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Abstract

This thesis aims to enhance Automatic Speech Recognition (ASR) by incorporating laugh-
ter detection, thereby broadening its applicability to more realistic and authentic real-world
scenarios. There are various ASR models, but the pre-trained End-To-End models are partic-
ularly promising. These types of models can be fine-tuned on relatively little data. Two mod-
els were selected for fine-tuning and comparison: Whisper, a popular and high-performance
model, and HuBERT, which emphasises phoneme sounds. Using two datasets that include
spontaneous speech and laughter annotations - the AMI corpus and Switchboard - these mod-
els were pre-processed, normalised, fine-tuned and evaluated using the Word Error Rate (WER)
for the ASR performance and F1-score, recall and precision for the laughter detection per-
formance. The results indicated that the Whisper model performed best on the Switchboard
dataset, achieving the highest F1-score (i.e. 0.901) and corresponding lowest WER (i.e. 0.161).
On the AMI dataset, the results were more ambiguous. Neither model performed well enough
for application on noisy datasets like AMI (i.e. both had an F1-score lower than 0.6). Still,
HuBERT achieved the highest F1-score for laughter detection at 0.531. Whisper demonstrated
a lower WER_L (i.e. word error rate including "laughter" annotations as a word) at 0.304,
WER of 0.311 and a significantly higher precision of 0.949 (i.e. versus 0.785 precision for Hu-
BERT), which is often critical for practical applications. Therefore, overall, Whisper is iden-
tified as the best-performing model for ASR in terms of laughter integration, particularly in
applications focused on identifying laughter events without misinformation.

Keywords: interaction technology, laughter recognition, speech processing, automatic speech
recognition (ASR), E2E models
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Chapter 1

Introduction

Automatic Speech Recognition (ASR) methods have evolved in the last years and are becom-
ing more robust and stable. They have progressed in many ways, where ASR was first only
trained on read-aloud English speech, but the focus is currently on becoming robust in noisy
conversational speech settings, e.g. meetings, and the ability to perform well with less data,
e.g. when applying ASR to low-resource languages [1]. The type of model used has also pro-
gressed quickly in the last years, where statistical and hybrid models were the main types used
[2], [3], but now End-To-End (E2E) models are considered the future of speech recognition [4].
These developments contribute to the use of ASR systems which have a high accuracy and
can be deployed widely.

With this progression, there is more room for looking beyond the standard ASR transcrip-
tions. With the increased focus on solving the challenges that come with transcribing con-
versational speech, the importance of transcribing paralinguistic elements is also emphasised
[4], [5]. These elements include non-verbalisations like posture, gestures and eye contact, to-
gether with non-lexical elements (i.e. non-word sounds) like tone (e.g. sarcastic or serious),
volume (e.g. increased when angry) and vocalisations (e.g. smiling). Often a combination of
many factors is present to convey the context of words [5]. Currently, paralinguistic elements
are often omitted in processing, where only lexical elements are included. As is the case when
only the spoken text is transcribed: the overall atmosphere can be hard to gauge; the meaning
of the text can be misinterpreted (e.g. sarcastic comments or jokes can be missed); and tran-
scriptions are more prone to errors at the points where non-lexical elements are missing (e.g.
when words are said while laughing).

The topic of transcribing paralinguistic elements in language is researched minimally. For the
little research that has been done, the focus of research in ASR with paralanguage is primarily
conducted on just audio signals (i.e. speech), so non-lexical elements, while exploring several
ways of integration into various ASR models [1]. There are five types of non-lexical elements,
so non-words, that can be distinguished. These are disfluencies, filler words, back channels,
vegetative sounds, and affect bursts [6], [7]. Generally, plenty of research has been carried
out into the first three, however, in the last two categories, i.e. vegetative sounds and affect
bursts, even less research has been done. When considering the availability of data in differ-
ent appropriate ASR datasets together with the lack of research in the area, an opportunity
to conduct new research into the integration of laughter transcription in ASR systems can be
identified. The ability to recognise laughter is an important asset to the ASR system, where
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it can potentially improve ASR accuracy by differentiating between speech and laughter (i.e.
as the detection of disfluency has done [8], [9]); aid conversational agents give appropriate re-
sponses; and overall improve the conveying of meanings like nervousness or amusement.

In addition, in the up-and-coming E2E model laughter has only been considered in a separate
model from the ASR pipeline. However, the unique benefit of E2E models is the opportunity
to incorporate this directly in the pipeline by fine-tuning these pre-trained models to combine
spoken words with laughter annotations.

As a result, this thesis will focus on integrating the transcription of laughter in the ASR pipeline
by fine-tuning pre-trained E2E models. Currently, the two best models for this goal, are Whis-
per [10], [11] and HuBERT [12], [13]. Out of the two, Whisper has been pre-trained on the
most data and is currently the most popular. However, HuBERT has been developed specifi-
cally to look into non-lexical elements and has already shown potential. Therefore, these two
models are considered in this research.

This raises one main research question, namely:

How effectively can laughter transcription be integrated into established high-
performing ASR systems through the fine-tuning of pre-trained End-To-End mod-
els?

To find the answer to this question, the research question has been broken down into three
sub-questions. These are:

1. To what extent, if any, do the E2E ASR models Whisper and HuBERT currently tran-
scribe laughter in conversational language?

2. To what extent, if any, can the E2E ASR models Whisper and HuBERT be fine-tuned
on conversational speech including laughter annotations to improve the accuracy of laugh-
ter transcription?

3. How does fine-tuning the E2E ASR models Whisper and HuBERT on conversational
speech with laughter annotations affect their overall performance in transcribing lexical
elements?

All of the models are trained, evaluated and compared on the datasets Switchboard and AMI.
Overall, the performance of this thesis will be evaluated on Word Error Rate, Laughter Detec-
tion F1-score, recall and precision, and qualitative analysis into laughter hits, deletion, substi-
tution and insertion.

To answer the research questions, overall this thesis will consider three main parts. First, it
is considered what happens at the positions in the audio where laughter is labelled in the test
set, while the models did not learn the laughter label from the training set yet. With a qual-
itative analysis, there will be looked at if there are any deletions or substitutions for laugh-
ter and if so, if the substitutions are recognisable as laughter. It is expected that laughter is
currently transcribed very minimally. However, it will take a different form which is not as a
standard laughter label, but potentially recognisable as laughter (e.g. "haha"). It will also dif-
fer for each model. Exactly how this will differ is unclear, but Whisper is known to be more
flexible, so it may perform better or recognise laughter more often as an event.

Secondly, both models will be fine-tuned and optimised to recognise laughter. The laughter
event recognition is evaluated with F1-score, recall and precision. This is a fair and accurate
method to show how well the laughter event has been integrated into the ASR pipeline. It
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is expected that this will significantly improve laughter recognition, as previous research has
shown the potential of fine-tuning [14]–[16]. We cannot say anything about the difference in
performance between Whisper and HuBERT. Both have their own benefits, as Whisper is
larger and more flexible, while HuBERT was specifically developed for tasks that identify non-
lexical elements, e.g. interruptions and emotions [13].

Lastly, if, how, and to what extent the Word Error Rate (WER) performance is affected by
the fine-tuning for each of the models will be addressed. To evaluate this, the WER is con-
sidered for the model (1) without fine-tuning and (2) with fine-tuning but without laughter
in the reference text. It is expected that this performance will be affected minimally, as the
models are pre-trained on substantially more data than will be used in this research. Factors
like catastrophic forgetting could play a role. Furthermore, knowing when laughter occurs,
could even improve the performance of the ASR model, as it can aid in solving the difficulty
of identifying the words that are spoken while laughing, as it can potentially recognise the
words spoken while laughing more easily. However, a previous study has shown that this in-
tegration did not deteriorate the performance of ASR [6]. Lastly, HuBERT will be impacted
more than Whisper due to its lack of flexibility.

Overall, the main research question can then be answered. It is expected that laughter is cur-
rently barely transcribed in the ASR system and that with the proven use of fine-tuning and
the expected little impact it has on the ASR performance, laughter can be transcribed quite
effectively.

This thesis is structured as follows. In Chapter 2, the literature on the topic of ASR is anal-
ysed, focusing on finding the gap of knowledge in the integration of laughter in E2E models.
In Chapter 3 the Methodology is explained, showing the data pipeline, fine-tuning process and
evaluation methods. In Chapter 4 the experiment Results are visualised and explained. In
Chapter 5 the results are Discussed, focusing on three main parts. These points are: the be-
haviour of the baseline models (i.e. zero-shot and fine-tuned without laughter in the training
data) on the test set including laughter, the laughter integration performance of the models
when fully fine-tuned with laughter and the difference in lexical performance of the baseline
and fully fine-tuned models. In Chapter 6, the research work is summarised and conclusions
are drawn.
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Chapter 2

Background

As mentioned in the introduction, research in Automatic Speech Recognition (ASR) has been
prevailing in the last few years. ASR systems have shown they can be robust [17], [18], sta-
ble [19], and accurate [11], [20]. As a result of its success, ASR models have been applied to
more complex tasks and opportunities have arisen for its applications in areas that could not
be considered before, e.g. incorporating the emotions behind spoken text into transcriptions.
The main reason for this rapid advancement was the development of the type of model used
for these tasks, as the focus has shifted from Hybrid models to End-To-End (E2E) models.
Some of these promising ASR E2E models are pre-trained and can easily be fine-tuned on
smaller datasets. One of the challenges currently researched is making the ASR more accu-
rate in real-life settings. This is done by using conversational speech for training datasets, as
these are a far more accurate representation of real-life scenarios than e.g. cleaned read-aloud
speech without interruptions or background noise. These will include many parameters and
variables to take into account, e.g. overlapping and spontaneous speech. An important aspect
of conversational speech, but also still under-researched in certain areas, is the detection and
incorporation of non-lexical elements into transcriptions. This fine-tuning task has attracted
attention recently, because these non-lexical vocalisations (e.g. laughter, disfluencies, and filler
words), are very telling about the meaning of spoken words in context and/or the emotions
behind them.

This Chapter will first give a general overview of the mechanics and development of ASR over
the years, including an overview of commonly used databases in ASR, in Section 2.1. Next, it
will discuss Hybrid models in Section 2.2, focusing on three types of Hybrid models and their
applications. Then, E2E models will be discussed in Section 2.3, looking into the four most
popular and best-performing ones and comparing their capabilities in an attempt to distin-
guish which is the best one to use for a certain task. Lastly, Section 2.4 will focus on one of
the main challenges of training on conversational speech, namely the incorporation of non-
lexical elements. It will look into their detection and the integration in both Hybrid and E2E
methods, and their presence in three of the common ASR datasets.

2.1 Automatic Speech Recognition Overview

Before looking at the models that are used in ASR, it is important to understand what ASR
is. This is most easy to understand by first considering the higher-level architecture. Then,
the development over the years can be considered to understand why it progressed the way it
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Figure 2.1: ASR visualised from a higher level.

did. Next, it is important to consider what limitations and parameters there are for the devel-
opment of the ASR system. Lastly, the common ASR datasets are explained and described.

2.1.1 General ASR at the High-level

To understand how ASR works, the system can be considered from a higher level, as is visu-
alised in Figure 2.1. First, a user will talk and this spoken text is recorded. This spoken text
is an audio signal, which is then the input for the model, where the signal is interpreted and
the trained model will make a prediction of what the most likely text outcome is. The out-
come is a simple text string, called the hypothesis text.

To test how well the system works, the transcribed hypothesis text is evaluated during devel-
opment. To evaluate the output performance, the hypothesis text is compared to the so-called
"reference text". This reference text is used as the truth input text, so the manually anno-
tated text of the audio. Often, both the hypothesis text and reference text are processed and
normalised to match (e.g. "I’m" of the reference text becomes "I am", to match the hypothe-
sis text output).

In most ASR research, the Word Error Rate (WER) is used to evaluate how accurate the hy-
pothesis text is. This metric compares the hypothesis text to the reference text and considers
per word if is correct. For example, if the reference text is "This is an example sentence", and
the hypothesis text is "This is the example sentence", then the WER = errors / total words
= 1/5 = 0.2%. Ideally, this would be 0, with no errors (i.e. WER = 0/5 = 0). There are more
metrics that are often used, like Character Error Rate (CER) (i.e. the error rate calculated
based on the comparison of reference and hypothesis text per individual character), Sentence
Error Rate (SER) (i.e. error rate per sentence), Accuracy or F1-score, but this depends on the
specific research topic and aim.

2.1.2 Historical Development

To develop any kind of ASR system, two main requirements need to be considered: the model
and the dataset (i.e. speech) for the model to train on. Both of these have made significant
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improvements over the years, becoming more complex, extensive, and realistic. The way the
model works has not only progressed but also the type of model has completely changed. This
section will give a short overview of their development and influence on ASR.

Types of Speech

The type of research that can be done is highly dependent on what data is available that the
model can train on and what complexity the ASR model can handle. In Figure 2.2, an overview
of the development by NIST [1] is visualised. The first step of ASR was to train on read speech.
Here it was often ensured that it was very clean data, as it had no background noise, interrup-
tions, or other anomalies. The focus could be on simply transcribing speech. The Word Error
Rate (WER), i.e. a common metric of performance in ASR which aims to be low, was quite
low already around that time, but this data was extremely clean. This meant that in real-life
scenarios, these models would not perform similarly, as spontaneous and continuous speech
have many extra parameters that the model had not encountered before, e.g. background
noise, stuttering, or different accents. This meant the model would get confused and could
not be applied in real life yet. In addition, the focus was just on English text. The next step
was taken around 1993, when conversational speech was also being researched. This was when
the English dataset Switchboard [21] was created. The WER was initially extremely high for
this type of speech, as the models had to adapt to a broader range of complexities compared
to previous tasks. These complexities included handling multiple speakers, distinguishing be-
tween overlapping voices, and dealing with additional challenges like background noise. For-
tunately, in the next ten years, with models adapting to and learning from these complexi-
ties, the WER was lowered massively. In 1995, also non-English conversational speech datasets
were established, but their WER stayed even higher. Also around 1995, broadcast speech was
introduced and both English and non-English news was used for ASR. This is cleaner than
conversational speech, as the spontaneous aspects of speech were taken out like disfluencies,
which resulted in a higher performance and lower WER. Lastly, Meeting Speech was intro-
duced around the 2000s. The performance of this is even lower, due to the many other vari-
ables in the data that make it harder for the model to distinguish the individual speech from
its surroundings, e.g. spontaneous and overlapping speech. The focus in the last ten years
was on these types of natural and spontaneous speech, e.g. Meeting Speech, and managing
its challenges. In this time, the models have become more flexible to different scenarios. They
learn to handle these complexities by adapting to more realistic conversational patterns, im-
proving their ability to recognise overlapping dialogue and individual speakers, sudden topic
shifts, and unstructured speech, as well as filtering out background noise and other contextual
distractions.

Types of Architecture

The type of model used for ASR has taken a long journey too. In the past, ASR models usu-
ally combined two different kinds of models, namely acoustic and language models. Acous-
tic models use the raw waveform to predict which phoneme most likely corresponds to it,
while the language models aid these predictions by giving probabilities based on language, e.g.
grammar. How the two are combined can be seen in Figure 2.3

The first type of acoustic model was the classically combined Hidden Markov Model (HMM)
with the Gaussian Mixture Model (GMM), which results in the HMM-GMM. The HMM is a
probabilistic model that can model sequential data, i.e. in ASR that is the temporal sequence
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Figure 2.2: Overview of Types of Speech and Datasets over the years 1988 to 2009
[1].

Figure 2.3: Acoustic Model with Language Model.
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of speech signals, well and works with observations and states, whereas the GMM commonly
represents the probability distribution of continuous data and models the acoustic features.
The n-gram language model was most often combined with these acoustic models. This uses a
sequence of n tokens (i.e. divided words) to estimate probabilities of what the n-gram would
be. In the case of the sentence "This is a language model" and a 2-gram (i.e. bigrams), this
would result in ["This is", "is a", "a language", "language model"]. Based on the frequency
of the occurrence of the n-grams in the training data and other methods (e.g. smoothing or
interpolation), a prediction is given for the correct sequence.

Around the time when the Deep Learning era arose, the focus shifted to different types of
acoustic models. These new types of acoustic models and language models were together called
Hybrid models. Here, the statistical GMM from the classic HMM-GMM approach was re-
placed with other acoustic models, resulting in, for example, an HMM-Deep Neural Network
or HMM-Support Vector Machine. [2]. To this day, Hybrid models are most often used in
existing applications [2], [3]. However, lately, there has been an increase in interest in E2E
models. These models can directly convert raw speech into words and can efficiently train
on lots of labelled data. As a result, there is no explicit distinction between language models
and acoustic models anymore. In addition, E2E models are very flexible, as they can easily be
adapted to different applications or tasks by fine-tuning certain types of pre-trained models.
As a result, E2E models are currently considered to be the future of ASR for most tasks.

2.1.3 Limitations and Variables in Developing ASR

There are a few variables and limitations that make ASR challenging or suppress the quick
progression of ASR performance. Being aware of these challenges can help understand the is-
sues that arise in the development of ASR. However, they all come down to the same problem:
insufficient data. There are a few parameters and variables you need to take into account to
make a dataset accurate and robust in real-life scenarios.

The first is the role of noise. Depending on the scenario, e.g. if you are outside, in an echoing
room, or if there is a lot of background noise, the model needs to be able to distinguish be-
tween these elements and the speaker. However, due to ease of recording and other concerns
like privacy, most data is recorded inside, with the knowledge of participants and with good
microphones. This gives biased audio clips that are not completely natural or spontaneous. In
practice, this means that if the model is trained on just this data, the system will not be ro-
bust when applied to a different scenario. Especially when ASR systems were relatively new,
data had to be as clean as possible to be able to optimise the models. Nowadays, datasets are
created with the thought in mind to be as inclusive as possible, and might also contain un-
clean data, to optimise the advanced models further.

Secondly, read-aloud speech and spontaneous speech can be differentiated between. Read
speech has sentences with little noise or disfluencies, hence there are few outliers or complex
structures that the model did not know. However, spontaneous speech, e.g. meetings, can
overlap or include stuttering, inconsistent grammar, and other non-lexical vocalisations. These
are much harder to recognise for the model, for instance, due to its interdisciplinary nature of
dealing with fields from linguistics, acoustics and human interaction [22]. To recognise these,
the models must take into account more complex patterns and both linguistic and contextual
elements beyond straightforward speech.

Lastly, many datasets focus on clean English speech, as this is one of the most used and high-
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resourced languages in the world. However, there are many possible variations of accents, lan-
guages, and speech disabilities (i.e. low-resource contexts), with many environmental param-
eters (e.g. the convoluted nature of conversational speech) that could be transcribed. Due to
the little data available on these and its variations, it makes it hard for ASR systems to accu-
rately transcribe them [23].

As a result, an ASR system can seldom be robust in every scenario, due to the many variables
that come into play, e.g. developmental costs, speaker recruitment and privacy concerns, when
creating a new dataset. However, essential is also the fact that even if all of the data were
available, these models still have complexity constraints and developers would have time and
budget constraints. Training and optimising would take an immense amount of time.

2.1.4 Common ASR datasets

The performance of the models is extremely dependent on which dataset is used for training
and testing. It contains the information that the models need to learn and evaluate. There are
a few datasets that are most commonly used in general ASR tasks.

However, the requirements for the type of data that the dataset contains can differ, where the
focus can vary from a specific language, accent, to other non-lexical vocalisations, e.g. disflu-
encies, while speaking. Currently, the most commonly used datasets in the field of ASR are
LibriSpeech [24], CommonVoice [25], and Switchboard [21]. LibriSpeech has an English open-
sourced version and Multilingual version. The English dataset contains two main subsets:
’clean’ (i.e. cleaned speech) and ’other’ (i.e. more challenging speech). It consists of a 1000
hours of read speech from the LibriVox (i.e. free Audiobooks) project. The Multilingual Lib-
rispeech (MLS) was also extracted from LibriVox’s read-aloud Audiobooks, but consisted of 8
European languages. However, one negative aspect is that the training input audio is not from
a natural environment. This makes both the model and its results biased and less robust in a
real-world environment with other variables, e.g. background noise. Moreover, no additional
labelling that can be useful in real-world applications is present, like laughter or disfluencies,
as this is not present in read-aloud speech. Another open-sourced dataset is CommonVoice,
which consists of 7335 hours of validated audio in 60 languages by volunteers. This results in
more diverse, yet still simple read-aloud data. Also Switchboard is often used, as this contains
natural speech, i.e. not reading out loud. The audio clips were from two-sided telephone con-
versations but collected from a controlled environment, where speakers were guided through
various topics with a robot operator. Many models are evaluated and compared on standard
ASR tasks with these datasets. Lastly, a slightly different dataset is Voxpopuli [26]. This con-
tains 400K hours of unlabelled European parliament speech recordings in 23 languages from
the years 2009 to 2020, with additional accented speech.

There is currently a new focus in the field of ASR, where robustness is vital to the applica-
tion of ASR in real-world scenarios. As a result, there is a focus on conversational speech
data. This includes the annotation of paralanguistic elements, like laughing, disfluencies, and
backchannel words. In this case, the ICSI Meetings Dataset [27], AMI Corpus [28], or The
SSPNet Vocalization Corpus [29] are used most often. In addition, the large Switchboard
dataset, as mentioned above, also contains disfluencies and labels on laughter events. The
ICSI Meetings Dataset contains 72 hours of speech from meetings and its transcriptions are
extremely thorough. They include annotations of sounds like laughter, coughs, and other noises,
e.g. door slams and notations of muttering. The AMI Corpus is quite similar, as they also
contain meeting recordings of approximately 100 hours, with annotations like dialogue acts
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and head movements. The SSPNet Vocalization Corpus is less thorough but also includes
some extra annotations. It consists of 2763 English audio clips from telephone conversations.
Besides spoken text, they have annotated laughter and filler events. Another task that is cur-
rently being researched is recognising disfluencies [30]–[33], which can help anticipate and
solve errors in ASR and increase inclusivity. These tasks either use the bigger datasets with
natural speech as mentioned above, where disfluencies naturally occur, or a specific dataset
that focuses on a special kind of disfluency. For example, in the case of dysarthric speech
recognition, the UA Speech Dataset [34] or Domotica dataset [35] were used in different re-
search.

Therefore, the dataset used depends on the needs of the ASR task. There are a few big ones
that are used for standard ASR training tasks. Overall, more data is better, but these datasets
do not always contain the information necessary. In those cases, smaller datasets will suffice if
they contain (more of) the information necessary to train on. This is because the quality and
relevance (i.e. when targeted and domain-specific) of the data are often more important than
sheer quantity.

2.2 Statistical & Hybrid ASR Models

The first type of ASR model was the GMM-HMM acoustic model with the n-gram language
model. When ASR was beginning to show potential and Deep Learning was introduced, the
new types of models that were being developed were the Hybrid models. The main factor that
identifies a Hybrid model, is the transition from the type of acoustic model used. The lan-
guage model is still mostly the same, but more advanced techniques are used, e.g. neural net-
work or transformer-based instead of the n-gram model. Due to thorough research into this
area and its proven use, many established systems still use the Hybrid model [2], [3].

