the management plane constantly monitors what is running where [34]. As every process
running in the cluster, including all parts of the management plane, are objects controlled by the orchestrator, it
can automatically recover from most failures. This general architecture can be seen in figure 3. To achieve highly
scalable applications, the orchestrators also have advanced networking options [52], automatic resource allocation
and load balancing.

As the orchestrator has full authority over the compute cluster, its security is vital. To secure an orchestrator
and its cluster, the following is required [37]:

• The images pulled and executed by the cluster must be trusted; otherwise, malicious code can be easily
executed.

• Fine-grained access control must also be in place, including identity validation.

• The nodes should be directly patchable in case of a problem.

• The attack surface must be reduced as much as possible.

Figure 3: Basic architecture of container orchestrator

2.3.2 Organizational changes

Container orchestration obviously benefit from MSA and containerisation within the application. This means
DevOps is also recommended when using a container orchestrator [18]. Specifically, the separation in teams re-
sponsible for their respective services and configuration as code are important. The cluster needs to be secure, so
keeping all configuration secure and limiting access using access control is imperative [37].

16

Container orchestrators allow changes to be rolled out fast, if needed to only parts of the user base and allow them
to quickly be rolled back if needed. Meaning that companies able to test in production can utilise the orchestrator
to cut back on testing infrastructure. For companies where this is not possible, the orchestrators allow testing the
new application in a sectioned off part of the cluster using namespaces. Overall, this shows that organisations can
increase increment cycles and decrease testing infrastructure.

2.3.3 Kubernetes overview

Kubernetes is the market-leading option in corporate solutions and research [45]. It is an open-source solution
focusing on being extendable and portable [7]. The combination of being extendable and the primarily used
orchestrator resulted in a large ecosystem of extensions for Kubernetes. Many different versions of Kubernetes
exist, incorporating different implementations for networking, storage or other parts of Kubernetes. Essential to
the design of Kubernetes is that every component is described as an API object. This API remains stable over
every implementation and version of Kubernetes [34] [50]. This means that configurations written for Kubernetes
will remain valid for the foreseen future.

Kubernetes uses pods as the scheduling unit [34] [7] [50]. These pods contain one or more containers. Inside
a pod, containers are connected directly using a local network. Pods are immutable once deployed, meaning if a
container fails or needs to be updated, the pod is destroyed and replaced. Pods can be directly scheduled using
the Kubernetes API, either using the command line tools (kubectl) or by providing a YAML file with all the
pod requirements. This includes but is not limited to what containers to run, their specifications, hardware- and
network requirements. To schedule and maintain these pods, Kubernetes has a lot of different components that can
be scheduled, all scheduled as API objects.

2.4 DevOps

DevOps found its origin in 2008 to resolve the conflict between development and operations teams in cases where
quick response time was necessary [27]. DevOps aims to unify the two silos of development and operations within
organisations using automated development, deployment and infrastructure monitoring [28]. The resulting combined
teams work on continuous operational feature deliveries. DevOps requires a culture shift within the organisation,
which can be costly to implement. Nowadays, DevOps is widely adopted in software development, and there are
many reasons for its adoption. Research shows that DevOps can lead to faster time to market, better software
quality and improved productivity [26].

To achieve DevOps, automation is mandatory [28]. Build tools help with fast iteration, Continuous Integra-
tion (CI) integrates the changes from developers into the codebase with possible verification of the changes, and
Continuous Delivery (CD) automatically delivers the code to the production environment. The CI/CD toolchains
bring the vital characteristic that infrastructure can be treated as code. These automation options also heavily
benefit from containerisation and container orchestration, as these technologies help generalise and automate the
deployment procedures and accept configuration as code. These benefits are further enhanced by utilising MSA in
combination with DevOps [19]. After adopting MSA, small DevOps teams can focus on their services and own the
entire life cycle of these services, reducing their dependency on other teams.

Companies can adopt DevOps to different degrees. For some products, especially older ones, the cost of fully
implementing DevOps is too high or implementation is impossible [41]. DevOps offers most for products that need
frequent updates to stay competitive. Companies can adopt bridges between silos or semi-connected teams instead
of entire DevOps teams. These options do seem to provide fewer benefits [41]. Companies with other environmental
constraints, like the automotive industry, can still apply the principles of DevOps [28]. This shows that even when
traditional DevOps is not possible, adopting parts of DevOps can still bring benefits. However, in these domains,
especially when the company is not developing one singular product, introducing DevOps becomes impossible. This
is discussed in Chapter 3.

2.5 Cloud Native

Cloud Native (CN) is a form of software development that directly designs software for utilising the cloud and
maximise the provided benefits. This is typically done using MSA, containerisation and container orchestration [2].
The term is widely used to describe applications optimised for running on the cloud. Most CN application share
common characteristics, these include [31]:

1. Operate at a global scale.

17

2. Scale well, often with thousands of concurrent users.

3. Built with the assumption that underlying infrastructure changes and fails.

4. Built for continuous integration and deployment.

5. Security is vital.

The cloud is a network of computational devices that offer services on demand. It functions as an abstraction
layer over the individual machines, removing the need to interface directly with them [23]. Clouds can be fully
public, offering Platform as a Service (PaaS) or Software as a Service (SaaS), private and hybrid, or a combination
of the two. When these services are obtained from a third-party cloud provider, the first benefits experienced from
the migration are outsourcing of maintenance of hardware in the case of PaaS up to possible outsourcing of parts
of the software in the case of SaaS. Utilising public clouds, hardware usage can be scaled on demand. This is useful
for applications that might grow rapidly or where traffic load varies over time. Utilising MSA can maximise this
benefit. Scaling only the parts of the application that receive high traffic enables cost reduction and more efficient
scaling [51].

CN applications do not have to be hosted on public cloud. Applications can run on private cloud setup, that
still offer computation on demand, like Borg [58]. Applications that are optimised utilising the same principles
as mentioned above can still be seen as CN applications. In essence, it is an approach of software development,
focussing mostly on resilient and scaling software.

2.6 Migration

Migration is going from a current system, towards a new envisioned system. Migrations can span many changes,
stakeholders and requirements. They need to be carefully planned and tracked. This is especially true when
migrating towards MSA and CN. In these migrations the application needs to be rearchitected, new technologies
added and possibly the organisation restructured. To reach a successful outcome, migration planning and strategy
are vital [36].

Below, the theory on how to create these migration plans is presented. The information is attained from both
the scientific literature and the software industry. It first explains what makes MSA and cloud-native migrations
complex. Then it gives the theory of what a migration is and the specific phases involved. The information on the
phases includes how to analyse the migration and create a migration plan.

2.6.1 Cloud and MSA Migration characteristics

The transition to CN is a multidimensional problem that increases exponentially with the complexity of the software
[20] [37]. Additionally, as these companies often need to do quick iterations of their software to stay competitive [48],
the migration towards CN also often has an additional focus to increase the agility and flexibility of the software
[57].

Within a typical cloud migration the architecture of the project needs to be changed to MSA, containerisation
and container orchestration need to be introduced and the project’s organisation needs to be optimised for cloud
development. As becomes evident from the theory above, each of these subjects are quite complex. Meaning, that
during a cloud migration, planning on how to tackle these implementations together needs extensive knowledge and
careful planning. This is why multiple migration methods for CN exist.

2.6.2 Migration methods

A lot of research is done towards migration plan creation [54] [47] [30]. Migrations are often split into three
distinctive phases: (1) pre-migration, (2) in-migration and (3) post-migration [33] [35]. Each of these phases is
elaborated on, as they remain similar across all migrations.

2.6.3 Pre-Migration

This phase starts at the first consideration of the migration and runs up until the actual work of the migration
starts. The phase spans all the analysis needed to create a successful migration plan and the actual creation of the
plan [33] [35]. The migration analysis in this work is based on the method presented in [36], depicted in Figure 4,
and extended using other migration research. This method was chosen as the base, as it offers a clear structure for

18

the analysis phase of the migration. As the goal of the pre-migration phase is to create a concrete migration plan,
the analysis must give all information needed to achieve this goal.

The analysis starts by analysing the organisation. The organisation dictates the available resources, acceptable
risk, domain and overall goal of the migration [54] [33]. The resources analysed dictate what the migration is limited
by. The migration can either be limited in time or cost. The limiting resource needs to be carefully tracked during
the migration, as otherwise the migration is likely to fail because of running over budget [54]. The goals of the
migration need to be clear, as this allows the planning to be created with the goal in mind and allows the migration
to be evaluated after its completion. Especially, noting the quality-factors that are aimed to be improved, allows for
accurately gauging the success of the migration. The quality-factors are also a useful metrics for other companies
considering the same migration [30]. Lastly, the organisational analysis can result in constraints, set by for example
risk or the domain of the company. These constraints need to be resolved before the migration analysis can continue
[36].

After this organisational analysis, the application and cloud options are analysed together. For the cloud, a cloud
provider needs to be selected that fits all the requirements of the project. The application needs to be analysed to
determine how it needs to be changed to optimally utilise the cloud. Both these analyses can result in constraints.
These again need to be addressed before the migration planning can continue. If the constraints cannot be resolved,
the migration should be aborted.

Lastly, a migration plan is created. This is a complex task as it needs to be specifically fitted to the characteristics
of the project, the goal that is aimed to be achieved and the complexity of the attempted migration. Additionally,
the starting point for every individual migration is different. There are many different migration strategies possible
[40], with some more complex than others. To create a project specific plan, the analysis done above is used. The
plan is bounded by the limited resource and a migration strategy fitting the risk analysis is chosen. Then an actual
concrete planning is created. The research has certain tools available to aid the creation of these plans. Situational
Method Engineering [43] is one of these examples that can be adapted to this specific migration [20]. Overall, it
is advised to create a plan with iterative steps. Intermediate analysis of the impact of each step can be used to
evaluate and adjust the migration plan accordingly [1] [54]. This feedback cycle reduces the risk of the migration.

2.6.4 In-Migration

During the migration phase, the migration is executed according to the plan and steps it defines. During this phase,
software is redesigned, developed and deployed [33]. The migration strategy dictates the size of the migration steps.
This could be the entire application at once or small isolated services. It is important to keep the rest of the
application consistent between steps, as otherwise it is not possible to measure the direct impact of the step.

The actions can also be defined by patterns [20] [36]. This allows method engineers to construct a migration
process from an extendable method database. Engineers can then follow these methods and refactor the application
in place.

During this phase, it is crucial to keep track of the cost expended for the migration and the progress [54]. This
is crucial when evaluating the migration plan and whether it needs changing during the migration. For this reason,
it is vital to do the cost and risk analysis beforehand. Without this analysis, there is no way to measure the
progression of the migration.

If the data gathered by tracking the migration shows the migration does not have the desired effect, the migration
should be aborted, as failed migrations are costly [54]. How to abort a migration depends on the strategy chosen
to tackle the migration. However, it is always advised to prepare a rollback strategy if the migration is effecting
the production environment [48]. This rollback strategy dictates how engineers revert changes made to rebuild the
production environment to a state not influenced by changes made by the migration.

2.6.5 Post-Migration

There is little research focusing on this phase of migration. Certain engineers do not even define a specific endpoint
to their migrations and consider it an ever-lasting process [30]. A recent study [33] has shown that in the post-
migration stage of MSA migrations, the maintenance concerns of companies do not resolve as their scalability and
flexibility concerns do. Also, the security gains no specific advantage. The performance concern only grows after
migration. Using these metrics, companies can decide for themselves if, even without the improvement in the
maintenance quality-concern, a migration towards MSA is still beneficial. This directly shows the value of these
quality-concerns. It is a way to verify if the theoretical benefits provided by a migration are actually attained in
the industry during migration.

