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Abstract

This thesis explores the impact of controller fidelity in virtual reality (VR) on motor
learning using a golf putting task among novice golfers. Participants were divided
into three groups: those training with actual golf putter (Club), those using standard
VR controllers (Con), and those equipped with real club incorporated VR controllers
incorporating (ConClub). The study measured performance through initial release
angle and ball travel distance across pre-tests, post-tests, and retention tests, along-
side kinematic analysis focusing on sternal rotation.

Study does not find possible effects of real-world object interventions on motor
learning in VR environments: no significant differences in performance were found
between groups. Notably, the ConClub group showed reduced variability in per-
formance on the skill retention test, suggesting that realistic haptic feedback may
improve long-term skill retention. However, their movement patterns were located
between the Club and Con groups, suggesting that while VR training combined with
realistic putting does not exactly replicate real-world movements, a higher degree of
movement reproduction can be achieved compared to a more basic controller.

This highlights the importance of other factors like impact feedback in VR motor
learning. The findings prompt further investigation into the roles of various sensory
inputs in VR to improve the effectiveness of VR training tools for motor skills.
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Chapter 1

Introduction

The world of sports training is undergoing a technological revolution, and at the
forefront of this transformation is virtual reality (VR). VR offers athletes the oppor-
tunity to step into immersive, digitally-created environments that mimic real-world
scenarios, providing a accessible and engaging platform for honing their skills. The
potential of VR in enhancing motor learning, the process of acquiring and refining
motor skills, has sparked a surge in research over the past decade. Numerous stud-
ies have demonstrated the effectiveness of VR training in improving performance
and altering movement patterns across diverse sports. For instance, VR has proven
particularly effective in enhancing skill acquisition and performance in areas such as
dart throwing [1], [2], baseball [3], rowing [4], [5], and even gymnastics [6]. These
studies provide compelling evidence for the efficacy of VR as a training tool across
a diverse range of sports disciplines. The benefits of VR for sports training are
multifaceted and compelling.

Firstly, VR allows athletes to practice complex and potentially dangerous skills in
a risk-free virtual environment. Imagine a gymnast perfecting a challenging balance
beam routine without the fear of falling or a skier navigating a treacherous downhill
slope without the threat of injury. VR enables repeated practice and exploration of
movement boundaries, fostering skill development while minimizing physical risks
[6]. This safety aspect is particularly relevant for high-risk sports or for athletes
recovering from injuries, allowing them to regain confidence and refine their skills
without putting themselves in harm’s way.

Secondly, VR empowers athletes to train autonomously, free from the constraints
of time, location, and the availability of coaches or training partners. VR training sys-
tems can be accessed at any time and place, offering personalized sessions tailored
to the athlete’s individual needs and skill level [7]. Furthermore, VR allows for sys-
tematic variation of training parameters, providing athletes with a wider range of
experiences and challenges compared to traditional training methods [8]. For ex-
ample, a golfer could practice putting on different virtual greens with varying slopes
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2 CHAPTER 1. INTRODUCTION

and speeds, or a basketball player could rehearse shooting under pressure with a
virtual crowd cheering or jeering. This flexibility and adaptability make VR training
an valuable tool for athletes of all levels.

Thirdly, VR provides athletes with real-time feedback on their performance, en-
hancing self-awareness and promoting rapid skill refinement. Visual cues, such as
the trajectory of a ball or the position of body segments, provide immediate infor-
mation about movement accuracy and efficiency [9]. Additionally, VR systems can
incorporate customized feedback mechanisms, delivering tailored guidance at opti-
mal moments to accelerate the learning process [3]. For instance, a rowing simulator
could provide haptic feedback on the user’s stroke technique, alerting them to de-
viations from the ideal pattern, or a tennis VR system could highlight the player’s
racket angle at the point of contact with the virtual ball. This immediate and spe-
cific feedback is crucial for identifying and correcting errors, leading to faster skill
improvement.

Despite the growing body of evidence supporting the effectiveness of VR in
sports training, key questions regarding its optimization remain. Researchers are
actively investigating how factors like the visual fidelity of the virtual environment [8],
[10]–[13] and its resemblance to real-world settings [14] influence motor learning
and skill transfer. Studies have explored how varying levels of visual detail, realism
of physics simulations, and the presence of virtual crowds or opponents can impact
the user’s experience and learning outcomes.

A critical aspect often overlooked is the role of real-world objects integrated within
VR environments, particularly their impact on the user’s haptic experience and sub-
sequent motor learning outcomes [15]. While visual fidelity plays a significant role
in creating an immersive VR experience, the sense of touch and force, known as
haptic feedback, is equally crucial for developing a natural feel for the movement
and enhancing skill acquisition.

Imagine practicing golf putting in VR. Are you using a generic controller that
vaguely resembles a putter or a real golf club fitted with sensors? This seemingly
minor difference can significantly impact how you learn the skill. Real-world objects
in VR offer a unique advantage: they provide realistic haptic feedback, the sense of
touch and force, which can be crucial for developing a natural feel for the movement.
This haptic feedback encompasses not only the weight and shape of the object but
also the sensations experienced during the interaction with the virtual environment,
such as the impact of the club hitting the ball. The lack of realistic haptic feedback
can lead to a disconnect between the visual and tactile experiences, potentially hin-
dering the learning process.

This study focuses on the impact of incorporating real-world sports equipment
into a VR system on motor learning. We investigated how using a real golf putter
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as a VR controller, compared to a traditional controller, affects both motor learning
performance and the user’s movement control within a virtual golf putting task. By
comparing performance outcomes across these conditions and analyzing kinematic
data, we aimed to unravel how different VR setups influence skill acquisition and
how these outcomes compare to real-world practice.

This research delves into the complex interplay between haptic feedback and
motor learning in VR. Our findings provide valuable insights for optimizing VR train-
ing interventions, leading to the development of more effective and realistic VR sys-
tems not just for sports training, but also for various other domains like rehabilitation,
skill acquisition, and human-computer interaction.
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Chapter 2

Background

This chapter provides a theoretical foundation for understanding the intersection of
virtual reality (VR) and motor learning, specifically its application in sports. It begins
by defining ”virtual reality” and ”motor learning,” establishing a shared understand-
ing of these key concepts. The chapter then delves into the theoretical framework
of motor learning, exploring its phases and established assessment methods. A
novel framework for analyzing VR’s role in motor learning is introduced, integrat-
ing Newell’s theory of coordination structures with the unique aspects of VR [16].
Finally, the chapter focuses on the crucial role of feedback in VR, particularly high-
lighting the significance of haptic feedback and its influence on both performance
and kinematic patterns.

2.1 The Nature of Virtual Reality and Its Constituent
Elements

Virtual Reality (VR) offers an innovative and immersive approach to interacting with
digital environments, providing users with experiences that can closely mimic or en-
tirely diverge from the real-world. Defined broadly, VR is ”a digitally constructed
environment that immerses users in an alternate setting, facilitating a sense of pres-
ence—mentally, physically, or both” [17]–[19]. This immersive environment is con-
structed through the synthesis of computer-generated visuals, sounds, and haptic
feedback, engaging users in interactive experiences using their sensorimotor capa-
bilities [12], [20], [21].

Rather than merely duplicating reality, VR aims to replicate essential aspects of
real-world tasks and environments, including perceptual cues and behavioral con-
straints, while intentionally omitting elements such as actual risk and expense, thus
providing a safe, cost-effective simulation for various applications [12], [22], [23].
However, this definition leads to a new question: How do we measure the extent to
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6 CHAPTER 2. BACKGROUND

which VR systems replicate the real-world during research?

2.1.1 Fidelity in Virtual Reality

Fidelity is one of the most important concept in virtual reality , represents the de-
gree to which a virtual environment faithfully replicates real-world experiences. The
Merriam-Webster dictionary defines fidelity as ”1: a. the quality or state of being
faithful; b. exactness in details” and ”2: the degree to which an electronic device (as
a record player, radio, or television) correctly reproduces its effect (as sound or a
picture).” The vast majority of uses of fidelity in VR point to the second definition. As
defined by Perfect et al. and Gray et al., in the context of VR, fidelity encompasses
not only the accuracy of visual and auditory reproduction but also the broader user
experience, including perceptual, cognitive, and behavioral responses [24], [25]. In
essence, high-fidelity in VR strives to create a virtual world that feels authentic and
elicits responses similar to those experienced in the corresponding real-world sce-
nario [26]. However, the term ”fidelity” often lacks precision in practical application.
For example, in many studies, VR environments are often judged to be “high-fidelity”
if they provide a detailed, realistic visual scene [27]. However, if the virtual environ-
ment does not induce a mental state or kinematic state corresponding to reality, can
it still be called “high-fidelity”? To make the concept of fidelity clearer, Harris et al.
categorized the fidelity of VR systems into four categories [12]:

1. Physical Fidelity: This dimension pertains to the accuracy and realism of the
virtual environment’s physical properties. It encompasses the visual details,
object behavior, adherence to physical laws (e.g., gravity, collisions), and the
overall believability of the virtual world. High physical fidelity is paramount for
maintaining the illusion of reality, preventing jarring inconsistencies like clipping
through objects or unrealistic object interactions. This dimension most closely
aligns with the traditional understanding of fidelity as visual realism.

2. Psychological Fidelity: Beyond physical appearances, psychological fidelity
focuses on replicating the cognitive demands and perceptual processes in-
volved in the real-world task. This includes factors such as gaze patterns,
attentional allocation, decision-making processes, and the overall cognitive
workload experienced by the user. Crucially, psychological fidelity assesses
whether users exhibit similar cognitive and perceptual behaviors in both real
and virtual environments [28]–[30]. A strong sense of presence, where users
perceive the virtual environment as real, significantly contributes to achieving
high psychological fidelity.
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3. Affective Fidelity: This dimension encompasses the emotional responses
evoked by the virtual experience. A high-fidelity VR simulation should elicit
emotions congruent with the corresponding real-world scenario. For example,
a VR flight simulator designed for pilot training should induce realistic levels
of stress and anxiety associated with challenging flight conditions. Similarly, a
VR game aiming to evoke excitement should trigger physiological and partici-
pantive responses comparable to real-world exciting experiences.

4. Ergonomic and Biomechanical Fidelity: This dimension addresses the phys-
ical interaction between the user and the virtual environment. It considers
whether the VR system allows for natural and realistic body movements, pro-
moting proper biomechanics and minimizing discrepancies between real-world
and virtual actions. Factors such as the design of VR controllers, tracking ac-
curacy, and the mapping of user movements to virtual actions contribute to
ergonomic and biomechanical fidelity.

Furthermore, in the specific context of VR-based motor learning, fidelity must be
evaluated in relation to the specific training goals [12], [23]. While striving for high-
fidelity is generally desirable, maximizing all dimensions is not always necessary or
practical. The optimal level of fidelity depends on the target skill and the desired
learning outcomes. For instance, training a complex motor skill like a golf swing ne-
cessitates high ergonomic and biomechanical fidelity, allowing for realistic movement
execution. Conversely, training a primarily cognitive skill may prioritize psychological
fidelity over physical realism. Therefore, the virtual environment should be designed
to be ”as real as necessary” to achieve the desired training outcomes, whether it be
perceptual-motor skill acquisition, stress habituation, or investigating sensorimotor
processes [31]–[33].

2.2 Motor Learning: Definitions, Phases, and Mea-
surement

In this section, we will delve into the concept of motor learning and examine how VR
can facilitate this process.

As discussed earlier, VR has been widely adopted in the motor learning domain
to help athletes enhance their performance. Motor learning, extensively studied over
decades, provides a robust framework for understanding the internal processes that
lead to stable and lasting improvements in motor performance. Unlike VR, which
is a relatively new field, the concepts and terminology in motor learning are well-
defined and widely accepted. This section explores key definitions of motor learning,
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outlines its phases, and discusses the methodologies used to assess learning and
performance.

By examining both classical and contemporary theories of motor learning, we
aim to elucidate how VR can be effectively utilized to enhance skill acquisition and
transfer in athletes. Through detailed discussions on the phases of motor learning
and the ART measures — acquisition, retention, and transfer tests — this chapter
provides a comprehensive overview of how motor learning is studied and evaluated
[34]. Furthermore, we will explore the challenges and opportunities presented by VR
in this context, emphasizing the critical factors that contribute to successful training
transfer from virtual environments to real-world applications.

2.2.1 Defining Motor Learning

Edwards et al. describe motor learning as the internal processes that lead to the
acquisition and improvement of motor skills. This involves a relatively stable or last-
ing change in performance or ability, which is achieved through practice or experi-
ence [34]. Similarly, Shmuelof et al. define motor learning as ”a durable improve-
ment in motor skills resulting from practice” [35]. This process involves the creation
of detailed motor plans that guide initial release movements and the systematic re-
duction of movement variability through the use of sensory feedback to fine-tune
actions [36].

2.2.2 Phases of Motor Learning

The process of motor learning is commonly understood to progress through three
distinct phases, as initially proposed by Fitts and Posner, and subsequently refined
by other researchers in the field of motor control and learning [36]–[38]. These
phases are characterized by different cognitive and physical demands, reflecting the
learner’s progression from novice to expert:

1. Cognitive Phase: This initial stage, also known as the verbal-cognitive phase,
is marked by rapid improvements in performance. The learner focuses inten-
sively on understanding the task requirements and forming a basic mental rep-
resentation or motor program of the skill [37]. During this phase, the learner
relies heavily on explicit, declarative knowledge and verbal cues. Movements
are often slow, jerky, and inefficient as the learner experiments with different
strategies. There is a high cognitive load as the learner consciously processes
large amounts of information. Performance is inconsistent, with many errors,
but improvements are rapid [38].
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2. Associative Phase: In this intermediate stage, also called the motor stage,
the learner refines the motor skill representation established in the cognitive
phase [37]. Enhanced error detection and correction mechanisms are de-
veloped, and the learner becomes more adept at using sensory feedback to
compare actual movement with intended output, allowing for real-time or sub-
sequent corrections. Movements become more fluid, consistent, and energy-
efficient. Cognitive demands decrease as some aspects of the skill become
more automatic. The rate of improvement slows compared to the cognitive
phase, but performance continues to enhance steadily [38], [39].

3. Autonomous Phase: The final stage, also referred to as the automatic stage,
represents the pinnacle of skill acquisition. In this phase, movements become
highly automated, consistent, and efficient, indicating advanced motor learn-
ing. The skill can be performed with minimal conscious attention, allowing the
performer to focus on other aspects of performance or even secondary tasks.
The learner can adapt the skill to varying environmental conditions with ease.
Further improvements in performance are typically small and may require ex-
tensive practice or specific interventions [37], [38].

Motor learning, the process of acquiring and refining motor skills, is not a singular
event but rather occurs in distinct stages. Among the various models developed to
explain this progression, Fitts and Posner’s three-stage model is widely recognized
for its applicability to learning complex tasks, such as golf putting [36]–[38]. Each
stage, marked by unique cognitive and physical demands, charts the learner’s path
from novice to expert.

Cognitive Phase: In the initial stage, conscious thought and deliberate effort
dominate the learning process. The learner is primarily focused on understanding
the fundamental requirements of the task and formulating a basic movement plan
[37]. External inputs, such as visual demonstrations and verbal instructions, are
critical at this stage. In golf putting, for example, the learner attends to grip, stance,
and the alignment of the putter with the target, as illustrated in Delay et al.’s research
on movement control in putting [40]. Movements tend to be erratic, inconsistent, and
prone to errors as the individual experiments with various strategies. During this
phase, verbal self-talk and feedback from coaches or training aids play a vital role.
While rapid initial improvements are common, performance remains highly variable
and unpredictable [38].

Associative Phase: With continued practice, the learner transitions into the asso-
ciative phase, where the focus shifts from conscious processing to refining move-
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ment patterns and improving consistency [37]. Sensory feedback, particularly pro-
prioceptive information (the sense of body position and movement), becomes in-
creasingly crucial for detecting and correcting errors. In the context of golf putting,
this phase involves developing a more consistent stroke and cultivating a better feel
for the amount of force required to control distance. The learner’s visual attention
also becomes more selective, efficiently focusing on key environmental cues, as
demonstrated in research on the ”quiet eye” in putting [41], [42]. Performance stabi-
lizes, variability decreases, and errors become less frequent as the learner refines
their technique [38], [39].

Autonomous Phase: After extensive practice, the skill enters the autonomous
phase, where execution becomes largely automatic, requiring minimal conscious
attention. In this stage, the golfer can perform the putting stroke with fluidity and
consistency, easily adapting to variations in green speed and slope [37], [38]. As the
physical execution of the task requires less cognitive effort, attentional resources can
be redirected to other aspects of the game, such as reading the green or planning
subsequent shots. Performance improvements during this phase tend to be more
gradual, yet the skill becomes highly resistant to forgetting. It’s important to note
that the progression through these phases is depending on the complexity of the
skill and individual differences. Moreover, different components of a complex motor
skill may be at different phases simultaneously [43].

Achieving an autonomous level of performance in complex skills like golf is often
a lifelong pursuit [43]. Karlsen et al.’s research on elite golfers underscores the
significance of consistent stroke mechanics in attaining high levels of performance
in putting [44].

2.2.3 Assessing Motor Learning

It is important to note that the ”acquisition” of motor skills at the end of training is not
the same as learning, and the most important indicator of ”learning” is to what ex-
tent the acquired skills are retained and transferred [34]. Therefore, a methodology
for assessing learning from performance is essential. Edwards et al. suggest that
learning can be assessed by three different measurements: acquisition tests, reten-
tion tests, and transfer tests, collectively known as ART measures [34]. A typical
motor learning study should contain all three components since each test provides
equally important but different insights [34]. Figure 2.1 illustrates the ideal research
design for assessing motor learning through Acquisition, Retention, and Transfer
(ART) measurements.
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Acquisition of Motor Skills Acquisition measurements are employed during the
initial release learning phase, focusing on how quickly and accurately a new skill
is acquired. It is worth noting that acquisition measurements are measurements of
performance rather than learning [34]. This phase is crucial for understanding the
immediate effects of practice and for establishing a baseline of skill proficiency [45].