There are quite some types of models and they have been combined in many ways, each with
their benefits and disadvantages. However, we can identify the three most common acoustic
model types in ASR and these will be discussed below. They are the Hidden Markov Model
(HMM), Artificial Neural Networks (ANN), and Support Vector Machines (SVM). [20]

2.2.1 Statistical GMM-HMM Models

The HMM-based model has been seen as one of the most successful and flexible of models
for ASR over the last few decades. In the 1970’s, the discrete density HMM was first intro-
duced by Carnegie-Mellon and IBM [36], after which the continuous density HMM was soon
followed by Bell Labs [37], [38]. With an increase in computational power, the performance of
the model advanced quickly [39]. As a result, it is most commonly used, even now [3], [20].

At first, the HMM-based model was most commonly paired with the GMM model in ASR.
This resulted in a good base, where the HMM models probabilities of transitions between
phonemes, and the GMM predicts the likelihood of observing acoustic features for a specific
phoneme. At this time, the focus of the research was still on enhancing the accuracy of speech
recognition and optimising the model. The HMM-based model has been optimised in many
ways throughout the last years. One research study [40] used the particle swarm optimization
algorithm instead of the standard Viterbi algorithm. They showed equal performance of error
rates and quicker optimisation results, with a recognition error rate of 0.73% for both algo-
rithms with 8 as the number of reference words. Another research [41] improved the HMM-
based model with the minimum mean square error principle, compared to a conventional spec-
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tral subtraction. The results showed an improvement in flexible noise robustness and real-time
implementation possibilities in objective signal-to-noise ratio (SNR) and subjective evalua-
tions. For example, for white noise, the HMM-based systems have a 2.5 dB and up SNR ad-
vantage over their Spectral Subtraction baseline system; matching subjective evaluation by
personal preferences. Additionally, connectionist components can improve state-of-the-art
HMM models, where the multilayer perceptron (MLP)-HMM had a word accuracy of 0.8 to
2.5% lower than the context-dependent HMM [42]. This best result had a recognition error of
5%.

The HMM-based model has progressed from a simple HMM-GMM model to a well-performing
and optimised model for ASR. The inherent nature of the HMM-GMM also has its own lim-
itations, with model complexity issues (i.e. needing extensive resources) [43], overfitting [44],
struggling to deal with speech variations (e.g. speaking rate and accents) [45], and incorrect
parameters and assumptions that might not fit every scenario (e.g. the use of the Gaussian
distribution or the fixed-length context window) [43]. The optimised HMM-based model gave
quite a steady performance in the end, but there were still many problematic factors in its ap-
plication. Issues like noise robustness, dealing with spontaneous speech, and the lack of avail-
ability of diverse datasets also still contributed to holding back its development into a fully
functioning system. [46], [47] This resulted in a need for Hybrid models.

2.2.2 Artificial Neural Network

More recently, there has been an increase in the popularity of Neural Network (NN). There
are many types, one of which is the Convolutional Neural Network (CNN). There are sev-
eral advantages to using a CNN, like the possibility of local filtering and pooling [48]. A pre-
trained Deep Neural Network (DNN) and a Recurrent Neural Network (RNN) have also been
compared, with a focus on various noisy environments. The RNN gave the best results, with a
WER score of 0.70% on the very clean Aurora2 dataset. However, the RNN had much higher
WER scores in noisy environments, showing optimisation is still necessary for real-world appli-
cations. [49] With this introduction of ANNs, the performance of ASR quickly increased. As
a consequence, there was a new focus on the necessity for environmental robustness. This has
been researched more thoroughly over the years, with one research [50] combining linear filter-
ing, multiple feature types, and feature transformations. This showed a relative performance
gain of 7.24% to 9.83% over other DNN research in various acoustic environments, with the
lowest WER of 36.7%. Therefore, it seems that the additions to NNs are an important poten-
tial asset when making ASR robust in real-world environments.

While DNNs yield the optimal results for pattern recognition [20], they have shown to have
some limitations, like overfitting [51] and finding long time-sequences difficult to handle [46].
As a result, they have been combined with the conventional HMM-based model as a hybrid
NN-HMM model to overcome these limitations. For example, the ANN-HMM increases flexi-
bility and minimises inaccuracies [46], [47], with one research [46] finding a relative WER re-
duction of 46.34% over other HMM-based models. Another research [51] compared the GMM-
HMM with a DNN-HMM, which showed that the overfitting issue was solved with the use of
DNN’s hidden layers.

There are a lot of opportunities in this field, due to the various types of NNs and the many
parameters that can be optimised. The NNs by themselves are a trending topic too and a lot
of research is currently conducted on their optimisation. As a result, the Hybrid DNN-HMM
still potentially has room for improvement too.
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2.2.3 Support Vector Machines

Less commonly used in ASR, but still yielding good results, are SVMs. The advantages of the
SVM are that they can optimise the representational and discriminate ability of the classi-
fier simultaneously [44]. One study [44] tested their system on the Switchboard dataset and
took the WER down from 41.6% for the state-of-the-art HMM-based model to 40.6% for their
SVM. Two years later, with further research, they [52] found that the main problem was a
segmentation issue, where a potential of 36.1% WER could be reached, compared to a 38.6%
WER for the HMM-based model.

However, SVM’s need a lot of computational power, making them impractical in real-world
applications. Various researches have tried to solve this problem. One study [53] suggested us-
ing a weighted least squares training procedure. The results were promising in noisy and clean
environments but did not match up to the state-of-the-art performance of an HMM-based sys-
tem. Another more recent research [54] applied the particle swarm optimization algorithm to
the SVM, as was done with the HMM. The main aim of this research was to minimise power
consumption, yet a 99% accuracy in recognition success rate was also found.

To solve some of these issues, the Hybrid of SVM-HMM has also been researched. One study
[55] suggests a system with two main stages, the first consisting of the HMM for speech seg-
mentation, the second using the time instance derivation from the HMM to extract feature
vectors. The SVM is then applied to classify the feature vectors. This was tested on the MOCHA
dataset and consists out of clean data and white noise. On clean data, this resulted in a recog-
nition accuracy of 99.35% for the SVM-based model, compared to the 99.34% on the conven-
tional HMM-based baseline model. A slightly bigger difference could be seen when testing on
white noise, where the SVM-based model reached a highest recognition accuracy of 50.73%,
compared to 49.4% on the HMM-based model. They showed that improvements are very min-
imal, which might be due to inaccuracies in the first stage, i.e. the segmentation stage. An-
other research [56] examines limitations in SVM-HMM classifiers, namely the binary classifi-
cation properties of the SVM and the necessity of each word being present in the training vo-
cabulary data. The approaches used to solve these issues were to, (1) cascade SVM classifiers
and (2) an HMM-based synthesis approach, respectively. Another research [57] found slight
improvement with their SVM-HMM system, with a 96.96% recognition accuracy compared to
a 96.4% accuracy by the conventional HMM-based system. However, due to computational
costs, this is not a viable system in real-life scenarios as it is.

The SVM-HMM Hybrid is seen as having potential in the field, where a high recognition ac-
curacy has been found in several scenarios. However, there are several issues and limitations
that hold back its further development. Many of these have already been considered and while
some a resolved in certain scenarios, the bigger issues like computing complexity limitations
remain. Due to the resource constraint of researchers, this also makes its further research un-
appealing.

2.3 End-To-End ASR Models

To reduce complexity and increase flexibility in ASR systems, end-to-end (E2E) models have
been developed in recent years [4]. The main difference lies in the architecture, where the Hy-
brid ASR system uses several models for the task, while the E2E approach directly maps the
speech to text without intermediate modeling. Unlike Hybrid models, these E2E models are
trained on thousands of hours of labeled data, called pre-training. This model can then be re-
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trained more quickly on a new and much smaller dataset using what it already knows, which
is called fine-tuning. This can be done in various ways, as there are several types of E2E mod-
els. These types can be divided into two main categories: explicit alignment algorithms (e.g.
Connectionist Temporal classification (CTC), Recurrent Neural Network Transducer (RNN-
T), and Recurrent Neural Aligner (RNA)) and implicit alignment algorithms (e.g. Attention-
based Encoder-Decoder). Explicit algorithms are most appropriate for streaming ASR, as they
can be used for live-streaming data. However, while implicit algorithms yield high results,
they need data on past, present, and future situations, which makes them more suitable for
ASR that has already been recorded. [2], [4], [58], [59].

Most recently, the best performing and most popular E2E ASR models are Whisper [60], XLSR
[61] & XLS-R [62] based on Wav2Vec2.0 [63] and HuBERT [13]. [64], [65]. All models besides
Whisper are explicit alignment algorithms, but only Whisper uses an implicit encoder-decoder
model, while all the others use the CTC architecture [66] (i.e. encoder-only model). Below,
these models are each explained and their performance is discussed while considering their
merits and flaws. Lastly, an attempt is made to distinguish the best model for a certain fine-
tuning task, by summarising various types of tasks of fine-tuning research that compare sev-
eral models.

2.3.1 Whisper

This model is an open-source and multilingual model, claiming to be robust against many
variables in audio (e.g. background noise and accents), and has been trained on 680 000 hours
of audio. It uses a self-supervised end-to-end approach, as can be seen in Figure 2.4. The in-
put audio is split every 30 seconds and converted to a log-Mel spectrogram, before inputting
into the encoder-decoder transformer. It is known to be versatile in application since it is not
fine-tuned to one dataset. However, this also means that it does not outperform all existing
approaches [60].

Figure 2.4: Illustration of Whisper [11] architecture, from [60].
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Whisper performs well overall. On the LibriSpeech clean dataset the human-level error rate
was 5.8%. A pre-trained Conformer model has managed to achieve a WER of 1.4% [67], which
is the lowest thus far. Whisper cannot match this, but the model used was fully optimised to
fit this dataset. The optimised Whisper only achieved a WER of 2.5% on LibriSpeech clean
[17], but is more diverse and flexible [60]. Applying Whisper to other datasets showed poten-
tial and it sometimes performed much better than many other models.

The influence of the dataset size was also researched, where the biggest dataset gave the best
results. However, when using just 8% of the data, Whisper already reached a WER score for
English of 10.9%, while for the full dataset, it reached a WER of 9.9%. This difference is very
small, so gains are minimal for larger datasets. This should be taken into account when the
aim of the application is easy implementation. In the case of multilingual data, the WER
was 36.4% for 8% of the data, but 29.2% for all the data, which is a more significant differ-
ence [17]. On the other hand, but equally importantly, it has also been shown that Whisper
is known to quickly overfit on small datasets [68]. Therefore, the size of the dataset has to be
chosen carefully.

2.3.2 Wav2Vec 2.0

Like Whisper, this model is a self-supervised neural net framework, as shown in Figure 2.5. It
consists of three parts. The first is the feature encoder, which takes raw audio data and with a
1D CNN, normalization, and a GELU activation function, it gives feature vectors as output.
The second part is the transformer, which uses relative positional embeddings. The model
passes random mask feature vectors to a transformer and can be fine-tuned by adding a lin-
ear layer to the network. Lastly, there is the quantization module, which converts the contin-
uous data into discrete data. [63] However, by itself, Wav2Vec 2.0 is only a feature extraction
framework. When adding the softmax layer and using CTC, the model can be used for ASR
tasks.

On the clean LibriSpeech dataset, Wav2Vec 2.0 achieved a WER of 1.8, but a 3.3 WER on
LibriSpeech Other. One aim of this model was to find if it could be trained on less labelled
data. This showed promising results, where the combination of 53k hours of unlabelled data
with 10 minutes of labelled data still achieved a WER of 4.8 on LibriSpeech Clean and a WER
of 8.2 on LibriSpeech Other. [63]

On basic tasks, more recently, Wav2Vec 2.0 is often outperformed. For instance, a zero-shot
Whisper model performs with 55.2% fewer errors on average than Wav2Vec 2.0, when consid-
ering 13 datasets including AMI, Switchboard and Common Voice. However, when Wav2Vec
2.0 is optimised, it is still a model with potential.

2.3.3 XLSR

This self-supervised E2E model is based on the Wav2Vec 2.0 model, using the CTC. However,
the Wav2Vec 2.0 model was only trained on one language, and the XLSR (and its variations)
was trained on more extensive and multilingual data. The XLSR architecture can be seen in
Figure 2.5. The first version is the XLSR, with the biggest being the XLSR-53, which is a
large model pre-trained on 53 languages. [61] Later, the XLSR-53 model is further developed
into the XLS-R model [62] with cross-lingual pre-training in 128 languages and half a million
hours of speech audio.

The XLSR-10 Large, an earlier version than XLSR-53 which was trained on just 10 languages,
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Figure 2.5: Illustration of Wav2Vec 2.0 model [63] architecture and addition of XLSR
model [61], from [61].

was tested on the Common Voice dataset, as this dataset is multilingual and consists of 38
mainly European languages. This model reduced the Phoneme Error Rate (PER) by 72% [61]
which is comparable to state-of-the-art m-CPC [69]. On the BABEL dataset, which is also
multilingual but includes Asian and African languages, the XLSR-10 Large improved WER
by 16% on state-of-the-art BLSTM-HMM [70]. Overall, the performance differed greatly per
language but got competitive results to state-of-the-art for both datasets. This was especially
the case for low-resource languages, that do not have a lot of data available. For instance, the
WER on BABEL for Tagalog was 40.6% in the best state-of-the-art [69], but XLSR-10 Large
reached WER of 37.3% and XLSR-53 reached WER of 33.2%. For Swahili, state-of-the-art
reached WER of 35.5% [69], where XLSR-10 matched this, but XLSR-53 improved it to a
WER of 26.5% [61].

The next and latest version of this model is the XLS-R. This model can be deployed on vari-
ous types of ASR tasks and has also been trained on other tasks, e.g. speech translation and
language identification. It has also improved state-of-the-art work on many common ASR
datasets. For instance, to continue the example of Tagalog and Swahili, the XLS-R reached
a new lowest WER of 29.3% and 21.0% respectively. Across several languages, the XLS-R
improves the XLSR-53 with 1 WER at equal capacity and goes up to a WER of 2.9 for ad-
ditional capacity. In addition, it has been shown to match the performance of models trained
on just English. For the same capacity, Wav2Vec 2.0 significantly outperforms the XLS-R.
However, with increased capacity (i.e. comparing the 0.3B vs 1B version of XLS-R) and lit-
tle training data, the XLS-R outperforms Wav2Vec 2.0. For example, at 10 mins labeled data,
wav2Vec 2.0 has a WER of 32.1% on the clean LibriSpeech dataset, but XLS-R reaches 29.1%
WER. However, on more training data, the models are comparable. For example, on 10 hours
of labeled data, Wav2Vec 2.0 has a WER of 5.6% and XLS-R a WER of 5.9%. [62]

2.3.4 HuBERT

The HuBERT model is based on the Facebook’s AI method and is a Hidden Unit BERT [13].
BERT stands for Bidirectional Encoder Representations from Transformers and learns contex-
tual relations between words by interpreting entire sequences of text at once and masking 15%
of the words. [71] However, this means that masks must be of a set length, and this is often
not the case for non-lexical elements. Therefore, HuBERT aims to make room for research on
the delivery of words, i.e. identifying lexical and nonlexical information in audio. It uses an
offline k-means clustering step to find the prediction loss over the masked areas. As a result, it
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Figure 2.6: Illustration of HuBERT [12] architecture, from [13]
.

combines acoustic and language models. [65] This is visualised in Figure 2.6.

HuBERT has been (1) tested on low- and high-resource datasets, (2) compared to other sim-
ilar methods, e.g. wav2vec 2.0 and (3) considered in regard to different Language Models
(LM), i.e. 4-gram and Transformer. With just 10 minutes of pre-training, HuBERT (LM:
Transformer) reached a WER of 4.7% on Librispeech test-clean and 7.6% on test-other. This
is a lower WER of 0.1% and 0.6% than wav2vec 2.0 respectively. For high-resource datasets,
i.e. in this research the 960 hours of pretraining labeled LibriSpeech data was used, HuBERT
does not improve over wav2vec 2.0 much. The fine-tuned HuBERT X (LM: Transformer)
reached a WER of 1.8% on test-clean and 2.9% on test-other, while wav2vec 2.0 reached 1.8%
and 3.3% respectively. Therefore, it shows that HuBERT is especially effective in low-resource
scenarios. In addition, no matter the amount of pretraining data, the Transformer LM gave
much better results than the 4-gram LM for HuBERT. For example, on 10 minutes of pre-
training, HuBERT (LM: 4-gram) got a WER of 6.6% on test-clean and 10.3% on test-other,
which is much higher than mentioned above. [65]

2.3.5 Fine-tuning for Low-Resource and Miscellaneous Tasks

Some research has already been conducted on analysing the ins and outs of fine-tuning these
models to optimise the performance of other tasks. However, an important question that arises
is, which model can best be used for which fine-tuning task. In Table 2.1 all fine-tuning re-
search in the area of low-resource speech, language, or accents can be found. In Table 2.2,
more miscellaneous fine-tuning research is summarised, e.g. high-resource language and (au-
dio event) specialisations.

The varying results are striking, even in similar research, where there is not one model that
seems to outperform the others. When fine-tuned on Kazakh [72], Wav2Vec 2.0 outperforms
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HuBERT and Whisper Large. Moreover, when fine-tuned on Luxembourgish [73], Wav2Vec
2.0 has better WER results, but Whisper is concluded to be more appropriate in application
when thoroughly considered in context. In addition, Whisper often outperforms all other mod-
els [15], [17], [74], [75]. However, in some specific scenarios, e.g. a dialectal transfer task [16]
and dysarthric speech [14], XLSR-53 has its benefits over the others. Lastly, in one very spe-
cific tasks, HuBERT surprisingly outperforms the other models, i.e. when creating acoustic
word embeddings [76]. Moreover, HuBERT often performs very similarly to Wav2Vec 2.0 [14],
[16], [77]. However, HuBERT is a relatively new model, so very little focused research on its
capabilities has yet been done.

Thus, it seems to be very specific to the data, parameters, and variables to know which model
fits best to a task. In addition, it is important to thoroughly look into the text and not just
evaluation metrics, as they do not always show the full picture, e.g. for some texts the impor-
tance of accurately transcribed punctuation or numbers can weigh heavier than just WER.

2.4 Non-lexical Elements in ASR

These conventional ASR methods have currently reached an impressive performance. How-
ever, one of the current main challenges is to make the ASR system more complete by accu-
rately representing real-life speech. The lack of detail and extensive variety in ASR training
sets results in scenarios where the ASR system might function very well in one scenario, but
not in another. Therefore, it is very important to have an appropriate and well-represented
dataset. This consists out of conversational speech, as this closely resembles real life and other
aspects that help improve this representation of real-life settings, e.g. background noise, with
overlapping and spontaneous speech [81]. One new factor of importance in conversational
speech, which was less relevant in read-aloud speech, is to identify non-lexical elements. This
not only helps the system perform better (i.e. to accurately transcribe words that were stut-
tered or laughed through), but also aids it in accurately interpreting the correct type of tone,
intention, or context from only speech to text (e.g. to identify the emotional state of the speaker)
[82].

This chapter will differentiate between (1) detecting non-lexical elements in Hybrid ASR mod-
els, where elements are first separately detected and then added to the pipeline, and (2) non-
lexical elements integration in E2E ASR models, where these two steps are taken together.
Lastly, (3) three appropriate ASR datasets will be examined to see what research potential
there still is within the ASR-paralanguage field.

2.4.1 Detection of Non-lexical Elements Using Hybrid Methods

Important non-lexical elements in speech processing are those that act as a social cue. A few
different types are most commonly identified, namely disfluencies, fillers, backchannels, affect
bursts and vegetative states. [6], [7] Almost every category has been researched quite exten-
sively as a separate entity in the past, with a general aim to extract these vocalisations from
audio. The next step, which some studies include in their work and others do not, is to incor-
porate this into the ASR pipeline. The section will focus on the detection of these elements
and subsequent integration with Hybrid ASR models.
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Disfluencies

Disfluencies that occur in natural speech can be distinguished by speech that falls into repe-
tition, is not smooth, or not continuous [83]. This is the most extensively researched type of
paralanguage in ASR, where many types of models have been applied. This is probably since
this research not only helps with social speech interpretation but also aims to decrease errors
in basic ASR performance. This is because disfluencies like hesitations, repetitions, and false
starts often introduce inconsistencies in the audio signal, which can lead to errors in word
alignment and recognition.

One commonly used dataset for disfluencies is Switchboard. As a result, many studies can eas-
ily be compared on this dataset. Over the years, the performance of disfluency detection grad-
ually improved. In 2013, one study reached a F-score of 84.1% [32] on Switchboard with the
Max-Margin Markov Networks model. In 2015, a research [31] improved this performance to a
F-score of 85.4% with the use of semi-Markov Conditional Random Field (CRF) with prosodic
feature incorporation. In 2016, the Attention-based model [84], using a Bidirectional Long-
Short Term Memory Neural Network (BLSTM) to encode the source sentence, got an F-score
of 86.7%. In 2017, the Transition-based model [85] reached a F-score of 87.5%. Then in 2019,
performance went up again to 89.0% [86], with research using a non-autoregressive neural
machine translation (NMT) model with a transformer. The performance of this high-scoring
NMT model [86] was also tested on the Chinese corpus. It performed similarly to state-of-
the-art but performed much worse than Switchboard, due to the small dataset and inherent
complicated structure of the language, with an F-score of 52.8% [86].

Other research focused more on differentiating between types of disfluency to detect. For in-
stance, one study in 2014 used a BiSLTM for disfluency detection and got an 85.9 % F-score,
which matches state-of-the-art performance. However, it was better at detecting non-repetitions
than previous research, which is noturiously hard to detect, with a F-score of 66.7 %, com-
pared to 61.1 % F-score of the CRF of previous work [87]. [30]

Fillers

Fillers are one of the most common vocalisations [88] including words like "uhm" and "ah".
The specific words and sounds used differ per language [89], but all have the main function
of giving the speaker time to think [90]. They are often considered a subgroup of disfluency,
as the identification of filler words also helps with error detection in ASR. However, due to
its specific use and applications in other tasks (e.g. speaker identification), there has been an
extra focus on it, and has often been considered separately. To identify fillers in speech, many
types of models have been applied over the years.

Already back in 2006, research was done on identifying filler words. One study [33] used an
HMM to find filler words in two different datasets. On the Broadcast News dataset, the human-
generated reference transcript (REF) had a NIST error rate of 18.11% and Speech-Recognition
Output (STT) of 56.00. On the Conversational telephone Speech dataset, the REF was at
26.98 and STT at 41.66. Furthermore, another method that has been used to identify filler
words is with the SParseval tool [91]. One study, also in 2006 [92], reached an F-score of 93.1%
in identifying filler words on the Switchboard dataset. Interestingly, they also note that delet-
ing filler words earlier, before parsing to the ASR, did not yield significantly better results,
improving from 87.8% to 88.9%.