19

Figure 4: Situational migration description and process model from [36]

20

3 Private Cloud Migration Method

This chapter presents the migration method we developed, the observations that prompted its design, and how these
observations were gathered. The observations were made at a naval software project, and served together with the
theory presented in Chapter 2 as the basis for the migration method. The chapter first outlines the observation
collection process. It then explains the different factors between a private cloud migration and a traditional cloud-
native (CN) migration, and the implications of these factors on the migration analysis. Lastly, the created migration
method is explained.

3.1 Research activities

During this research, observations about private cloud migrations were gathered and verified using two strategies.
Firstly, the research was conducted at a company undergoing a private cloud migration, which served as the case
study. Secondly, external engineers were interviewed.

3.1.1 Case study

The case study took place at a military company. Due to the classified nature of this case study, nearly all
information was acquired in conversations. These conversations were not allowed to be recorded. The research took
place at the offices of the company. The conversations were informal, allowing engineers to discuss their goals and
vision for the migration. Some engineers, especially the lead architects of the project, were asked more frequently to
verify the gathered information and help with reasoning about the implications. Lastly, the observations, reasoning
about the observations and resulting advice were presented to the engineers of the company, serving as a last
validation of the work.

3.1.2 Interviews

Experts of the CN software environment were also interviewed for external validation. These interviews were
unstructured, allowing the experts to highlight parts of the migration theory they deemed important. The questions
and transcripts from the interviews can be seen in Appendix A. These interviews served to validate the observations,
check if generalisations for the observations were missed that did not apply to the case study company, and to check
if they deemed the choices made in the created method, presented below, valid.

3.1.3 Method development

As public and private cloud migrations closely resemble one-another, a suitable migration method from public
cloud migration was chosen. The selected method can be seen in Figure 4 and originates from [36]. This method is
selected as it has a clear structure to the analysis phase, which is the main focus of this newly developed method.
Private cloud migration do have certain factors which need more attention during the analysis phase. These factors
are discussed in Section 3.2. The method is adapted to these factors to create a private cloud migration method.

3.2 Private Migration Factors

To adapt the selected migration method, the factors separating CN migration and private cloud migration need
to be understood. These factors, observed at the case study company, are listed below. The implication of these
factors is then reasoned about. These implications form the base of the adaptations to the original method.

3.2.1 Limited outsourcing

The first and most apparent factor is the limitation in the outsourcing of the infrastructure. Many works on
CN migration start their reasoning from the benefits obtained from not having an infrastructure team and the cost
benefits this can bring [36]. Additionally, if the application is migrated towards MSA the dynamic scaling properties
of the cloud can result in even more cost benefits. This dynamic scaling and global properties of the cloud can
allow applications to scale fast and cost-effectively around the world.

Some companies are however limited by security, privacy laws or by the obligation to deliver their servers as
part of the product, which typically happens because of security concerns. These obligations limit their ability to
outsource their infrastructure and therefore limit the cost and scaling benefits. This means the hardware stays the
responsibility of the company but also remains in full control of the company. It also means other properties of

21

the cloud, like multitenancy and arbitrary hardware, can be eliminated. Some companies can still achieve benefits
with dynamic scaling applications on private clusters, but this needs a sufficiently diverse computational load, like
in the case of Google [58].

3.2.2 Product delivery

The traditional CN migration looks at cases where the company operates using continuous software delivery [36].
These companies continuously serve their users while improving their product. This setup allows companies to
quickly evolve their software and stay competitive. However, not all software companies operate this way. Certain
companies, for example in the military domain, deliver products that include the infrastructure the software runs
on. These products often no longer evolve when shipped to the customer. In some cases, as with this case study,
the entire operation phase of the software is not in the control of the company. Additionally, these products can
often be configured to the needs of the customer, meaning that there is not one continuous product, but configured
deliveries. These changes combined mean that the development and operation cycle is incomplete. Such a broken
DevOps cycle is illustrated in Figure 5. This figure shows the cycle splitting at the delivery stage, however in
practice this can be in other places as well. For example, the product could be configured to the needs of the
customer or already be packaged as different products. This means that some concepts of DevOps can still be
achieved, however, the continuous cycle is never possible.

Figure 5: Illustration of broken DevOps cycle

3.2.3 Different focus

Most traditional CN companies value the flexibility and agility of their software highly. These are also the leading
concerns when migrating towards MSA [30]. For certain companies, flexibility and agility are not the top concerns
for their software project. This holds especially for companies developing high assurance systems, like military
applications. These companies often have their main focus on the integrity of the software, requiring extensive testing
setups. CN companies often shift towards reducing their testing setups and move towards testing in production
[48]. For companies with strict testing requirements, this is not or only partially possible.

3.2.4 Implications

To account for the factors listed above, their impact on the migration needs to be understood. Below, the implica-
tions of the three factors are explained:

• No outsourcing: This factor gives insight into whether the infrastructure can be outsourced, partially
outsourced or not outsourced at all. If the project needs to be hosted privately, it should be seen if a private
computation on-demand setup, like Borg, is beneficial, as it has a profound impact on the benefits of dynamic
scaling. If no outsourcing is possible the infrastructure needs to migrate in-house, resulting in a migration

22

happening alongside the application migration, with its own stakeholders, constraints and goals. These vertical
organisational structures, referred to as silos, migrate side by side, so that the overall product migration now
consists of multiple sub migrations.

• Product delivery: This factor affects the possibility of transitioning to DevOps. Depending on how the
product is delivered and who is responsible for the operation phase of the software, the cycle could be impos-
sible to fully implement. This means that certain features relating to orchestrators are impossible to utilize.
This can also have a negative influence on the effectiveness of MSA, as MSA highly benefits from DevOps
[19]. The difference implies more analysis is needed on the extent DevOps can be applied, how the company
still benefits from DevOps concepts and the effect on the migration towards MSA.

• Different focus: A difference in the main quality concern, again, works against some of the features of the
cloud. If the priority of the developers is integrity, a lot of orchestrator features will never be used. It also
means that the possible, project-wide complexity MSA brings is a harder trade-off to make.

Overall, these three factors increase the complexity of the analysis phase of the migration. New stakeholders are
introduced and the overall benefits, especially relating to cost and MSA, are no longer always present. To account
for the implication of these factors, the selected migration method has been adapted. The resulting method is
presented in Section 3.3.

3.2.5 Other private cloud driver

The implications of the factors explained above arise from the assumption that a product needs a private cloud
deployment due to environmental restrictions. This shifts the reasoning towards high assurance systems, leading for
example to the different focus factor. However, more and more companies are opting for private cloud for financial
reasons [13] [14]. Running their more standard software applications on public cloud infrastructure is no longer
cost-effective.

For these applications, the factor impact is relatively different. If they choose the private cloud deployment
options, they are possibly still able to achieve the continuous deployment benefits brought by cloud. They are
still able to utilise the method created in this work, however their migration resembles a CN migration even more.
Therefore, some of the steps added in the new migration method might redundant, as the migration of high assurance
systems remains the main focus of this work.

3.3 Migration method

The method we propose is an adaptation of the method from [36] seen in Figure 4. The method was adapted
based on the implication of the factors differentiating private cloud migration and public cloud migration. The new
migration method increases the attention towards the migration analysis phase, as the attainable benefits of the
migration change, the implications of the domain analysis increase and the amount of stakeholders also increase.
The new migration method, is shown in Figures 6 and 7, and is explained below. The explanation focuses mostly
on the adaptations made in this work. The steps that remained unchanged are not explained in detail here, further
elaboration can be found in Section 2.6.3.

3.3.1 Migration analysis

The method, and therefore the migration analysis, starts at the starting point of Figure 6. Here, the organisation
profile and organisational constraints are analysed. If this results in a private or partially private cloud migration,
the method moves on to the private cloud migration diagram, seen in Figure 7.

The analysis of the private cloud migration starts by assessing the factors introduced by the move to private
cloud, discussed in Section 3.2. This analysis aims to find out to what extent these factors apply. Once there is a
clear picture of the factors and their effect on the migration, a goal for the product migration can be created. The
product is defined as the infrastructure and applications deployed on the infrastructure. Each application and the
infrastructure itself has a corresponding stakeholder group. A vertical organisational structure here defined as a
silo. These silos are present within the company even before the migration, and need to all agree on the overall goal
of the migration. Therefore, the analysis of private implications and creation of product goals should be performed
by a set of engineers from all silos. This promotes consensus about the entire product migration.

After consensus is reached for the overall goals of the product migration, the analysis splits up towards the
respective silos. Each individual silo now needs to analyse how to migrate their part of the product and how much

23

Figure 6: Decision diagram for choosing what migration model to choose

work this will entail. They also need to find what constraints block the migration for them. Lastly, each silo needs
to look at what the other silos are planning to do and what their subgoals are. This last step promotes consensus
between silos further, as the perspectives of the other silos are understood. The addition of these steps again
promotes communication between the silos. This improved communication is promoted to make more use of the
increased control over the infrastructure. In private cloud, the infrastructure can take any form, as it is still in full
control of the company. If the infrastructure teams and applications teams work together, they can possibly help
solve constraints of one another.

After the constraints are resolved, the migration is evaluated again. The product migration goals are clear,
and each silo has a clear analysis of their respective part of the migration. As the migration analysis is split over
different silos, a final evaluation moment is added to the method. In this evaluation moment, engineers of each silo
again analyse if the product migration is worth the investment. Together, they either decide to proceed with the
migration or cancel it.

3.3.2 Observations

With the case study, we could observe the factors and challenges faced in private cloud migration for high assurance
systems. The project analysed as the case study is a software product deployed to naval ships. There is strictly
no outsourcing possible, as the infrastructure is part of the product. After the product is deployed to the ship it
can no longer be altered and monitoring for development purposes is also strictly off limits. Each ship also gets a
specifically tailored solution, which is adapted to the hardware and the specific needs of the ship. Lastly, as the
software operates in the military domain and is responsible for operating the weapons aboard the ship, the focus
of the project is fully on the integrity of the software.

The observations at the company also contributed to the adaptations made to the migration method. At the
start of the research, the infrastructure team had already started the migration. As the application teams had to
comply with the changes in the infrastructure, this forced them to start their own migration. One of the application
teams opted to start anew, fully embracing the new infrastructure. The other team was unsure how to tackle the
migration and what their migration goals were. Each team wanted to improve the product, however, each had a
different view of what this entailed. It was observed, by us in performing the analysis together with the engineers,
that acknowledging the existence of different silos with their own respective goals helped in the migration analysis.
This led to the adaptations made to the method.

3.4 Migration strategies

Just like in the migration to public cloud, a migration to private cloud entails changing the architecture of the
software. A private migration, however, also entails a migration of the infrastructure. As multiple parts of the
product needs to be reworked, a migration strategy needs to be chosen. This migration strategy dictates what the

24

Figure 7: Situational migration description and process model for private cloud migration

25

migration plan looks like. We found four migration strategies in the literature and grouped them in the migration
matrix seen in Figure 8. Moving along the horizontal axis increases reward as time and cost potential are high,
but the risk is also high. Moving on the vertical axis increases technological freedom, but also the complexity of
the migration. The four strategies were also presented to the experts, who acknowledged them and deemed the
migration matrix a helpful visualisation.

Figure 8: Decision matrix for migration strategies

3.4.1 BigBang greenfield

This strategy is familiar, and consists of simply starting anew. It gives optimal technological freedom, but is quite
a risky endeavour. It is difficult to achieve all the same requirements with new technologies or architectures, and
difficult to make a concrete plan. To create a plan for this, one should tackle the problem as any new starting
software project, however, using the requirements from the existing to-be-migrated system. Because of the risk,
this strategy is not advisable for large software systems.

3.4.2 Bigbang refactor

This strategy is very similar to the previous one, however instead of creating a new system, the entire project is
refactored at once. This decreases the complexity, as the parts not changed stay intact, however, it decreases the
technological freedom. As all the changes happen in one go, the strategy is risky, due to the lack of feedback cycles.
It does however save time and can be useful for smaller projects or migrations. To create a plan for this strategy,
one should first analyse what needs to be changed in the migration, decide how to tackle these changes and then
perform them.