In the context of golf, this might involve tracking changes in radial error, club
head speed, or swing consistency over a series of putting trials. While valuable
for monitoring progress, acquisition scores are influenced by temporary factors like
fatigue or motivation and may not accurately reflect long-term learning. In our study,
we use acquisition data primarily to establish baseline performance and to monitor
the immediate effects of the different VR controllers.

Retention of Motor Skills Retention measurements are conducted after a certain
period without practice to evaluate how well the learned skill is maintained over
time [45]. This measurement is vital for assessing the durability and stability of
the learned skill, providing insights into the long-term impacts of the initial release
learning phase [34]. However, in actual VR experiments, the retention test, which
is conducted before the transfer test to evaluate the effects of VR training in virtual
environments, is often ignored and replaced by a ”new” retention test (i.e., retention
test for transfer effects) conducted after the transfer test to assess the maintenance
of the effects of VR training in real-world environments. This reflects the current
research interest in the transfer of skills from virtual to real-world settings and their
retention in the real-world, rather than their retention in the virtual world. As of now,
the author has not found any study of the impact of this different test order on the
validity of VR-based motor learning research.

Returning to the golf putting example, a retention test would involve measur-
ing putting accuracy after a day or week without practice. Superior retention in
one group, for example, would suggest that intervention contributes to more durable
learning. In this study, we employ a retention test 24 hours after the training session
to assess how well participants maintain their putting skill.

Transfer of Motor Skills Transfer measurements are employed during the last
learning phase and are particularly significant in motor learning, as they assess the
extent to which learned skills can be applied to different contexts or tasks that were
not explicitly part of the initial release training [46].

Two different theories exist for the transfer of motor skills. Classical transfer the-
ories (e.g., Identical elements theory proposed by Thorndike) state that sensory
differences in virtual reality can impede the transfer of motor skills, implying that to
maximize transfer, everything in the real-world should be simulated as realistically
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as possible to provide identical stimuli in the virtual environments [47]. Some re-
search findings support this theory. For example, Farley et al. observed that optimal
learning experiences occur when the movements closely resemble the target skill
and the environmental conditions replicate the target context. If practice conditions
are altered, the previously developed movement plan is no longer appropriate for
successful performance [7].

However, findings from numerous studies challenge the traditional theory. Some
researchers found that when certain critical factors in real-world sports were dras-
tically changed in VR, athletes not only realized the transfer of motor learning but
also experienced increased effectiveness of the transfer (e.g., the weight of the VR
racket, screen resolution, etc.) [1], [3], [48]. These findings align with the Struc-
tural learning theory, which posits that humans are adept at identifying recurring
patterns within varying environments through sensory-motor experiences and lever-
aging these patterns to efficiently transition to new tasks. Structural learning de-
creases the search space that a human must explore to adapt to a new task. By
recognizing and applying these uniform features, the complexity of the learning pro-
cess is reduced, leading to quicker mastery of tasks that have a similar framework.
Consequently, structural learning serves as a method for enhancing the ability to
”learn how to learn” and to seamlessly switch between tasks that have a common
underlying structure [49]. In VR-based motor learning research, this theory suggests
that we unconsciously generalize the commonalities between virtual and real-world
environments and apply what we learn to real-world tasks with less loss. The study
by Bürger et al. on balance beam exercises provides strong evidence for this theory,
showing that skills adapted in virtual reality could be transferred to real-world tasks
and vice versa as athletes comprehended the similarities between the virtual and
real environments of gymnastics [6].

However, Harris et al.’s study reveals some interesting phenomena that cannot
be explained by the two theories above. They found that skills mastered by the
participants could be transferred from virtual reality to the real-world but not in re-
verse [50]. According to traditional theories, the large sensory gap between VR and
the real-world should make transfer impossible. On the other hand, according to the
structural learning theory, transfer should be possible in both directions because the
shared elements between the virtual world and the real-world have not changed.
Clearly, the experiment’s results cannot be explained by either theory. Harris cites
the phenomenon of Dual adaptation summarized by Welch et al. in their 1998 study
of the human vestibular-ocular reflex, which suggests that ”adjusting to a new sen-
sory environment becomes quicker with more repeated experiences” [51]. In Harris
et al.’s context, this phenomenon means that participants will adapt more quickly to
the addition of feedback (from VR to reality) than to the reduction of feedback (from
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reality to VR). Dual adaptation implies that inconsistencies in the stimulus elements
of the learning and transfer environments can seriously affect the effectiveness of
transfer, and with more repetitions, humans can better grasp the common structures
of the virtual and real environments, thereby realizing more efficient transfer.

The possibility of near-transfer of motor skills (skill transfer between similar do-
mains) from VR has been confirmed by many experiments [12], but it is widely rec-
ognized that achieving significant far transfer between distant domains is a challeng-
ing endeavor [52]. Virtual Reality (VR) training, however, typically does not pursue
general domain improvements. Instead, VR focuses on replicating the actual per-
formance environment, aiming for near transfer between closely related domains, a
common objective in human learning [12].

Despite the varied perspectives in motor learning theory, the ultimate measure for
any VR training setting should be its ability to facilitate effective transfer to real-world
applications . Yet, the key factors that contribute to successful training transfer are
still largely unexplored, as noted by Rosalie and Mueller [53]. Further, golf putting
learning, as of now, there has been no research specifically on its transfer effects
under VR. This study can fill this gap. These facts indicating a research gap in our
understanding of how to optimize VR training environments for maximal real-world
applicability .

The effectiveness of Virtual Reality (VR) training hinges on its ability to transfer
learned skills to real-world scenarios [3]. However, a significant research gap exists
in understanding the key factors that drive successful training transfer, as highlighted
by Rosalie and Mueller [53]. This gap is particularly evident in the domain of golf
putting, where the transfer effects of VR training remain unexplored. While Harris et
al. propose a framework for optimizing VR training environments, empirical research
specifically investigating the transfer of VR-based golf putting training to real-world
performance is currently lacking. This presents a clear opportunity for research to
investigate and bridge the gap between virtual and real-world putting performance
[12].

2.3 VR - motor learning framework

If one wants to combine motor learning with VR, it is necessary to explore the origins
of motor learning - coordination and control. Unlike virtual reality, the field of coordi-
nation and control has been researched for more than a century since Thorndike’s
theory of identical elements, and one of the most iconic frameworks is the theory of
coordination structures proposed by Newell in 1986. Newell et al. emphasize that
some constraints will determine the development of coordination and action. That
is to say, when people perform motor learning, they always look for a stable coordi-
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Figure 2.1: This figure illustrates the ideal research design for assessing motor
learning using Acquisition, Retention, and Transfer (ART) measure-
ments. In the Acquisition phase, participants perform a series of prac-
tice trials (Scene A) aimed at acquiring a skill, with performance im-
provements tracked over time. Following this, the Retention Interval
phase involves a period of no practice (”After days...”) to allow tempo-
rary performance variables to dissipate, ensuring that only permanent
changes are measured later. In the Retention Test phase, performance
is measured again in the same context as the acquisition phase (Scene
A) to evaluate the persistence of learning. Finally, the Transfer Test
phase involves testing the skill in a new context or different conditions
(Scene B) to assess the adaptability of the learned skill.
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nation and control mode(i.e., movement or cognitive pattern) to adapt to the current
constraints [16]. Newell et al. further state that there are three kinds of constraints
on the interaction of human sensory perceptions of the stimulus and the way they
coordinate their movements: organism (such as the physiology of the body system),
environment (the physical and social-cultural space where the body operates) and
task (the regulations or criteria that shape the execution of the skill), as shown in
Figure 2.2(a). [16].

When applying VR to motor learning research, we must clarify the role that VR
plays in motor learning. Slater et al. propose a novel but useful definition of virtual
reality, which is that virtual reality is a technological system that can refer to an al-
ready existing real-world environment, replacing the sensory input of a person and
thus altering the meaning of the person’s motor output [54]. This definition stands
on a cognitive-behavioral viewpoint, making it distinct from the traditional hardware-
software-based definition of VR, which enables us to integrate VR systems designed
for motor learning into Newell’s framework. That is, when virtual sensory inputs gen-
erated by virtual reality technology replace real-world sensory inputs, the meaning
of the original three constraints is transformed into another dimension. It disrupts
the old steady state and can force the body to search for new patterns of stable
coordination and control in the virtual dimension to adapt to the newer constraints,
thus altering the person’s original motor output. This perspective allows us to regard
VR systems as new constraints in the context of motor learning, as shown in Figure
2.2(b). Therefore, we can analyze sports virtual reality systems from the perspective
of the three constraints proposed by Newell et al.: environment, individual (organ-
ism), and task [16]. Some pilot studies have already applied the above concepts
in their research, for example, Drew et al. claimed virtual environments may offer
different learning constraints compared to the real-world [1].

Many previous attempts to build a VR framework for sports have also involved
the concepts mentioned above. For example, Neumann et al. proposed a model
of interactive virtual reality (VR) in sports and sport-related exercise. In addition to
having three constraints: the sports task, environments, and the athlete, the model
refines the environmental constraints into virtual and non-virtual environments. Neu-
mann et al. point out that most of the research on the application of VR in sports
has neglected the factor of non-virtual environments [19].

However, the model proposed by Neumann et al. was designed for broad sports
VR and did not incorporate unique concepts of VR motor learning such as ”retention”
and ”acquisition” into the model. For this reason, we developed a new framework
focused on motor learning research, as shown in Fig 2.3. This framework centers
on motor skill learning, lists three factors that influence motor skill learning in virtual
environments versus three factors that influence motor skill learning in real envi-
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Figure 2.2: VR System in Motor Learning [15]. Environment encompasses both
the virtual environment, shaped by VR technology, and the real-world
environment in which the VR experience takes place. User refers to the
individual engaging in the VR experience, incorporating their physical
capabilities, prior experiences, and cognitive processes. Task repre-
sents the specific motor skill being learned, with its inherent rules and
objectives.

ronments and demonstrates nine potential bilateral relationships between them that
may have an impact on motor learning. The acquisition, retention, and transfer of
motor skills are realized through the interaction of these six factors. Here, we cat-
egorize the six factors into three groups according to environment, user, and task,
and present how the interaction between them affects motor learning.

2.4 Feedback in VR

Real-world environmental constraints, such as gravity and lighting, are inherently
static and unchangeable [16]. In contrast, virtual reality (VR) provides a dynamic
alternative, enabling researchers to manipulate environmental factors and examine
athletic performance under various conditions, including replicating specific game
scenarios [7]. When introducing the concept of fidelity into this framework, fidelity
in the context of VR motor learning can be further defined as the degree to which a
VR system replicates the physical, psychological, affective, and biomechanical con-
straints of the real-world. A high-fidelity VR environment, therefore, seeks to recre-
ate the complete sensory experience of its real-world counterpart. For instance, per-
fect visual fidelity would require an exact replication of all visual information available
in the real environment.

Since our perception of the VR environment is entirely mediated by the feedback
provided by the VR system, the fidelity of this feedback is critical in determining the
overall fidelity of the VR system. As a result, most researchers begin by examining
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Figure 2.3: Interactive virtual reality (VR) models that target motor skill learning,
show the relationship between components in the virtual environment
and components in the real environment, where the solid line repre-
sents a direct correlation between the two factors and the dashed line
represents an indirect correlation. The acquisition, retention, and trans-
fer of motor skills occur in the interplay of these six factors. [15]
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Figure 2.4: Five different visual fidelity level of a thrower by Vignais et al. [48], [55]:
a textured reference level (L0), a non-textured level (L1), a wire-frame
level (L2), and two moving point-light display (MLD) levels with varying
ball sizes (L3 and L4).

the feedback mechanisms within VR systems to assess how varying kinds and lev-
els of fidelity in environmental variables affect motor learning. However, significant
disparities exist in the volume of research on different types of feedback: visual and
auditory feedback have been much more extensively studied than haptic feedback.
Researchers have developed a detailed understanding of the connections between
visual and auditory feedback and motor learning, building a comprehensive frame-
work that accounts for factors such as display medium, refresh rate, field of view, and
their effects on motor performance. In contrast, studies on the relationship between
haptic feedback and motor learning remain limited and fragmented [5].

A prerequisite for systematic research on feedback fidelity is the development
of appropriate metrics. While methods for assessing the fidelity of visual feedback
have been proposed, as depicted in Figure 2.4, a well-established system for evalu-
ating the fidelity of haptic feedback is still lacking. This gap can be attributed to the
complexity of haptic perception, which encompasses a broad range of sensations
such as temperature, pressure, and discomfort, making it far more intricate than
the relatively well-defined auditory and visual senses. Accurately simulating hap-
tic sensations requires replicating all these aspects, which, with current technology,
remains rudimentary at best.

2.4.1 Haptic Feedback in VR

The complexity nature of haptic feedback has led to ambiguity in researchers’ def-
inition. Burdea et al. defines haptic feedback as referring to both force feedback
(simulating object hardness, weight, and inertia) and tactile feedback (simulating
surface contact geometry, smoothness, slippage, and temperature) [56]. However,
the vast majority of researchers have adopted a narrow definition of haptic feedback
in their studies of VR systems, i.e., haptic feedback is force feedback that is actively
generated by the interaction device, in the form of vibration, pressure, etc. How-
ever, they ignore the fact that the interaction device itself can also passively provide
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Figure 2.5: An example of different haptic fidelity levels for a rowing task in a virtual
reality system

force feedback and tactile feedback. In other words, under a more accurate defini-
tion, haptic feedback includes not only feedback actively generated by the system,
but also attribute information that the user can passively receive from the interactive
device, including weight, shape, material, etc.

The limited evidence suggests that when the fidelity of the haptic feedback in VR
systems is high, it can have the positive effect of shaping the virtual environment. In
the rowing system developed by Sigrist et al., the user is required to stroke a real
oar [5]. The outer end of the paddling device is connected to a parallel sensor via
five ropes. The sensor uses the tension and displacement data of these ropes to
calculate the horizontal and vertical angles of the paddle in real time, and applies a
different amount of force on each rope to realize haptic simulation and simulate the
water resistance during paddling. The haptic information provided by this system
is highly similar to what we feel when rowing in the real-world, which significantly
improved the fidelity of the environment. Thus we can say that haptic feedback
affected motor learning in this experiment by influencing the environment.

2.4.2 Haptic Feedback from Real-World’s Objects

Unlike visual feedback, it is difficult to develop a one-size-fits-all metric for measuring
the fidelity of haptic feedback due to the complexity of the sense of touch itself.
Therefore, measuring the degree of haptic fidelity in relation to real sports equipment
may be a better solution. 2.5 depicts the different fidelity levels of haptic feedback
generated by different real-world interaction objects, using rowing as an example.

The introduction of haptic feedback does not always have an impact on the fi-
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delity of the environment. When the fidelity of the haptic feedback is low, instead of
effectively contributing the virtual environment, the haptic feedback changes the task
and shapes it into a new task that is different from the real-world motor task. For ex-
ample, for commercial VR platforms, haptic feedback is often carried by controllers.
The haptic feedback provided by these controllers is very scarce, and they can nei-
ther convey force information such as hardness and weight, nor tactile information
such as material and temperature. The primary haptic feedback of the controller is
the vibration generated by the vibration motor. For example, for a rowing VR system,
the haptic feedback is that the controller vibrates when the oars touch the water. In
contrast, in the real-world, when we hold the oar in our hands, we can feel the weight
and material of the oar. Further, when the paddle enters the water, we also feel a
significant change in force feedback. Obviously, the vibration feedback provided by
the VR controller is completely different from the haptic feedback provided in the
real-world, and the “touch-water vibration” is added to the VR paddling task as aug-
mented feedback that does not exist in the real task. In other words, the task was
changed when the real task was migrated to VR. In this case, the haptic feedback
serves more as a cue to the state of the task in the virtual world, rather than shaping
the virtual environment. It is worth noting that when conducting research on haptic
feedback in VR, it is important to focus not only on the changes in the fidelity of the
virtual environment, but also to take into account the integrity on the nature of the
sport when migrating the sport task from reality to VR.

Many researchers have tried to incorporate real sports equipment into sports VR
systems with a view to building a mixed reality (XR) system. This has the advantage
of immersing the user in a virtual environment while providing haptic feedback with
the highest degree of fidelity. For example, Harris et al. experimented with the use
of real golf clubs as the interaction device for a VR golf system, and the results
revealed that the participants’ putting accuracy was significantly improved after the
training [12]. In addition, Gray et al. used a real baseball bat for batting training in
a VR baseball system, and the final test revealed a significant improvement in the
participants’ batting performance [3]. However, this approach is not perfect, for one
thing, none of the systems mentioned above have the ability to simulate the feeling
of impact when the ball comes into contact with the bat or putter; and secondly, they
are more demanding on the type of sport, and are unable to simulate sports such as
rowing, swimming, and other sports that have stringent requirements on the field.

When real equipment is impractical, machinery mimicking real equipment, like
rowing machines, can be used. These devices offer feedback fidelity between real
equipment and controllers. Arndt et al. built a VR rowing training system based on
a rowing machine. As stated by the authors, the rowing machine has a high haptic
fidelity that reflects well the resistance encountered by the oars when rowing in VR.
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The results showed significant improvements in the technical aspects of rowing for
the participants. However, there is a problem with the system: the rowing motion
on the rowing machine is not exactly the same as real rowing. [4]. Similarly, Sigrist
et al.’s rowing machine study modified to mimic real rowing experiences, showed
significant spatial error reductions with feedback training [5]. In summary, all of
these studies suggest that the richness and fidelity of haptic feedback may have
some positive relationship with motor learning performance.