A surge in research in the area occured in 2013, due to the start of the INTERSPEECH chal-
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lenge. This yearly challenge aims to get a comprehensible overview of both established bench-
marks and innovative work currently done in the field of speech communication [93]. In 2013,
the topic was computational paralinguistics, focusing on social signals, conflict, emotion, and
autism [94]. In the social signals sub-category, filler words and laughter were researched. Datasets
are provided for the research and this sub-category, this was the SSPNet Vocalisation Corpus.
The baseline was first set with a SVM, which resulted in an 83.6% Area Under Curve (AUC)
for filler words. The highest performing research that participated in this challenge [95] used a
DNN with filtering and masking techniques and got an AUC of 89.7%.

In 2016, one study [96] used a DNN-based system to identify filler words. From the Confu-
sion Matrix, the highest True Positive score of 82.62% can be extracted for System E and the
biggest issue was that filler words were sometimes classified as garbage. A CNN was subse-
quently used for classification and the overall AUC improved with 4.85% and 6.01% absolute
on the CTS dataset and UT-Opinion dataset, respectively.

Backchannels

This category contains words like "yeah" and "right" to acknowledge or encourage the speaker
[97]. Notably, backchannel responses vary immensely with culture [98], [99] and most research
has been done on American and European populations, so it has to be kept in mind that not
all results can be compared fairly, and carry a bias [100].

ANN’s are implemented widely in this field. One research study compared 2 types of networks
on the Switchboard dataset. They applied a feed-forward network, resulting in an F1-score of
0.327, and an LSTM network, resulting in an F1-score of 0.375.[97] More specifically, the pre-
diction of backchannels (i.e. either on identifying backchannels or determining when backchan-
nels should happen), has become very popular [100]–[103]. One research study [103] focused
on identifying backchannels and the ASR used the hybrid DNN-HMM system with the Sound-
board dataset. They found that including personal embeddings that mimic behaviour im-
proved performance. The best accuracy they reached was 58.9%. Another research [100] used
semi-supervised learning on a Hindi dataset consisting of not just audio, but also video, to
insert backchannels. They found that only minimal annotated data was needed to train a
ResNet and Random Forest classifier. With the use of quantitative analysis, they uncovered
that 95% of participants found that the model outperformed the random prediction. They
also introduced listener embeddings to emulate various backchanneling behaviours.

Most other research focused on when backchannels should happen. One research study ap-
plied an NN on Switchboard [102] to predict the timing of backchannels, which found that
more layers in the network resulted in slightly higher F1-scores. While the F-score was low,
with the highest at 0.06, this metric is not appropriate for this type of research. A subjec-
tive evaluation metric was needed to conclude if the backchannels generated were natural and
here they found that the (subjectively) best-rated network was the 3s-trained NN. Another re-
search [101] used multimodal output features and two models (i.e. HMM and CRF) to predict
and generate backchannel responses, both audio and visual.

Vegetative Sounds

A category that is researched very little, is vegetative sounds. These are mostly involuntary
sounds that include vocalisations like coughing, yawning, and snoring [7]. Often, these are
sounds that are not annotated in ASR datasets, as it is more of a nuanced observation and
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hard to pick up on audio. In addition, this information was often not seen as relevant or sim-
ply did not even occur in the recording at all.

However, during the COVID pandemic, there has been a surge in (comparative) research re-
garding coughing and sneezing [104]. Often, only cough samples are extracted, but sometimes
this is also combined with speech processing and other vocal characterizers like sneezing. The
difficulty remains when comparing its performance with state-of-the-art, as it cannot be com-
pared to similar ASR datasets. In addition, very little ASR research has been done into cry-
ing, probably due to the lack of data and overall need for this. However, a specific interest was
taken in infants crying, mostly to identify different types of crying like hunger, colic, diaper,
and sad [105]–[107]. One research study reached an average accuracy of 94.77% in differen-
tiating between these and other categories [107]. Moreover, yawning has also barely been re-
searched. There has been a specific focus on the scenario of a driver yawning [108]–[111], but
most research focused only on video, to see if the mouth was open, and not on audio.

Affect Bursts

The last set that can be identified within nonverbal vocalisation types, is affect bursts. These
include vocalisations like laughing, crying, and screaming. More recently, these types of bursts
have been annotated more, but still not that much variation in data is available. Also, these
bursts occur relatively infrequently. Probably due to the lack of data, this field is under-researched
regarding its integration with ASR.

The main vocal characterizer that is researched is laughter, as this can be found in annotated
ASR datasets, although minimally. In 2007, one research study [112] focused on developing
a laugh detector by using different feature types, i.e. spectral and prosodic, and classification
techniques, i.e. GMM, SVM and MLP. The Equal Error Rate (EER) was around 3% for dif-
ferentiating between laughter and speech on the ICSI dataset. They also found that mixing
the GMM with SVM and fusing feature types improved performance the most. Alternatively,
often an NN has been used, where another research in 2007 [113] used an NN for laughter
recognition and reached an EER of 7.9% on the same ICSI dataset. More recently, another
study [114] used a DNN to detect laughter and reached an accuracy of 88.1% on the SSPNet
testset. With a CNN, another research [96] improves their ASR AUC performance by 8.15%
and 11.9% absolute for laughter on the CTS dataset and UT-Opinion dataset respectively.
The highest True Positive for laughter was 73.3%, where the biggest mistake made was that
laughter was sometimes classified as garbage.

In the last few years, different models have been optimised for laughter detection, focusing on
the right combination of features, classifiers and training data. In 2021, one study [18] com-
pared various datasets used in laughter detection to make it robust in noisy environments.
The next year, in 2022, a more general study [115] was conducted on the comparison of laugh-
ter detection in the current state-of-the-art. They found limitations that have to be addressed,
e.g. shortcomings in sufficiently large and naturalistic datasets and the use of the correct type
of evaluation metrics. However, during this time the focus was on E2E systems, as will be
elaborated on in the next section.

2.4.2 Non-lexical Elements in E2E ASR Models

There are two main methods to incorporate non-lexical elements into E2E ASR. One way is to
fine-tune existing E2E ASR models. As far as the writer is aware, very little research has been
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done in this field regarding non-lexical elements of speech. One study investigated social sig-
nal detection in combination with E2E ASR, specifically investigating laughter and filler words
[116]. This research compared the CER with the final ASR performance, showing the lexical
impact. Without labels, the CER was at 19.41% and with labels inserted on both sides, this
was at 19.69%. This showed that it is possible to incorporate labels, i.e. social cue informa-
tion, into the transcript without the ASR performance deteriorating.

Another way is to separately detect these non-lexical elements and add them to the ASR pipeline
at the end. The overall number of studies performed in this area is minimal, probably due to
the combination of the lack of data and since this type of model has only recently been ex-
tensively researched and developed. Disfluencies, including hesitations and fillers, have been
the focus of the field, as their removal and subsequent cleaner sentences have the potential to
improve ASR performance.

One study [117] on disfluency removal in E2E ASR models is often used as the baseline in this
field. This research was the first to investigate the direct integration in three E2E ASR mod-
els, i.e. CTC, Sequence-to-Sequence (Seq2Seq), and Transformer, and found that these mod-
els can indeed directly omit disfluencies from the transcripts. Each ASR model was trained
twice, first with a basic ASR pipeline and later adding the disfluency detection model, being
trained on disfluent speech and transcripts, and secondly by integrating the E2E models di-
rectly, which was only trained on disfluent speech but fluent transcripts. However, for all three
models, the ASR E2E performance got worse compared to the baseline system of no disflu-
ency integration, when tested on the Corpus of Spontaneous Japanese (CSJ) dataset. For the
CTC model without any disfluency removal and the CTC model with the disfluency detection
model, i.e. called CTC base and CTC pipeline respectively, WER was at 12.5%. However,
the CTC E2E model performed worse, at 14.3% WER. For the Seq2Seq base and Seq2Seq
pipeline, this was at 11.2 % WER, but at 12.2% WER for Seq2Seq E2E. Lastly, for the Trans-
former, the base and pipeline were at 11.2 % WER, but at 13.8 % for Transformer E2E.

The next year, two other studies concurrently considered the labeling of hesitations and inte-
gration into E2E ASR. One research study [9] considered the same dataset, i.e. CSJ, and used
the ESPnet2. The new model improved the most over the baseline model for eval3, i.e. the
largest dataset. The baseline model got a CER of 7.3% and SER of 48.4%, while their ASR
hesitation model with Speed Perturbation (SP) got a CER of 4.1% and SER of 34.2%. This
seems substantial and while it does show potential, the biggest improvement was caused by
the SP. The baseline with SP got a CER of 4.7 % and SER 37.5%. The other research [8], fo-
cused on increasing accuracy by adding disfluency training data and replacing partial words.
There was an improved ASR performance, with a relative WER improvement of 22% for the
test set of disfluencies and 16% on the test set of stuttering speech.

However, a follow-up research [118] considered filler and hesitation labeling with E2E ASR
models in spontaneous speech. Their proposed method got an improved CER of 10.3% and
SER of 32.8%, compared to the baseline disfluency removal of 2020 [117] with a CER of 12.9
% and SER of 49.9%. These results are also compared to the ASR model without disfluency
labeling, which got a much higher CER of 16.0% and SER of 63.8%. This study shows the
potential of integrating disfluency labeling and removal to improve spontaneous ASR perfor-
mance.

Some other interesting research was also conducted. One study looked into using different
end-to-end models and features for laughter detection, but did not include any research on
the ASR performance. They found that using the BLSTM CTC model gave the best results.
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In addition, a combination of spectral and prosodic features yielded the best results with 81.83
% accuracy for laughter detection [119], which affirms the results from the earlier research in
2007 [112]. Moreover, another study [120] used a Seq2Seq DNN with a two-layer BLSTM, sev-
eral feed-forward layers, and a Rectified Linear Unit (ReLU). , to prove that it is more benefi-
cial to divide non-verbal vocalisations into separate types of classes, i.e. laugh, breath, whistle,
sip, etc, than simply differentiating between "laughter" and "other", as is often done. Also,
they achieved the highest performance of 1.58% EER on the ICSI dataset with multi-label
classification and the Seq2Seq model.

Overall, there is very limited research on the integration of non-lexical element detection with
E2E ASR, but there is potential in the field. In addition, it is quite telling that when adding
social cue labels like laughter, the ASR performance does not deteriorate. This shows poten-
tial improvement for adding other non-verbal social cues to ASR transcriptions. Moreover, no
research has been done yet into the fine-tuning of E2E ASR models for non-lexical elements,
but there was potential in related areas, so there could be opportunities here.

2.4.3 Integration of Non-lexical Elements in Existing Datasets

To find the gap in research it is not only important to consider what research has already
been done but also to analyse what specific gaps there are in this research. One way to do this
is to consider common datasets in this research and to see how prevalent certain non-lexical
elements are, to see what would impact the development of the ASR field the most. There-
fore, we analyse three different datasets, based on the count of the frequency of the occurrence
of the five paralanguage categories, i.e. as described in Chapter 2.4.1. Disfluencies will not
be analysed in the datasets, as this has been researched a lot already in the past. The other
four categories will be considered: filler words (i.e. uh, um, hmm), backchannels (i.e. yeah,
right, uh-huh), affect bursts (i.e. laughter and crying), and vegetative sounds (i.e. coughing
and yawning). The exact words will depend on what and how the elements are labeled in their
respective datasets.

The results are then compared to the research done above, to find what potential research
still is to be done. The three datasets that will be analysed are the three most common and
largest ASR datasets used in non-lexical vocalisation detection tasks, as identified in Chapter
2.1.4. These are: ICSI Meetings, AMI Corpus and Switchboard.

Two notes are of importance. First, the word "right" can be used as a word in a sentence too,
so this count might not be an accurate representation of the occurrence of backchannel words.
A more in-depth analysis of its use in context should be done when researching this word as
backchannels, which was not done due to time constraints. Secondly, each dataset annotates
the words differently, especially for the filler words. For example, in the Switchboard dataset,
the word "huh" never occurs, while this is the biggest dataset. When analysing the text, it
is clear that the "huh" from AMI and ICSI, is "hmm"or "uh" in Switchboard. Therefore, a
direct comparison cannot be made and there must be looked at how these directly translate to
each other. As a result, in the case of this analysis, a broader analysis is done and there will
mainly be looked at the total count of filler and backchannel words.

ICSI Meetings

The ICSI Meetings [27] dataset has elaborate annotations, both in vocal and nonvocal sounds.
In Table 2.3, an overview of the elements that were annotated is given, i.e. vocalisations, filler
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words and backchannels. For vegetative sounds, they have labelled the vocal sounds yawning
and coughing, but very minimally. For the affective bursts, only laughing was annotated; even
differentiating between the type of laughter, e.g. "breath-laugh" and "laughing while talking".
In total, as many as 11 513 laughter events occurred. Various filler words were identified and
in total, almost 30 000 occurences were counted. Moreover, a bit more than 25 000 backchan-
nel words were identified when counting all variations of the backchannel lexical elements, i.e.
mm, yeah, and right. This dataset contained 70 hours of speech. This shows that for filler
words and backchannels, there is plenty of data available. In addition, there is also a lot of
data on laughter, but significantly less on coughing and yawning.

AMI Corpus

In Table 2.4, an overview is given of the vocalisations, filler words, and backchannels in the
AMI dataset [28]. The AMI Corpus included a few vocal sounds, but did not differentiate be-
tween many different kinds, e.g. just "laugh" and not "laughing while talking" and the to-
tal number of laughter vocal sounds was high, where there were 16 524 laughter counts. For
the vegetative sounds, "coughing" was annotated a bit over 1 100 times and "yawning" was
not annotated at all. There were almost 40 000 filler words and 38 000 backchannel words.
There were a 100 hours of speech in this dataset and the focus of these audio recordings was
on multi-party interactions. Also for this dataset, it is the case that there is a lot of opportu-
nity to research all the types discussed, but again there is less data on coughing.

Switchboard

The Switchboard dataset [21] has a lot of labels for non-lexical elements and contains 260
hours of speech. However, the variety of labelling was not very high. An overview can be seen
in Table 2.5. It has no vegetative sounds and only one type of affect burst, namely laughter.
However, they also labeled if this was during speech and what words were said while laughing.
In total, a bit more than 35 000 laughter events occurred. In addition, many filler words and
backchannel words could be identified, with almost 125 000 and 100 000 events respectively.
As a result, a lot of research could be done on all types of non-lexical elements discussed.

2.5 Conclusion

After analysing the literature and three relevant datasets, some conclusions can be drawn as
to why my specific research should be conducted. This can be seen in the way of (1) topic and
(2) execution method. The importance of researching paralanguage has been shown along the
way in this chapter, where conversational speech is used to train the model to more accurately
represent human interaction in ASR. However, exactly what part to focus on is still debatable.
In addition, the execution method, i.e. the type of model and specific method, used for this
identified topic will be discussed.

2.5.1 Paralanguage Gap in Research

As identified in the previous sections, five types of paralanguage can be considered. When
finding the gap in research, one can look at (1) the under-researched areas and (2) how com-
monly they occur in speech. Disfluencies have been the most popular in research and are very
versatile (i.e. difficult to analyse and distinguish), hence they are omitted from this discussion.
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There is a lot of data on filler words and backchannel words as well. While this shows poten-
tial, these have also been researched in various scenarios. In addition, these are less interesting
from a paralanguage perspective. The main aim of its detection would be to help conversa-
tional robots interpret and identify speakers and aid the ASR in gauging context or emotion
recognition. The remaining two are vegetative sounds and affect bursts, which were unequivo-
cally researched the least. In theory, these include all vocalisations like laughing, crying, yawn-
ing, coughing, etc. However, in many datasets this is often not present.

In the three large ASR datasets discussed, some of these vegetative sounds and affect bursts
were present. The ICSI corpus did contain a few instances of yawning and coughing, but showed
that this was not often present in spontaneous speech. However, the much larger number of
laughter occurrences highlights the significant impact it can have on the development of ASR
systems when laughter is integrated. There were more laughter events (i.e. 11 500 events) and
extra information was even available, i.e. if laughing occurred during talking or not. In the
AMI corpus, yawning was never annotated, but more coughing events were labeled. With
1 100 events, these show that integrating it into ASR would have a much smaller impact.
Many more laughter events occurred, at 16 500, but less information is available on the type
of laughter. The Switchboard dataset was by far the largest, with more than double the hours
of labeled speech as the AMI corpus. The size of the dataset is reflected in the high number
of laughter events recognised, with just over 35 000 events. They even labeled if laughing oc-
curred during talking and if so, during which word. There is no labeling on other affect bursts
besides laughter.

Consequently, the greatest potential for advancing ASR systems lies in effectively detecting
and incorporating laughter events. It has been the least researched but is relatively very preva-
lent in spontaneous speech. The Switchboard corpus has the most occurrences and even has
some extra information, hence this dataset is probably the most informative for the model.
The ICSI corpus and AMI corpus both had reasonably similar amounts and types of data,
with 11 500 and 16 500 laughter event counts, respectively and were all recorded in meetings.
Each has its benefits, where ICSI has extensive details that can be extra informative to the
model, while the AMI corpus has more laughter events. When this extra information is not
used in the training process, AMI will be the preferred choice. This is also the case for this
research, as the focus will be on integrating laughter transcriptions into the ASR system by
tagging the laughter event.

2.5.2 ASR Model Type Opportunities

The type of models used for ASR systems have developed from statistical and hybrid models
to E2E models. The E2E model has been shown to behave the best, with high performance
and robustness. While E2E models have been used to transcribe laughter, this was only done
as a separate event and later added to the pipeline. However, the technique of fine-tuning has
shown to have good results too. This is an under-researched field, where no type of paralan-
guage has yet been used for fine-tuning as far as the author is aware. This allows for interest-
ing insights and makes room for potential other research. As a result, this type of model will
be used for the integration of laughter transcription in ASR systems.

Exactly which model should be used can also be debated. Each model has its merits and can
be argued for in different applications. In the case of paralanguage, there is one model that
stands out. HuBERT has a particular focus on "cues from how those words are delivered, e.g.,
speaker identity, emotion, hesitation, and interruptions. " [13]. As a result, this is the first
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model that will be used in this research. Secondly, the Whisper model is currently the largest
and most popular. It is known to be flexible, trained on lots of data, and can handle back-
ground noise quite well. Therefore, this will be the second model used and will be compared
to the performance of HuBERT.

2.5.3 Potential Limitations

Some limitations should be taken into consideration before starting with the research and
training the model. These could affect the performance, scope and applicability of this re-
search.

First of all, the focus of this research is on transcribing laughter. To do this, laughter events
are tagged. However, this focus is only on laughing out loud, not on laughing while talking
or smiling. This could potentially confuse the system, as the model could get confused by the
similarities. Therefore, this research will also look specifically at what happens at those points
where laughing while talking occurs.

Secondly, laughter will sound quite differently per person, context, intensity, and acoustically
in the room. This can make it challenging for ASR system to identify all types of laughter
consistently and to make it robust for laughter that it was not trained on. This also means
that laughter will sound differently in the AMI dataset and Switchboard. Beneficially, both
datasets consist of conversational speech in a similar context, so this means that a fair com-
parison can be made between the datasets. The main consideration would be when applying
this system in other scenarios or on other types of data.

Thirdly, a recurring issue in the literature is that there is no standardised evaluation method
for this kind of research. In most NLP and ASR research WER is used for the transcription
and accuracy is used for the identification of paralanguage, but this does not exactly fit the
requirements for this research. Some researchers have developed unique metrics to precisely
assess their results, but this approach complicates comparisons with other studies and the
evaluation of their effectiveness. Due to the various opinions and difficulty with this topic and
the general lack of similar research, it is best to keep to what is used most often. This way a
new baseline with this new research can be set and still compared to the state of the art.

Fourthly, fine-tuning is inherently problematic. Several issues may arise, like catastrophic for-
getting. In addition, a balance must be found between the high performance of ASR, with a
good WER, and a high accuracy in transcribing laughter. Often, these two can clash. More-
over, the issue of overfitting may occur. This could limit the generalisation to other datasets
or real-life scenarios. Also, this is a time and computationally complex problem. Hence, this
could mean that model refinement cannot be carried out to the maximum capacity within the
time this research must be conducted.

Lastly, ethical and bias concerns should always be taken into consideration. The data used
in this research has been collected ethically and with consent for its open-sourced use. How-
ever, the data only consists of a few people and the English language. It should be noted that
this means that the final fine-tuned ASR system is not representative of people from all back-
grounds, genders, accents, or other languages. A lot more training and fine-tuning with more
inclusive datasets must be done before this system can be applied in real life. It is meant as
the first step in finding opportunities for further research in making the ASR system more ac-
curate in representing real life and gauging emotions and contexts.
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Research papers ASR Models (Types)
Topic Whisper Wav2Vec2 XLS

(R-53 &
-R)

HuBERT Conclusion

Fine-tuning
on dysarthric
speech [14]

Wav2Vec x x Features extracted from XLSR model
yielded best results for English, Span-
ish, and Italian, seeing as it contains
more variations of similar phonemes
than other models. On the UA-Speech
dataset, wav2vec2 got a WER of 29.3%
and CER of 27.7%; HuBERT a WER
of 29.7% and CER of 28.2%; XLSR got
a WER of 26.1% and CER of 24.1%.

Fine-tuned
on Dutch
dysarthric
speech [15]

Small x Whisper performs better than XLSR-
53 for all impairment severity groups,
i.e. severe, moderate and mild. The
best results was reached on the mild
group, the performance decreasing with
severity, where Whisper had a WER of
37.51% and XLSR-53 of 43.54%

Developing Mal-
tese (language)
with ASR [78]

Small,
Large

x x XLS-R performs best, with near 2%
CER and 8.53% WER on the Com-
monVoice dataset. Whisper-Small and
Large were very similar, with CER be-
tween 5 and 10 % and WER around
20%.

Fine-tuning on
Kazakh (lan-
guage) [72]

Large x x Wav2Vec2 had the lowest CER and
WER at 2.8% and 8.7%. Whisper
achieved 4.1% and 19.8% and XLSR-
53 4.3% and 13.5% respectively.

Fine-tuning on
Luxembourgish
(language) [73]

Large x Looking at WER, Wav2Vec2 was the
best with 9.5%, where Whisper had
12.1%. However, Whisper was better
than Wav2Vec2 due to restoration of
capitalization; punctuation; better word
recognition

Fine-tuning for
African accent;
AfriSpeech [75]

Medium x For all accents, Whisper outperforms
XLSR. Fine-tuned Whisper performs
best 13/20 times, unfine-tuned Whisper
7/20. For all datasets in AfriSpeech
fine-tuned Whisper model outperforms
fine-tuned XLSR-53.

System fine-
tuning for low-
resource speech
translation [16]

x x x Over many datasets, Wav2Vec2 and
HuBERT got very similar results.
XLSR-53 does not perform well for
low resource task, but does well on di-
alectal transfer task.

Table 2.1: Part I (low-resource speech): Table of research on fine-tuning the pre-
trained models Whisper [11], Wav2Vec2 [63], XLSR [61] and HuBERT [12].
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Research papers ASR Models (Types)
Topic Whisper Wav2Vec2 XLS

(R-53 &
-R)

HuBERT Conclusion

Fine-tuning for
German speech
recognition [74]

Small x Fine-tuning the full Whisper model,
with the last six layers of encoder and
decoder simultaneously, resulted in the
lowest WER of 3.1%, although forget-
ting occurs. Experience Replay (coun-
teracts forgetting) is a good asset for
improving WER. Whisper outperforms
XLS-R and XLSR-53 after 5 epochs.