3.4.3 Iterative refactor

This strategy is widely used for CN migration. A plan consisting of small changes is created, and each change
is then performed consecutively. As most orchestrators have the capabilities for rolling back changes and routing
calls, the changes can be tested inside the cluster and rolled back if they are not satisfactory. The feedback cycles
increase the time the migration takes, however it also decreases the risk if combined with monitoring and rollback
strategies. To create a migration plan for this type of migration, a list of all proposed changes is created. This can,
for example, be done using DDD’s event storming [29], isolating services which are migrated one by one, or using
method engineering with a method repository created for CN migration [36]. As the changes happen within or next
to the original application, the migration is not free of the original technological choices.

26

3.4.4 Iterative greenfield

The iterative greenfield resembles the previous strategy, however, requires the inclusion of an Anti Corruption Layer
(ACL), which is a concept from DDD [29]. This ACL converts calls from the old system to the new system, allowing
engineers to develop a new system without the burden of the old system. The migration is then performed in the
same manner as in the case of iterative refactor (Section 3.4.3), by doing small independent changes. An overview
of this strategy can be seen in Figure 9. The ACL is however a complex piece of technology that sits at the heart of
the application. If engineers deem technological freedom necessary and require a low-risk migration strategy, then
this strategy should be chosen. First, the characteristics of the new system should be designed. This gives an idea
of how the ACL should transfer the calls. Then the migration plan can be created further using the same tools as
mentioned in Section 3.4.3, making sure to update the ACL in between each step.

Figure 9: Typical application architecture during migration with ACL

3.5 Applying the migration method

The method gives a structured overview of how to perform the analysis and focuses extra attention on the factors
that set apart private cloud migration from moving to public cloud. From the analysis, it becomes apparent that
certain aspects of the migration can be limited by the restrictions that force a move to private cloud. Especially,
MSA and DevOps can be limited in their implementation. The migration method diverts more attention into the
value they bring for the private cloud migration.

The migration method also puts a lot of emphasis on the cooperation between silos. As the infrastructure of the
product stays the responsibility of the company and needs to evolve as well, knowledge about it needs to stay in
the company. The people responsible for different areas of the product need to determine together what the goals
are for the migration.

The increase in the complexity of the analysis also directly shows the need for evaluating the value the migration
brings to the overall product. As there are more silos, and possibly fewer benefits to be obtained in the migration.
Once the decision is made to proceed with the migration and the goals are clear, a migration plan should be created.
The strategies listed can give shape to this migration plan. For large private cloud migrations, an iterative strategy
is advised, as it reduces the risk of the migration. The nature of this strategy allows engineers to reflect on the
changes made, analysing if the benefits that are strived for are actually attained. The migration should then be
performed according to the migration plan. After the migration, the whole process should be evaluated, as it

27

happens with any other migration. Especially, the concerns that were set out to be addressed should be evaluated
to assess if the intended improvements were achieved [33].

28

4 Case Study

This chapter presents the application of the migration method, discussed in Chapter 3, in the case study. It starts
by explaining how the research started within the project, depicting the problems needing a solution. Here the
project context is also explained, as this is necessary for the migration analysis. Then the analysis itself is performed
according to the migration method. To keep the chapter as short as possible, only the organisational and project
information is presented that is critical to the analysis. Lastly, the analysis is applied to the original problems and
advice for the future of the project is given.

4.1 Project introduction

The application in this case study is Tacticos, which is a Combat Management System (CMS) developed by Thales
[11]. The software gathers, processes and displays data from all connected sensors aboard naval ships ranging from
patrol boats to destroyers. It then collects operator input and takes actions accordingly through interfaces with
machines or weapons aboard the ship. The software can also interface with other software products, both other
applications developed by Thales and externally created software applications. The software is deployed on over
200 ships and used by 25 navies worldwide. More than 200 engineers are working on the project concurrently. The
number of engineers is set to expand rapidly in the coming years to fulfil the requirements for the large order of six
F126 Frigates by the German Navy. This delivery includes the software running on the ships, the infrastructure and
many training facilities, meaning the product includes the infrastructure the application runs on. The customer can
also configure the application depending on, for example, what sensors or weapons the software interfaces with. As
the project is located in the military domain, the project also includes extensive testing setups designed according
to the V-model [56].

The infrastructure teams of the product started a migration to include containerization and container orchestra-
tion into their infrastructure. They had clear reasons for this migration and a plan how to achieve their migration
goals. They started the migration independently of the application teams and indirectly forced the application
teams to migrate towards deployment on this new infrastructure. A different software project at Thales, Fire Con-
trol Systems (FCS), started this migration by following the BigBang Greenfield strategy. The CMS team foresaw
some problems with adapting their software. These problems served as the basis for this research.

4.1.1 Foreseen problems

This case study started with the analysis of the problems foreseen with adapting the CMS application to run on
the new infrastructure. The move was scheduled to happen relatively quickly, in a time span of around two years.
The lead architects foresaw certain problems with this adaptation and needed solutions for the problems at hand.
These problems are discussed in the next sections.

Failover

As the current infrastructure already spans a cluster of machines aboard the ship, it already has orchestration and
failure-handling solutions. The current orchestration is an in-house developed application that can orchestrate the
cluster using DDS [4] and OSGi [9]. The way it does this can be seen in Figure 10. The orchestrator, displayed in
the bottom right corner, schedules a tracking process. This process then sends a message via DDS to OSGi in a
Java Virtual Machine (JVM) that is supposed to schedule the to-be-scheduled application. OSGi then enables the
specified Java bundles to run the specified part of the application. These steps happen in sub-second times. When
needed, there are even solutions to decrease the failover time even further.

On the other hand, Kubernetes works with redundancy. This means multiple instances of an application part
are run simultaneously, and the load is balanced between them. This load should never max out. Therefore, if one
fails, the others can bear the load until a new instance is started. This means the startup time only has to be faster
than the average failure time. Kubernetes often has an instance start time in the order of seconds or more.

If the application is ported to the new architecture, including Kubernetes, either redundancy or fast failover
needs to be introduced. As the migration is limited in time, a complete re-architecture of the software is not
possible, nor is the removal of the current technologies. This means that either Kubernetes needs to be changed
for fast failover without redundancy, going completely again the design philosophy of Kubernetes, or redundancy
needs to be introduced into the current application. The latter option would require load balancing through DDS
or introducing another middleware that natively supports load balancing.

29

Figure 10: Functionality of the current orchestration solution in Tacticos

30

Patching

Currently, developers patch the software while it is being tested. The OSGi containers all have a shared platform
library, referred to as the platform. Engineers can patch this platform to test the effect of their changes. Both
the patching and the platform as a whole introduce problems. If the platform is added to the containers, the
container needs to be rebuilt for every patch done by the engineers. Additionally, as the platform is added to most
containers, every time it changes all these containers have to be rebuilt. This drastically increases built time and
version storage. If we mount the platform into the container, the previous problems are resolved. However, now not
all code is contained in the container and the running software can be changed without creating a new container,
which goes directly against the best practices of container development [34].

Container introduction

The last foreseen problem is related to the previous one. The testing infrastructure is modelled after the V-model
[56], seen in Figure 11. It is currently unclear at what level of the V-model the containers should be introduced. If
the V-model is explored bottom up, with the knowledge that building some containers takes more than an hour,
a reasoning for the introduction of containers can be created. If the containers are introduced at the unit testing
level, engineers need to wait more than an hour for feedback on their changes. Feedback from unit tests needs to
be as fast as possible, so an hour is unacceptable. Moving up one level, the subsystem is tested. Here the patching
problem is at play, with the addition that the feedback still needs to be fast. Furthermore, at this level and the
previous one, it is not known how many subsystems are running in one container. The deployment is dependent on
the infrastructure requirements set by a project, as the project can require a single machine or a hundred. There is
no way to test all different configuration options at this level, so a general container would have to be constructed.
This is against the container best practices. On the other hand, if the introduction of containers is done at the
next level of the V-model, new changes are introduced at the product integration level. Testing the containers at
this later stage can increase the time it takes to fix problems found, as feedback cycles become longer. MRS testing
takes longer than the previous target and unit testing, so this means feature development might slow down.

Figure 11: Traditional V Model with Thales system indicated

4.1.2 Strategy

The analysis shows that there are no perfect solutions. Completely reworking the software to the new infrastructure
is not directly possible, and choosing between other options with drawbacks needs a vision of the future. This is
why the migration analysis was conducted. Analysing the migration should result in a clearer picture of what the
end goal is, and what should be done in this first migration, and therefore gives argumentation to what solution is
most suitable for these problems.

31

4.2 Migration analysis

Here, the migration method as presented in Chapter 3 is applied to this case study. There are, however, some
restrictions that apply to the analysis. Because of the military domain, much of the project is classified and could
therefore not be accessed for this work. This means much of the documentation and all the source code was not
available for us. It also means that conversations about classified parts of the projects were not possible.

For this reason, the migration analysis is fully based on observations from conversations and might not be
completely objective. It does not function as an example of a complete migration analysis, as much of the cost and
code analysis were not possible. Instead, it serves as a verification of the applicability of the described method. Only
the migration analysis part of the method is possible to verify in this case study. As the classified nature, size of
the project and time constraints limit us from creating a migration plan and tracking its progress and effectiveness.

4.2.1 Context and Scope

This step consists of performing an organisational analysis and identifying the goals of the migration. The analysis
highlights the most important information from the context. The migration was started by the infrastructure
team. The engineers of Combat Management Systems (CMS) now have to migrate their software towards the new
infrastructure. This migration is the focus of this case study. They foresee problems with the migration and have
no clear vision of what they ultimately want to achieve. The migration analysed here is limited in time, as it is
part of the next big delivery of the product, set to happen in the next two years. During this time, the software is
also heavily extended with new features to satisfy the needs of the customer.

The next thing according to the method is to analyse to what degree the factors apply.

1. Outsourcing the infrastructure is strictly not possible, as it is part of the product, installed on the ship.
Dynamic scaling on the ship is not an option either, as the power, cooling and space requirements of the
infrastructure are fixed.

2. Continuous delivery of software releases is also not possible. The application’s features and deployment
configurations are project dependant, and the operation phase of the software is completely out of the control
of the company.

3. As the domain of the project is military, the focus is fully on the integrity of the product. There are strict
testing requirements, which have to be followed.

As the migration originated from the infrastructure team, the overall product goals were never directly analysed.
The new infrastructure solves certain problems that the infrastructure team has, however if the specific solution they
chose to solve these problems is beneficial to all involved silos is not clear. Therefore, there are product migration
goals, however a consensus between silos about these goals has never been reached. To analyse this migration
further, the individual migration of the silos should now be analysed.

4.2.2 Infrastructure

The infrastructure team is the driver of the changes. They have already analysed their proposed migration, defined
objectives and have already started the migration. The goals they set out to achieve with this migration were
identified to be:

1. Move to open-source: this goal aims to phase out in-house developed solutions, like the current orchestrator
seen in Figure 10. In doing this, the infrastructure team aims to decrease the personnel onboarding time, as
engineers can be hired who are already trained in open-source solutions. Additionally, this will allow them to
implement existing solutions created by the open-source software community, saving time and cost.

2. Add abstraction layer over hardware: Kubernetes functions as an abstraction layer over the nodes in the
cluster. This means that once a node is connected to the network, Kubernetes handles the node. Consequently,
engineers barely have to interface with individual nodes any more.

3. Create more flexible infrastructure: by implementing containerisation into the project, the infrastructure
is able to run every application that can run inside a container. Also, as Kubernetes runs on most hardware,
the cluster is also more flexible on what hardware it can run.