In addition to being used as a simulation of how an avatar feels in a virtual envi-
ronment, haptic feedback can sometimes be used as augmented feedback to give
information related to the user’s performance directly to the user. This practice also
makes a strong positive contribution to motor learning. For example, the paddling
system by Sigrist et al. guides users to learn to paddle in a virtual environment by
using vibration and force feedback to alert them when their paddles deviate from
a preset trajectory. Finally, the authors conclude that motor learning and perfor-
mance can be effectively facilitated by providing tactile guidance for complex move-
ments [36]. Force feedback systems have shown significant improvements in task
performance compared to vibrotactile or visual feedback alone, indicating the poten-
tial of haptic augmented feedback to enhance motor skills [57]. However, integrating
haptic feedback in VR remains a challenge due to the limited range of sensations
current technologies can simulate compared to real-world experiences [57].

2.4.3 Haptic feedback and kinematic patterns

The relationship between haptic feedback in virtual reality (VR) and human kine-
matic patterns has emerged as a crucial area of study in motor learning research.
Kinematic patterns, which describe the motion of bodies without considering the
forces causing them, are fundamental to understanding how movements are per-
formed and refined over time. Recent literature suggests that different types of VR
feedback, particularly haptic feedback, significantly influence these kinematic pat-
terns, thereby affecting the efficacy of motor learning and skill transfer from virtual
to real-world environments.

Studies have demonstrated the impact of haptic feedback on kinematic patterns
in various motor tasks. Markwell et al. compared VR and real-world golf putting
practice, finding that participants using VR controllers exhibited similar kinematic
patterns to those practicing in reality [58]. This similarity was attributed to the hap-
tic feedback provided by the VR controllers, which effectively mimicked real-world
sensory input. Brock et al. further elucidated this relationship by examining visuo-
motor tasks in real and virtual environments [59]. Their research revealed that the
absence of end-point haptic feedback in VR resulted in slower, more exaggerated
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movements, underscoring the importance of tactile feedback in refining motor con-
trol and achieving natural kinematic patterns.

There have also been some studies that have found VR controllers that include
less haptic information can cause kinematic patterns to deviate significantly from
the real-world environment. Drew et al. explored the kinematic differences in dart
throwing between VR and real-world settings [1]. Their findings indicated that VR
practice, using the HTC Vive controller and a commercially available application, re-
sulted in different kinematic patterns compared to real-world practice. While these
studies provide valuable insights, research focusing specifically on how haptic feed-
back from VR controllers affects kinematic patterns in motor learning remains lim-
ited.

It is clear that the impact of haptic feedback on motor learning in VR environ-
ments warrants further investigation. Research centered on haptic fidelity (as shown
in Figure 2.5) can provide valuable insights into how different forms of haptic feed-
back can contribute to skill acquisition and performance in virtual training environ-
ments.

2.5 Goals and Hypothesis

Current research highlights the importance of haptic feedback in VR-based motor
learning, however, we do not understand the impact of using real-world objects as
interaction media on motor learning under the VR environments. Thus, this study
investigates how different levels of haptic fidelity in VR controllers impact motor
learning, focusing on haptic feedback by comparing the use of real golf putter to
a standard VR controller.

The rationale for selecting golf putting as the motor skill stems from several fac-
tors. First, the availability of sophisticated, commercially available VR golf simulators
provides a high-fidelity training environment, enhancing participant immersion and
the ecological validity of the experiment. Second, golf putting is a complex motor skill
involving coordinated movements and the interplay of strength and precision [12],
[44], making it a suitable task for studying multifaceted motor learning processes.
Third, the distinct shape and weight of a golf putter offer a stark contrast to stan-
dard VR controllers, maximizing the potential for observing the effects of controller
fidelity. Finally, the impact sensation during ball contact in real-world putting intro-
duces an additional layer of haptic feedback, allowing for comparisons between VR
and real-world training to investigate the role of such cues in skill acquisition.

In this study, we aim to determine how closely VR training with a high-fidelity
controller (i.e. Controller incorporated with real worlds sports equipment) replicates
the learning outcomes of real-world practice and how both compare to training with
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a standard VR controller. Based on the limitations of current research and our ratio-
nale for this study design, we hypothesize the following:

• H1 (Performance): Participants in the ConClub condition will exhibit greater
improvements in putting performance compared to those in the Con condi-
tion. However, neither VR group (Con or ConClub) will achieve the same level
of performance improvement as participants in the Club condition. This hy-
pothesis reflects the expectation that increased controller fidelity will enhance
learning in VR, but that the full haptic experience of real-world practice remains
unmatched.

• H2 (Kinematics): The kinematic characteristics of participants’ putting strokes
in the real-world post-tests will be more similar between the ConClub and Club
groups than between the Con and Club groups. This hypothesis predicts that
training with the high-fidelity VR putter will lead to kinematic patterns that more
closely resemble real-world putting movements compared to training with a
standard VR controller.
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Chapter 3

Methods and Techniques

This chapter explains the methods used to investigate the research questions in this
study. We begin by stating the experimental design settings, including the equip-
ment used (Meta Quest 3, Xsens DOT, real and modified putters), and the setup for
both real and virtual golf putting environments. We also explain how we collected
performance metrics and kinematic data. Finally, we outline the data processing
techniques used to analyze the performance and kinematic data. This chapter aims
to provide a clear and thorough explanation of our methods to ensure the findings
are credible and reproducible.

3.1 Experiment Design

The experiment employs an independent group design with two experimental groups
and one control group.

• Control Group (Club Group): Participants in the control group trained with
a real golf putter in a physical environment. They were instructed to focus on
developing a consistent putting technique. Each participant stood at a desig-
nated starting position and made 75 consecutive putts toward a target located
6 meters away, using a real golf ball. No additional instructions or feedback
were provided during the training to simulate a natural, self-guided practice
session.

• Experimental Group 1 (ConClub Group): In this group, participants trained
in a virtual reality (VR) environment using a modified golf putter equipped with
a VR controller. The simulation closely mimicked a real golf course, including
environmental sounds and haptic feedback from the controller. Participants
also performed 75 putts toward a virtual target 6 meters away, with the goal
of improving their technique. Haptic and auditory feedback provided real-time

25
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sensations similar to striking a real golf ball, enhancing the immersion and
training experience.

• Experimental Group 2 (Con Group): Participants trained in the same VR en-
vironment as Experimental Group 1 but used standard VR controllers instead
of the modified putter. Like the other groups, they completed 75 putts toward
a virtual target. However, the VR controller, being lighter and less realistic
in its feel, offered a different training experience. Participants received visual
feedback from the VR environment but did not experience the same physical
sensations as in the high-fidelity group.

In all groups, the 75 putts were completed in a single session without interruption.
Participants were allowed brief rest periods between putts if needed but were not
given specific feedback on their performance during training.

This independent group design allows for clear comparisons between the effects
of different training tools on motor learning. Modified controllers in this context refer
to controllers highly similar to actual sports equipment in terms of use, mass, and
center of gravity, which will be described in detail in subsection 3.2.2.

3.2 Experimental Settings

This section describes the details of the experimental environments for both real-
world and VR golf putting, including the equipment used and the venue settings.

3.2.1 Real-world golf putting

All participants completed a real-world putting test. The control group trained using
golf putter in a physical environment, performing 75 putts during the training session.

The golf putter has an original mass of 350 grams and a length of 150 cm, which
meets the standards of the United States Golf Association 3.1b. When training and
testing happened in the real-world, participants were asked to use this putter.

For the environment, we choose the indoor laboratory as the venue for golf
putting. The size of the venue is 1200 cm * 600 cm, the layout of the venue is
shown in Figure 3.2. The floor of the venue was carpeted with a short pile carpet,
which resembled golf grass. In the training and testing phase, participants were re-
quired to stand at one end of the field to hit the ball, and they were asked to putt
the ball as close as possible to a target 6 meters away. It is worth noting that the
ball does not stop as it passes over the target because the target is flush with the
ground.
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(a) Con: VR controllers (b) Club: Putter (c) ConClub: VR controller
incorporate with putter

Figure 3.1: Experiment equipments

Figure 3.2: Illustration of the experimental venue
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3.2.2 VR golf putting

Participants in both experimental groups trained in a VR environment using the Meta
Quest 3 headset and controllers. The Meta Quest 3 is a six-degrees-of-freedom
headset with a 110-degree horizontal and 96-degree vertical field of view. The con-
trollers used differed between the two experimental groups:

• Experimental Group 1 (High-fidelity VR controllers): Participants used a modi-
fied putter, where the Meta Quest 3 Touch Pro Controller was attached to the
middle of a real golf putter, closely replicating the weight and feel of the real
putter (Figure 3.1c). This modification added an additional 104 grams to the
original 350-gram putter.

• Experimental Group 2 (Standard VR controllers): Participants used the un-
modified Meta Quest 3 Touch Pro Controller, which weighs 104 grams (Figure
3.1a). This setup was considerably lighter and less realistic in feel compared
to the modified putter.

The VR simulation was powered by the GOLF+ program (developed by GOLF+
in Texas, United States), which provides a virtual golf environment with auditory and
haptic feedback. Participants could hear the sound of the club striking the ball and
receive vibration feedback when the club hit the ground or ball, enhancing immer-
sion. The target was the same size and distance as in the real-world setting (6
meters), ensuring consistency across conditions.

(a) Targets in the participant’s view in VR en-
vironment

(b) The counterpart of real-world controllers
in VR environments

Figure 3.3: Golf Putting Environment in VR
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3.2.3 Data collection

Putting performance

Traditional measurement methods for putting performance, such as those described
by Walters-Symons et al., Harris et al. and Moore et al. [41], [42], [50], involve as-
sessing Radial Error, which is the two-dimensional Euclidean distance between the
ball and the hole. However, these traditional measurements may miss some impor-
tant information, such as the accuracy of aim and amount of power when striking
the ball. For the participant, the goals of the putting task can be interpreted as 1.
to swing the club using just the right angle so that the ball travels a course that is in
line with the line between the tee and the target. 2. swing the putter using just the
right amount of power so that the ball rolls the same distance as the distance from
the tee to the target. Therefore, in the present study, in order to explore more deeply
the effects of different training conditions on aiming and self-perception of strength,
except for radial error, we reflected the effects of motor learning through another
two factors: the Initial Release Angle and the Distance traveled by the ball. The
coordinate system and measurement are shown in Figure 3.4.

The Initial Release Angle, θ, is the angle between the initial release direction of
the ball’s motion and a reference line, typically the horizontal axis. Understanding
the Initial Release Angle of the golf ball during putting is critical for analyzing putting
performance. Literature indicates that initial release conditions, such as angle and
speed, significantly impact the trajectory and success of a putt [60]. In golf, as in
other precision sports, controlling these initial release conditions can lead to more
consistent and accurate outcomes [41], [42]. A correct Initial Release Angle ensures
that the ball follows the intended trajectory, thereby increasing the likelihood of a suc-
cessful putt. Research in related fields, such as basketball and throwing, has shown
that precise control of initial release release parameters can significantly improve
performance outcomes [60]. Based on this evidence, it is also reasonable to believe
that in golf, the Initial Release Angle can be a valid reflection of the participant’s
progress in learning putting motor skills.

The distance the ball travels is another key factor to be considered. Since the
distance the ball travels is directly related to the speed of the ball, we can equiva-
lently consider the distance the ball travels as a measure of the power of the putter.
If the force of the putt is too high or too low, the distance the ball travels will deviate
from the correct distance. Analyzing this value will allow us to explore the effects of
training with different equipment on the perception of power.

In this experiment, we measured the coordinates of a golf ball after it was putted.
The ball was placed at a fixed starting point, called the tee point. The target, located
6 meters awy, was designated as the origin of our coordinate system. The line
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Figure 3.4: Measurement of golf ball coordinates
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connecting the tee point to the target was defined as the Y-axis. Perpendicular to
this, we defined the X-axis. After each putt, when the ball came to rest, we used a
tape measure to determine its final position in terms of X and Y coordinates. These
coordinates were then used to calculate the Initial Release Angle and the distance
the ball travels.

The radial error R between the ball’s final resting position and the target can be
calculated using Pythagorean theorem:

R =
√
X2 + Y 2

where:

• X is the horizontal distance between the target and the ball’s final position.

• Y is the vertical distance from the target to the ball’s final position.

The angle θ between the ball’s final resting position and the Y-axis (the intended
path) can be calculated using the arc-tangent function, which relates the opposite
side to the adjacent side in a right triangle. The formula for the angle θ is given by:

θ = tan−1

(
X

Y + 600

)
• X is the perpendicular distance from the Y-axis, which serves as the opposite

side of the triangle.

• Y + 600 is the vertical distance (in cm) along the Y-axis from the ball’s final
position back to the tee point, which serves as the adjacent side of the triangle.

By calculating the arctangent of the ratio X
Y+600

, we obtain the angle θ in radians.
To convert this angle to degrees, we multiply by 180

π
.

Thus, the full formula in degrees is:

θdegrees = tan−1

(
X

Y + 600

)
× 180

π

This angle θ represents how far the ball deviated from the intended straight path
towards the target, with a positive angle indicating a deviation to one side and a
negative angle indicating a deviation to the opposite side.

The distance traveled by the ball can be calculated using the Pythagorean The-
orem , and the calculation process needs to take into account the horizontal and
vertical components of the ball’s motion from the point of the tee point to its final
resting position.

The total travel distance D is the hypotenuse of the right triangle formed by the
horizontal and vertical distances. The Pythagorean theorem states:

D =
√

X2 + (Y + 600)2
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• X is the horizontal distance, provided as the X-coordinate.

• Y + 600 is the vertical distance from the tee point to the final position.

• D is the travel distance of the ball in centimeters.

Kinematic behavior

As mentioned earlier, in the present study, we not only wished to explore the effects
of different haptic feedback on performance but also to gain knowledge of the altered
kinematic patterns caused by these feedback. To achieve this goal, we employed
a comprehensive approach to data collection, focusing on key body segments and
equipment crucial to the putting stroke.

Over the past few decades, numerous studies have investigated the kinematic
patterns of different body segments, the coordination between these segments, and
the resultant motion of the golf putter. One of the primary areas of focus in kinematic
research on golf putting is the motion of the upper body, particularly the shoulders,
arms, and hands. The pendulum-like motion of the upper extremities is often cited
as a critical factor in achieving a smooth and controlled putting stroke.

According to Karlsen et al., an effective putting stroke is characterized by a pre-
dominant rotation around the shoulder joints [44]. This shoulder-dominated move-
ment helps maintain a stable putter path and face angle at impact, which are crucial
for directional accuracy and distance control. To capture this essential movement,
we placed sensors on key body locations.

The sternum, located centrally on the thorax, serves as an ideal reference point
for capturing the overall movement of the upper body. This central location is critical
for measuring the stability and rotational motion of the shoulders and torso, which
are essential components of an effective putting stroke. By placing a sensor on the
sternum, researchers can obtain comprehensive data on the golfer’s upper body
kinematics, which can be used to evaluate their skill level and track improvements
over time.

To collect this kinematic data, we used Xsens DOT sensors from Movella. These
compact, wearable motion sensors, measuring 36.3 x 30.4 x 10.8 mm and weighing
11.2 grams, are equipped with a 3D accelerometer, gyroscope, and magnetometer
to deliver precise 3D orientation data. The sensor coordinate system (S) is a right-
handed Cartesian coordinate system that is fixed to the body of the sensor [61]. It is
depicted below on Figure 3.5, with the axes labeled as x, y, and z.In this research,
Xsens DOT will record the acceleration, Euler angle and angular velocity rate of
change in all three directions at a sampling rate of 60hz in CSV format.
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Figure 3.6: Sensor placement schematic

Figure 3.5: Xsens DOT sensor coordinate system [61]

During the experiments, participants were asked to wear close-fitting clothing to
ensure accurate sensor placement. One sensor was securely affixed to the center
of the participant’s sternum using elastic tape to prevent any movement or slippage
during the test, allowing us to precisely measure the rotational angle of the chest
during the putting stroke. This enabled us to analyze shoulder-dominated kinematic
patterns. Additionally, another sensor was mounted on the head of the putter to
record time and displacement as the participants executed real-world putts, provid-
ing data on the critical factors identified by Delay et al. and Sim et al. [40], [62]. The
placement scheme is demonstrated in the figure 3.6.

This arrangement allows us to compare the motion profiles of golfers using dif-
ferent devices during the three test phases. If the motion patterns using the Con-
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Club are very close to those using the Club training in the real-world environment, it
indicates that training with the high-fidelity controller successfully replicates the real-
world putting requirements. Conversely, if there is a significant difference between
the two conditions, it suggests that the high-fidelity controller may not be helpful for
VR motion learning.

Interview

Upon completion of all experimental tests, participants were invited to join a brief in-
terview designed to explore qualitative aspects of their experience during the putting
training sessions. The interview comprised seven open-ended questions, tailored
to differentiate based on the participant group allocations. These questions were
crafted to elicit detailed insights into the participants’ personal perceptions and chal-
lenges with the training process.

The interview protocol was structured around the following key areas:

1. Comfort in VR: Participants were asked about any discomfort experienced dur-
ing the VR training, prompting them to elaborate on specific aspects of the VR
experience that might have contributed to their comfort or discomfort.

2. Comparison of Real-World and VR Golf: Participants were asked to describe
and compare their feelings and perceptions of putting in the real-world versus
the VR simulation. This aimed to uncover any discrepancies or similarities in
their experiences between the two environments.

3. Feedback Differences: This section focused on probing the participants’ per-
ceptions of the feedback mechanisms in both the VR and real-world settings.
Participants were encouraged to detail the type, quality, and helpfulness of the
feedback received in each environment.