Whisper Audio
Tagging (iden-
tifying back-
ground noise si-
multaneously
with spoken
text) [79]

Tiny,
Base,
Small,
Medium,
Large

x x Whisper-Large and Whisper-Medium
got similar results. The worst perform-
ing were Whisper -Tiny, HuBERT and
Wav2Vec2. From signal-to-noise ra-
tio 20 to 10, HuBERT had equal low
(<3%) WER results to Whisper-Large.
All models performed increasingly worse
from signal-to-noise ratio 0 and up.

Robustness to
distribution
shifts and other
disturbances[17]

Large x On average of 14 datasets the WER of
wav2vec2 was 29.3% and for Whisper
12.8%. On LibriSpeech Clean, both got
a WER of 2.7%.

A base-line for
Code-switching
speech (switch-
ing between
Spanish, French
and Chinese to
English) [80]

x x x For multilingual and monolingual
speech encoders, the first heavily out-
performs the latter, where XLSR-53
or XLS-R perform the best, depend-
ing on the language of code-switching.
The highest accuracy was at 75.16%
for Spanish-English and an average of
59.21% over all languages by XLS-R.

Constructing
(unordered)
Acoustic Word
Embeddings
with E2E mod-
els, and their
ability to con-
vey the sentence
meaning [76]

x x x For Xitsonga, Mandarin, French and
English, HuBERT (trained on English)
outperforms XLSR-53 and Wav2Vec2,
reaching the highest average precision of
6̃0% for the Buckeye (English) dataset.
AWEs created by mean pooling, instead
of subsampling, were used, where Hu-
BERT also outperforms Wav2Vec2.

Fine-tuning
for Automatic
Speaker valida-
tion [77]

x x XLSR marginally but consistently per-
formed better than HuBERT, as it had
more diverse training data, e.g. the low-
est EER of XLSR was 0.585 % and for
HuBERT this was 0.590%

Table 2.2: Part II (miscellaneous tasks): Table of research on fine-tuning the pre-
trained models Whisper [11], Wav2Vec2 [63], XLSR [61] and HuBERT [12].
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Type Words Occurrence
Affect Bursts Laughter 11 513

Vegetative sounds Coughing 207
Yawning 56

Filler Words Uh 13 887
Um 8 041

Hmm 5 865
Huh 826
Total 28 619

Backchannel Mm 4 618
Yeah 15 671
Right 5 482
Total 25 771

Table 2.3: Counting occurrence of Non-vocalisations in the ICSI corpus [27].

Type Words Occurrence
Affect Bursts Laughter 16 524

Vegetative Sounds Coughing 1 116

Filler Words Uh 25 764
Um 12 394

Hmm 1 446
Huh 293
Total 39 897

Backchannel Mm-hmm 4 608
Yeah 29 475
Right 3 603
Total 37 686

Table 2.4: Counting occurrence of Non-vocalisations in the AMI corpus [28].
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Type Words Occurrence
Vocalisation Laughter 35 713

Filler Words Uh 86 528
Um 37 319
Hm 1 013

Total 124 860

Backchannel um-hum 16 016
uh-huh 16 315
Yeah 48 067
Right 17 045
Total 97 443

Table 2.5: Counting occurrence of Non-vocalisations in the Switchboard corpus [21].

34



Chapter 3

Methodology

This thesis aims to compare the optimal performance of fine-tuning two ASR models, Hu-
BERT and Whisper, on speech and laughter. The evaluation is based on the WER for the
ASR and on the F1-score for laughter detection, comparing the results for the two datasets
AMI corpus and Switchboard. In this Chapter, the method explains: the experimental setup,
the overview of the pipeline from the dataset divisions through to evaluation; what specific
configurations were needed to optimise the two models for fine-tuning on laughter; and the
specific software and hardware that were used.

3.1 Experimental Setup

This thesis consists of three main experiments. However, first, the correct parameters for Hu-
BERT and Whisper have to be found. The main parameters investigated were the optimal
learning rate, weight decay and number of epochs. Ideally, the parameters of both HuBERT
and Whisper are fine-tuned for both datasets. However, due to computational and time con-
straints, only AMI (i.e. the smaller and noisier dataset) is used to find these parameters for
HuBERT and Whisper. These initial tests used just 20 epochs. With these final parameters
extrapolated from the initial tests with AMI on 20 epochs, the main experiments could be
completed with more epochs on both datasets (i.e. AMI and Switchboard). It must be noted
that Whisper and HuBERT could potentially perform better on Switchboard if the parameters
were fine-tuned on the same dataset.

3.1.1 Types of Experiments

There are three kinds of experiments: the Zero Shot (i.e. no fine-tuning), the Fine-Tuned
Without Laughter and the Fine-Tuned With Laughter. The first, requires no fine-tuning and
considers the results based on evaluating the models on the test set (i.e. 20% of the full datasets).
This shows the behaviour of the models as they are; without learning accents or dataset-specific
noises yet. The second, fine-tuned the model but excluded the laughter labels from the train-
ing set. During evaluation (i.e. validation and test set), the laughter labels are included again.
This shows the behaviour of the models when fine-tuned, so this could reflect a more nuanced
comprehension of the underlying emotional or contextual signals in speech that are not di-
rectly tied to laughter. However, this may still be influenced by its presence or absence. Lastly,
when fine-tuned with laughter, the potential performance of the models could be found. Eval-
uating these models demonstrates their ability to identify laughter, which could enhance the
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accuracy and relevance of the model’s responses in real-world applications. For all experi-
ments, the main dataset used was the AMI Corpus, later comparing the models’ performances
to the Switchboard dataset.

3.1.2 Model Configuration

Each model has to be configured to their best ability to optimise the fine-tuning, which specifics
differ per model. This difference is due to the inherent nature of each model. The Whisper
model is pre-trained on much more data and optimised for easy use. It is also the most popu-
lar and there are more possibilities to tweak it. The vocabulary consists of part-words that are
co-mixed. The HuBERT model is more flexible with new sounds, due to the CTC head that
uses a letter vocabulary: the focus is on phonetic sounds.

Whisper Model

The Whisper model is trained on a lot of (types of) audio, namely "680 000 hours of multilin-
gual and multitask data" [11]. The audio used was both clean and noisy, extracted from vari-
ous data types, like podcasts, lectures, conversations and interviews. Also, approximately 30%
of the data was in another language than English. There are several types of Whisper models,
but in this thesis, the largest model that still performed well was chosen, namely Large-V2.
Large-V3 was also considered, but testing showed the model hallucinated more, e.g. show-
ing "!!!" as output. This was in line with what other people have also observed [121]. In ad-
dition, due to computational constraints, the Distilled Whisper Large V2 version [122] was
chosen, as this promises to be 6 times faster, half of the size, but performs within 1% WER
of the normal Whisper Large V2. Whisper has its own compatible processor, which includes
the feature extractor and tokenizer. Therefore, the WhisperFeatureExtractor and Whisper-
Tokenizer are used. The laughter token is added to the vocabulary and model, with "<laugh-
ter>". The data collator, which is responsible for padding and batch creation, ensures that
the "input_features" and "labels" are padded with the help of the processor.

HuBERT Model

HuBERT is a self-supervised model that was trained on LibriSpeech and Libri-Light. These
datasets contain 61 000 hours of audio from audiobooks, with varying degrees of background
noise. The model used in this thesis is hubert-large-ls960-ft, from Facebook. This is the sec-
ond largest available, but due to computational constraints, the biggest was not possible to
use in this research. HuBERT does not have its own processor, but the basis of this model is
the Wav2Vec2 model, so the Wav2Vec2FeatureExtractor and Wav2Vec2Tokenizer can be used.
After the "<" token is added to the vocabulary, a random and uncommon token chosen to
represent laughter, the model embeddings again have to be resized. There is no function for
this in HuBERT, so a new embedding layer is added to the LM head with the new size. The
new embeddings are initialised with the existing ones and the new tokens are randomly ini-
tialised. This layer now replaces the old model’s token embeddings. The data collator used is
specifically for CTC, as it uses the appropriate processor, so this ensures the "input_values"
and "labels" of the batch are padded. In addition, the feature extractor is frozen during fine-
tuning, as this is redundant and saves computational capacity. This is recommended to do in
a similar tutorial [123] and was done in similar research [124], [125].
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Figure 3.1: Illustration of the overall pipeline from data splitting, creating the input
for finetuning to the finetuning process with evaluation, applicable to Whisper [11] and
HuBERT [12].

3.2 Fine-tuning Pipeline Overview

The pipeline for both models is very similar, hence a general overview can be given that ap-
plies to both. First, the data is normalised and divided into three subsets: the training set,
validation set, and test set. To create input for the models a feature extractor and proces-
sor are defined and configured. Then, the features are extracted from the audio and the pre-
processed reference text is tokenised. It is then divided into chunks of 30 seconds and is used
in batches as input for the fine-tuning process. During fine-tuning with 70% of the dataset
(i.e. training set), the model weights are fine-tuned with 10% of the data (i.e. validation set)
based on the validation loss. After fine-tuning but before evaluation, the output data and ref-
erence text are post-processed to calculate the metrics during the evaluation fairly and accu-
rately. Lastly, the final evaluation of the model is based on the last 20% of the data (i.e. test
set), where the ASR performance is assessed with the Word Error Rate (WER) and the laugh-
ter detection is assessed with the F1-score, recall and precision. This process is visualised in
Figure 3.1.
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3.3 Datasets

In this research, two datasets were used, namely Switchboard and AMI. Both contain sponta-
neous speech but differ in their structure and speakers. Switchboard [21] contains 260 hours of
structured dyad telephone conversations, in which specific topics were given to discuss. There
were 2400 conversations from 302 male and 241 female speakers from the United States (i.e.
all had a US accent). In total, there were 11 513 laughter occurrences. The AMI corpus [28]
contains 3 scenarios, Edinburgh, IDIAP, and TNO. These multi-party recordings contained
English accent variations and a lot of overlapping speech, as there were four speakers. The au-
dio files were mixed headsets with 4 respective reference texts (i.e. per individual speaker).
These scenarios were meetings, which were free to discuss anything and less structured. In to-
tal, there were a 100 hours of audio recordings. The mixed headsets were chosen instead of
individual headsets due to computational constraints, but also because there is less times it is
quiet with soft background voices, which is quite ambiguous data. This could cause hallucina-
tions, which Whisper already suffered from. There were 16 524 laughter occurrences in total
in the dataset.

This data is split into a training set, validation set and test set, by using 70%, 10%, and 20%
of the data respectively. This fits with the standard division strategy within the ASR and
machine learning field of using 60 to 80%, 10 to 20 % and 10 to 20% respectively, and fits
with similar fine-tuning research that also used Whisper and a derivative of HuBERT (i.e.
Wav2vec2), namely XLS-R [74]. The latter used the same split as is used in this research. All
data has been randomly divided over the three datasets within their divisions, by first shuf-
fling all the data with Random [126] (i.e. for reproducibility random seed 42 was used) and
then dividing it according to their split.

3.4 Creating Input For Fine-tuning

The input unit for the fine-tuning process is a 30-second chunk consisting of input features
and processed reference text. As such, after the division of the datasets, the reference text
files are pre-processed and chunked together with the audio files, which are then tokenised and
features are extracted. After this, all chunks are normalised, ensuring all None or 0 values and
small chunks are excluded.

3.4.1 Pre-processing

For Switchboard, there are separate reference text files per speaker, but one audio file was
used for both, hence the reference files are combined based on the word time stamps. Also
for AMI a combined audio file is used (i.e. the mixed headsets), so the individual reference
texts are also combined. These text files are all pre-processed to ensure a fair comparison of
all the different data inputs. They were pre-processed for: exclusion (i.e. extra notes like "si-
lence" and exclude truncated words); lowercase; contractions (e.g. I don’t know); corrections
(e.g. dunno becomes don’t know); and the inclusion of the laughter event as a new token (i.e.
<laughter> for Whisper and < for HuBERT, which is based on their respective architecture
and vocabulary type).
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3.4.2 Feature Extraction

The audio and reference files are then separated into chunks of 30 seconds, as this is the op-
timal length for both Whisper and HuBERT to train on (i.e. to balance the amount of data
and context needed). The first chunk starts at the beginning of the audio file from where
there is actual talking. This is found by checking the timestamp of the first word in the match-
ing reference file. The same is the case for finding the end of the last chunk in the audio file.
The audio of these chunks are then put through the processor, using the feature extractor.
Whisper converts the raw audio into a log-mel spectrogram, which is windowed and normalised.
HuBERT does not do this but allows a CNN to directly learn from the data, which outputs
features that are embeddings of acoustic patterns in context.

3.4.3 Laughter Token Insertion

To ensure that laughter is added during the training process, a new token has to be added to
the vocabulary of the tokenizer. It should be clear that when the word "laughter" is spoken,
this is different from the laughter event. It is irrelevant what token this is, as long as it is new
in the vocabulary and not to be confused with another meaning, as this can be post-processed
to any symbol that shows it means Laughter Event after fine-tuning. Therefore, for Whisper
the <laughter> token is added. For HuBERT, due to the Connectionist Temporal Classifi-
cation (CTC) head working with individual letters as a vocabulary, simply the symbol < is
added as the laughter token in the training process. In this work, during post-processing after
fine-tuning and evaluation, both of these tokens are converted to "<Laughter>" for the end
users’ interpretation and further consistency when discussing the laughter event in this thesis.
However, the specific label does not affect the performance, so it can be changed into anything
else, as relevant to its final application.

3.4.4 Chunk and Batch Creation

The last step is to create the input for the model. First, a full list of chunks is created. These
combine the 30 seconds of input features with the corresponding processed labels that are to-
kenised. These chunks are normalised to exclude all empty reference text chunks or audio data
chunks.

Based on the set batch size, as dependent on the hardware, an x number of chunks will go
through a collate function. A custom collate function is used here, initialised as a Data Class.
With this input, it will process the data and form a batch. In this function, the data is squeezed
and padded with the use of the processor. Moreover, the padding is replaced with a special
value (i.e. - 100), as designed by the model, so the loss ignores the padding. This is necessary
to ensure the model does not take unimportant information into account. In addition, only for
HuBERT, there is a mask for 15% of the input (i.e. as is the functionality for the Hidden Unit
part of BERT) and in the collate function this is filled. This is the final input for the Trainer
in the fine-tuning loop.

3.5 Fine-tuning loop

The fine-tuning loop is where the model is retaught on the new data, by using the training
set. With the help of the Trainer class [127] and its Training Arguments functions from Hug-
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gingFace 1, the loop changes the weights of the model to learn from the new data, while still
remembering the pre-trained data. The learning rate and weight decay play a big part here,
as they decide how fast and well the model learns. In addition, every 1/5th epoch the training
process is validated to see if the loss is still going down and the data is not over- or under-
fitting, by using the validation set.

3.5.1 Trainer

The final batch is used as input for the Trainer class [127], which is a loop that does the fine-
tuning. The Trainer can be configured with TrainingArguments, which gives many options
to fully optimise the Trainer per model. These configurations are largely dependent on the
hardware and model used.

The full configuration can be found in Appendix A, but the most important parameters are:

• The batch size is set between 2 and 4 (i.e. small, as the models are very big);

• The gradient_accumulation_steps and eval_accumulation_steps is set to 8 (i.e. to min-
imise memory usage for the GPU);

• The dataloader_pin_memory and fp16 are set to true (i.e. for optimised GPU usage);

• The evaluation strategy is set to steps, where the evaluation step frequency is approx-
imately 5 times per epoch and the warm-up steps are set to 5% (i.e. as is standard) of
total steps

• Early stopping is implemented, evaluated on the evaluation loss, with a patience of 20
epochs and a threshold of 0.001. The best model is then chosen based on the highest F1-
score in those last 20 epochs.

• The learning rate, weight decay and number of epochs are also set here, the best values
for which will be researched in this thesis

3.5.2 Validation

During initial testing, every 1/5th epoch the model is evaluated on the validation set. This is
set to once per epoch when fine-tuning for more epochs. This does not necessarily benefit the
model but it is to see how the fine-tuning is performing (e.g. overfitting). These models are
evaluated on WER, F1-score and validation loss. The validation loss should be going down,
otherwise too many epochs are being run. At the same time, it is interesting to see if the
model is also actually learning more words (i.e. lower WER) or laughter events (i.e. higher
F1-score), or if it is learning something else (e.g. background noises).

To make a fair comparison between HuBERT and Whisper on AMI and Switchboard, with
a focus on identifying laughter events, the output of both models have been post-processed
extensively just before evaluation. This will match the already pre-processed reference text,
as mentioned in 3.4.1. This pre-processing was done by visually inspecting the reference and
hypothesis texts and finding all the discrepancies, and by keeping in mind the standard steps
in NLP [128].

All hypothesis text outputs have been post-processed with:
1All models and main fine-tune functions come from Huggingface, see [127]
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• Removed Non-ASCII Characters, except for < > (i.e. to ensure correct "<laughter>"
token in the case of Whisper and "<" for HuBERT)

• Convert to Lowercase

• Capitalise Pronoun "I" when on its own

• Correct Contractions: ensure I’m, I’ve, I’d are correct

• Convert Numbers to Words (e.g. 8 becomes eight)

• Remove Punctuation Marks

• Manual Text Corrections (i.e. to ensure both outputs align, e.g. "ok" to "okay")

3.6 Evaluation

After the model is fine-tuned, the model has to be evaluated with the post-processed hypoth-
esis as explained in 3.5.2. This is done by using the final test set. This is divided into two
parts, namely the lexical analysis meant for the ASR part of the research, and the laughter
recognition analysis. The lexical analysis consists of the Word Error Rate, by using the align-
ment operations hits, insertions, deletions and substitutions as calculated by the Jiwer pack-
age [129]. The laughter recognition analysis uses the Jiwer package [129] to find the laughter
alignment operations hits, insertions, deletions and substitutions. These alignments are used
to calculate the F1-score, Recall and Precision. In addition, a laughter substitution vs dele-
tion balance, substitution word content analysis and general laughter alignment analysis are
conducted with these alignments.

3.6.1 Lexical (ASR) Analysis

The WER is the most common metric used in any kind of ASR research. It considers the er-
ror rate of all words in the text. The values range from 1 to 0, where the best is an error rate
of 0 (i.e. no errors). All calculations of the WER are based on the word alignment, as calcu-
lated by Jiwer [129], which compares all words in the reference and hypothesis transcription.
Based on the alignment of these transcriptions, each word will fall into a category: hits (i.e.
True Positive), insertions (i.e. False Positive), deletions and substitutions (i.e. the two to-
gether would be False Negative).

To create a realistic example, all punctuation from the sentence is also removed, and the text
is normalized (e.g., capital letters are removed). More examples and explanations about using
Jiwer can be found at [130]. An example:

Reference text: "i am writing a thesis about laughter recognition
is this not fun <laughter>"

Hypothesis text: "i will writing a thesis too about *** recognition
is this ** gun <laughter>"

Then the alignment per word is: hit (i), substitution (am -> will), hit (writing), hit (a), hit
(thesis), insertion ( -> too), hit (about), deletion (laughter -> ), hit (recognition), hit (is), hit
(this), deletion (not -> ), substitution (fun -> gun), hit (<laughter>).

For this text, we can therefore conclude there is 1 insertion, 2 substitutions, 2 deletions and 9
hits. The number of True Positives is 9, False Positives is 1 and False Negatives is 4.
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This can now be used to calculate the WER. There can be differentiated between two kinds
of WER in this thesis: the WER including "laughter" as a word, and without. To distinguish
the two during discussions, the WER including laughter will from here on be named WER_L,
while the WER from just the ASR performance will remain the WER. The formula of the
WER and WER_L is:

WER =
number_of_errors

total_number_of_words = insertions+deletions+substitutions
total_number_of_words_in_reference

WER_L =
number_of_errors

total_number_words_including_laughter = insertions+deletions+substitutions
total_number_words_and_laughter_events_in_reference

In the example sentence above, the WER and WER_L would be calculated as follows:

WER = 1+2+2
13 = 0.385

WER_L = 1+2+2
14 = 0.357

3.6.2 Laughter Analysis

The laughter analysis consists of several parts, each evaluating how well the model detects and
handles laughter events. First, the key performance metrics F1-score, Recall and Precision
are considered, which provide a quantitative analysis of the model’s accuracy in identifying
laughter. The laughter alignment operations hits, insertions, deletions and substitutions used
to calculate these metrics are also analysed both individually and in relation to one another to
gain insight into the models’ behaviour.

F1-score, Recall, Precision

The most optimal metric for this research to evaluate how well the model was able to iden-
tify correct laughter events is the F1-score. This is calculated by using recall and precision.
Accuracy was not considered, because laughter events are relatively little present (i.e. 16 524
laughter events out of 11 147 783 total words for AMI, so 0.15%, and 35 771 laughter events
out of 36 460 854 words for Switchboard, so 0.10%), which would result in a large number of
True Negatives. This would create a false positive bias to its performance. Therefore, F1-score
is better suited for these imbalanced classes. In addition, this was also used in relevant stud-
ies that fine-tune Out Of Vocabulary (OOV) words [131], [132]. This F1-score is calculated by
using the Jiwer package [129] too, which finds the laughter alignments.

The F1-score is a combination of recall and precision, which are also interesting to consider
individually. Both give their own insights. Recall measures the model’s ability to find all rel-
evant instances, whereas precision measures the model’s accuracy in finding only the relevant
instances. These are calculated with the formulas:

LaughterRecall = TP
TP+FN = hits

hits+(deletions+substitutions)

LaughterPrecision = TP
TP+FP = hit

hit+insertions

LaughterF1score = 2 ∗ precision∗recall
precision+recall

Keep in mind, that in this case the hits, deletions, substitutions and insertions are only rele-
vant for the laughter instances. To give a more comprehensive understanding of this, a new
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example2 is generated (i.e. excluding the normalisation and processing of the text, for clarity’s
sake):

Reference text: "Hi! <laughter> I am not <laughter> here for a quick
chat, but rather <laughter> a good cup of coffee <laughter>. How
are you doing? <laughter> I hope the tea is nice? <laughter>"

Hypothesis text: "Hi! ** I am not <laughter> here for a quick chat,
but rather okayay a good cup of coffee <laughter>. How are you do-
ing? ** I hope the <laughter> tea is nice? <laughter>"

Here the laughter alignment (i.e. ignoring all text besides laughter) for each laughter event in
the text: deletion (laughter -> ), hit (laughter), substitution (laughter -> okayay), hit (laugh-
ter), deletion (laughter -> ), insertion ( -> laughter), hit (laughter). Therefore, we can con-
clude there is 1 laughter insertion, 1 laughter substitution, 2 laughter deletions and 3 laughter
hits for this text. This gives 3 True Positives, 1 False Positives and 3 False Negatives. When
calculating the laughter recall, precision and F1-score of this text, this results in:

LaughterRecall = 3
3+(2+1) = 0.5

LaughterPrecision = 3
3+1 = 0.75

LaughterF1score = 2 ∗ 0.75∗0.5
0.75+0.5 = 0.60

Further Laughter Analysis Insights

Not only the WER and F1-score can be calculated with the laughter alignment operations,
but an extra insight into the laughter event hits, insertions, deletions and substitutions can
also be helpful in further improving the model and understanding how it works. This quan-
titative analysis considers a balance between substitutions and deletions, and specifically the
change in this balance when fine-tuned with or without laughter in the training set, can indi-
cate if the model recognises the laughter as speech or ignores it.