32

4. Reduce service time: the introduction of the abstraction layer makes updating the entire system simpler.
As new versions can be rolled out using Kubernetes, the time in port can be decreased. This is highly desirable
in the naval systems, as the ships are required to spend more and more time on missions.

They have decided to attain these goals by working towards a new infrastructure, including containerisation and
Kubernetes. They have already started the migration and are well underway in developing this new infrastructure.

4.2.3 CMS analysis

For CMS the migration has not yet started and this is the first analysis of the migration that took place. The goals
for their migration were gathered from conversations with the engineers. These goals are the following:

1. Decoupling: the current application suffers from a lot of coupling. Decoupling the application is set to
improve the maintenance of the software and increase the development speed of new features.

2. Technological freedom: Adding containerisation to the project decouples the operating system from the
software. Parts that are not ready to update can be kept on the current operating system and the rest can be
updated. As of this moment, this update has to happen for all parts at once. The team is also more flexible
to add external software to the project that can already run in containers, as Kubernetes can now handle the
integration.

3. Security: With the added isolation introduced by containerisation, the security of the application is expected
to be improved.

Because the migration is happening alongside the development of new changes for the next release of the product,
the risk of the migration must be low, and no major architectural changes are possible. This resulted in requirements
for the migration. These requirements were obtained from the project’s lead architect.

1. Idle time of the developers must not increase significantly with the introduction of Kubernetes and containers.

2. Developer satisfaction must not decrease with the introduction of Kubernetes and containers.

3. New development procedures must be based on the best practices found within the software community.

4. The downtime after failure must not increase.

5. All current technologies have to be functional in the new infrastructure environment.

After the goals and requirements, a set of constraints was also identified. These constraints needed to be solved
either for the migration to be possible in general, or to make certain migration strategies possible. The constraints
can be found in Appendix B. Some of these constraints, especially concerning the running of older technologies in
the new cluster, can be solved together with the infrastructure team. One of the constraints requires a solution in
which the current and new orchestration solutions are connected, forming a hybrid solution. This constraint gives
benefits for the application developers, giving them the opportunity to iteratively migrate the application to the
new infrastructure. The hybrid setup does however go against the goal of an open-source infrastructure set by the
infrastructure team. This is why analysis of the overall product goal is needed, as some of these decisions transcend
the needs of one silo.

The overall analysis shows us that because of the risk requirements, the overall impact of the migration must
be kept low. This is in line with what the external experts emphasised during the interviews. Trying to change a
lot during the migration increases the risk of the migration and increases the complexity of tracking the impact of
specific changes. Therefore, it is important to limit the scope of the migration as much as possible.

4.3 Reasoning

As the constraints have been resolved, the migration is now evaluated. This step results in a Go or No-Go decision.
We see two ways this evaluation can be conducted: (1) reasoning about how the goals can be attained within the
restrictions set by the requirements or (2) solutions to the problems presented in Section 4.1.1 can be sought, again
within the restrictions set by the requirements and reasoning about the future of the project. These two evaluations
of the migration are presented below.

33

4.3.1 Goal evaluation

Three goals have been isolated for the application and the effect of these goals is the following:

1. Decoupling: Decoupling could be linked to a move towards MSA, as the service split requires the decoupling
of the application. Containerisation aids in the isolation of these decoupled services. On the other hand, the
decoupling of the application is not directly linked to the move to the new architecture. It is a characteristic of
the software that can be achieved independently of the migration. As the theory of MSA tells us, decoupling
is a difficult undertaking [51]. As the migration is bounded in time and requires low risk, decoupling is best
done separately or after this migration, as doing this requires major architectural changes to the software.

2. Technological freedom: This freedom is directly achieved by the new infrastructure, which means that as
long as the application is containerised and moved to the new infrastructure, this goal can be reached.

3. Security: The extra isolation layer is achieved by utilising the new infrastructure. However, containers do
come with their own new set of security concerns, which are explained in more detail in Appendix B.6. As
with the previous goal, as long as the application is moved to the new infrastructure, this goal can be achieved.

The goals above do not directly dictate how the application should change. Only, the decoupling goal requires big
changes to the application, the other two goals are achieved by the properties of the infrastructure. The decoupling
goal can be achieved in many ways. This ranges from directly decoupling the application, with current technologies,
to utilising the new infrastructure to facilitate a move towards MSA.

4.3.2 Problem evaluation

In this section, the analysis is related to the original problems of failover and container introduction. The analysis of
the patching problem is discussed with the analysis of the container introduction problem, as they are intertwined.

Failover

The failover problem has two solutions, as discussed in Section 4.1.1. The analysis tells us that for the infrastructure
the preferred solution is very clear. Solving the problem with redundancy keeps the infrastructure in line with the
philosophy of Kubernetes. It is what the software was designed to do, what the Kubernetes engineers they hire are
familiar with, and does not require them to construct many custom extensions on top of Kubernetes.

For CMS the problem has a preferred solution, however, this goes completely against the best solution for the
infrastructure team. Reworking the CMS application to fully utilise redundancy is a complex task, as it requires
re-architecting the application. Additionally, the CMS engineers will not have time during this migration to rework
the application to utilise the standard Kubernetes technologies. This means Kubernetes is required to work through
DDS, which is not originally designed to do load balancing. The architecture the CMS engineers would then be
working towards, also benefits from the scaling and rollout features of Kubernetes, which they never plan to use.
Therefore, it is most likely not a good option to work towards. The other option of constructing a hybrid solution
where the current orchestration principles are still utilised is optimal. This allows CMS engineers to isolate services
that benefit from more scaling, and keep the rest as it is. Keeping both systems in the infrastructure opposes most
of the goals of infrastructure, as the infrastructure becomes more convoluted supporting both the old and the new
technologies.

Container introduction

This part discusses the solution for both the patching and the container introduction problem together. The solution
is either to introduce the containers in the Target testing level of the V-model, seen in Figure 11 or the MRS one
layer above. Introducing the containers at the target level introduces the patching problem. The solution to the
patching problem is to either mount the platform in the containers or include the platform in the image. Neither
of these solutions is optimal, as mounting goes against industry standards and raises development times. Both of
these solutions oppose the requirements of migration. Next to the patching problem, the form of deployment is
ambiguous at this level, meaning testing all configurations is impossible.

Introducing the containers at the higher MRS level solves these problems. At this level, a specific product is
tested, meaning that the deployment is known. This is also in line with the minimal impact migration. Introducing
the containers here minimizes the impact they have on the developer experience. However, this means that containers
are introduced quite late in the testing infrastructure, so if they fail a test, the feedback cycle is longer and more
costly.

34

4.3.3 CMS reasoning

The conclusion from the above reasoning is that the move to the new infrastructure does work towards the Tech-
nological freedom and security goal of the CMS engineers. However, the problems they foresaw are problems
introduced by the new infrastructure and do not have optimal solutions for CMS. There is the option to fully
re-architect the application towards the new infrastructure, which is bound to be a large and costly undertaking.
If a sufficient level of MSA is achieved, the failover problem is resolved and the containers could be introduced in
lower levels of the testing infrastructure, as building time should decrease.

Splitting into service optimises the application for dynamic scaling, fast-moving teams responsible for their
own services and a continuous DevOps environment [51]. These are all traits that are not beneficial to the CMS
application. The downsides of MSA, increased latency and increased inter-service complexity, do definitely apply
to CMS. This means that the move towards MSA might not be the right choice for CMS.

4.4 Resulting advice

For CMS, the goals remain unclear, even after the migration analysis. The foreseen problems have solutions, but
none are completely ideal. Completely reworking the application towards MSA does not seem beneficial for the
amount of work this requires. This leaves two options for the migration. Either the move to the new infrastructure is
a No-Go, or a hybrid solution needs to be found. This hybrid solution will also impact the goals of the infrastructure
team.

All the solutions require cooperation between the two silos. The reasoning results in the need for the shared
goal creation. This consensus is the only way to decide on the future of this migration. Currently, CMS is split
between either a hybrid cloud setup, or moving the application to the new infrastructure without rearchitecting it.
The first goes against the goals of the infrastructure and is only acceptable if the application is migrated to MSA
in the long term, and the second leaves CMS with little benefits from the new introduced technologies. Consensus
between silos about the future of the product is the only way to choose if one of these options should be chosen.

Taking the reasoning even further, the engineers should consider if the migration is overall beneficial for the
entire product. The infrastructure goals are achieved, but maybe they can be achieved in a way that does not
add Kubernetes to the project. Kubernetes is a complex piece of software for which most features will not be
used. In addition, when new in-house software is built on top of Kubernetes to enable the existing technologies to
still function in the cluster, the open-source benefits of Kubernetes are lost. Even though the migration is already
underway, it is still valuable to consider this before even more resources are put into the migration.

4.4.1 What to do next

The advice of what to do next applies to the CMS application team, as the analysis of their migration was the
main focus of the research. In our vision, the migration analysis leads to a few possible options. These options are
presented below in the order they should be tried.

1. CMS engineers should first discuss together with the infrastructure team what the specific problems are that
the infrastructure team is trying to solve. Together they should explore different solutions to these problems.
Possibly there is an option to address these problems, without pushing deployed software towards cloud native
development. However, as the infrastructure team already put in significant effort into the migration and the
other application team already migrated as well, this exploration might not succeed.

2. If no new solution is found for the new infrastructure, the infrastructure team and the CMS team should
together explore what form of a hybrid infrastructure is acceptable to both. An infrastructure containing
both the old and new orchestration methods allows CMS to migrate slowly, reducing the risk of the migration.
It also decreases the amount of modifications the infrastructure team needs to make on top of Kubernetes
to support the old technologies. It does however result in an infrastructure which still contains the old
orchestrator, which is against the open-source goal of the infrastructure team.

3. After the two options above have been tried, the last strategy is to migrate the application to the new
infrastructure, while changing as little as possible. This results in little benefit to the application, but can
serve as a baseline from where they can again explore future migration options, like decoupling and a possible
introduction of services.

Overall, the goal should be to get the infrastructure team informed of the migration analysis of CMS and create
a vision for the migration together with them. For the future of the overall product, it is key to analyse migrations
that span the entire product with all silos.

35

5 Discussion

This chapter first summarises the findings of the research in relation to the method. Then, the results are interpreted,
and the implications related to the research objectives are discussed. Finally, the limitations of the work are
addressed, and recommendations for further research are given.

5.1 Findings

This research was structured around the Design Science Methodology of Information Systems and Software Engi-
neering [59]. The case study done as part of this research took place at Thales, a company working in high-assurance
systems. The case study focused on a naval software system. Due to the military nature of this project, only the
design cycle of this method was possible. The design cycle aimed to analyse the problem and design a suitable
solution for this specific problem. The findings are, therefore, related to the particular solution created during this
research. Because the validation of this created solution also depends on personal experience and expert opinions,
the line separating concrete findings and interpretations is thin.

The result from the context analysis, the theory and the case study indicated that a migration method was
needed, and one from the analysed literature was chosen, namely from [36]. This method was adapted to address
the implication of the factors analysed between CN migration and private cloud migration. These adaptions were a
more careful analysis regarding the benefits of the migration, the addition of multiple silos and additional decision
moments. A set of four migration strategies was also presented on how to create a migration plan for the more
complex migration.

The application of the newly created method highlighted the analysed factors between CN migration and private
cloud migration. The lost benefits and the inclusion of multiple silos that conducted different migrations simulta-
neously increased the complexity of the analysis of the migration. The silos all had their own separate view of the
migration. These different goals made understanding the overall migration hard. The external experts interviewed
also addressed this same problem when presented with the created migration method. Therefore, a shared goal
should be defined before starting the individual migration analysis, as is standard practice within the software
industry [48]. In addition, a Go/No-Go decision moment was added as a conclusion of the analysis phase of the
method. This inclusion resulted from the observation that the benefits and drawbacks of private cloud migration
are highly dependent on the domain restrictions of the project, and therefore the migration might is not always
worth the investment.