4. Perceived Training Impact: Participants were asked about their opinions on the
effectiveness of the VR training in improving their real-world putting skills. This
aimed to capture their participantive assessment of the training’s value and
impact.

Additionally, participants were asked about the potential impact of using a putter
during training, their overall opinion on whether VR helped them learn golf, and to
provide any other comments about their experience.

All interviews were audio-recorded and transcribed verbatim for analysis. During
the interview, speech was transcribed into text in real time for subsequent semantic
analysis (see Appendix D.1 for the full list of transcripts).
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3.3 Experimental Procedure

A total of 24 participants were recruited for this study. Regardless of the group,
the experiment lasted two days for each participant. On the first day, they were
required to take a pre-test, training and post-test, and on the second day, they were
required to take a retention test and a short interview. The data collected in the
experiment included basic personal information, kinematic information, performance
information, and interview information. The flow of the experiment is shown in Fig
3.7:

Figure 3.7: Experimental flow

3.3.1 Recruitment and experiment preparation

24 university students (include 8 females and 16 males; mean age = 25.6, SD = 2.7;
max = 32, min = 20) were recruited from the University of Twente. All participants
reported themselves as novice golfers. For the purposes of this study, we used
Moore et al.’s definition of a novice golfer: novice golfers are people without a formal
golf handicap or formal golf putting experience [63]

All participants were informed of the study details before participation and pro-
vided written consent. To ensure participants’ health, additional verbal confirmation
was conducted to confirm they had not experienced Cybersickness. Ethical approval
for the study was obtained from the Faculty Ethics Committee before data collection
began.

Prior to the Pre-test, each participant will be assigned to one of three groups.
Then, each participants were asked to watch an approximately five-minute instruc-
tional video on golf putting presented by a PGA-certified instructor, which included
basic instruction on grip, stance, and movement. Afterwards, the participants were
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Figure 3.8: Participants performing putting training in a VR environment with Con-
Club

asked to make three trial putts in order to familiarize the use of the equipment and
to gain a basic feel for putting. Data from this session will not be recorded. During
this process, the researcher also gave limited instruction by answer the participants’
questions about putting.

3.3.2 Test Settings

The main body of the experiment consists of three testing sessions, and a training
session. The testing session consisted of a pre-test, post-test and retention test,
the design of which followed the motor learning measurement framework mentioned
in the previous chapter. For each test, all participants were asked to make ten
putts with putter in a realistic environment. Pre-test was conducted prior to the
training session and the results were used as a baseline. Post-test was conducted
immediately after the training session in order to examine the learning and transfer
of skills. Retention-test was conducted the day after the training session to examine
the retention of motor knowledge gained from the training session. the degree of
retention of motor knowledge acquired.

After completing all experimental tests, participants were required to take part in
a short interview designed to explore their experiences during the putting exercise.
The detailed procedure for this interview is outlined in section 3.2.3, as mentioned
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previously.

3.4 Data Processing

The data utilized in this study were classified into three distinct categories. The first
category comprises deviation values recorded during the trial phase, which reflect
motor performance. The second category includes kinematic data obtained from the
Xsens DOT sensor. The third category consists of transcripts from the interviews
conducted. In this section, we will examine the processing and analysis methods
applied to each type of data, thereby establishing a theoretical foundation for the
subsequent results chapters.

3.4.1 Performance data processing

In this section, we describe the processing methods used to analyze the perfor-
mance data. The analysis aimed to explore the impact of different equipment on mo-
tor learning by examining performance indicators in different groups and test phases.
A total of thirty sets of data in the form of coordinates were recorded for each par-
ticipant across the three tests. The data processing methodology includes data
loading, descriptive statistical analysis, normality and homogeneity tests, ANOVA or
non-parametric tests, post-hoc analysis, and visualization.

Performance data processing and analysis were conducted on Python 3.9. The
libraries used included:

• Pandas for data manipulation and analysis.

• NumPy for numerical computations.

• SciPy for statistical functions and tests, essential for performing normality and
homogeneity tests, as well as non-parametric analyses.

• Statsmodels for advanced statistical modeling, including ANOVA and post-
hoc tests.

• Seaborn and Matplotlib for data visualization, creating informative plots to
visualize the distribution and variability of the performance data.

Data Loading

The first step was to manually enter all the experimental data as a csv file and import
it into the data analysis program. The dataset contained columns for X-deviation, Y-
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deviation, Group, Participant ID and Test Type. The data were structured to allow for
subsequent group comparisons and test comparisons.

Data Preprocessing

Our analysis began with a comprehensive data integrity test to ensure dataset com-
pleteness and accuracy. This process involved verifying column data types, identify-
ing duplicate entries, and confirming the correct number of trials for each participant
across test phases. This critical step prevents erroneous conclusions that could
arise from inaccurate or incomplete data.

In addressing data quality, we also tackled the issue of missing values, which can
potentially skew results and reduce analysis validity. We employed multiple imputa-
tion to estimate missing values based on observed data, preserving the overall data
structure and relationships. This method was chosen for its ability to maintain sta-
tistical power by preserving sample size and account for uncertainty in missing data
estimates, offering advantages in bias reduction and estimate accuracy compared
to simpler methods.

With a clean and complete dataset, we proceeded to calculate two primary per-
formance metrics: Initial Release Angle and ball travel distance. These metrics,
derived from X-deviation and Y-deviation values as detailed in Section 3.2.3, form
the foundation of our performance analysis.

To quantify performance accurately, we developed deviation measures by com-
paring these metrics to their optimal values:

Angle Deviation = |θ − 0| (3.1)

where θ is the Initial Release Angle . The optimal angle is 0°, with larger devia-
tions indicating less accurate aiming. It’s important to note that we use the absolute
value here, denoted by the vertical bars (— —). This ensures that we measure the
magnitude of the deviation regardless of whether the angle is positive or negative.
For example, a Initial Release Angle of 5° and -5° would both result in an angle
deviation of 5°, reflecting that both are equally far from the optimal 0° angle.

Distance Deviation = |D − 600| (3.2)

where D is the travel distance in centimeters. The optimal distance is 600 cm,
with larger deviations indicating less accurate putts. Again, we use the absolute
value to capture the magnitude of the deviation. This means that a putt that falls
50 cm short (550 cm) and one that goes 50 cm too far (650 cm) would both result
in a distance deviation of 50 cm. This approach allows us to measure accuracy
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without distinguishing between undershooting and overshooting, as both are equally
undesirable in putting performance.

While these deviation measures provide valuable insights, they do not account
for potential differences in baseline performance between groups. To address this
limitation and enable more meaningful comparisons, we introduced the Performance
Progress Value. This metric measures improvement between tests:

Pre-Post Improvement = |Angle DeviationPost| − |Angle DeviationPre| (3.3)

Pre-Retention Improvement = |Angle DeviationRetention| − |Angle DeviationPre|
(3.4)

We applied similar calculations for ball’s travel distance deviations. In these for-
mulas, we use absolute values for each individual Angle Deviation measurement to
ensure we’re comparing the magnitudes of deviations at different time points. This
approach allows us to capture improvements regardless of whether the initial devia-
tions were positive or negative.

In this framework, negative values indicate performance regression, while posi-
tive values represent improvement. For example, if a participant’s Angle Deviation
decreased from 10° in the pre-test to 5° in the post-test, the Pre-Post Improvement
would be -5°, indicates a decrease in the deviation value, i.e., an increase in per-
formance. Conversely, if the Angle Deviation increased from 5° to 8°, the Pre-Post
Improvement would be 3°, signifying a decline in performance.

By including these progress values, our analysis can compare learning effects
between groups while accounting for potential differences in initial skill levels, pro-
viding understanding of performance changes over time.

Descriptive Statistical Analysis

Descriptive statistical analysis was conducted to summarize and understand the ba-
sic features of the data before performing more complex inferential analyses. This
step involved calculating measures of central tendency and variability, and visualiz-
ing the distribution of performance scores across different groups and test phases.

In the discussion that follows, we will use these visualizations to approximate any
patterns and trends that exist in the data.

Normality and Homogeneity Tests

Before conducting inferential statistical tests like ANOVA, it is essential to ensure
that the data meet the assumptions of normality and homogeneity of variances. To
assess these assumptions, we use boxplots, Q-Q plots, and residual analyses.
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Boxplots visually assess the distribution’s spread and symmetry across groups
and identify any outliers that might indicate deviations from normality. Q-Q Plots
compare the quantiles of our sample data against those of a theoretical normal
distribution. A linear relationship between these quantiles suggests that the data
are normally distributed, while deviations, particularly at the tails, indicate poten-
tial non-normality. Residual Analysis examines the residuals—differences between
observed and predicted values. Residuals should be randomly distributed around
zero without any apparent patterns, supporting both normality and homogeneity of
variances.

Statistical test

Next, we are going to evaluate the differences in performance across different groups
and test phases, and to understand the effects of different training modalities on
motor learning. These tests help determine whether the observed differences are
statistically significant or if they could have occurred by chance.

Parametric Test When the data did not violate the normality assumption and the
variance chi-square assumption, to analyze the effects of multiple factors on our
dependent variables, we employed a two-way analysis of variance (ANOVA). This
statistical method allows us to simultaneously examine the impact of two indepen-
dent variables and their potential interaction on a continuous outcome variable. In
our study, the two-way ANOVA enabled us to assess not only the main effects of
group invention and test phases factor but also whether the effect of one factor de-
pends on the level of the other.

The two-way ANOVA partitions the total variance in the data into components
attributable to the main effects of each factor, their interaction, and residual error.
By comparing these variance components, we can determine whether the observed
differences between group means are statistically significant or likely due to chance.

Non-Parametric Tests When the assumptions of normality and homogeneity of
variances are violated, non-parametric tests offer a robust alternative. Non-parametric
tests do not assume a specific distribution for the data, making them suitable for an-
alyzing non-normally distributed data or data with unequal variances.

For this study, the Kruskal-Wallis test was selected as the non-parametric alter-
native to LMM. The Kruskal-Wallis test evaluates whether the distribution of ranks
differs between groups. It is the non-parametric counterpart to the one-way ANOVA
and is used when the independent variable has three or more groups. The test
statistic H is calculated as:
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H =
12

N(N + 1)

k∑
i=1

ni

(
R̄i −

N + 1

2

)2

(3.5)

where ni is the sample size of group i, R̄i is the average rank of group i, and N

is the total sample size. A significant p-value indicates differences between groups.

Post-Hoc Tests

Following significant main effects or interactions, we conducted post-hoc tests to
identify specific group differences. Here we adapted Bonferroni Correction as post-
hoc test. The Bonferroni correction adjusts the significance level to account for mul-
tiple comparisons, reducing the likelihood of Type I errors. For m comparisons, the
adjusted significance level αadj is:

αadj =
α

m
(3.6)

3.4.2 Kinematic data processing

The kinematic data were obtained using Xsens DOT sensors placed on participants
body and putting equipment. The raw data encompassed a comprehensive set of
parameters including temporal markers, orientation data (Euler angles and quater-
nions), accelerations, and angular velocities. The data processing methodology
aimed to extract meaningful kinematic parameters and identify key events in the
putting motion. The reasons for selecting these specific kinematic parameters have
been discussed in section 3.2.3. The processing of sensor data involves multi inter-
related steps, as shown in the Figure 3.9 below.

Figure 3.9: Kinematic Data Processing Flow
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Data Preparation

Swing Detection

The golf swing comprises a series of complex, coordinated movements that can be
systematically analyzed and segmented. Williams et al. [64] delineated eight distinct
stages of the golf swing:

1. Set-Up: Initial positioning, including stance, grip, and aim adjustment.

2. Takeaway: Initiation of club movement with slow backward motion and shoul-
der rotation.

3. Backswing: Continuation of backward club motion with wrist, shoulder, and hip
rotation.

4. Top of the Backswing: Apex of the swing, characterized by maximum body
rotation and energy storage.

5. Downswing: Rapid downward club movement with simultaneous hip and upper
body rotation.

6. Impact: Moment of club-ball contact, featuring partial weight transfer to the
front foot and club face alignment with the target.

7. Follow Through: Post-impact continuation of forward club motion to a sec-
ondary apex.

8. Finish: Conclusion of the swing, maintaining balance and target focus.

For the purposes of our swing dynamics recognition algorithm, we identified five
key moments from these stages that are particularly suitable for analysis. These
critical points can be effectively localized by examining the temporal evolution of
both the Euler angle about the Z-axis (Euler Z) and the acceleration along the X-
axis (Acc X) of a sensor affixed to the putter’s head.

Euler Z is especially informative in this context as it quantifies the putter’s head’s
rotation in the horizontal plane, capturing the essential twisting motion characteristic
of the golf swing. Simultaneously, Acc X can reveals the occurrence of ”impact”
moments: impacts are often accompanied by a dramatic change in acceleration in
the x-direction. The combined analysis of these two parameters allows for a more
comprehensive detection of swing dynamics.

Figure 3.10 exhibit distinctive patterns corresponding to each key phase of Eu-
ler Z and Acc X over time.
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• Set-Up: Relatively stable Euler Z and Acc X values

• Top of the Backswing: Significant decrease in Euler Z, indicating maximum
rotation away from the target

• Impact: Rapid increase in Euler Z as the club accelerates through the ball,
coinciding with a sharp positive spike in Acc X

• Follow Through: Peak Euler Z value, reflecting full rotation past the impact
point, while Acc X shows a rapid deceleration

• Finish: Gradual decline and stabilization of both Euler Z and Acc X

With an understanding of these patterns, it was possible to devise an algorithm
for the automatic detection and segmentation of key phases of the golf swing. The
swing detection algorithm was implemented in Python, leveraging data analysis li-
braries such as pandas and numpy, along with visualization tools from matplotlib.
The flow of the detection algorithm is shown in Figure 3.11:

Figure 3.11: The full flow of the swing detection algorithm

The algorithm consists of several key steps:

Data Preprocessing: The raw sensor data, typically stored in CSV format, is first
loaded into a pandas DataFrame for easier manipulation and analysis. To ensure
the data is clean and reliable, a low-pass Butterworth filter is applied to smooth the
data. Specifically, this filter is used to process the Euler angles and acceleration
measurements, which are prone to high-frequency noise. The Butterworth filter is
chosen for its maximally flat frequency response in the passband, which helps pre-
serve the genuine motion characteristics of the data while effectively attenuating
unwanted noise.
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Figure 3.10: An example of golf swing phase and corresponding sensor data. The
top panel illustrates key swing moments: (a) Set-Up, (b) Top of the
Backswing, (c) Impact, (d) Follow Through, and (e) Finish. The middle
panel shows the Euler Z angle progression, while the bottom panel
displays the Acc X values over time. Vertical dashed lines align the
key moments to their respective patterns in both Euler Z and Acc X,
demonstrating how changes in these parameters reflect the dynamics
of a golf swing.
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For preprocessing step, a 2nd-order Butterworth filter with a cutoff frequency of
3 Hz is employed. This cut-off frequency was chosen based on the dynamic range
of swing motion in several tests prior to the experiment. The application of this
filter can improves the accuracy of subsequent motion detection and analysis by
removing spurious noise without distorting the essential signal features.

Threshold Calculation: A dynamic thresholding approach is employed to detect
ball strikes. The algorithm iteratively adjusts the threshold value to identify the de-
sired number of strikes. It calculates the difference in acceleration along the Z-axis
(acc diff) and considers peaks above the threshold as potential strikes. The thresh-
old is fine-tuned until the target number of strikes is detected or until the algorithm
determines that the desired number of strikes cannot be reliably identified.

Strike Detection: Using the calculated threshold, the algorithm identifies indices
in the sensor data where the absolute difference in Z-axis acceleration exceeds the
threshold. To prevent false positives, it ignores strikes too close to the start of the
data series and ensures a minimum time interval between consecutive strikes.

Swing Segmentation: For each detected strike, the algorithm identifies the start
and end of the corresponding swing. This is achieved by finding the nearest inflec-
tion points in the Euler Z angle before and after the strike. The second derivative
of Euler Z is calculated to identify these inflection points, which typically correspond
to the transition between swing phases. At the end, the detected batting indices
and swing start/end times will be stored as timestamp files in CSV format for use in
further analysis.

Manual Inspection The algorithm generates a comprehensive visualization of the
detected swing, allowing for manual inspection and error correction. The generated
graphs include:

• Acceleration data for all three axes

• Detected strike points

• Highlighted swing regions

• Euler Z angle progression

If the automatic detection is not satisfactory, the desired number of strikes and
threshold can be manually entered to more accurately find the swing cycle.
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Figure 3.12: An example of golf swing phase and corresponding sensor data. The
top panel illustrates key moments of upper body movement during a
swing: (a) Set-Up, (b) Top of the backswing, (c) Back to netural posi-
tion, (d) Top of front swing, and (e) Finish. The bottom panel displays
the Euler Y values over time.

Upper-Body Movement Analysis

The sternum sensor provides Euler Y data for analyzing upper body rotation. The
change in rotation between the start and end of the swing is normalized for each
swing and this result is visualized in order to observe the dynamic characteristics of
the upper body between groups.

To provide a clear comparative analysis, the algorithm fits a polynomial curve to
the data points using weighted curve fitting. Polynomial fitting offers a significant ad-
vantage over simple averaging for analyzing upper-body rotation data, particularly
by ensuring that all fitted curves start from a consistent initial value, typically zero.
This alignment is crucial for accurate comparative analysis, as it eliminates initial
discrepancies that can obscure true differences in movement dynamics. Weighted
polynomial fitting allows the initial data points to be emphasized, ensuring a consis-
tent baseline for all groups and facilitating clear visual and statistical comparisons.