In addition, a qualitative analysis can be done, by doing a laughter substitution word analysis
can be conducted. The specific replacement (i.e. substitution) of the laughter event is consid-
ered and compared with zero-shot, fine-tuned without the laughter label in the training set
and fine-tuned with laughter. This can indicate where or how the model makes the mistake
and how it inherently handles laughter when it does not know the laughter event label.

Moreover, the balance between all four laughter operations can be observed throughout train-
ing, to analyse how the models behave. This can reveal the additional potential for further
training, offering a more insightful assessment than only relying on the F1-score.

3.7 Implementation Details

To implement all the different steps, software was used for programming and particular hard-
ware was used to enable the heavy models to run. Details on these specifics are described be-
low.

2This example also clearly demonstrates the difference between WER and WER_L, as the WER would
be 0 (i.e. no errors in the lexical part), but the WER_L (i.e. including errors in laughter events) would be
WER_L = (1+2+1)/32 = 0.125.
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3.7.1 Software

The programming language used in this thesis is Python, as this is the most accessible and
common language in the field of Machine Learning. Several libraries and packages were used
to accomplish the final program.

General Packages

Several packages were used throughout the program, that ensured the data was dealt with. To
start with, the glob package [133] was used to easily find the reference files to relevant audio
files. The os package [134] was used to manipulate paths and open files. Then, the random
package [126] was used to ensure the files were first shuffled randomly but in a reproducible
way (i.e. using seed 42), before dividing the files into their subsets. During the creation of
chunks stage, where all data has already gone through the feature extractor and tokenisation
process, the chunks are saved to a pickle file with the pickle package [135]. This way initial
processing only has to be performed once.

Throughout the code, the NumPy package [136] was used several times. This consists of math-
ematical functions, arrays, and general computing tools. In addition, the gc package [137] (i.e.
garbage collector) was also used throughout the program, to ensure the cache was deleted, as
the model already takes up a lot of memory.

Training Models Packages

The main library used in this thesis is the Transformers from Huggingface [138]. For Whis-
per, the configuration class for this model is WhisperForConditionalGeneration [11], as this
includes a Language Modeling (LM) head and is often used for ASR . The configuration class
used for HuBERT is the HubertForCTC [12], as this can handle sequence-to-sequence issues
of variable lengths (i.e. input vs output), as is the case for fine-tuning with ASR. For both,
the from_pre_ trained_model function is used so the model weights are loaded. The Trainer
package [127], which also comes from the Transformers library, is responsible for the training
loop. For fine-tuning with Huggingface models, this is the most common class to use [123],
[139]. It is optimised for Transformer models, such as HuBERT and Whisper.

The underlying deep learning framework of Transformers is PyTorch [140], often called Torch.
It provides all the computations, optimisations and manages the training loop (e.g. the dat-
aloader and updating weights).

Evaluation

In the evaluation, the main package used is the Jiwer package [129]. With this package, not
only the WER can be calculated, but its alignment function shows what happens to the words
compared to the reference text (i.e. equal, insertion, substitution or deletion). In addition, it
preprocesses the hypothesis and reference text, to ensure spacing and basic processing are the
same for both texts. In this preprocessing step, the repackage [141] (i.e. regular expressions) is
also used, to ensure words are spelled the same (e.g. "uhm" and "uh").

During validation and at the end of evaluation, many metrics and the hypothesis texts are
saved. The metrics per epoch are saved to a comprehensive csv file, with the csv package [142].
The final hypothesis texts are saved to a json file together with the metrics, with the json
package [143]. To analyse and read the json file, the pandas package [144] was used.
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AI Assistance

All literature reviews, data processing and analyses were conducted independently from any
AI assistance. In addition, all content and ideas in this thesis were constructed without the
help of AI. However, during the programming of this thesis, the Python bot of ChatGPT 4.0
[145] was often consulted on errors and aided the programming process. In addition, Gram-
marly was used to check the grammar and spelling in this thesis.

3.7.2 Hardware

The models were run on the UT EEMSC-HPC Cluster [146]. Several nodes, which contain dif-
ferent types of GPUs, were used during testing and programming. However, only one kind has
sufficient capacity to run the full models with all the data. This was the NVIDIA A40/48G
GPU, with either 128 or 256 RAM capacity and 64 cores.
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Chapter 4

Results

Many separate experiments have been conducted to comprehensively and fairly compare the
performance of the fine-tuned models on the datasets that include laughter. The experiments
could be divided into three categories, namely:

1. Finding Appropriate Parameters

2. Model Baseline Evaluation

(a) Zero-shot

(b) Fine-tuning without laughter

3. Fine-tuning with laughter

(a) Training

(b) Final results

First, the initial tests are completed, where the model parameters are optimised and analysed.
The appropriate parameters investigated were the weight decay and learning rate for HuBERT
and Whisper, which were found by fine-tuning using the AMI dataset for 20 epochs. To de-
cide on the appropriate parameters, the WER_L and F1-score are used. These parameters are
used as guidance to facilitate the correct parameter calibration of further experiments. After
completing the initial stage, the second phase focused on exploring the models’ baseline with-
out laughter labels. Here the zero-shot model and the fine-tuned model without laughter la-
bels are investigated. This baseline considers the laughter and ASR performance of the model.
The last experiments consider the main fine-tuning experiments including the integration of
laughter. The fully fine-tuned models are investigated throughout training, by considering the
laughter alignment operations, F1-score and WER_L (i.e. WER including laughter). Here,
the best-performing models are chosen. Finally, these best models are applied to the test set,
where the full potential of both models in terms of ASR performance and laughter detection
performance are evaluated.

All experiments are first conducted using the main AMI dataset. This dataset includes enough
speech and laughter labels but is relatively small due to computational and time constraints.
The second and third categories are then also compared to the performance of the models us-
ing the larger and cleaner Switchboard dataset.
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4.1 Finding Appropriate Parameters

To find the appropriate parameters used for the two models in the main experiments, ini-
tial tests are conducted over 20 epochs. Both the WER_L (i.e. which indicates the perfor-
mance of the ASR of the model including the laughter event as a "word") and the F1-score
(i.e. which represents the performance of the laughter event recognition) were used to indi-
cate the overall best-performing parameters. This research endeavours to incorporate laugh-
ter events while optimally maintaining a favourable WER_L. Therefore, the highest F1-score
is chosen as the primary criterion on the most appropriate parameter, unless the WER_L is
substantially greater (< 0.01 relative difference) and the associated F1-score is not signifi-
cantly smaller (<0.01 relative difference) for another parameter combination. These values are
motivated by the high variability of the data and the impact WER also has on the F1-score
when further fine-tuned (i.e. a higher WER will, most likely, also help with a better F1-score).

The HuBERT model is relatively small, but very prone to overfitting, due to the nature of its
architecture (i.e. the CTC head with letter vocabulary). Therefore, a higher learning rate and
weight decay were used initially. The other tests were decided based on these results, increas-
ing or decreasing learning rate and weight decay where necessary. As shown in table 4.1, the
highest F1-score for the HuBERT model on AMI with 20 epochs are for a learning rate of 1e-3
and weight decay of 0.3, at 0.234. While the WER_L was slightly lower in a few other pa-
rameter settings, the F1-score was zero in these experiments and therefore irrelevant in this
research. Therefore, the final parameter selection tries to balance both metrics in the most op-
timal way possible. In addition, when comparing to the lowest WER_L of 0.309 (i.e. with
an F1-score of 0), the relative WER_L difference was just 0.061, indicating that this vari-
ance is unlikely to have a significant impact. The second highest F1-score was at 0.088, with
a WER_L of 0.313. Compared to the best parameter setting, it has a 0.004 lower WER_L,
so a relative WER_L difference of 0.049 but a 0.146 lower F1-score, so a relative F1-score dif-
ference of 0.623. This relative difference of the F1-score significantly outweighs the relative
difference in WER_L, hence the best parameter setting remains the one with the highest F1-
score.

Weight Decay
0.01 0.1 0.3 1

3e-3 1.000 | 0.000 1.000 | 0.000 1.000 | 0.000 0.986 | 0.000
1e-3 1.000 | 0.000 1.000 | 0.000 0.329 | 0.234 0.414 | 0.022

Learning 3e-4 1.000 | 0.000 0.309 | 0.000 0.313 | 0.088 0.3333 | 0.056
Rate 1e-4 0.319 | 0.000 0.318 | 0.000 0.314 | 0.001 0.317 | 0.000

1e-5 0.363 | 0.000 0.356 | 0.000 0.348 | 0.000 0.356 | 0.000
1e-6 0.400 | 0.000 0.410 | 0.000 0.400 | 0.000 0.400 | 0.000

Table 4.1: The WER_L (left) and F1-score (right) for HuBERT [12] fine-tuned on
the AMI dataset [28] with 20 epochs for parameters weight decay and learning rate.

Whisper is quite a lot larger, but the Distilled Whisper model is much smaller (i.e. 6 times)
than the standard Whisper Large V2. It is also more flexible and less prone to overfitting,
hence a lower initial test weight decay and learning rate were chosen, as seen in table 4.2. The
final best-performing parameters for Whisper on the AMI dataset with 20 epochs were at a
learning rate of 1e-4 and a weight decay of 0.001. This time, several results were close to each
other, where the highest F1-scores and lowest WER_L were present for learning rate 1e-4.
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The highest F1-score was at 0.466, but with a WER_L of 0.325, at a weight decay of 0.003.
However, at a weight decay of 0.001, the F1-score was 0.462 (i.e. the second highest) and the
WER_L was 0.304. The relative F1-score difference is just 0.009, while the relative WER_L
difference was 0.065. This relative difference in WER_L is significantly more than the rela-
tive F1-score difference, hence we neglect the difference in the F1-score and opt for the best-
performing combination. There were no other F1-scores that came close to these F1 scores, so
no other combinations were considered.

Weight Decay
0.0001 0.001 0.003 0.01

3e-4 0.365 | 0.430 0.372 | 0.417 0.371 | 0.428 0.363 | 0.438
Learning 1e-4 0.302 | 0.452 0.304 | 0.462 0.325 | 0.466 0.301 | 0.450

Rate 1e-5 0.319 | 0.420 0.321 | 0.433 0.324 | 0.425 0.337 | 0.400
3e-6 0.356 | 0.370 0.356 | 0.343 0.345 | 0.350 0.360 | 0.334
1e-6 0.356 | 0.310 0.356 | 0.310 0.365 | 0.290 0.360 | 0.314

Table 4.2: The WER_L (left) and F1-score (right) for Whisper [11] fine-tuned on the
AMI dataset [28] with 20 epochs for parameters weight decay and learning rate.

4.2 Model Baseline Evaluation

To set a baseline for the models, they must be investigated without the integration of laugh-
ter. This is conducted in two parts. First, it is important to realise how fine-tuning impacts
the models’ behaviour. The models will not just learn this new "laughter" token, but also the
accents, jargon and other sounds in the datasets. Therefore, it is interesting to see how well
the pre-trained models perform without fine-tuning, showing their potential robustness in var-
ious environments. This is called a zero-shot setting. However, this specific research focuses
on the impact of laughter on fine-tuning. Therefore, how the models’ performance is affected
will also be considered by fine-tuning the models, but by excluding laughter labels from the
training data.

To assess the ASR performance of the models, the WER and WER_L are considered. Addi-
tionally, to understand how the model reacts to instances of laughter that actually occurred
but were not labelled in the training data, we analyse the laughter alignment operations hits,
substitutions, insertions, and deletions using a test set that does include laughter labels. These
fine-tuning processes use the same parameters as investigated in 4.1.

4.2.1 Zero-Shot

First, the model is not fine-tuned at all. Therefore, the model does not know the "laughter"
event label, as it has not been trained to know it. Table 4.3 shows the lexical performance of
the models, in terms of WER_L and WER and laughter performance operations, so how the
model handles the laughter events, by considering the laughter hits, substitutions and dele-
tions. For the latter, a balance among the three laughter performance operations was also
taken into account to assess how the models handled the laughter event without prior knowl-
edge of it. Logically, there were always 0 hits, as it simply does not know the label. As can be
seen in the table, the laughter events were substituted and deleted almost 50/50 on AMI for
HuBERT, with a high WER_L of 0.450 and WER of 0.442. On Switchboard with HuBERT,
this division was less equal, with approximately 1/3 deletions and 2/3 substitutions, with a
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lower WER_L of 0.325 and WER of 0.317. Whisper has many more substitutions, with ap-
proximately 1/3 deletions and 2/3 substitutions on AMI, and approximately 1/6 deletions
and 5/6 substitutions on Switchboard. The WER_L and corresponding WER for AMI and
Switchboard was the highest from Whisper, with 0.558 and 0.550 on AMI and 0.370 and 0.362
on Switchboard respectively.

Model Dataset Fine-
tuned

WER_L WER Hits Substi-
tutions

Dele-
tions

Alignment
Operations
Balance

HuBERT
AMI no 0.450 0.442 0 1438 1509 0/49/51 %

yes 0.317 0.308 0 1034 1914 0/35/65 %

SWB no 0.325 0.317 0 2065 1240 0/62/38 %
yes 0.211 0.206 0 1768 1537 0/53/47 %

Whisper
AMI no 0.558 0.550 0 2035 913 0/69/31 %

yes 0.416 0.407 0 2320 628 0/79/21 %

SWB no 0.370 0.362 0 2743 562 0/83/17 %
yes 0.161 0.151 0 3213 86 0/97/3 %

Table 4.3: Model metrics based on the performance of zero-shot and fine-tuning with-
out laughter in the reference text.

To understand how the model reacts in the instances where laughter was present in the test
set, while it does not know the laughter label (i.e. as it was not fine-tuned with the laughter
label), a pattern analysis was conducted on the substitution words per model, dataset and ex-
periment type. A comprehensive and extensive overview of the most common word patterns
and frequencies substituting the laughter events can be found in Appendix B, tables 7.1, 7.2,
7.3 and 7.4. In table 4.4, a simplified overview of Appendix B showing the most noteworthy
patterns identified can be found. When investigating the substitution words, as shown in ta-
ble 4.4, it can be seen that Whisper has a clear tendency to combine and repeat words. On
the AMI dataset, where WER_L was high at 0.558, there was a repetition of part words,
mainly smaller words. Most notably, the word "the" or variants were repeated very often. In
tables 4.7 and 4.8 a clear example is shown of how these variations would be expressed. On
the Switchboard dataset, with a lower WER_L of 0.37, more and longer words were formed
and combined. Again, the most striking pattern was the high presence of words containing
"th". For HuBERT, a very different pattern can be observed. For AMI, with a WER_L at
0.450, often individual letters were substituted instead of laughter. Sometimes words were cre-
ated, but these were very often misspelled. For Switchboard, with a lower WER_L of 0.325,
there were still many individual letters present. However, quite often specifically the letters
"h" and "a" were present. It was sometimes even spelled "ha ha ha", as is how the English
language types out the laughter sound. These letters, i.e. part "haha", were also often com-
bined with another word, making one word in total, e.g. "hahahhadiferent". Moreover, quite
often complete words were substituted instead of laughter, differing from one-syllable words
e.g. "like", to longer words e.g. "sometimes".

4.2.2 Fine-tuning No Laughter

Secondly, the model is fine-tuned, but still without laughter present in the training set. As
shown in table 4.3, both the WER_L and WER improved by at least 0.1, so 10%, each time
over no fine-tuning. For HuBERT, the substitution/deletions balance leans more towards dele-
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Models Dataset Zero Shot Fine-tuned
Without Laughter

Fine-tuned With
Laughter

Whisper AMI the word "the" the word "okayay"
& words including

"th" letters

words + "<laughter>"
combined

SWB words including "th"
letters

"you"+"t"-word
(e.g. youto) &

"yeah"+"t"-word
(e.g. yeahtoo)

words + "<laughter>"
combined

HuBERT AMI individual letters words & some
individual letters

words + "<" (i.e.
laughter) combined

SWB variations on "haha" words including "th"
letters

words + "<" (i.e.
laughter) combined

Table 4.4: Most noteworthy laughter substitution word patterns identified for Hu-
BERT [12] and Whisper [11] on AMI [28] and Switchboard (i.e., SWB) [21], per fine-
tune type.

tions, showing for AMI approximately 2/3ds are deletions and for Switchboard this is approx-
imately 1/2. For Whisper, the substitution/deletion balance leaned even more towards sub-
stitutions, where for AMI the division was approximately 2/9 deletions and 7/9 substitutions
and for Switchboard the deletions were approximately 1/38 and 37/38 substitutions. The low-
est WER_L and WER were for Whisper on Switchboard at 0.161 and 0.151 respectively, im-
proving approximately with 0.21 WER_L and WER over the non-fine-tuned WER_L and
WER.

The substitution words for HuBERT when fine-tuned changed quite a lot for AMI and Switch-
board, as shown in Table 4.4. The main substitution on AMI was now more fully formed words,
with still some individual letters. On Switchboard, there was no specific pattern of "haha"
present anymore. Instead, the main pattern identified was the presence of words including
"th". For Whisper, the pattern of a high presence of "th" remained on both datasets. Ad-
ditionally, on AMI an overwhelming number of occurrences of the word "okayay" could be
found.

4.3 Fine-tuning With Laughter

Lastly, the models are fine-tuned with laughter based on the parameters earlier found in 4.1.
This would mean that HuBERT had to be fine-tuned with a learning rate of 1e-3, but after
fine-tuning for more than 20 epochs, this resulted in overfitting behaviour. Therefore, after
examining the performance of HuBERT using different combinations of parameters close to
those found, a learning rate of 1e-4 was chosen. As a result, all experiments are conducted
with a learning rate of 1e-4. Whisper uses a weight decay of 0.001 and HuBERT a weight de-
cay of 0.3.

First, the behaviour of Whisper and HuBERT fine-tuned on the AMI dataset was analysed
by training for 200 epochs. After these two experiments, early stopping was implemented on
the other experiments (i.e. for the previously mentioned experiments for AMI and all experi-
ments on Switchboard), due to time constraints. Next, the behaviour of the fine-tuned models
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on Switchboard was investigated. Examining the behaviour of the models is beneficial for as-
sessing the models’ stability and reliability. It also provides insights into the requirements for
deploying the models effectively on new datasets. Lastly, a final evaluation is done based on
the best models per dataset. This shows the optimal performance the models can reach when
fine-tuned with laughter. The models’ behaviour during training is assessed using the valida-
tion set and the final evaluation of the best model is done with the test set. Both are based
on the laughter event alignment operations (i.e. hits, insertions, substitutions, and deletions),
WER_L and F1-score. During the final evaluation, there is a distinction between WER with-
out laughter (i.e. WER), WER with laughter (i.e. WER_L),

4.3.1 Models’ Behaviour With AMI (Training)

The behaviour of the models can be analysed over many epochs; here 200 epochs are chosen
due to time limitations. As was the case when finding the parameters, this behaviour is anal-
ysed using the AMI dataset. The validation set is used for evaluation during training. There-
fore, these are not the final results, but only an indication of the performance during training.

Whisper’s behaviour is reasonably steady throughout. The graph showing the laughter align-
ment operations (i.e. substitutions, deletions, insertions, hits) per epoch can be found in Ap-
pendix C, table 7.1. All laughter event alignment operations of Whisper exhibit high volatility
in the first 25 epochs but stabilise later. Overall, the model quickly reaches its best perfor-
mance and does not improve significantly. Especially in the last 20 epochs, barely any fluctu-
ations can be observed for any laughter detection operations. The number of substitutions is
the most variable initially. These are also generally the highest present, at a count of around
1250. The hits start very low with many deletions, but this already steadies after 15 epochs.
The least volatile are the insertions, which do not vary much.

The HuBERT model is very unstable throughout, on all fronts, but with few extreme outliers
to the curves. The figure showing the laughter alignment operations per epoch for HuBERT
over 200 epochs can be found in Appendix D, in table 7.2. In the first 27 epochs, there are
0 laughter event hits and insertions, with many deletions (i.e. at 1100) and many substitu-
tions (i.e. at 420). In the first 80 epochs, the model improved the most, showing an upward
curve for hits and a downward curve for deletions. The number of substitutions increases rela-
tively little, with a count of 200, til epoch 80. The addition of insertions starts once the model
also has some hits, increasing to a count of 180 insertions til epoch 80. At epoch 80, the curve
flattens and only improves slowly. The model is very volatile throughout, often fluctuating
with a count of 20 to 40, with outliers of up to 150, for all operations. The number of extreme
outliers decreases nearing the end of the fine-tuning process, at around epoch 150. Notably,
the insertions and hits graphs exhibit similar patterns (i.e. outliers and curves at similar po-
sitions), indicating that the addition of the total increase of laughter event outputs is cor-
related; specifically, a large number of total laughter insertions results in more hits but also
more insertions.

The F1-score and WER_L per epoch for both Whisper and HuBERT fine-tuned on the AMI
dataset is visualised in Figure 4.1. Whisper shows a very volatile WER_L score at the be-
ginning, which settles down after 45 epochs, with a few significant peaks between epochs 55
and 65 and epochs 110 and 140. The F1-score has outliers throughout the training that go up
and down, but 3 high peaks at 26, 71, and 140. However, the mean remains similar for both
metrics throughout the linear graph. HuBERT demonstrates that the WER_L is extremely
steady and exhibits significant exponential decay in the first 15 epochs by 12%. From there,
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the WER_L holds steady at approximately 0.315, fluctuating by 0.002 per epoch. However,
it takes 27 epochs for HuBERT to recognise one laughter event, which means the F1-score is
also 0 up to epoch 27. Up to epoch 75, the F1-score increases quickly with many outliers but
steadies slightly from there on. Reaching the 200 epochs, the graph becomes less volatile and
the number and severity of the outliers decrease.

Figure 4.1: The WER_L and F1-score for Whisper [11] and HuBERT [12] per epoch
fine-tuned on the AMI [28] dataset.