The resulting method can be seen in Figures 6 and 7. To evaluate the method, we applied it at Thales and
presented it to external experts of cloud software engineering. The results of applying the method in the case study
were in line with what the method was designed to do. As the migration was already underway for some of the
silos, the analysis focussed on the proposed migration, but also the characteristics of the migration that was already
happening. Following the method during the observational analysis was sufficient to reason about the goals of the
overall migration and what is further needed. The outcome of this reasoning was that an overall goal for the product
migration is needed, and that the silos need to find a solution that is acceptable to all involved silos, as the current
proposed migration is not directly beneficial to the application. Additionally, they need to decide together if the
migration is worth the investment for all silos involved. These finding confirm our decision of adding the addition
of silos, a Go/No-Go decision moment and more analysis towards achieved benefits, to the migration method.

5.2 Interpretation and Implication

The findings stated above lead us to the implication that the design of the method was successful. The evidence
is, however, mostly based on conversations because many of the underlying project details were not accessible to
us. Therefore, the conclusions are limited. The resulting method fits the expectations; the design is based on the
information learned in the context analysis of the project and constructed from observations at Thales.

However, the results for the case study were unexpected. The expectation was to improve the migration and to
help them create a migration plan. The migration analysis would definitively give a clear solution for the patching
and container introduction problems, that this research originally set out to solve. The result, however, was that
no migration plan seemed to fit the migration analysis, resulting in advice to reassess the migration with all silos
together and to reduce the impact of the migration as much as possible. This result aligns with what was found in
the literature to be important for migration analysis, as seen in [54]. It is essential to identify beforehand whether
the migration is possible and beneficial. Otherwise, significant investments are made with negative returns. The
result from the method is heavily influenced by Thales. There is no comparison with other companies, so it is

36

impossible to say whether the method is biased towards this outcome. However, as most of the companies building
high assurance systems heavily focus on the integrity of their software, this outcome might be representative.

Most of the migration theory we investigated, emphasises the creation of a migration plan as the challenging
part of the migration method, as is the case with [20] [46] [36]. This is likely the case as they handle more standard
applications, which the cloud infrastructures are designed to handle, like web shops, web applications and other
applications with dynamic scaling needs. For these applications, the benefits mentioned in the literature for cloud
and MSA apply. As this is not the case for high-assurance systems, like military applications, the emphasis of the
migration method automatically shifts more towards the analysis part of the migration methods. The migration
plan creation, however, should not be any more simple than with the more traditional CN companies. The plan
now possibly includes many different stakeholder groups, like, for example, an infrastructure team. The creation of
a migration plan could however not be tested, as the actual migration and details needed to create this plan were
out of scope for this research.

The observation from applying the method is that it directly promotes the DevOps way of working. The
alterations to the method were made because of observations made during the case study, which are most likely
related to the new technologies being designed for DevOps. They shift some of the configuration forward during
development. This realisation allows companies to consider organisational changes that would aid the migration
beforehand. As DevOps empowers MSA and the introduced technologies [19], it can be beneficial to consider the
organisational migration towards DevOps when planning for the migration. The migration towards DevOps is
however not always possible for companies. The need to analyse what parts of DevOps are possible, mostly related
to the benefits brought by MSA and container orchestrators, is an important insight from this work.

Overall, the created solution seems to fit the problem attempted to be solved. It addresses the identified
differences with public cloud migration, and these differences lead to the eventual outcome of the case study. This
outcome would have never been possible with the proposed public cloud migration methods found in other works.
The result aligns with the experts’ suggestions and seems to be an acceptable conclusion to the application of
the method. This leads us to believe that the method we developed is also helpful to other companies that are
considering private cloud migration.

5.3 Limitations

The first and most obvious limitation of this work is related to the small sample size. As the research is based on one
case study, the generalizability is limited. The case study served both as inspiration and verification, meaning that
the new focus points added to the migration analysis were added in part due to theory, but also due to observations
at Thales. The case study therefore solely verified the observations made at Thales and the implications they had
there. It verified the reasoning created from the theory, however, it does not allow us to draw the conclusion that the
reasoning holds for every company wanting to migrate towards private cloud. Additionally, as all factors identified
between private and public cloud migration were present at Thales, it is impossible to determine what effects they
have on the migration if they only partially apply. There might also be more factors at play that did not apply
to Thales. By presenting the migration method to external cloud experts, the method was again verified. They
pointed out how the factors can only partially be present in companies and what they thought this would mean for
the migration. However, as these were unstructured interviews with limited concrete data, this does not allow us to
generalise the claims to say that the method fits every company perfectly. The interviews did support the method,
as all experts deemed it a useful tool for analysing a private cloud migration with the characteristics described in
this work.

Another limitation resulting from the case study is that it was impossible to follow the entire migration during
this work. The migration is both too complex to analyse in detail during this work, and a lot of information is
classified. Additionally, the migration is scheduled for a time period longer than the time set for this research.
Therefore, the decisions made, and the resulting migration can not be analysed for this work. This limits the
verification and applicability of the method. The method can never be fully applied, as creating a migration plan
is not possible in this work, meaning that the migration strategies are never verified. It also does not allow us to
directly see the impact of the resulting advice. Presenting the results at the company showed that engineers were
interested in the advice and agreed with the analysis. However, what the impact is on the project is not known.

The work heavily relies on other works in the migration domain. As this work, many of these works suffer from
a lack of concrete data, like [20]. Migrations take a long time to complete and are hard to evaluate afterwards. This
means the evaluation is often based on experience, leading to less objective research, making it harder to compare
methods. This lack of research towards the post-migration stage has also been identified in other works [33] [35].
This is a limitation to the theoretical background of the work. The best way found to add concrete data is to utilize
data from surveys, like [30]. As far as we know, these do not exist for the migration of high-assurance systems.

37

A limitation resulting from the approach to solving the problem is that the Thales’s organisational structure has
mostly been ignored in the analysis. This was done because the research focused on the application’s migration.
However, as becomes apparent in the work, the organisation also has to migrate during this migration, as the
entire development process of the product might change. This migration of the organisation and the analysis it
brings is mainly left out of the theory, meaning that the analysis of the product migration is incomplete. As the
organisational structure of companies building high-assurance systems is often structured different from fast moving
CN companies, research needs to be done to analyse how they could change best when migrating to private cloud.
In addition, leaving out this organisational analysis means the knowledge and decision-making structures needed
for the migration are not analysed either. How this needs to change during a private cloud migration is not known.

5.4 Recommendations

The limitations do not invalidate the conclusion that the created method is an improvement over existing migration
methods with respect to private cloud migration. This research has direct practical implications for Thales and
serves as a tool for other companies. For companies building high-assurance systems, this work can give perspective
into tackling cloud migrations, what is essential to analyse and how to structure the analysis and migration method
creation. It provides an insight into the specific topics that make the private cloud migration a unique migration
compared to regular cloud migration, giving companies a head start with the realisation that the product migration
consists of multiple individual migrations. This realisation can allow the engineers of the company to create a
shared goal, work more closely together, and evaluate the migration for every silo involved before starting. In turn,
this can help speed up communication and avoid decisions that are not beneficial for all silos and therefore save
time.

The other crucial practical implication of the work is showcasing that private cloud migration is not as straight-
forward, beneficial as public cloud migration. Domain restrictions, especially in the environment of Thales, limit the
benefits provided by the migration and increase the adverse side effects. It is imperative for a company considering
the migration to assess what they aim to achieve with the migration, compare that with what others achieved and
evaluate whether the migration would be beneficial. The case study offers a perspective into this dilemma and gives
an example of reasoning for this subject.

One of the recommended research directions is to research more different cases of private migration. Additional
companies serve as verification of the factors analysed between private and public cloud migration, seeing if the
impact is what is described here and if there are more factors involved. These additional case studies at high-
assurance projects possibly also allows analysing the migration in its entirety.

Another valuable research direction would be to conduct a survey, as done with MSA migrations [30]. This would
allow the migration’s benefits and drawbacks for restricted domains to be assessed. This survey could also shed a
light on how beneficial the adoption of MSA is in restricted, not-scalable deployments. The resulting information
from such surveys would enable companies to make more well-informed decisions about migration as they have
information on what benefits they can expect. The restrictions in these domains are broad, and the projects often
have restricted access, so such a study could be hard to set up.

A research direction, often mentioned in other migration works, is to analyse the post migration stage. A study
could define metrics on how to measure the effectiveness of a migration. This would provide researchers with a
more objective way to analyse the migration results, therefore simplifying the research towards software migrations
in general. Specific metrics result in more objective comparisons that could be of aid next to personal experiences.
The definition of a post migration analysis also allows companies to structure and plan their migrations towards
the more understood post-migration stage.

38

6 Conclusion

This work set out to improve the migration of privately deployed software to cloud technologies and architectures
by designing a migration method that is based on cloud and MSA migration methods while complying with require-
ments and constraints set by the engineers of the project so that engineers can increase the agility and flexibility of
the system. The work tackled the development of the solution using a Design Science Methodology. The context
analysis provided the work with a theoretical foundation on the involved technologies, architectures and existing
migration strategies. It also provided context for why to adopt these patterns and technologies and their draw-
backs. This theoretical foundation laid the basis for the solution, which adapted an existing migration method with
the identified factors of private cloud migration. This method was then successfully applied in a case study and
presented to experts.

Overall, the method created proved a useful tool in analysing a private cloud migration during the case study.
The case study mostly focussed on one of the applications the product consisted of and analysed its migration. The
analysis provided enough arguments to successfully reason about the migration plans of the case study, regardless
of the classified nature of the project. The presentation of the insights at the case study company was received
positively. However, the infrastructure migration and organisational structure of the company were not analysed
thoroughly. This work leaves these areas of the method open for further research. External cloud software experts
were also presented the method. The experts deemed the migration method a good solution to tackle the described
migration, and deemed the four identified migration strategies helpful. These strategies and migration plan creation
was, however, not possible to validate in the case study, leaving it to be tested in future work.

By applying the method in the case study, we ended up questioning the overall product migration. The analysis
showed that the overall goal of migration was undefined and that to create a successful migration for both infras-
tructure and the applications running on the infrastructure the silos needed to cooperate. This result is directly in
line with the altercations made to the original CN migration as part of the solution presented in this work. It also
showed that the benefits of MSA are different for high-assurance systems. The scaling and flexibility benefits might
not outweigh the increase in complexity for these projects. This results in an even more complex reasoning for the
application migration. As more companies considering private cloud migrations create high-assurance systems, this
outcome is likely not unique.

To our knowledge, this work is the first to look at cloud migration for companies that cannot migrate towards
the public cloud. It shows that the migration analysis is more complex for these companies, as the benefits
normally expected cannot always be obtained. This was clearly seen in the case study. Future research into this
direction can improve the migration method we defined by adding organisational analysis and testing it further.
The organisational analysis can point out in what form these companies can adopt DevOps successfully, how to
manage the extra knowledge needed for private cloud infrastructure. . Future works can also apply the method to
more companies considering the migration and gather data from companies not able to move to public cloud that
have already gone through the private cloud migration.

Overall, the work leads us to the conclusion that the creation of the desired migration method was a success.
It led to an improved understanding of the migration happening at the case study company and was well received
during the presentations. The reasoning provided in this work would have never been created without the migration
analysis, leading to an expensive, possibly non-beneficial migration. This shows that no matter how beneficial a
considered migration seems beforehand, evaluating it thoroughly and in a structured manner is crucial before
starting.

39

References

[1] Agile manifesto. URL: https://agilemanifesto.org/.

[2] Cloud native computing foundation. URL: https://www.cncf.io/about/who-we-are/.

[3] containerd – containerd overview. URL: https://containerd.io/docs/.