This process involves defining a polynomial function, P (x) = ax4+ bx3+cx2+dx,
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which models the upper-body rotation data. The weighted curve fitting method as-
signs greater importance to the initial data points by using an exponential weighting
function, wi = exp

(
− xi

xmax

)
, where xi represents each data point and xmax is the

maximum value of x. This weighting ensures that the fitted polynomial starts from a
consistent initial value, typically zero. The curve fitting is performed by minimizes the
weighted least squares error between the observed data and the polynomial model.
The fitting process yields the optimal polynomial coefficients a, b, c, and d and their
covariance matrix, providing a robust and accurate representation of the data.

The fitted curve is then plotted for each group in distinct colors. The 95% con-
fidence intervals for the polynomial fit are calculated and plotted through following
process: Initially, a weighted least squares method fits the polynomial to the data,
emphasizing earlier points. A smooth curve is generated by evaluating the polyno-
mial at 1000 evenly spaced points between 0 and 1. Degrees of freedom (dof) are
computed as the difference between the number of data points (n) and the number
of polynomial parameters (p). The standard error of the fit (sigma) is derived from the
residuals. The standard error of the prediction for each point on the smooth curve is
calculated, and these errors, scaled by the appropriate t-value from the t-distribution,
yield the 95% confidence intervals.
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Chapter 4

Results

This chapter presents the key findings of our study investigating the effects of con-
troller fidelity on motor learning in a VR golf putting task. We focused on perfor-
mance outcomes (radial error, initial release angle, ball travel distance) and kine-
matic data (sternum rotation). Detailed results and statistical tests are provided in
the appendices.

4.1 Performance Outcome Variables

Contrary to our hypotheses, we found no significant differences in performance im-
provement between the VR training groups (Con and ConClub) and the real-world
training group (Club). Neither VR condition led to significant improvements in radial
error, initial release angle, or ball travel distance compared to real-world practice.

4.1.1 Radial Error R

Radial Error is the absolute difference between the ball’s final position and the cen-
ter of the hole. A repeated-measures ANOVA revealed a marginally significant main
effect of test phase for the Club group (F(2, 14) = 3.187, p = 0.072), but no signif-
icant effects for the Con or ConClub groups, as shown in 4.1. Post-hoc tests for
the Club group showed a marginally significant improvement from pre-test to post-
test (p = 0.087) followed by a significant decline from post-test to retention test (p =
0.044). This suggests a potential short-term learning effect that did not persist. Al-
though a one-way ANOVA revealed a significant main effect of group for the pre-post
change in radial error (F(2, 21) = 5.217, p = 0.014), post-hoc tests only revealed a
significant difference between the Club and Con groups (p=0.011), with Club show-
ing greater improvement. This between-group difference was not maintained for
the pre-retention change, which showed no significant effect of group. The detailed
results and analysis are shown in Appendix A.1.

49
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(a) Pre-test to Post-test (b) Pre-test to Retention-test

Figure 4.1: Change in the Radial Error Between Test
Values less than 0 indicate an improvement. The smaller the value,
the greater the performance improvement, and vice versa. * means
significant ; ns means not significant

4.1.2 Initial Release Angle and Ball Travel Distance

The initial release angle and ball travel distance, representing aiming consistency
and force control respectively, showed no significant changes within any of the three
groups across testing phases. Figures 4.2 visually represent the changes of the
Initial Release Angle using boxplots, while Figures 4.3 depict the changes in ball
travel distance in a similar manner.. Similarly, the between-group comparisons for
these measures revealed no significant effects (see Appendix A.2 and A.3 for detail).

4.2 Kinematic Analysis: Sternum Rotation

Figures 4.4 through 4.6 illustrate the quadratic polynomial fits of sternal rotational
trajectories for each group across the three tests. Figures B.1 through B.3 in Ap-
pendix B.2 show quadratic polynomial fits and their 95% confidence intervals for
the sternal rotation trajectories of the three groups in each test. Refer to Table B.1
for comprehensive statistics, including mean and standard deviation across all test
phases and groups.

The kinematic analysis of sternum rotation revealed more nuanced differences
between groups. The Club group demonstrated reduced oscillation amplitude and
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(a) Pre-test to Post-test (b) Pre-test to Retention-test

Figure 4.2: Change in the Absolute Deviation of the Initial Release Angle
Values less than 0 indicate an improvement, and vice versa.
ns: not significant

(a) Pre-test to Post-test (b) Pre-test to Retention-test

Figure 4.3: Change in the Absolute Deviation of the Putting Distance
Values less than 0 indicate an improvement, and vice versa.
ns: not significant

variability after training, suggesting improved motor control. Figure 4.4 showing
changes in Euler angles for Club across test phases. The Con group, however,
showed increased variability in sternum rotation after VR training. Figure 4.5 show-
ing changes in Euler angles for Con across test phases].

4.2.1 ConClub Kinematics

The ConClub group exhibited the most distinct kinematic pattern. While showing
a decrease in oscillation amplitude similar to the Club group, the ConClub group
also exhibited a forward shift in the timing of peak rotation in the post-test. [Fig-
ure 4.6 showing changes in Euler angles for ConClub across test phases]. This
unique pattern may be attributed to the higher fidelity haptic feedback provided by
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Figure 4.4: Changes in Euler Angles Over Time for the Club Group Across Pre-test,
Post-test, and Re-test Phases

the real putter in VR and warrants further investigation. Detailed kinematic data and
statistical analysis can be found in Appendix B.1 and B.2.
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Figure 4.5: Changes in Euler Angles Over Time for the Con Group Across Pre-test,
Post-test, and Re-test Phases

Figure 4.6: Changes in Euler Angles Over Time for the ConClub Group Across Pre-
test, Post-test, and Re-test Phases
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Chapter 5

Discussions

5.1 Performance results discussion

This study aimed to investigate the effects of real-world objects in a VR training
environment on motor learning performance and kinematic characteristics in a golf
putting task. While previous research has explored the impact of VR interventions
with varying degrees of fidelity on motor learning, most studies have focused solely
on the physical fidelity of the VR program. A limited number of studies have exam-
ined the effects of controller weight on motor learning performance, but they have
not considered the influence of controller shape and mode of operation. Additionally,
when measuring the effect of VR training on ball sport learning performance, most
studies have relied on performance metrics (e.g., error distance to the target) with-
out considering component metrics (e.g., launch angle) that contain more detailed
information, limiting the interpretability of their conclusions [50].

The current study hypothesized (H1) that a high-fidelity controller replicating real
golf putter would result in better VR motor learning compared to a simple low-fidelity
controller, although neither would be as effective as practicing with real golf putter
in a real environment. The analysis of indirect motion metrics (radial error) did not
support this hypothesis. The Club group showed a near-significant decrease in ra-
dial error from pre-test to post-test, followed by a significant increase from post-test
to retention-test. In contrast, the Con and ConClub groups did not exhibit any sta-
tistically significant changes. However, the Club group showed significantly greater
error reduction between the pre-test and post-test compared to the ConClub group,
suggesting that both VR interventions were less effective in improving putting per-
formance than realistic training, regardless of controller fidelity.

In the Con group, most feedback centered around the controllers being too light
to simulate the weight of the clubs, which significantly detracted from the experience.
In contrast, participants in the ConClub group, using real weighted putters, reported
a lack of sufficient impact. One participant noted, ”It helped, but not that much.

55
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Because the swing is very inaccurate, it sometimes feels like I’m just gliding over the
ball instead of hitting it” (D.1). While the ConClub putter has weight and shape, the
VR system doesn’t provide feedback of impact with the ball. This is the key sensory
element that’s missing. This suggests that in a VR golf environment, the perceived
need for weight may outweigh the importance of impact sensation.

Interestingly, the analysis of direct motion metrics, such as Initial Release An-
gle and ball travel distance, showed no statistically significant changes across the
testing phases. Even the Club group, which showed near-significant fluctuations in
radial error, did not exhibit significant changes in these metrics. The Initial Release
Angle reflects the level of aiming skill, which we believe is closely related to the
skills of Visual Search Behavior (VSB). In static skills (e.g., golf putting, shooting),
the Quiet Eye Duration (QED) is usually the primary focus of VSB. Longer QED
is usually associated with better performance in targeted skills such as shooting,
golf putting, and dart throwing [65]. Harris et al. found that for novices, short-term
putting drills (either VR or reality) do not seem to significantly affect QED, which
may be due to the fact that quiet eye is an advanced visual control strategy that may
require longer training to develop [50]. This reflects the fact that QEDs are more
difficult to improve, which can explain why we did not observe a change in Initial
Release Angle.

A participant from the Con group highlighted the limitations of VR training for
tasks involving physical weight and distance, noting that while it is effective for aiming
and angle control, it falls short in accurately training distance perception, such as
judging how far the ball will travel. Another participant emphasized the difficulty
of judging distances in VR, indicating the need to rely on trial and error. These
observations support the finding that VR training may be more effective for improving
aiming skills than for enhancing distance control (D.1).

Deviation of the ball’s travel distance reflects the power control ability, which con-
sists of estimating the distance to the target with the eyes and controlling the muscle
force. Therefore, compared to aiming, power control is more complex and is typical
of visuomotor coordination behavior [66]. Estimating the distance is a perceptual-
cognitive skill, which involves visual search and spatial perception [67], while con-
trolling the muscle force is directly related to body awareness [68]. Despite evidence
that VR training can affect users’ perception of their own body position and move-
ment [69], no significant progress or regression was observed in any of the three
groups in our results. This may reflect the fact that putting power control is a more
complex skill involving the interaction of visuospatial ability (VSA) and body aware-
ness, where changes in one are likely to affect the other and may not be sufficient
to have an overall effect. The relationship between VSA and body awareness in
VR environments requires further study, particularly in the context of complex motor
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skills like golf putting.

A participant from the ConClub group pointed out the challenge of body align-
ment in VR, noting that you can see the virtual environment but not your own body,
which can create a disconnect. This lack of body awareness in VR could contribute
to the difficulty in improving power control skills (D.1)..

Several factors may have contributed to the limited observed changes in motor
performance:

Task difficulty The 6m distance between the starting point and the target in the
experiment is considered to be a relatively long distance to putt. In real-world mo-
tor training, novice learners may benefit more from simpler tasks that help them
understand the basic movement mechanisms [43]. The effect of task difficulty on
motor learning in VR environments may be a result of the mental workload during
the task [70]. Harris et al. found that in golf putting, the perceived distances for
real and virtual reality putts were similar, implying that the distances we set in VR
and real world gave participants a similar amount of perceived mental workload [71].
That is, since we pre-set a same difficulty for every participant, they may feel bored
or frustrated when practicing [8], which increases their mental workload and thus
reduces the effectiveness of motor learning.

Skill transfer We can speculate that motor learning in VR may have occurred,
but that this change was not transferred to the real-world. Harris et al. found that
practicing in a VR environment brought about higher perceptual stress compared to
golf putting practice in the real-world. Higher perceptual stress means that users
may be distracted or have difficulty concentrating in a virtual reality environment,
which may affect the transfer of skills from VR to the real-world [50]. However, since
we did not directly test the learning effect in the VR environment, and the Post-test
in the experiment actually measured the effect after transferring to the real world,
we don’t know whether the skill was not acquired at all during the VR training, or
whether the skill was acquired but no effective transfer was achieved.

Training strategies Ericsson et al. found that the best environments for learn-
ing motor skills are well-organized, with activities specifically designed to enhance
particular abilities [72]. Thus, tasks that are well structured are more conducive to
skill learning than simple play (without goals or external instructions) [34]. For our
study, video-mediated five-minute instruction for complete novices may have been
very limited to induce significant learning effects.
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Sample size The limited number of participants in each group (n = 8) could have
contributed to the lack of statistically significant differences observed in performance
outcomes and kinematic variables. As noted by Button et al., small sample sizes can
lead to underpowered studies, reducing the likelihood of detecting true effects and
increasing the risk of Type II errors [73].

The high variability in the data and the lack of significant differences within and
between groups for these metrics (Tables 4.8, 4.10, 4.11, 4.13, 4.15, and 4.16)
suggest that the sample size may not have been sufficient. For example, the one-
way ANOVA results for pre-post angle difference (Table 4.10) and pre-retention angle
difference (Table 4.11) yielded F-statistics of 0.888 and 0.056, respectively, with p-
values well above the conventional 0.05 threshold. Similarly, for ball travel distance,
the one-way ANOVA results for pre-post difference (Table 4.15) and pre-retention
difference (Table 4.16) showed F-statistics of 0.021 and 0.150, respectively, with p-
values far exceeding 0.05. These findings indicate that the sample size may have
been insufficient to detect meaningful differences in Initial Release Angle and ball
travel distance.

5.2 Kinematic results discussion

The current study also hypothesized (H2) that the kinematic characteristics of par-
ticipants during test trials in real environments, after practicing with high-fidelity VR
controllers, will not differ significantly from those who practiced with real golf putter .
Our findings do not support this hypothesis.

The sternum serves as the center of the upper body, and its rotation reflects the
overall rotation of the upper body during the golf swing. We found that the Club
group, which trained in the real-world, demonstrated more conservative and con-
vergent upper body rotation patterns after training. There was a decrease in both
the maximum reverse rotation angle reached during backswing and the maximum
forward rotation angle reached during follow-through. Additionally, the standard de-
viation decreased from pre-test (M = 1.66, SD = 5.92) to post-test (M = 1.19, SD =
4.25), indicating that the kinematic patterns stabilized after training. These changes
in motor characteristics likely reflect improved visuomotor skills. Previous research
has shown that upper body rotational consistency, particularly in shoulder alignment
and trunk rotation, is a hallmark of high-level golfers [74], [75]. Reduced shoulder ro-
tational variability may indicate better ball striking ability [74], and forearm variability
correlates with horizontal launch angle consistency [75].

In contrast, the Con group using the standard VR controller exhibited more exag-
gerated upper limb rotation patterns after training. The standard deviation increased
from pre-test (M = 1.71, SD = 6.48) to post-test (M = 1.25, SD = 7.28), suggesting
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that VR training may have disrupted the acquisition of consistent kinematic patterns.
This finding aligns with Brock et al.’s study [59], which found that real and virtual put-
ters elicited significant differences in postural control, with the VR environment char-
acterized by larger, more consciously controlled movements. They attribute these
differences to the lack of haptic feedback in VR. Furthermore, research has shown
that kinematic patterns learned in VR can transfer to real-world tasks [3], [11], [19],
potentially explaining the increased motion amplitude observed in the Con group’s
real-world post-tests. However, due to the lack of significant differences in radial
error, we could not determine whether these altered kinematic patterns negatively
impacted performance.

The ConClub group exhibited distinct kinematic characteristics. During VR train-
ing, they showed a similar pattern of decreased amplitude and variance as the Club
group, suggesting that high-fidelity VR controllers can mitigate the exaggerated kine-
matic patterns typically seen with standard VR controllers. This allows the acquired
kinematic patterns to more closely resemble those of the Club group trained in the
real-world. Intriguingly, the ConClub group’s post-test results revealed a more pro-
nounced phase shift not observed in the other groups. The timing of maximum
positive sternal rotation appeared to shift forward, corresponding to the end of the
follow-through phase after ball impact.

We hypothesize that the unique kinematic patterns observed in the ConClub
group may be attributed to the enhanced haptic feedback provided by the high-
fidelity VR controller. Research has shown that haptic feedback plays a crucial role
in motor learning and control [36], [76]. The realistic inertia and weight distribution of
the ConClub likely facilitated the development of a more efficient and precise swing
pattern. This is supported by studies demonstrating the benefits of haptic guidance
in motor skill acquisition [77].

In the post-test, the pattern exhibited a more pronounced phase shift, a phe-
nomenon that was not observed in either of the other two groups. As there is no
existing research explaining this phenomenon, we speculate that it may be caused
by the absence of the impact sensation when the ball strikes the club in a VR envi-
ronment using ConClub. In actual putting, the moment of impact signifies the ball’s
contact with the club, marking the transition from the forward swing phase to the
follow-through phase. Essentially, this touch event occurs at the midpoint of the
swing, serving as a crucial temporal marker. When participants sense this point in
their swing, they may subconsciously adjust their rhythm in each phase to optimize
energy efficiency. However, in the ConClub group, the absence of impact sensation
meant that participants could only perceive the moment of ball contact through visual
feedback. Although the ConClub closely resembled a real putter, the lack of impact
feedback meant that swing tempo was regulated solely by the visual cues provided
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in VR, without the tactile feedback of impact vibration. This mismatch between visual
and tactile information ultimately led to the development of unique kinematic patterns
in the participants. In the Con group, although there was no impact sensation as in
the ConClub group, this specific kinematic pattern associated with real putter did not
develop during VR training because the conventional controllers were significantly
different in operation, quality, and shape compared to real putter. Further research
is needed to validate these hypotheses and explore the effects of tactile information
mismatches generated by high-fidelity controllers on motor learning.

To summarize, the introduction of real-world golf putter in VR motion training
appears to form a kinematic pattern that differs from both standard VR controller
training and real-world practice. However, the specific impact of these patterns on
overall performance requires further investigation.

It is important to acknowledge the limitations of this kinematic study. The inter-
pretation of sternal rotation magnitude may be influenced by factors such as fatigue
resulting from prolonged putting practice, as observed by Evans et al. [78]. Addition-
ally, the small sample size and lack of significant differences in performance metrics
limit the generalizability of our findings. Future research should employ larger sam-
ple sizes, longer training periods, and more comprehensive performance measures
to better understand the effects of high-fidelity VR training on golf putting kinematics
and performance.
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Conclusions

This study explored the effects of high-fidelity controllers on motor learning in a
virtual reality (VR) golf putting task, comparing both performance and kinematic out-
comes across three conditions: real-world practice (Club), VR practice with standard
controllers (Con), and VR practice with high-fidelity putters (ConClub). The findings
provide important insights into the complex interaction between haptic feedback fi-
delity and motor skill acquisition in VR environments.