4.3.2 Models’ Behaviour With SWB (Training)

The experiments to investigate the model’s behaviour for 200 epochs were conducted on the
AMI dataset. This dataset is quite noisy with a lot of overlapping speech. The Switchboard
dataset is cleaner with just two speakers but has more data. Due to time and resource con-
straints, a soft early-stopping algorithm was integrated into all the experiments that followed
after this one. This ensures it would not needlessly continue or start to overfit the data, yet
still consider the local minima that might be reached instead of the global minima. For Whis-
per, the optimal performance is already reached after fine-tuning for one epoch. The model
becomes more stable the longer it runs, but the performance is not improving significantly.
However, at the beginning, there are a few local minima, which means the early stopping
needs some patience before knowing when the model actually performs optimally. For Hu-
BERT, while WER_L did not vary much, the F1-score increases quickly for the first 80 epochs.
The curve flattens from there. However, the overall F1-score still increases slightly for another
30 epochs. Due to the varying nature of the F1-score and WER_L (i.e. a constant WER_L
but with an F1-score that has many unexpected outliers), the validation loss is chosen as the
criterion to see if the model is still learning. A high patience of 20 is used, to ensure no lo-
cal maxima are reached. After stopping, the model with the highest F1-score in the last 20
epochs is chosen as the best model for the final evaluation.

Whisper on the Switchboard dataset already stopped after 39 epochs, showing the last epoch
had the highest F1-score. This graph can be found in Appendix E, table 7.3. The number
of laughter hits already started high at around 2800. After 10 epochs, it reaches its highest
point at around 3100 hits. From here, the model stabilises and does not further improve sig-
nificantly. The situation is similar for the number of substitutions, where they decrease in the
first 10 epochs, but their performance does not improve. The deletions also go down the first
epochs, but with even less, as there were little deletions initially. The insertions stay consis-
tent throughout the fine-tuning, except for one peak at 330 from around the mean of 100 at
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epoch 3.

HuBERT on the Switchboard dataset stopped at 32 epochs, also with the highest F1-score
at the last epoch. This fine-tuning process is visualised in Appendix F, table 7.4. In the first
5 epochs, no laughter events are recognised. From 5 to 10 epochs, all laughter event detec-
tion operations steadily improve. All operations continue to improve but much less extremely.
All operations behave volatile and sporadic throughout fine-tuning, especially the number of
hits and deletions. The number of hits still increases significantly, with an outlier at epoch 32
jumping to 1725 hits from 1423 at epoch 31. The number of deletions and substitutions both
go down slightly from epoch 31 to epoch 32. Throughout the fine-tuning process, most times
the number of hits has a peak that goes up, and the number of deletions has a peak that goes
down. The number of substitutions is less volatile with fewer outliers.

The WER_L and F1-score for both models throughout fine-tuning on Switchboard are visu-
alised in Figure 4.2. Whisper shows a very smooth and stable graph for both F1-score and
WER. From the first epoch, the F1-score is at around 0.90 and the WER_L is around 0.17.
The F1-score varies very little, fluctuating by approximately 0.001 on average. The WER_L
graph is slightly more volatile, fluctuating by approximately 0.010 on average. No further out-
liers are seen during the rest of the fine-tuning of Whisper. However, HuBERT shows great
improvement throughout. In the first 5 epochs, the F1-score is at 0 with no laughter event
recognition. In the next 5 epochs, the F1-score increases in big steps. From epoch 10 to 15,
the F1-score still increases slightly but very gradually. For the rest of the epochs, the perfor-
mance is more volatile and performance goes up and down. In the first 5 epochs, the WER_L
decreases with 0.8%, after which the WER_L performance stays steady at 0.20%, fluctuating
less than 0.01%.

Figure 4.2: The WER_L and F1-score for Whisper [11] and HuBERT [12] per epoch
fine-tuned on the Switchboard (SWB) [21] dataset.

4.3.3 Final Model Performances

The comparisons of the performance of the model’s behaviour while fine-tuning were based
on the validation dataset, which was just 10% of the full dataset. The final evaluation, with
the highest-performing model, was done with the test dataset using 20% of the dataset. These
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results are visualised in table 4.5.

HuBERT has the most deletions, with approximately the same number for AMI and Switch-
board, at around 830. As a result, the number of substitutions was also very similar, at around
1 160. The WER_L, WER and F1-scores were also quite far apart between AMI and Switch-
board, with an approximate 0.10 improvement of Switchboard for all three metrics. This gives
a relative WER_L difference of 0.562, a relative WER difference of 0.571 and a relative F1-
score difference of 0.146. The number of hits was therefore also the highest on Switchboard.

Whisper’s results varied more, where it had just 1 176 laughter hits on AMI, but 3012 laugh-
ter hits for Switchboard. Due to the high number of hits, there were few substitutions (i.e. 2
439 on AMI and just 564 on Switchboard) and even fewer deletions (i.e. 440 on AMI and 26
on Switchboard). The number of insertions did not follow this trend, where Whisper had 63
insertions on AMI and more insertions, namely 74, on Switchboard. The WER_L and F1-
score were significantly better for Whisper on Switchboard than on AMI, with a difference of
approximately 0.46 F1-score and 0.2 WER and WER_L.

For all metrics considered, the best-performing model on AMI is HuBERT, while the best-
performing model on Switchboard is Whisper. Overall, the very best performance was reached
on Switchboard with Whisper. All results on the test data matched the results based on the
validation set but scaled higher.

The most noteworthy substitution words for when the fully fine-tuned model did not reg-
ister the laughter event as laughter, but did identify it as speech, is visualised in table 4.4.
This showed that the most prominent pattern for all models was the combined new word of
a laughter event together with an existing word or a letter.

Model Dataset Epochs Hits Substi-
tutions

Dele-
tions

Inser-
tions

F1 WER_L WER

HuBERT AMI 200 1365 1180 857 374 0.531 0.317 0.311
SWB 32 1725 1147 811 135 0.622 0.203 0.198

Whisper AMI 200 1176 2439 440 63 0.444 0.357 0.348
SWB 39 3012 564 26 74 0.901 0.163 0.161

Table 4.5: Performance metrics F1-score, WER, WER_L and laughter alignment
operations for fine-tuning on HuBERT [12] and Whisper [11] .

4.4 Experiment Overview and Breakdown

In total, there were 12 main experiments. These were divided into initial testing, baseline test-
ing and full fine-tuning including laughter. The first revealed some behavioural aspects of the
models, the second showed the state of the art applied to the datasets as processed for the fi-
nal experiments, and the last gave the final results of this research regarding the lexical and
laughter detection performance of the models. From all of these results, an overview is cre-
ated, as shown in 4.6. Here, the best metrical results over all models and datasets are sum-
marised. In addition, tables 4.7 and 4.8 take a deeper look into what these metrical numbers
are based on, by visualising an example sentence from the reference text including a laughter
event, together with all hypothesis text outputs of the models per experiment type.
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4.4.1 Best Models

The metric performance results of these experiments are summarised in table 4.6, includ-
ing the best results of the parameter tuning on AMI with 20 epochs (i.e. note: for HuBERT
on AMI this is with weight decay 1e-3, while the rest of experiments use weight decay 1e-4).
This table is divided per dataset, then per model and then per experiment. This visualises an
overview of what model performed best in each scenario in terms of lexical and laughter inte-
gration performance.

As is shown, for both HuBERT and Whisper, all results are best on Switchboard. The overall
best-performing model when considering its performance for laughter event recognition was
Whisper fine-tuned on Switchboard, with an F1-score of 0.901, recall of 0.836 and precision of
0.976. The WER_L was at 0.163 and WER at 0.161, which was the second lowest WER_L
out of all experiments, the lowest being at 0.162 WER_L and WER at 0.151 for Whisper fine-
tuned on Switchboard without laughter. This is also the highest relative WER difference be-
tween WER_L and WER, at 0.073.

The best-performing model when considering laughter event recognition on AMI was Hu-
BERT. When just considering F1-score the best model was when HuBERT was fine-tuned
with laughter on AMI. It also had the highest recall, at 0.401. However, the precision (i.e.
0.785 for HuBERT on AMI with laughter with 200 epochs) for all other experiments, was
much higher, at 0.910 or more. This includes all experiments of Whisper on AMI, but also
the precision of HuBERT fine-tuned on AMI with laughter for just 20 epochs. The lowest
WER_L for AMI was with Whisper fine-tuned on AMI with laughter for just 20 epochs, at
0.304.

Dataset Model Fine-
tuned

Epochs F1-score Recall Precision WER_L WER Relative
WER
diff

AMI

HuBERT

Yes + L 20 0.234 0.134 0.910 0.329 - -
Yes + L 200 0.531 0.401 0.785 0.317 0.311 0.019
Yes 45 - - - 0.317 0.308 0.029
No - - - - 0.450 0.442 0.018

Whisper

Yes + L 20 0.462 0.305 0.948 0.304 - -
Yes + L 200 0.444 0.290 0.949 0.357 0.348 0.026
Yes 57 - - - 0.416 0.407 0.022
No - - - - 0.558 0.550 0.015

SWB

HuBERT
Yes + L 32 0.622 0.468 0.927 0.203 0.198 0.025
Yes 32 - - - 0.217 0.206 0.053
No - - - - 0.325 0.317 0.025

Whisper
Yes + L 39 0.901 0.836 0.976 0.163 0.161 0.012
Yes 50 - - - 0.162 0.151 0.073
No - - - - 0.370 0.362 0.022

Table 4.6: All experiments summarised: the performance of fine-tuned with laughter
(Yes + L), fine-tuned without laughter (Yes), and non-fine-tuned (No) for HuBERT
[12] and Whisper [11] fine-tuned on AMI and Switchboard (SWB), comparing laughter
detection metrics and WER.
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4.4.2 Sentence Level Elucidation

Per experiment, there was a metrical output (i.e. table 4.6), showing the performance, but
this came from the calculation based on comparing a lengthy output hypothesis text and ref-
erence text. In table 4.7 one example sentence taken from the reference text of the AMI dataset
and in table 4.8 one example sentence is taken from the Switchboard dataset. is used to illus-
trate how some of the models’ output and previously established patterns (i.e. Appendix B,
tables 7.1, 7.2, 7.3 and 7.4) manifest within the sentence per type of experiment and model.
This provides a more detailed view of what occurs at the sentence level behind the calcula-
tions.

The sentence from AMI in table 4.7 has uncommon words (i.e. ninja and Japan) in it and
two people laughing. The "um" word also complicates matters, as this was said together with
laughing. As a result, there are many mistakes in this sentence and only laughter or similar
was registered once for HuBERT.

Type Model Sentence Laughter
Operation

Reference - "if you want to present your prototype go ahead
uhoh this is it ninja home made in japan

<laughter> <laughter> um there are a few
changes weve made"

-

Zero-shot Whisper "if you want to present your proot go o this is
mademade in japanenestherethereothethein

therethere are a few weved wellto"

Sub

HuBERT "if hu want to pres an your prototyp go homing
jap *** um there are a few jane made"

Del

Fine-tuned
Without
Laughter

Whisper "if you want to present your prototype with with
wellhoh this it o made um edge japan um um

um um okayay while wow a lookay ofve made"

Sub

HuBERT "if you want to present your prototype go ahead
this is it ninjo homade joa pen *** um there are

a few changes weve made"

Del

Fine-tuned
With Laughter

Whisper "if you want to present your prototype ahead hoh
this is it fromo cat in your peg um um um um
um um therethere are a few changes ve made"

Sub

HuBERT "if you want to present your prototype go ahead
thats it nino hmk ma your pen <laughter> um

there are a few changes wive made"

Hit

Table 4.7: Reference sentence from the AMI dataset including laughter per dataset
together with the Whisper [11] and HuBERT [12] output (i.e. hypothesis text) per
type of experiment and laughter alignment type (i.e. hit, substitution, or deletion).

The sentence from Switchboard in table 4.8 has two people speaking relatively quickly and
over each other, but with simple vocabulary and little background noise. The word "yes" is
also said while there was partial laughter present, making it harder to transcribe for the mod-
els. However, the laughter itself was clearer (e.g. louder and not two people laughing overlap-
ping), which is also shown by both Whisper and HuBERT correctly recognising laughter here.
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Type Model Sentence Laughter
Operation

Reference - "oh i love that show yeah do you <laughter>
yes that is great yeah its fun and then theres a

new one that started out that ive caught
occasionally a couple of times called good and evil

i think"

-

Zero-shot Whisper "i i love that show yeah do you yesyes yes that is
great yeah it fun and then theres a new one that
started up that ithat i a i couple of timestimes

called good and evil i think"

Sub

HuBERT "i love that show ya yo yayaya great its fun and
then theres a new won that started out that it

clout occasion a couple of times called good and
evil i think"

Sub

Fine-tuned
Without
Laughter

Whisper "oh i love that show yeah do you yes yes yeah
that is great yeah its fun and then theres a new
one that started up that ive caught a a couple of

times called good and evil i think"

Sub

HuBERT "oh i love that show yeah do you *** yes that is
great yeah its fun and then theres a new one thats

started up that ive caught a cancel a couple of
times caled god and evil i think"

Del

Fine-tuned
With Laughter

Whisper "oh i love that show yeah do you yes
<laughter> yes that is great yeah its fun and
then theres a new one that started up that ive

caught a a couple of times called good and evil i
think"

Hit

HuBERT "oh o i love that show yeah do you <laughter>
yes that is great yeah its fun and then theres a

new one that started up that ive caught a caucel a
couple of times caled god and evil i think"

Hit

Table 4.8: Reference sentence from Switchboard including laughter per dataset to-
gether with the Whisper [11] and HuBERT [12] output (i.e. hypothesis text) per type
of experiment and laughter alignment type (i.e. hit, substitution or deletion).
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Chapter 5

Discussion

This research aimed to integrate laughter event transcription into pre-trained E2E models by
fine-tuning Whisper and HuBERT. To explore this performance based on the results and fa-
cilitate drawing comprehensive conclusions later, this section is organised around the research
questions. This thesis had one main objective, summarised by the research question: How ef-
fectively can laughter transcription be integrated into established high-performing ASR systems
through the fine-tuning of pre-trained End-To-End models? This question was divided into
three distinct sub-questions to comprehensively evaluate the integration of laughter into the
systems, while also taking into account their baseline lexical performance. The sub-questions
address: the annotation of laughter by the state-of-the-art, adding laughter transcriptions to
the fine-tuning pipeline, and the impact of said fine-tuning on the linguistic component.

First, the focus is on examining how the models currently transcribe laughter. This is based
on which words, letters or phrases are present in the hypothesis text (i.e. models output) at
the location of laughter in the reference text. This is considered for the non-fine-tuned mod-
els and the fine-tuned (i.e. zero-shot, so without laughter annotations in the labelled training
data) models. Next, the performance of the fully fine-tuned models is considered, based on
the WER without laughter, WER including laughter (i.e. WER_L), F1-score, and qualitative
analysis of the laughter event operations hits, substitutions, deletions, and insertions. Lastly,
the impact of fine-tuning the models on the ASR performance is investigated by comparing
the behaviour of the non-fine-tuned, fine-tuned without laughter, and fully fine-tuned mod-
els. Due to time limitations, the AMI dataset was chosen as the main dataset in this research.
Switchboard was used to compare the performance of the models, as this was a bigger and
cleaner dataset.

5.1 Baseline Omitting Laughter Transcription

The first sub-question is: To what extent, if any, do the E2E ASR models Whisper and Hu-
BERT currently transcribe laughter in conversational language? The focus of this section is
therefore on finding how the models behave without having learned the "laughter" label dur-
ing training. When examining the inherent nature of the models, two types of "model base-
line" can be considered when evaluating the laughter performance. The first considers how
the models behave in terms of laughter recognition in a zero-shot setting, so without any fine-
tuning. Secondly, The models will be fine-tuned on AMI and Switchboard, but without laugh-
ter present in the labels of the training dataset. Therefore, it cannot learn "laughter" exactly,
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but the ASR performance should improve (i.e. by learning accents and noises present in the
dataset). The evaluation is done with laughter present in the test set, and this is compared
to the models’ output from the training set. This is done to identify how the models behave
by themselves without specifically learning laughter while being aware of the location of the
laughter events.

It is challenging to investigate how the models register laughter events without an exact label,
as it does not yet know the "laughter event" label. To explore how the models handle laughter
events without fine-tuning for laughter, it is considered whether the model can:

1. Identify the laughter event as part of speech.

2. Recognise the laughter event as something humans can interpret as laughter.

To achieve this, the substitution and deletion balance is analysed for the first point. This
can show if the model interprets laughter as part of speech (i.e. inserts a word, so substitut-
ing laughter) or not (i.e. removes it). For the second, a laughter substitution word analysis is
conducted, showing what that word is and if it can be interpreted as laughter or if there are
other patterns present. These analyses are first conducted on the main dataset (i.e. AMI), af-
ter which the results on the Switchboard dataset are also discussed and compared.

5.1.1 Zero-Shot

The non-fine-tuned model, also called zero-shot learning, best shows how the model would
behave on new data. This is when the models are used as-is and show the flexibility and ro-
bustness of the models. It has not learned the concept of "laughter" yet and does not know
anything about the data. However, the question is, what does the model output at the places
of laughter? Therefore, zero-shot learning can show what happens to these laughter events
that are present in the validation dataset. HuBERT and Whisper responded very differently
to the laughter event on the AMI dataset and Switchboard, each showing their inherent na-
ture through their output.

HuBERT

First, the HuBERT model is considered with the AMI dataset. To find how well the model
recognises laughter as part of speech, the laughter substitution and deletion balance is con-
sidered. HuBERT has an approximately 50/50 division of substitutions and deletions. This is
a decent proportion of substitutions, but not high. This shows it does not identify a laughter
event as something which is part of speech very easily without any fine-tuning. This is proba-
bly due to two parts. The CTC head and letter vocabulary HuBERT works with ensures the
sounds do not need to recognise part of words, which would be a more complicated sound pat-
tern. It will easily output a guess of some letters in the spaces. However, this also shows the
inflexible nature of HuBERT. It has been trained on audiobooks and has not encountered any
spontaneous speech including laughter in its training data before.

From here, the specific laughter substitution words can be considered, to show if the model
has any kind of interpretation of those events that lie close to laughter. The laughter substitu-
tion word analysis showed that the main output was individual letters or miss-spelled words.
This is due to this same letter vocabulary HuBERT operates on. No further patterns could be
identified which could be recognised as laughter. Overall, this shows that zero-shot HuBERT
did not do well in transcribing laughter instances on the AMI dataset.
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Whisper

Also for Whisper, first, how well the model recognises laughter as speech is considered. Whis-
per has an approximate split of 1/3 deletions and 2/3 substitutions. This shows that it often
does recognise the laughter event as text that should be transcribed; so as a potential word.
This is most likely due to its flexibility, where Whisper has been pre-trained on a lot of data,
including spontaneous speech with laughter, so it can recognise the laughter as some kind of
sound from the speaker.

The laughter substitution word analysis shows that Whisper fills it in with some standard
small words, e.g. "okayayay" or even puts a small word next to the word that was said be-
fore "andthatthat". This is the case due to the vocabulary of Whisper; which consists of part-
or co-words (i.e. partial words that often belong together). It will recognise a part-word (e.g.
"and") and adds it together with a similar sounding word (e.g. "thatthat"). Alternatively,
sometimes there was laughter present while a word was spoken (i.e. speech-laughter), often
during smaller words like "okay" or "yeah", from which the model creates a combination with
laughter like "yeahyeah".

This suggests that Whisper has a high potential to recognise laughter events, as it often iden-
tifies them as speech. This will increase the chance of successful fine-tuning, as it already reg-
isters these events. However, as it currently is not fine-tuned for laughter specifically, it strug-
gles to generate a coherent output that can be interpreted as laughter on the AMI dataset.

Comparison to Switchboard

HuBERT and Whisper performed similarly on the Switchboard dataset as on the AMI dataset.
The substitution/deletions balance leaned more towards substitutions for both models, show-
ing that on this dataset it could recognise a laughter event more easily as part of speech.

Interestingly, the substitution words were quite different in this dataset. For HuBERT, most
words included "haha" or at least started with "a" or "h". This could be because the dataset
is cleaner, so it can more easily identify these sounds. It just does not know what laughter is,
so the closest sounds are the "haha". This is also how it is written in many languages, show-
ing these are the letters of the alphabet most associated with these sounds. This demonstrates
that the cleaner dataset improves HuBERT’s ability to both recognise laughter events as part
of speech and more frequently interpret them as something recognisable as laughter.

The Whisper model on Switchboard was more similar to the results on AMI, but with an in-
crease of words starting with "th". This could be due to, or a combination of, its similar spec-
tral characteristics (e.g. noisy profile or "h" sound), or with the better ASR performance on
Switchboard it has learned there is a high probability of a "th" word there, or due to the soft
sound of "th" it might be a default guess. The reason that Whisper did not output any letters
or phrases that could be recognised as laughter, is probably due to its specific vocabulary. It
is word-based, not letter-based, so it does not have any labels representing laughter sounds in
it. This shows that on Switchboard, an increase in recognisable patterns was found compared
to AMI, but still, nothing concretely related to laughter could be identified.

5.1.2 Fine-tuned Without Laughter

Another type of baseline for the model is where it learns all ASR elements of the data by fine-
tuning on the lexical (i.e. words) parts of the dataset, but while excluding laughter, omitted
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these labels from the training dataset. This approach assesses the model’s ability to incorpo-
rate the laughter token without the possibility of confusing it with other elements or variables
that are new to the model, like noise. However, it must be noted that the model will also
learn from the training data that there is no label every time a laughter event occurs, hence,
this will result in the model recognising laughter as speech less in the first place. To compre-
hensively assess the performance of the fine-tuned models baseline, the models’ performance
is immediately described relative to the zero-shot model. First, the models’ performance is as-
sessed when fine-tuned on AMI, then they are compared to fine-tuned on Switchboard.

First, the impact of fine-tuning is assessed. When considering the AMI and Switchboard datasets,
it can be seen that indeed both Whisper and HuBERT have learned from the data, as the
validation loss kept going down and the WER_L and WER for both models improved. Sec-
ondly, how well the models recognise a laughter event as speech is considered. For AMI, the
effect on the substitution and deletion balance compared to the zero-shot setting was minimal,
with a slight increase in deletions for HuBERT and an increase in substitutions for Whisper.
A possible explanation for this could be that HuBERT has learned that this sound does not
correspond to one of its letters in the vocabulary (i.e. deletes more); while Whisper becomes
even more flexible and more easily recognises the pattern or accent of the laughter as part of
the person speaking. This results in a slight improvement in Whisper’s ability to recognise a
laughter event as part of speech, but a slight deterioration for HuBERT. Thirdly, how well the
laughter event can be recognised as laughter is examined. The substitution word analysis for
HuBERT reveals that it responds very similarly to that of the zero-shot; with mainly individ-
ual letters and almost words. However, some small and correct words were added, showing it
has learned these words during its fine-tuning and HuBERT tries to apply them. For Whisper
a similar trend to zero-shot also persists, namely the presence of words with "th". However,
the word "okayay" was also present extremely often. This could be due to a high presence
of "okay" in the dataset, and this is its backup word that sounds similar to laughing. Alter-
natively, the acoustic laughter sound does not follow the same linguistic structure Whisper
is trained on. However, "okay" could be a word that it has learned is sometimes input more
randomly in a sentence than the average word (i.e. as people sometimes use this word while
thinking or interrupting). Therefore, due to the longer sound than the word "okay", the longer
version of okay (i.e. okayay) could be input, but with linguistically correct placement. This
shows that neither model improved much in interpreting a laughter event as laughter when
fine-tuned on the AMI dataset.