[4] Dds. URL: https://www.adlinktech.com/en/vortex-opensplice-data-distribution-service.

[5] Docker - Market Share, Competitor Insights in Containerization. URL: https://6sense.com/tech/

containerization/docker-market-share.

[6] Docker Hub Container Image Library | App Containerization. URL: https://hub.docker.com/.

[7] Kubernetes Documentation. URL: https://kubernetes.io/docs/home/.

[8] Linux Containers. URL: https://linuxcontainers.org/.

[9] Osgi. URL: https://www.osgi.org/resources/what-is-osgi/.

[10] Podmain. URL: https://podman.io/.

[11] TACTICOS - Combat Management System. URL: https://www.thalesgroup.com/en/markets/

defence-and-security/naval-forces/above-water-warfare/tacticos-combat-management-system.

[12] The Use of Name Spaces in Plan 9. URL: http://doc.cat-v.org/plan_9/4th_edition/papers/names.

[13] We have left the cloud. https://world.hey.com/dhh/we-have-left-the-cloud-251760fb.

[14] Why companies are leaving the cloud. https://www.infoworld.com/article/2336102/why-companies-are-
leaving-the-cloud.html.

[15] Introduction to Software Architecture. In Zheng Qin, Xiang Zheng, and Jiankuan Xing, editors, Software
Architecture, Advanced Topics in Science and Technology in China, pages 1–33. Springer, Berlin, Heidelberg,
2008. doi:10.1007/978-3-540-74343-9_1.

[16] Docker: Accelerated, Containerized Application Development, May 2022. URL: https://www.docker.com/.

[17] Isam al Jawarneh, Paolo Bellavista, Filippo Bosi, Luca Foschini, Giuseppe Martuscelli, and Amedeo Palopoli.
Container Orchestration Engines: A Thorough Functional and Performance Comparison. pages 1–6, May 2019.
doi:10.1109/ICC.2019.8762053.

[18] Rainer Alt, Gunnar Auth, and Christoph Kögler. DevOps for Continuous Innovation. In Rainer Alt, Gunnar
Auth, and Christoph Kögler, editors, Continuous Innovation with DevOps: IT Management in the Age of
Digitalization and Software-defined Business, SpringerBriefs in Information Systems, pages 17–36. Springer
International Publishing, Cham, 2021. doi:10.1007/978-3-030-72705-5_3.

[19] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices architecture enables devops: Migra-
tion to a cloud-native architecture. IEEE Software, 33(3):42–52, 2016. doi:10.1109/MS.2016.64.

[20] Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian A. Tamburri, and Theo Lynn. Microser-
vices migration patterns. Software: Practice and Experience, 48(11):2019–2042, 2018. URL: https://

onlinelibrary.wiley.com/doi/abs/10.1002/spe.2608, arXiv:https://onlinelibrary.wiley.com/doi/
pdf/10.1002/spe.2608, doi:10.1002/spe.2608.

[21] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and
Andrew Warfield. Xen and the art of virtualization. ACM SIGOPS Operating Systems Review, 37(5):164–177,
October 2003. URL: https://dl.acm.org/doi/10.1145/1165389.945462, doi:10.1145/1165389.945462.

[22] Eric W Biederman. Multiple Instances of the Global Linux Namespaces.

[23] Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski. Cloud Computing Principles and Paradigms.
Wiley Publishing, 2011.

40

https://agilemanifesto.org/
https://www.cncf.io/about/who-we-are/
https://containerd.io/docs/
https://www.adlinktech.com/en/vortex-opensplice-data-distribution-service
https://6sense.com/tech/containerization/docker-market-share
https://6sense.com/tech/containerization/docker-market-share
https://hub.docker.com/
https://kubernetes.io/docs/home/
https://linuxcontainers.org/
https://www.osgi.org/resources/what-is-osgi/
https://podman.io/
https://www.thalesgroup.com/en/markets/defence-and-security/naval-forces/above-water-warfare/tacticos-combat-management-system
https://www.thalesgroup.com/en/markets/defence-and-security/naval-forces/above-water-warfare/tacticos-combat-management-system
http://doc.cat-v.org/plan_9/4th_edition/papers/names
https://doi.org/10.1007/978-3-540-74343-9_1
https://www.docker.com/
https://doi.org/10.1109/ICC.2019.8762053
https://doi.org/10.1007/978-3-030-72705-5_3
https://doi.org/10.1109/MS.2016.64
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2608
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2608
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2608
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2608
https://doi.org/10.1002/spe.2608
https://dl.acm.org/doi/10.1145/1165389.945462
https://doi.org/10.1145/1165389.945462

[24] Emiliano Casalicchio and Stefano Iannucci. The state-of-the-art in container technologies: Application, orches-
tration and security. Concurrency and Computation: Practice and Experience, 32(17), September 2020. URL:
https://onlinelibrary.wiley.com/doi/10.1002/cpe.5668, doi:10.1002/cpe.5668.

[25] Ricardo Colomo-Palacios, Eduardo Fernandes, Pedro Soto-Acosta, and Xabier Larrucea. A case analysis of
enabling continuous software deployment through knowledge management. International Journal of Informa-
tion Management, 40:186–189, June 2018. URL: https://www.sciencedirect.com/science/article/pii/
S0268401217308782, doi:10.1016/j.ijinfomgt.2017.11.005.

[26] Jessica DÃaz, Daniel LÃ³pez-FernÃ¡ndez, Jorge PÃ©rez, and Ãngel GonzÃ¡lez-Prieto. Why are many busi-
nesses instilling a devops culture into their organization? Empirical Software Engineering, 26(2):25, Mar 2021.
doi:10.1007/s10664-020-09919-3.

[27] Patrick Debois. Agile infrastructure and operations: How infra-gile are you? In Agile 2008 Conference, pages
202–207, 2008. doi:10.1109/Agile.2008.42.

[28] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. Devops. IEEE Software, 33(3):94–100,
2016. doi:10.1109/MS.2016.68.

[29] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley, 2004.

[30] Paolo Francesco, Patricia Lago, and Ivano Malavolta. Migrating towards microservice architectures: An in-
dustrial survey. pages 29–2909, 04 2018. doi:10.1109/ICSA.2018.00012.

[31] Dennis Gannon, Roger Barga, and Neel Sundaresan. Cloud-native applications. IEEE Cloud Computing,
4(5):16–21, 2017. doi:10.1109/MCC.2017.4250939.

[32] Mahdi Fahmideh Gholami, Farhad Daneshgar, Ghassan Beydoun, and Fethi Rabhi. Challenges in migrat-
ing legacy software systems to the cloud — an empirical study. Information Systems, 67:100–113, 2017.
URL: https://www.sciencedirect.com/science/article/pii/S0306437917301564, doi:10.1016/j.is.

2017.03.008.

[33] Muhammad Hafiz Hasan, Mohd Hafeez Osman, Novia Indriaty Admodisastro, and Muhamad Sufri Muham-
mad. Legacy systems to cloud migration: A review from the architectural perspective. Journal of Sys-
tems and Software, 202:111702, 2023. URL: https://www.sciencedirect.com/science/article/pii/

S0164121223000973, doi:10.1016/j.jss.2023.111702.

[34] Alan Hohn. The book of Kubernetes: a complete guide to container orchestration. No Starch Press, San
Francisco, 2022.

[35] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Cloud migration research: A systematic review. IEEE
Transactions on Cloud Computing, 1:142 – 157, 02 2014. doi:10.1109/TCC.2013.10.

[36] Pooyan Jamshidi, Claus Pahl, and Nabor C. Mendonça. Pattern-based multi-cloud architecture migration.
Software: Practice and Experience, 47(9):1159–1184, 2017. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/spe.2442, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2442, doi:10.
1002/spe.2442.

[37] Asif Khan. Key Characteristics of a Container Orchestration Platform to Enable a Modern Application.
IEEE Cloud Computing, 4(5):42–48, September 2017. Conference Name: IEEE Cloud Computing. doi:

10.1109/MCC.2017.4250933.

[38] Xabier Larrucea, Izaskun Santamaria, Ricardo Colomo-Palacios, and Christof Ebert. Microservices. IEEE
Software, 35(3):96–100, May 2018. Conference Name: IEEE Software. doi:10.1109/MS.2018.2141030.

[39] Robin Lichtenthaeler, Mike Prechtl, Christoph Schwille, Tobias Schwartz, Pascal Cezanne, and Guido Wirtz.
Requirements for a model-driven cloud-native migration of monolithic web-based applications. SICS Software-
Intensive Cyber-Physical Systems, 35, 08 2020. doi:10.1007/s00450-019-00414-9.

[40] David S. Linthicum. Cloud-native applications and cloud migration: The good, the bad, and the points
between. IEEE Cloud Computing, 4(5):12–14, 2017. doi:10.1109/MCC.2017.4250932.

41

https://onlinelibrary.wiley.com/doi/10.1002/cpe.5668
https://doi.org/10.1002/cpe.5668
https://www.sciencedirect.com/science/article/pii/S0268401217308782
https://www.sciencedirect.com/science/article/pii/S0268401217308782
https://doi.org/10.1016/j.ijinfomgt.2017.11.005
https://doi.org/10.1007/s10664-020-09919-3
https://doi.org/10.1109/Agile.2008.42
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/MCC.2017.4250939
https://www.sciencedirect.com/science/article/pii/S0306437917301564
https://doi.org/10.1016/j.is.2017.03.008
https://doi.org/10.1016/j.is.2017.03.008
https://www.sciencedirect.com/science/article/pii/S0164121223000973
https://www.sciencedirect.com/science/article/pii/S0164121223000973
https://doi.org/10.1016/j.jss.2023.111702
https://doi.org/10.1109/TCC.2013.10
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2442
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2442
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2442
https://doi.org/10.1002/spe.2442
https://doi.org/10.1002/spe.2442
https://doi.org/10.1109/MCC.2017.4250933
https://doi.org/10.1109/MCC.2017.4250933
https://doi.org/10.1109/MS.2018.2141030
https://doi.org/10.1007/s00450-019-00414-9
https://doi.org/10.1109/MCC.2017.4250932

[41] Daniel López-Fernández, Jessica Dı́az, Javier Garćıa, Jorge Pérez, and Ángel González-Prieto. Devops team
structures: Characterization and implications. IEEE Transactions on Software Engineering, 48(10):3716–3736,
2022. doi:10.1109/TSE.2021.3102982.

[42] Thomas Bradford Jorge Diaz Fabio Hasegawa Corneliu Holban Sandra Jolla Rajesh Nagpal Sridharan Ra-
jagopalan Murthy Rallapalli Balaji Ramarathnam Zeljko Soric Shankara Sudarsanam Vatatmaja Venkatesh-
murthy Mike Ransom, Prakash Bhargave and Carl Vollrath. The Solution Designer’s Guide to IBM On Demand
Business Solutions. Redbooks, 2005.

[43] I Mirbel and J Ralyté. Situational method engineering:: combining assembly-based and roadmap-driven ap-
proaches. REQUIREMENTS ENGINEERING, 11(1):58–78, MAR 2006. doi:10.1007/s00766-005-0019-0.

[44] Dmitry Namiot and Manfred sneps sneppe. On Micro-services Architecture. Interenational Journal of Open
Information Technologies, 2:24–27, September 2014.

[45] Nikolas Naydenov and Stela Ruseva. Cloud Container Orchestration Architectures, Models and Methods:
a Systematic Mapping Study. In 2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH),
pages 1–8, East Sarajevo, Bosnia and Herzegovina, March 2023. IEEE. URL: https://ieeexplore.ieee.
org/document/10094059/, doi:10.1109/INFOTEH57020.2023.10094059.