Contrary to our initial hypothesis (H1), the results did not indicate a clear per-
formance advantage for high-fidelity VR controllers over standard ones. Neither VR
condition (Con or ConClub) demonstrated significant improvements in radial error,
initial release angle, or ball travel distance when compared to real-world training.
This suggests that performance outcomes in VR may not directly benefit from in-
creased controller fidelity, at least in the short term.

However, kinematic analysis revealed meaningful differences between the groups.
Participants in the Club group exhibited more conservative, convergent upper-body
rotation patterns post-training, which likely reflects improved visuomotor coordina-
tion. On the other hand, those in the Con group displayed exaggerated movements,
potentially due to the absence of realistic haptic feedback. Interestingly, the ConClub
group displayed a unique blend of kinematic patterns, combining aspects of both
real-world and VR-based training. This suggests that while high-fidelity controllers
may not immediately enhance performance metrics, they contribute to distinct motor
adaptations that bridge the gap between virtual and real-world environments.

The study also identified several challenges inherent to VR-based motor learn-
ing, including difficulties in depth and distance perception, the complexity of skill
transfer between virtual and real environments, and the need for structured training
approaches. Interviews with participants further supported these observations, em-
phasizing the perceived differences in sensory feedback between VR and real-world
contexts.

Our findings on kinematic behavior provide a more nuanced understanding of
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how high-fidelity controllers influence motor learning. The forward shift in peak rota-
tion timing observed in the ConClub group suggests that high-fidelity haptic feedback
may foster unique motor adaptations that do not mirror those of real-world training
(rejecting H2). While these kinematic changes did not directly translate into per-
formance improvements, they highlight the potential for high-fidelity controllers to
shape learning processes in VR in ways that warrant further exploration.

These insights contribute to the growing body of knowledge on motor learning
in virtual environments and underscore the need for continued research. Future
studies should focus on refining VR haptic feedback systems, improving training
protocols, and exploring the long-term effects of VR on skill acquisition and transfer
to real-world performance. As VR technology advances, optimizing these systems
will be critical for maximizing the effectiveness of VR-based motor learning.
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Appendix A

Performance data

A.1 Radial Error

Figure A.1: Distribution of Radial Error by Group and Test Type. Boxplots show
the Radial Error distributions across different test types (Pre-test, Post-
test, Re-test) for each group (Club, Con, ConClub). The color scheme
distinguishes between the groups: Club (blue), Con (red), and ConClub
(green).
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Group Test Phase Radial Error Standard Deviation
Club Pre-test 115.425 101.056
Club Post-test 94.263 81.933
Club Re-test 111.971 80.535
Con Pre-test 123.810 93.347
Con Post-test 139.480 118.175
Con Re-test 125.682 93.235

ConClub Pre-test 153.676 111.103
ConClub Post-test 149.281 105.815
ConClub Re-test 144.383 102.518

Table A.1: Radial Error and Standard Deviation by Group and Test Phase

Before conducting the analysis, we assessed the assumptions of homogeneity of
variance and normality. Residual plots (Figure C.2) for both the Pre-Post Difference
and Pre-Re Difference showed that residuals were randomly scattered around the
zero line, suggesting linearity. While there were slight indications of heteroscedas-
ticity, this was considered minimal and unlikely to significantly impact the results.
Q-Q plots (Figure C.1) and histograms (Figure C.3) further supported the normality
assumption, showing that the residuals for both predictors lie approximately along
the 45-degree line and display approximately bell-shaped distributions.

Comparison with-in Group A repeated measures analysis of variance (ANOVA)
was conducted to examine the effects of test type (pre-test, post-test, and re-test) on
radial error across three experimental groups: Con, Club, and ConClub (as shown
in Table A.2). Mauchly’s test confirmed that the assumption of sphericity was met for
all groups (p ¿ 0.05), thus no corrections were applied to the degrees of freedom.

The ANOVA results revealed no significant main effect of test type for the Con
group (F(2, 14) = 0.412, p = 0.670, partial η² = 0.038) or the ConClub group (F(2, 14)
= 0.204, p = 0.818, partial η² = 0.011). However, a marginally significant main effect
was observed for the Club group (F(2, 14) = 3.187, p = 0.072, partial η² = 0.084).
These partial η² values indicate small to medium effect sizes, suggesting that test
type accounted for 3.8%, 8.4%, and 1.1% of the variance in radial error for the Con,
Club, and ConClub groups, respectively.

Given the marginally significant result for the Club group, post-hoc paired t-tests
were conducted (as shown in Table A.3). These analyses revealed a marginally
significant difference between post-test and pre-test performance (t(7) = -1.990, p
= 0.087, Hedges’ g = -0.229, BF10 = 1.265) and a significant difference between
post-test and re-test performance (t(7) = -2.456, p = 0.044, Hedges’ g = -0.217,
BF10 = 2.098). No significant difference was found between pre-test and re-test per-
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formance (t(7) = 0.392, p = 0.707, Hedges’ g = 0.038, BF10 = 0.359). The Bayes
factors indicate anecdotal evidence for a change from pre-test to post-test, moder-
ate evidence for a change from post-test to re-test, and moderate evidence for no
change from pre-test to re-test.

The marginally significant improvement from pre-test to post-test, followed by a
significant decline from post-test to re-test, implies a potential short-term benefit of
the Club intervention that may not be sustained over time. This pattern is further
supported by the Bayesian analysis, which provides a more nuanced interpretation
of the evidence for each comparison.

The small to medium effect sizes observed across analyses (partial η² ranging
from 0.011 to 0.084; Hedges’ g ranging from -0.229 to 0.038) suggest that while
statistically significant differences were detected, the practical significance of these
effects may be limited.

Group
Mauchly’s Test ANOVA Results
W pspher F df1, df2 p Partial η2 εGG

Con 0.734 0.395 0.412 2, 14 0.670 0.038 0.790
Club 0.808 0.527 3.187 2, 14 0.072† 0.084 0.839
ConClub 0.887 0.697 0.204 2, 14 0.818 0.011 0.898

Table A.2: Repeated Measures ANOVA Results of Radial Error for Test Type Across
Groups
W = Mauchly’s W; pspher = p-value for sphericity test; F = F-statistic; df
= degrees of freedom; p = p-value; η2 = effect size; εGG = Greenhouse-
Geisser epsilon
†p < 0.10 (marginally significant)

Contrast t df p Hedges’ g BF10 95% CIlower 95% CIupper
Post-test vs. Pre-test -1.990 7 0.087† -0.229 1.265 -0.542 0.084
Post-test vs. Re-test -2.456 7 0.044∗ -0.217 2.098 -0.530 0.096
Pre-test vs. Re-test 0.392 7 0.707 0.038 0.359 -0.275 0.350

Table A.3: Post-hoc Paired t-test Results for Club Group
BF10: Bayes Factor in favor of the alternative hypothesis; CI: Confidence
Interval for Hedges’ g
∗p < .05, †p < .10

Comparison between groups The ANOVA for pre-post difference yielded a sta-
tistically significant main effect of group (F(2, 21) = 5.217, p = 0.014, η² = 0.332)
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(Table A.4). This effect size suggests that approximately 33.2% of the variance in
pre-post differences can be attributed to group membership.

Post-hoc comparisons using the Tukey HSD test revealed a significant mean dif-
ference between the Club and Con groups (MD = 94.9688, p adj = 0.0111, 95% CI
[20.5494, 169.3882]) . The Club group demonstrated superior improvement com-
pared to the Con group. However, the comparisons between Club and ConClub
(MD = 39.9435, p adj = 0.3829) and between Con and ConClub (MD = -55.0253,
p adj = 0.1740) did not reach statistical significance (Table A.4).

The sum of squares for the group effect (SS group= 36,379.577) relative to the
total sum of squares (SS total = 109,603.738) further corroborates the substantial
impact of group allocation on performance improvement.dd

In contrast, the ANOVA for pre-retention differences failed to detect a significant
effect of group (F(2, 21) = 0.987, p = 0.387) (Table A.6). The lower F-statistic and
higher p-value suggest minimal between-group variability in long-term retention ef-
fects. The sum of squares for group (SS group = 12,745.165) is notably smaller
compared to the pre-post analysis, indicating reduced group-based variation in re-
tention scores.

Source Sum of Squares df F p-value

Group 36,379.577 2 5.217 0.014*
Residual 73,224.161 21 - -

Table A.4: ANOVA Results for Pre-Post Difference

Group 1 Group 2 Mean Difference p-adj Lower Upper Reject

Club Con 94.9688 0.0111 20.5494 169.3882 True
Club ConClub 39.9435 0.3829 -34.4760 114.3629 False
Con ConClub -55.0253 0.1740 -129.4448 19.3941 False

Table A.5: Tukey HSD Post-Hoc Test Results for Pre-Post Difference

Source Sum of Squares df F p-value

Group 12,745.165 2 0.987 0.387
Residual 53,272.803 21 - -

Table A.6: ANOVA Results for Pre-Retention Difference
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A.2 Initial Release Angle

Figure A.2: Absolute Deviation of Initial Release Angle by Group and Difference
Test (outliers removed)

In addition to overall accuracy, this subsection analyzes the ball’s Initial Release
Angle θ during the putting task to assess how different training equipment impact
accuracy and consistency in aiming. Table A.7 presents mean Absolute Release
Angle and Standard Deviation for each group (Club, Con, ConClub) across Pre-test,
Post-test, and Re-test phases. The visualization of the data is shown in Figure A.2
in Appendix A.2.

Before proceeding with the ANOVA, we conducted tests for homogeneity and
normality similar to those described for Initial Release Angle. Boxplots showed sim-
ilar spreads of angle differences across the three groups, with no extreme outliers
observed. Q-Q plots displayed points closely following the diagonal line, indicating
that the data were approximately normally distributed within each group. Residual
plots revealed points randomly scattered around the horizontal zero line, with no dis-
cernible patterns, supporting homoscedasticity. These results, detailed in Appendix
C, satisfied the assumptions for proceeding with one-way ANOVAs to assess with-in
group and between differences in angle values.
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Group Test Phase Absolute Release Angle (degree) Standard Deviation
Club Pre-test 0.958 0.897
Club Post-test 0.823 0.429
Club Re-test 0.892 0.846
Con Pre-test 0.973 0.452
Con Post-test 0.986 0.737
Con Re-test 1.066 0.852

ConClub Pre-test 1.110 0.945
ConClub Post-test 1.661 1.186
ConClub Re-test 1.020 0.891

Table A.7: Mean and Standard Deviation of Absolute Release Angle by Group and
Test Phase

Comparison with-in Group A one-way repeated measures analysis of variance
(ANOVA) was conducted to assess the effect of measurement stage (pre, post, re)
on angle measures for each of the three experimental groups: Con, Club, and Con-
Club. This within-subjects design allowed for the examination of changes in angle
measures across three time points within each group. The results are shown in
Table A.8.

Mauchly’s test indicated that the assumption of sphericity was met for all groups:
Con (W = 0.85, p = 0.61), Club (W = 0.90, p = 0.73), and ConClub (W = 0.99, p =
0.97).

For the Con group, the results revealed no statistically significant difference in
angle measurements across time points, F(2, 14) = 0.05, p = 0.93 (Greenhouse-
Geisser corrected, ϵ = 0.87), partial η² = 0.004. Similarly, the Club group showed
no significant changes over time, F(2, 14) = 0.07, p = 0.92 (Greenhouse-Geisser
corrected, ϵ = 0.91), partial η² = 0.006. The ConClub group also exhibited no signifi-
cant differences across time points, F(2, 14) = 1.20, p = 0.33 (Greenhouse-Geisser
corrected, ϵ = 0.99), partial η² = 0.082.

The effect sizes, as indicated by partial eta squared values, were small for all
groups, with the ConClub group showing a slightly larger, but still non-significant,
effect (partial η² = 0.082) compared to the Con (partial η² = 0.004) and Club (partial
η² = 0.006) groups.

Comparison between Groups Table A.9 outlines the mean angle differences and
standard deviations differences for each group, comparing Pre-test to Post-test and
Pre-test to Re-test. Figures 4.2a and 4.2b visually represent these changes using
boxplots.
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Group
Mauchly’s Test ANOVA Results
W pspher F df1, df2 p Partial η2 εGG

Con 0.85 0.61 0.05 2, 14 0.93 0.004 0.87
Club 0.90 0.73 0.07 2, 14 0.92 0.006 0.91
ConClub 0.99 0.97 1.20 2, 14 0.33 0.082 0.99

Table A.8: Repeated Measures ANOVA Results for Angle Measurements Across
Time
W = Mauchly’s W; pspher = p-value for sphericity test; F = F-statistic; df
= degrees of freedom; p = p-value; η2 = effect size; εGG = Greenhouse-
Geisser epsilon.

Group Comparison Angle Improvement Change in Standard Deviation
Club Pre-Post -0.135 -0.468
Club Pre-Retention -0.066 -0.051
Con Pre-Post 0.013 0.285
Con Pre-Retention 0.093 0.400

ConClub Pre-Post 0.550 0.241
ConClub Pre-Retention -0.090 -0.054

Table A.9: The mean angle differences and Change in Standard Deviation by Group
and Comparison Phases

The one-way ANOVA has been adapted to analyze the significance of differ-
ences of Pre-Post and Pre-Re angle improvements between groups (see Table
A.10 and A.11). The (ANOVA for pre-post angle difference yielded the following
results: F(2, 21) = 0.888, p = 0.426. The sum of squares attributable to the group
effect (SS group) was 2.109, which constitutes approximately 7.8% of the total sum
of squares (SS total = 27.050). The residual sum of squares (SS residual) was
24.941, accounting for 92.2% of the total variability.

For the pre-retention angle difference, the ANOVA produced these statistics: F(2,
21) = 0.056, p = 0.946. The group effect sum of squares (SS group) was 0.151, rep-
resenting about 0.5% of the total sum of squares (SS total = 28.441). The residual
sum of squares (SS residual) was 28.290, comprising 99.5% of the total variance.

Comparing the two analyses, the F-statistic for the pre-post difference (F = 0.888)
was higher than that of the pre-retention difference (F = 0.056), indicating a rela-
tively larger, though still minimal, between-group variance in the immediate post-test
phase. The group sum of squares decreased from 2.109 in the pre-post analysis to
0.151 in the pre-retention analysis, suggesting a reduction in group-based differ-
ences over time.
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The total sum of squares increased slightly from 27.050 in the pre-post analy-
sis to 28.441 in the pre-retention analysis, potentially reflecting a small increase in
overall variability of angle differences during the retention period.

Source Sum of Squares df F p-value

Group 2.109 2 0.888 0.426
Residual 24.941 21

Table A.10: ANOVA results for Pre-Post Angle Difference

Source Sum of Squares df F p-value

Group 0.151 2 0.056 0.946
Residual 28.290 21

Table A.11: ANOVA results for Pre-Retention Angle Difference

A.3 Ball’s Travel Distance

A.3.1 Ball’s Travel Distance D

This subsection analyzes the ball’s travel distance during the putting task to assess
how different training equipment impact accuracy and consistency in force control.
The absolute deviation in ball’s travel distance was examined across three groups
(Club, Con, and ConClub) over three test phases (Pre-test, Post-test, and Re-test).
Figure A.3 in Appendix A.3 presents boxplots illustrating the distribution of absolute
deviations for each group and test phase. The results are shown in Table A.12.

Before proceeding with the ANOVA, we conducted tests for homogeneity and
normality similar to those described for Ball’s Travel Distance. Preliminary analy-
ses of angle and its differences values met ANOVA assumptions. Boxplots revealed
comparable distributions across groups without extreme outliers. Q-Q plots demon-
strated approximate normality within each group, with points adhering closely to the
diagonal. Residual plots exhibited random scatter around the zero line, supporting
homoscedasticity. These findings, detailed in Appendix C.0.3, confirmed the suitabil-
ity of one-way ANOVAs for assessing within-group and between-group differences
in angle values.

Comparison with-in Group One-way repeated measures ANOVAs were conducted
to examine the effects of time on distance measurements for three groups: Con,
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Figure A.3: Absolute Deviation of Ball’s Travel Distance by Group and Difference
Test

Club, and ConClub, the results are shown in Table A.13. Prior to analysis, Mauchly’s
test of sphericity was performed for each group. The assumption of sphericity was
met for all groups: Con group (W = 0.778, p = 0.471), Club group (W = 0.502, p =
0.126), and ConClub group (W = 0.553, p = 0.169). Despite meeting the sphericity
assumption, Greenhouse-Geisser corrections were applied to ensure robustness of
the analysis, given the relatively small sample sizes.

The repeated measures ANOVA for the Con group yielded no statistically signifi-
cant effect of time on angle measurements, F(2, 14) = 0.303, p = 0.702 ( (Greenhouse-
Geisser corrected, ϵ = 0.82), partial η² = 0.032. For the Club group, no significant
effect of time was observed, F(2, 14) = 0.099, p = 0.829 (Greenhouse-Geisser cor-
rected, ϵ = 0.667), partial η² = 0.007. The ConClub group also showed no significant
effect of time, F(2, 14) = 0.889, p = 0.404 ( (Greenhouse-Geisser corrected, ϵ =
0.69), partial η² = 0.016.