On the Switchboard dataset, again a similar trend can be seen as in the zero-shot setting for
the substitution/deletion balance. There are even more substitutions relatively, the highest
being for Whisper on Switchboard at the lowest WER_L of 0.161. This shows that it does
recognise these sounds as something the speaker said. The substitution words for Whisper are
also very similar, showing an increase in "th" words or "t" words. However, the substitution
words are very different for HuBERT. HuBERT no longer outputs "haha", but also seems to
recognise the spectral characteristic patterns of the "th" words, similar to Whisper.

5.1.3 Overall Baseline

Two baselines were analysed to form an overall baseline that considers two aspects. Zero-shot
focuses on the importance of flexibility and robustness, while fine-tuning without laughter in-
creases overall performance on the data, showing its potential without factors like noise. For
HuBERT, the ability to recognise laughter as part of speech went down for both datasets
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when fine-tuned, while for Whisper this went up (i.e. fewer substitutions). Therefore, it shows
that by fine-tuning, HuBERT learns that these individual sounds are not part of the data,
while Whisper’s flexibility increases and by learning the individual sound patterns of the speaker,
it recognises laughter as part of that.

For both baselines and datasets, Whisper had the highest relative number of substitutions.
The highest recognition rate was for Whisper on Switchboard, at 97% laughter substitutions
and 3% deletions. This also corresponded to the lowest WER of 0.151 and WER_L of 0.161.
This shows the flexibility of Whisper and its potential to recognise laughter as part of speech.
However, while some patterns were identified in the substitution word analysis (i.e. words
with "th"), there were no laughter substitutions that could be identified as something resem-
bling laughter for Whisper. The only time laughter was substituted with anything that could
be identified as a laughter event, was for HuBERT on the Switchboard dataset. This was with
"haha", or a variant of this. Still, the fact that patterns were identified in the substitution
words for Whisper is a positive sign, suggesting the model does relate a laughter event to a
specific type of substitution word. Therefore, together with the large number of laughter sub-
stitutions and low number of deletions (i.e. best at recognising laughter as part of speech),
the Whisper model shows the largest potential to learn laughter events when fine-tuned with
laughter labels in the dataset.

However, when considering the direct implementation of the models without fine-tuning with
laughter, it will depend on the environment which model performs best. While Whisper might
be better at recognising the laughter event as a sound belonging to the speaker, especially use-
ful on a noisy dataset like AMI, HuBERT has the most comprehensive output that could be
recognised as laughter on the cleaner dataset. Therefore, when applying a model to a new (i.e.
zero shot) but clean (e.g. little noise and overlapping speech) environment without fine-tuning
with laughter, HuBERT is the best model to apply, if the focus is on recognising laughter. A
person using the system would recognise "haha" or similar to laughter. However, if the model
is applied to a noisy environment, as is often the case in real life, neither model could compre-
hensively show that it interpreted a laughter event as anything recognisable as laughter.

5.2 Fine-tuning With Laughter

The main part of this research focuses on the integration of laughter transcription into the
standard ASR. This considers the second sub-question, which is: To what extent, if any, can
the E2E ASR models Whisper and HuBERT be fine-tuned on conversational speech including
laughter annotations to improve the accuracy of laughter transcription? The pre-trained mod-
els are fine-tuned on data that includes lexical and laughter annotations. To evaluate these
models and their implementation feasibility, it is crucial to not just investigate the laugh-
ter detection elements, but also the model efficiency. These are considered and discussed per
model, in this order:

1. Foundational model behaviour

2. Training resource demands

3. Final performance on laughter event detection

The first is evaluated during initial testing (i.e. finding weight decay and learning rate), by
doing a general analysis of the model based on its behaviour. The second is done during train-
ing, by considering the four laughter alignment operations hits, deletions, substitutions and
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insertions, F1-score and WER with WER_L. Lastly, the final performance is considered after
training, so when evaluating on the test set. Here, the F1-score, recall and precision are exam-
ined. The AMI dataset is chosen as the main dataset to fine-tune on and discussed first, but
the results of the models are later also compared to each other and that of the Switchboard
dataset.

HuBERT

During the initial testing, the general model performance could be abstracted. The initial
testing phase on the AMI dataset allowed not only for the investigation of the weight decay
and learning rate, but also for an overview of the model’s general performance to be gathered.
It showed that the model quickly climbed to a WER_L of 1.0 and an F1-score of 0. The out-
put showed that the model was very prone to overfitting and catastrophic forgetting, as seen
by the decreasing training loss, quickly increasing WER and end output of just padding (i.e.
indicating silence, which was often present). This is due to the letter-based vocabulary that
HuBERT functions on, unlike a partial word vocabulary like Whisper has. These letters are
short sounds and therefore very accent-specific. It needs to learn the speech patterns of a per-
son before it can accurately recognise the speech of various speakers. Otherwise, it will apply
the specific vocabulary it has learned to another speaker and will not recognise what other
speakers are saying anymore. For example, one person’s pronunciation of the letter "G" might
sound like another person’s "J", confusing the model.

To explore how the model behaves while fine-tuning and how well it learns over many epochs
(i.e. 200) on AMI, the laughter alignment operations are considered together with the F1-
score during training. For HuBERT, it takes 27 epochs before the first laughter event is iden-
tified correctly (i.e. hit), and most of the further learning occurs in the first 100 epochs. In-
terestingly, what can be seen when comparing the hits and deletions graph of HuBERT during
those 100 epochs, is that the model learns quite conservatively. While insertions show a slight
increase and substitutions fluctuate too, the number of deletions more significantly decreases
and the number of hits correspondingly rises with equal intensity during the full training pro-
cess. This indicates that the model does not necessarily make more guesses when it encounters
laughter more frequently during continued training (i.e. which would lead to an increase in in-
sertions). Instead, it learns to place these guesses more accurately, resulting in an increase in
hits without a corresponding rise in substitutions. This means that the precision of HuBERT
is high throughout training. All laughter alignment operations show the curves flatten after
about 100 epochs, but are still volatile. Fine-tuning for 100 epochs is quite a lot, showing the
model needs a lot of data and iterations before it learns how to appropriately apply the new
token. The volatile graph also indicates that the model is still learning with each new itera-
tion. This is logical when considering the letter vocabulary again, as laughter can sound like
several letters and HuBERT has to learn that this combination of sounds is the new laughter
token. After the 100 epochs, the number of hits still slightly increases, showing it might fur-
ther improve with more epochs. The F1-score over the last 100 epochs also supports this, as
it was still increasing slightly. This shows that while this model is conservative in training, re-
sulting in high precision, it takes a long time to train on new data and, hence is expensive to
train. However, it also shows that it still has the potential to grow. Due to time limitations,
this was not further investigated beyond the 200 epochs in this research.

However, to properly examine the efficiency of training to achieve high laughter recognition,
it is also necessary to examine how HuBERT learned the new laughter token in comparison to
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the rest of the alphabet tokens (i.e. ASR performance). The WER_L was already very stable
after 27 epochs and did not improve or fluctuate with further fine-tuning. This would sug-
gest that the model has learned the ASR features of the dataset quickly, but it takes longer
to introduce a new token to HuBERT. This is because the model is already pre-trained on
the alphabet tokens. Fine-tuning these tokens takes minimal effort, as it only needs to learn
the details, while the laughter token has to be learned from scratch. In addition, the laughter
events are present relatively little compared to most of the rest of the alphabet. This demon-
strates that the model is much more efficient in improving the ASR performance, but takes
much longer specifically for laughter. This is likely the case for any new token or acoustic non-
lexical sound added to the vocabulary.

The final laughter performance output of HuBERT on the test set (i.e. while the performance
analysis above was based on the smaller validation set) showed a final F1-score of 0.531. This
F1-score is not high at all, where about half of the laughter events are incorrect or missed.
This represents a moderate performance of correct laughter recognition, but with room for im-
provement. The F1-score is a balance of recall and precision, where recall was 0.401 and pre-
cision was 0.785. The higher precision shows it was better at identifying correct positive iden-
tifications (i.e. quality), than the recall, which indicates the relevant laughter instances the
model has found (i.e. quantity). Therefore, HuBERT found it hard to identify all the laughter
instances, but the ones it did find, were often correct. This shows that HuBERT is not good
at detecting laughter events for the AMI dataset, but when it does, its precision is reasonably
high.

Whisper

The initial testing was also completed for Whisper on the AMI dataset, revealing the behaviour
of Whisper in various scenarios. Many of the parameter combinations that were considered
performed close together, where the Whisper model consistently avoided overfitting or catas-
trophic forgetting as with HuBERT, only performing less well after those 20 epochs. This in-
dicates and supports the known flexibility of Whisper. It has been pre-trained on data that
includes a lot of accents, languages, noise levels and even laughter. In addition, the ability of
Whisper to remain stable across various parameter fine-tuning runs, shows that its flexibility
might also reduce the need for extensive parameter tuning to achieve optimal result for a spe-
cific dataset. This is particularly useful when applied to new scenarios or settings.

When investigating the behaviour of Whisper during training, again 200 epochs were chosen.
Most notably, the F1-score shows a stable graph very quickly. It is still volatile throughout
the 200 epochs, but at 180 epochs this also disappears. This shows that while it is still learn-
ing the specifics for the laughter event recognition, it immediately has a lot of hits. This is
due to the flexible nature of Whisper, as established during initial testing. Therefore, it can
immediately recognise the sound but needs a corresponding label, which it finally gets dur-
ing training. The most volatile graph is the number of substitutions, which has many fluctu-
ations and outliers in the first 35 epochs. This is probably due to this same flexibility, where
the model has so many sounds it can relate it to in its multi-lingual database, that it is able
to make a guess but it takes longer to find the correct label. This indicates that Whisper is
quick to learn the laughter token and is high in efficiency.

When considering the laughter detection performance compared to the ASR performance,
the WER_L performance with the laughter F1-score is compared. Here, a similar trend can
be seen. The model takes just as long to steadily learn the ASR performance as it does the
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laughter event (i.e. less outliers or improvements). However, after the 75 epochs, the WER_L
graph is already less volatile than the laughter F1-score. This would suggest that the model
is still learning more about the laughter event than the ASR performance. This could be due
to its vocabulary, which consists of part- and co-words. It only has to tweak what it knows
about the ASR to fit with a new scenario, while laughter is a new token completely. Moreover,
Whisper is primarily optimised for linguistic content and will need additional data and train-
ing to accurately handle acoustic and non-verbal sounds like laughter. The model would need
a distinct laughter pattern, but there are many types of laughter that differ per person and
scenario, so this is easily confused with background noise. Also, one of the strengths of Whis-
per lies in its ability to use context from past and future samples. However, these linguistic
rules that Whisper has learned during pre-training do not apply in the same way to acoustic
features like laughter. This will confuse the model, making it hard to learn acoustic features
and hinder its progress. Overall, this establishes that Whisper is a very appropriate model to
apply in this situation, as it reaches its full potential for both ASR performance and laughter
detection performance quickly.

The final results on the test set showed an F1-score of 0.444 after 200 epochs. This is not
very high, as it shows moderately low accuracy for laughter even recognition. However, strik-
ingly, the precision was very high at 0.949. The recall was very low, at 0.290. This shows
that Whisper identified almost 95% of the total instances as positive correctly. However, as
shown by the low recall, it also misses a lot of laughter events. This did not improve with
more epochs. This is probably due to the noisy data and spontaneous speech, where there
was a lot of difficult-to-recognise and overlapping laughter, with lots of types of laughter (e.g.
speech-laughter and overlapping laughter). The high precision shows the potential of integrat-
ing Whisper into systems, where it will miss many laughter instances (i.e. low F1-score) but
will not identify them incorrectly.

Notably, the F1-score for Whisper when fine-tuned with just 20 epochs was higher, at 0.462.
This is due to the outliers it experiences, so it was "lucky" to stop at 20. This does show that
the best Whisper model, so when to stop training, should be carefully selected. It does not
need the full 200 epochs, but an early stopping algorithm should be integrated with a formula
to select the best-performing model when fine-tuning this model on additional data.

Comparison

HuBERT and Whisper behave very differently while fine-tuning on AMI. Where Whisper
does not improve much from epoch one with many laughter events, although volatile still; Hu-
BERT needed 35 epochs to learn just one laughter token. After 100 epochs, this graph was
finally steady, but the laughter hits and laughter F1-score still showed an increase until 200
epochs. This indicates that Whisper achieves its optimal performance quite rapidly, occa-
sionally producing an outlier with a higher F1-score, whereas HuBERT requires at least 100
epochs, and potentially more, to realise its full potential. Interestingly, the F1-score for Hu-
BERT (i.e. 0.531) was almost 10% higher than Whisper (i.e. 0.444). This shows that while
HuBERT needs longer to fine-tune and is less efficient, it is better at identifying the laughter
event in this noisy dataset. This is also due to its architecture, where HuBERT is better at
identifying acoustic sounds than Whisper. However, for both models the F1-score was low.
There are many reasons for this. For instance, laughter is quite a different sound (i.e. at a
different pitch) from normal conversations. Moreover, laughter differs a lot per person and
scenario; even more than normal speech. It is a very different sound (i.e. at a different pitch)
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that is very personal. The laugh per person is also variable depending on the context, think
for instance of a polite chuckle or belly laugh. In addition, the laughter is not clean, as there
is often laughed during speaking, while someone else is speaking, or two laugh at the same
time. Diving deeper into the F1-score, there can be seen that both models had high precision
and low recall, but especially Whisper. Whisper has a precision of 95%, showing that it only
outputs laughter if its very sure.

Both models have also been fine-tuned on Switchboard, using the weight decay and learning
rate found on the AMI dataset. The behaviour of HuBERT on Switchboard was quite similar,
except for the fast increase in how quickly the performance improved. For instance, HuBERT
fine-tuned on AMI took 27 epochs before just one laughter event was hit, while on Switch-
board this was 5 epochs. In addition, the performance was also much better, with a final F1-
score of 0.622 instead of 0.531. Most significantly, Whisper also performed much better on
Switchboard, from the first epoch. The F1-score improved from 0.444 to 0.901. This improve-
ment in both HuBERT and Whisper is due to the amount and quality of data, where Switch-
board has 2.5 times as many hours of data (i.e. per epoch it already trains on more data). In
addition, the dataset is cleaner. In this case, that means there is less complex speech (e.g. less
overlapping speech and just two people talking), less background noise and a more structured
setting (i.e. a telephone conversation with set topics, instead of a meeting). In such a setting,
the laughter events are also cleaner, as they happen less "spontaneously" or during speech.
They are often more of a polite chuckle or softer laugh.

Interestingly, a major trend across all datasets for all models could be seen that showed that
after fine-tuning the main confusion point was a combination of laughter and a word. This
was seen in the substitution word analysis. The main words left over as laughter substitu-
tions were a combination of laughter together with a word or letter. This shows that while
the model does not fully recognise it as a separate laughter event, it does still recognise it as
laughter. This is the downfall of how laughter detection was registered in this research, as
the alignment metric does not show the full picture. A human might even register this com-
bination of laughter and speech the same way, but this metric does not register this as a cor-
rect hit. The reason that this happens is because there was laughed while a word was spoken.
Also, especially for HuBERT, the model might misinterpret the laughter sounds as certain in-
dividual letters, thereby putting those letters in front or after the event. Moreover, especially
for Whisper, the model may struggle to correctly align non-verbal sounds with the timing of
words. To fill in those gaps where it expects a word, this could result in the combination of
laughter with words. Lastly, due to this ambiguity of distinguishing between acoustic sounds
and lexical patterns, the model might opt to output both words and laughter, to minimise er-
rors. This means that the model has more potential to recognise laughter correctly when not
just looked at the alignment, which should be investigated in future work.

5.3 Lexical Impact

After examining the behaviour of the models for the laughter event, it is also vital to inves-
tigate the impact they have on the lexical performance. This considers the last sub-question,
which is: How does fine-tuning the E2E ASR models Whisper and HuBERT on conversational
speech with laughter annotations affect their overall performance in transcribing lexical ele-
ments? This is done by considering the WER and WER_L to each other and the two datasets
AMI and Switchboard.
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First, the difference in performance between the two lexical metrics, namely WER and WER_L,
are discussed. Then, the baselines (i.e. zero-shot and fine-tuning without laughter) are com-
pared to each other and the final fine-tuning with laughter. The next focus is on analysing
the key lexical differences of fine-tuning with and without laughter labels. Thirdly, a broader
interpretation of the implications of WER is discussed. Lastly, the WER is compared to the
state-of-the-art.

5.3.1 WER vs WER_L

For all experiments, the difference between the WER and WER_L was minimal. The highest
relative WER_L to WER difference was at 0.73, with a difference of 0.10, between 0.161 and
0.151 respectively. This was for the fine-tuned excluding laughter Whisper model on Switch-
board. The second highest relative WER_L to WER was 0.053, for the fine-tuned excluding
laughter huBERT model on Switchboard. This is logical, as this is one of the lowest WERs
with the cleanest dataset (i.e. easiest to transcribe) combination. In addition, there are no
"<laughter>" word hits when fine-tuned without laughter. Therefore, the difference of WER_L,
so with laughter words, and WER will be the highest. However, most relative WER_L to
WER differences varied between 0.012 and 0.029. This is quite low, and given the consistency
in the differences between WER and WER_L, similar conclusions can be drawn when com-
paring the lexical performance across all models using either metric. However, this only works
for the relative difference in this specific work and as long as the same metric is consistently
used in the comparison.

5.3.2 Baseline Comparison

The WER_L and WER were the highest for the fine-tuned models, showing a 0.1 or more, so
10% +, difference between all zero-shot and fine-tuned models. Both HuBERT and Whisper
show that general (i.e. with and without laughter) fine-tuning improve the ASR performance,
where the models learn the details of the specific dataset. This impact is likely so large due
to the noisy nature of this dataset. As a result, the models need to be fine-tuned to learn this
noise and transfer their pre-trained knowledge to this dataset.

However, the difference in performance between the fine-tuned models with and without laugh-
ter in the training data labels differed per model. Most notably, on AMI the best initial test
had the even lower WER_L, at 0.304, for Whisper fine-tuned with laughter on just 20 epochs.
This seems to be an outlier, as this is not reflected in any further testing. However, this does
suggest some potential for improvement in Whisper. Perhaps with further fine-tuning of pa-
rameters and then strategically picking the best model Whisper could outperform HuBERT in
the main experiments. For the main experiments on the AMI dataset, the lowest WER was by
HuBERT at 0.308, with a corresponding WER_L of 0.317. This was for the fine-tuned model
excluding laughter. However, the WER for the fine-tuned model including laughter was just
0.003 higher and the WER_L of the two were the same. This is so small that the difference
in WER is neglectable and the laughter integration for HuBERT did not detriment the ASR
performance.

On Switchboard, the lowest WER and WER_L were found for Whisper fine-tuned without
laughter. Here, the WER_L was at 0.162 and the WER was at 0.151. The second lowest
WER and WER_L were found for Whisper fine-tuned including laughter, at a WER of 0.161
and WER_L of 0.163. The difference in WER_L is just 0.001, which is neglectable. How-
ever, the fairer comparative metric here is the WER, which fairly shows the performance of
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the models. For these, there was a difference of 0.01 WER, so 10%. This difference is more
significant, showing a significant increase in WER when fine-tuned with laughter. This can es-
pecially be seen when considering the relative WER difference, because the WER is quite low,
at 0.066. When applying this model, it must be noted that while laughter recognition was the
highest (with an F1-score of 0.901), this is detrimental to the integral ASR performance.

Notably, no further pattern could be found in whether fine-tuning with laughter had an im-
pact on the WER. For 2 out of 4 experiments (i.e. Whisper with Switchboard and HuBERT
with AMI), the WER increased and for the other half (i.e. Whisper with AMI and HuBERT
with Switchboard), it decreased. The amount with which it decreased and increased also dif-
fered for every model and experiment. One study in state-of-the-art shows that the ASR per-
formance was not detrimented when laughter detection was integrated [116], but also did not
improve. This does not match the results in this thesis, although the difference in WER was
minimal and in that study, the CER was used as the lexical performance metric.

5.3.3 WER Significance

When considering the WER of all models, including the best-performing ones, it is clear that
the ASR performance is not very good. Both WER_L and WER are high across all models.
Seeing as the WER was close to but lower than the WER_L every time, mainly the WER is
considered here, to sketch a good picture.

For AMI, the lowest WER from the main experiments was at 0.308, which still means that
only 2/3ds of the words are correct. This was the case for the HuBERT model when fine-
tuned without laughter. For HuBERT this is less surprising, as it is known to be less accu-
rate in terms of lexical performance when compared to other models, as it is not as flexible as
Whisper and needs a lot of data.

For Switchboard, the WER improved significantly. For HuBERT, the WER improved from
0.308 to 0.198. Whisper performed the best, with the lowest WER established at 0.151. This
is much better, due to the clean data, i.e. less complex ASR data, from Switchboard. It is
generally agreed that a WER for machine learning in ASR of 0.2 or less is acceptable, but
a WER of 0.1 to 0.05 is considered good quality [147]. To give a further impression, manual
annotation by humans has a WER of approximately 5% or lower [148]. Therefore, while the
WERs are acceptable to deploy and get comprehensible text output, they would still benefit
from some further training and parameter fine-tuning.

5.3.4 Comparison WER to State-of-the-art

While the F1-score on laughter recognition was not studied before, the WER of HuBERT and
Whisper has been researched previously on both AMI and Switchboard. In this thesis, the
WER was notably high for both models when fine-tuned on AMI when using the generally ac-
cepted WER indications for ML in ASR [147]. However, it is also insightful to compare these
results with the state-of-the-art. This will show if the WER is high due to aspects related to
the dataset, due to the model, or potentially due to an oversight in this thesis.

HuBERT

The current research on HuBERT mainly explores variations of the model, which was im-
proved in some way by including more languages or categorising (e.g., emotions). In addition,
often different metrics were used that cannot immediately be compared (i.e. CER or EER).
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However, when considering the AMI dataset, two studies tested their baseline with the WER.
One study tested the HuBERT-Base on the AMI dataset with the Single Distant Microphone
(SDM), resulting in a WER of 33.1% [149]. Another study differentiated between the Indi-
vidual Headsets (IH) and SDM, where the baseline HuBERT-conformer-L model reached a
WER of 13.52% and 32.01% respectively [150]. In this research, the WER reached a score of
0.442, so 44%, with zero-shot settings on the AMI dataset with HuBERT. This is higher than
the HuBERT-Base model and the HuBERT-Conformer-L for either of the AMI dataset types.
The HuBERT model used is the large-ls960-ft, which is better than the Base, but potentially
less good than the inclusion of the Conformer, as it enhances the local acoustic features in
speech. The AMI corpus in this research uses the Mixed Headset (MH), which is a mixture
of the quality of the IH but includes more complex audio aspects like the overlapping speech
of the SDM. Therefore, a direct comparison cannot be made, but taking the different models
and data types into account, this thesis should have better results than the SDM (i.e. MH is
cleaner) and HuBERT-Base (i.e. smaller). However, this is not the case for either.