[46] Espen Tønnessen Nordli, Sindre Grønstøl Haugeland, Phu H. Nguyen, Hui Song, and Franck Chauvel. Mi-
grating monoliths to cloud-native microservices for customizable saas. Information and Software Technol-
ogy, 160:107230, 2023. URL: https://www.sciencedirect.com/science/article/pii/S0950584923000848,
doi:10.1016/j.infsof.2023.107230.

[47] Isaac Odun-Ayo, Rowland Goddy-Worlu, Lydia Ajayi, Boma Edosomwan, and Fiona Okezie. A systematic
mapping study of cloud-native application design and engineering. Journal of Physics: Conference Series,
1378(3):032092, dec 2019. URL: https://dx.doi.org/10.1088/1742-6596/1378/3/032092, doi:10.1088/
1742-6596/1378/3/032092.

[48] G. Orosz. The Software Engineer’s Guidebook. Pragmatic Engineer B.V, 2023. URL: https://books.google.
nl/books?id=BjRc0AEACAAJ.

[49] Claus Pahl, Antonio Brogi, Jacopo Soldani, and Pooyan Jamshidi. Cloud Container Technologies: A State-
of-the-Art Review. IEEE Transactions on Cloud Computing, PP:1–1, May 2017. doi:10.1109/TCC.2017.

2702586.

[50] Nigel Poulton. The Kubernetes Book: 2023 Edition.

[51] Chris Richardson. Microservices Patterns. Manning Publications, Place of publication not identi-
fied, 2019. URL: https://brad.idm.oclc.org/login?url=http://library.books24x7.com/library.asp?
bookid=147125.

[52] Maria A. Rodriguez and Rajkumar Buyya. Container-based cluster orchestration systems: A tax-
onomy and future directions. Software: Practice and Experience, 49(5):698–719, 2019. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2660. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/spe.2660, doi:10.1002/spe.2660.

[53] Vitor Silva, Marite Kirikova, and Gundars Alksnis. Containers for Virtualization: An Overview. Applied
Computer Systems, 23:21–27, May 2018. doi:10.2478/acss-2018-0003.

[54] Harry M. Sneed and Chris Verhoef. Cost-driven software migration: An experience report. Journal of Software:
Evolution and Process, 32(7):e2236, 2020. e2236 smr.2236. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/smr.2236, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2236, doi:10.
1002/smr.2236.

[55] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. Container security: Issues, challenges, and the road ahead.
IEEE Access, 7:52976–52996, 2019. doi:10.1109/ACCESS.2019.2911732.

[56] United States and United States Office of Naval Research. Symposium on Advanced Programming Methods
for Digital Computers : Washington, D.C., June 28, 29, 1956. Office of Naval Research, Dept. of the Navy
[Washington, D.C.], [Washington, D.C.], 1956.

42

https://doi.org/10.1109/TSE.2021.3102982
https://doi.org/10.1007/s00766-005-0019-0
https://ieeexplore.ieee.org/document/10094059/
https://ieeexplore.ieee.org/document/10094059/
https://doi.org/10.1109/INFOTEH57020.2023.10094059
https://www.sciencedirect.com/science/article/pii/S0950584923000848
https://doi.org/10.1016/j.infsof.2023.107230
https://dx.doi.org/10.1088/1742-6596/1378/3/032092
https://doi.org/10.1088/1742-6596/1378/3/032092
https://doi.org/10.1088/1742-6596/1378/3/032092
https://books.google.nl/books?id=BjRc0AEACAAJ
https://books.google.nl/books?id=BjRc0AEACAAJ
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586
https://brad.idm.oclc.org/login?url=http://library.books24x7.com/library.asp?bookid=147125
https://brad.idm.oclc.org/login?url=http://library.books24x7.com/library.asp?bookid=147125
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2660
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2660
https://doi.org/10.1002/spe.2660
https://doi.org/10.2478/acss-2018-0003
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2236
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2236
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2236
https://doi.org/10.1002/smr.2236
https://doi.org/10.1002/smr.2236
https://doi.org/10.1109/ACCESS.2019.2911732

[57] Devi Priya V S, Sibi Chakkaravarthy Sethuraman, and Muhammad Khurram Khan. Container secu-
rity: Precaution levels, mitigation strategies, and research perspectives. Computers Security, 135:103490,
2023. URL: https://www.sciencedirect.com/science/article/pii/S0167404823004005, doi:10.1016/
j.cose.2023.103490.

[58] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric Tune, and John Wilkes.
Large-scale cluster management at Google with Borg. In Proceedings of the European Conference on Computer
Systems (EuroSys), Bordeaux, France, 2015.

[59] Roelf J. Wieringa. Design science methodology for information systems and software engineering. Springer,
2014. 10.1007/978-3-662-43839-8. doi:10.1007/978-3-662-43839-8.

43

https://www.sciencedirect.com/science/article/pii/S0167404823004005
https://doi.org/10.1016/j.cose.2023.103490
https://doi.org/10.1016/j.cose.2023.103490
https://doi.org/10.1007/978-3-662-43839-8

A Interviews

To verify the work done for this research software experts from different companies were interviewed. This was
done to see what they thought of the created migration method, its application in the case study and their view
on applying the method in different situations. The companies these engineers were from each had a different
background. Their backgrounds were security, medical and web-based. The reason for this spread was to achieve
different perspectives on the created method to generalize it as much as possible.

The goal of the interview is to verify the theory for migration theory creation, fill in possible gaps, evaluate the
generalization and get expert opinion on the solution resulting from the theory. To achieve this goal, first, the initial
problem was explained. Then the structure of figure 7 was explained and walked through. Then, once feedback was
gathered on this process, the analysis resulting from these steps was explained. Arriving at the defining migration
plan step, the theory of the migration matrix was highlighted. Then the decision and migration plan were explained.

A.1 Questions asked

Introduction

1. What is your name?

2. What is your function?

3. How do you rate your knowledge on a scale of 1-10 on cloud-native development?

Theory presentation

Start by explaining the problem faced by Thales and handing over the printed figures from the theory. Then take
them through the theory while checking their understanding. Also, point out where this theory differs from the
theory for cloud-native migrations. Now, follow up on these questions.

1. Do you think the alterations for private migration can be useful and why?

2. Are there things you would add to the analysis before planning the actual migration?

Resulting migration analysis

Walk through the diagram again, detailing what the results are of each part of the analysis.

1. Are the overall parts of the analysis clear and do you have a clear picture of the goal of the migration?

2. Is there anything missing from the analysis that would be necessary for a valid migration?

Migration plan creation theory and found solution

Discuss the theory and then ask questions.

1. Do you think the migration plan fits the analysis?

2. Where would you add the abstraction layers to the testing setup?

3. Is there anything you would change or add to the migration plan?

Closing

1. Where do you think the strengths of the overall theory and solution resulted in a lie?

2. In what area do you think it can be improved and how?

3. Is there anything else you would like to add?

44

A.2 Interview Wesley Dekker

Introduction

1. Wesley Dekker

2. DevOps Engineer

3. 8

Theory presentation

1. The split between platform and application is very useful. These two will operate separately making the focus
on communication between the two very important.

2. Possibly the addition of the current state of the CI/CD and overall the current state of the technologies
involved as this can drastically change the overall migration.

Resulting migration analysis

1. Yes

2. The analysis seems complete.

Migration plan creation theory and found solution

1. Yes the migration plan seems to fit the analysis

2. In practice, it’s not the containers themselves giving issues. It’s configuration, pods and allocations that are
problematic. It is very important to first decide who will be responsible for these configurations. That is what
should decide where the testing should happen.

3. -

Closing

1. In these situations, it is very important to keep looking at the bigger picture. That is where these methods
can give much-needed structure to the analysis.

2. -

3. -

A.3 Interview Quenten Schoemaker

Introduction

1. Quenten Schoemaker

2. DevOps Engineer

3. 8

Theory presentation

1. The split between the platform and the application is a useful concept. Both have different concerns that
need to be analysed. Also, the possibility of solving constraints either by platform alterations or application
alteration is a valid addition.

2. It is important to add the analysis if the migration is really the best option to begin with. Also, it is important
to identify how private the cluster is, meaning if the cluster is completely disconnected from the outside world
or if only parts of the cluster have to be privately hosted. In other words, it is vital to determine the contours
of your cluster before migration.

45

Resulting migration analysis

1. The overall analysis is sound, however it is hard to get to the underlying details, meaning the analysis stays
abstract.

2. These are mentioned in the above part about additional parts that should be added. Also, it would be good
to add analysis towards in-between options, like, in this case, virtualization instead of containerization.

Migration plan creation theory and found solution

1. It is important to not do the migration in one big bang. This holds for both the technology implementation
and the introduction into the testing infrastructure.

2. -

3. Add explicit migration step options. The migration is otherwise going to fail.

Closing

1. Overall, it’s good to have this structure.

2. For every migration step done add the rollback strategy and the analysis strategy. To perform the feedback
cycles these need to be clear beforehand. Otherwise, the migration strategy is valid, and he would use it to
create a migration plan for a similar migration problem.

3. -

A.4 Interview Ilia Awakimjan

Introduction

1. Ilia Awakimjan

2. Staff engineer platform

3. 10

Theory presentation

1. Yes, the analysis that platform and application have different goals and definitions of improvements is very
valid. Also, the possibility of solving each other constraints is a valid observation.

2. The important part of the migration is before the separation into platform and application. The two silos
need to beforehand discuss the goal of the migration and together come to a definition of success that grants
them both benefits and can be measured. This is something that is vital to do together because the migration
path splits afterwards. Also, the two silos do not have to be the only stakeholders in the process. There can
be many more silos added to the diagram for specific cases. However, the structure stays similar.

Resulting migration analysis

1. The overall analysis is clear and the goal is clear as well. The reason why this goal is aimed to be obtained is
missing. Containerization is not going to fix the problems for the application laid out and, in his opinion, not
even the goals of the platform.

2. As mentioned before, the shared goal creation, together with the platform, resulted in this decision. In his
decision the resulting migration should have never been attempted as it is not going to fix the issues presented
and is only going to increase the complexity of the project.

46

Migration plan creation theory and found solution

1. The iterative migration fits the migration analysis because the benefits for application are scarce and it is
therefore vital to measure the impact and to mitigate the risk of migration. However, it is key to experiment
to see if iterative migration is even possible.

2. As late as possible. As DevOps is not possible it is key to keep the configuration consistent over the application.
This decreases the complexity and improves the testability. It might not result in as fast development as with
DevOps, however this is never the goal of development to begin with. Therefore it is advisable to introduce
the costly abstraction layer as late as possible.

3. In general, the idea of obtaining benefits for the application in this migration should be dropped, in his
opinion. As DevOps, dynamic scaling and outsourcing hardware are not possible the benefits of this migration
are minimal, especially for the application. If the decision is set in stone by the platform team, the application
should be converted to it with minimal impact on the application itself and keep to the current structure, as
MSA is going to increase complexity too much.

Closing

1. The split of the silos with their respective goals is a useful tool for businesses to realise that the split will
exist and the analysis of possible migration strategies is useful as well. However, for pure platform migrations,
there can also be sole configuration migrations.

2. The generalization can be improved, but this is hard to do without losing the value of the theory. There also
needs to be something added to a shared goal creation. This is vital to hard tasks as this allows tracking of
the progress of the migration and makes sure all silos work towards the same goal.

3. His advice to Thales would be to completely reconsider the migration also on the platform side. These tools
are designed for DevOps and many of their functionality is unusable in this use-case. They, on the other
side, add a lot of complexity to a project. There most likely are better options to solve the problems faced
in the project. Secondly avoid the distributed monolith at all costs. This is, in his experience, the worst case
scenario, as it has the negatives of both sides.

A.5 Interview Menno de Jong

Introduction

1. Menno de Jong

2. Senior software engineer

3. 7.5

Theory presentation

1. Yes, it is a useful addition, as without both silos, the migration is impossible. These are the most standard
silos and both need to be used to achieve the optimal flexibility

2. It is important to add a risk and cost analysis. This determines what you have available and the strategy for
your migration. There should also be a decision moment after the analysis to decide if the migration is worth
the cost and if it will actually be conducted or not.