Although all effects were non-significant, there were notable differences in effect
sizes across groups. The Con group demonstrated the largest effect size (partial η²
= 0.032), which can be interpreted as a small to medium effect. This was followed by
the ConClub group (partial η² = 0.016), showing a small effect, and the Club group
(partial η² = 0.007), indicating a very small effect.
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Group Test Phase Absolute Distance Deviation (cm) Standard Deviation
Club Pre-test 39.694 29.987
Club Post-test 36.875 28.426
Club Re-test 33.532 36.209
Con Pre-test 62.931 63.973
Con Post-test 61.240 57.176
Con Re-test 43.233 28.208

ConClub Pre-test 69.057 61.083
ConClub Post-test 61.363 46.647
ConClub Re-test 52.196 65.313

Table A.12: Mean and Standard Deviation of Absolute Distance Deviation by Group
and Test Phase

Group
Mauchly’s Test ANOVA Results
W pspher F df1, df2 p Partial η2 εGG

Con 0.78 0.47 0.30 2, 14 0.70 0.032 0.82
Club 0.50 0.13 0.10 2, 14 0.83 0.007 0.67
ConClub 0.55 0.17 0.89 2, 14 0.40 0.016 0.69

Table A.13: Repeated Measures ANOVA Results for Distance Measurements
Across Time
W = Mauchly’s W; pspher = p-value for sphericity test; F = F-statistic; df
= degrees of freedom; p = p-value; η2 = effect size; εGG = Greenhouse-
Geisser epsilon.

Comparison between Groups Table A.14 provides insight into the distance im-
provement between test phases. Figures 4.3a and 4.3b visually represent these
changes using boxplots. The ”ns” annotation above the boxplots indicates that the
differences between groups were not statistically significant (from the ANOVA that
follows).

The one-way ANOVA has been adapted to analyze the significance of differ-
ences of Pre-Post and Pre-Re distance improvements between groups (as shown
in Table A.15 and Table A.16). The ANOVA for pre-post distance difference yielded
the following results: F(2, 21) = 0.021, p = 0.979. The sum of squares attributable
to the group effect (SS group) was 162.862, which constitutes approximately 0.2%
of the total sum of squares (SS total = 81,753.850). The residual sum of squares
(SS residual) was 81,590.988, accounting for 99.8% of the total variability.

For the pre-retention distance difference, results are F(2, 21) = 0.150, p = 0.862.
The group effect sum of squares (SS group) was 815.263, representing about 1.4%
of the total sum of squares (SS total = 58,059.287). The residual sum of squares



A.4. PERFORMANCE DATA AVERAGED BY PARTICIPANT TEST TRIAL (ABSOLUTE DEVIATION)83

Group Comparison Distance Improvement Change in Standard Deviation
Club Pre-Post -2.819 -1.562
Club Pre-Retention -6.162 6.222
Con Pre-Post -1.691 -6.798
Con Pre-Retention -19.698 -35.766

ConClub Pre-Post -7.694 -14.436
ConClub Pre-Retention -16.861 4.230

Table A.14: Mean Distance Improvement and Change in Standard Deviation by
Group and Comparison Phase

(SS residual) was 57,244.024, comprising 98.6% of the total variance.
Comparing the two analyses, the F-statistic for the pre-retention difference (F

= 0.150) was higher than that of the pre-post difference (F = 0.021), indicating
a relatively larger, though still minimal, between-group variance in the retention
phase. The group sum of squares increased from 162.862 in the pre-post anal-
ysis to 815.263 in the pre-retention analysis, suggesting a slight amplification of
group-based differences over time.

The total sum of squares decreased from 81,753.850 in the pre-post analysis to
58,059.287 in the pre-retention analysis, potentially reflecting a reduction in overall
variability of distance differences during the retention period.

Source Sum of Squares df F p-value

Group 162.862 2 0.021 0.979
Residual 81590.988 21

Table A.15: ANOVA results for Pre-Post Distance Difference

Source Sum of Squares df F p-value

Group 815.263 2 0.150 0.862
Residual 57244.024 21

Table A.16: ANOVA results for Pre-Retention Distance Difference

A.4 Performance data averaged by participant test
trial (Absolute Deviation)
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Table A.17: Performance Data (Absolute deviation)

Group Participant ID Test Type Release Angle Ball’s Distance

Con 1 Post-test 1.096600 151.214900
Con 1 Pre-test 2.281300 197.629300
Con 1 Re-test 1.188200 110.104400
Con 2 Post-test 1.333900 60.493100
Con 2 Pre-test 1.202000 113.228000
Con 2 Re-test 2.114900 114.633200
Club 3 Post-test 2.179100 147.702900
Club 3 Pre-test 3.717700 122.994800
Club 3 Re-test 6.017300 140.868900
Club 4 Post-test 2.518600 90.526400
Club 4 Pre-test 1.804900 88.113400
Club 4 Re-test 1.381600 113.416400
Con 5 Post-test 1.229400 129.403300
Con 5 Pre-test 1.138100 114.946900
Con 5 Re-test 1.366300 118.117800
Con 6 Post-test 2.528400 161.191100
Con 6 Pre-test 1.840400 112.003000
Con 6 Re-test 1.426600 157.674000
Con 7 Post-test 1.150000 118.252800
Con 7 Pre-test 1.556800 94.628500
Con 7 Re-test 2.210100 123.856500
Con 8 Post-test 4.224200 182.271200
Con 8 Pre-test 1.813200 116.508100
Con 8 Re-test 2.475600 120.984300
Con 9 Post-test 2.315000 195.334400
Con 9 Pre-test 2.252500 78.734300
Con 9 Re-test 2.770700 119.540500
Con 10 Post-test 1.019400 73.920400
Con 10 Pre-test 1.999500 128.164700
Con 10 Re-test 1.306100 97.001800
ConClub 11 Post-test 1.685600 152.293400
ConClub 11 Pre-test 1.903100 130.531900
ConClub 11 Re-test 1.685200 108.723500
ConClub 12 Post-test 2.074300 125.346600

Continued on next page
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Table A.17 continued from previous page

Group Participant ID Test Type Release Angle Ball’s Distance

ConClub 12 Pre-test 3.045100 138.021000
ConClub 12 Re-test 1.533900 111.870300
ConClub 13 Post-test 1.588700 103.944600
ConClub 13 Pre-test 2.020100 174.518100
ConClub 13 Re-test 2.141600 121.439500
ConClub 14 Post-test 2.466700 107.052500
ConClub 14 Pre-test 1.100800 144.358500
ConClub 14 Re-test 3.767000 178.214700
Club 15 Post-test 1.388400 85.327900
Club 15 Pre-test 0.830300 118.875100
Club 15 Re-test 1.326800 96.848500
Club 16 Post-test 2.137600 94.002700
Club 16 Pre-test 1.253100 104.747100
Club 16 Re-test 1.435500 96.318800
ConClub 17 Post-test 1.524200 207.512900
ConClub 17 Pre-test 1.644400 121.774700
ConClub 17 Re-test 1.987400 176.233300
Club 18 Post-test 1.558000 111.702400
Club 18 Pre-test 3.924400 93.682700
Club 18 Re-test 1.355200 110.977800
ConClub 19 Post-test 1.232700 104.578500
ConClub 19 Pre-test 2.972800 102.562900
ConClub 19 Re-test 1.706600 106.859100
Club 20 Post-test 0.862400 87.982300
Club 20 Pre-test 1.276200 118.167000
Club 20 Re-test 1.163200 86.316600
ConClub 21 Post-test 5.052300 147.875400
ConClub 21 Pre-test 1.723000 145.903300
ConClub 21 Re-test 1.474400 120.319800
Club 22 Post-test 1.022300 33.278700
Club 22 Pre-test 0.792800 56.580400
Club 22 Re-test 2.379300 52.550300
Club 23 Post-test 0.955100 63.225600
Club 23 Pre-test 1.650600 147.232400
Club 23 Re-test 0.786000 117.861600

Continued on next page
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Table A.17 continued from previous page

Group Participant ID Test Type Release Angle Ball’s Distance

ConClub 24 Post-test 2.948200 197.698200
ConClub 24 Pre-test 2.547700 222.023400
ConClub 24 Re-test 2.601000 204.329000

A.5 Data on the value of differences between test (Ab-
solute deviation)

Table A.18: Performance data of differences between tests (Absolute deviation)

Group Participant ID Comparison Angle Difference Distance Difference

Con 1 Pre-Post -1.391567 -146.088458
Con 1 Post-Re 1.350719 -240.708772
Con 1 Pre-Re -1.355584 -154.550534
Con 2 Pre-Post -0.107698 -68.795091
Con 2 Post-Re -1.345624 -104.538480
Con 2 Pre-Re 0.645030 -44.764526
Club 3 Pre-Post 0.472699 3.721131
Club 3 Post-Re -2.963672 96.244274
Club 3 Pre-Re 2.005221 -60.876830
Club 4 Pre-Post 0.707800 46.050168
Club 4 Post-Re 0.640638 -67.102620
Club 4 Pre-Re -0.637262 44.223240
Con 5 Pre-Post -0.362497 -70.645967
Con 5 Post-Re 0.040968 -67.925800
Con 5 Pre-Re -0.044266 -67.926216
Con 6 Pre-Post 0.812080 62.827627
Con 6 Post-Re 1.899099 66.415454
Con 6 Pre-Re -0.475991 66.419423
Con 7 Pre-Post -0.240568 -35.925329
Con 7 Post-Re -0.870160 -23.891674
Con 7 Pre-Re 0.873946 -23.895888
Con 8 Pre-Post 0.009738 106.840046
Con 8 Post-Re 0.138908 -16.125530

Continued on next page
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Table A.18 continued from previous page

Group Participant ID Comparison Angle Difference Distance Difference

Con 8 Pre-Re -0.141899 -16.120893
Con 9 Pre-Post 1.600775 128.822266
Con 9 Post-Re 2.024510 19.194108
Con 9 Pre-Re 2.023648 13.838329
Con 10 Pre-Post -0.233522 9.441872
Con 10 Post-Re 1.317109 -69.419138
Con 10 Pre-Re -0.799432 69.422277
ConClub 11 Pre-Post 1.041447 35.011256
ConClub 11 Post-Re -1.213763 7.935337
ConClub 11 Pre-Re 1.215294 7.933313
ConClub 12 Pre-Post -1.293272 -33.871928
ConClub 12 Post-Re 2.345109 54.853994
ConClub 12 Pre-Re -2.343286 -54.851730
ConClub 13 Pre-Post 0.198575 -8.854193
ConClub 13 Post-Re 0.676621 -51.390553
ConClub 13 Pre-Re -0.648026 -33.173492
ConClub 14 Pre-Post 0.722834 -34.921354
ConClub 14 Post-Re 1.365022 -24.701910
ConClub 14 Pre-Re 1.367919 -24.700981
Club 15 Pre-Post 0.459569 -17.832834
Club 15 Post-Re -0.286641 -81.760116
Club 15 Pre-Re 0.286768 -60.817648
Club 16 Pre-Post -0.046368 -21.713100
Club 16 Post-Re 0.796710 27.567338
Club 16 Pre-Re -0.801358 -27.571913
ConClub 17 Pre-Post -0.609960 7.741388
ConClub 17 Post-Re 0.475994 -68.043485
ConClub 17 Pre-Re -0.471913 8.106052
Club 18 Pre-Post -2.444624 -0.753226
Club 18 Post-Re -1.660776 -28.223337
Club 18 Pre-Re -1.663763 -11.577700
ConClub 19 Pre-Post 0.150738 -44.309724
ConClub 19 Post-Re -0.649853 28.885587
ConClub 19 Pre-Re -0.189448 -28.884451
Club 20 Pre-Post -0.097594 1.484366

Continued on next page
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Table A.18 continued from previous page

Group Participant ID Comparison Angle Difference Distance Difference

Club 20 Post-Re -0.072327 -67.483382
Club 20 Pre-Re -0.071898 66.745347
ConClub 21 Pre-Post 3.097825 73.674228
ConClub 21 Post-Re -1.305872 -15.804374
ConClub 21 Pre-Re -0.398128 -2.615850
Club 22 Pre-Post 0.491829 -16.445828
Club 22 Post-Re 1.981875 33.528953
Club 22 Pre-Re 1.222882 -29.074607
Club 23 Pre-Post -0.631784 -17.061520
Club 23 Post-Re 0.872033 29.653739
Club 23 Pre-Re -0.872520 29.658425
ConClub 24 Pre-Post 1.118147 -56.017763
ConClub 24 Post-Re -0.766106 -6.694897
ConClub 24 Pre-Re 0.770945 -6.691398
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Kinematic data

B.1 Kinematic Analysis: Sternum Rotation

Group Test Phase Mean Std. Dev. Minimum Maximum

Con Pre-test 1.71 6.48 -19.01 21.04
Con Post-test 1.25 7.28 -18.80 20.63
Con Re-test 0.31 5.80 -21.98 18.43
ConClub Pre-test 2.62 8.13 -17.81 27.60
ConClub Post-test 1.66 5.13 -10.76 22.18
ConClub Re-test 1.69 5.47 -13.30 17.46
Club Pre-test 1.66 5.92 -11.36 17.38
Club Post-test 1.19 4.25 -7.18 11.76
Club Re-test 0.80 4.61 -11.16 12.66

Table B.1: Euler Angle Statistics Across Groups and Test Phases

The Club group (as shown in Figure 4.4) demonstrated a consistent decrease in
oscillation amplitude from pre-test (M = 1.66, SD = 5.92) to post-test (M = 1.19, SD
= 4.25), with retention of intervention effects indicated by the re-test (M = 0.80, SD
= 4.61). Rotation peak timing was stable across all tests.

The ConClub group (as shown in Figure 4.6) displayed more complex changes.
Post-test amplitude (M = 1.66, SD = 5.13) decreased relative to pre-test (M = 2.62,
SD = 8.13) with earlier phase peaks. Re-test amplitude (M = 1.69, SD = 5.47)
showed partial recovery but remained lower than pre-test levels. Phase patterns in
the re-test nearly reverted to pre-test conditions.

For the Con group (Figure 4.5), the post-test amplitude (M = 1.25, SD = 7.28)
showed a increase from the pre-test (M = 1.71, SD = 6.48) but with a slightly higher
SD, suggesting increased variability. In the re-test (M = 0.31, SD = 5.80), the ampli-

89
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Figure B.1: Comparison of Euler Angles Over Time for Three Groups During Pre-
test

tude returned to near pre-test levels, with a reduced SD.
In summary, interventions differentially affected sternal rotational kinematics: Con-

Club induced transient changes in amplitude and swing moments; Club demon-
strated sustained amplitude changes with stable swing moments; Con exhibited
minimal alterations in both parameters.

B.2 Euler angle plot with different groups
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Figure B.2: Comparison of Euler Angles Over Time for Three Groups During Post-
test

Figure B.3: Comparison of Euler Angles Over Time for Three Groups During Re-
test
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Appendix C

Results of normality and
homogeneity tests

C.0.1 Radial Error Differences Between Test Phases

Figure C.1: QQ plot for radial error difference between different test

93
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Figure C.2: Residual plot for radial error difference between different test

Figure C.3: The histograms for the residuals of the Pre-Post Difference and Pre-Re
Difference
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C.0.2 Initial Release Angle Differences Between Test Phases

Pre-Post Differences

Figure C.4: Box plot for angle difference between pre- and post test
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Figure C.5: QQ plot for angle difference between pre- and post test (Con group)

Figure C.6: QQ plot for angle difference between pre- and post test (Club group)
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Figure C.7: QQ plot for angle difference between pre- and post test (ConClub
group)

Figure C.8: Residual plot for angle difference between pre- and post test
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Pre-Retention Differences

Figure C.9: Box plot for angle difference between pre- and retention test

Figure C.10: QQ plot for angle difference between pre- and retention test (Con
group)
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Figure C.11: QQ plot for angle difference between pre- and retention test (Club
group)

Figure C.12: QQ plot for angle difference between pre- and retention test (ConClub
group)
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Figure C.13: Residual plot for angle difference between pre- and retention test
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C.0.3 Ball’s Travel Distance Differences Between Test Phases

Pre-Post Differences

Figure C.14: Box plot for distance difference between pre- and post test
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Figure C.15: QQ plot for distance difference between pre- and post test (Con group)

Figure C.16: QQ plot for distance difference between pre- and post test (Club
group)
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Figure C.17: QQ plot for distance difference between pre- and post test (ConClub
group)

Figure C.18: Residual plot for distance difference between pre- and post test
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Pre-Retention Differences

Figure C.19: Box plot for distance difference between pre- and retention test

Figure C.20: QQ plot for distance difference between pre- and retention test (Con
group)
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Figure C.21: QQ plot for distance difference between pre- and retention test (Club
group)

Figure C.22: QQ plot for distance difference between pre- and retention test (Con-
Club group)
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Figure C.23: Residual plot for distance difference between pre- and retention test
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Interview data

D.1 Interview transcripts

Interview 1 (Con)

Questioner: First question , in the VR environment , do you feel

uncomfortable?

Answerer: No, not really.

Answerer: Oh, a little bit , but I’m thinking that ’s just how VR is.

Okay.

Questioner: How would you describe the feeling of playing golf in the

real world?

Answerer: In the real world , compared to VR? Or just purely ... purely

...

Questioner: Purely , purely the feeling.

Answerer: It feels very ...

Answerer: Fresh.

Questioner: Okay , what ’s the difference between the feedback you feel

in VR and in the real world?

Answerer: In VR, the circles light up when you hit them.

Answerer: Yeah , it tells me right away that I can add eight points. In

terms of feel , the controller is lighter compared to a real golf

club.

Questioner: Different , okay. Did using the controller in VR help you

...

Questioner: ... adapt to the real world faster?

Answerer: I think it did in the end. But while I was doing it, it didn

’t feel like it. Yeah.

Answerer: Yeah , it’s just ... it’s a bit too light.

Questioner: Ah, so you ’re saying ... If you use a real club during

training ...

Questioner: ... what impact would that have on your performance? In

training , you said ...

Answerer: Uh, what impact would it have? It would ...

107
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Questioner: Would it be better? Do you think your score ...

Answerer: Would be better.

Questioner: Let ’s move on to the next one.

Questioner: We’ll leave that unanswered.

Answerer: That ’s a tough one. It seems like it would be better.

Questioner: Overall , do you think VR is helpful for learning golf?

Answerer: Yes , it is.

Interview 2 (Con)

Questioner: How would you describe the feeling of playing golf in the

real world?