For Switchboard, a WER of 9.8% was found for the fine-tuned HuBERT-large-ll60k in one
study [151]. The WER of HuBERT fine-tuned on Switchboard in this thesis is 0.198, so 19.8%,
which is significantly higher (i.e. 10%). This model is quite similar to the HuBERT-large-ls960
in this thesis, with the main difference being in what data it is trained on. The ll60k was pre-
trained on 60 000 hours of unlabelled data from Libri-Light, while the ls960 was pre-trained
on 960 hours of labelled LibriSpeech data. As a result, the ll60k is better at generalising and
acoustics, while the ls960 is linguistically better with cleaner audio (i.e. read speech). This
could be the reason that the ll60k performed better for Switchboard, as it is a spontaneous
speech dataset.

Whisper

The original Whisper paper [10] also studied the ASR performance of the model on both AMI
and Switchboard. The zero-shot settings on Whisper-large-v2 resulted in a WER of 16.7% on
AMI IH and a 13.8% WER on Switchboard. This is much lower than what was found in this
thesis, where Whisper zero-shot on AMI was at 0.550, so 55.0%, and on Switchboard at 0.362,
so 36.2%. The model used in this thesis was Distilled Whisper, which should only increase the
WER with up to 1% [152]. However, one study included evaluations by comparing the WER
for Whisper-large-v2 and the Distilled-Whisper-large-v2 on both AMI and Switchboard [153].
This respectively showed a WER of 16.9% and 14.7% for AMI SDM, a WER of 36.5% and
33.9% for AMI IH, and a WER of 14.2% and 11.2%. This even showed an improvement for all
datasets used in this research.

Substantiating Performance Shortcomings

Seeing as the WER is higher for both models on both datasets, it seems that the model con-
figurations are not the reason for this. In addition, the training behaviour showed that the
models were learning and the validation loss was decreasing. The main reason that the WER
is higher in this thesis is most likely due to the processing steps of the data. In this thesis,
all the data have been pre- and post-processed, but this could be done more thoroughly by
investigating more carefully how other papers with better results have done this. Processing
some frequent words could have been missed in this process (e.g. "you are" vs you’re), which
could significantly increase WER. As far as the author is aware, the data was processed as
effectively as possible, having checked the texts manually and by following all the standard
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processing steps in NLP. Due to time constraints, this was not further investigated. Also,
it must be noted that many papers do not transparently show their processing steps, which
makes replication difficult. Moreover, after investigating the differences between this thesis
and that of the models, the biggest difference that was found is how the data was chunked.
All studies used a chunk size of 30 seconds, as was done in this research, but with a focus on
chunking more optimally. There was ensured that the data was either chunked using a sliding
window (i.e. Whisper) or ensuring the batch ended at the end of a sentence (i.e. HuBERT).
This could influence how well the model can learn from the context and ensure there were no
confusing partial words in a batch. This was not done in this thesis and could influence the
performance.

5.4 Limitations & Recommendations

After summarising the key findings in this thesis, it is important to acknowledge its limita-
tions to ensure a fair consideration of its results. Additionally, several recommendations for
future work will be outlined. These include limitations of the model, the process in this thesis
and further improvements that could be made.

Firstly, the models that were used were HuBERT-large and the Distilled-Whisper-Large-V2.
For both models there are several similar alternatives, that could potentially outperform the
ones used here. For instance, HuBERT has the versions large-ll60k (i.e. potentially more flex-
ible in acoustic sounds) and xlarge (i.e. trained on even more data). Moreover, the Distilled
Whisper was used instead of the Whisper. While research shows that Distilled Whisper even
outperformed on the datasets used in this thesis, looking at the standard ASR performance,
perhaps the original Whisper could be more flexible when considering such a specific acoustic
token. The V2 was also used, due to tests with Whisper-V2 showing fewer hallucinations than
V3, but it could be that the Distilled -Whisper-V3 did not have these hallucinations. There-
fore, for future work, I recommend investigating the various models more before continuing
with advancements in this research. This was not done in this research due to time and com-
putational limitations.

Secondly, the state-of-the-art clearly shows the benchmark WER was much lower than in this
thesis. Therefore, only a relative conclusion (i.e. comparing my own baseline results to im-
proved WER and F1-score performance when fine-tuned) could properly be made in this the-
sis and not an improvement to the state-of-the-art. Some possible explanations for this have
been identified in the Discussion, but this must further be tested and applied in continuing re-
search. This may have also significantly affected the laughter event recognition process, as a
better-performing model allows the models to focus on its errors (i.e. focus on laughter inte-
gration).

Moreover, some parameter fine-tuning was conducted. However, this was only done on AMI
and subsequently applied to Switchboard. It is recommended that future work finds the cor-
rect parameters for the models on Switchboard too. Additionally, while the three main param-
eters (i.e. number of epochs, learning rate and weight decay) were investigated and some addi-
tional strategies were applied (e.g. early stopping and learning rate warm up time), there are
many more that can affect performance. For instance, there could be looked into other regu-
larisation techniques, freezing layers, dropout rate, loss function and optimiser selection. Due
to time limitations, these were not investigated, but previous research has shown its potential
in this field (e.g. as in [154]–[156]).
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Furthermore, the metrics used in this thesis were the WER (i.e. ASR performance) and F1-
score (i.e. laughter identification performance). However, the CER metric is often used for a
model with a CTC head, as does HuBERT (i.e., which has a letter-based vocabulary). This
makes it (1) difficult to compare to state-of-the-art and (2) WER might not represent the per-
formance of the model very well. This will depend a lot on the aim of your research, where
WER accurately represent what full words are correct, but as soon as a word is miss-spelled,
it is miss-classified.

Also, the F1-score and WER are calculated using the Jiwer package, which has a built-in way
of finding the alignment. This could impact the results negatively, as the alignment method
may not always perfectly capture certain nuances of spontaneous or overlapping speech, lead-
ing to potential misinterpretation of substitutions, deletions, and insertions. As a result, this
can skew the precision and recall, particularly in more complex speech environments like the
AMI dataset contains. Additionally, Jiwer operates at the word level and does not account
for phonetic similarities between words. This means that even if the model is close to recog-
nising laughter but predicts a similar yet incorrect word, it will still be marked as an error,
leading to an inaccurate evaluation. Especially when adding an acoustic sound like laughter,
this could be very relevant. It would be valuable to investigate another metric that better as-
sesses how close the model is to accurately recognising laughter, e.g. Levenshtein Distance,
Perceptual Evaluation of Speech Quality or Phoneme Error Rate (PER).

Additionally, this work was only tested on a subset of one dataset per experiment. It would be
intriguing to investigate what the performance is using other and more (types of) input data.
Fine-tuning on more data will, most likely, make it more robust in various settings, ensuring
it can be applied in real life (i.e. where many different scenarios will come up). However, this
will be costly time-wise and computationally.

Lastly, in this thesis, only laughter was investigated. However, these datasets, and others, also
included other sounds like coughing, sneezing and yawning. Investigating how the models re-
act to integrating these types of sounds could be beneficial in understanding and further de-
veloping these models. Exploring this topic would be intriguing, as it could further enhance
the robustness of ASR models and increase the accuracy of the representation of real-life sce-
narios more thoroughly than they currently do.
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Chapter 6

Conclusion

This research aimed to integrate laughter into pre-trained end-to-end (E2E) models. This
study focused on two particular models, namely Whisper and HuBERT. They were each fine-
tuned on two datasets separately, namely the AMI Corpus and Switchboard. In addition, two
baselines were set (i.e. zero-shot and fine-tuning without laughter) and the results were com-
pared. Overall, we can now draw a conclusion to the main research question: How effectively
can laughter transcription be integrated into established high-performing ASR systems through
the fine-tuning of pre-trained End-To-End models? To address this question, the laughter
detection performance of the fine-tuned models is evaluated. Additionally, the impact of this
fine-tuning on lexical performance is analysed. Next, a general conclusion and recommenda-
tion are provided regarding the models’ practical application. Finally, the main research ques-
tion is addressed with a concluding statement.

6.1 Laughter Performance

Before fine-tuning on the datasets including laughter, two baselines were set. These consisted
of the zero-shot setting and the fine-tuned without laughter. Here it was concluded that Whis-
per was better than HuBERT at identifying a laughter event as part of speech and also pat-
terns could be found in how it deals with these events. However, HuBERT was the only model
that substituted these laughter events with something recognisable as laughter, i.e. "haha" or
a variant. This was only with the zero-shot on AMI though, so it seems that in this case, the
noisy dataset was beneficial for HuBERT.

After fully fine-tuning the noisy AMI dataset including laughter, Whisper had a F1-score of
0.444 and HuBERT had a F1-score of 0.531. HuBERT performed slightly better than
Whisper, but still this F1-score is low, where both models would recognise about half of the
laughter instances correctly. This by itself would suggest that neither model is suitable to ap-
ply to such an environment to integrate laughter recognition into ASR. A deeper analysis of
laughter alignment operations together with the recall and precision, showed that for both
models the precision was high with few insertions. Both models had a low recall, but, the Hu-
BERT model had a precision of 0.785, while Whisper had a precision of 0.949. This shows
that while the F1-score for HuBERT was better, and Whisper might miss more instances,
Whisper barely made any incorrect predictions. Therefore, in this situation, Whisper has some
potential to be applied in scenarios where it does not matter as much if laughter is sometimes
missed, as long as it is not wrong.
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When fine-tuned on the cleaner Switchboard dataset, Whisper had the highest F1-score
at 0.901, while HuBERT had a F1-score of 0.622. While HuBERT performs quite badly,
Whisper performed very well. At 90%, this shows very good potential for the integration of
laughter. A deeper look into the behaviour of the models showed that for both precision was
high (above 0.9). The recall for HuBERT was still quite low, at 0.468, but Whisper’s recall
went up to 0.836. Based on these results, we can conclude that while HuBERT shows poten-
tial in similar scenarios, Whisper consistently delivers superior performance for Switchboard.

6.2 Lexical Performance Impact

The lexical performance is usually the most important in research, where the integration of
laughter should be an extra, non-detrimental faction. In this research, the effect of fine-tuning
with laughter gave varying results. In every experiment, fine-tuning with or without laugh-
ter significantly decreased the WER. However, for 2/4 experiments the fine-tuning without
laughter outperformed fine-tuning with laughter, and vice versa. The amount with which this
differed was low but variable, ranging from 0.010 to 0.003. Therefore, no definite conclusion
could be made as to the impact on the lexical performance. However, we can say that it does
have some kind of impact, as every time there was some variation.

Notably, throughout this research, the WER was significantly high. Generally agreed, a WER
of 0.05 to 0.10 has good quality and 0.10 to 0.20 is decent. If the models with the highest F1-
scores are taken, as these are also the ones with the lowest WER, these are still in this just
0.10 to 0.20 range, but mostly higher. For instance, for AMI, HuBERT had the best laugh-
ter performance with a WER of 0.311, while with Switchboard, Whisper had the best
laughter performance with a WER of 0.161.

However, this research used models which have been applied to the same or similar datasets
before. For instance, the Distilled-Whisper model from state-of-the-art reached a WER of
0.169 for the AMI Single Distant Microphone setup and 0.365 WER for the AMI Individ-
ual Headset setup with zero-shot. The Distilled-Whisper model in this research had a zero-
shot WER of 0.550 on the AMI Mixed Headset (i.e. similar to a mixture of the other types of
AMI audio). This illustrates the potential of the model, as problems may lie in pre- or post-
processing and not with the model. Therefore, this could be further investigated. The exact
reasons and issues with this are discussed in Chapter 5.3.4.

6.3 Application Implications

During this research, several other conclusions were drawn from the research. Throughout
training and fine-tuning, several notable elements of the two models came up that are impor-
tant when applying the models. In addition, the two quite different datasets were used to shed
some light on where and how each model could be applied.

6.3.1 Model Behaviour

In this thesis, two models are compared. They are each known for their strengths and weak-
nesses, which have also been explored in this paper. Whisper is more flexible and robust, but
focuses on lexical word and sentence patterns. It also converges quicker, making fine-tuning
more cost-efficient. This is because it was pre-trained on many types of audio data including
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laughter. The HuBERT model is better at recognising acoustic patterns, so phonemes, espe-
cially amid noisy data. This is because its pre-training was unsupervised, it does not focus
on lexical performance. However, fully fine-tuning HuBERT takes many epochs and demands
high resources.

6.3.2 Data Implications

As established, the only result of the experiment that resulted in a usable model, was when
Whisper was fine-tuned on Switchboard including laughter. However, it was the case for all
experiments (i.e. baselines and fine-tuning) that the F1-score was higher and WER lower on
Switchboard than on AMI. While both models have been fine-tuned to two datasets contain-
ing spontaneous speech, the two datasets represent very different environments. The AMI
dataset is "noisier" and Switchboard "cleaner" and bigger. In this case, this is expressed in
AMI having more speakers, less guided topics, more overlapping speech and more background
noise in the meeting room. Switchboard only has two speakers, which was a telephone con-
versation, with clear seed topics. The AMI dataset has around 11 million words, out of which
0.15% are laughter events (i.e. 16 500), while the Switchboard dataset has around 36 million
words, out of which 0.10% are laughter events (i.e. 36 000). This also triples the ASR data
and doubles the laughter events.

As concluded, the performance of both models is highly dependent on the amount and qual-
ity of the data. This has implications for when the models are to be applied to real life or
tested on other datasets. The Whisper model can easily be applied to controlled spontaneous
speech scenarios like telephone conversations, e.g. customer service or call centres, or one- or
two-person podcasts. This model is preferably fine-tuned to this specific scenario, but this is
quick to do (i.e. little epochs) and more important is the pre-processing. HuBERT is better
applied to situations where a lot of people are talking and the focus is not on the lexical per-
formance, but on getting an impression of the atmosphere, e.g. large group meetings, social
gatherings, or background noise analysis in public spaces. It will need fine-tuning with a sig-
nificant amount of data.

6.4 Final Conclusion

After considering all the partial conclusions from the experiments, we can finally conclude
the main research question: How effectively can laughter transcription be integrated into es-
tablished high-performing ASR systems through the fine-tuning of pre-trained End-To-End
models? When applied to clean data, in this case Switchboard, the Whisper model is effec-
tive. It has a good laughter detection score and lexical performance, with a high F1-score
(0.901), high precision (0.948) and relatively high WER (0.161). HuBERT’s performance in
both laughter detection and lexical tasks was significantly lower, never reaching satisfactory
levels. On noisier data, in this case the AMI dataset, both models underperformed, with nei-
ther achieving results that could be considered adequate. In addition, no conclusion could be
made on the lexical impact of integrating laughter, as this differed too much per experiment.
Lastly, it seems that specific ASR systems perform very differently when fine-tuned, where
surprisingly a flexible yet lexical-based model outperforms the acoustic-based model on an
acoustic sound like laughter. Therefore, laughter can effectively be integrated into ASR sys-
tems, but elements like the specific model type, amount and quality of data and its applica-
tion have to be kept in mind.
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Acronyms

ANN Artificial Neural Networks.

ASR Automatic Speech Recognition.

AUC Area Under Curve.

BLSTM Bidirectional Long-Short Term Memory Neural Network.

CER Character Error Rate.

CNN Convolutional Neural Network.

CRF Conditional Random Field.

CSJ Corpus of Spontaneous Japanese.

CTC Connectionist Temporal classification.

DNN Deep Neural Network.

E2E End-To-End.

EER Equal Error Rate.

GMM Gaussian Mixture Model.

HMM Hidden Markov Model.

LM Language Models.

MLP multilayer perceptron.

NMT neural machine translation.

NN Neural Network.

PER Phoneme Error Rate.

REF reference transcript.
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ReLU Rectified Linear Unit.

RNA Recurrent Neural Aligner.

RNN Recurrent Neural Network.

RNN-T Recurrent Neural Network Transducer.

Seq2Seq Sequence-to-Sequence.

SER Sentence Error Rate.

SP Speed Perturbation.

STT Speech-Recognition Output.

SVM Support Vector Machines.

WER Word Error Rate.
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Chapter 7

Appendices

7.1 Appendix A: Trainer and TrainingArguments

i f dev i c e == "cpu " :
extra_args = {

"use_cpu " : True ,
" fp16 " : False ,

}
e l s e :

extra_args = {
" fp16 " : True ,

}
ear ly_stopping_ca l lback = Ear lyStoppingCal lback (

ear ly_stopping_pat ience =25,
ear ly_stopping_thresho ld =0.0001 ,

)

# Var iab l e s :
l ea rn ing_rate = 3e−4 # HuBERT
learn ing_rate = 5e−5 # Whisper

weight_decay = 0 .1
weight_decay = 0.01
weight_decay = 0.001
weight_decay = 0.0001

num_training_epochs = 300

# Train ing Arguments
t ra in ing_args = TrainingArguments (

save_tota l_l imit =3,
grad ient_checkpo int ing=True ,
do_train=True ,
do_eval=True ,
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save_steps =400 ,
eva l_steps =40,
num_train_epochs=num_training_epochs ,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
l ea rn ing_rate=learn ing_rate ,
warmup_steps=500 ,
eva l_strategy="s t ep s " ,
output_dir="./ output " ,
overwrite_output_dir=True ,
weight_decay=weight_decay ,
eval_accumulation_steps=4,
gradient_accumulat ion_steps=4,
∗∗ extra_args

)

# Trainer
t r a i n e r = Trainer (

model=model ,
data_co l l a to r=data_co l lator ,
a rgs=tra in ing_args ,
compute_metrics=compute_metrics ,
t ra in_dataset=tra in_dataset ,
eva l_dataset=val id_dataset ,
t ok en i z e r=proces so r ,
c a l l b a c k s =[CSVLoggerCallback ( ’ . / H_validation_results_AMI . csv ’ ) ,
ear ly_stopping_cal lback ]

)

7.2 Appendix B: substitution word list with pattern frequency

7.3 Appendix C: laughter alignment operations for Whisper
fine-tuned on AMI

7.4 Appendix D: laughter alignment operations for HuBERT
fine-tuned on AMI

7.5 Appendix E: laughter alignment operations for Whisper
fine-tuned on Switchboard

7.6 Appendix F: laughter alignment operations for HuBERT
fine-tuned on Switchboard
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Not Fine-tuned
Substitution Words Example Amount (%

of Total)
small words ’you’, ’with’, ’like’ 80

repetition of small words ’yeahyeah’, ’andthatthat’, ”sososoi’ 13
"the" words ’thethe’ 4

thinking / acknowledgement words ’uh’, ’oh’, ’um’ 2
"okay" ’okayaya yokayay okayay’ 1

Fine-tuned without laughter
Substitution Words Example Amount (%

of Total)
"okay" ’okayayay’ 23

words with "th" ’thankth’, ’whatthe’, ’wasthink’ 22
’yeah’ ’yeah’ 21

individual words ’mute’, ’just’, ’but’ 19
thinking / acknowledgement words ’uh’, ’um’, ’mm’ 16

Fine-tuned with laughter
Substitution Words Example Amount (%

of Total)
words with "<" ’a<laughter>’, ’do<laughter>’, ’see<laughter>’ 62

small words ’got’, ’and’, ’just’ 25
"th" words ’thankthank’, ’that’, ’the’ 8

"yeah" ’yeah’ 3
"okay" ’okayayay’ 2

Table 7.1: Patterns of substitution word types for Whisper on AMI dataset
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Not Fine-tuned
Substitution Words Example Amount (%

of Total)
combined words ’cometo’, ’somethingthe’, ’apartmentthe’ 36
small "th" words ’the’, ’they’, ’that’ 34
(almost) words ’if’, ’her’, ’yout’ 21
double words ’yearyear’, ’yeahyeah’, ’yesyes’ 9

Fine-tuned without laughter
Substitution Words Example Amount (%

of Total)
word + "th" word ’reallythe’, ’hadthink’, ’ithink’ 66

small words ’we’, ’and’, ’see’ 15
"yeah" + "t" word ’yeahtoo’, ’yeahthere’, ’yeahthe’ 14
"you" + "t" word ’youto’, ’youthe’, ’youth’ 5

Fine-tuned with laughter
Substitution Words Example Amount (%

of Total)
word with "<laughter>" ’the<laughter’, ’a<laughter>’, ’with<laughter>’ 53

combined words ’canthat’, ’youthey’, ’acrossthe’ 29
small "th" words ’that’, ’than’, ’them’ 15

"yeah" ’yeah’ 3

Table 7.2: Patterns of substitution word types for Whisper on the Switchboard
dataset

Figure 7.1: The counts of substitutions, hits, deletions and insertions of laughter
events for Whisper fine-tuned on AMI for 200 epochs
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Not Fine-tuned
Substitution Words Example Amount (% of Total)

almost words ’bsurd’, ’acepted’, ’spece’ 80
individual letters ’a’, ’o’, ’i’ 20

Fine-tuned without laughter
Substitution Words Example Amount (% of Total)

(almost) words ’grey’, ’fine’, ’time’ 80
individual letters ’i’, ’o’, ’a’ 11

thinking / acknowledgement words ’uhu’, ’mhm’ 3
’wel’ ’wel’ 3

"yeah" ’yeah’ 3

Fine-tuned with laughter
Substitution Words Example Amount (% of Total)

individual words ’volunters’, ’agred’, ’discusion’ 50
words with "<" (laughter) ’o<’, ’the<’, ’a<’ 40

individual letters ’i’, ’a’, ’m’ 6
"yeah" ’yeah’, ’yea’ 2
"wel" ’wel’ 2

Table 7.3: Patterns of substitution word types for HuBERT on the AMI dataset

Figure 7.2: The counts of substitutions, hits, deletions and insertions of laughter
events for HuBERT fine-tuned on AMI for 200 epochs
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Not Fine-tuned
Substitution Words Example Amount (%

of Total)
words ’sometimes’, ’caus’, ’like’ 52

individual letters ’i’, ’m’, ’s’ 24
letter a or h combination ’ha ha ha’, ’aha’, ’h’, ’a’ 10

filler words ’uh’, ’um’, ’ya’ 8
words + "a" + "h" ’hahahh adiferent’, ’hahuanow’, ’hamerican’ 6

Fine-tuned without laughter
Substitution Words Example Amount (%

of Total)
’th’ words "there", "thing", "the" 26

individual words ’hunderd’, ’everybody’, ’if’ 20
single letters ’s’, ’a’, ’m’ 20

thinking / acknowledgement words ’umh’, ’uhuh’, ’uh’ 17
"yeah" ’yeah’, ’ityeah’, ’yeahyeah’ 10
"you" ’you’, ’youl’, ’youre’ 8

Fine-tuned with laughter
Substitution Words Example Amount (%

of Total)
individual words ’something’, ’than’, ’thing’ 54

words with laughter, or "<" ’<ay’, ’<rety’, ’<n’ 39
sounds ’uhm’, ’oh’, ’uhu’ 5
’yeah’ ’yeah’ 2

Table 7.4: Patterns of substitution word types of laughter for HuBERT on the
Switchboard dataset
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Figure 7.3: The counts of substitutions, hits, deletions and insertions for Whisper
fine-tuned on SWB for 39 epochs

Figure 7.4: The counts of substitutions, hits, deletions and insertions for HuBERT
fine-tuned on SWB for 32 epochs
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