Resulting migration analysis

1. Clear

2. Cost and time analysis are vital for the creation of a good migration plan.

47

Migration plan creation theory and found solution

1. Yes, these are the questions that need answers to create a valid migration plan. The problem statement is
complete in his eyes, the answers will lead to valid migration plans. Using stakeholders from different teams
and products within the company answers to these questions should lead to a valid migration plan.

2. Either directly at the team level or delayed to the end. The ownership of teams of the containers gives many
benefits; however, it will require big organizational restructuring. It also depends on how many new interfaces
the containers provide. If all communication stays on DDS, the containers can be added at the end of the
testing phase. However, if the containers bring added interfaces, the testing should be done at a product level.

3. -

Closing

1. This analysis method drives both silos to work together and stimulates the flexibility of both. This helps to
obtain optimal value for both.

2. 80/20 rule. It is important to also know that some parts of an application are not worth migrating as that
would cost too much. It is ok to leave them in the old state or discontinue them.

3. -

A.6 Evaluation

The interviews were conducted with experts in the field of software development, with no association with Thales.
Overall the experts responded positively to the created method. They agreed with the changes made to the original
method and deemed it a useful tool for migration analysis. They agreed with the addition of silos, the four identified
migration methods. They also agreed with the addition of iterative steps in the migration plan but emphasized
that this is not always possible.

They also mentioned a set of improvements that were then discussed with the other experts. These were also
applied in the case study. These were:

1. Addition of possible other silos.

2. Shared goal creation.

3. Go/No-Go moments for the migration.

The experts were less positive about the migration plan created thus far. The conclusion to the case study was
not yet reached, so possibilities were presented. They pointed out the flaws of the options and argued against the
migration, which led to less feedback on the creation of the migration plans.

48

B Constraint solutions

In this appendix the small studies towards solutions for the constraints are discussed. Each constraint is laid
out using the same structure. First, the problem is discussed. Then a description of the constraint is given in
more detail and the reason why it is important is given. Lastly, the solution approach and the actual solution are
discussed. Some constraints were directly solved using experimentation, while others have multiple solutions with
corresponding trade-offs. Where needed, the required research is shown and discussed.

B.1 DDS

Constraint: DDS must still function in the new cluster.
Description: DDS currently functions as the communication layer between instances running on different nodes of
the cluster. The layer currently handles all communication happening in the system. There are initiatives to change
this for parts of the communication, but it will most definitely be part of the system at the end of the migration.
DDS functions using multicast, so the new infrastructure must support this.
Solution: This constraint can be solved by altering the infrastructure and can, therefore, be solved with the
infrastructure team. They brought up the constraint, and they added a second network layer to the cluster to
enable DDS and the multicast feature. The constraints are treated as solved, as the infrastructure is off-limits for
this work, and the solution to the constraint cannot be directly tested.

B.2 IP protection

Constraint: Thales’s intellectual property (IP) must be protected when stored on disk and viewed from within
the operating system.
Description: The hardware on the ship might be accessible to an individual with ill intentions. Therefore, Thales
needs to protect its IP and that of the companies whose software is integrated into the application. There are three
ways the IP can be accessed. Firstly, through direct access to the hard drives. To mitigate this risk, the entire
filesystem on the ship’s hard drives is encrypted. The OS can decrypt the storage and use the files. However, people
can still access machines that can decrypt the drives. Therefore, the applications stored on the disk also need to be
encrypted. This is done by creating encrypted software and installing it on the drives. The first step of loading the
application into memory is to decrypt it using a custom application. This mitigates the risk of stealing applications
using the host machine. The last possibility of stealing IP is when it is already loaded in memory. Maintenance
should not have access to the memory, and it is hard to mitigate using encryption, so not directly protecting this
is acceptable. The problem is in protecting the applications on the drive, as they will be stored in the form of
containers in the new architecture.
Solution approach: To solve this problem, options were researched and the solution that fit the project best was
chosen.
Solution: The problem originates because applications are now stored in the form of containers and no longer as
encrypted bundles. The lifespan of the container is important to understand in this story. The containers will be
stored in a container repository, most likely a nexus repository. Once the cluster starts a part of the application,
the container is pulled from the repository. The container is then started, meaning the container is placed on a host
machine, and the application is started.

Three options were identified: (1) The container repository could be encrypted. (2) The containers could be
encrypted during the build and decrypted when pulled from the registry. (3) The application inside the container
could be encrypted.

Out of these solutions, 3 is the one that resembles the current implementation the most. However, this means
that each container has to include an application that decrypts the application beforehand. This, however, also
means that if the images are stolen, the decrypt mechanism is included in the image. It also means that decryption
keys must travel into the container at runtime, meaning more communication with secret information. Lastly, it
contains more Thales-specific software. Decreasing the Thales-specific knowledge was one of the drivers of this
migration for the platform team. Therefore, this option was not deemed optimal.

Option 1 and 2 are similar in functionality. However, option 2 gives more flexibility and is supported out of
the box, using the tools Thales is considering using. As can be seen in the documentation of the Podman push
and the Podman pull commands, they have options to encrypt and decrypt the image. Only encrypting specific
images also allows for flexibility in choosing when image encryption is needed. This option enables the cluster
to decrypt the images directly when the image is pulled, using a secret stored in the secret storage option of the

49

https://docs.podman.io/en/stable/markdown/podman-push.1.html
https://docs.podman.io/en/latest/markdown/podman-pull.1.html

cluster. This option was selected because of the flexibility and the fact that it is natively supported by the tools used.

B.3 OSGi

Constraint: OSGi has to be able to function inside a containerized application.
Description: As mentioned under current orchestration, Thales currently uses OSGi as a means of in-process
orchestration. If one of the nodes in the cluster fails, other Java processes are tasked with enabling already loaded
parts of the system. This also allows the jars that make up parts of the application to be swapped without
reinstalling the system, allowing easy patching. As eliminating OSGi from the project during the 2-year migration
time will not be possible, the constraint is that OSGi should be able to run inside a container.
Solution approach: The hypothesis is that containerized OSGi is supported. This hypothesis is directly tested
using code, and best practices are researched.
Solution: Running OSGi runtimes inside a container has been observed to work. The research also showed that
the Dockerfiles and even the containers can be automatically constructed using a plugin for the Maven build tool.
This specific plugin builds Dockerfiles for Apache Karaf with a small runtime and configurable versions. This shows
that the constraint is resolved, and the container generation can even be automated.

B.4 Orchestrating the monolith

Constraint: The orchestration of the current application must still be possible using the new technologies to enable
iterative migration.
Description: To allow iterative migration, an environment should be set up that allows the new and the old
systems to coexist. However, as the platform team does aim to migrate to Kubernetes as soon as possible, a
solution needs to be created where the OSGi orchestration can be controlled using Kubernetes.
Solution approach: This is again a constraint that can be solved with the help of the infrastructure team. The
constraint was discussed with the team, and an option of controlling the tracking processes (seen in figure 10) of the
old orchestrator was discussed. As again, the source code of the project and, therefore, the orchestrator is off-limits
for this work, this solution can again not be tested as part of this work.

B.5 Patching

Constraint: Patching new changes into the testing systems on the subsystem integration and system integration
level must be possible, without completely reinstalling the software, within minutes.
Description: Currently, the software uses OSGi, which allows jars to be swapped into processes. This allows test
systems to integrate developers’ changes without having to re-install the software. These systems test the changes
of multiple teams many times a day. It is vital for the development cycle that test results are returned to the
developers within minutes. This means the system has to be able to incorporate many changes at a fast pace.

This problem is not commonly found in MSA architecture, as all services have their own codebase, making
incorporating changes into a system fast. This is because only the container changed needs to be rebuilt and tested.
Thales will not adopt this architecture in the coming years. Its platform contains code used by all services, e.g., a
shared data model. This results in that for every change to the platform, all containers need to be rebuilt.
Solution approach: The solution approach was to collect possible solutions and evaluate them using the require-
ments set for the migration.
Solution: When testing in containers on the target systems, the testing infrastructure for individual teams has
two main options. The first option is to rebuild containers whenever something needs to be changed, the other is
to patch the software inside the running containers.

Both options have their respective problems. The first option takes quite a long time for each change. Every
time something changes inside the platform, all containers must be rebuilt. Optimization can be made here, like
copying the platform into the containers as the last step, allowing for the utilization of the caching functionalities of
the built tools. The second option is to mount the platform into the container, allowing for easy patching without
container rebuilding. This, however, goes against industry standards and increases the complexity of the testing
setup [34].

As the infrastructure configuration is not an application developer’s responsibility, the containers should not
have to be tested during the testing of their changes. This means the containers can be left out of the testing until
the system integration stage. This solution negates the problem entirely and still allows application developers to

50

https://github.com/apache/karaf/blob/main/examples/karaf-docker-example/README.md?plain=1

test their changes to a satisfactory level. If the changes break the container infrastructure, the problem is system-
wide and should be brought to the infrastructure team.

B.6 Security tooling

Constraint: The security of the containerized environment must not be lower than the current system.
Description: Security is one of the main concerns of Thales. Currently, there are certain tools used in the developer
environment to scan executables to find vulnerabilities. With the introduction of containers, some of these security
scanning features might have to be changed. Also, the focus of the security might have to change as with containers,
they might be more prevalent in other locations.
Solution approach: Use scientific research for security focus points in containerized software environments, this
means highlighting specific areas of interest for containers and how to secure them. Then analyse the current tooling
used and suggest changes.
Solution: Thales already has high-security requirements for their current distributed application. A lot of the
security requirements are, therefore, already in place. Container security is not very heavily studied in scientific
literature [55]. However, the study [57] lists areas of interest for container security. The security hinges on securing
the development process and configuration of the containers. Security concerns like untrusted hosts are not a direct
problem for Thales.

Thales already heavily secures its build pipeline, implements vulnerability scanning, and limits access to pack-
ages. This should all also be done for containers. The configuration of the containers should follow industry
standards, and a standard should be applied to all containers where possible. These configurations should be tested
within the system testing.

51

	Introduction
	Motivation
	Problem statement
	Research questions
	Approach
	Structure

	Background
	Service Oriented Architecture
	Advantages of MSA
	Disadvantages of MSA
	SOA compared to MSA
	MSA in practice

	Virtualization and Containerization
	Containers
	Benefits and drawback of containers
	Options

	Container Orchestration
	Functionality
	Organizational changes
	Kubernetes overview

	DevOps
	Cloud Native
	Migration
	Cloud and MSA Migration characteristics
	Migration methods
	Pre-Migration
	In-Migration
	Post-Migration

	Private Cloud Migration Method
	Research activities
	Case study
	Interviews
	Method development

	Private Migration Factors
	Limited outsourcing
	Product delivery
	Different focus
	Implications
	Other private cloud driver

	Migration method
	Migration analysis
	Observations

	Migration strategies
	BigBang greenfield
	Bigbang refactor
	Iterative refactor
	Iterative greenfield

	Applying the migration method

	Case Study
	Project introduction
	Foreseen problems
	Strategy

	Migration analysis
	Context and Scope
	Infrastructure
	CMS analysis

	Reasoning
	Goal evaluation
	Problem evaluation
	CMS reasoning

	Resulting advice
	What to do next

	Discussion
	Findings
	Interpretation and Implication
	Limitations
	Recommendations

	Conclusion
	Interviews
	Questions asked
	Interview Wesley Dekker
	Interview Quenten Schoemaker
	Interview Ilia Awakimjan
	Interview Menno de Jong
	Evaluation

	Constraint solutions
	DDS
	IP protection
	OSGi
	Orchestrating the monolith
	Patching
	Security tooling