Answerer: How do I describe it? I’ve never played ...

Questioner: Anything , Just tell me your impression.

Answerer: I don ’t know how to describe it. It’s just ...

Answerer: It seems to require less physical activity than other sports

, and it focuses more on hand and waist control ... waist strength

control.

Questioner: Overall , do you think this training has helped you learn

golf?

Answerer: Yes , I think so. After all , I’ve never played before.

Answerer: Okay.

Interview 3 (Con)

Questioner: First question , do you feel any discomfort in the VR

environment? Oh, okay.

Answerer: A little bit of discomfort , maybe because ...

Answerer: It’s a combination of factors. The resolution , the physics

engine , and those effects definitely have ...

Questioner: Some differences , but it’s okay. How would you describe

the feeling of playing golf in the real world?

Questioner: Uh...

Answerer: Which aspects? In terms of...

Answerer: Are we comparing , or should I just talk about the real world

?

Questioner: Time -wise , let ’s compare.

Answerer: I think playing golf in the real world is...

Answerer: ... very satisfying because you ’re actually hitting the ball ,

and it feels great. Also ...

Answerer: You might need to consider more factors. Like in VR, it

might say there ’s wind , but I can ’t actually feel it, so I can

only hit blindly. But in the real world , I can really feel the

wind blowing.
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Questioner: So what are the differences between the feedback you feel

and the real -world experience? Is it the feedback from your hand

in VR?

Answerer: Oh, I feel like it’s not easy to judge distance in VR. I can

’t really tell how far away things are , so I can only try it out

first. And the haptic feedback is definitely ... Because I’m just

holding a controller , and the controller has almost no weight , so

...

Questioner: ...you don ’t feel a particularly strong weight or impact.

Answerer: Okay , right.

Questioner: Do you think your performance would improve if you used a

real club to practice?

Answerer: I think it definitely would. Because , well , feeling the

weight of the controller , I think , is very helpful in allowing me

to control the swing.

Questioner: Good. Overall , do you think VR is helpful for learning

golf?

Answerer: I think it is, depending on what aspects you ’re looking at.

Answerer: It can help me practice my aim and direction , and it allows

me to get familiar with the overall environment and get into the

swing of things faster. And a big advantage of VR is that you can

hit unlimited balls without having to pick them up , so I think it

greatly reduces the learning curve.

Questioner: What are its drawbacks?

Answerer: The only drawback is that it’s not real enough.

Questioner: It’s not real enough. So the problem with VR is the feel ,

right?

Answerer: Right , it’s just not real enough. I don ’t see any other

drawbacks.

Questioner: Okay.

Interview 4 (Con)

Questioner: First question , did you feel any discomfort in the VR

environment?

Answerer: Yeah , a little bit. Okay. A little bit. Okay. I think yeah ,

it ’s maybe it ’s because I, I think like it’s my second or third

time. So yeah , it’s... And yeah. And I think the movement , yeah ,

it ’s not as natural , I think. So, yeah. Then how do you describe

the feelings of playing golf on the real field?

Answerer: I think it’s...

Answerer: Better. Better. Okay , than VR.

Answerer: Because it’s, yeah , it’s, it’s real. Like you can feel the

weight of... mistake. Okay , yeah.
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Questioner: How does the feedback you perceived in VR compared to what

you experienced in reality? All kinds of feedback. Haptic

feedback , visual feedback.

Questioner: What do you mean? I mean how do you feel about your hands

when playing VR and the real world?

Answerer: I think , yeah , I think the ... the ... the feedback , the ... the

main feedback I think is the weight of the ...of the controller and

the ...

Answerer: It’s different , okay. And then when you hit the ball , there ’

s some kind of, you know , like you feel the hit , but in VR you don

’t feel the hit.

Questioner: Yeah , true , true. Do...

Questioner: Do you think training with the controller in VR help you

adapt to the real world faster?

Answerer: Maybe I would say no.

Questioner: Okay , how do you think it would affect your performance if

you use the real club during training? Your performance improved?

Answerer: I think if you use a real stick , maybe it can improve.

Questioner: Okay , overall , do you think VR helped you learn golf?

Answerer: Yeah , not... yeah , a little bit maybe , but not like a big ...

Okay , yeah , but a little bit , sure , but not ... yeah , yeah.

Interview 5 (Con)

Questioner: Did you feel any discomfort in the VR environment?

Answerer: Overall , I didn ’t feel uncomfortable. Everything is okay.

Questioner: Good. How would you describe the feeling of playing Golf

in the real world?

Answerer: The feeling of the club is the most obvious difference ,

because the club head has weight.

Answerer: So when putting , you can clearly feel the force of the club.

But in VR...

Answerer: ...it’s actually quite different. The VR club is very light ,

the controller is very light , and you don ’t have that sense of

weight or how the weight hangs. The way you grip the club is

completely different. And in VR, your field of view is limited.

Answerer: ...in real life , my field of view is wider , and I can judge

the distance between the ball and the target much faster and

easier. But in VR, I need to turn my head more to determine the

position and direction.

Questioner: You know how...

Answerer: And another difference is the VR... the...

Answerer: The VR headset is heavy , and when it’s on your head , it’s

relatively uncomfortable to look down.
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Questioner: Do you think training with the controller in VR will help

you adapt to real -world skills faster?

Answerer: I don ’t know why , but I...I...I think it will help , but it

depends on what kind of training you ’re doing. Because I think it ’

s good for aiming and angle training , but if you want to do

training related to physical weight , distance ... I mean , you want

it to hit the target at a specific angle and not too far off. That

kind of training is okay because you can control the direction of

the club , the direction of your swing. But for distance training

...

Answerer: ... like how far and close this ball will go, I don ’t think

it ’s as good as I imagined. And when I play in VR, I feel like my

hand is shaking very obviously , it ’s hard to control the

steadiness. But in real life , I feel like my hands are more stable

, maybe ...

Answerer: ... because the club has weight , I’m not sure. What do you

think is the impact of using a real club during this training on

your final performance?

Questioner: Okay.

Answerer: It will be better. It would definitely be better to use a

real club during VR training.

Questioner: Okay. Overall , do you think VR is helpful for learning

golf?

Answerer: Oh, I think it is, especially when you have limited space

and you don ’t have to pick up the balls.

Answerer: Yes , yes. And one thing that ’s very different is that in VR,

when the club hits the ground , it feels very strange. It doesn ’t

feel like a real club hitting the ground.

Questioner: Okay , thank you.

Interview 6 (Con)

Questioner: Did you feel any discomfort in the VR environment?

Answerer: Uh, no.

Questioner: How would you describe the feeling of playing golf in the

real world?

Answerer: In the real world , it feels like , uh...

Answerer: ...the ball ... the feeling of hitting the ball is longer. I

mean , the club and the ball are in contact for a longer time , and

then the force ...

Questioner: What ’s the difference between the feedback you feel in VR

and in reality?

Answerer: Uh, in VR, it’s relatively light , whether it’s the impact or

the force when you swing. The feedback in the real world is much

stronger.
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Questioner: Do you think training with this club controller in VR has

helped you adapt to the real world faster?

Answerer: Uh, yes. It’s obvious that ...my backswing is more stable

now.

Questioner: If you were to use a real club in real training , do you

think your performance would improve or decline?

Answerer: I think it would improve.

Questioner: Overall , do you think VR is helpful for learning golf?

Answerer: Yes , it is helpful.

Questioner: That ’s all.

Interview 7 (ConClub)

Questioner: Did you feel any discomfort in the environment?

Answerer: Not really , it’s okay , I don ’t feel dizzy.

Questioner: How would you describe the feeling of playing in the real

world?

Answerer: It feels like golf. I think the physical feedback from the

ball is stronger compared to VR. Because of the sound of the

impact and being able to see the direction of the club in my hand ,

it’s easier to control. But when switching from VR to the real

world , the force required is different , so...

Questioner: It takes adjustment. Do you think training with the

controller in VR helped you adapt to the real world faster?

Answerer: I think if I had grasped the knack and the positioning , it

would have been helpful. But the VR environment just now had three

types of terrain , some with slopes , which is different from the

front , back , and sides of where I actually hit the ball. So there ’

s no way to tell if it has a significant effect , like quickly

grasping how to do it, if you were training ...

Questioner: If you were training in a real environment using real

clubs , do you think you would perform better or worse?

Answerer: I think it would be more tiring because I’m easily affected

by the environment , like hot weather , especially on the golf

course. My performance would weaken a bit. VR might be...

Questioner: More convenient. Overall , do you think VR...VR...

Answerer: Helpful for learning golf? Yes.

Questioner: Is it fun?

Answerer: Hahahaha , yes , and it has glowing feedback.

Interview 8 (ConClub)
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Questioner: Did you feel any discomfort in VR?

Answerer: No, I didn ’t.

Questioner: How would you describe the feeling of playing golf in the

real world?

Answerer: Oh, in the real world , the ball ’s weight feels a bit

different compared to VR.

Questioner: Is there a difference between the feedback you feel in VR

and in the real world?

Answerer: There is still some difference. In the real world , you have

to consider various factors , not just the ball but also the

direction and everything. But in VR, you just need to swing and

control the strength , which is okay.

Questioner: Do you think training with the controller in VR has helped

you adapt to the real world faster?

Answerer: Yes , it has , it has.

Questioner: If you were to use a real club during training , do you

think your performance would improve or decline?

Answerer: It should improve , I think it should improve.

Questioner: Overall , do you think VR is helpful for learning golf?

Answerer: I think it’s quite helpful , especially for beginners. Do you

have any other opinions?

Questioner: Uh...

Answerer: No.

Answerer: I don ’t think so, okay?

Interview 9 (ConClub)

Questioner: Did you feel uncomfortable in the VR environment?

Answerer: No.

Questioner: How would you describe the feeling of playing golf in the

real world?

Answerer: Uh, it feels much better than VR.

Questioner: Okay. How does the feedback you feel in VR compare to the

feedback you experience in reality?

Answerer: It’s very different. The accuracy , and also the ...

Questioner: Mainly the accuracy.

Answerer: There ’s a lot of feedback ...

Answerer: You feel ...

Questioner: The feedback you feel , like the vibration feedback and all

that.

Answerer: Uh, it’s very average. I don ’t feel like I’m hitting a real

ball. I feel like I’m just practicing my swing.

Questioner: Okay. Do you think training with the controller and club

together in VR has helped you adapt to the real world faster?
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Answerer: It helped , but not that much. Because the swing , because the

swing is very ... very ... very inaccurate , so sometimes it feels

like I’m just gliding over the ball instead of hitting it.

Questioner: If you were to use a real club during training , do you

think your performance would be any different? If you train with a

real club in the real world , would your performance be better or

worse than now? If we use the physical world as a substitute for

VR training. Yeah , yeah , yeah. So it would be better , it would be

better , right? Overall , do you think this VR is helpful for your

golf learning?

Answerer: Yes , it is helpful. I think it can be used to practice a lot

of basic skills. It ’s very helpful for your timing and accuracy.

Okay , good.

Interview 10 (ConClub)

Questioner: You feel any discomfort in the VR environment?

Answerer: At some point I don ’t know why it start to distorting.

Answerer: And that ’s when I feel a little bit hard to adjust with my

environment.

Questioner: Okay. And then how would you describe the feeling of

playing golf in the real world?

Answerer: The feeling ... good question.

Answerer: Probably enjoyment and pressure.

Answerer: So excitement.

Questioner: Okay. And how does the feedback you perceive in VR

compared to what you ’re experiencing in reality? Feedback from

everything , controllers or the visual stuff?

Answerer: Okay.

Answerer: From the... I think the feedback sound a little bit loud ,

you know , on the... I don ’t know ... so we... I use it or not , but

I heard a lot of windy sound and I cannot like ...

Answerer: When I do the...

Answerer: When ... when I hit it, it’s just like I don ’t really hit it,

you know?

Answerer: Okay. Like ... like for example like I don ’t feel the ... the

stick ... what is called the stick?

Questioner: The stick.

Answerer: And the club , yeah. It’s not really touching the balls , okay

? It ’s just like , okay , nowhere.

Questioner: And do you think training with a controller in VR help you

adapt to the real world faster?

Answerer: Oh, well ...

Answerer: I don ’t know.

Questioner: Okay.
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Answerer: I’m sorry , I don ’t know.

Questioner: How do you think it would affect your performance if you

use the real club during training?

Answerer: Uh, because the real club is... happy ...

Answerer: It was... I have sense of...

Questioner: Wait , yeah.

Answerer: Yeah , and the weight make me have a feeling how to control

my...

Answerer: My movement and my feeling to... to gain the specific ...

Answerer: Force.

Answerer: So I will ... I’m expecting to hit the ball with that

specific force. But yeah , compared to the VR, it’s kind of light ,

so I don ’t know like in the field is...

Answerer: I’m missing the feeling , okay , to able to control it. Like

what kind of force?

Questioner: Okay. So overall do you think they are helped you learn

golf?

Questioner: A bit , a bit. Okay. Thank you.

Interview 11 (ConClub)

Questioner: Did you feel any discomfort in the VR environment?

Questioner: Discomfort.

Answerer: Not much , but...

Answerer: Like there was a, maybe a...

Answerer: The sound of fan in the VR that maybe ... you ... but ...

Questioner: But if you ’re not that immersed.

Answerer: But not that ...

Questioner: Much. Okay , right. Then it...

Answerer: Was quite comfortable.

Questioner: Okay , perfect. Then how would you describe the feelings of

playing golf in the real world?

Answerer: Our real world , it’s a bit different because ...

Answerer: You...

Answerer: Okay , how do I describe?

Answerer: So in real world , since you are seeing like ... you ’re not

seeing your screen.

Answerer: And you have like more ...

Answerer: You know more about your body , how your body is aligned.

Questioner: Yes , that ’s true , but...

Questioner: In...

Answerer: In VR, you don ’t know how your body is aligned.

Answerer: And you just see just the environment and not your body , so

maybe a difference.
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Questioner: Okay , then how does the feedback you perceive in VR

compared to what you are experiencing in reality?

Answerer: Sorry.

Questioner: How does the feedback you perceive in VR compare?

Answerer: Feedback from the ... you mean learning basically. Okay , so I

think it’s quite helpful because ...

Answerer: Initially you need to learn the terrain basically , but in

real you could see it like more clearly. That ’s how it is. So. But

once you learn , you get to know like you can do good as well ,

like ...

Answerer: In VR. Okay , and that helps you actually. But when it comes

to the power you have to apply when you are ... you have to hit the

ball , how much power you have to hit the ball , that is a bit

different. Different , quite different. Alright. Okay , because when

I am hitting the ball now...

Answerer: The haptics I am getting ...

Answerer: Is different , and there I’m not getting any haptics , any

feedback from the ball like when I’m hitting I’m not feeling any

force.

Questioner: So that is makes sense.

Questioner: How do you think it would affect your performance if you

use the real club training in the real world?

Questioner: You become better?

Answerer: I think it will ... help. Help a lot because ...

Answerer: It is quite better actually in... in VR like you have ... you

can get to know the...

Answerer: Learn more about the directions ...

Answerer: And...

Answerer: Of course in reality you learn differently , so...

Questioner: It makes sense.

Answerer: But you will get to know correct directions basically , so

that will help. And ...

Answerer: If it is a bit more guided ...

Answerer: That you can position your ... like this stick more like this

... like then it will ... it will change a lot. Okay.

Questioner: The last question , do you have any other comments about

your experience?

Answerer: No, no, I guess.

Interview 12 (ConClub)

Questioner: First question , did you feel any discomfort in the VR

environment?

Answerer: None ,
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Questioner: How would you describe the feeling of playing golf in the

real world?

Answerer: It’s just ... playing golf is very physical.

Questioner: How does the feedback you feel in VR compare to the

feedback you experience in reality?

Answerer: Definitely , the clubs in VR are far inferior to real clubs.

It feels more floaty , and there ’s no sense of impact when you hit

the ball.

Questioner: Do you think training with this high -fidelity controller

in VR has helped you adapt to the real world faster?

Answerer: No.

Questioner: If you were training ...

Questioner: ... using real clubs on a real course , do you think it

would affect your performance? Would it be better or worse than it

is now?

Answerer: Uh, it would be better than it is now.

Questioner: So how... overall , do you think VR is helpful for learning

golf?

Questioner: Okay.

Interview 13 (Con)

Questioner: Do you feel uncomfortable in the VR environment?

Answerer: After playing for a while , my waist felt a bit sore , and the

VR headset felt a bit heavy.

Questioner: Okay , so how would you describe the feeling of playing

golf in the real world and in VR?

Answerer: In the real world , you can really feel the weight of the

club and the ball , and how much force you need to use. After

playing ten balls , when I entered the VR environment , the

controller felt too light , and I couldn ’t feel the weight of the

ball.

Questioner: What do you think are the differences in the feedback you

receive in these two environments?

Answerer: In the real world , you can ’t see the trajectory of all the

balls , so you don ’t know unless you consciously remember whether

your ball went left or right , or how far it went. But in the VR

environment , you can see where your last shot landed based on the

force you used , and whether all your shots are biased to the left

or right.

Questioner: Feeling.

Questioner: Does using this controller affect your performance?

Answerer: Yes , because there are some buttons on it. I don ’t know what

happens when I press them , so I hold it lighter. But if I hold it

lighter , it might affect the force of my swing.
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Questioner: Okay , last question. Overall , do you think this VR has

helped you learn golf?

Answerer: Yes , I do. I think because when I first started playing , I

used too much force. After entering the VR environment , I realized

how to control my force better , and the ball speed is much faster

. So you get to practice a lot , and you can see the feedback of

all your shots , whether they went left or right. After leaving the

VR environment , when you ’re actually playing , you ’ll be more

conscious of using less force , or adjusting your swing a little to

the right.
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